-
Notifications
You must be signed in to change notification settings - Fork 4.7k
/
Copy pathtest_ted_policy.py
863 lines (779 loc) · 30.3 KB
/
test_ted_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
from pathlib import Path
from typing import Optional, List, Type, Dict, Text, Any
import numpy as np
import pytest
from _pytest.tmpdir import TempPathFactory
import tests.core.test_policies
from _pytest.monkeypatch import MonkeyPatch
from _pytest.logging import LogCaptureFixture
from rasa.core.constants import POLICY_MAX_HISTORY
from rasa.core.featurizers.tracker_featurizers import TrackerFeaturizer
from rasa.core.featurizers.tracker_featurizers import MaxHistoryTrackerFeaturizer
from rasa.core.featurizers.single_state_featurizer import SingleStateFeaturizer
from rasa.core.policies.policy import Policy as Policy
from rasa.core.policies.ted_policy import TEDPolicy
from rasa.engine.graph import ExecutionContext
from rasa.engine.storage.local_model_storage import LocalModelStorage
from rasa.engine.storage.resource import Resource
from rasa.engine.storage.storage import ModelStorage
from rasa.shared.core.constants import ACTION_LISTEN_NAME, ACTION_UNLIKELY_INTENT_NAME
from rasa.shared.core.domain import Domain
from rasa.shared.core.events import (
ActionExecuted,
UserUttered,
Event,
EntitiesAdded,
ActiveLoop,
)
from rasa.shared.exceptions import RasaException, InvalidConfigException
from rasa.utils.tensorflow.data_generator import RasaBatchDataGenerator
from rasa.shared.core.trackers import DialogueStateTracker
from rasa.model_training import train_core
from rasa.utils.tensorflow.constants import (
EVAL_NUM_EXAMPLES,
KEY_RELATIVE_ATTENTION,
LOSS_TYPE,
MAX_RELATIVE_POSITION,
RANKING_LENGTH,
RENORMALIZE_CONFIDENCES,
SCALE_LOSS,
SIMILARITY_TYPE,
VALUE_RELATIVE_ATTENTION,
MODEL_CONFIDENCE,
COSINE,
AUTO,
LABEL,
MASK,
SENTENCE,
IDS,
EPOCHS,
EPOCH_OVERRIDE,
)
from rasa.shared.nlu.constants import ACTION_NAME
from rasa.utils.tensorflow import model_data_utils
from tests.core.test_policies import PolicyTestCollection
from rasa.shared.constants import DEFAULT_SENDER_ID, LATEST_TRAINING_DATA_FORMAT_VERSION
UTTER_GREET_ACTION = "utter_greet"
GREET_INTENT_NAME = "greet"
DOMAIN_YAML = f"""
intents:
- {GREET_INTENT_NAME}
actions:
- {UTTER_GREET_ACTION}
"""
def test_diagnostics(
default_model_storage: ModelStorage, default_execution_context: ExecutionContext
):
domain = Domain.from_yaml(DOMAIN_YAML)
policy = TEDPolicy(
TEDPolicy.get_default_config(),
default_model_storage,
Resource("TEDPolicy"),
default_execution_context,
)
GREET_RULE = DialogueStateTracker.from_events(
"greet rule",
evts=[
UserUttered(intent={"name": GREET_INTENT_NAME}),
ActionExecuted(UTTER_GREET_ACTION),
ActionExecuted(ACTION_LISTEN_NAME),
UserUttered(intent={"name": GREET_INTENT_NAME}),
ActionExecuted(ACTION_LISTEN_NAME),
],
)
precomputations = None
policy.train([GREET_RULE], domain, precomputations)
prediction = policy.predict_action_probabilities(
GREET_RULE, domain, precomputations
)
assert prediction.diagnostic_data
assert "attention_weights" in prediction.diagnostic_data
assert isinstance(prediction.diagnostic_data.get("attention_weights"), np.ndarray)
class TestTEDPolicy(PolicyTestCollection):
@staticmethod
def _policy_class_to_test() -> Type[TEDPolicy]:
return TEDPolicy
def test_train_model_checkpointing(
self, tmp_path: Path, tmp_path_factory: TempPathFactory
):
train_core(
domain="data/test_domains/default.yml",
stories="data/test_yaml_stories/stories_defaultdomain.yml",
output=str(tmp_path),
fixed_model_name="my_model.tar.gz",
config="data/test_config/config_ted_policy_model_checkpointing.yml",
)
storage_dir = tmp_path_factory.mktemp("storage dir")
LocalModelStorage.from_model_archive(storage_dir, tmp_path / "my_model.tar.gz")
model_dir = storage_dir / "train_TEDPolicy0"
all_files = list(model_dir.rglob("*.*"))
assert any(["from_checkpoint" in str(filename) for filename in all_files])
def test_doesnt_checkpoint_with_no_checkpointing(
self, tmp_path: Path, tmp_path_factory: TempPathFactory
):
train_core(
domain="data/test_domains/default.yml",
stories="data/test_yaml_stories/stories_defaultdomain.yml",
output=str(tmp_path),
fixed_model_name="my_model.tar.gz",
config="data/test_config/config_ted_policy_no_model_checkpointing.yml",
)
storage_dir = tmp_path_factory.mktemp("storage dir")
LocalModelStorage.from_model_archive(storage_dir, tmp_path / "my_model.tar.gz")
model_dir = storage_dir / "train_TEDPolicy0"
all_files = list(model_dir.rglob("*.*"))
assert not any(["from_checkpoint" in str(filename) for filename in all_files])
def test_doesnt_checkpoint_with_zero_eval_num_examples(
self, tmp_path: Path, tmp_path_factory: TempPathFactory
):
config_file = "config_ted_policy_model_checkpointing_zero_eval_num_examples.yml"
with pytest.warns(UserWarning) as warning:
train_core(
domain="data/test_domains/default.yml",
stories="data/test_yaml_stories/stories_defaultdomain.yml",
output=str(tmp_path),
fixed_model_name="my_model.tar.gz",
config=f"data/test_config/{config_file}",
)
warn_text = (
f"You have opted to save the best model, but the value of "
f"'{EVAL_NUM_EXAMPLES}' is not greater than 0. No checkpoint model will be "
f"saved."
)
assert len([w for w in warning if warn_text in str(w.message)]) == 1
storage_dir = tmp_path_factory.mktemp("storage dir")
LocalModelStorage.from_model_archive(storage_dir, tmp_path / "my_model.tar.gz")
model_dir = storage_dir / "train_TEDPolicy0"
all_files = list(model_dir.rglob("*.*"))
assert not any(["from_checkpoint" in str(filename) for filename in all_files])
@pytest.mark.parametrize(
"should_finetune, epoch_override, expected_epoch_value",
[
(
True,
TEDPolicy.get_default_config()[EPOCHS] + 1,
TEDPolicy.get_default_config()[EPOCHS] + 1,
),
(
False,
TEDPolicy.get_default_config()[EPOCHS] + 1,
TEDPolicy.get_default_config()[EPOCHS],
), # trained_policy uses default epochs during training
],
)
def test_epoch_override_when_loaded(
self,
trained_policy: TEDPolicy,
should_finetune: bool,
epoch_override: int,
expected_epoch_value: int,
resource: Resource,
model_storage: ModelStorage,
execution_context: ExecutionContext,
):
execution_context.is_finetuning = should_finetune
loaded_policy = trained_policy.__class__.load(
{**self._config(), EPOCH_OVERRIDE: epoch_override},
model_storage,
resource,
execution_context,
)
assert loaded_policy.config[EPOCHS] == expected_epoch_value
def test_train_fails_with_checkpoint_zero_eval_num_epochs(self, tmp_path: Path):
config_file = "config_ted_policy_model_checkpointing_zero_every_num_epochs.yml"
match_string = (
"Only values either equal to -1 or greater"
" than 0 are allowed for this parameter."
)
with pytest.raises(InvalidConfigException, match=match_string):
train_core(
domain="data/test_domains/default.yml",
stories="data/test_yaml_stories/stories_defaultdomain.yml",
output=str(tmp_path),
config=f"data/test_config/{config_file}",
)
assert not (tmp_path / "my_model.tar.gz").is_file()
def test_training_with_no_intent(
self,
featurizer: Optional[TrackerFeaturizer],
default_domain: Domain,
tmp_path: Path,
caplog: LogCaptureFixture,
model_storage: ModelStorage,
resource: Resource,
execution_context: ExecutionContext,
):
stories = tmp_path / "stories.yml"
stories.write_text(
f"""
version: "{LATEST_TRAINING_DATA_FORMAT_VERSION}"
stories:
- story: test path
steps:
- action: utter_greet
"""
)
policy = self.create_policy(
featurizer=featurizer,
model_storage=model_storage,
resource=resource,
execution_context=execution_context,
)
import tests.core.test_policies
training_trackers = tests.core.test_policies.train_trackers(
default_domain, str(stories), augmentation_factor=20
)
with pytest.raises(RasaException) as e:
policy.train(training_trackers, default_domain, precomputations=None)
assert "No user features specified. Cannot train 'TED' model." == str(e.value)
def test_similarity_type(self, trained_policy: TEDPolicy):
assert trained_policy.config[SIMILARITY_TYPE] == "inner"
def test_ranking_length(self, trained_policy: TEDPolicy):
assert trained_policy.config[RANKING_LENGTH] == 0
def test_ranking_length_and_renormalization(
self,
trained_policy: TEDPolicy,
tracker: DialogueStateTracker,
default_domain: Domain,
monkeypatch: MonkeyPatch,
):
precomputations = None
prediction = trained_policy.predict_action_probabilities(
tracker, default_domain, precomputations
)
# first check the output is what we expect
assert not prediction.is_end_to_end_prediction
# check that ranking length is applied - without normalization
if trained_policy.config[RANKING_LENGTH] == 0:
assert sum(
[confidence for confidence in prediction.probabilities]
) == pytest.approx(1)
assert all(confidence > 0 for confidence in prediction.probabilities)
else:
assert (
sum([confidence > 0 for confidence in prediction.probabilities])
== trained_policy.config[RANKING_LENGTH]
)
assert sum(
[confidence for confidence in prediction.probabilities]
) != pytest.approx(1)
def test_label_data_assembly(
self, trained_policy: TEDPolicy, default_domain: Domain
):
state_featurizer = trained_policy.featurizer.state_featurizer
encoded_all_labels = state_featurizer.encode_all_labels(
default_domain, precomputations=None
)
attribute_data, _ = model_data_utils.convert_to_data_format(encoded_all_labels)
assembled_label_data = trained_policy._assemble_label_data(
attribute_data, default_domain
)
assembled_label_data_signature = assembled_label_data.get_signature()
assert list(assembled_label_data_signature.keys()) == [
f"{LABEL}_{ACTION_NAME}",
f"{LABEL}",
]
assert assembled_label_data.num_examples == default_domain.num_actions
assert list(
assembled_label_data_signature[f"{LABEL}_{ACTION_NAME}"].keys()
) == [MASK, SENTENCE]
assert list(assembled_label_data_signature[LABEL].keys()) == [IDS]
assert (
assembled_label_data_signature[f"{LABEL}_{ACTION_NAME}"][SENTENCE][0].units
== default_domain.num_actions
)
def test_gen_batch(
self, trained_policy: TEDPolicy, default_domain: Domain, stories_path: Path
):
training_trackers = tests.core.test_policies.train_trackers(
default_domain, stories_path, augmentation_factor=0
)
precomputations = None
training_data, label_ids, entity_tags = trained_policy._featurize_for_training(
training_trackers, default_domain, precomputations
)
_, all_labels = trained_policy._create_label_data(
default_domain, precomputations
)
model_data = trained_policy._create_model_data(
training_data, label_ids, entity_tags, all_labels
)
batch_size = 2
data_generator = RasaBatchDataGenerator(
model_data, batch_size=batch_size, shuffle=False, batch_strategy="sequence"
)
iterator = iter(data_generator)
# model data keys were sorted, so the order is alphabetical
(
(
batch_action_name_mask,
_,
_,
batch_action_name_sentence_shape,
batch_dialogue_length,
batch_entities_mask,
_,
_,
batch_entities_sentence_shape,
batch_intent_mask,
_,
_,
batch_intent_sentence_shape,
batch_label_ids,
batch_slots_mask,
_,
_,
batch_slots_sentence_shape,
),
_,
) = next(iterator)
assert (
batch_label_ids.shape[0] == batch_size
and batch_dialogue_length.shape[0] == batch_size
)
# batch and dialogue dimensions are NOT combined for masks
assert (
batch_slots_mask.shape[0] == batch_size
and batch_intent_mask.shape[0] == batch_size
and batch_entities_mask.shape[0] == batch_size
and batch_action_name_mask.shape[0] == batch_size
)
# some features might be "fake" so there sequence is `0`
seq_len = max(
[
batch_intent_sentence_shape[1],
batch_action_name_sentence_shape[1],
batch_entities_sentence_shape[1],
batch_slots_sentence_shape[1],
]
)
assert (
batch_intent_sentence_shape[1] == seq_len
or batch_intent_sentence_shape[1] == 0
)
assert (
batch_action_name_sentence_shape[1] == seq_len
or batch_action_name_sentence_shape[1] == 0
)
assert (
batch_entities_sentence_shape[1] == seq_len
or batch_entities_sentence_shape[1] == 0
)
assert (
batch_slots_sentence_shape[1] == seq_len
or batch_slots_sentence_shape[1] == 0
)
data_generator = RasaBatchDataGenerator(
model_data, batch_size=batch_size, shuffle=True, batch_strategy="balanced"
)
iterator = iter(data_generator)
(
(
batch_action_name_mask,
_,
_,
batch_action_name_sentence_shape,
batch_dialogue_length,
batch_entities_mask,
_,
_,
batch_entities_sentence_shape,
batch_intent_mask,
_,
_,
batch_intent_sentence_shape,
batch_label_ids,
batch_slots_mask,
_,
_,
batch_slots_sentence_shape,
),
_,
) = next(iterator)
assert (
batch_label_ids.shape[0] == batch_size
and batch_dialogue_length.shape[0] == batch_size
)
# some features might be "fake" so there sequence is `0`
seq_len = max(
[
batch_intent_sentence_shape[1],
batch_action_name_sentence_shape[1],
batch_entities_sentence_shape[1],
batch_slots_sentence_shape[1],
]
)
assert (
batch_intent_sentence_shape[1] == seq_len
or batch_intent_sentence_shape[1] == 0
)
assert (
batch_action_name_sentence_shape[1] == seq_len
or batch_action_name_sentence_shape[1] == 0
)
assert (
batch_entities_sentence_shape[1] == seq_len
or batch_entities_sentence_shape[1] == 0
)
assert (
batch_slots_sentence_shape[1] == seq_len
or batch_slots_sentence_shape[1] == 0
)
@pytest.mark.parametrize(
"tracker_events_with_action, tracker_events_without_action",
[
(
[
ActionExecuted(ACTION_LISTEN_NAME),
UserUttered(text="hello", intent={"name": "greet"}),
ActionExecuted(ACTION_UNLIKELY_INTENT_NAME),
],
[
ActionExecuted(ACTION_LISTEN_NAME),
UserUttered(text="hello", intent={"name": "greet"}),
],
),
(
[
ActionExecuted(ACTION_LISTEN_NAME),
UserUttered(text="hello", intent={"name": "greet"}),
EntitiesAdded(entities=[{"entity": "name", "value": "Peter"}]),
ActionExecuted(ACTION_UNLIKELY_INTENT_NAME),
ActionExecuted("utter_greet"),
],
[
ActionExecuted(ACTION_LISTEN_NAME),
UserUttered(text="hello", intent={"name": "greet"}),
EntitiesAdded(entities=[{"entity": "name", "value": "Peter"}]),
ActionExecuted("utter_greet"),
],
),
(
[
ActionExecuted(ACTION_LISTEN_NAME),
UserUttered(text="hello", intent={"name": "greet"}),
ActionExecuted(ACTION_UNLIKELY_INTENT_NAME),
ActionExecuted("some_form"),
ActiveLoop("some_form"),
ActionExecuted(ACTION_LISTEN_NAME),
UserUttered(text="default", intent={"name": "default"}),
ActionExecuted(ACTION_UNLIKELY_INTENT_NAME),
],
[
ActionExecuted(ACTION_LISTEN_NAME),
UserUttered(text="hello", intent={"name": "greet"}),
ActionExecuted(ACTION_UNLIKELY_INTENT_NAME),
ActionExecuted("some_form"),
ActiveLoop("some_form"),
ActionExecuted(ACTION_LISTEN_NAME),
UserUttered(text="default", intent={"name": "default"}),
],
),
],
)
def test_ignore_action_unlikely_intent(
self,
trained_policy: TEDPolicy,
default_domain: Domain,
tracker_events_with_action: List[Event],
tracker_events_without_action: List[Event],
):
precomputations = None
tracker_with_action = DialogueStateTracker.from_events(
"test 1", evts=tracker_events_with_action
)
tracker_without_action = DialogueStateTracker.from_events(
"test 2", evts=tracker_events_without_action
)
prediction_with_action = trained_policy.predict_action_probabilities(
tracker_with_action, default_domain, precomputations
)
prediction_without_action = trained_policy.predict_action_probabilities(
tracker_without_action, default_domain, precomputations
)
# If the weights didn't change then both trackers
# should result in same prediction.
assert (
prediction_with_action.probabilities
== prediction_without_action.probabilities
)
@pytest.mark.parametrize(
"featurizer_config, tracker_featurizer, state_featurizer",
[
(None, MaxHistoryTrackerFeaturizer(), SingleStateFeaturizer),
([], MaxHistoryTrackerFeaturizer(), SingleStateFeaturizer),
],
)
def test_empty_featurizer_configs(
self,
featurizer_config: Optional[Dict[Text, Any]],
model_storage: ModelStorage,
resource: Resource,
execution_context: ExecutionContext,
tracker_featurizer: MaxHistoryTrackerFeaturizer,
state_featurizer: Type[SingleStateFeaturizer],
):
featurizer_config_override = (
{"featurizer": featurizer_config} if featurizer_config else {}
)
policy = self.create_policy(
None,
model_storage=model_storage,
resource=resource,
execution_context=execution_context,
config=self._config(featurizer_config_override),
)
featurizer = policy.featurizer
assert isinstance(featurizer, tracker_featurizer.__class__)
if featurizer_config:
expected_max_history = featurizer_config[0].get(POLICY_MAX_HISTORY)
else:
expected_max_history = self._config().get(POLICY_MAX_HISTORY)
assert featurizer.max_history == expected_max_history
assert isinstance(featurizer.state_featurizer, state_featurizer)
class TestTEDPolicyConfigurationOptions:
"""Helper class to skip redundant and long-running tests in subclasses."""
@pytest.mark.parametrize("should_finetune", [False])
@pytest.mark.skip()
def test_persist_and_load(
self,
trained_policy: Policy,
default_domain: Domain,
should_finetune: bool,
stories_path: Text,
model_storage: ModelStorage,
resource: Resource,
execution_context: ExecutionContext,
):
"""This takes long and does not need to be tested for every config change."""
pass
@pytest.mark.skip()
def test_train_model_checkpointing(
self, tmp_path: Path, tmp_path_factory: TempPathFactory
):
"""This takes long and does not need to be tested for every config change."""
pass
@pytest.mark.skip()
def test_doesnt_checkpoint_with_no_checkpointing(
self, tmp_path: Path, tmp_path_factory: TempPathFactory
):
"""This takes long and does not need to be tested for every config change."""
pass
@pytest.mark.skip()
def test_doesnt_checkpoint_with_zero_eval_num_examples(
self, tmp_path: Path, tmp_path_factory: TempPathFactory
):
"""This takes long and does not need to be tested for every config change."""
@pytest.mark.parametrize(
"should_finetune, epoch_override, expected_epoch_value",
[
(
True,
TEDPolicy.get_default_config()[EPOCHS] + 1,
TEDPolicy.get_default_config()[EPOCHS] + 1,
)
],
)
@pytest.mark.skip()
def test_epoch_override_when_loaded(
self,
trained_policy: TEDPolicy,
should_finetune: bool,
epoch_override: int,
expected_epoch_value: int,
resource: Resource,
model_storage: ModelStorage,
execution_context: ExecutionContext,
):
"""This takes long and does not need to be tested for every config change."""
pass
class TestTEDPolicyMargin(TestTEDPolicyConfigurationOptions, TestTEDPolicy):
def _config(
self, config_override: Optional[Dict[Text, Any]] = None
) -> Dict[Text, Any]:
config_override = config_override or {}
return {
**TEDPolicy.get_default_config(),
LOSS_TYPE: "margin",
EPOCHS: 2,
**config_override,
}
def test_similarity_type(self, trained_policy: TEDPolicy):
assert trained_policy.config[SIMILARITY_TYPE] == COSINE
def test_confidence_type(self, trained_policy: TEDPolicy):
assert trained_policy.config[MODEL_CONFIDENCE] == AUTO
def test_ranking_length_and_renormalization(
self,
trained_policy: Policy,
tracker: DialogueStateTracker,
default_domain: Domain,
):
policy_prediction = trained_policy.predict_action_probabilities(
tracker, default_domain, precomputations=None
)
assert sum(policy_prediction.probabilities) != pytest.approx(1)
def test_prediction_on_empty_tracker(
self, trained_policy: Policy, default_domain: Domain
):
tracker = DialogueStateTracker(DEFAULT_SENDER_ID, default_domain.slots)
prediction = trained_policy.predict_action_probabilities(
tracker, default_domain, precomputations=None
)
assert not prediction.is_end_to_end_prediction
assert len(prediction.probabilities) == default_domain.num_actions
assert max(prediction.probabilities) <= 1.0
assert min(prediction.probabilities) >= -1.0
class TestTEDPolicyWithEval(TestTEDPolicyConfigurationOptions, TestTEDPolicy):
def _config(
self, config_override: Optional[Dict[Text, Any]] = None
) -> Dict[Text, Any]:
config_override = config_override or {}
return {
**TEDPolicy.get_default_config(),
SCALE_LOSS: False,
EVAL_NUM_EXAMPLES: 4,
**config_override,
}
class TestTEDPolicyNormalization(TestTEDPolicyConfigurationOptions, TestTEDPolicy):
def _config(
self, config_override: Optional[Dict[Text, Any]] = None
) -> Dict[Text, Any]:
config_override = config_override or {}
return {
**TEDPolicy.get_default_config(),
RANKING_LENGTH: 4,
RENORMALIZE_CONFIDENCES: True,
**config_override,
}
def test_ranking_length(self, trained_policy: TEDPolicy):
assert trained_policy.config[RANKING_LENGTH] == 4
def test_ranking_length_and_renormalization(
self,
trained_policy: Policy,
tracker: DialogueStateTracker,
default_domain: Domain,
):
precomputations = None
predicted_probabilities = trained_policy.predict_action_probabilities(
tracker, default_domain, precomputations
).probabilities
assert all([confidence >= 0 for confidence in predicted_probabilities])
assert sum([confidence > 0 for confidence in predicted_probabilities]) == 4
assert sum(predicted_probabilities) == pytest.approx(1)
class TestTEDPolicyLowRankingLength(TestTEDPolicyConfigurationOptions, TestTEDPolicy):
def _config(
self, config_override: Optional[Dict[Text, Any]] = None
) -> Dict[Text, Any]:
config_override = config_override or {}
return {**TEDPolicy.get_default_config(), RANKING_LENGTH: 3, **config_override}
def test_ranking_length(self, trained_policy: TEDPolicy):
assert trained_policy.config[RANKING_LENGTH] == 3
class TestTEDPolicyHighRankingLength(TestTEDPolicyConfigurationOptions, TestTEDPolicy):
def _config(
self, config_override: Optional[Dict[Text, Any]] = None
) -> Dict[Text, Any]:
config_override = config_override or {}
return {**TEDPolicy.get_default_config(), RANKING_LENGTH: 11, **config_override}
def test_ranking_length(self, trained_policy: TEDPolicy):
assert trained_policy.config[RANKING_LENGTH] == 11
class TestTEDPolicyWithStandardFeaturizer(
TestTEDPolicyConfigurationOptions, TestTEDPolicy
):
def _config(
self, config_override: Optional[Dict[Text, Any]] = None
) -> Dict[Text, Any]:
config_override = config_override or {}
return {**TEDPolicy.get_default_config(), **config_override}
def create_policy(
self,
featurizer: Optional[TrackerFeaturizer],
model_storage: ModelStorage,
resource: Resource,
execution_context: ExecutionContext,
config: Optional[Dict[Text, Any]] = None,
) -> Policy:
# use standard featurizer from TEDPolicy,
# since it is using MaxHistoryTrackerFeaturizer
# if max_history is not specified
return TEDPolicy(
config=self._config(config),
model_storage=model_storage,
resource=resource,
execution_context=execution_context,
)
def test_featurizer(
self,
trained_policy: Policy,
resource: Resource,
model_storage: ModelStorage,
tmp_path: Path,
execution_context: ExecutionContext,
):
assert isinstance(trained_policy.featurizer, MaxHistoryTrackerFeaturizer)
assert isinstance(
trained_policy.featurizer.state_featurizer, SingleStateFeaturizer
)
loaded = trained_policy.__class__.load(
self._config(trained_policy.config),
model_storage,
resource,
execution_context,
)
assert isinstance(loaded.featurizer, MaxHistoryTrackerFeaturizer)
assert isinstance(loaded.featurizer.state_featurizer, SingleStateFeaturizer)
class TestTEDPolicyWithMaxHistory(TestTEDPolicyConfigurationOptions, TestTEDPolicy):
def _config(
self, config_override: Optional[Dict[Text, Any]] = None
) -> Dict[Text, Any]:
config_override = config_override or {}
return {
**TEDPolicy.get_default_config(),
POLICY_MAX_HISTORY: self.max_history,
**config_override,
}
def create_policy(
self,
featurizer: Optional[TrackerFeaturizer],
model_storage: ModelStorage,
resource: Resource,
execution_context: ExecutionContext,
config: Optional[Dict[Text, Any]] = None,
) -> Policy:
# use standard featurizer from TEDPolicy,
# since it is using MaxHistoryTrackerFeaturizer
# if max_history is specified
return TEDPolicy(
config=self._config(config),
model_storage=model_storage,
resource=resource,
execution_context=execution_context,
)
class TestTEDPolicyWithRelativeAttention(
TestTEDPolicyConfigurationOptions, TestTEDPolicy
):
def _config(
self, config_override: Optional[Dict[Text, Any]] = None
) -> Dict[Text, Any]:
config_override = config_override or {}
return {
**TEDPolicy.get_default_config(),
KEY_RELATIVE_ATTENTION: True,
VALUE_RELATIVE_ATTENTION: True,
MAX_RELATIVE_POSITION: 5,
**config_override,
}
class TestTEDPolicyWithRelativeAttentionMaxHistoryOne(
TestTEDPolicyConfigurationOptions, TestTEDPolicy
):
max_history = 1
def _config(
self, config_override: Optional[Dict[Text, Any]] = None
) -> Dict[Text, Any]:
config_override = config_override or {}
return {
**TEDPolicy.get_default_config(),
KEY_RELATIVE_ATTENTION: True,
VALUE_RELATIVE_ATTENTION: True,
MAX_RELATIVE_POSITION: 5,
**config_override,
}