-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathlink_belong_modularity.py
106 lines (87 loc) · 3.85 KB
/
link_belong_modularity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import networkx as nx
import numpy as np
import math
from util import *
class FuncTag:
def __init__(self):
pass
exp_inv_mul_tag = 'exp_inv_mul'
mul_tag = 'mul'
min_tag = 'min'
max_tag = 'max'
def get_coefficient_func(tag):
if tag == FuncTag.exp_inv_mul_tag:
return lambda l, r: 1.0 / reduce(lambda il, ir: il * ir, map(lambda ele: 1.0 + math.exp(2 - ele), [l, r]), 1)
elif tag == FuncTag.mul_tag:
return lambda l, r: l * r
elif tag == FuncTag.min_tag:
return min
elif tag == FuncTag.max_tag:
return max
def cal_modularity(input_graph, comm_result):
return LinkBelongModularity(input_graph, comm_result,
get_coefficient_func(FuncTag.exp_inv_mul_tag)).calculate_modularity()
class LinkBelongModularity:
PRECISION = 0.0001
def __init__(self, input_graph, comm_result, coefficient_func):
"""
:type input_graph: nx.Graph
"""
self.comm_list = comm_result
self.graph = input_graph
self.coefficient_func = coefficient_func
self.belong_weight_dict = {}
self.in_degree_dict = {}
self.out_degree_dict = {}
def init_belong_weight_dict():
belong_dict = {}
for comm in comm_result:
for mem in comm:
if mem not in belong_dict:
belong_dict[mem] = 0
belong_dict[mem] += 1
for mem in belong_dict:
self.belong_weight_dict[mem] = 1.0 / belong_dict[mem] if belong_dict[mem] != 0 else 0
def init_degree_dicts():
for vertex in self.graph.nodes():
# since graph here studied are used in undirected manner
self.in_degree_dict[vertex] = self.graph.degree(vertex)
self.out_degree_dict[vertex] = self.graph.degree(vertex)
return
init_belong_weight_dict()
init_degree_dicts()
def calculate_modularity(self):
modularity_val = 0
vertex_num = self.graph.number_of_nodes()
edge_num = self.graph.number_of_edges()
for comm in self.comm_list:
comm_size = len(comm)
f_val_matrix = np.ndarray(shape=(comm_size, comm_size), dtype=float)
f_val_matrix.fill(0)
f_sum_in_vec = np.zeros(comm_size, dtype=float)
f_sum_out_vec = np.zeros(comm_size, dtype=float)
in_deg_vec = np.zeros(comm_size, dtype=float)
out_deg_vec = np.zeros(comm_size, dtype=float)
# calculate f_val_matrix, f_sum_in, f_sum_out
for i in xrange(comm_size):
src_mem = comm[i]
in_deg_vec[i] = self.in_degree_dict[src_mem]
out_deg_vec[i] = self.out_degree_dict[src_mem]
for j in xrange(comm_size):
dst_mem = comm[j]
if i != j and self.graph.has_edge(src_mem, dst_mem):
f_val_matrix[i][j] = self.coefficient_func(self.belong_weight_dict[src_mem],
self.belong_weight_dict[dst_mem])
f_sum_out_vec[i] += f_val_matrix[i][j]
f_sum_in_vec[j] += f_val_matrix[i][j]
f_sum_in_vec /= vertex_num
f_sum_out_vec /= vertex_num
for i in xrange(comm_size):
for j in xrange(comm_size):
if i != j and f_val_matrix[i][j] > LinkBelongModularity.PRECISION:
null_model_val = out_deg_vec[i] * in_deg_vec[j] * f_sum_out_vec[i] * f_sum_in_vec[j] / edge_num
modularity_val += f_val_matrix[i][j] - null_model_val
modularity_val /= edge_num
return modularity_val
if __name__ == '__main__':
print cal_modularity(get_graph_info('demo_graph.csv'), [[0, 1, 5], [1, 2, 3, 4, 7, 8]])