From efb04327a7bcf5c88bb939835632de6e123e3667 Mon Sep 17 00:00:00 2001 From: Aleksandr Malyshev <164964928+maleksan85@users.noreply.github.com> Date: Wed, 13 Nov 2024 10:22:45 -0800 Subject: [PATCH 001/733] corrected types for strides in triton FA (#274) (#276) Co-authored-by: Aleksandr Malyshev (cherry picked from commit 9a46e97c1e63cbb5223a10a86705063b00e55576) --- vllm/attention/backends/rocm_flash_attn.py | 3 +- vllm/attention/ops/triton_flash_attention.py | 40 ++++++++++---------- 2 files changed, 22 insertions(+), 21 deletions(-) diff --git a/vllm/attention/backends/rocm_flash_attn.py b/vllm/attention/backends/rocm_flash_attn.py index 7d2d87176800c..e5df445d8449b 100644 --- a/vllm/attention/backends/rocm_flash_attn.py +++ b/vllm/attention/backends/rocm_flash_attn.py @@ -619,7 +619,8 @@ def forward( # QKV for prefill. query = query[:num_prefill_tokens] - if key is not None and value is not None: + if key is not None and value is not None \ + and attn_type != AttentionType.ENCODER_DECODER: key = key[:num_prefill_tokens] value = value[:num_prefill_tokens] diff --git a/vllm/attention/ops/triton_flash_attention.py b/vllm/attention/ops/triton_flash_attention.py index f94211116a746..2019ed184e5a1 100644 --- a/vllm/attention/ops/triton_flash_attention.py +++ b/vllm/attention/ops/triton_flash_attention.py @@ -314,26 +314,26 @@ def attn_fwd( sm_scale, L, Out, - stride_qz, - stride_qh, - stride_qm, - stride_qk, - stride_kz, - stride_kh, - stride_kn, - stride_kk, - stride_vz, - stride_vh, - stride_vk, - stride_vn, - stride_oz, - stride_oh, - stride_om, - stride_on, - stride_bz, - stride_bh, - stride_bm, - stride_bn, + stride_qz: tl.int64, + stride_qh: tl.int64, + stride_qm: tl.int64, + stride_qk: tl.int64, + stride_kz: tl.int64, + stride_kh: tl.int64, + stride_kn: tl.int64, + stride_kk: tl.int64, + stride_vz: tl.int64, + stride_vh: tl.int64, + stride_vk: tl.int64, + stride_vn: tl.int64, + stride_oz: tl.int64, + stride_oh: tl.int64, + stride_om: tl.int64, + stride_on: tl.int64, + stride_bz: tl.int64, + stride_bh: tl.int64, + stride_bm: tl.int64, + stride_bn: tl.int64, cu_seqlens_q, cu_seqlens_k, dropout_p, From b45f0d79469f583736052b80bfc8b3bab29f50d8 Mon Sep 17 00:00:00 2001 From: Jee Jee Li Date: Tue, 3 Dec 2024 01:53:36 +0800 Subject: [PATCH 002/733] [Misc][LoRA] Move the implementation of lora bias to punica.py (#10829) Signed-off-by: Jee Jee Li --- tests/lora/test_llama_tp.py | 60 +++++++-------- vllm/lora/fully_sharded_layers.py | 41 +++-------- vllm/lora/layers.py | 113 +++-------------------------- vllm/lora/punica.py | 117 +++++++++++++++++++++++++++--- 4 files changed, 156 insertions(+), 175 deletions(-) diff --git a/tests/lora/test_llama_tp.py b/tests/lora/test_llama_tp.py index aae6310a2a213..d3ca7f878191a 100644 --- a/tests/lora/test_llama_tp.py +++ b/tests/lora/test_llama_tp.py @@ -55,15 +55,7 @@ def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]: return generated_texts -@fork_new_process_for_each_test -def test_llama_lora(sql_lora_files): - - llm = vllm.LLM(MODEL_PATH, - enable_lora=True, - max_num_seqs=16, - max_loras=4, - tensor_parallel_size=1) - +def generate_and_test(llm, sql_lora_files): print("lora adapter created") assert do_sample(llm, sql_lora_files, lora_id=0) == EXPECTED_NO_LORA_OUTPUT @@ -79,6 +71,17 @@ def test_llama_lora(sql_lora_files): print("removing lora") +@fork_new_process_for_each_test +def test_llama_lora(sql_lora_files): + + llm = vllm.LLM(MODEL_PATH, + enable_lora=True, + max_num_seqs=16, + max_loras=4, + tensor_parallel_size=1) + generate_and_test(llm, sql_lora_files) + + @fork_new_process_for_each_test def test_llama_lora_warmup(sql_lora_files): """Test that the LLM initialization works with a warmup LORA path and @@ -118,20 +121,7 @@ def test_llama_lora_tp4(sql_lora_files): max_loras=4, tensor_parallel_size=4, ) - - print("lora adapter created") - assert do_sample(llm, sql_lora_files, lora_id=0) == EXPECTED_NO_LORA_OUTPUT - - print("lora 1") - assert do_sample(llm, sql_lora_files, lora_id=1) == EXPECTED_LORA_OUTPUT - - print("no lora") - assert do_sample(llm, sql_lora_files, lora_id=0) == EXPECTED_NO_LORA_OUTPUT - - print("lora 2") - assert do_sample(llm, sql_lora_files, lora_id=2) == EXPECTED_LORA_OUTPUT - - print("removing lora") + generate_and_test(llm, sql_lora_files) @multi_gpu_test(num_gpus=4) @@ -146,16 +136,20 @@ def test_llama_lora_tp4_fully_sharded_loras(sql_lora_files): tensor_parallel_size=4, fully_sharded_loras=True, ) - print("lora adapter created") - assert do_sample(llm, sql_lora_files, lora_id=0) == EXPECTED_NO_LORA_OUTPUT - - print("lora 1") - assert do_sample(llm, sql_lora_files, lora_id=1) == EXPECTED_LORA_OUTPUT + generate_and_test(llm, sql_lora_files) - print("no lora") - assert do_sample(llm, sql_lora_files, lora_id=0) == EXPECTED_NO_LORA_OUTPUT - print("lora 2") - assert do_sample(llm, sql_lora_files, lora_id=2) == EXPECTED_LORA_OUTPUT +@multi_gpu_test(num_gpus=4) +@fork_new_process_for_each_test +def test_llama_lora_tp4_fully_sharded_enable_bias(sql_lora_files): - print("removing lora") + llm = vllm.LLM( + MODEL_PATH, + enable_lora=True, + max_num_seqs=16, + max_loras=4, + tensor_parallel_size=4, + fully_sharded_loras=True, + enable_lora_bias=True, + ) + generate_and_test(llm, sql_lora_files) diff --git a/vllm/lora/fully_sharded_layers.py b/vllm/lora/fully_sharded_layers.py index f5c2eced9d2bb..5f2d32defe030 100644 --- a/vllm/lora/fully_sharded_layers.py +++ b/vllm/lora/fully_sharded_layers.py @@ -73,6 +73,7 @@ def apply(self, x: torch.Tensor, self.punica_wrapper.add_expand(output, buffer, self.lora_b_stacked, + self.bias_stacked, add_input=True) # now have column partitioned output @@ -131,27 +132,14 @@ def _mcp_apply(x, bias, layer: QKVParallelLinearWithLora): layer.lora_a_stacked[idx], 1.0) buffers = tensor_model_parallel_all_gather(buffers) - left_offset = 0 - for idx in range(n): - shard_size = layer.lora_b_stacked[idx].shape[2] - - if layer.bias_stacked is not None: - bias = layer.bias_stacked[idx] - if bias is not None: - bias = bias.view(-1, bias.shape[-1]) - bias = bias[layer.punica_wrapper.token_lora_indices] - bias[layer.punica_wrapper.token_lora_indices == -1] = 0 - output[:, left_offset:left_offset + shard_size] += bias - - layer.punica_wrapper.add_expand_slice( - output, - buffers[idx], - layer.lora_b_stacked[idx], - left_offset, - shard_size, - add_input=True, - ) - left_offset += shard_size + layer.punica_wrapper.add_expand_packed_nslice( + output, + buffers, + layer.lora_b_stacked, + layer.bias_stacked, + 1.0, + layer.output_slices, + ) output = output.view(*out_orig_shape) # now have column partitioned and packed output @@ -234,6 +222,7 @@ def apply(self, x: torch.Tensor, self.punica_wrapper.add_expand(output, buffer, self.lora_b_stacked, + self.bias_all, add_input=True) # now have column partitioned output output = output.view(*out_orig_shape) @@ -350,15 +339,9 @@ def apply(self, x: torch.Tensor) -> torch.Tensor: # reduced before being used shard_size = self.lora_b_stacked.shape[2] start_idx = self.tp_rank * shard_size - - if self.bias_stacked is not None: - bias = self.bias_stacked.view(-1, self.bias_stacked.shape[-1]) - bias = bias[self.punica_wrapper.token_lora_indices] - bias[self.punica_wrapper.token_lora_indices == -1] = 0 - output += bias - self.punica_wrapper.add_expand_slice(output, buffer, - self.lora_b_stacked, start_idx, + self.lora_b_stacked, + self.bias_stacked, start_idx, shard_size) output = output.view(*out_orig_shape) return output diff --git a/vllm/lora/layers.py b/vllm/lora/layers.py index 3701988ff692f..73748b5ce511e 100644 --- a/vllm/lora/layers.py +++ b/vllm/lora/layers.py @@ -67,63 +67,6 @@ def dec(*args, **kwargs): return dec -def apply_bias( - indices: torch.Tensor, - output: torch.Tensor, - bias_stacked: torch.Tensor, -): - """Applies bias to output - - Input shapes: - bias_stacked: (num_loras, output_dim) - indices: (batch_size) - output: (batch_size, output_dim) - """ - org_output = output - output = output.view(-1, output.shape[-1]) - indices = indices.view(-1) - - bias_stacked = bias_stacked.view(-1, bias_stacked.shape[-1]) - bias_stacked = bias_stacked[indices] - bias_stacked[indices == -1] = 0 - output += bias_stacked - - return output.view_as(org_output) - - -def apply_bias_packed_nslice( - indices: torch.Tensor, - output: torch.Tensor, - output_slices: Tuple[int, ...], - bias_stacked: Tuple[torch.Tensor, torch.Tensor, torch.Tensor], -): - """Applies bias to output - - Input shapes: - bias_stacked: 3 element tuple of (num_loras, output_dim) - indices: (batch_size) - output: (batch_size, q_slice_size + 2*kv_slice_size) - output_slices: n-1 element tuple of (slice_size...), - where n is number of slices - """ - org_output = output - output = output.view(-1, output.shape[-1]) - indices = indices.view(-1) - - offset_left = 0 - for slice_idx, slice in enumerate(output_slices): - bias = bias_stacked[slice_idx] - if bias is not None: - bias = bias.view(-1, bias.shape[-1]) - bias = bias[indices] - bias[indices == -1] = 0 - output[:, offset_left:offset_left + slice] += bias - - offset_left += slice - - return output.view_as(org_output) - - @dataclass class LoRAMapping(AdapterMapping): is_prefill: bool = False @@ -311,6 +254,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: self.punica_wrapper.add_expand(full_output, full_lora_a_embeddings, self.lora_b_stacked, + bias_all=None, add_input=True) return full_output.view_as(full_output_org) @@ -399,15 +343,9 @@ def set_lora( def apply(self, x: torch.Tensor, bias: Optional[torch.Tensor]) -> torch.Tensor: output = self.base_layer.quant_method.apply(self.base_layer, x, bias) - if self.bias_stacked is not None: - self.indices = self.punica_wrapper.token_lora_indices - output = apply_bias( - self.indices, - output, - self.bias_stacked, - ) self.punica_wrapper.add_lora(output, x, self.lora_a_stacked, - self.lora_b_stacked, 1.0) + self.lora_b_stacked, self.bias_stacked, + 1.0) return output def forward(self, input_): @@ -576,15 +514,9 @@ def set_lora( def apply(self, x: torch.Tensor, bias: Optional[torch.Tensor]) -> torch.Tensor: output = self.base_layer.quant_method.apply(self.base_layer, x, bias) - if self.bias_stacked is not None: - self.indices = self.punica_wrapper.token_lora_indices - output = apply_bias( - self.indices, - output, - self.bias_stacked, - ) self.punica_wrapper.add_lora(output, x, self.lora_a_stacked, - self.lora_b_stacked, 1.0) + self.lora_b_stacked, self.bias_stacked, + 1.0) return output def forward(self, input_): @@ -687,8 +619,8 @@ def create_lora_weights( ) for _ in range(n_slices)) else: self.bias_stacked = None - self.output_dim = self.lora_b_stacked[0].shape[2] + self.output_slices = (self.output_dim, self.output_dim) def reset_lora(self, index: int): self.lora_a_stacked[0][index] = 0 @@ -772,17 +704,9 @@ def set_lora( def apply(self, x: torch.Tensor, bias: Optional[torch.Tensor]) -> torch.Tensor: output = self.base_layer.quant_method.apply(self.base_layer, x, bias) - if self.bias_stacked is not None: - self.indices = self.punica_wrapper.token_lora_indices - output = apply_bias_packed_nslice( - self.indices, - output, - (self.output_dim, self.output_dim), - self.bias_stacked, - ) self.punica_wrapper.add_lora_packed_nslice( - output, x, self.lora_a_stacked, self.lora_b_stacked, 1.0, - (self.output_dim, self.output_dim)) + output, x, self.lora_a_stacked, self.lora_b_stacked, + self.bias_stacked, 1.0, (self.output_dim, self.output_dim)) return output @classmethod @@ -1129,17 +1053,10 @@ def set_lora( def apply(self, x: torch.Tensor, bias: Optional[torch.Tensor]) -> torch.Tensor: output = self.base_layer.quant_method.apply(self.base_layer, x, bias) - if self.bias_stacked is not None: - self.indices = self.punica_wrapper.token_lora_indices - output = apply_bias_packed_nslice( - self.indices, - output, - self.output_slices, - self.bias_stacked, - ) self.punica_wrapper.add_lora_packed_nslice(output, x, self.lora_a_stacked, - self.lora_b_stacked, 1.0, + self.lora_b_stacked, + self.bias_stacked, 1.0, self.output_slices) return output @@ -1264,15 +1181,9 @@ def set_lora( def apply(self, x: torch.Tensor) -> torch.Tensor: output = self.base_layer.quant_method.apply(self.base_layer, x) - if self.bias_stacked is not None: - self.indices = self.punica_wrapper.token_lora_indices - output = apply_bias( - self.indices, - output, - self.bias_stacked, - ) self.punica_wrapper.add_lora(output, x, self.lora_a_stacked, - self.lora_b_stacked, 1.0) + self.lora_b_stacked, self.bias_stacked, + 1.0) return output def forward(self, input_): diff --git a/vllm/lora/punica.py b/vllm/lora/punica.py index 082041f390750..3f775b7ba363e 100644 --- a/vllm/lora/punica.py +++ b/vllm/lora/punica.py @@ -450,6 +450,62 @@ def expand_slice_decode( bgmv_expand_slice(x, w_t_all, y, self.token_lora_indices, y_offset, y_slice_size, add_input) + def apply_bias( + self, + indices: torch.Tensor, + output: torch.Tensor, + bias_stacked: torch.Tensor, + ): + """Applies bias to output + + Input shapes: + bias_stacked: (num_loras, output_dim) + indices: (batch_size) + output: (batch_size, output_dim) + """ + org_output = output + output = output.view(-1, output.shape[-1]) + indices = indices.view(-1) + + bias_stacked = bias_stacked.view(-1, bias_stacked.shape[-1]) + bias_stacked = bias_stacked[indices] + bias_stacked[indices == -1] = 0 + output += bias_stacked + + return output.view_as(org_output) + + def apply_bias_packed_nslice( + self, + indices: torch.Tensor, + output: torch.Tensor, + output_slices: Tuple[int, ...], + bias_stacked: Tuple[Optional[torch.Tensor], ...], + ): + """Applies bias to output + + Input shapes: + bias_stacked: 3 element tuple of (num_loras, output_dim) + indices: (batch_size) + output: (batch_size, q_slice_size + 2*kv_slice_size) + output_slices: n-1 element tuple of (slice_size...), + where n is number of slices + """ + org_output = output + output = output.view(-1, output.shape[-1]) + indices = indices.view(-1) + + offset_left = 0 + for slice_idx, slice in enumerate(output_slices): + bias = bias_stacked[slice_idx] + if bias is not None: + bias = bias.view(-1, bias.shape[-1]) + bias = bias[indices] + bias[indices == -1] = 0 + output[:, offset_left:offset_left + slice] += bias + offset_left += slice + + return output.view_as(org_output) + def add_shrink( self, y: torch.Tensor, @@ -474,16 +530,19 @@ def add_expand( y: torch.Tensor, x: torch.Tensor, w_t_all: torch.Tensor, + bias_all: Optional[torch.Tensor], add_input: bool = True, ): """ - Perform the ` y+=x@w_t_all` computation, which is suitable for the + Perform the ` y+=x@w_t_all+bias` computation, which is suitable for the GEMM of lora'b. When `is_prefill` is true, it indicates that it is currently the prefill stage, and the `expand_prefill` function should be called. Otherwise, it is the decode stage, and the expand_decode function should be called. """ + if bias_all is not None: + y = self.apply_bias(self.token_lora_indices, y, bias_all) expand_fun: Callable = (self.expand_prefill if self.is_prefill else self.expand_decode) @@ -493,23 +552,54 @@ def add_expand_slice(self, y: torch.Tensor, x: torch.Tensor, w_t_all: torch.Tensor, + bias_all: Optional[torch.Tensor], y_offset: Optional[int], y_slice_size: Optional[int], add_input: bool = True): """ Similar to `add_expand` """ + if bias_all is not None: + y = self.apply_bias(self.token_lora_indices, y, bias_all) expand_slice_fun: Callable = (self.expand_slice_prefill if self.is_prefill else self.expand_slice_decode) expand_slice_fun(y, x, w_t_all, y_offset, y_slice_size, add_input) + def add_expand_packed_nslice(self, y: torch.Tensor, x: torch.Tensor, + lora_b_stacked: Tuple[torch.Tensor, ...], + bias_stacked: Optional[Tuple[torch.Tensor, + ...]], + scale: float, + output_slices: Tuple[int, ...]) -> None: + """ + Similar to `add_expand` + """ + y_org = y + y = y.view(-1, y.shape[-1]) + offset_left = 0 + if bias_stacked is not None: + self.apply_bias_packed_nslice(self.token_lora_indices, y, + output_slices, bias_stacked) + for slice_idx in range(len(lora_b_stacked)): + self.add_expand_slice(y, + x[slice_idx], + lora_b_stacked[slice_idx], + None, + offset_left, + output_slices[slice_idx], + add_input=True) + offset_left += output_slices[slice_idx] + + y = y.view_as(y_org) + def add_lora(self, y: torch.Tensor, x: torch.Tensor, wa_t_all: torch.Tensor, wb_t_all: torch.Tensor, + bias_all: Optional[torch.Tensor], scale: float, y_offset: Optional[int] = None, y_slice_size: Optional[int] = None, @@ -522,12 +612,13 @@ def add_lora(self, @ wa_t_all[indices[i], layer_idx, :, :].transpose(-1, -2) @ wb_t_all[indices[i], layer_idx, :, :].transpose(-1, -2) * scale - ).squeeze(0) + ).squeeze(0)+bias[i] Args: y (torch.Tensor): Output tensor. Will be changed in-place. x (torch.Tensor): Input tensor wa_t_all (torch.Tensor): lora_a's weight wb_t_all (torch.Tensor): lora_b's weight + bias_all: (torch.Tensor): lora's bias scale (float): Scaling factor. y_offset (Optional[int], optional): Offset to apply to the starting column of y. @@ -544,27 +635,26 @@ def add_lora(self, buffer = torch.zeros((x.size(0), r), dtype=torch.float32, device=x.device) - + if bias_all is not None: + y = self.apply_bias(self.token_lora_indices, y, bias_all) self.add_shrink(buffer, x, wa_t_all, scale) if y_offset is None and y_slice_size is None: - self.add_expand(y, buffer, wb_t_all, add_input=True) + self.add_expand(y, buffer, wb_t_all, bias_all=None, add_input=True) else: self.add_expand_slice(y, buffer, wb_t_all, + None, y_offset, y_slice_size, add_input=True) y = y.view_as(y_org) def add_lora_packed_nslice(self, y: torch.Tensor, x: torch.Tensor, - lora_a_stacked: Tuple[torch.Tensor, - torch.Tensor, - torch.Tensor], - lora_b_stacked: Tuple[torch.Tensor, - torch.Tensor, - torch.Tensor], - scale: float, + lora_a_stacked: Tuple[torch.Tensor, ...], + lora_b_stacked: Tuple[torch.Tensor, ...], + bias_all: Tuple[Optional[torch.Tensor], + ...], scale: float, output_slices: Tuple[int, ...]) -> None: """ Applies lora to each input. Similar to add_lora, This method is @@ -575,10 +665,13 @@ def add_lora_packed_nslice(self, y: torch.Tensor, x: torch.Tensor, x = x.view(-1, x.shape[-1]) y = y.view(-1, y.shape[-1]) offset_left = 0 + if bias_all is not None: + y = self.apply_bias_packed_nslice(self.token_lora_indices, y, + output_slices, bias_all) # TODO fuse these kernels for slice_idx in range(len(output_slices)): self.add_lora(y, x, lora_a_stacked[slice_idx], - lora_b_stacked[slice_idx], scale, offset_left, + lora_b_stacked[slice_idx], None, scale, offset_left, output_slices[slice_idx]) offset_left += output_slices[slice_idx] From 519cc6ca12dc89eec35bc2579494e399da33c31a Mon Sep 17 00:00:00 2001 From: Yan Ma Date: Tue, 3 Dec 2024 01:53:55 +0800 Subject: [PATCH 003/733] [Misc][XPU] Avoid torch compile for XPU platform (#10747) Signed-off-by: yan ma Co-authored-by: youkaichao --- .buildkite/run-xpu-test.sh | 6 ++++-- vllm/plugins/__init__.py | 4 ++++ 2 files changed, 8 insertions(+), 2 deletions(-) diff --git a/.buildkite/run-xpu-test.sh b/.buildkite/run-xpu-test.sh index faeac8e2ded36..50f58f7d70430 100644 --- a/.buildkite/run-xpu-test.sh +++ b/.buildkite/run-xpu-test.sh @@ -12,5 +12,7 @@ remove_docker_container() { docker rm -f xpu-test || true; } trap remove_docker_container EXIT remove_docker_container -# Run the image and launch offline inference -docker run --network host --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path --entrypoint="" xpu-test python3 examples/offline_inference.py +# Run the image and test offline inference/tensor parallel +docker run -it -d --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path xpu-test /bin/bash +docker exec xpu-test bash -c "python3 examples/offline_inference.py" +docker exec xpu-test bash -c "python3 examples/offline_inference_cli.py -tp 2" diff --git a/vllm/plugins/__init__.py b/vllm/plugins/__init__.py index 3c64726ca3344..81ee9975cdc4a 100644 --- a/vllm/plugins/__init__.py +++ b/vllm/plugins/__init__.py @@ -4,6 +4,7 @@ import torch import vllm.envs as envs +from vllm.platforms import current_platform logger = logging.getLogger(__name__) @@ -25,6 +26,9 @@ def load_general_plugins(): os.environ['TORCHINDUCTOR_COMPILE_THREADS'] = '1' # see https://github.com/vllm-project/vllm/issues/10619 torch._inductor.config.compile_threads = 1 + if current_platform.is_xpu(): + # see https://github.com/pytorch/pytorch/blob/8cada5cbe5450e17c26fb8b358116785324537b2/torch/_dynamo/config.py#L158 # noqa + os.environ['TORCH_COMPILE_DISABLE'] = 'True' global plugins_loaded if plugins_loaded: return From 9b14d978aa8c286b738f107fab4626273f4fc088 Mon Sep 17 00:00:00 2001 From: Jani Monoses Date: Mon, 2 Dec 2024 20:52:19 +0200 Subject: [PATCH 004/733] Fix openvino on GPU (#10793) --- vllm/worker/openvino_worker.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/vllm/worker/openvino_worker.py b/vllm/worker/openvino_worker.py index 205f8a337ce6c..0bf522d5333ed 100644 --- a/vllm/worker/openvino_worker.py +++ b/vllm/worker/openvino_worker.py @@ -489,7 +489,7 @@ def model_profile_run(): block_size = cache_config.block_size seq_num_blocks = (seq_len + block_size - 1) // block_size - seq_data, dummy_multi_modal_data = input_registry \ + dummy_data = input_registry \ .dummy_data_for_profiling(model_config, seq_len, mm_registry) @@ -498,11 +498,11 @@ def model_profile_run(): seq = SequenceGroupMetadata( request_id=str(group_id), is_prompt=True, - seq_data={group_id: seq_data}, + seq_data={group_id: dummy_data.seq_data}, sampling_params=sampling_params, block_tables=block_tables, lora_request=None, - multi_modal_data=dummy_multi_modal_data) + multi_modal_data=dummy_data.multi_modal_data) seqs.append(seq) self.model_runner.block_size = tmp_cache_config.block_size From 4c05edb33ae4ae279421ddf981816d070e8ec37a Mon Sep 17 00:00:00 2001 From: Isotr0py Date: Tue, 3 Dec 2024 07:06:09 +0800 Subject: [PATCH 005/733] [Model] Add TP and BNB quantization support to LlavaMultiModalProjector (#10834) Signed-off-by: Isotr0py <2037008807@qq.com> Co-authored-by: Cyrus Leung --- vllm/model_executor/model_loader/loader.py | 14 +++++++-- vllm/model_executor/models/llava.py | 35 ++++++++++++++-------- 2 files changed, 34 insertions(+), 15 deletions(-) diff --git a/vllm/model_executor/model_loader/loader.py b/vllm/model_executor/model_loader/loader.py index 0e12bc5691538..b4921cc80797f 100644 --- a/vllm/model_executor/model_loader/loader.py +++ b/vllm/model_executor/model_loader/loader.py @@ -1120,7 +1120,14 @@ def _load_weights(self, model_config: ModelConfig, model_config.revision, pre_quant, load_8bit)) - model.load_weights(qweight_iterator) + weights_to_load = {name for name, _ in model.named_parameters()} + loaded_weights = model.load_weights(qweight_iterator) + # Some models may have weights loading tracker unimplemented. + if loaded_weights is not None: + weights_not_loaded = weights_to_load - loaded_weights + if weights_not_loaded: + raise ValueError("Following weights were not initialized from " + f"checkpoint: {weights_not_loaded}") torch.cuda.empty_cache() @@ -1152,9 +1159,10 @@ def _load_weights(self, model_config: ModelConfig, shard_name, weight_name) break + # Models like Clip/Siglip may skip some layers in initialization, + # causing unused quant_param_name in state_dict. if quant_param_name not in param_dict: - raise ValueError( - f"Parameter {quant_param_name} not found in the model.") + continue if quant_param_name not in stacked_quant_state_dict: stacked_quant_state_dict[quant_param_name] = {} diff --git a/vllm/model_executor/models/llava.py b/vllm/model_executor/models/llava.py index db7fa82ceb9b7..d375c1c9da2a9 100644 --- a/vllm/model_executor/models/llava.py +++ b/vllm/model_executor/models/llava.py @@ -13,6 +13,8 @@ from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, DummyData, InputContext) from vllm.model_executor.layers.activation import get_act_fn +from vllm.model_executor.layers.linear import (ColumnParallelLinear, + RowParallelLinear) from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler from vllm.model_executor.sampling_metadata import SamplingMetadata @@ -59,25 +61,32 @@ class LlavaImageEmbeddingInputs(TypedDict): LlavaImageInputs = Union[LlavaImagePixelInputs, LlavaImageEmbeddingInputs] -# TODO(xwjiang): Run benchmark and decide if TP. class LlavaMultiModalProjector(nn.Module): - def __init__(self, vision_hidden_size: int, text_hidden_size: int, - projector_hidden_act: str): + def __init__(self, + vision_hidden_size: int, + text_hidden_size: int, + projector_hidden_act: str, + quant_config: Optional[QuantizationConfig] = None, + prefix: str = ""): super().__init__() - self.linear_1 = nn.Linear(vision_hidden_size, - text_hidden_size, - bias=True) + self.linear_1 = ColumnParallelLinear(vision_hidden_size, + text_hidden_size, + bias=True, + quant_config=quant_config, + prefix=f"{prefix}.linear_1") self.act = get_act_fn(projector_hidden_act) - self.linear_2 = nn.Linear(text_hidden_size, - text_hidden_size, - bias=True) + self.linear_2 = RowParallelLinear(text_hidden_size, + text_hidden_size, + bias=True, + quant_config=quant_config, + prefix=f"{prefix}.linear_2") def forward(self, image_features: torch.Tensor) -> torch.Tensor: - hidden_states = self.linear_1(image_features) + hidden_states, _ = self.linear_1(image_features) hidden_states = self.act(hidden_states) - hidden_states = self.linear_2(hidden_states) + hidden_states, _ = self.linear_2(hidden_states) return hidden_states @@ -325,7 +334,9 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None: self.multi_modal_projector = LlavaMultiModalProjector( vision_hidden_size=config.vision_config.hidden_size, text_hidden_size=config.text_config.hidden_size, - projector_hidden_act=config.projector_hidden_act) + projector_hidden_act=config.projector_hidden_act, + quant_config=quant_config, + prefix=maybe_prefix(prefix, "multi_modal_projector")) self.language_model = init_vllm_registered_model( vllm_config=vllm_config, From 4433195ab75e2bb367303ba5f34c97521c5677ce Mon Sep 17 00:00:00 2001 From: Michael Goin Date: Mon, 2 Dec 2024 21:26:15 -0500 Subject: [PATCH 006/733] [Bugfix] Prevent benchmark_throughput.py from using duplicated random prompts (#10753) --- benchmarks/benchmark_throughput.py | 47 +++++++++++++++++++----------- 1 file changed, 30 insertions(+), 17 deletions(-) diff --git a/benchmarks/benchmark_throughput.py b/benchmarks/benchmark_throughput.py index 159cf055737ce..1e5967bd9bf8b 100644 --- a/benchmarks/benchmark_throughput.py +++ b/benchmarks/benchmark_throughput.py @@ -294,23 +294,36 @@ def main(args: argparse.Namespace): tokenizer = AutoTokenizer.from_pretrained( args.tokenizer, trust_remote_code=args.trust_remote_code) if args.dataset is None: - # Synthesize a prompt with the given input length. - # As tokenizer may add additional tokens like BOS, we need to try - # different lengths to get the desired input length. - for i in range(-10, 10): - prompt = "hi " * (args.input_len + i) - tokenized_prompt = tokenizer(prompt).input_ids - if len(tokenized_prompt) == args.input_len: - break - else: - raise ValueError( - f"Failed to synthesize a prompt with {args.input_len} tokens.") - requests = [ - SampleRequest(prompt=prompt, - prompt_len=args.input_len, - expected_output_len=args.output_len) - for _ in range(args.num_prompts) - ] + vocab_size = tokenizer.vocab_size + requests = [] + for _ in range(args.num_prompts): + # Synthesize a prompt with the given input length. + candidate_ids = [ + random.randint(0, vocab_size - 1) + for _ in range(args.input_len) + ] + # As tokenizer may add additional tokens like BOS, we need to try + # different lengths to get the desired input length. + for _ in range(5): # Max attempts to correct + candidate_prompt = tokenizer.decode(candidate_ids) + tokenized_len = len(tokenizer.encode(candidate_prompt)) + + if tokenized_len == args.input_len: + break + + # Adjust length based on difference + diff = args.input_len - tokenized_len + if diff > 0: + candidate_ids.extend([ + random.randint(100, vocab_size - 100) + for _ in range(diff) + ]) + else: + candidate_ids = candidate_ids[:diff] + requests.append( + SampleRequest(prompt=candidate_prompt, + prompt_len=args.input_len, + expected_output_len=args.output_len)) else: requests = sample_requests(tokenizer, args) From d746268e92dc97d3a816c70637e20073eeac5103 Mon Sep 17 00:00:00 2001 From: zixuanzhang226 Date: Mon, 2 Dec 2024 19:06:41 -0800 Subject: [PATCH 007/733] [Model] support bitsandbytes quantization with minicpm model (#10842) Signed-off-by: Ubuntu --- vllm/model_executor/models/minicpm.py | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/vllm/model_executor/models/minicpm.py b/vllm/model_executor/models/minicpm.py index 6254d26c7060d..5a0f202364f26 100644 --- a/vllm/model_executor/models/minicpm.py +++ b/vllm/model_executor/models/minicpm.py @@ -534,6 +534,16 @@ class MiniCPMForCausalLM(nn.Module, SupportsLoRA, SupportsPP): } embedding_padding_modules = ["lm_head"] + # BitandBytes specific attributes + bitsandbytes_stacked_params_mapping = { + # shard_name, weight_name, index + "q_proj": ("qkv_proj", 0), + "k_proj": ("qkv_proj", 1), + "v_proj": ("qkv_proj", 2), + "gate_proj": ("gate_up_proj", 0), + "up_proj": ("gate_up_proj", 1), + } + def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config From a4cf2561599448d4a5c3de4d79c73ca37cb8d647 Mon Sep 17 00:00:00 2001 From: Jee Jee Li Date: Tue, 3 Dec 2024 12:10:29 +0800 Subject: [PATCH 008/733] [Bugfix] Fix QKVParallelLinearWithShardedLora bias bug (#10844) Signed-off-by: Jee Jee Li --- .buildkite/test-pipeline.yaml | 1 - vllm/lora/fully_sharded_layers.py | 9 +-------- 2 files changed, 1 insertion(+), 9 deletions(-) diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index f5591f1098534..455f02a2062f1 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -481,7 +481,6 @@ steps: - label: LoRA TP Test (Distributed) num_gpus: 4 - soft_fail: true source_file_dependencies: - vllm/lora - tests/lora diff --git a/vllm/lora/fully_sharded_layers.py b/vllm/lora/fully_sharded_layers.py index 5f2d32defe030..e25e453201f01 100644 --- a/vllm/lora/fully_sharded_layers.py +++ b/vllm/lora/fully_sharded_layers.py @@ -77,13 +77,6 @@ def apply(self, x: torch.Tensor, add_input=True) # now have column partitioned output - if self.bias_stacked is not None: - self.bias_stacked = self.bias_stacked.view( - -1, self.bias_stacked.shape[-1]) - self.bias_stacked = self.bias_stacked[ - self.punica_wrapper.token_lora_indices] - output += self.bias_stacked - output = output.view(*out_orig_shape) return output @@ -222,7 +215,7 @@ def apply(self, x: torch.Tensor, self.punica_wrapper.add_expand(output, buffer, self.lora_b_stacked, - self.bias_all, + self.bias_stacked, add_input=True) # now have column partitioned output output = output.view(*out_orig_shape) From 21fe7b481a3a84dc9ebe2497ec89a17002ad52c5 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Mon, 2 Dec 2024 20:53:23 -0800 Subject: [PATCH 009/733] [core][distributed] add pynccl broadcast (#10843) Signed-off-by: youkaichao --- tests/distributed/test_pynccl.py | 45 ++++++++++++++++++- .../device_communicators/pynccl.py | 19 ++++++++ .../device_communicators/pynccl_wrapper.py | 16 +++++++ 3 files changed, 78 insertions(+), 2 deletions(-) diff --git a/tests/distributed/test_pynccl.py b/tests/distributed/test_pynccl.py index fb24d6bc2c100..4e27babf12cc3 100644 --- a/tests/distributed/test_pynccl.py +++ b/tests/distributed/test_pynccl.py @@ -61,6 +61,7 @@ def worker_fn(): dtype=torch.float32).cuda(pynccl_comm.rank) with pynccl_comm.change_state(enable=True): tensor = pynccl_comm.all_reduce(tensor) + torch.cuda.synchronize() result = tensor.mean().cpu().item() assert result == pynccl_comm.world_size @@ -86,10 +87,12 @@ def multiple_allreduce_worker_fn(): if torch.distributed.get_rank() in [0, 1]: tensor = pynccl_comm.all_reduce(tensor) tensor = pynccl_comm.all_reduce(tensor) + torch.cuda.synchronize() result = tensor.mean().cpu().item() assert result == 4 else: tensor = pynccl_comm.all_reduce(tensor) + torch.cuda.synchronize() result = tensor.mean().cpu().item() assert result == 2 @@ -112,10 +115,12 @@ def multiple_allreduce_with_vllm_worker_fn(): if torch.distributed.get_rank() in [0, 1]: tensor = tensor_model_parallel_all_reduce(tensor) tensor = tensor_model_parallel_all_reduce(tensor) + torch.cuda.synchronize() result = tensor.mean().cpu().item() assert result == 4 else: tensor = tensor_model_parallel_all_reduce(tensor) + torch.cuda.synchronize() result = tensor.mean().cpu().item() assert result == 2 @@ -141,9 +146,9 @@ def worker_fn_with_cudagraph(): graph, stream=pynccl_comm.stream), pynccl_comm.change_state( enable=True): a_out = pynccl_comm.all_reduce(a) - pynccl_comm.stream.synchronize() + torch.cuda.synchronize() graph.replay() - pynccl_comm.stream.synchronize() + torch.cuda.synchronize() assert a_out.mean().cpu().item() == pynccl_comm.world_size**1 @@ -170,6 +175,7 @@ def all_gather_worker_fn(): with pynccl_comm.change_state(enable=True): pynccl_comm.all_gather(result, tensor) + torch.cuda.synchronize() torch.testing.assert_close(result, expected, rtol=1e-5, atol=1e-8) @@ -207,6 +213,7 @@ def reduce_scatter_worker_fn(): with pynccl_comm.change_state(enable=True): pynccl_comm.reduce_scatter(result, tensor) + torch.cuda.synchronize() torch.testing.assert_close(result, expected, rtol=1e-5, atol=1e-8) @@ -241,6 +248,7 @@ def send_recv_worker_fn(): pynccl_comm.recv(tensor, src=(pynccl_comm.rank - 1) % pynccl_comm.world_size) + torch.cuda.synchronize() result = tensor.mean().cpu().item() assert result == 1 @@ -280,6 +288,7 @@ def multiple_send_recv_worker_fn(): pynccl_comm.recv(tensor, src=(pynccl_comm.rank - 1) % pynccl_comm.world_size) + torch.cuda.synchronize() result = tensor.mean().cpu().item() if torch.distributed.get_rank() in [0, 2]: assert result == 1 @@ -293,6 +302,38 @@ def test_pynccl_multiple_send_recv(): distributed_run(multiple_send_recv_worker_fn, 4) +@pytest.mark.skipif(torch.cuda.device_count() < 4, + reason="Need at least 4 GPUs to run the test.") +def test_pynccl_broadcast(): + distributed_run(broadcast_worker_fn, 4) + + +@worker_fn_wrapper +def broadcast_worker_fn(): + # Test broadcast for every root rank. + # Essentially this is an all-gather operation. + pynccl_comm = PyNcclCommunicator(get_world_group().cpu_group, + device=get_world_group().device) + recv_tensors = [ + torch.empty(16, + 1024, + 1024, + dtype=torch.float32, + device=pynccl_comm.device) + for i in range(pynccl_comm.world_size) + ] + recv_tensors[pynccl_comm.rank] = torch.ones( + 16, 1024, 1024, dtype=torch.float32, + device=pynccl_comm.device) * pynccl_comm.rank + + for i in range(pynccl_comm.world_size): + pynccl_comm.broadcast(recv_tensors[i], src=i) + # the broadcast op might be launched in a different stream + # need to synchronize to make sure the tensor is ready + torch.cuda.synchronize() + assert torch.all(recv_tensors[i] == i).cpu().item() + + def test_ncclGetUniqueId(): lib = NCCLLibrary() unique_id = lib.ncclGetUniqueId() diff --git a/vllm/distributed/device_communicators/pynccl.py b/vllm/distributed/device_communicators/pynccl.py index d4e3f81747038..a6800f93f167b 100644 --- a/vllm/distributed/device_communicators/pynccl.py +++ b/vllm/distributed/device_communicators/pynccl.py @@ -197,6 +197,25 @@ def recv(self, tensor: torch.Tensor, src: int, stream=None): ncclDataTypeEnum.from_torch(tensor.dtype), src, self.comm, cudaStream_t(stream.cuda_stream)) + def broadcast(self, tensor: torch.Tensor, src: int, stream=None): + if self.disabled: + return + assert tensor.device == self.device, ( + f"this nccl communicator is created to work on {self.device}, " + f"but the input tensor is on {tensor.device}") + if stream is None: + stream = self.stream + if src == self.rank: + sendbuff = buffer_type(tensor.data_ptr()) + # NCCL requires the sender also to have a receive buffer + recvbuff = buffer_type(tensor.data_ptr()) + else: + sendbuff = buffer_type() + recvbuff = buffer_type(tensor.data_ptr()) + self.nccl.ncclBroadcast(sendbuff, recvbuff, tensor.numel(), + ncclDataTypeEnum.from_torch(tensor.dtype), src, + self.comm, cudaStream_t(stream.cuda_stream)) + @contextmanager def change_state(self, enable: Optional[bool] = None, diff --git a/vllm/distributed/device_communicators/pynccl_wrapper.py b/vllm/distributed/device_communicators/pynccl_wrapper.py index ff88f72470b27..7dea61b6a09f1 100644 --- a/vllm/distributed/device_communicators/pynccl_wrapper.py +++ b/vllm/distributed/device_communicators/pynccl_wrapper.py @@ -189,6 +189,15 @@ class NCCLLibrary: ncclComm_t, cudaStream_t ]), + # ncclResult_t ncclBroadcast( + # const void* sendbuff, void* recvbuff, size_t count, + # ncclDataType_t datatype, int root, ncclComm_t comm, + # cudaStream_t stream); + Function("ncclBroadcast", ncclResult_t, [ + buffer_type, buffer_type, ctypes.c_size_t, ncclDataType_t, + ctypes.c_int, ncclComm_t, cudaStream_t + ]), + # be cautious! this is a collective call, it will block until all # processes in the communicator have called this function. # because Python object destruction can happen in random order, @@ -312,6 +321,13 @@ def ncclRecv(self, recvbuff: buffer_type, count: int, datatype: int, self.NCCL_CHECK(self._funcs["ncclRecv"](recvbuff, count, datatype, src, comm, stream)) + def ncclBroadcast(self, sendbuff: buffer_type, recvbuff: buffer_type, + count: int, datatype: int, root: int, comm: ncclComm_t, + stream: cudaStream_t) -> None: + self.NCCL_CHECK(self._funcs["ncclBroadcast"](sendbuff, recvbuff, count, + datatype, root, comm, + stream)) + def ncclCommDestroy(self, comm: ncclComm_t) -> None: self.NCCL_CHECK(self._funcs["ncclCommDestroy"](comm)) From dc5ce861bf0e10fc002384859b93b1eebbd70933 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Mon, 2 Dec 2024 22:19:02 -0800 Subject: [PATCH 010/733] [torch.compile] remove compilation_context and simplify code (#10838) Signed-off-by: youkaichao --- tests/compile/piecewise/test_simple.py | 9 +- tests/compile/piecewise/test_toy_llama.py | 33 ++++---- .../decoder_only/language/test_jamba.py | 5 +- .../decoder_only/language/test_mamba.py | 5 +- .../test_encoder_decoder_model_runner.py | 4 +- tests/worker/test_model_runner.py | 5 +- vllm/compilation/backends.py | 4 - vllm/compilation/compile_context.py | 23 ----- vllm/config.py | 83 +++++++++++++++++-- vllm/model_executor/models/jamba.py | 6 +- vllm/model_executor/models/mamba.py | 6 +- vllm/v1/worker/gpu_model_runner.py | 14 ++-- vllm/worker/enc_dec_model_runner.py | 6 +- vllm/worker/model_runner.py | 68 ++------------- 14 files changed, 128 insertions(+), 143 deletions(-) delete mode 100644 vllm/compilation/compile_context.py diff --git a/tests/compile/piecewise/test_simple.py b/tests/compile/piecewise/test_simple.py index 7ef502abee345..aa11524812cdd 100644 --- a/tests/compile/piecewise/test_simple.py +++ b/tests/compile/piecewise/test_simple.py @@ -7,7 +7,6 @@ from torch import nn from torch.library import Library -from vllm.compilation.compile_context import set_compile_context from vllm.compilation.counter import compilation_counter from vllm.compilation.decorators import support_torch_compile from vllm.config import (CompilationConfig, CompilationLevel, VllmConfig, @@ -81,6 +80,7 @@ def test_simple_piecewise_compile(): use_cudagraph=True, splitting_ops=["silly.attention"], cudagraph_copy_inputs=True, + cudagraph_capture_sizes=[1, 2], )) with set_current_vllm_config(vllm_config): model = SillyModel(vllm_config=vllm_config, prefix='') @@ -96,11 +96,10 @@ def test_simple_piecewise_compile(): 6, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen ): - with set_compile_context([1, 2]): - model(inputs) + model(inputs) - model(torch.randn(2).cuda()) - model(torch.randn(1).cuda()) + model(torch.randn(2).cuda()) + model(torch.randn(1).cuda()) input = torch.zeros(2).cuda() global global_counter diff --git a/tests/compile/piecewise/test_toy_llama.py b/tests/compile/piecewise/test_toy_llama.py index dbd5a3bbffeab..07c10a3a18c55 100644 --- a/tests/compile/piecewise/test_toy_llama.py +++ b/tests/compile/piecewise/test_toy_llama.py @@ -13,7 +13,6 @@ from torch import nn from torch.library import Library -from vllm.compilation.compile_context import set_compile_context from vllm.compilation.counter import compilation_counter from vllm.compilation.decorators import support_torch_compile from vllm.config import (CompilationConfig, CompilationLevel, VllmConfig, @@ -256,6 +255,7 @@ def run_model(llama_config, compilation_config = CompilationConfig( level=CompilationLevel.PIECEWISE, use_cudagraph=True, + cudagraph_capture_sizes=[1, 2], ) if split_attn: compilation_config.splitting_ops = ["silly.attention"] @@ -273,10 +273,9 @@ def run_model(llama_config, input_ids = torch.randint(0, llama_config.vocab_size, (B, )).cuda() positions = torch.arange(B).cuda() - with set_compile_context([1, 2]): - model(input_ids, positions) - model(input_ids[:2], positions[:2]) - model(input_ids[:1], positions[:1]) + model(input_ids, positions) + model(input_ids[:2], positions[:2]) + model(input_ids[:1], positions[:1]) input_ids[:2].zero_() output = model(input_ids[:2], positions[:2]) @@ -379,10 +378,13 @@ def benchmark(): level=CompilationLevel.PIECEWISE, use_cudagraph=True, splitting_ops=["silly.attention"], + cudagraph_capture_sizes=cudagraph_sizes, ) else: compilation_config = CompilationConfig( - level=CompilationLevel.PIECEWISE, ) + level=CompilationLevel.PIECEWISE, + cudagraph_capture_sizes=cudagraph_sizes, + ) vllm_config = VllmConfig(compilation_config=compilation_config) with set_current_vllm_config(vllm_config): @@ -396,17 +398,16 @@ def benchmark(): graphs = {} - with set_compile_context(cudagraph_sizes): - model(input_ids, positions) - for b in cudagraph_sizes[::-1]: - if not piecewise: - graph = torch.cuda.CUDAGraph() - with torch.cuda.graph(graph, pool=pool): - output = model(input_ids[:b], positions[:b]) - graphs[b] = (graph, output) - else: + model(input_ids, positions) + for b in cudagraph_sizes[::-1]: + if not piecewise: + graph = torch.cuda.CUDAGraph() + with torch.cuda.graph(graph, pool=pool): output = model(input_ids[:b], positions[:b]) - graphs[b] = (model, output) + graphs[b] = (graph, output) + else: + output = model(input_ids[:b], positions[:b]) + graphs[b] = (model, output) for b in cudagraph_sizes: if piecewise: # noqa is for `Function definition does not bind loop variable` diff --git a/tests/models/decoder_only/language/test_jamba.py b/tests/models/decoder_only/language/test_jamba.py index 87a05b3011393..cae25ae9fa2c8 100644 --- a/tests/models/decoder_only/language/test_jamba.py +++ b/tests/models/decoder_only/language/test_jamba.py @@ -1,8 +1,8 @@ import pytest from tests.utils import multi_gpu_test +from vllm.config import VllmConfig from vllm.sampling_params import SamplingParams -from vllm.worker.model_runner import _get_graph_batch_size from ...utils import check_outputs_equal @@ -189,7 +189,8 @@ def test_mamba_cache_cg_padding( # This test is for verifying that mamba cache is padded to CG captured # batch size. If it's not, a torch RuntimeError will be raised because # tensor dimensions aren't compatible - while len(example_prompts) == _get_graph_batch_size(len(example_prompts)): + while len(example_prompts) == VllmConfig.get_graph_batch_size( + len(example_prompts)): example_prompts.append(example_prompts[0]) try: diff --git a/tests/models/decoder_only/language/test_mamba.py b/tests/models/decoder_only/language/test_mamba.py index 01e208347bff4..35018c3c14dee 100644 --- a/tests/models/decoder_only/language/test_mamba.py +++ b/tests/models/decoder_only/language/test_mamba.py @@ -5,8 +5,8 @@ import pytest from transformers import AutoModelForCausalLM, AutoTokenizer +from vllm.config import VllmConfig from vllm.sampling_params import SamplingParams -from vllm.worker.model_runner import _get_graph_batch_size from ...utils import check_outputs_equal @@ -200,7 +200,8 @@ def test_mamba_cache_cg_padding( # This test is for verifying that mamba cache is padded to CG captured # batch size. If it's not, a torch RuntimeError will be raised because # tensor dimensions aren't compatible - while len(example_prompts) == _get_graph_batch_size(len(example_prompts)): + while len(example_prompts) == VllmConfig.get_graph_batch_size( + len(example_prompts)): example_prompts.append(example_prompts[0]) try: diff --git a/tests/worker/test_encoder_decoder_model_runner.py b/tests/worker/test_encoder_decoder_model_runner.py index 9e166ae64dbfb..5289c91f201cd 100644 --- a/tests/worker/test_encoder_decoder_model_runner.py +++ b/tests/worker/test_encoder_decoder_model_runner.py @@ -4,12 +4,12 @@ import pytest import torch +from vllm.config import VllmConfig from vllm.engine.arg_utils import EngineArgs from vllm.platforms import current_platform from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata from vllm.utils import make_tensor_with_pad from vllm.worker.enc_dec_model_runner import EncoderDecoderModelRunner -from vllm.worker.model_runner import _get_graph_batch_size BATCH_SIZES = [1, 4, 16, 64, 256] @@ -548,7 +548,7 @@ def test_prepare_decode_cuda_graph(batch_size, multiple_seqs_per_seq_group): # With CUDA Graph capture and replay enabled, the decoder and encoder # input sequences will be padded. Create the expected padded tensors # accordingly. - graph_batch_size = _get_graph_batch_size(expanded_batch_size) + graph_batch_size = VllmConfig.get_graph_batch_size(expanded_batch_size) cuda_graph_pad_size = graph_batch_size - expanded_batch_size padded_seq_lens = seq_lens + list(itertools.repeat(1, cuda_graph_pad_size)) padded_encoder_seq_lens = encoder_seq_lens + list( diff --git a/tests/worker/test_model_runner.py b/tests/worker/test_model_runner.py index 433a9b30ba57a..4055524f3e0c7 100644 --- a/tests/worker/test_model_runner.py +++ b/tests/worker/test_model_runner.py @@ -3,13 +3,14 @@ import pytest import torch +from vllm.config import VllmConfig from vllm.distributed.parallel_state import (ensure_model_parallel_initialized, init_distributed_environment) from vllm.engine.arg_utils import EngineArgs from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata from vllm.utils import get_open_port -from vllm.worker.model_runner import ModelRunner, _get_graph_batch_size +from vllm.worker.model_runner import ModelRunner def _create_model_runner(model: str, *args, **kwargs) -> ModelRunner: @@ -176,7 +177,7 @@ def test_prepare_decode_cuda_graph(batch_size): model_input.attn_metadata, model_input.attn_metadata.slot_mapping) assert len(slot_mapping) == len(input_tokens) - expected_bs = _get_graph_batch_size(len(seq_group_metadata_list)) + expected_bs = VllmConfig.get_graph_batch_size(len(seq_group_metadata_list)) # Verify input metadata is correct for prompts. device = model_runner.device assert attn_metadata.num_prefills == 0 diff --git a/vllm/compilation/backends.py b/vllm/compilation/backends.py index 464bc2af8fd6d..d49a83fe3981f 100644 --- a/vllm/compilation/backends.py +++ b/vllm/compilation/backends.py @@ -242,10 +242,6 @@ def __call__(self, graph: fx.GraphModule, example_inputs) -> Callable: assert not self._called, "VllmBackend can only be called once" self.graph = graph - # config is updated now, because only here can - # we get the sizes to capture for cudagraph - # from compilation context - self.compilation_configs.init_during_runtime() self.configure_post_pass() self.split_gm, self.piecewise_graphs = split_graph( diff --git a/vllm/compilation/compile_context.py b/vllm/compilation/compile_context.py deleted file mode 100644 index 29db3d4c637b9..0000000000000 --- a/vllm/compilation/compile_context.py +++ /dev/null @@ -1,23 +0,0 @@ -from contextlib import contextmanager -from typing import Any - -_compile_context: Any = None - - -def get_compile_context() -> Any: - """Get the current compile context.""" - return _compile_context - - -@contextmanager -def set_compile_context(context: Any): - """A context manager that stores the current compile context, - usually it is a list of sizes to specialize. - """ - global _compile_context - prev_context = _compile_context - _compile_context = context - try: - yield - finally: - _compile_context = prev_context diff --git a/vllm/config.py b/vllm/config.py index 5f50d65ec87e1..326340d3fa655 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -2357,15 +2357,10 @@ def init_backend(self) -> Union[str, Callable]: from vllm.compilation.backends import VllmBackend return VllmBackend(self) - def init_during_runtime(self): + def init_with_cudagraph_sizes(self, sizes_to_specialize: List[int]): """To complete the initialization of config, - we need to know the compile context, which is only available - during the first run of the model. - """ - from vllm.compilation.compile_context import get_compile_context - context = get_compile_context() - context = copy.deepcopy(context) if context is not None else [] - sizes_to_specialize: List[int] = context + we need to know the cudagraph sizes.""" + if self.cudagraph_capture_sizes is None: self.capture_sizes = sizes_to_specialize else: @@ -2386,6 +2381,21 @@ def init_during_runtime(self): self.inductor_compile_sizes = [] self.compile_sizes = self.inductor_compile_sizes + # sort to make sure cudagraph capture sizes are in descending order + self.capture_sizes.sort(reverse=True) + + +_BATCH_SIZE_ALIGNMENT = 8 +# all the token sizes that **can** be captured by cudagraph. +# they can be arbitrarily large. +# currently it includes: 1, 2, 4, 8, 16, 24, 32, 40, ..., 8192. +# the actual sizes to capture will be determined by the model, +# depending on the model's max_num_seqs. +# NOTE: get_graph_batch_size needs to be updated if this list is changed. +_BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [ + _BATCH_SIZE_ALIGNMENT * i for i in range(1, 1025) +] + @dataclass class VllmConfig: @@ -2413,6 +2423,41 @@ class VllmConfig: kv_transfer_config: KVTransferConfig = field(default=None, init=True) # type: ignore + @staticmethod + def get_graph_batch_size(batch_size: int) -> int: + """Returns the padded batch size given actual batch size. + + Batch sizes are 1, 2, 4, _BATCH_SIZE_ALIGNMENT, + 2*_BATCH_SIZE_ALIGNMENT, 3*_BATCH_SIZE_ALIGNMENT... + """ + if batch_size <= 2: + return batch_size + elif batch_size <= 4: + return 4 + else: + return ((batch_size + _BATCH_SIZE_ALIGNMENT - 1) // + _BATCH_SIZE_ALIGNMENT * _BATCH_SIZE_ALIGNMENT) + + @staticmethod + def get_max_graph_batch_size(max_num_seqs: int) -> int: + """ + max_num_seqs: Maximum number of sequences in a batch. + _BATCH_SIZES_TO_CAPTURE: all the sizes that we want to capture. + + pad the max_num_seqs if necessary by calling get_graph_batch_size, + which will deal with some edge cases like 1, 2, 4. + + if the padded size is in _BATCH_SIZES_TO_CAPTURE, return the padded + size. if not, it means the padded size is larger than the largest size + in _BATCH_SIZES_TO_CAPTURE, return the largest size in + _BATCH_SIZES_TO_CAPTURE. + """ + padded_size = VllmConfig.get_graph_batch_size(max_num_seqs) + if padded_size in _BATCH_SIZES_TO_CAPTURE: + return padded_size + assert padded_size > _BATCH_SIZES_TO_CAPTURE[-1] + return _BATCH_SIZES_TO_CAPTURE[-1] + @staticmethod def _get_quantization_config( model_config: ModelConfig, @@ -2496,6 +2541,28 @@ def __post_init__(self): self.compilation_config.pass_config.enable_reshape = False self.compilation_config.level = CompilationLevel.PIECEWISE + if not envs.VLLM_USE_V1: + max_batchsize_to_capture = 0 + if self.scheduler_config is not None and \ + self.model_config is not None and \ + not self.model_config.enforce_eager: + max_batchsize_to_capture = \ + self.get_max_graph_batch_size( + self.scheduler_config.max_num_seqs) + batch_size_capture_list = [ + size for size in _BATCH_SIZES_TO_CAPTURE + if size <= max_batchsize_to_capture + ] + else: + batch_size_capture_list = [] + if self.model_config is not None and \ + not self.model_config.enforce_eager: + batch_size_capture_list = [1, 2, 4 + ] + [i for i in range(8, 513, 8)] + + self.compilation_config.init_with_cudagraph_sizes( + batch_size_capture_list) + if self.cache_config is not None and \ self.cache_config.cpu_offload_gb > 0 and \ self.compilation_config.level != CompilationLevel.NO_COMPILATION: diff --git a/vllm/model_executor/models/jamba.py b/vllm/model_executor/models/jamba.py index 099ca7e12b288..5d5e8ae1ee532 100644 --- a/vllm/model_executor/models/jamba.py +++ b/vllm/model_executor/models/jamba.py @@ -7,7 +7,7 @@ from vllm.attention.backends.abstract import AttentionMetadata from vllm.attention.layer import Attention -from vllm.config import CacheConfig, VllmConfig +from vllm.config import _BATCH_SIZES_TO_CAPTURE, CacheConfig, VllmConfig from vllm.distributed import get_tensor_model_parallel_world_size from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.layernorm import RMSNorm @@ -25,8 +25,6 @@ MambaCacheParams) from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.sequence import IntermediateTensors -from vllm.worker.model_runner import (_BATCH_SIZES_TO_CAPTURE, - _get_graph_batch_size) from .interfaces import HasInnerState, SupportsLoRA from .utils import maybe_prefix @@ -404,7 +402,7 @@ def forward(self, inputs_embeds: Optional[torch.Tensor] = None, **kwargs): if self.mamba_cache is None: - max_batch_size = (_get_graph_batch_size( + max_batch_size = (VllmConfig.get_graph_batch_size( self.scheduler_config.max_num_seqs) if self.scheduler_config else max(_BATCH_SIZES_TO_CAPTURE) + 2) diff --git a/vllm/model_executor/models/mamba.py b/vllm/model_executor/models/mamba.py index ac0d265a961f0..b32032e411b0a 100644 --- a/vllm/model_executor/models/mamba.py +++ b/vllm/model_executor/models/mamba.py @@ -6,7 +6,7 @@ from transformers import MambaConfig from vllm.attention.backends.abstract import AttentionMetadata -from vllm.config import CacheConfig, VllmConfig +from vllm.config import _BATCH_SIZES_TO_CAPTURE, CacheConfig, VllmConfig from vllm.distributed import get_tensor_model_parallel_world_size from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.logits_processor import LogitsProcessor @@ -23,8 +23,6 @@ MambaCacheParams) from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.sequence import IntermediateTensors -from vllm.worker.model_runner import (_BATCH_SIZES_TO_CAPTURE, - _get_graph_batch_size) from .utils import maybe_prefix @@ -187,7 +185,7 @@ def forward(self, inputs_embeds: Optional[torch.Tensor] = None, **kwargs): if self.mamba_cache is None: - max_batch_size = (_get_graph_batch_size( + max_batch_size = (VllmConfig.get_graph_batch_size( self.scheduler_config.max_num_seqs) if self.scheduler_config else max(_BATCH_SIZES_TO_CAPTURE) + 2) self.mamba_cache = MambaCacheManager( diff --git a/vllm/v1/worker/gpu_model_runner.py b/vllm/v1/worker/gpu_model_runner.py index 1fa47f553dfd6..4692762493f00 100644 --- a/vllm/v1/worker/gpu_model_runner.py +++ b/vllm/v1/worker/gpu_model_runner.py @@ -8,7 +8,6 @@ import torch.distributed import torch.nn as nn -from vllm.compilation.compile_context import set_compile_context from vllm.config import CompilationLevel, VllmConfig from vllm.distributed.parallel_state import graph_capture from vllm.forward_context import set_forward_context @@ -100,7 +99,11 @@ def __init__( == CompilationLevel.PIECEWISE and not self.model_config.enforce_eager) # TODO(woosuk): Provide an option to tune the max cudagraph batch size. - self.cudagraph_batch_sizes = [1, 2, 4] + [i for i in range(8, 513, 8)] + # The convention is different. + # self.cudagraph_batch_sizes sorts in ascending order. + # The batch sizes in the config are in descending order. + self.cudagraph_batch_sizes = list( + reversed(self.vllm_config.compilation_config.capture_sizes)) self.positions = torch.zeros(self.max_num_tokens, dtype=torch.int64, device=self.device) @@ -548,10 +551,9 @@ def profile_run(self) -> None: torch.tensor([], dtype=torch.float32, device=self.device) for _ in range(self.num_attn_layers) ] - with set_compile_context(self.cudagraph_batch_sizes): - # Trigger compilation for general shape. - hidden_states = self._dummy_run(self.model, self.max_num_tokens, - dummy_kv_caches) + # Trigger compilation for general shape. + hidden_states = self._dummy_run(self.model, self.max_num_tokens, + dummy_kv_caches) logits = self.model.compute_logits(hidden_states, None) logits = logits[:self.max_num_tokens] # TODO(woosuk): Consider the memory usage of the sampler. diff --git a/vllm/worker/enc_dec_model_runner.py b/vllm/worker/enc_dec_model_runner.py index ae18c79c980c8..5697fbbaa2041 100644 --- a/vllm/worker/enc_dec_model_runner.py +++ b/vllm/worker/enc_dec_model_runner.py @@ -25,8 +25,7 @@ from vllm.utils import STR_NOT_IMPL_ENC_DEC_BACKEND, make_tensor_with_pad from vllm.worker.model_runner import (GPUModelRunnerBase, ModelInputForGPUBuilder, - ModelInputForGPUWithSamplingMetadata, - _get_graph_batch_size) + ModelInputForGPUWithSamplingMetadata) from vllm.worker.model_runner_base import ( _add_attn_metadata_broadcastable_dict, _add_sampling_metadata_broadcastable_dict) @@ -465,7 +464,8 @@ def _prepare_encoder_model_input_tensors( # We will be using CUDA graph replay for this decode. max_len_of_block_table = self.get_max_block_per_batch() batch_size = len(encoder_seq_lens) - graph_batch_size = _get_graph_batch_size(batch_size) + graph_batch_size = self.vllm_config.get_graph_batch_size( + batch_size) assert graph_batch_size >= batch_size cuda_graph_pad_size = graph_batch_size - batch_size # extend the cross_block_tables and encoder_seq_lens to match diff --git a/vllm/worker/model_runner.py b/vllm/worker/model_runner.py index c9f06eef3f907..4388b3c1ee164 100644 --- a/vllm/worker/model_runner.py +++ b/vllm/worker/model_runner.py @@ -18,7 +18,6 @@ from vllm.attention import AttentionMetadata, get_attn_backend from vllm.attention.backends.abstract import AttentionState from vllm.attention.backends.utils import CommonAttentionState -from vllm.compilation.compile_context import set_compile_context from vllm.config import CompilationLevel, VllmConfig from vllm.core.scheduler import SchedulerOutputs from vllm.distributed import get_kv_transfer_group, get_pp_group @@ -63,16 +62,7 @@ logger = init_logger(__name__) LORA_WARMUP_RANK = 8 -_BATCH_SIZE_ALIGNMENT = 8 -# all the token sizes that **can** be captured by cudagraph. -# they can be arbitrarily large. -# currently it includes: 1, 2, 4, 8, 16, 24, 32, 40, ..., 8192. -# the actual sizes to capture will be determined by the model, -# depending on the model's max_num_seqs. -# NOTE: _get_graph_batch_size needs to be updated if this list is changed. -_BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [ - _BATCH_SIZE_ALIGNMENT * i for i in range(1, 1025) -] + _NUM_WARMUP_ITERS = 2 TModelInputForGPU = TypeVar('TModelInputForGPU', bound="ModelInputForGPU") @@ -763,7 +753,6 @@ def _use_captured_graph(self, max_decode_seq_len: int, max_encoder_seq_len: int = 0) -> bool: return (decode_only and not self.runner.model_config.enforce_eager - and batch_size <= _BATCH_SIZES_TO_CAPTURE[-1] and max_decode_seq_len <= self.runner.max_seq_len_to_capture and max_encoder_seq_len <= self.runner.max_seq_len_to_capture and batch_size <= self.runner.max_batchsize_to_capture) @@ -811,7 +800,7 @@ def _get_cuda_graph_pad_size(self, max_encoder_seq_len): return -1 - graph_batch_size = _get_graph_batch_size(batch_size) + graph_batch_size = VllmConfig.get_graph_batch_size(batch_size) assert graph_batch_size >= batch_size return graph_batch_size - batch_size @@ -1023,7 +1012,7 @@ def __init__( self.sliding_window = model_config.get_sliding_window() self.block_size = cache_config.block_size self.max_seq_len_to_capture = self.model_config.max_seq_len_to_capture - self.max_batchsize_to_capture = _get_max_graph_batch_size( + self.max_batchsize_to_capture = VllmConfig.get_max_graph_batch_size( self.scheduler_config.max_num_seqs) self.graph_runners: List[Dict[int, CUDAGraphRunner]] = [ @@ -1333,14 +1322,7 @@ def profile_run(self) -> None: dtype=self.model_config.dtype, device=self.device) - graph_batch_size = self.max_batchsize_to_capture - batch_size_capture_list = [ - bs for bs in _BATCH_SIZES_TO_CAPTURE if bs <= graph_batch_size - ] - if self.model_config.enforce_eager: - batch_size_capture_list = [] - with set_compile_context(batch_size_capture_list): - self.execute_model(model_input, kv_caches, intermediate_tensors) + self.execute_model(model_input, kv_caches, intermediate_tensors) torch.cuda.synchronize() return @@ -1459,18 +1441,14 @@ def capture_model(self, kv_caches: List[List[torch.Tensor]]) -> None: dtype=self.model_config.dtype, device=self.device) - graph_batch_size = self.max_batchsize_to_capture - batch_size_capture_list = [ - bs for bs in _BATCH_SIZES_TO_CAPTURE if bs <= graph_batch_size - ] - with self.attn_state.graph_capture( max_batch_size), graph_capture() as graph_capture_context: # NOTE: Capturing the largest batch size first may help reduce the # memory usage of CUDA graph. for virtual_engine in range( self.parallel_config.pipeline_parallel_size): - for batch_size in reversed(batch_size_capture_list): + for batch_size in \ + self.vllm_config.compilation_config.capture_sizes: attn_metadata = ( self.attn_state.graph_capture_get_metadata_for_batch( batch_size, @@ -1993,37 +1971,3 @@ def forward( return self.output_buffers["hidden_states"] return self.output_buffers - - -def _get_graph_batch_size(batch_size: int) -> int: - """Returns the padded batch size given actual batch size. - - Batch sizes are 1, 2, 4, _BATCH_SIZE_ALIGNMENT, - 2*_BATCH_SIZE_ALIGNMENT, 3*_BATCH_SIZE_ALIGNMENT... - """ - if batch_size <= 2: - return batch_size - elif batch_size <= 4: - return 4 - else: - return ((batch_size + _BATCH_SIZE_ALIGNMENT - 1) // - _BATCH_SIZE_ALIGNMENT * _BATCH_SIZE_ALIGNMENT) - - -def _get_max_graph_batch_size(max_num_seqs: int) -> int: - """ - max_num_seqs: Maximum number of sequences in a batch. - _BATCH_SIZES_TO_CAPTURE: all the sizes that we want to capture. - - pad the max_num_seqs if necessary by calling _get_graph_batch_size, - which will deal with some edge cases like 1, 2, 4. - - if the padded size is in _BATCH_SIZES_TO_CAPTURE, return the padded size. - if not, it means the padded size is larger than the largest size in - _BATCH_SIZES_TO_CAPTURE, return the largest size in _BATCH_SIZES_TO_CAPTURE. - """ - padded_size = _get_graph_batch_size(max_num_seqs) - if padded_size in _BATCH_SIZES_TO_CAPTURE: - return padded_size - assert padded_size > _BATCH_SIZES_TO_CAPTURE[-1] - return _BATCH_SIZES_TO_CAPTURE[-1] From ef51831ee8dbd64833b25e042d4e984d169202f9 Mon Sep 17 00:00:00 2001 From: Russell Bryant Date: Tue, 3 Dec 2024 01:46:07 -0500 Subject: [PATCH 011/733] [Doc] Add github links for source code references (#10672) Signed-off-by: Russell Bryant Signed-off-by: DarkLight1337 Co-authored-by: DarkLight1337 --- docs/requirements-docs.txt | 3 +- docs/source/conf.py | 66 ++++++++++++++++++++++++++++++++++++++ 2 files changed, 68 insertions(+), 1 deletion(-) diff --git a/docs/requirements-docs.txt b/docs/requirements-docs.txt index 8ea240f59c38f..5c80645b405ae 100644 --- a/docs/requirements-docs.txt +++ b/docs/requirements-docs.txt @@ -16,4 +16,5 @@ mistral_common >= 1.5.0 aiohttp starlette openai # Required by docs/source/serving/openai_compatible_server.md's vllm.entrypoints.openai.cli_args -partial-json-parser # Required by docs/source/serving/openai_compatible_server.md's vllm.entrypoints.openai.cli_args \ No newline at end of file +partial-json-parser # Required by docs/source/serving/openai_compatible_server.md's vllm.entrypoints.openai.cli_args +requests diff --git a/docs/source/conf.py b/docs/source/conf.py index 96ad9a4c26b09..4a1a5fb455ff3 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -10,11 +10,13 @@ # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. +import inspect import logging import os import sys from typing import List +import requests from sphinx.ext import autodoc logger = logging.getLogger(__name__) @@ -34,6 +36,7 @@ extensions = [ "sphinx.ext.napoleon", "sphinx.ext.viewcode", + "sphinx.ext.linkcode", "sphinx.ext.intersphinx", "sphinx_copybutton", "sphinx.ext.autodoc", @@ -94,6 +97,69 @@ def setup(app): generate_examples() +_cached_base: str = "" +_cached_branch: str = "" + + +def get_repo_base_and_branch(pr_number): + global _cached_base, _cached_branch + if _cached_base and _cached_branch: + return _cached_base, _cached_branch + + url = f"https://api.github.com/repos/vllm-project/vllm/pulls/{pr_number}" + response = requests.get(url) + if response.status_code == 200: + data = response.json() + _cached_base = data['head']['repo']['full_name'] + _cached_branch = data['head']['ref'] + return _cached_base, _cached_branch + else: + logger.error("Failed to fetch PR details: %s", response) + return None, None + + +def linkcode_resolve(domain, info): + if domain != 'py': + return None + if not info['module']: + return None + filename = info['module'].replace('.', '/') + module = info['module'] + + # try to determine the correct file and line number to link to + obj = sys.modules[module] + + # get as specific as we can + lineno: int = 0 + filename: str = "" + try: + for part in info['fullname'].split('.'): + obj = getattr(obj, part) + + if not (inspect.isclass(obj) or inspect.isfunction(obj) + or inspect.ismethod(obj)): + obj = obj.__class__ # Get the class of the instance + + lineno = inspect.getsourcelines(obj)[1] + filename = (inspect.getsourcefile(obj) + or f"{filename}.py").split("vllm/", 1)[1] + except Exception: + # For some things, like a class member, won't work, so + # we'll use the line number of the parent (the class) + pass + + if filename.startswith("checkouts/"): + # a PR build on readthedocs + pr_number = filename.split("/")[1] + filename = filename.split("/", 2)[2] + base, branch = get_repo_base_and_branch(pr_number) + if base and branch: + return f"https://github.com/{base}/blob/{branch}/{filename}#L{lineno}" + + # Otherwise, link to the source file on the main branch + return f"https://github.com/vllm-project/vllm/blob/main/{filename}#L{lineno}" + + # Mock out external dependencies here, otherwise the autodoc pages may be blank. autodoc_mock_imports = [ "compressed_tensors", From 3257d449fa0fd3e05aa20cc8c5fff79ad101984f Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Tue, 3 Dec 2024 14:52:57 +0800 Subject: [PATCH 012/733] [Misc] Remove deprecated names (#10817) Signed-off-by: DarkLight1337 --- vllm/engine/async_llm_engine.py | 8 +++++-- vllm/engine/llm_engine.py | 5 ++-- vllm/engine/multiprocessing/__init__.py | 5 +++- vllm/engine/multiprocessing/client.py | 7 ++++-- vllm/entrypoints/llm.py | 11 +++++++++ vllm/inputs/__init__.py | 31 ------------------------- vllm/inputs/data.py | 31 ------------------------- vllm/model_executor/models/aria.py | 5 ++-- vllm/multimodal/__init__.py | 15 ------------ vllm/multimodal/base.py | 15 ------------ 10 files changed, 31 insertions(+), 102 deletions(-) diff --git a/vllm/engine/async_llm_engine.py b/vllm/engine/async_llm_engine.py index 7b1bb7b05708d..4395588d29cda 100644 --- a/vllm/engine/async_llm_engine.py +++ b/vllm/engine/async_llm_engine.py @@ -6,6 +6,8 @@ List, Mapping, Optional, Set, Tuple, Type, Union, overload) from weakref import ReferenceType +from typing_extensions import deprecated + import vllm.envs as envs from vllm.config import (DecodingConfig, LoRAConfig, ModelConfig, ParallelConfig, SchedulerConfig, VllmConfig) @@ -422,7 +424,8 @@ async def get_tokenizer_async(self, return await ( self.get_tokenizer_group().get_lora_tokenizer_async(lora_request)) - @overload # DEPRECATED + @overload + @deprecated("'inputs' will be renamed to 'prompt") async def add_request_async( self, request_id: str, @@ -894,7 +897,8 @@ async def run_engine_loop(engine_ref: ReferenceType): # This method does not need to be async, but kept that way # for backwards compatibility. - @overload # DEPRECATED + @overload + @deprecated("'inputs' will be renamed to 'prompt") def add_request( self, request_id: str, diff --git a/vllm/engine/llm_engine.py b/vllm/engine/llm_engine.py index 7911dc8d04500..dd55aa2818621 100644 --- a/vllm/engine/llm_engine.py +++ b/vllm/engine/llm_engine.py @@ -10,7 +10,7 @@ from typing import Set, Type, Union, cast, overload import torch -from typing_extensions import TypeVar +from typing_extensions import TypeVar, deprecated import vllm.envs as envs from vllm.config import (DecodingConfig, LoRAConfig, ModelConfig, @@ -719,7 +719,8 @@ def _add_processed_request( def stop_remote_worker_execution_loop(self) -> None: self.model_executor.stop_remote_worker_execution_loop() - @overload # DEPRECATED + @overload + @deprecated("'inputs' will be renamed to 'prompt") def add_request( self, request_id: str, diff --git a/vllm/engine/multiprocessing/__init__.py b/vllm/engine/multiprocessing/__init__.py index 34c161e9395ae..7020012e8bb86 100644 --- a/vllm/engine/multiprocessing/__init__.py +++ b/vllm/engine/multiprocessing/__init__.py @@ -2,6 +2,8 @@ from enum import Enum from typing import List, Mapping, Optional, Union, overload +from typing_extensions import deprecated + from vllm import PoolingParams from vllm.inputs import PromptType from vllm.lora.request import LoRARequest @@ -32,7 +34,8 @@ class RPCProcessRequest: prompt_adapter_request: Optional[PromptAdapterRequest] = None priority: int = 0 - @overload # DEPRECATED + @overload + @deprecated("'inputs' will be renamed to 'prompt") def __init__( self, *, diff --git a/vllm/engine/multiprocessing/client.py b/vllm/engine/multiprocessing/client.py index d26728e8c6e67..8383e774db20f 100644 --- a/vllm/engine/multiprocessing/client.py +++ b/vllm/engine/multiprocessing/client.py @@ -9,6 +9,7 @@ import psutil import zmq import zmq.asyncio +from typing_extensions import deprecated from zmq import Frame # type: ignore[attr-defined] from zmq.asyncio import Socket @@ -414,7 +415,8 @@ def errored(self) -> bool: def dead_error(self) -> BaseException: return ENGINE_DEAD_ERROR(self._errored_with) - @overload # DEPRECATED + @overload + @deprecated("'inputs' will be renamed to 'prompt") def generate( self, *, @@ -485,7 +487,8 @@ def generate( lora_request, trace_headers, prompt_adapter_request, priority) - @overload # DEPRECATED + @overload + @deprecated("'inputs' will be renamed to 'prompt") def encode( self, *, diff --git a/vllm/entrypoints/llm.py b/vllm/entrypoints/llm.py index a25c401b4ea10..65fa9873df28c 100644 --- a/vllm/entrypoints/llm.py +++ b/vllm/entrypoints/llm.py @@ -6,6 +6,7 @@ Union, cast, overload) from tqdm import tqdm +from typing_extensions import deprecated from vllm import envs from vllm.beam_search import (BeamSearchInstance, BeamSearchOutput, @@ -256,6 +257,7 @@ def set_tokenizer(self, tokenizer: AnyTokenizer) -> None: tokenizer_group.tokenizer = get_cached_tokenizer(tokenizer) @overload # LEGACY: single (prompt + optional token ids) + @deprecated("'prompt_token_ids' will become part of 'prompts") def generate( self, prompts: str, @@ -268,6 +270,7 @@ def generate( ... @overload # LEGACY: multi (prompt + optional token ids) + @deprecated("'prompt_token_ids' will become part of 'prompts") def generate( self, prompts: List[str], @@ -280,6 +283,7 @@ def generate( ... @overload # LEGACY: single (token ids + optional prompt) + @deprecated("'prompt_token_ids' will become part of 'prompts") def generate( self, prompts: Optional[str] = None, @@ -293,6 +297,7 @@ def generate( ... @overload # LEGACY: multi (token ids + optional prompt) + @deprecated("'prompt_token_ids' will become part of 'prompts") def generate( self, prompts: Optional[List[str]] = None, @@ -306,6 +311,7 @@ def generate( ... @overload # LEGACY: single or multi token ids [pos-only] + @deprecated("'prompt_token_ids' will become part of 'prompts") def generate( self, prompts: None, @@ -671,6 +677,7 @@ def chat( ) @overload # LEGACY: single (prompt + optional token ids) + @deprecated("'prompt_token_ids' will become part of 'prompts") def encode( self, prompts: str, @@ -683,6 +690,7 @@ def encode( ... @overload # LEGACY: multi (prompt + optional token ids) + @deprecated("'prompt_token_ids' will become part of 'prompts") def encode( self, prompts: List[str], @@ -695,6 +703,7 @@ def encode( ... @overload # LEGACY: single (token ids + optional prompt) + @deprecated("'prompt_token_ids' will become part of 'prompts") def encode( self, prompts: Optional[str] = None, @@ -708,6 +717,7 @@ def encode( ... @overload # LEGACY: multi (token ids + optional prompt) + @deprecated("'prompt_token_ids' will become part of 'prompts") def encode( self, prompts: Optional[List[str]] = None, @@ -721,6 +731,7 @@ def encode( ... @overload # LEGACY: single or multi token ids [pos-only] + @deprecated("'prompt_token_ids' will become part of 'prompts") def encode( self, prompts: None, diff --git a/vllm/inputs/__init__.py b/vllm/inputs/__init__.py index 54fbd7a321a6f..d4402e77a3886 100644 --- a/vllm/inputs/__init__.py +++ b/vllm/inputs/__init__.py @@ -38,34 +38,3 @@ "InputProcessingContext", "InputRegistry", ] - - -def __getattr__(name: str): - import warnings - - if name == "PromptInput": - msg = ("PromptInput has been renamed to PromptType. " - "The original name will be removed in an upcoming version.") - - warnings.warn(DeprecationWarning(msg), stacklevel=2) - - return PromptType - - if name == "LLMInputs": - msg = ("LLMInputs has been renamed to DecoderOnlyInputs. " - "The original name will be removed in an upcoming version.") - - warnings.warn(DeprecationWarning(msg), stacklevel=2) - - return DecoderOnlyInputs - - if name == "EncoderDecoderLLMInputs": - msg = ( - "EncoderDecoderLLMInputs has been renamed to EncoderDecoderInputs. " - "The original name will be removed in an upcoming version.") - - warnings.warn(DeprecationWarning(msg), stacklevel=2) - - return EncoderDecoderInputs - - raise AttributeError(f"module {__name__!r} has no attribute {name!r}") diff --git a/vllm/inputs/data.py b/vllm/inputs/data.py index fb7dbbebd7b90..e8fc78f1a66f6 100644 --- a/vllm/inputs/data.py +++ b/vllm/inputs/data.py @@ -358,34 +358,3 @@ def to_enc_dec_tuple_list( return [(enc_dec_prompt["encoder_prompt"], enc_dec_prompt["decoder_prompt"]) for enc_dec_prompt in enc_dec_prompts] - - -def __getattr__(name: str): - import warnings - - if name == "PromptInput": - msg = ("PromptInput has been renamed to PromptType. " - "The original name will be removed in an upcoming version.") - - warnings.warn(DeprecationWarning(msg), stacklevel=2) - - return PromptType - - if name == "LLMInputs": - msg = ("LLMInputs has been renamed to DecoderOnlyInputs. " - "The original name will be removed in an upcoming version.") - - warnings.warn(DeprecationWarning(msg), stacklevel=2) - - return DecoderOnlyInputs - - if name == "EncoderDecoderLLMInputs": - msg = ( - "EncoderDecoderLLMInputs has been renamed to EncoderDecoderInputs. " - "The original name will be removed in an upcoming version.") - - warnings.warn(DeprecationWarning(msg), stacklevel=2) - - return EncoderDecoderInputs - - raise AttributeError(f"module {__name__!r} has no attribute {name!r}") diff --git a/vllm/model_executor/models/aria.py b/vllm/model_executor/models/aria.py index fa6b95f5481ad..dd4b0c75cb84d 100644 --- a/vllm/model_executor/models/aria.py +++ b/vllm/model_executor/models/aria.py @@ -32,9 +32,8 @@ maybe_prefix, merge_multimodal_embeddings) from vllm.multimodal import MULTIMODAL_REGISTRY -from vllm.multimodal.base import MultiModalInputs from vllm.multimodal.image import cached_get_image_processor -from vllm.multimodal.inputs import NestedTensors +from vllm.multimodal.inputs import MultiModalKwargs, NestedTensors from vllm.multimodal.utils import (cached_get_tokenizer, repeat_and_pad_placeholder_tokens) from vllm.sequence import IntermediateTensors @@ -451,7 +450,7 @@ def get_max_multimodal_tokens(ctx): def input_mapper_for_aria(ctx, data): - return MultiModalInputs(data) + return MultiModalKwargs(data) def input_processor(ctx, llm_inputs): diff --git a/vllm/multimodal/__init__.py b/vllm/multimodal/__init__.py index 03a5f3a91f7a1..928c31a2f2843 100644 --- a/vllm/multimodal/__init__.py +++ b/vllm/multimodal/__init__.py @@ -27,18 +27,3 @@ "MULTIMODAL_REGISTRY", "MultiModalRegistry", ] - - -def __getattr__(name: str): - import warnings - - if name == "MultiModalInputs": - msg = ("MultiModalInputs has been renamed to MultiModalKwargs. " - "The original name will take another meaning in an upcoming " - "version.") - - warnings.warn(DeprecationWarning(msg), stacklevel=2) - - return MultiModalKwargs - - raise AttributeError(f"module {__name__!r} has no attribute {name!r}") diff --git a/vllm/multimodal/base.py b/vllm/multimodal/base.py index bbb8fb4bc1cd1..f93722523728d 100644 --- a/vllm/multimodal/base.py +++ b/vllm/multimodal/base.py @@ -433,18 +433,3 @@ def index_map(self) -> "IndexMap": return MultiModalPlaceholderMap.IndexMap(src=src_indices, dest=dest_indices) - - -def __getattr__(name: str): - import warnings - - if name == "MultiModalInputs": - msg = ("MultiModalInputs has been renamed to MultiModalKwargs. " - "The original name will take another meaning in an upcoming " - "version.") - - warnings.warn(DeprecationWarning(msg), stacklevel=2) - - return MultiModalKwargs - - raise AttributeError(f"module {__name__!r} has no attribute {name!r}") From 9323a3153b20d4a2ca7ac04a2784609d6ce656e0 Mon Sep 17 00:00:00 2001 From: Aaron Pham Date: Tue, 3 Dec 2024 02:17:00 -0500 Subject: [PATCH 013/733] [Core][Performance] Add XGrammar support for guided decoding and set it as default (#10785) Signed-off-by: Aaron Pham Signed-off-by: mgoin Co-authored-by: mgoin --- docs/source/conf.py | 1 + requirements-common.txt | 1 + tests/entrypoints/llm/test_guided_generate.py | 27 ++ .../model_executor/test_guided_processors.py | 3 +- vllm/config.py | 15 +- vllm/engine/arg_utils.py | 9 +- vllm/engine/async_llm_engine.py | 18 +- vllm/engine/llm_engine.py | 15 +- vllm/engine/multiprocessing/client.py | 5 +- .../guided_decoding/__init__.py | 73 ++++- .../guided_decoding/xgrammar_decoding.py | 251 ++++++++++++++++++ 11 files changed, 385 insertions(+), 33 deletions(-) create mode 100644 vllm/model_executor/guided_decoding/xgrammar_decoding.py diff --git a/docs/source/conf.py b/docs/source/conf.py index 4a1a5fb455ff3..e9d9ac68c9560 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -178,6 +178,7 @@ def linkcode_resolve(domain, info): "tensorizer", "pynvml", "outlines", + "xgrammar," "librosa", "soundfile", "gguf", diff --git a/requirements-common.txt b/requirements-common.txt index 02e3d65fb774c..818f72e14be96 100644 --- a/requirements-common.txt +++ b/requirements-common.txt @@ -19,6 +19,7 @@ prometheus-fastapi-instrumentator >= 7.0.0 tiktoken >= 0.6.0 # Required for DBRX tokenizer lm-format-enforcer >= 0.10.9, < 0.11 outlines >= 0.0.43, < 0.1 +xgrammar typing_extensions >= 4.10 filelock >= 3.16.1 # need to contain https://github.com/tox-dev/filelock/pull/317 partial-json-parser # used for parsing partial JSON outputs diff --git a/tests/entrypoints/llm/test_guided_generate.py b/tests/entrypoints/llm/test_guided_generate.py index 67c79415f322a..c3706f696b264 100644 --- a/tests/entrypoints/llm/test_guided_generate.py +++ b/tests/entrypoints/llm/test_guided_generate.py @@ -159,3 +159,30 @@ def test_validation_against_both_guided_decoding_options(sample_regex, llm): sampling_params=sampling_params, use_tqdm=True, guided_options_request=dict(guided_regex=sample_regex)) + + +@pytest.mark.skip_global_cleanup +def test_guided_json_object(llm): + sampling_params = SamplingParams( + temperature=1.0, + max_tokens=100, + guided_decoding=GuidedDecodingParams(json_object=True)) + + outputs = llm.generate( + prompts=("Generate a JSON object describing a person with name " + "and age for John Smith who is 31 years old."), + sampling_params=sampling_params, + use_tqdm=True) + + assert outputs is not None + for output in outputs: + assert output is not None + assert isinstance(output, RequestOutput) + + generated_text = output.outputs[0].text + print(generated_text) + assert generated_text is not None + + # Parse to verify it is valid JSON + parsed_json = json.loads(generated_text) + assert isinstance(parsed_json, dict) diff --git a/tests/model_executor/test_guided_processors.py b/tests/model_executor/test_guided_processors.py index 45fab8e96b968..9f4d81b583141 100644 --- a/tests/model_executor/test_guided_processors.py +++ b/tests/model_executor/test_guided_processors.py @@ -36,7 +36,8 @@ def test_guided_logits_processors(sample_regex, sample_json_schema): @pytest.mark.asyncio -@pytest.mark.parametrize("backend", ["outlines", "lm-format-enforcer"]) +@pytest.mark.parametrize("backend", + ["outlines", "lm-format-enforcer", "xgrammar"]) async def test_guided_logits_processor_black_box(backend: str, sample_regex, sample_json_schema): tokenizer = AutoTokenizer.from_pretrained('HuggingFaceH4/zephyr-7b-beta') diff --git a/vllm/config.py b/vllm/config.py index 326340d3fa655..971eb36d677b8 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -1789,15 +1789,15 @@ class PoolerConfig: step_tag_id: Optional[int] = None """ - If set, only the score corresponding to the ``step_tag_id`` in the + If set, only the score corresponding to the ``step_tag_id`` in the generated sentence should be returned. Otherwise, the scores for all tokens are returned. """ returned_token_ids: Optional[List[int]] = None """ - A list of indices for the vocabulary dimensions to be extracted, - such as the token IDs of ``good_token`` and ``bad_token`` in the + A list of indices for the vocabulary dimensions to be extracted, + such as the token IDs of ``good_token`` and ``bad_token`` in the ``math-shepherd-mistral-7b-prm`` model. """ @@ -2031,11 +2031,12 @@ def get_served_model_name(model: str, class DecodingConfig: """Dataclass which contains the decoding strategy of the engine""" - # Which guided decoding algo to use. 'outlines' / 'lm-format-enforcer' - guided_decoding_backend: str = 'outlines' + # Which guided decoding algo to use. + # 'outlines' / 'lm-format-enforcer' / 'xgrammar' + guided_decoding_backend: str = 'xgrammar' def __post_init__(self): - valid_guided_backends = ['outlines', 'lm-format-enforcer'] + valid_guided_backends = ['outlines', 'lm-format-enforcer', 'xgrammar'] backend = self.guided_decoding_backend if backend not in valid_guided_backends: raise ValueError(f"Invalid guided_decoding_backend '{backend}," @@ -2222,7 +2223,7 @@ class CompilationConfig(BaseModel): from Python, functions can also be passed directly via Python object constructor, e.g. `CompilationConfig(inductor_passes={"a": func})` - custom inductor passes: see PassConfig for more details - + Why we have different sizes for cudagraph and inductor: - cudagraph: a cudagraph captured for a specific size can only be used for the same size. We need to capture all the sizes we want to use. diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index 4aa0eebd976c9..3b776c1d9d39f 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -168,7 +168,7 @@ class EngineArgs: scheduler_delay_factor: float = 0.0 enable_chunked_prefill: Optional[bool] = None - guided_decoding_backend: str = 'outlines' + guided_decoding_backend: str = 'xgrammar' # Speculative decoding configuration. speculative_model: Optional[str] = None speculative_model_quantization: Optional[str] = None @@ -364,11 +364,12 @@ def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser: parser.add_argument( '--guided-decoding-backend', type=str, - default='outlines', - choices=['outlines', 'lm-format-enforcer'], + default='xgrammar', + choices=['outlines', 'lm-format-enforcer', 'xgrammar'], help='Which engine will be used for guided decoding' ' (JSON schema / regex etc) by default. Currently support ' - 'https://github.com/outlines-dev/outlines and ' + 'https://github.com/outlines-dev/outlines,' + 'https://github.com/mlc-ai/xgrammar, and ' 'https://github.com/noamgat/lm-format-enforcer.' ' Can be overridden per request via guided_decoding_backend' ' parameter.') diff --git a/vllm/engine/async_llm_engine.py b/vllm/engine/async_llm_engine.py index 4395588d29cda..60dccd7a0812c 100644 --- a/vllm/engine/async_llm_engine.py +++ b/vllm/engine/async_llm_engine.py @@ -1,4 +1,5 @@ import asyncio +import copy import time import weakref from functools import partial @@ -507,7 +508,8 @@ async def add_request_async( sampling_params=params, tokenizer=await self.get_tokenizer_async(lora_request), default_guided_backend=self.decoding_config. - guided_decoding_backend) + guided_decoding_backend, + model_config=self.model_config) self._add_processed_request( request_id=request_id, @@ -528,22 +530,30 @@ async def check_health_async(self) -> None: async def build_guided_decoding_logits_processor_async( sampling_params: SamplingParams, tokenizer: AnyTokenizer, - default_guided_backend: str) -> SamplingParams: + default_guided_backend: str, + model_config: ModelConfig) -> SamplingParams: """Constructs logits processors based on the guided_decoding, logits_bias, and allowed_token_ids fields in sampling_params. Deletes those fields and adds the constructed logits processors to the logits_processors field. Modifies sampling params in-place and returns the modified sampling params.""" - if (guided_decoding := sampling_params.guided_decoding) is None: + if sampling_params.guided_decoding is None: return sampling_params + # Defensively copy sampling params since guided decoding logits + # processors can have different state for each request + sampling_params = copy.copy(sampling_params) + guided_decoding = sampling_params.guided_decoding + logger.debug("Building guided decoding logits processor. " "Params: %s", guided_decoding) guided_decoding.backend = guided_decoding.backend or default_guided_backend processor = await get_guided_decoding_logits_processor( - guided_params=guided_decoding, tokenizer=tokenizer) + guided_params=guided_decoding, + tokenizer=tokenizer, + model_config=model_config) if processor: if sampling_params.logits_processors is None: diff --git a/vllm/engine/llm_engine.py b/vllm/engine/llm_engine.py index dd55aa2818621..af66b307028cf 100644 --- a/vllm/engine/llm_engine.py +++ b/vllm/engine/llm_engine.py @@ -1,3 +1,4 @@ +import copy import time from collections import Counter as collectionsCounter from collections import deque @@ -1024,9 +1025,9 @@ def _update_num_computed_tokens_for_multi_step_prefill( This function updates num_computed_tokens for prompt sequences when Multi-Step is enabled. - seq_group: SequenceGroup to update the num_computed_tokens for. + seq_group: SequenceGroup to update the num_computed_tokens for. seq_group_meta: Metadata of the given SequenceGroup. - is_first_step_output: Optional[bool] - + is_first_step_output: Optional[bool] - When available, is_first_step_output indicates if the appended output token is the output of the first-step in multi-step. A value of None indicates that outputs from all steps in @@ -2036,7 +2037,11 @@ def _build_logits_processors( logits_processors = [] - if (guided_decoding := sampling_params.guided_decoding) is not None: + if sampling_params.guided_decoding is not None: + # Defensively copy sampling params since guided decoding logits + # processors can have different state for each request + sampling_params = copy.copy(sampling_params) + guided_decoding = sampling_params.guided_decoding logger.debug( "Building guided decoding logits processor in " @@ -2047,7 +2052,9 @@ def _build_logits_processors( self.decoding_config.guided_decoding_backend processor = get_local_guided_decoding_logits_processor( - guided_params=guided_decoding, tokenizer=tokenizer) + guided_params=guided_decoding, + tokenizer=tokenizer, + model_config=self.model_config) if processor: logits_processors.append(processor) diff --git a/vllm/engine/multiprocessing/client.py b/vllm/engine/multiprocessing/client.py index 8383e774db20f..d21136c03d7d2 100644 --- a/vllm/engine/multiprocessing/client.py +++ b/vllm/engine/multiprocessing/client.py @@ -474,8 +474,8 @@ def generate( trace_headers: OpenTelemetry trace headers. prompt_adapter_request: Prompt Adapter request to use for generation, if any. - priority: Priority of the request (lower means earlier handling). - Any priority other than 0 will lead to an error if the + priority: Priority of the request (lower means earlier handling). + Any priority other than 0 will lead to an error if the scheduling policy is not "priority". """ if inputs is not None: @@ -589,6 +589,7 @@ async def _process_request( default_guided_backend=(self.decoding_config.guided_decoding_backend if self.decoding_config else DecodingConfig.guided_decoding_backend), + model_config=self.model_config ) # 1) Create output queue for this requests. diff --git a/vllm/model_executor/guided_decoding/__init__.py b/vllm/model_executor/guided_decoding/__init__.py index d7b67425fcbc0..23c31fcfd7f05 100644 --- a/vllm/model_executor/guided_decoding/__init__.py +++ b/vllm/model_executor/guided_decoding/__init__.py @@ -1,14 +1,54 @@ -from typing import Optional +from __future__ import annotations -from vllm.logits_process import LogitsProcessor -from vllm.sampling_params import GuidedDecodingParams +from typing import TYPE_CHECKING + +from vllm.logger import init_logger + +if TYPE_CHECKING: + from transformers import PreTrainedTokenizer + + from vllm.config import ModelConfig + from vllm.logits_process import LogitsProcessor + from vllm.sampling_params import GuidedDecodingParams + +logger = init_logger(__name__) + + +def maybe_backend_fallback( + guided_params: GuidedDecodingParams) -> GuidedDecodingParams: + # lm-format-enforce doesn't support grammar, fallback to xgrammar + if (guided_params.backend == "lm-format-enforcer" + and guided_params.grammar is not None): + logger.warning( + "lm-format-enforcer does not support grammar guided decoding. " + "Falling back to use xgrammar instead.") + guided_params.backend = "xgrammar" + + if guided_params.backend == "xgrammar": + # xgrammar doesn't support regex or choice, fallback to outlines + if guided_params.regex is not None or guided_params.choice is not None: + logger.warning( + "xgrammar only supports json or grammar guided decoding. " + "Falling back to use outlines instead.") + guided_params.backend = "outlines" + + # xgrammar only supports EBNF grammars and uses the GBNF format + # https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md + elif (guided_params.grammar is not None + and "::=" not in guided_params.grammar): + logger.warning("xgrammar only supports EBNF grammars. " + "Falling back to use outlines instead.") + guided_params.backend = "outlines" + + return guided_params async def get_guided_decoding_logits_processor( - guided_params: GuidedDecodingParams, - tokenizer) -> Optional[LogitsProcessor]: + guided_params: GuidedDecodingParams, tokenizer: PreTrainedTokenizer, + model_config: ModelConfig) -> LogitsProcessor | None: + guided_params = maybe_backend_fallback(guided_params) # CFG grammar not supported by LMFE, so we use outlines instead - if guided_params.backend == 'outlines' or guided_params.grammar: + if guided_params.backend == 'outlines': # NOTE: lazy import outlines to avoid https://github.com/vllm-project/vllm/issues/4193 from vllm.model_executor.guided_decoding.outlines_decoding import ( # noqa get_outlines_guided_decoding_logits_processor) @@ -19,17 +59,23 @@ async def get_guided_decoding_logits_processor( get_local_lm_format_enforcer_guided_decoding_logits_processor) return get_local_lm_format_enforcer_guided_decoding_logits_processor( guided_params, tokenizer) + if guided_params.backend == 'xgrammar': + from vllm.model_executor.guided_decoding.xgrammar_decoding import ( # noqa + get_local_xgrammar_guided_decoding_logits_processor) + return get_local_xgrammar_guided_decoding_logits_processor( + guided_params, tokenizer, model_config) raise ValueError( f"Unknown guided decoding backend '{guided_params.backend}'. " - "Must be one of 'outlines, 'lm-format-enforcer'") + "Must be one of 'outlines, 'lm-format-enforcer', 'xgrammar'") def get_local_guided_decoding_logits_processor( - guided_params: GuidedDecodingParams, - tokenizer) -> Optional[LogitsProcessor]: + guided_params: GuidedDecodingParams, tokenizer: PreTrainedTokenizer, + model_config: ModelConfig) -> LogitsProcessor | None: + guided_params = maybe_backend_fallback(guided_params) # CFG grammar not supported by LMFE, so we use outlines instead - if guided_params.backend == 'outlines' or guided_params.grammar: + if guided_params.backend == 'outlines': # NOTE: lazy import outlines to avoid https://github.com/vllm-project/vllm/issues/4193 from vllm.model_executor.guided_decoding.outlines_decoding import ( # noqa get_local_outlines_guided_decoding_logits_processor) @@ -40,7 +86,12 @@ def get_local_guided_decoding_logits_processor( get_local_lm_format_enforcer_guided_decoding_logits_processor) return get_local_lm_format_enforcer_guided_decoding_logits_processor( guided_params, tokenizer) + if guided_params.backend == 'xgrammar': + from vllm.model_executor.guided_decoding.xgrammar_decoding import ( # noqa + get_local_xgrammar_guided_decoding_logits_processor) + return get_local_xgrammar_guided_decoding_logits_processor( + guided_params, tokenizer, model_config) raise ValueError( f"Unknown guided decoding backend '{guided_params.backend}'. " - "Must be one of 'outlines, 'lm-format-enforcer'") + "Must be one of 'outlines, 'lm-format-enforcer', 'xgrammar'") diff --git a/vllm/model_executor/guided_decoding/xgrammar_decoding.py b/vllm/model_executor/guided_decoding/xgrammar_decoding.py new file mode 100644 index 0000000000000..8287cd6cf3aa0 --- /dev/null +++ b/vllm/model_executor/guided_decoding/xgrammar_decoding.py @@ -0,0 +1,251 @@ +# noqa: UP007 +from __future__ import annotations + +import json +from dataclasses import dataclass, field +from typing import TYPE_CHECKING, Any, NamedTuple + +import torch +from transformers import PreTrainedTokenizerFast + +try: + import xgrammar as xgr + from xgrammar.base import _core as xgr_core +except ImportError: + pass + +if TYPE_CHECKING: + from transformers import PreTrainedTokenizer + + from vllm.config import ModelConfig + from vllm.sampling_params import GuidedDecodingParams + + +# TODO: passing batch size to max threads here +def get_local_xgrammar_guided_decoding_logits_processor( + guided_params: GuidedDecodingParams, + tokenizer: PreTrainedTokenizer, + model_config: ModelConfig, + max_threads: int = 8): + config = GrammarConfig.from_guided_params(guided_params=guided_params, + model_config=model_config, + tokenizer=tokenizer, + max_threads=max_threads) + return XGrammarLogitsProcessor(config) + + +class TokenizerData(NamedTuple): + """Immutable container for cached tokenizer data.""" + encoded_vocab: list[str] + stop_token_ids: list[int] | None + backend_str: str + + +class TokenizerDataCache: + """Cache manager for tokenizer data to avoid repeated processing.""" + _cache: dict[int, TokenizerData] = {} + + @classmethod + def get_tokenizer_data(cls, + tokenizer: PreTrainedTokenizer) -> TokenizerData: + tokenizer_hash = hash(tokenizer) + + if tokenizer_hash not in cls._cache: + # Vendored from xgrammar logic since we cannot pickle the tokenizer + # https://github.com/mlc-ai/xgrammar/blob/d77c0a0173ef14779c918e3be7966ba852f7910f/python/xgrammar/tokenizer_info.py#L98 # noqa: E501 + try: + encoded_vocab = [ + token for token, _ in sorted(tokenizer.get_vocab().items(), + key=lambda x: x[1]) + ] + except AttributeError as e: + raise ValueError( + f"Cannot get the vocabulary of the tokenizer " + f"{type(tokenizer)}. The tokenizer should have a " + "get_vocab method.") from e + + stop_token_ids = None + backend_str = xgr.VocabType.RAW + if isinstance(tokenizer, PreTrainedTokenizerFast): + backend_str = tokenizer.backend_tokenizer.to_str() + if stop_token_ids is None and hasattr( + tokenizer, + "eos_token_id") and tokenizer.eos_token_id is not None: + stop_token_ids = [tokenizer.eos_token_id] + + cls._cache[tokenizer_hash] = TokenizerData( + encoded_vocab=encoded_vocab, + stop_token_ids=stop_token_ids, + backend_str=backend_str) + + return cls._cache[tokenizer_hash] + + +class GrammarCompilerCache: + """ + Cache for GrammarCompiler instances based on tokenizer. + + This cache reduces the overhead of creating new compiler instances when + using the same tokenizer configuration. + """ + _cache: dict[str, xgr.GrammarCompiler] = {} + + @classmethod + def get_compiler(cls, config: GrammarConfig) -> xgr.GrammarCompiler: + cache_key = str(config.tokenizer_hash) + + if cache_key not in cls._cache: + assert config.encoded_vocab is not None + tokenizer_info = xgr.TokenizerInfo._create_from_handle( + xgr_core.TokenizerInfo.from_huggingface( + config.encoded_vocab, config.backend_str, + config.vocab_size, config.stop_token_ids)) + cls._cache[cache_key] = xgr.GrammarCompiler( + tokenizer_info, max_threads=config.max_threads) + + return cls._cache[cache_key] + + +@dataclass +class GrammarConfig: + """Serializable configuration for grammar compilation""" + tokenizer_hash: int + vocab_size: int + json_str: str | None = None + grammar_str: str | None = None + json_object: bool | None = None + max_threads: int = 8 + # Only populated if tokenizer_hash not in cache + encoded_vocab: list[str] | None = None + stop_token_ids: list[int] | None = None + backend_str: str | None = None + + @classmethod + def from_guided_params(cls, + guided_params: GuidedDecodingParams, + model_config: ModelConfig, + tokenizer: PreTrainedTokenizer, + max_threads: int = 8) -> GrammarConfig: + + tokenizer_hash = hash(tokenizer) + # Only get tokenizer data if not already cached + if tokenizer_hash in TokenizerDataCache._cache: + encoded_vocab = None + stop_token_ids = None + backend_str = None + else: + tokenizer_data = TokenizerDataCache.get_tokenizer_data(tokenizer) + encoded_vocab = tokenizer_data.encoded_vocab + stop_token_ids = tokenizer_data.stop_token_ids + backend_str = tokenizer_data.backend_str + + if guided_params.json: + if not isinstance(guided_params.json, str): + json_str = json.dumps(guided_params.json) + else: + json_str = guided_params.json + return cls(json_str=json_str, + vocab_size=model_config.hf_config.vocab_size, + encoded_vocab=encoded_vocab, + stop_token_ids=stop_token_ids, + backend_str=backend_str, + tokenizer_hash=tokenizer_hash, + max_threads=max_threads) + elif guided_params.grammar: + return cls(grammar_str=guided_params.grammar, + vocab_size=model_config.hf_config.vocab_size, + encoded_vocab=encoded_vocab, + stop_token_ids=stop_token_ids, + backend_str=backend_str, + tokenizer_hash=tokenizer_hash, + max_threads=max_threads) + elif guided_params.json_object: + return cls(json_object=True, + vocab_size=model_config.hf_config.vocab_size, + encoded_vocab=encoded_vocab, + stop_token_ids=stop_token_ids, + backend_str=backend_str, + tokenizer_hash=tokenizer_hash, + max_threads=max_threads) + else: + raise ValueError( + "Currently only support JSON and EBNF grammar mode for xgrammar" + ) + + +@dataclass +class XGrammarLogitsProcessor: + """Wrapper class to support pickle protocol""" + config: GrammarConfig + + ctx: xgr.CompiledGrammar | None = None + token_bitmask: torch.Tensor = None # type: ignore[assignment] + matchers: list[xgr.GrammarMatcher] = field(default_factory=list) + batch_size: int = field(default=1) + prefilled: bool = field(default=False) + + def __getstate__(self) -> dict[str, Any]: + return {'config': self.config} + + def __setstate__(self, state: dict[str, Any]): + self.config = state['config'] + + self.ctx = None + self.matchers = [] + self.batch_size = 1 + self.token_bitmask = None # type: ignore[assignment] + self.prefilled = False + + def _ensure_ctx(self): + """Lazily initialize the processor in the worker process""" + if self.ctx is None: + compiler = GrammarCompilerCache.get_compiler(self.config) + if self.config.json_str is not None: + self.ctx = compiler.compile_json_schema(self.config.json_str) + elif self.config.grammar_str is not None: + self.ctx = compiler.compile_grammar(self.config.grammar_str) + elif self.config.json_object: + self.ctx = compiler.compile_builtin_json_grammar() + else: + raise ValueError( + "Invalid configuration for xgrammar logits processor") + + def __call__(self, input_ids: list[int], + scores: torch.Tensor) -> torch.Tensor: + if self.ctx is None: + self._ensure_ctx() + + if len(self.matchers) == 0: + self.matchers = [ + xgr.GrammarMatcher(self.ctx) for _ in range(self.batch_size) + ] + self.token_bitmask = xgr.allocate_token_bitmask( + self.batch_size, self.config.vocab_size) + + if not self.prefilled: + # Have not sampled a token yet + self.prefilled = True + else: + for i, matcher in enumerate(self.matchers): + if not matcher.is_terminated(): + sampled_token = input_ids[-1] + assert self.matchers[i].accept_token(sampled_token) + + for i, matcher in enumerate(self.matchers): + if not matcher.is_terminated(): + # @ubospica: ideally, fill_next_token_bitmask should be + # parallelized with model decoding + # See https://github.com/vllm-project/vllm/pull/10785/files#r1864278303 + matcher.fill_next_token_bitmask(self.token_bitmask, i) + + # token_bitmask is a CPU tensor for use with accept_token and + # fill_next_token_bitmask so we move it to the device of scores + device_type = scores.device.type + if device_type != "cuda": + scores = scores.to("cpu") + xgr.apply_token_bitmask_inplace(scores, + self.token_bitmask.to(scores.device)) + if device_type != "cuda": + scores = scores.to(device_type) + + return scores From f6084f63248a89df52bed9d9c24d6604f87e51f3 Mon Sep 17 00:00:00 2001 From: Yang Zheng <50227060+zhengy001@users.noreply.github.com> Date: Tue, 3 Dec 2024 17:01:39 +0800 Subject: [PATCH 014/733] [Speculative Decoding] Move indices to device before filtering output (#10850) Co-authored-by: Yang Zheng(SW)(Alex) --- vllm/spec_decode/multi_step_worker.py | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/vllm/spec_decode/multi_step_worker.py b/vllm/spec_decode/multi_step_worker.py index d249b37c780e4..676ac5eb3609d 100644 --- a/vllm/spec_decode/multi_step_worker.py +++ b/vllm/spec_decode/multi_step_worker.py @@ -120,6 +120,9 @@ def sampler_output( indices_of_seq_with_bonus_tokens) model_outputs.append(model_output) + # move indices to device to avoid stream sync + indices_of_seq_with_bonus_tokens = torch.tensor( + indices_of_seq_with_bonus_tokens, device=self.device) filtered_model_outputs = self._filter_model_output( model_outputs, indices_of_seq_with_bonus_tokens) return filtered_model_outputs, True @@ -189,7 +192,7 @@ def _expand_execute_model_request( @staticmethod def _filter_model_output( expanded_batch_outputs: List[SamplerOutput], - output_indices_to_retain: List[int]) -> List[SamplerOutput]: + output_indices_to_retain: torch.Tensor) -> List[SamplerOutput]: """ Filters the model output to include only the specified sequence outputs. This method contracts the expanded batch output from the @@ -199,8 +202,8 @@ def _filter_model_output( Args: expanded_batch_output (List[SamplerOutput]): The expanded output batch from the model. - output_indices_to_retain (List[int]): Indices of the model outputs - to retain. + output_indices_to_retain (torch.Tensor): Indices of the model + outputs to retain. Returns: List[SamplerOutput]: A list containing the filtered model From 3bc94cab695387eb16be90b6368029f56ce5dbc7 Mon Sep 17 00:00:00 2001 From: Alexander Matveev <59768536+alexm-neuralmagic@users.noreply.github.com> Date: Tue, 3 Dec 2024 05:33:10 -0500 Subject: [PATCH 015/733] [V1] VLM - Run the mm_mapper preprocessor in the frontend process (#10640) Signed-off-by: Roger Wang Co-authored-by: Michael Goin Co-authored-by: Roger Wang --- tests/v1/engine/test_engine_core.py | 3 +-- tests/v1/engine/test_engine_core_client.py | 3 +-- vllm/inputs/data.py | 24 +++++++++++++++++++++- vllm/v1/engine/__init__.py | 7 +++---- vllm/v1/engine/core.py | 7 ------- vllm/v1/engine/processor.py | 13 ++++++++++-- vllm/v1/request.py | 15 +++++++------- 7 files changed, 47 insertions(+), 25 deletions(-) diff --git a/tests/v1/engine/test_engine_core.py b/tests/v1/engine/test_engine_core.py index bd11ff1877064..fef44ac29c41f 100644 --- a/tests/v1/engine/test_engine_core.py +++ b/tests/v1/engine/test_engine_core.py @@ -27,9 +27,8 @@ def make_request() -> EngineCoreRequest: request_id=uuid.uuid4(), prompt=PROMPT, prompt_token_ids=PROMPT_TOKENS, - mm_data=None, + mm_inputs=None, mm_placeholders=None, - mm_processor_kwargs=None, sampling_params=SamplingParams(), eos_token_id=None, arrival_time=time.time(), diff --git a/tests/v1/engine/test_engine_core_client.py b/tests/v1/engine/test_engine_core_client.py index 582192196aaf9..4e003a25e91d2 100644 --- a/tests/v1/engine/test_engine_core_client.py +++ b/tests/v1/engine/test_engine_core_client.py @@ -29,9 +29,8 @@ def make_request(params: SamplingParams) -> EngineCoreRequest: request_id=str(uuid.uuid4()), prompt=PROMPT, prompt_token_ids=PROMPT_TOKENS, - mm_data=None, + mm_inputs=None, mm_placeholders=None, - mm_processor_kwargs=None, sampling_params=params, eos_token_id=None, arrival_time=time.time(), diff --git a/vllm/inputs/data.py b/vllm/inputs/data.py index e8fc78f1a66f6..85aaaa776907f 100644 --- a/vllm/inputs/data.py +++ b/vllm/inputs/data.py @@ -7,7 +7,8 @@ from typing_extensions import NotRequired, TypedDict, TypeVar, assert_never if TYPE_CHECKING: - from vllm.multimodal import MultiModalDataDict, MultiModalPlaceholderDict + from vllm.multimodal import (MultiModalDataDict, MultiModalKwargs, + MultiModalPlaceholderDict) from vllm.multimodal.inputs import MultiModalInputsV2 @@ -150,6 +151,12 @@ class TokenInputs(TypedDict): if the model supports it. """ + multi_modal_inputs: NotRequired["MultiModalKwargs"] + """ + Optional multi-modal inputs to pass to the model, + if the model supports it. + """ + multi_modal_placeholders: NotRequired["MultiModalPlaceholderDict"] """ Placeholder ranges for the multi-modal data. @@ -169,6 +176,7 @@ def token_inputs( token_type_ids: Optional[List[int]] = None, prompt: Optional[str] = None, multi_modal_data: Optional["MultiModalDataDict"] = None, + multi_modal_inputs: Optional["MultiModalKwargs"] = None, multi_modal_placeholders: Optional["MultiModalPlaceholderDict"] = None, mm_processor_kwargs: Optional[Dict[str, Any]] = None, ) -> TokenInputs: @@ -181,6 +189,8 @@ def token_inputs( inputs["token_type_ids"] = token_type_ids if multi_modal_data is not None: inputs["multi_modal_data"] = multi_modal_data + if multi_modal_inputs is not None: + inputs["multi_modal_inputs"] = multi_modal_inputs if multi_modal_placeholders is not None: inputs["multi_modal_placeholders"] = multi_modal_placeholders if mm_processor_kwargs is not None: @@ -273,6 +283,18 @@ def multi_modal_data(self) -> "MultiModalDataDict": assert_never(inputs) + @cached_property + def multi_modal_inputs(self) -> Union[Dict, "MultiModalKwargs"]: + inputs = self.inputs + + if inputs["type"] == "token": + return inputs.get("multi_modal_inputs", {}) + + if inputs["type"] == "multimodal": + return inputs.get("mm_kwargs", {}) + + assert_never(inputs) + @cached_property def multi_modal_placeholders(self) -> "MultiModalPlaceholderDict": inputs = self.inputs diff --git a/vllm/v1/engine/__init__.py b/vllm/v1/engine/__init__.py index 967124fd850ea..3cf0e610ae7af 100644 --- a/vllm/v1/engine/__init__.py +++ b/vllm/v1/engine/__init__.py @@ -1,11 +1,11 @@ import enum from dataclasses import dataclass -from typing import Any, Dict, List, Optional, Union +from typing import List, Optional, Union import msgspec from vllm.lora.request import LoRARequest -from vllm.multimodal import MultiModalDataDict, MultiModalPlaceholderDict +from vllm.multimodal import MultiModalKwargs, MultiModalPlaceholderDict from vllm.sampling_params import RequestOutputKind, SamplingParams @@ -35,9 +35,8 @@ class EngineCoreRequest: # always be tokenized? prompt: Optional[str] prompt_token_ids: List[int] - mm_data: Optional[MultiModalDataDict] + mm_inputs: Optional[List[MultiModalKwargs]] mm_placeholders: Optional[MultiModalPlaceholderDict] - mm_processor_kwargs: Optional[Dict[str, Any]] sampling_params: SamplingParams eos_token_id: Optional[int] arrival_time: float diff --git a/vllm/v1/engine/core.py b/vllm/v1/engine/core.py index 34f99dd30ef2e..397a33eed3896 100644 --- a/vllm/v1/engine/core.py +++ b/vllm/v1/engine/core.py @@ -84,14 +84,7 @@ def _initialize_kv_caches(self, def add_request(self, request: EngineCoreRequest): """Add request to the scheduler.""" - req = Request.from_engine_core_request(request) - # FIXME(woosuk): The input mapping (e.g., PIL images to tensors) may - # take 10-50 ms, which can cause a spike in the latency. We should - # consider moving this to a separate thread. - if req.mm_data: - req.mm_inputs = self.mm_input_mapper.process_inputs( - req.mm_data, req.mm_processor_kwargs) self.scheduler.add_request(req) def abort_requests(self, request_ids: List[str]): diff --git a/vllm/v1/engine/processor.py b/vllm/v1/engine/processor.py index 5c1577190c75a..7a1ea2530abda 100644 --- a/vllm/v1/engine/processor.py +++ b/vllm/v1/engine/processor.py @@ -14,6 +14,7 @@ from vllm.transformers_utils.config import try_get_generation_config from vllm.transformers_utils.tokenizer_group import BaseTokenizerGroup from vllm.v1.engine import DetokenizerRequest, EngineCoreRequest +from vllm.v1.engine.mm_input_mapper import MMInputMapper class Processor: @@ -39,6 +40,9 @@ def __init__( self.input_processor = input_registry.create_input_processor( model_config) + # Multi-modal (huggingface) input mapper + self.mm_input_mapper = MMInputMapper(model_config) + # TODO: run in an ThreadpoolExecutor or BackgroundProcess. # This ideally should releases the GIL, so we should not block the # asyncio loop while this is running. @@ -96,6 +100,12 @@ def process_inputs( sampling_params.update_from_generation_config( self.generation_config_fields, eos_token_id) + # Preprocess multi-modal data + mm_inputs = self.mm_input_mapper.process_inputs( + decoder_inputs.multi_modal_data, + decoder_inputs.mm_processor_kwargs) if len( + decoder_inputs.multi_modal_data) > 0 else None + # Make Request for Detokenizer. detokenizer_request = DetokenizerRequest( request_id, @@ -113,9 +123,8 @@ def process_inputs( request_id, decoder_inputs.prompt, decoder_inputs.prompt_token_ids, - decoder_inputs.multi_modal_data, + mm_inputs, decoder_inputs.multi_modal_placeholders, - decoder_inputs.mm_processor_kwargs, sampling_params, eos_token_id, arrival_time, diff --git a/vllm/v1/request.py b/vllm/v1/request.py index 51fb4003e5fe0..6bc1e4d5c769f 100644 --- a/vllm/v1/request.py +++ b/vllm/v1/request.py @@ -45,9 +45,6 @@ def __init__( self._all_token_ids: List[int] = self.prompt_token_ids.copy() self.num_computed_tokens = 0 - # Raw multimodal data before the mm input mapper (e.g., PIL images). - self.mm_data = self.inputs.multi_modal_data - self.mm_processor_kwargs = self.inputs.mm_processor_kwargs mm_positions = self.inputs.multi_modal_placeholders if mm_positions: # FIXME(woosuk): Support other modalities. @@ -55,7 +52,10 @@ def __init__( else: self.mm_positions = [] # Output of the mm input mapper (e.g., image tensors). - self.mm_inputs: List[MultiModalKwargs] = [] + if self.inputs.multi_modal_inputs: + self.mm_inputs = self.inputs.multi_modal_inputs + else: + self.mm_inputs: List[MultiModalKwargs] = [] @classmethod def from_engine_core_request(cls, request: EngineCoreRequest) -> "Request": @@ -64,9 +64,10 @@ def from_engine_core_request(cls, request: EngineCoreRequest) -> "Request": inputs=token_inputs( prompt_token_ids=request.prompt_token_ids, prompt=request.prompt, - multi_modal_data=request.mm_data, + multi_modal_data=None, + multi_modal_inputs=request.mm_inputs, multi_modal_placeholders=request.mm_placeholders, - mm_processor_kwargs=request.mm_processor_kwargs, + mm_processor_kwargs=None, ), sampling_params=request.sampling_params, eos_token_id=request.eos_token_id, @@ -110,7 +111,7 @@ def get_finished_reason(self) -> Union[str, None]: return RequestStatus.get_finished_reason(self.status) def has_encoder_inputs(self) -> bool: - return len(self.mm_data) > 0 + return len(self.mm_inputs) > 0 @property def num_encoder_inputs(self) -> int: From 2f2cdc745a7a569637c58cfd5f6789c1d0741c84 Mon Sep 17 00:00:00 2001 From: Yan Ma Date: Wed, 4 Dec 2024 01:16:31 +0800 Subject: [PATCH 016/733] [MISC][XPU] quick fix for XPU CI (#10859) Signed-off-by: yan ma --- .buildkite/run-xpu-test.sh | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/.buildkite/run-xpu-test.sh b/.buildkite/run-xpu-test.sh index 50f58f7d70430..e0a12afbe7320 100644 --- a/.buildkite/run-xpu-test.sh +++ b/.buildkite/run-xpu-test.sh @@ -13,6 +13,7 @@ trap remove_docker_container EXIT remove_docker_container # Run the image and test offline inference/tensor parallel -docker run -it -d --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path xpu-test /bin/bash -docker exec xpu-test bash -c "python3 examples/offline_inference.py" -docker exec xpu-test bash -c "python3 examples/offline_inference_cli.py -tp 2" +docker run --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path --entrypoint="" xpu-test sh -c ' + python3 examples/offline_inference.py + python3 examples/offline_inference_cli.py -tp 2 +' From 7090c27bb2cb0d9c4e0acd644e484291df3aff2a Mon Sep 17 00:00:00 2001 From: Michael Goin Date: Tue, 3 Dec 2024 13:32:21 -0500 Subject: [PATCH 017/733] [Bugfix] Only require XGrammar on x86 (#10865) Signed-off-by: mgoin --- requirements-common.txt | 2 +- .../guided_decoding/__init__.py | 7 +++++ vllm/platforms/__init__.py | 4 +-- vllm/platforms/interface.py | 26 +++++++++++++++++++ 4 files changed, 36 insertions(+), 3 deletions(-) diff --git a/requirements-common.txt b/requirements-common.txt index 818f72e14be96..72fb020a82c4e 100644 --- a/requirements-common.txt +++ b/requirements-common.txt @@ -19,7 +19,7 @@ prometheus-fastapi-instrumentator >= 7.0.0 tiktoken >= 0.6.0 # Required for DBRX tokenizer lm-format-enforcer >= 0.10.9, < 0.11 outlines >= 0.0.43, < 0.1 -xgrammar +xgrammar >= 0.1.5; platform_machine == "x86_64" typing_extensions >= 4.10 filelock >= 3.16.1 # need to contain https://github.com/tox-dev/filelock/pull/317 partial-json-parser # used for parsing partial JSON outputs diff --git a/vllm/model_executor/guided_decoding/__init__.py b/vllm/model_executor/guided_decoding/__init__.py index 23c31fcfd7f05..3340bad38ab73 100644 --- a/vllm/model_executor/guided_decoding/__init__.py +++ b/vllm/model_executor/guided_decoding/__init__.py @@ -3,6 +3,7 @@ from typing import TYPE_CHECKING from vllm.logger import init_logger +from vllm.platforms import CpuArchEnum, current_platform if TYPE_CHECKING: from transformers import PreTrainedTokenizer @@ -25,6 +26,12 @@ def maybe_backend_fallback( guided_params.backend = "xgrammar" if guided_params.backend == "xgrammar": + # xgrammar only has x86 wheels for linux, fallback to outlines + if current_platform.get_cpu_architecture() is not CpuArchEnum.X86: + logger.warning("xgrammar is only supported on x86 CPUs. " + "Falling back to use outlines instead.") + guided_params.backend = "outlines" + # xgrammar doesn't support regex or choice, fallback to outlines if guided_params.regex is not None or guided_params.choice is not None: logger.warning( diff --git a/vllm/platforms/__init__.py b/vllm/platforms/__init__.py index 7cb8ac4b0a1e0..419237c252ffd 100644 --- a/vllm/platforms/__init__.py +++ b/vllm/platforms/__init__.py @@ -1,5 +1,5 @@ from .interface import _Backend # noqa: F401 -from .interface import Platform, PlatformEnum, UnspecifiedPlatform +from .interface import CpuArchEnum, Platform, PlatformEnum, UnspecifiedPlatform current_platform: Platform @@ -120,4 +120,4 @@ def cuda_is_jetson() -> bool: else: current_platform = UnspecifiedPlatform() -__all__ = ['Platform', 'PlatformEnum', 'current_platform'] +__all__ = ['Platform', 'PlatformEnum', 'current_platform', 'CpuArchEnum'] diff --git a/vllm/platforms/interface.py b/vllm/platforms/interface.py index eac2b413f9271..0be7df7941b8b 100644 --- a/vllm/platforms/interface.py +++ b/vllm/platforms/interface.py @@ -1,4 +1,5 @@ import enum +import platform import random from typing import TYPE_CHECKING, NamedTuple, Optional, Tuple, Union @@ -37,6 +38,14 @@ class PlatformEnum(enum.Enum): UNSPECIFIED = enum.auto() +class CpuArchEnum(enum.Enum): + X86 = enum.auto() + ARM = enum.auto() + POWERPC = enum.auto() + OTHER = enum.auto() + UNKNOWN = enum.auto() + + class DeviceCapability(NamedTuple): major: int minor: int @@ -184,6 +193,23 @@ def verify_quantization(cls, quant: str) -> None: f"{quant} quantization is currently not supported in " f"{cls.device_name}.") + @classmethod + def get_cpu_architecture(cls) -> CpuArchEnum: + """ + Determine the CPU architecture of the current system. + Returns CpuArchEnum indicating the architecture type. + """ + machine = platform.machine().lower() + + if machine in ("x86_64", "amd64", "i386", "i686"): + return CpuArchEnum.X86 + elif machine.startswith("arm") or machine.startswith("aarch"): + return CpuArchEnum.ARM + elif machine.startswith("ppc"): + return CpuArchEnum.POWERPC + + return CpuArchEnum.OTHER if machine else CpuArchEnum.UNKNOWN + class UnspecifiedPlatform(Platform): _enum = PlatformEnum.UNSPECIFIED From 7c32b6861e20b6521959b6cc1ce7ccc84614974d Mon Sep 17 00:00:00 2001 From: tomeras91 <57313761+tomeras91@users.noreply.github.com> Date: Tue, 3 Dec 2024 21:13:31 +0200 Subject: [PATCH 018/733] [Frontend] correctly record prefill and decode time metrics (#10853) Signed-off-by: Tomer Asida --- vllm/engine/metrics.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/vllm/engine/metrics.py b/vllm/engine/metrics.py index 4869557ba9b44..a5ae21c3966a7 100644 --- a/vllm/engine/metrics.py +++ b/vllm/engine/metrics.py @@ -599,9 +599,9 @@ def _log_prometheus(self, stats: Stats) -> None: stats.time_queue_requests) self._log_histogram(self.metrics.histogram_inference_time_request, stats.time_inference_requests) - self._log_histogram(self.metrics.histogram_decode_time_request, - stats.time_prefill_requests) self._log_histogram(self.metrics.histogram_prefill_time_request, + stats.time_prefill_requests) + self._log_histogram(self.metrics.histogram_decode_time_request, stats.time_decode_requests) self._log_histogram(self.metrics.histogram_time_in_queue_request, stats.time_in_queue_requests) From a061fe601eb165f11a4808b3ab1ac57d99e0d84e Mon Sep 17 00:00:00 2001 From: Gregory Shtrasberg <156009573+gshtras@users.noreply.github.com> Date: Tue, 3 Dec 2024 15:47:55 -0500 Subject: [PATCH 019/733] [Build][Bugfix] Using the correct type hint (#10866) Signed-off-by: Gregory Shtrasberg --- vllm/utils.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/vllm/utils.py b/vllm/utils.py index 0165a22582e7b..07bf82e24cbe6 100644 --- a/vllm/utils.py +++ b/vllm/utils.py @@ -1540,9 +1540,9 @@ def __len__(self): return len(self._factory) -class ClassRegistry(UserDict[type[T], _V]): +class ClassRegistry(UserDict[Type[T], _V]): - def __getitem__(self, key: type[T]) -> _V: + def __getitem__(self, key: Type[T]) -> _V: for cls in key.mro(): if cls in self.data: return self.data[cls] From 381ac93bb5a41347a025367bc58119cb45357095 Mon Sep 17 00:00:00 2001 From: "Chendi.Xue" Date: Tue, 3 Dec 2024 18:21:06 -0600 Subject: [PATCH 020/733] [Benchmark] Benchmark structured output with datasets (#10557) Signed-off-by: Aaron Pham Signed-off-by: Chendi Xue Co-authored-by: Aaron Pham --- benchmarks/benchmark_guided.py | 494 ++++++++++++++++++ .../structured_schema_1.json | 113 ++++ 2 files changed, 607 insertions(+) create mode 100644 benchmarks/benchmark_guided.py create mode 100644 benchmarks/structured_schemas/structured_schema_1.json diff --git a/benchmarks/benchmark_guided.py b/benchmarks/benchmark_guided.py new file mode 100644 index 0000000000000..1a0e62598bfcb --- /dev/null +++ b/benchmarks/benchmark_guided.py @@ -0,0 +1,494 @@ +"""Benchmark guided decoding throughput.""" +import argparse +import dataclasses +import json +import os +import random +import time +from typing import List + +import datasets +import pandas as pd +import uvloop +from transformers import AutoTokenizer, PreTrainedTokenizerBase + +from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs +from vllm.entrypoints.openai.api_server import ( + build_async_engine_client_from_engine_args) +from vllm.sampling_params import GuidedDecodingParams +from vllm.utils import FlexibleArgumentParser, merge_async_iterators + + +@dataclasses.dataclass +class SampleRequest: + """A class representing a single inference request for benchmarking. + + Attributes: + prompt: The input text prompt for the model. + multi_modal_data: Optional dictionary containing multi-modal data (e.g. + images). + prompt_len: The length of the prompt in tokens. + expected_output_len: The expected length of the output in tokens. + """ + prompt: str + prompt_len: int + expected_output_len: int + schema: dict + structure_type: str = 'json' + completion: str = None + + +def run_vllm(requests: List[SampleRequest], + engine_args: EngineArgs, + n: int, + guided_decoding_rate: float = 1.0, + warmup: bool = False) -> float: + from vllm import LLM, SamplingParams + llm = LLM(**vars(engine_args)) + + # Add the requests to the engine. + prompts: List[str] = [] + sampling_params: List[SamplingParams] = [] + # create a list containing random selected true or false + guided_decoding_req_idx = random.sample( + range(len(requests)), int(len(requests) * guided_decoding_rate)) + + if warmup: + print(">>>>> Running warmup prompt, for the first 5") + # We setup the first 5 requests to warmup FSM + # if using xgrammar dataset, we will skip warmup + warmup_requests = requests[:5] + for i, request in enumerate(warmup_requests): + prompts.append(request.prompt) + sampling_params.append( + SamplingParams( + n=n, + temperature=1.0, + top_p=1.0, + ignore_eos=True, + max_tokens=request.expected_output_len, + guided_decoding=GuidedDecodingParams(json=request.schema) + if guided_decoding_rate > 0 else None, + )) + llm.generate(prompts, sampling_params, use_tqdm=False) + + print(">>>>> Benchmark started...") + prompts = [] + sampling_params = [] + for i, request in enumerate(requests): + prompts.append(request.prompt) + sampling_params.append( + SamplingParams( + n=n, + temperature=1.0, + top_p=1.0, + ignore_eos=True, + max_tokens=request.expected_output_len, + guided_decoding=GuidedDecodingParams( + **{request.structure_type: request.schema}) + if i in guided_decoding_req_idx else None, + )) + + start = time.perf_counter() + outputs = llm.generate(prompts, sampling_params, use_tqdm=False) + ret = [] + for output, request in zip(outputs, requests): + generated_text = output.outputs[0].text + ret.append({ + "generated": generated_text, + "expected": request.completion + }) + end = time.perf_counter() + return end - start, ret + + +async def run_vllm_async( + requests: List[SampleRequest], + engine_args: AsyncEngineArgs, + n: int, + guided_decoding_rate: float = 1.0, + warmup: bool = False, + disable_frontend_multiprocessing: bool = False) -> float: + from vllm import SamplingParams + + async with build_async_engine_client_from_engine_args( + engine_args, disable_frontend_multiprocessing) as llm: + + # Add the requests to the engine. + prompts: List[str] = [] + sampling_params: List[SamplingParams] = [] + guided_decoding_req_idx = random.sample( + range(len(requests)), int(len(requests) * guided_decoding_rate)) + + if warmup: + print(">>>>>> Running warmup prompt, for the first 5") + # We setup the first 5 requests to warmup FSM + # if using xgrammar dataset, we will skip warmup + warmup_requests = requests[:5] + for i, request in enumerate(warmup_requests): + prompts.append(request.prompt) + sampling_params.append( + SamplingParams( + n=n, + temperature=1.0, + top_p=1.0, + ignore_eos=True, + max_tokens=request.expected_output_len, + guided_decoding=GuidedDecodingParams( + json=request.schema) + if guided_decoding_rate > 0 else None, + )) + generators = [] + for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)): + generator = llm.generate(prompt, sp, request_id=f"test{i}") + generators.append(generator) + all_gens = merge_async_iterators(*generators) + async for i, res in all_gens: + pass + + print(">>>>> Benchmark started...") + prompts = [] + sampling_params = [] + for i, request in enumerate(requests): + prompts.append(request.prompt) + sampling_params.append( + SamplingParams( + n=n, + temperature=1.0, + top_p=1.0, + ignore_eos=True, + max_tokens=request.expected_output_len, + guided_decoding=GuidedDecodingParams(json=request.schema) + if i in guided_decoding_req_idx else None, + )) + + generators = [] + start_time = [] + latencies = [] + start = time.perf_counter() + for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)): + generator = llm.generate(prompt, sp, request_id=f"test{i}") + generators.append(generator) + start_time.append(time.perf_counter()) + latencies.append([]) + all_gens = merge_async_iterators(*generators) + generated_texts = [''] * len(requests) + async for i, res in all_gens: + generated_texts[i] = res.outputs[0].text + lat = time.perf_counter() - start_time[i] + latencies[i].append(lat) + ret = [{ + 'generated': gt, + 'expected': req.completion + } for gt, req in zip(generated_texts, requests)] + end = time.perf_counter() + first_latency = pd.Series([lat[0] * 1000 for lat in latencies]) + next_latency = pd.Series([(lat[-1] - lat[0]) / len(lat[1:]) * 1000 + for lat in latencies]) + return end - start, ret, (first_latency, next_latency) + + +def sample_requests(tokenizer: PreTrainedTokenizerBase, + args: argparse.Namespace) -> List[SampleRequest]: + if args.dataset == 'json': + if args.json_schema_path is None: + dir_path = os.path.dirname(os.path.realpath(__file__)) + args.json_schema_path = os.path.join(dir_path, + "structured_schemas", + "structured_schema_1.json") + with open(args.json_schema_path) as f: + schema = json.load(f) + prompt = f"Generate an example of a user profile given the following schema: {json.dumps(schema)}" # noqa: E501 + input_len = len(tokenizer(prompt).input_ids) + print(f"Input length of the prompt: {input_len} tokens") + requests = [ + SampleRequest(prompt=prompt, + prompt_len=input_len, + expected_output_len=args.output_len, + schema=schema, + structure_type=args.structure_type) + for _ in range(args.num_prompts) + ] + + elif args.dataset == "grammar": + schema = """ + ?start: select_statement + + ?select_statement: "SELECT " column_list " FROM " table_name + + ?column_list: column_name ("," column_name)* + + ?table_name: identifier + + ?column_name: identifier + + ?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/ + """ + prompt = "Generate an SQL query to show the 'username' \ + and 'email' from the 'users' table." + + input_len = len(tokenizer(prompt).input_ids) + print(f"Input length of the prompt: {input_len} tokens") + requests = [ + SampleRequest(prompt=prompt, + prompt_len=input_len, + expected_output_len=args.output_len, + schema=schema, + structure_type=args.structure_type) + for _ in range(args.num_prompts) + ] + + elif args.dataset == "regex": + regex = r"\w+@\w+\.com\n" + args.regex = regex + prompt = "Generate an email address for Alan Turing, \ + who works in Enigma. End in .com and new line. \ + Example result: alan.turing@enigma.com\n" + + input_len = len(tokenizer(prompt).input_ids) + print(f"Input length of the prompt: {input_len} tokens") + requests = [ + SampleRequest(prompt=prompt, + prompt_len=input_len, + expected_output_len=args.output_len, + schema=regex, + structure_type=args.structure_type) + for _ in range(args.num_prompts) + ] + + elif args.dataset == "choice": + choice = ["Positive", "Negative"] + args.choice = choice + prompt = "Classify this sentiment: vLLM is wonderful!" + input_len = len(tokenizer(prompt).input_ids) + print(f"Input length of the prompt: {input_len} tokens") + requests = [ + SampleRequest(prompt=prompt, + prompt_len=input_len, + expected_output_len=args.output_len, + schema=choice, + structure_type=args.structure_type) + for _ in range(args.num_prompts) + ] + + elif args.dataset == "xgrammar_bench": + args.warmup = False + requests: List[SampleRequest] = [] + dataset = datasets.load_dataset("NousResearch/json-mode-eval", + split="train") + print(f"dataset has {len(dataset)} entries") + len_dataset = len(dataset) + for data_point_idx in range(args.num_prompts): + idx = data_point_idx + while idx >= len_dataset: + idx -= len_dataset + schema = dataset["schema"][idx] + prompt = tokenizer.apply_chat_template(dataset["prompt"][idx], + tokenize=False) + input_len = len(tokenizer(prompt).input_ids) + completion = dataset["completion"][idx] + + requests.append( + SampleRequest(prompt=prompt, + prompt_len=input_len, + expected_output_len=args.output_len, + schema=schema, + completion=completion)) + + return requests + + +def evaluate(ret, args): + + def _eval_correctness_json(expected, actual): + # extract json string from string using regex + import re + actual = actual.replace('\n', '').replace(' ', '').strip() + try: + actual = re.search(r'\{.*\}', actual).group() + actual = json.loads(actual) + except Exception: + return False + + return True + + def _eval_correctness_choice(expected, actual): + return actual in args.choice + + def _eval_correctness_regex(expected, actual): + import re + return re.match(args.regex, actual) is not None + + def _eval_correctness(expected, actual): + if args.structure_type == 'json': + return _eval_correctness_json(expected, actual) + elif args.structure_type == 'regex': + return _eval_correctness_regex(expected, actual) + elif args.structure_type == 'choice': + return _eval_correctness_choice(expected, actual) + else: + return None + + scores = [] + for res in ret: + score = _eval_correctness(res['expected'], res['generated']) + res['correctness'] = score + scores.append(score) + + not_none_scores = [score for score in scores if score is not None] + + return (sum(not_none_scores) / len(not_none_scores) * + 100) if len(not_none_scores) > 0 else None + + +def main(args: argparse.Namespace): + print(args) + random.seed(args.seed) + + # async engine is working for 'regex', 'choice' and 'grammar' + if args.dataset == 'grammar': + args.structure_type = 'grammar' + args.async_engine = False + elif args.dataset == 'regex': + args.structure_type = 'regex' + args.async_engine = False + elif args.dataset == 'choice': + args.structure_type = 'choice' + args.async_engine = False + else: + args.structure_type = 'json' + + if args.no_guided_decoding: + args.guided_decoding_ratio = 0 + if args.save_results: + result_file_name = f'{args.guided_decoding_ratio}guided' + result_file_name += f"_{args.model.split('/')[-1]}" + result_file_name += f"_{args.dataset}" + result_file_name += f"_{args.num_prompts}" + result_file_name += f"_out{args.output_len}" + result_file_name += f"_async{args.async_engine}" + result_file_name += f"_warmup{args.warmup}" + result_file_name += f"_chunkedprefill{args.enable_chunked_prefill}" + result_file_name += ".txt" + else: + result_file_name = None + + # Synthesize a prompt with the given input length. + tokenizer = AutoTokenizer.from_pretrained( + args.tokenizer, trust_remote_code=args.trust_remote_code) + requests = sample_requests(tokenizer, args) + + if args.async_engine: + engine_args = AsyncEngineArgs.from_cli_args(args) + elapsed_time, ret, (first_latency, next_latency) = uvloop.run( + run_vllm_async(requests, engine_args, args.n, + args.guided_decoding_ratio, args.warmup, + args.disable_frontend_multiprocessing)) + else: + engine_args = EngineArgs.from_cli_args(args) + elapsed_time, ret = run_vllm(requests, engine_args, args.n, + args.guided_decoding_ratio, args.warmup) + first_latency, next_latency = None, None + + score = evaluate(ret, args) + total_num_tokens = sum(request.prompt_len + request.expected_output_len + for request in requests) + total_output_tokens = sum(request.expected_output_len + for request in requests) + if first_latency is not None: + latency_breakdown = "\nFirst token latency(msecs):\n" + latency_breakdown += f"{first_latency.describe()}" + latency_breakdown += "\nNext token latency(msecs):\n" + latency_breakdown += f"{next_latency.describe()}" + print( + f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, " + f"{total_num_tokens / elapsed_time:.2f} total tokens/s, " + f"{total_output_tokens / elapsed_time:.2f} output tokens/s", + f"Correct rate is {score} %", + f"{latency_breakdown if first_latency is not None else ''}") + + # Output JSON results if specified + if args.output_json or result_file_name: + results = { + "elapsed_time": elapsed_time, + "num_requests": len(requests), + "total_num_tokens": total_num_tokens, + "total_output_tokens": total_output_tokens, + "requests_per_second": len(requests) / elapsed_time, + "tokens_per_second": f"{total_num_tokens / elapsed_time:.2f}", + "output_tokens_per_second": + f"{total_output_tokens / elapsed_time:.2f}", + "correct_rate(%)": score + } + results = {"outputs": ret, **results} + if first_latency is not None: + results["first_token_latency(msecs)"] = first_latency.describe( + ).to_dict() + results["next_token_latency(msecs)"] = next_latency.describe( + ).to_dict() + if args.output_json: + with open(args.output_json, "w") as f: + json.dump(results, f, indent=4) + elif result_file_name: + with open(result_file_name, "w") as f: + json.dump(results, f, indent=4) + + +if __name__ == "__main__": + parser = FlexibleArgumentParser(description="Benchmark guided decoding.") + parser = AsyncEngineArgs.add_cli_args(parser) + + parser.add_argument("--output-len", + type=int, + default=512, + help="Output length for each request. Overrides the " + "output length from the dataset.") + parser.add_argument( + "--dataset", + default='json', + choices=['json', 'grammar', 'regex', 'choice', 'xgrammar_bench']) + parser.add_argument("--json_schema_path", + type=str, + default=None, + help="Path to json schema.") + parser.add_argument("--n", + type=int, + default=1, + help="Number of generated sequences per prompt.") + parser.add_argument("--num-prompts", + type=int, + default=10, + help="Number of prompts to process.") + parser.add_argument( + '--output-json', + type=str, + default=None, + help='Path to save the throughput results in JSON format.') + parser.add_argument("--async-engine", + action='store_true', + default=False, + help="Use vLLM async engine rather than LLM class.") + parser.add_argument("--no-guided-decoding", + action='store_true', + default=False, + help="Whether to disable JSON decoding or not.") + parser.add_argument("--guided-decoding-ratio", + type=float, + default=1.0, + help="Ratio of Guided Decoding requests") + parser.add_argument("--disable-frontend-multiprocessing", + action='store_true', + default=False, + help="Disable decoupled async engine frontend.") + parser.add_argument("--warmup", + action="store_true", + default=False, + help="Run warmup prompts before benchmark.") + parser.add_argument("--save-results", + action="store_true", + default=False, + help="save output results.") + args = parser.parse_args() + if args.tokenizer is None: + args.tokenizer = args.model + main(args) diff --git a/benchmarks/structured_schemas/structured_schema_1.json b/benchmarks/structured_schemas/structured_schema_1.json new file mode 100644 index 0000000000000..6003698469e8d --- /dev/null +++ b/benchmarks/structured_schemas/structured_schema_1.json @@ -0,0 +1,113 @@ +{ + "$schema": + "https://json-schema.org/draft/2020-12/schema", + "title": + "User Profile", + "type": + "object", + "properties": { + "userId": { + "type": "string", + "description": "Unique identifier for the user." + }, + "personalInfo": { + "type": "object", + "properties": { + "firstName": { + "type": "string", + "description": "The user's first name." + }, + "lastName": { + "type": "string", + "description": "The user's last name." + }, + "age": { + "type": "integer", + "minimum": 0, + "description": "The user's age." + }, + "phoneNumbers": { + "type": + "array", + "items": { + "type": "object", + "properties": { + "type": { + "type": "string", + "enum": ["home", "work", "mobile"], + "description": "Type of phone number." + }, + "number": { + "type": "string", + "pattern": "^\\+?[1-9]\\d{1,14}$", + "description": "Phone number in E.164 format." + } + }, + "required": ["type", "number"] + }, + "description": + "List of phone numbers associated with the user." + } + }, + "required": ["firstName", "lastName"] + }, + "address": { + "type": "object", + "properties": { + "street": { + "type": "string", + "description": "Street address." + }, + "city": { + "type": "string", + "description": "City name." + }, + "state": { + "type": "string", + "description": "State or province." + }, + "postalCode": { + "type": "string", + "pattern": "^\\d{5}(-\\d{4})?$", + "description": "Postal code." + }, + "country": { + "type": "string", + "description": "Country name." + } + }, + "required": ["street", "city", "state", "postalCode", "country"] + }, + "preferences": { + "type": "object", + "properties": { + "newsletterSubscribed": { + "type": + "boolean", + "description": + "Indicates if the user is subscribed to the newsletter." + }, + "favoriteCategories": { + "type": "array", + "items": { + "type": "string" + }, + "description": "List of user's favorite categories." + } + }, + "required": ["newsletterSubscribed"] + }, + "accountStatus": { + "type": "string", + "enum": ["active", "inactive", "suspended"], + "description": "Current status of the user's account." + }, + "registrationDate": { + "type": "string", + "format": "date-time", + "description": "ISO 8601 formatted date-time of user registration." + } + }, + "required": + ["userId", "personalInfo", "address", "accountStatus", "registrationDate"] +} \ No newline at end of file From d2bd88b1226fc93ba42cdcba51daff5e026343f0 Mon Sep 17 00:00:00 2001 From: Tyler Michael Smith Date: Tue, 3 Dec 2024 22:23:21 -0500 Subject: [PATCH 021/733] [CI/Build] Replace mean with torch.all in test_pynccl.py (#10876) Signed-off-by: Tyler Michael Smith --- tests/distributed/test_pynccl.py | 25 +++++++++---------------- 1 file changed, 9 insertions(+), 16 deletions(-) diff --git a/tests/distributed/test_pynccl.py b/tests/distributed/test_pynccl.py index 4e27babf12cc3..3e9b0e10a11d8 100644 --- a/tests/distributed/test_pynccl.py +++ b/tests/distributed/test_pynccl.py @@ -62,8 +62,7 @@ def worker_fn(): with pynccl_comm.change_state(enable=True): tensor = pynccl_comm.all_reduce(tensor) torch.cuda.synchronize() - result = tensor.mean().cpu().item() - assert result == pynccl_comm.world_size + assert torch.all(tensor == pynccl_comm.world_size).cpu().item() @pytest.mark.skipif(torch.cuda.device_count() < 2, @@ -88,13 +87,11 @@ def multiple_allreduce_worker_fn(): tensor = pynccl_comm.all_reduce(tensor) tensor = pynccl_comm.all_reduce(tensor) torch.cuda.synchronize() - result = tensor.mean().cpu().item() - assert result == 4 + assert torch.all(tensor == 4).cpu().item() else: tensor = pynccl_comm.all_reduce(tensor) torch.cuda.synchronize() - result = tensor.mean().cpu().item() - assert result == 2 + assert torch.all(tensor == 2).cpu().item() @pytest.mark.skipif(torch.cuda.device_count() < 4, @@ -116,13 +113,11 @@ def multiple_allreduce_with_vllm_worker_fn(): tensor = tensor_model_parallel_all_reduce(tensor) tensor = tensor_model_parallel_all_reduce(tensor) torch.cuda.synchronize() - result = tensor.mean().cpu().item() - assert result == 4 + assert torch.all(tensor == 4).cpu().item() else: tensor = tensor_model_parallel_all_reduce(tensor) torch.cuda.synchronize() - result = tensor.mean().cpu().item() - assert result == 2 + assert torch.all(tensor == 2).cpu().item() @pytest.mark.skipif(torch.cuda.device_count() < 4, @@ -149,7 +144,7 @@ def worker_fn_with_cudagraph(): torch.cuda.synchronize() graph.replay() torch.cuda.synchronize() - assert a_out.mean().cpu().item() == pynccl_comm.world_size**1 + assert torch.all(a_out == pynccl_comm.world_size).cpu().item() @worker_fn_wrapper @@ -249,8 +244,7 @@ def send_recv_worker_fn(): src=(pynccl_comm.rank - 1) % pynccl_comm.world_size) torch.cuda.synchronize() - result = tensor.mean().cpu().item() - assert result == 1 + assert torch.all(tensor == 1).cpu().item() @pytest.mark.skipif(torch.cuda.device_count() < 2, @@ -289,11 +283,10 @@ def multiple_send_recv_worker_fn(): src=(pynccl_comm.rank - 1) % pynccl_comm.world_size) torch.cuda.synchronize() - result = tensor.mean().cpu().item() if torch.distributed.get_rank() in [0, 2]: - assert result == 1 + assert torch.all(tensor == 1).cpu().item() else: - assert result == 2 + assert torch.all(tensor == 2).cpu().item() @pytest.mark.skipif(torch.cuda.device_count() < 4, From b5b647b084de3a5a29d35ca527c9901f8e6a4e7e Mon Sep 17 00:00:00 2001 From: wangxiyuan Date: Wed, 4 Dec 2024 12:32:21 +0800 Subject: [PATCH 022/733] Drop ROCm load format check (#10767) Signed-off-by: wangxiyuan --- vllm/config.py | 23 +++-------------------- 1 file changed, 3 insertions(+), 20 deletions(-) diff --git a/vllm/config.py b/vllm/config.py index 971eb36d677b8..1cbab8ea30249 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -931,7 +931,9 @@ def __post_init__(self): if isinstance(model_loader_extra_config, str): self.model_loader_extra_config = json.loads( model_loader_extra_config) - self._verify_load_format() + if isinstance(self.load_format, str): + load_format = self.load_format.lower() + self.load_format = LoadFormat(load_format) if self.ignore_patterns is not None and len(self.ignore_patterns) > 0: logger.info( @@ -940,25 +942,6 @@ def __post_init__(self): else: self.ignore_patterns = ["original/**/*"] - def _verify_load_format(self) -> None: - if not isinstance(self.load_format, str): - return - - load_format = self.load_format.lower() - self.load_format = LoadFormat(load_format) - - rocm_not_supported_load_format: List[str] = [] - if current_platform.is_rocm( - ) and load_format in rocm_not_supported_load_format: - rocm_supported_load_format = [ - f for f in LoadFormat.__members__ - if (f not in rocm_not_supported_load_format) - ] - raise ValueError( - f"load format '{load_format}' is not supported in ROCm. " - f"Supported load formats are " - f"{rocm_supported_load_format}") - @dataclass class ParallelConfig: From fa2dea61df9bb3fa3dbd081f42f464c45e3db5b2 Mon Sep 17 00:00:00 2001 From: "Kevin H. Luu" Date: Tue, 3 Dec 2024 23:02:16 -0800 Subject: [PATCH 023/733] [ci/build] Change queue name for Release jobs (#10875) --- .buildkite/release-pipeline.yaml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.buildkite/release-pipeline.yaml b/.buildkite/release-pipeline.yaml index f78e360b7afd3..173b52f072502 100644 --- a/.buildkite/release-pipeline.yaml +++ b/.buildkite/release-pipeline.yaml @@ -1,7 +1,7 @@ steps: - label: "Build wheel - CUDA 12.1" agents: - queue: cpu_queue + queue: cpu_queue_postmerge commands: - "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain ." - "mkdir artifacts" @@ -18,7 +18,7 @@ steps: - label: "Build wheel - CUDA 11.8" # depends_on: block-build-cu118-wheel agents: - queue: cpu_queue + queue: cpu_queue_postmerge commands: - "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=11.8.0 --tag vllm-ci:build-image --target build --progress plain ." - "mkdir artifacts" From c9ca4fce3f48e27801e1bad03d4bc0b963567d24 Mon Sep 17 00:00:00 2001 From: "Kevin H. Luu" Date: Tue, 3 Dec 2024 23:02:40 -0800 Subject: [PATCH 024/733] [ci/build] Job to build and push release image (#10877) --- .buildkite/release-pipeline.yaml | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/.buildkite/release-pipeline.yaml b/.buildkite/release-pipeline.yaml index 173b52f072502..93e118fb3eab8 100644 --- a/.buildkite/release-pipeline.yaml +++ b/.buildkite/release-pipeline.yaml @@ -26,3 +26,16 @@ steps: - "bash .buildkite/upload-wheels.sh" env: DOCKER_BUILDKIT: "1" + + - block: "Build release image" + depends_on: ~ + key: block-release-image-build + + - label: "Build release image" + depends_on: block-release-image-build + agents: + queue: cpu_queue_postmerge + commands: + - "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7" + - "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain ." + - "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT" From 8db957ee3a8234574430d9e570e520501d8539e9 Mon Sep 17 00:00:00 2001 From: jianzheng <57654625+o2363286@users.noreply.github.com> Date: Wed, 4 Dec 2024 16:48:22 +0800 Subject: [PATCH 025/733] =?UTF-8?q?[bugfix]=20fixed=20parameter=20?= =?UTF-8?q?=E2=80=9Cn=E2=80=9D=20when=20set=20parameter=20=E2=80=9Cbestof?= =?UTF-8?q?=E2=80=9D=20>=201=20(#10854)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: jianzheng <57654625+o2363286@users.noreply.github.com> --- vllm/sampling_params.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/vllm/sampling_params.py b/vllm/sampling_params.py index 5c6df5aaf5446..fc77f3ca529b2 100644 --- a/vllm/sampling_params.py +++ b/vllm/sampling_params.py @@ -293,8 +293,9 @@ def __post_init__(self) -> None: raise ValueError( f"best_of must be greater than or equal to n, " f"got n={self.n} and best_of={self.best_of}.") - self._real_n = self.n - self.n = self.best_of + if not self._real_n: + self._real_n = self.n + self.n = self.best_of if 0 < self.temperature < _MAX_TEMP: logger.warning( From c92acb9693c0504d7dabed2a0251b9f5d4ddaebb Mon Sep 17 00:00:00 2001 From: "Kevin H. Luu" Date: Wed, 4 Dec 2024 01:01:20 -0800 Subject: [PATCH 026/733] [ci/build] Update vLLM postmerge ECR repo (#10887) --- .buildkite/nightly-benchmarks/benchmark-pipeline.yaml | 6 +++--- .buildkite/nightly-benchmarks/scripts/wait-for-image.sh | 4 ++-- docs/source/getting_started/installation.rst | 2 +- 3 files changed, 6 insertions(+), 6 deletions(-) diff --git a/.buildkite/nightly-benchmarks/benchmark-pipeline.yaml b/.buildkite/nightly-benchmarks/benchmark-pipeline.yaml index 3db77d5f16022..dd2ce454ecb2d 100644 --- a/.buildkite/nightly-benchmarks/benchmark-pipeline.yaml +++ b/.buildkite/nightly-benchmarks/benchmark-pipeline.yaml @@ -21,7 +21,7 @@ steps: podSpec: priorityClassName: perf-benchmark containers: - - image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT + - image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT command: - bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh resources: @@ -51,7 +51,7 @@ steps: queue: H200 plugins: - docker#v5.12.0: - image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT + image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT command: - bash - .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh @@ -71,7 +71,7 @@ steps: queue: H100 plugins: - docker#v5.12.0: - image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT + image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT command: - bash - .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh diff --git a/.buildkite/nightly-benchmarks/scripts/wait-for-image.sh b/.buildkite/nightly-benchmarks/scripts/wait-for-image.sh index 19f7160e68a4d..aa0f7ade808e0 100644 --- a/.buildkite/nightly-benchmarks/scripts/wait-for-image.sh +++ b/.buildkite/nightly-benchmarks/scripts/wait-for-image.sh @@ -1,6 +1,6 @@ #!/bin/sh -TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-test-repo:pull" | jq -r .token) -URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-test-repo/manifests/$BUILDKITE_COMMIT" +TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-postmerge-repo:pull" | jq -r .token) +URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-postmerge-repo/manifests/$BUILDKITE_COMMIT" TIMEOUT_SECONDS=10 diff --git a/docs/source/getting_started/installation.rst b/docs/source/getting_started/installation.rst index e3dbbc9affe66..52412fa8437b9 100644 --- a/docs/source/getting_started/installation.rst +++ b/docs/source/getting_started/installation.rst @@ -73,7 +73,7 @@ Another way to access the latest code is to use the docker images: .. code-block:: console $ export VLLM_COMMIT=33f460b17a54acb3b6cc0b03f4a17876cff5eafd # use full commit hash from the main branch - $ docker pull public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:${VLLM_COMMIT} + $ docker pull public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:${VLLM_COMMIT} These docker images are used for CI and testing only, and they are not intended for production use. They will be expired after several days. From 01d079fd8e65ed9a243ebbf6b771393607942907 Mon Sep 17 00:00:00 2001 From: Xin Yang <105740670+xyang16@users.noreply.github.com> Date: Wed, 4 Dec 2024 09:40:16 -0800 Subject: [PATCH 027/733] [LoRA] Change lora_tokenizers capacity (#10796) Signed-off-by: Xin Yang --- tests/lora/test_tokenizer_group.py | 20 +++++++++++++++++++ vllm/engine/llm_engine.py | 2 +- vllm/engine/multiprocessing/client.py | 3 +-- .../tokenizer_group/__init__.py | 9 +++++---- .../tokenizer_group/tokenizer_group.py | 3 ++- vllm/v1/engine/async_llm.py | 2 +- vllm/v1/engine/llm_engine.py | 2 +- 7 files changed, 31 insertions(+), 10 deletions(-) diff --git a/tests/lora/test_tokenizer_group.py b/tests/lora/test_tokenizer_group.py index daa39b2a3dba1..d225a3f7d6c06 100644 --- a/tests/lora/test_tokenizer_group.py +++ b/tests/lora/test_tokenizer_group.py @@ -17,6 +17,7 @@ async def test_tokenizer_group_lora(sql_lora_files, tokenizer_group_type): tokenizer_id="gpt2", enable_lora=True, max_num_seqs=1, + max_loras=1, max_input_length=None, ) lora_request = LoRARequest("1", 1, sql_lora_files) @@ -53,3 +54,22 @@ def test_get_lora_tokenizer(sql_lora_files, tmp_path): lora_request = LoRARequest("1", 1, str(tmp_path)) tokenizer = get_lora_tokenizer(lora_request) assert not tokenizer + + +@pytest.mark.parametrize("enable_lora", [True, False]) +@pytest.mark.parametrize("max_num_seqs", [1, 2]) +@pytest.mark.parametrize("max_loras", [1, 2]) +def test_lora_tokenizers(enable_lora, max_num_seqs, max_loras): + tokenizer_group = get_tokenizer_group( + get_tokenizer_pool_config(None), + tokenizer_id="gpt2", + enable_lora=enable_lora, + max_num_seqs=max_num_seqs, + max_loras=max_loras, + max_input_length=None, + ) + if enable_lora: + assert tokenizer_group.lora_tokenizers.capacity == max( + max_num_seqs, max_loras) + else: + assert tokenizer_group.lora_tokenizers.capacity == 0 diff --git a/vllm/engine/llm_engine.py b/vllm/engine/llm_engine.py index af66b307028cf..1f3c6197ba1a8 100644 --- a/vllm/engine/llm_engine.py +++ b/vllm/engine/llm_engine.py @@ -620,7 +620,7 @@ def _init_tokenizer(self) -> BaseTokenizerGroup: model_config=self.model_config, scheduler_config=self.scheduler_config, parallel_config=self.parallel_config, - enable_lora=bool(self.lora_config)) + lora_config=self.lora_config) def _verify_args(self) -> None: self.model_config.verify_with_parallel_config(self.parallel_config) diff --git a/vllm/engine/multiprocessing/client.py b/vllm/engine/multiprocessing/client.py index d21136c03d7d2..7e4f81b2cf8e2 100644 --- a/vllm/engine/multiprocessing/client.py +++ b/vllm/engine/multiprocessing/client.py @@ -94,8 +94,7 @@ def __init__(self, ipc_path: str, engine_config: VllmConfig, model_config=self.model_config, scheduler_config=engine_config.scheduler_config, parallel_config=engine_config.parallel_config, - enable_lora=bool(engine_config.lora_config), - ) + lora_config=engine_config.lora_config) self.input_preprocessor = InputPreprocessor(self.model_config, self.tokenizer) diff --git a/vllm/transformers_utils/tokenizer_group/__init__.py b/vllm/transformers_utils/tokenizer_group/__init__.py index 6a114b513f382..c0b3d2585a962 100644 --- a/vllm/transformers_utils/tokenizer_group/__init__.py +++ b/vllm/transformers_utils/tokenizer_group/__init__.py @@ -1,7 +1,7 @@ from typing import Optional, Type -from vllm.config import (ModelConfig, ParallelConfig, SchedulerConfig, - TokenizerPoolConfig) +from vllm.config import (LoRAConfig, ModelConfig, ParallelConfig, + SchedulerConfig, TokenizerPoolConfig) from vllm.executor.ray_utils import ray from .base_tokenizer_group import AnyTokenizer, BaseTokenizerGroup @@ -16,10 +16,11 @@ def init_tokenizer_from_configs(model_config: ModelConfig, scheduler_config: SchedulerConfig, parallel_config: ParallelConfig, - enable_lora: bool): + lora_config: LoRAConfig): init_kwargs = dict(tokenizer_id=model_config.tokenizer, - enable_lora=enable_lora, + enable_lora=bool(lora_config), max_num_seqs=scheduler_config.max_num_seqs, + max_loras=lora_config.max_loras if lora_config else 0, max_input_length=None, tokenizer_mode=model_config.tokenizer_mode, trust_remote_code=model_config.trust_remote_code, diff --git a/vllm/transformers_utils/tokenizer_group/tokenizer_group.py b/vllm/transformers_utils/tokenizer_group/tokenizer_group.py index e516eeabaadef..761b07f34d2f9 100644 --- a/vllm/transformers_utils/tokenizer_group/tokenizer_group.py +++ b/vllm/transformers_utils/tokenizer_group/tokenizer_group.py @@ -21,8 +21,9 @@ def __init__(self, tokenizer_id: str, enable_lora: bool, max_num_seqs: int, self.enable_lora = enable_lora self.max_input_length = max_input_length self.tokenizer = get_tokenizer(self.tokenizer_id, **tokenizer_config) + max_loras = tokenizer_config.get("max_loras", 0) self.lora_tokenizers = LRUCache[AnyTokenizer]( - capacity=max_num_seqs if enable_lora else 0) + capacity=max(max_loras, max_num_seqs) if enable_lora else 0) @classmethod def from_config(cls, tokenizer_pool_config: Optional[TokenizerPoolConfig], diff --git a/vllm/v1/engine/async_llm.py b/vllm/v1/engine/async_llm.py index 7335c637f0f79..4ef372fd8464b 100644 --- a/vllm/v1/engine/async_llm.py +++ b/vllm/v1/engine/async_llm.py @@ -51,7 +51,7 @@ def __init__( model_config=vllm_config.model_config, scheduler_config=vllm_config.scheduler_config, parallel_config=vllm_config.parallel_config, - enable_lora=bool(vllm_config.lora_config)) + lora_config=vllm_config.lora_config) self.tokenizer.ping() # Request streams (map of request_id -> AsyncStream). diff --git a/vllm/v1/engine/llm_engine.py b/vllm/v1/engine/llm_engine.py index bd19d998a4adb..312c0242a45dd 100644 --- a/vllm/v1/engine/llm_engine.py +++ b/vllm/v1/engine/llm_engine.py @@ -46,7 +46,7 @@ def __init__( model_config=vllm_config.model_config, scheduler_config=vllm_config.scheduler_config, parallel_config=vllm_config.parallel_config, - enable_lora=bool(vllm_config.lora_config)) + lora_config=vllm_config.lora_config) self.tokenizer.ping() # Processor (convert Inputs --> EngineCoreRequests) From 10398b4706ee71d0bddc32c1d33b11e73df12a27 Mon Sep 17 00:00:00 2001 From: Isotr0py Date: Thu, 5 Dec 2024 02:11:08 +0800 Subject: [PATCH 028/733] [Model] Consolidate ViTs attention implementation without mask (#10893) Signed-off-by: Isotr0py <2037008807@qq.com> --- vllm/attention/layer.py | 63 +++++++++++++++++++ vllm/model_executor/models/blip.py | 45 ++----------- vllm/model_executor/models/clip.py | 46 ++------------ .../models/glm4_vision_encoder.py | 22 ++----- .../models/idefics2_vision_model.py | 25 ++------ vllm/model_executor/models/intern_vit.py | 28 ++------- vllm/model_executor/models/internvl.py | 23 ++++--- vllm/model_executor/models/molmo.py | 38 +++-------- vllm/model_executor/models/siglip.py | 45 ++----------- 9 files changed, 109 insertions(+), 226 deletions(-) diff --git a/vllm/attention/layer.py b/vllm/attention/layer.py index e024eef286f05..05d997279893b 100644 --- a/vllm/attention/layer.py +++ b/vllm/attention/layer.py @@ -3,6 +3,7 @@ import torch import torch.nn as nn +import torch.nn.functional as F from vllm.attention import AttentionMetadata, AttentionType from vllm.attention.selector import backend_name_to_enum, get_attn_backend @@ -168,6 +169,68 @@ def extra_repr(self) -> str: return s +class MultiHeadAttention(nn.Module): + """Multi-headed attention without any cache, used for ViT.""" + + def __init__( + self, + num_heads: int, + head_size: int, + scale: float, + num_kv_heads: Optional[int] = None, + ): + super().__init__() + self.num_heads = num_heads + self.head_size = head_size + self.scale = scale + self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads + + dtype = torch.get_default_dtype() + attn_backend = get_attn_backend(head_size, + dtype, + kv_cache_dtype=None, + block_size=16, + is_attention_free=False) + if attn_backend in {_Backend.FLASH_ATTN, _Backend.FLASH_ATTN_VLLM_V1}: + attn_backend = _Backend.XFORMERS + + self.attn_backend = attn_backend if attn_backend in { + _Backend.TORCH_SDPA, _Backend.XFORMERS + } else _Backend.TORCH_SDPA + + def forward( + self, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + ) -> torch.Tensor: + """Input shape: batch_size x seq_len x hidden_size""" + # TODO(Isotr0py): Use existing backend implementations and support FA2 + bsz, q_len, _ = query.size() + kv_len = key.size(1) + + query = query.view(bsz, q_len, self.num_heads, self.head_size) + key = key.view(bsz, kv_len, self.num_kv_heads, self.head_size) + value = value.view(bsz, kv_len, self.num_kv_heads, self.head_size) + + if self.attn_backend == _Backend.XFORMERS: + from xformers import ops as xops + + out = xops.memory_efficient_attention_forward(query, + key, + value, + scale=self.scale) + elif self.attn_backend == _Backend.TORCH_SDPA: + query, key, value = (x.transpose(1, 2) + for x in (query, key, value)) + out = F.scaled_dot_product_attention(query, + key, + value, + scale=self.scale) + out = out.transpose(1, 2) + return out.view(bsz, q_len, -1) + + def unified_attention( query: torch.Tensor, key: torch.Tensor, diff --git a/vllm/model_executor/models/blip.py b/vllm/model_executor/models/blip.py index 6af59697160a0..42a239cadac46 100644 --- a/vllm/model_executor/models/blip.py +++ b/vllm/model_executor/models/blip.py @@ -4,11 +4,10 @@ import torch import torch.nn as nn -import torch.nn.functional as F from PIL import Image from transformers import Blip2VisionConfig, BlipVisionConfig -from vllm.attention.selector import _Backend +from vllm.attention.layer import MultiHeadAttention from vllm.config import ModelConfig from vllm.distributed import divide, get_tensor_model_parallel_world_size from vllm.inputs import DecoderOnlyInputs, token_inputs @@ -22,8 +21,6 @@ repeat_and_pad_placeholder_tokens) from vllm.sequence import SequenceData -from .utils import get_vit_attn_backend - def get_blip_patch_grid_length(*, image_size: int, patch_size: int) -> int: assert image_size % patch_size == 0 @@ -205,11 +202,8 @@ def __init__( self.tp_size = get_tensor_model_parallel_world_size() self.num_heads_per_partition = divide(self.num_heads, self.tp_size) - # Detect attention implementation. - self.attn_backend = get_vit_attn_backend(support_fa=False) - if self.attn_backend not in {_Backend.TORCH_SDPA, _Backend.XFORMERS}: - raise RuntimeError( - f"BLIP does not support {self.attn_backend} backend now.") + self.attn = MultiHeadAttention(self.num_heads_per_partition, + self.head_dim, self.scale) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, @@ -220,41 +214,10 @@ def forward( hidden_states: torch.Tensor, ): """Input shape: Batch x Time x Channel""" - bsz, tgt_len, _ = hidden_states.size() qkv_states, _ = self.qkv(hidden_states) query_states, key_states, value_states = qkv_states.chunk(3, dim=-1) - query_states = query_states.view(bsz, tgt_len, - self.num_heads_per_partition, - self.head_dim) - key_states = key_states.view(bsz, tgt_len, - self.num_heads_per_partition, - self.head_dim) - value_states = value_states.view(bsz, tgt_len, - self.num_heads_per_partition, - self.head_dim) - - if self.attn_backend == _Backend.XFORMERS: - from xformers import ops as xops - - out = xops.memory_efficient_attention_forward(query_states, - key_states, - value_states, - p=self.dropout, - scale=self.scale) - elif self.attn_backend == _Backend.TORCH_SDPA: - query_states, key_states, value_states = (x.transpose(1, 2) - for x in (query_states, - key_states, - value_states)) - out = F.scaled_dot_product_attention(query_states, - key_states, - value_states, - dropout_p=self.dropout, - scale=self.scale) - out = out.transpose(1, 2) - - out = out.view(bsz, tgt_len, -1) + out = self.attn(query_states, key_states, value_states) attn_output, _ = self.projection(out) return attn_output, None diff --git a/vllm/model_executor/models/clip.py b/vllm/model_executor/models/clip.py index cd89519e95986..a5300dfd986f3 100644 --- a/vllm/model_executor/models/clip.py +++ b/vllm/model_executor/models/clip.py @@ -5,11 +5,10 @@ import numpy as np import torch import torch.nn as nn -import torch.nn.functional as F from PIL import Image from transformers import CLIPVisionConfig -from vllm.attention.selector import _Backend +from vllm.attention.layer import MultiHeadAttention from vllm.config import ModelConfig from vllm.distributed import divide, get_tensor_model_parallel_world_size from vllm.inputs import DecoderOnlyInputs, token_inputs @@ -25,8 +24,6 @@ resolve_visual_encoder_outputs) from vllm.sequence import SequenceData -from .utils import get_vit_attn_backend - def get_clip_patch_grid_length(*, image_size: int, patch_size: int) -> int: assert image_size % patch_size == 0 @@ -235,11 +232,8 @@ def __init__( self.tp_size = get_tensor_model_parallel_world_size() self.num_heads_per_partition = divide(self.num_heads, self.tp_size) - # Detect attention implementation. - self.attn_backend = get_vit_attn_backend(support_fa=False) - if self.attn_backend not in {_Backend.TORCH_SDPA, _Backend.XFORMERS}: - raise RuntimeError( - f"CLIP does not support {self.attn_backend} backend now.") + self.attn = MultiHeadAttention(self.num_heads_per_partition, + self.head_dim, self.scale) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, @@ -250,42 +244,10 @@ def forward( hidden_states: torch.Tensor, ): """Input shape: Batch x Time x Channel""" - bsz, tgt_len, _ = hidden_states.size() qkv_states, _ = self.qkv_proj(hidden_states) query_states, key_states, value_states = qkv_states.chunk(3, dim=-1) - - query_states = query_states.view(bsz, tgt_len, - self.num_heads_per_partition, - self.head_dim) - key_states = key_states.view(bsz, tgt_len, - self.num_heads_per_partition, - self.head_dim) - value_states = value_states.view(bsz, tgt_len, - self.num_heads_per_partition, - self.head_dim) - - if self.attn_backend == _Backend.XFORMERS: - from xformers import ops as xops - - out = xops.memory_efficient_attention_forward(query_states, - key_states, - value_states, - p=self.dropout, - scale=self.scale) - elif self.attn_backend == _Backend.TORCH_SDPA: - query_states, key_states, value_states = (x.transpose(1, 2) - for x in (query_states, - key_states, - value_states)) - out = F.scaled_dot_product_attention(query_states, - key_states, - value_states, - dropout_p=self.dropout, - scale=self.scale) - out = out.transpose(1, 2) - - out = out.view(bsz, tgt_len, -1) + out = self.attn(query_states, key_states, value_states) attn_output, _ = self.out_proj(out) return attn_output, None diff --git a/vllm/model_executor/models/glm4_vision_encoder.py b/vllm/model_executor/models/glm4_vision_encoder.py index f37ab0f82d52a..39a5736eb199b 100644 --- a/vllm/model_executor/models/glm4_vision_encoder.py +++ b/vllm/model_executor/models/glm4_vision_encoder.py @@ -8,6 +8,7 @@ from torch import nn from torch.nn import LayerNorm +from vllm.attention.layer import MultiHeadAttention from vllm.distributed import get_tensor_model_parallel_world_size from vllm.model_executor.layers.activation import SiluAndMul, get_act_fn from vllm.model_executor.layers.linear import (ColumnParallelLinear, @@ -77,27 +78,16 @@ def __init__( quant_config=quant_config, ) + self.attn = MultiHeadAttention(self.num_heads_per_rank, self.head_dim, + self.scale) self.output_dropout = torch.nn.Dropout(config.dropout_prob) def forward(self, x: torch.Tensor) -> torch.Tensor: - B, L, _ = x.shape qkv, _ = self.query_key_value(x) # B, L, 3 * H * D q, k, v = qkv.chunk(3, dim=-1) - q = q.reshape(B, L, self.num_heads_per_rank, - self.head_dim).permute(0, 2, 1, 3) # B, H, L, D - k = k.reshape(B, L, self.num_heads_per_rank, - self.head_dim).permute(0, 2, 1, 3) # B, H, L, D - v = v.reshape(B, L, self.num_heads_per_rank, - self.head_dim).permute(0, 2, 1, 3) # B, H, L, D - - out = torch.nn.functional.scaled_dot_product_attention(q, - k, - v, - attn_mask=None, - dropout_p=0., - is_causal=False) - - output, _ = self.dense(out.transpose(1, 2).view(B, L, -1)) + + out = self.attn(q, k, v) + output, _ = self.dense(out) output = self.output_dropout(output) return output diff --git a/vllm/model_executor/models/idefics2_vision_model.py b/vllm/model_executor/models/idefics2_vision_model.py index 16192928beb1f..e430a158d869a 100644 --- a/vllm/model_executor/models/idefics2_vision_model.py +++ b/vllm/model_executor/models/idefics2_vision_model.py @@ -21,8 +21,8 @@ from torch import nn from transformers.models.idefics2.configuration_idefics2 import ( Idefics2Config, Idefics2VisionConfig) -from xformers import ops as xops +from vllm.attention.layer import MultiHeadAttention from vllm.distributed import divide, get_tensor_model_parallel_world_size from vllm.model_executor.layers.activation import get_act_fn from vllm.model_executor.layers.linear import (ColumnParallelLinear, @@ -141,35 +141,18 @@ def __init__( ) self.tp_size = get_tensor_model_parallel_world_size() self.num_heads_per_partition = divide(self.num_heads, self.tp_size) - self.is_causal = False + self.attn = MultiHeadAttention(self.num_heads_per_partition, + self.head_dim, self.scale) def forward( self, hidden_states: torch.Tensor, ) -> torch.Tensor: - batch_size, q_len, _ = hidden_states.size() qkv, _ = self.qkv_proj( hidden_states ) # batch_size, q_len, 3 * num_heads_per_partition * head_dim query_states, key_states, value_states = qkv.chunk(3, dim=-1) - query_states = query_states.view(batch_size, q_len, - self.num_heads_per_partition, - self.head_dim) - key_states = key_states.view(batch_size, q_len, - self.num_heads_per_partition, - self.head_dim) - value_states = value_states.view(batch_size, q_len, - self.num_heads_per_partition, - self.head_dim) - # see: https://facebookresearch.github.io/xformers/components/ops.html - out = xops.memory_efficient_attention_forward( - query_states, - key_states, - value_states, - p=self.dropout, - scale=self.scale, - ) - out = out.view(batch_size, q_len, -1) + out = self.attn(query_states, key_states, value_states) attn_output, _ = self.out_proj(out) return attn_output diff --git a/vllm/model_executor/models/intern_vit.py b/vllm/model_executor/models/intern_vit.py index c4346fcb3bd2a..7ff68bd60e8ad 100644 --- a/vllm/model_executor/models/intern_vit.py +++ b/vllm/model_executor/models/intern_vit.py @@ -12,7 +12,7 @@ import torch.nn.functional as F from transformers import PretrainedConfig -from vllm.attention.selector import _Backend +from vllm.attention.layer import MultiHeadAttention from vllm.distributed import (divide, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, split_tensor_along_last_dim, @@ -25,8 +25,6 @@ from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.model_loader.weight_utils import default_weight_loader -from .utils import get_vit_attn_backend - NORM2FN = { 'rms_norm': RMSNorm, 'layer_norm': nn.LayerNorm, @@ -183,10 +181,8 @@ def __init__( prefix=f"{prefix}.proj", ) - self.attn_backend = get_vit_attn_backend(support_fa=False) - if self.attn_backend not in {_Backend.TORCH_SDPA, _Backend.XFORMERS}: - raise RuntimeError( - f"InternViT does not support {self.attn_backend} backend now.") + self.attn = MultiHeadAttention(self.num_heads_per_partition, + self.head_dim, self.scale) def _apply_qk_norm(self, q: torch.Tensor, k: torch.Tensor): if self.tp_size > 1: @@ -209,23 +205,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: if self.qk_normalization: q, k = self._apply_qk_norm(q, k) - q = q.view(B, N, self.num_heads_per_partition, self.head_dim) - k = k.view(B, N, self.num_heads_per_partition, self.head_dim) - v = v.view(B, N, self.num_heads_per_partition, self.head_dim) - - if self.attn_backend == _Backend.XFORMERS: - from xformers import ops as xops - - out = xops.memory_efficient_attention_forward(q, - k, - v, - scale=self.scale) - elif self.attn_backend == _Backend.TORCH_SDPA: - q, k, v = (x.transpose(1, 2) for x in (q, k, v)) - out = F.scaled_dot_product_attention(q, k, v, scale=self.scale) - out = out.transpose(1, 2) - - out = out.view(B, N, -1) + out = self.attn(q, k, v) out, _ = self.proj(out) return out diff --git a/vllm/model_executor/models/internvl.py b/vllm/model_executor/models/internvl.py index 86aab38032450..d5a7781fecfc3 100644 --- a/vllm/model_executor/models/internvl.py +++ b/vllm/model_executor/models/internvl.py @@ -482,6 +482,7 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None: self.mlp1 = self._init_mlp1(config) self.img_context_token_id = None + self.visual_token_mask = None self.make_empty_intermediate_tensors = ( self.language_model.make_empty_intermediate_tensors) @@ -635,13 +636,12 @@ def _process_image_input( return image_embeds - def _get_visual_token_mask(self, input_ids: torch.Tensor) -> torch.Tensor: + def _set_visual_token_mask(self, input_ids: torch.Tensor) -> torch.Tensor: if self.is_mono: - visual_token_mask = ( + self.visual_token_mask = ( input_ids == self.img_context_token_id).reshape(-1, 1) else: - visual_token_mask = None - return visual_token_mask + self.visual_token_mask = None def get_multimodal_embeddings(self, **kwargs) -> Optional[NestedTensors]: image_input = self._parse_and_validate_image_input(**kwargs) @@ -658,6 +658,7 @@ def get_input_embeddings( inputs_embeds = self.language_model.get_input_embeddings(input_ids) if multimodal_embeddings is not None: assert self.img_context_token_id is not None + self._set_visual_token_mask(input_ids) inputs_embeds = merge_multimodal_embeddings( input_ids, inputs_embeds, multimodal_embeddings, self.img_context_token_id) @@ -674,7 +675,6 @@ def forward( **kwargs: object, ) -> Union[SamplerOutput, IntermediateTensors]: - visual_token_mask = None if intermediate_tensors is not None: input_ids = None inputs_embeds = None @@ -695,16 +695,15 @@ def forward( "intermediate_tensors": intermediate_tensors, "inputs_embeds": inputs_embeds, } - if self.img_context_token_id is not None: - visual_token_mask = self._get_visual_token_mask(input_ids) - # We always overwrite it back to None after computing visual token - # mask so that this doesn't need to depend on encoder output + if self.visual_token_mask is not None: + # overwrite visual_token_mask and img_context_token_id back to None, + # so that this doesn't need to depend on encoder output + forward_kwargs.update( + {"visual_token_mask": self.visual_token_mask}) + self.visual_token_mask = None self.img_context_token_id = None - if self.is_mono: - forward_kwargs.update({"visual_token_mask": visual_token_mask}) - hidden_states = self.language_model.model(**forward_kwargs) return hidden_states diff --git a/vllm/model_executor/models/molmo.py b/vllm/model_executor/models/molmo.py index 98caa6857e211..d1fcbd167c199 100644 --- a/vllm/model_executor/models/molmo.py +++ b/vllm/model_executor/models/molmo.py @@ -13,6 +13,7 @@ from transformers import PretrainedConfig from vllm.attention import Attention, AttentionMetadata +from vllm.attention.layer import MultiHeadAttention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank, @@ -38,14 +39,12 @@ from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs from vllm.multimodal.inputs import NestedTensors from vllm.multimodal.utils import cached_get_tokenizer -from vllm.platforms import _Backend from vllm.sequence import (VLLM_TOKEN_ID_ARRAY_TYPE, IntermediateTensors, SequenceData) from vllm.transformers_utils.processor import get_processor from .interfaces import SupportsMultiModal, SupportsPP -from .utils import (AutoWeightsLoader, WeightsMapper, get_vit_attn_backend, - is_pp_missing_parameter, +from .utils import (AutoWeightsLoader, WeightsMapper, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix) @@ -188,13 +187,11 @@ def __init__( quant_config=quant_config, ) - # Detect attention implementation. - self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True) - if self.attn_backend not in { - _Backend.FLASH_ATTN, _Backend.TORCH_SDPA, _Backend.XFORMERS - }: - raise RuntimeError( - f"Molmo does not support {self.attn_backend} backend now.") + self.scale = self.head_dim**-0.5 + self.attn = MultiHeadAttention(self.num_heads, + self.head_dim, + self.scale, + num_kv_heads=self.num_kv_heads) def forward(self, inputs_q: torch.Tensor, @@ -210,25 +207,8 @@ def forward(self, xq, _ = self.wq(inputs_q) xk, _ = self.wk(inputs_k) xv, _ = self.wv(inputs_v) - q_shape = xq.size()[:-1] + (self.num_heads, self.head_dim) - kv_shape = xk.size()[:-1] + (self.num_kv_heads, self.head_dim) - xq = xq.view(*q_shape) - xk = xk.view(*kv_shape) - xv = xv.view(*kv_shape) - - if self.attn_backend == _Backend.FLASH_ATTN: - from flash_attn import flash_attn_func - output = flash_attn_func(xq, xk, xv, dropout_p=0.0, causal=False) - elif self.attn_backend == _Backend.TORCH_SDPA: - xq, xk, xv = (rearrange(x, "b s h d -> b h s d") - for x in (xq, xk, xv)) - output = F.scaled_dot_product_attention(xq, xk, xv) - output = rearrange(output, "b h s d -> b s h d ") - elif self.attn_backend == _Backend.XFORMERS: - from xformers import ops as xops - output = xops.memory_efficient_attention_forward(xq, xk, xv, p=0) - - output = rearrange(output, "b s h d -> b s (h d)").contiguous() + + output = self.attn(xq, xk, xv) output, _ = self.wo(output) return output diff --git a/vllm/model_executor/models/siglip.py b/vllm/model_executor/models/siglip.py index deaed0ba7e4ce..6fb9e2cc4584f 100644 --- a/vllm/model_executor/models/siglip.py +++ b/vllm/model_executor/models/siglip.py @@ -6,12 +6,11 @@ import numpy as np import torch -import torch.nn.functional as F from PIL import Image from torch import nn from transformers import SiglipVisionConfig -from vllm.attention.selector import _Backend +from vllm.attention.layer import MultiHeadAttention from vllm.config import ModelConfig from vllm.distributed import divide, get_tensor_model_parallel_world_size from vllm.inputs import DecoderOnlyInputs, token_inputs @@ -29,8 +28,6 @@ resolve_visual_encoder_outputs) from vllm.sequence import SequenceData -from .utils import get_vit_attn_backend - def get_siglip_patch_grid_length(*, image_size: int, patch_size: int) -> int: # Since interpolation is applied, the image size need not be divisible @@ -291,52 +288,18 @@ def __init__( self.tp_size = get_tensor_model_parallel_world_size() self.num_heads_per_partition = divide(self.num_heads, self.tp_size) - self.attn_backend = get_vit_attn_backend(support_fa=False) - if self.attn_backend not in {_Backend.TORCH_SDPA, _Backend.XFORMERS}: - raise RuntimeError( - f"SIGLIP does not support {self.attn_backend} backend now.") + self.attn = MultiHeadAttention(self.num_heads_per_partition, + self.head_dim, self.scale) def forward( self, hidden_states: torch.Tensor, ) -> torch.Tensor: """Input shape: Batch x Time x Channel""" - batch_size, q_len, _ = hidden_states.size() - qkv_states, _ = self.qkv_proj(hidden_states) query_states, key_states, value_states = qkv_states.chunk(3, dim=-1) - query_states = query_states.view(batch_size, q_len, - self.num_heads_per_partition, - self.head_dim) - key_states = key_states.view(batch_size, q_len, - self.num_heads_per_partition, - self.head_dim) - value_states = value_states.view(batch_size, q_len, - self.num_heads_per_partition, - self.head_dim) - - if self.attn_backend == _Backend.XFORMERS: - from xformers import ops as xops - - out = xops.memory_efficient_attention_forward(query_states, - key_states, - value_states, - p=self.dropout, - scale=self.scale) - elif self.attn_backend == _Backend.TORCH_SDPA: - query_states, key_states, value_states = (x.transpose(1, 2) - for x in (query_states, - key_states, - value_states)) - out = F.scaled_dot_product_attention(query_states, - key_states, - value_states, - dropout_p=self.dropout, - scale=self.scale) - out = out.transpose(1, 2) - - out = out.view(batch_size, q_len, -1) + out = self.attn(query_states, key_states, value_states) attn_output, _ = self.out_proj(out) return attn_output, None From 82eb5ea8f3bd3aabbe5c2fd43e37d263768603c5 Mon Sep 17 00:00:00 2001 From: "Chendi.Xue" Date: Wed, 4 Dec 2024 15:28:21 -0600 Subject: [PATCH 029/733] Benchmark serving structured output (#10880) Signed-off-by: Chendi Xue Co-authored-by: Michael Goin --- benchmarks/backend_request_func.py | 6 + benchmarks/benchmark_serving_guided.py | 881 +++++++++++++++++++++++++ 2 files changed, 887 insertions(+) create mode 100644 benchmarks/benchmark_serving_guided.py diff --git a/benchmarks/backend_request_func.py b/benchmarks/backend_request_func.py index c3fed56e8a956..b67849038cf0d 100644 --- a/benchmarks/backend_request_func.py +++ b/benchmarks/backend_request_func.py @@ -24,6 +24,7 @@ class RequestFuncInput: model: str best_of: int = 1 logprobs: Optional[int] = None + extra_body: Optional[dict] = None multi_modal_content: Optional[dict] = None ignore_eos: bool = False @@ -36,6 +37,7 @@ class RequestFuncOutput: ttft: float = 0.0 # Time to first token itl: List[float] = field( default_factory=list) # List of inter-token latencies + tpot: float = 0.0 # avg next-token latencies prompt_len: int = 0 error: str = "" @@ -242,6 +244,8 @@ async def async_request_openai_completions( "stream": True, "ignore_eos": request_func_input.ignore_eos, } + if request_func_input.extra_body: + payload.update(request_func_input.extra_body) headers = { "Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}" } @@ -336,6 +340,8 @@ async def async_request_openai_chat_completions( "stream": True, "ignore_eos": request_func_input.ignore_eos, } + if request_func_input.extra_body: + payload.update(request_func_input.extra_body) headers = { "Content-Type": "application/json", "Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}", diff --git a/benchmarks/benchmark_serving_guided.py b/benchmarks/benchmark_serving_guided.py new file mode 100644 index 0000000000000..4435d87e18a8a --- /dev/null +++ b/benchmarks/benchmark_serving_guided.py @@ -0,0 +1,881 @@ +r"""Benchmark online serving throughput with guided decoding. + +On the server side, run one of the following commands: + (vLLM OpenAI API server) + vllm serve --disable-log-requests + + (TGI backend) + ./launch_tgi_server.sh + +On the client side, run: + python benchmarks/benchmark_serving.py \ + --backend \ + --model \ + --dataset json \ + --guided-decoding-ratio 1.0 \ + --guided-decoding-backend xgrammar \ + --request-rate 10 \ + --num-prompts 1000 + + when using tgi backend, add + --endpoint /generate_stream + to the end of the command above. +""" +import argparse +import asyncio +import dataclasses +import json +import os +import random +import time +import warnings +from dataclasses import dataclass +from typing import AsyncGenerator, List, Optional, Tuple + +import datasets +import numpy as np +import pandas as pd +from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput, + RequestFuncOutput) +from tqdm.asyncio import tqdm +from transformers import PreTrainedTokenizerBase + +try: + from vllm.transformers_utils.tokenizer import get_tokenizer +except ImportError: + from backend_request_func import get_tokenizer + +try: + from vllm.utils import FlexibleArgumentParser +except ImportError: + from argparse import ArgumentParser as FlexibleArgumentParser + +MILLISECONDS_TO_SECONDS_CONVERSION = 1000 + + +@dataclass +class BenchmarkMetrics: + completed: int + total_input: int + total_output: int + request_throughput: float + request_goodput: float + output_throughput: float + total_token_throughput: float + mean_ttft_ms: float + median_ttft_ms: float + std_ttft_ms: float + percentiles_ttft_ms: List[Tuple[float, float]] + mean_tpot_ms: float + median_tpot_ms: float + std_tpot_ms: float + percentiles_tpot_ms: List[Tuple[float, float]] + mean_itl_ms: float + median_itl_ms: float + std_itl_ms: float + percentiles_itl_ms: List[Tuple[float, float]] + # E2EL stands for end-to-end latency per request. + # It is the time taken on the client side from sending + # a request to receiving a complete response. + mean_e2el_ms: float + median_e2el_ms: float + std_e2el_ms: float + percentiles_e2el_ms: List[Tuple[float, float]] + + +@dataclasses.dataclass +class SampleRequest: + """A class representing a single inference request for benchmarking. + + Attributes: + prompt: The input text prompt for the model. + multi_modal_data: Optional dictionary containing multi-modal data (e.g. + images). + prompt_len: The length of the prompt in tokens. + expected_output_len: The expected length of the output in tokens. + """ + prompt: str + prompt_len: int + expected_output_len: int + schema: dict + structure_type: str + completion: str = None + + +def sample_requests(tokenizer: PreTrainedTokenizerBase, + args: argparse.Namespace) -> List[SampleRequest]: + if args.dataset == 'json': + if args.json_schema_path is None: + dir_path = os.path.dirname(os.path.realpath(__file__)) + args.json_schema_path = os.path.join(dir_path, + "structured_schemas", + "structured_schema_1.json") + with open(args.json_schema_path) as f: + schema = json.load(f) + prompt = f"Generate an example of a user profile given the following schema: {json.dumps(schema)}" # noqa: E501 + input_len = len(tokenizer(prompt).input_ids) + print(f"Input length of the prompt: {input_len} tokens") + requests = [ + SampleRequest(prompt=prompt, + prompt_len=input_len, + expected_output_len=args.output_len, + schema=schema, + structure_type=args.structure_type) + for _ in range(args.num_prompts) + ] + + elif args.dataset == "grammar": + schema = """ + ?start: select_statement + + ?select_statement: "SELECT " column_list " FROM " table_name + + ?column_list: column_name ("," column_name)* + + ?table_name: identifier + + ?column_name: identifier + + ?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/ + """ + prompt = "Generate an SQL query to show the 'username' \ + and 'email' from the 'users' table." + + input_len = len(tokenizer(prompt).input_ids) + print(f"Input length of the prompt: {input_len} tokens") + requests = [ + SampleRequest(prompt=prompt, + prompt_len=input_len, + expected_output_len=args.output_len, + schema=schema, + structure_type=args.structure_type) + for _ in range(args.num_prompts) + ] + + elif args.dataset == "regex": + regex = r"\w+@\w+\.com\n" + args.regex = regex + prompt = "Generate an email address for Alan Turing, \ + who works in Enigma. End in .com and new line. \ + Example result: alan.turing@enigma.com\n" + + input_len = len(tokenizer(prompt).input_ids) + print(f"Input length of the prompt: {input_len} tokens") + requests = [ + SampleRequest(prompt=prompt, + prompt_len=input_len, + expected_output_len=args.output_len, + schema=regex, + structure_type=args.structure_type) + for _ in range(args.num_prompts) + ] + + elif args.dataset == "choice": + choice = ["Positive", "Negative"] + args.choice = choice + prompt = "Classify this sentiment: vLLM is wonderful!" + input_len = len(tokenizer(prompt).input_ids) + print(f"Input length of the prompt: {input_len} tokens") + requests = [ + SampleRequest(prompt=prompt, + prompt_len=input_len, + expected_output_len=args.output_len, + schema=choice, + structure_type=args.structure_type) + for _ in range(args.num_prompts) + ] + + elif args.dataset == "xgrammar_bench": + requests: List[SampleRequest] = [] + dataset = datasets.load_dataset("NousResearch/json-mode-eval", + split="train") + print(f"dataset has {len(dataset)} entries") + len_dataset = len(dataset) + for data_point_idx in range(args.num_prompts): + idx = data_point_idx + while idx >= len_dataset: + idx -= len_dataset + schema = dataset["schema"][idx] + prompt = tokenizer.apply_chat_template(dataset["prompt"][idx], + tokenize=False) + input_len = len(tokenizer(prompt).input_ids) + completion = dataset["completion"][idx] + + requests.append( + SampleRequest(prompt=prompt, + prompt_len=input_len, + expected_output_len=args.output_len, + schema=schema, + structure_type=args.structure_type, + completion=completion)) + + return requests + + +async def get_request( + input_requests: List[SampleRequest], + request_rate: float, + burstiness: float = 1.0, +) -> AsyncGenerator[Tuple[int, SampleRequest], None]: + """ + Asynchronously generates requests at a specified rate + with OPTIONAL burstiness. + + Args: + input_requests: + A list of input requests, each represented as a tuple. + request_rate: + The rate at which requests are generated (requests/s). + burstiness (optional): + The burstiness factor of the request generation. + Only takes effect when request_rate is not inf. + Default value is 1, which follows a Poisson process. + Otherwise, the request intervals follow a gamma distribution. + A lower burstiness value (0 < burstiness < 1) results + in more bursty requests, while a higher burstiness value + (burstiness > 1) results in a more uniform arrival of requests. + """ + input_requests = iter(input_requests) + + # Calculate scale parameter theta to maintain the desired request_rate. + assert burstiness > 0, ( + f"A positive burstiness factor is expected, but given {burstiness}.") + theta = 1.0 / (request_rate * burstiness) + + for i, request in enumerate(input_requests): + yield i, request + + if request_rate == float("inf"): + # If the request rate is infinity, then we don't need to wait. + continue + + # Sample the request interval from the gamma distribution. + # If burstiness is 1, it follows exponential distribution. + interval = np.random.gamma(shape=burstiness, scale=theta) + # The next request will be sent after the interval. + await asyncio.sleep(interval) + + +def calculate_metrics( + input_requests: List[Tuple[str, int, int]], + outputs: List[RequestFuncOutput], + dur_s: float, + tokenizer: PreTrainedTokenizerBase, + selected_percentile_metrics: List[str], + selected_percentiles: List[float], +) -> Tuple[BenchmarkMetrics, List[int]]: + actual_output_lens: List[int] = [] + total_input = 0 + completed = 0 + good_completed = 0 + itls: List[float] = [] + tpots: List[float] = [] + all_tpots: List[float] = [] + ttfts: List[float] = [] + e2els: List[float] = [] + for i in range(len(outputs)): + if outputs[i].success: + # We use the tokenizer to count the number of output tokens for all + # serving backends instead of looking at len(outputs[i].itl) since + # multiple output tokens may be bundled together + # Note : this may inflate the output token count slightly + output_len = len( + tokenizer(outputs[i].generated_text, + add_special_tokens=False).input_ids) + actual_output_lens.append(output_len) + total_input += input_requests[i].prompt_len + tpot = 0 + if output_len > 1: + tpot = (outputs[i].latency - outputs[i].ttft) / (output_len - + 1) + tpots.append(tpot) + outputs[i].tpot = sum(tpots) / len(tpots) if len(tpots) else 0 + # Note: if output_len <= 1, we regard tpot as 0 for goodput + all_tpots.append(tpot) + itls += outputs[i].itl + ttfts.append(outputs[i].ttft) + e2els.append(outputs[i].latency) + completed += 1 + else: + actual_output_lens.append(0) + + if completed == 0: + warnings.warn( + "All requests failed. This is likely due to a misconfiguration " + "on the benchmark arguments.", + stacklevel=2) + metrics = BenchmarkMetrics( + completed=completed, + total_input=total_input, + total_output=sum(actual_output_lens), + request_throughput=completed / dur_s, + request_goodput=good_completed / dur_s, + output_throughput=sum(actual_output_lens) / dur_s, + total_token_throughput=(total_input + sum(actual_output_lens)) / dur_s, + mean_ttft_ms=np.mean(ttfts or 0) * + 1000, # ttfts is empty if streaming is not supported by backend + std_ttft_ms=np.std(ttfts or 0) * 1000, + median_ttft_ms=np.median(ttfts or 0) * 1000, + percentiles_ttft_ms=[(p, np.percentile(ttfts or 0, p) * 1000) + for p in selected_percentiles], + mean_tpot_ms=np.mean(tpots or 0) * 1000, + std_tpot_ms=np.std(tpots or 0) * 1000, + median_tpot_ms=np.median(tpots or 0) * 1000, + percentiles_tpot_ms=[(p, np.percentile(tpots or 0, p) * 1000) + for p in selected_percentiles], + mean_itl_ms=np.mean(itls or 0) * 1000, + std_itl_ms=np.std(itls or 0) * 1000, + median_itl_ms=np.median(itls or 0) * 1000, + percentiles_itl_ms=[(p, np.percentile(itls or 0, p) * 1000) + for p in selected_percentiles], + mean_e2el_ms=np.mean(e2els or 0) * 1000, + std_e2el_ms=np.std(e2els or 0) * 1000, + median_e2el_ms=np.median(e2els or 0) * 1000, + percentiles_e2el_ms=[(p, np.percentile(e2els or 0, p) * 1000) + for p in selected_percentiles], + ) + + return metrics, actual_output_lens + + +async def benchmark( + backend: str, + api_url: str, + base_url: str, + model_id: str, + tokenizer: PreTrainedTokenizerBase, + input_requests: List[SampleRequest], + request_rate: float, + burstiness: float, + disable_tqdm: bool, + profile: bool, + selected_percentile_metrics: List[str], + selected_percentiles: List[str], + ignore_eos: bool, + max_concurrency: Optional[int], + guided_decoding_ratio: float, + guided_decoding_backend: str, +): + if backend in ASYNC_REQUEST_FUNCS: + request_func = ASYNC_REQUEST_FUNCS[backend] + else: + raise ValueError(f"Unknown backend: {backend}") + + def prepare_extra_body(request) -> dict: + extra_body = {} + # Add the schema to the extra_body + extra_body[request.structure_type] = request.schema + # Add the specific guided_decoding_backend + extra_body["guided_decoding_backend"] = guided_decoding_backend + return extra_body + + print("Starting initial single prompt test run...") + guided_decoding_req_idx = random.sample( + range(len(input_requests)), + int(len(input_requests) * guided_decoding_ratio)) + + test_request = input_requests[0] + test_input = RequestFuncInput( + model=model_id, + prompt=test_request.prompt, + api_url=api_url, + prompt_len=test_request.prompt_len, + output_len=test_request.expected_output_len, + ignore_eos=ignore_eos, + extra_body=prepare_extra_body(test_request), + ) + test_output = await request_func(request_func_input=test_input) + if not test_output.success: + raise ValueError( + "Initial test run failed - Please make sure benchmark arguments " + f"are correctly specified. Error: {test_output.error}") + else: + print("Initial test run completed. Starting main benchmark run...") + + if profile: + print("Starting profiler...") + profile_input = RequestFuncInput( + model=model_id, + prompt=test_request.prompt, + api_url=base_url + "/start_profile", + prompt_len=test_request.prompt_len, + output_len=test_request.expected_output_len, + ignore_eos=ignore_eos, + extra_body=prepare_extra_body(test_request), + ) + profile_output = await request_func(request_func_input=profile_input) + if profile_output.success: + print("Profiler started") + + if burstiness == 1.0: + distribution = "Poisson process" + else: + distribution = "Gamma distribution" + + print(f"Traffic request rate: {request_rate}") + print(f"Burstiness factor: {burstiness} ({distribution})") + print(f"Maximum request concurrency: {max_concurrency}") + + pbar = None if disable_tqdm else tqdm(total=len(input_requests)) + + # This can be used once the minimum Python version is 3.10 or higher, + # and it will simplify the code in limited_request_func. + # semaphore = (asyncio.Semaphore(max_concurrency) + # if max_concurrency else contextlib.nullcontext()) + semaphore = (asyncio.Semaphore(max_concurrency) + if max_concurrency else None) + + async def limited_request_func(request_func_input, pbar): + if semaphore is None: + return await request_func(request_func_input=request_func_input, + pbar=pbar) + async with semaphore: + return await request_func(request_func_input=request_func_input, + pbar=pbar) + + benchmark_start_time = time.perf_counter() + tasks: List[asyncio.Task] = [] + expected: List[str] = [] + async for i, request in get_request(input_requests, request_rate, + burstiness): + extra_body = prepare_extra_body( + request) if i in guided_decoding_req_idx else None + request_func_input = RequestFuncInput( + model=model_id, + prompt=request.prompt, + api_url=api_url, + prompt_len=request.prompt_len, + output_len=request.expected_output_len, + ignore_eos=ignore_eos, + extra_body=extra_body, + ) + expected.append(request.completion) + tasks.append( + asyncio.create_task( + limited_request_func(request_func_input=request_func_input, + pbar=pbar))) + outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks) + + if profile: + print("Stopping profiler...") + profile_input = RequestFuncInput( + model=model_id, + prompt=test_request.prompt, + api_url=base_url + "/stop_profile", + prompt_len=test_request.prompt_len, + output_len=test_request.expected_output_len, + extra_body={test_request.structure_type: test_request.schema}, + ) + profile_output = await request_func(request_func_input=profile_input) + if profile_output.success: + print("Profiler stopped") + + if pbar is not None: + pbar.close() + + benchmark_duration = time.perf_counter() - benchmark_start_time + + metrics, actual_output_lens = calculate_metrics( + input_requests=input_requests, + outputs=outputs, + dur_s=benchmark_duration, + tokenizer=tokenizer, + selected_percentile_metrics=selected_percentile_metrics, + selected_percentiles=selected_percentiles, + ) + + print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='=')) + print("{:<40} {:<10}".format("Successful requests:", metrics.completed)) + print("{:<40} {:<10.2f}".format("Benchmark duration (s):", + benchmark_duration)) + print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input)) + print("{:<40} {:<10}".format("Total generated tokens:", + metrics.total_output)) + print("{:<40} {:<10.2f}".format("Request throughput (req/s):", + metrics.request_throughput)) + print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):", + metrics.output_throughput)) + print("{:<40} {:<10.2f}".format("Total Token throughput (tok/s):", + metrics.total_token_throughput)) + + result = { + "duration": + benchmark_duration, + "completed": + metrics.completed, + "total_input_tokens": + metrics.total_input, + "total_output_tokens": + metrics.total_output, + "request_throughput": + metrics.request_throughput, + "output_throughput": + metrics.output_throughput, + "total_token_throughput": + metrics.total_token_throughput, + "ttft_description": + pd.Series([output.ttft for output in outputs]).describe().to_dict(), + "tpot_description": + pd.Series([output.tpot for output in outputs]).describe().to_dict(), + "input_lens": [output.prompt_len for output in outputs], + "output_lens": + actual_output_lens, + "ttfts": [output.ttft for output in outputs], + "itls": [output.itl for output in outputs], + "errors": [output.error for output in outputs], + } + + ret = [{ + 'generated': output.generated_text, + 'expected': gt + } for output, gt in zip(outputs, expected)] + + def process_one_metric( + # E.g., "ttft" + metric_attribute_name: str, + # E.g., "TTFT" + metric_name: str, + # E.g., "Time to First Token" + metric_header: str, + ): + # This function prints and adds statistics of the specified + # metric. + if metric_attribute_name not in selected_percentile_metrics: + return + print("{s:{c}^{n}}".format(s=metric_header, n=50, c='-')) + print("{:<40} {:<10.2f}".format( + f"Mean {metric_name} (ms):", + getattr(metrics, f"mean_{metric_attribute_name}_ms"))) + print("{:<40} {:<10.2f}".format( + f"Median {metric_name} (ms):", + getattr(metrics, f"median_{metric_attribute_name}_ms"))) + result[f"mean_{metric_attribute_name}_ms"] = getattr( + metrics, f"mean_{metric_attribute_name}_ms") + result[f"median_{metric_attribute_name}_ms"] = getattr( + metrics, f"median_{metric_attribute_name}_ms") + result[f"std_{metric_attribute_name}_ms"] = getattr( + metrics, f"std_{metric_attribute_name}_ms") + for p, value in getattr(metrics, + f"percentiles_{metric_attribute_name}_ms"): + p_word = str(int(p)) if int(p) == p else str(p) + print("{:<40} {:<10.2f}".format(f"P{p_word} {metric_name} (ms):", + value)) + result[f"p{p_word}_{metric_attribute_name}_ms"] = value + + process_one_metric("ttft", "TTFT", "Time to First Token") + process_one_metric("tpot", "TPOT", + "Time per Output Token (excl. 1st token)") + process_one_metric("itl", "ITL", "Inter-token Latency") + process_one_metric("e2el", "E2EL", "End-to-end Latency") + + print("=" * 50) + + return result, ret + + +def evaluate(ret, args): + + def _eval_correctness_json(expected, actual): + # extract json string from string using regex + import re + actual = actual.replace('\n', '').replace(' ', '').strip() + try: + actual = re.search(r'\{.*\}', actual).group() + actual = json.loads(actual) + except Exception: + return False + + return True + + def _eval_correctness_choice(expected, actual): + return actual in args.choice + + def _eval_correctness_regex(expected, actual): + import re + return re.match(args.regex, actual) is not None + + def _eval_correctness(expected, actual): + if args.structure_type == 'guided_json': + return _eval_correctness_json(expected, actual) + elif args.structure_type == 'guided_regex': + return _eval_correctness_regex(expected, actual) + elif args.structure_type == 'guided_choice': + return _eval_correctness_choice(expected, actual) + else: + return None + + scores = [] + for res in ret: + score = _eval_correctness(res['expected'], res['generated']) + res['correctness'] = score + scores.append(score) + + not_none_scores = [score for score in scores if score is not None] + + return (sum(not_none_scores) / len(not_none_scores) * + 100) if len(not_none_scores) > 0 else None + + +def main(args: argparse.Namespace): + print(args) + random.seed(args.seed) + np.random.seed(args.seed) + + backend = args.backend + model_id = args.model + tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model + + if args.base_url is not None: + api_url = f"{args.base_url}{args.endpoint}" + base_url = f"{args.base_url}" + else: + api_url = f"http://{args.host}:{args.port}{args.endpoint}" + base_url = f"http://{args.host}:{args.port}" + + tokenizer = get_tokenizer(tokenizer_id, + trust_remote_code=args.trust_remote_code) + + if args.dataset == 'grammar': + args.structure_type = 'guided_grammar' + elif args.dataset == 'regex': + args.structure_type = 'guided_regex' + elif args.dataset == 'choice': + args.structure_type = 'guided_choice' + else: + args.structure_type = 'guided_json' + + if args.no_guided_decoding: + args.guided_decoding_ratio = 0 + if args.save_results: + result_file_name = f'{args.guided_decoding_ratio}guided' + result_file_name += f"_{backend}" + result_file_name += f"_{args.request_rate}qps" + result_file_name += f"_{args.model.split('/')[-1]}" + result_file_name += f"_{args.dataset}" + result_file_name += f"_{args.num_prompts}" + result_file_name += f"_out{args.output_len}" + result_file_name += ".txt" + else: + result_file_name = None + + input_requests = sample_requests(tokenizer, args) + + benchmark_result, ret = asyncio.run( + benchmark( + backend=backend, + api_url=api_url, + base_url=base_url, + model_id=model_id, + tokenizer=tokenizer, + input_requests=input_requests, + request_rate=args.request_rate, + burstiness=args.burstiness, + disable_tqdm=args.disable_tqdm, + profile=args.profile, + selected_percentile_metrics=args.percentile_metrics.split(","), + selected_percentiles=[ + float(p) for p in args.metric_percentiles.split(",") + ], + ignore_eos=args.ignore_eos, + max_concurrency=args.max_concurrency, + guided_decoding_ratio=args.guided_decoding_ratio, + guided_decoding_backend=args.guided_decoding_backend, + )) + + # Save config and results to json + score = evaluate(ret, args) + print("correct_rate(%)", score, '\n') + if args.save_results: + results = { + "backend": + backend, + "model_id": + model_id, + "tokenizer_id": + tokenizer_id, + "num_prompts": + args.num_prompts, + "request_rate": + args.request_rate if args.request_rate < float("inf") else "inf", + "burstiness": + args.burstiness, + "max_concurrency": + args.max_concurrency, + "correct_rate(%)": + score + } + results = {"outputs": ret, **results, **benchmark_result} + + # Save to file + if args.result_filename: + result_file_name = args.result_filename + if args.result_dir: + result_file_name = os.path.join(args.result_dir, result_file_name) + with open(result_file_name, "w", encoding='utf-8') as outfile: + json.dump(results, outfile, indent=4) + + +if __name__ == "__main__": + parser = FlexibleArgumentParser( + description="Benchmark the online serving throughput.") + parser.add_argument( + "--backend", + type=str, + default="vllm", + choices=list(ASYNC_REQUEST_FUNCS.keys()), + ) + parser.add_argument( + "--base-url", + type=str, + default=None, + help="Server or API base url if not using http host and port.", + ) + parser.add_argument("--host", type=str, default="localhost") + parser.add_argument("--port", type=int, default=8000) + parser.add_argument( + "--endpoint", + type=str, + default="/v1/completions", + help="API endpoint.", + ) + parser.add_argument( + "--dataset", + default='json', + choices=['json', 'grammar', 'regex', 'choice', 'xgrammar_bench']) + parser.add_argument("--json_schema_path", + type=str, + default=None, + help="Path to json schema.") + parser.add_argument( + "--max-concurrency", + type=int, + default=None, + help="Maximum number of concurrent requests. This can be used " + "to help simulate an environment where a higher level component " + "is enforcing a maximum number of concurrent requests. While the " + "--request-rate argument controls the rate at which requests are " + "initiated, this argument will control how many are actually allowed " + "to execute at a time. This means that when used in combination, the " + "actual request rate may be lower than specified with --request-rate, " + "if the server is not processing requests fast enough to keep up.") + parser.add_argument( + "--model", + type=str, + required=True, + help="Name of the model.", + ) + parser.add_argument( + "--tokenizer", + type=str, + help= + "Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501 + ) + parser.add_argument( + "--num-prompts", + type=int, + default=1000, + help="Number of prompts to process.", + ) + parser.add_argument( + "--output-len", + type=int, + default=128, + help="Number of output tokens.", + ) + parser.add_argument( + "--request-rate", + type=float, + default=float("inf"), + help="Number of requests per second. If this is inf, " + "then all the requests are sent at time 0. " + "Otherwise, we use Poisson process or gamma distribution " + "to synthesize the request arrival times.", + ) + parser.add_argument( + "--burstiness", + type=float, + default=1.0, + help="Burstiness factor of the request generation. " + "Only take effect when request_rate is not inf. " + "Default value is 1, which follows Poisson process. " + "Otherwise, the request intervals follow a gamma distribution. " + "A lower burstiness value (0 < burstiness < 1) results in more " + "bursty requests. A higher burstiness value (burstiness > 1) " + "results in a more uniform arrival of requests.", + ) + parser.add_argument("--seed", type=int, default=0) + parser.add_argument( + "--trust-remote-code", + action="store_true", + help="Trust remote code from huggingface", + ) + parser.add_argument( + "--disable-tqdm", + action="store_true", + help="Specify to disable tqdm progress bar.", + ) + parser.add_argument( + "--save-results", + action="store_true", + help="Specify to save benchmark results to a json file", + ) + parser.add_argument( + "--profile", + action="store_true", + help="Use Torch Profiler. The endpoint must be launched with " + "VLLM_TORCH_PROFILER_DIR to enable profiler.", + ) + parser.add_argument( + "--result-dir", + type=str, + default=None, + help="Specify directory to save benchmark json results." + "If not specified, results are saved in the current directory.", + ) + parser.add_argument( + "--result-filename", + type=str, + default=None, + help="Specify the filename to save benchmark json results." + "If not specified, results will be saved in " + "{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json" + " format.", + ) + parser.add_argument( + "--ignore-eos", + action="store_true", + help="Set ignore_eos flag when sending the benchmark request." + "Warning: ignore_eos is not supported in deepspeed_mii and tgi.") + parser.add_argument( + "--percentile-metrics", + type=str, + default="ttft,tpot,itl", + help="Comma-seperated list of selected metrics to report percentils. " + "This argument specifies the metrics to report percentiles. " + "Allowed metric names are \"ttft\", \"tpot\", \"itl\", \"e2el\". " + "Default value is \"ttft,tpot,itl\".") + parser.add_argument( + "--metric-percentiles", + type=str, + default="99", + help="Comma-seperated list of percentiles for selected metrics. " + "To report 25-th, 50-th, and 75-th percentiles, use \"25,50,75\". " + "Default value is \"99\". " + "Use \"--percentile-metrics\" to select metrics.", + ) + parser.add_argument("--no-guided-decoding", + action='store_true', + default=False, + help="Whether to disable JSON decoding or not.") + parser.add_argument("--guided-decoding-ratio", + type=float, + default=1.0, + help="Ratio of Guided Decoding requests") + parser.add_argument("--guided-decoding-backend", + type=str, + choices=["outlines", "lm-format-enforcer", "xgrammar"], + default="xgrammar", + help="Backend to use for guided decoding") + + args = parser.parse_args() + main(args) From d291770df08a29e14b616d9ce1538b00ba09a432 Mon Sep 17 00:00:00 2001 From: dhonnappa-amd Date: Wed, 4 Dec 2024 15:46:32 -0600 Subject: [PATCH 030/733] Update test-template.j2 (#283) Adding build only k8s node and queue names update --- .buildkite/test-template.j2 | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.buildkite/test-template.j2 b/.buildkite/test-template.j2 index e7b24268ba398..ce448836a8278 100644 --- a/.buildkite/test-template.j2 +++ b/.buildkite/test-template.j2 @@ -19,7 +19,7 @@ steps: - exit_status: -10 # Agent was lost limit: 5 agents: - queue: amd + queue: amd-cpu {% for step in steps %} {% if step.mirror_hardwares and "amd" in step.mirror_hardwares %} @@ -27,7 +27,7 @@ steps: depends_on: - "amd-build" agents: - queue: amd + queue: amd_gpu commands: - bash .buildkite/run-amd-test.sh "cd {{ (step.working_dir or default_working_dir) | safe }} ; {{ step.command or (step.commands | join(" && ")) | safe }}" env: From e4c34c23de2a90ab837772ac182638ac3bc1636d Mon Sep 17 00:00:00 2001 From: Daniele <36171005+dtrifiro@users.noreply.github.com> Date: Wed, 4 Dec 2024 22:48:13 +0100 Subject: [PATCH 031/733] [CI/Build] improve python-only dev setup (#9621) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Daniele Trifirò Signed-off-by: youkaichao Co-authored-by: youkaichao --- docs/source/getting_started/installation.rst | 41 +++------ python_only_dev.py | 96 ++------------------ setup.py | 83 ++++++++++++++++- vllm/envs.py | 3 +- 4 files changed, 102 insertions(+), 121 deletions(-) diff --git a/docs/source/getting_started/installation.rst b/docs/source/getting_started/installation.rst index 52412fa8437b9..9b6cb0e80d60e 100644 --- a/docs/source/getting_started/installation.rst +++ b/docs/source/getting_started/installation.rst @@ -21,7 +21,7 @@ You can install vLLM using pip: .. code-block:: console $ # (Recommended) Create a new conda environment. - $ conda create -n myenv python=3.10 -y + $ conda create -n myenv python=3.12 -y $ conda activate myenv $ # Install vLLM with CUDA 12.1. @@ -89,45 +89,24 @@ Build from source Python-only build (without compilation) --------------------------------------- -If you only need to change Python code, you can simply build vLLM without compilation. - -The first step is to install the latest vLLM wheel: - -.. code-block:: console - - pip install https://vllm-wheels.s3.us-west-2.amazonaws.com/nightly/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl - -You can find more information about vLLM's wheels `above <#install-the-latest-code>`_. - -After verifying that the installation is successful, you can use `the following script `_: +If you only need to change Python code, you can build and install vLLM without compilation. Using `pip's ``--editable`` flag `_, changes you make to the code will be reflected when you run vLLM: .. code-block:: console $ git clone https://github.com/vllm-project/vllm.git $ cd vllm - $ python python_only_dev.py + $ VLLM_USE_PRECOMPILED=1 pip install --editable . -The script will: +This will download the latest nightly wheel and use the compiled libraries from there in the install. -* Find the installed vLLM package in the current environment. -* Copy built files to the current directory. -* Rename the installed vLLM package. -* Symbolically link the current directory to the installed vLLM package. - -Now, you can edit the Python code in the current directory, and the changes will be reflected when you run vLLM. - -Once you have finished editing or want to install another vLLM wheel, you should exit the development environment using `the same script `_ with the ``--quit-dev`` (or ``-q`` for short) flag: +The ``VLLM_PRECOMPILED_WHEEL_LOCATION`` environment variable can be used instead of ``VLLM_USE_PRECOMPILED`` to specify a custom path or URL to the wheel file. For example, to use the `0.6.1.post1 PyPi wheel `_: .. code-block:: console - $ python python_only_dev.py --quit-dev - -The ``--quit-dev`` flag will: - -* Remove the symbolic link from the current directory to the vLLM package. -* Restore the original vLLM package from the backup. + $ export VLLM_PRECOMPILED_WHEEL_LOCATION=https://files.pythonhosted.org/packages/4a/4c/ee65ba33467a4c0de350ce29fbae39b9d0e7fcd887cc756fa993654d1228/vllm-0.6.3.post1-cp38-abi3-manylinux1_x86_64.whl + $ pip install --editable . -If you update the vLLM wheel and rebuild from the source to make further edits, you will need to repeat the `Python-only build <#python-only-build>`_ steps again. +You can find more information about vLLM's wheels `above <#install-the-latest-code>`_. .. note:: @@ -148,9 +127,13 @@ If you want to modify C++ or CUDA code, you'll need to build vLLM from source. T .. tip:: Building from source requires a lot of compilation. If you are building from source repeatedly, it's more efficient to cache the compilation results. + For example, you can install `ccache `_ using ``conda install ccache`` or ``apt install ccache`` . As long as ``which ccache`` command can find the ``ccache`` binary, it will be used automatically by the build system. After the first build, subsequent builds will be much faster. + `sccache `_ works similarly to ``ccache``, but has the capability to utilize caching in remote storage environments. + The following environment variables can be set to configure the vLLM ``sccache`` remote: ``SCCACHE_BUCKET=vllm-build-sccache SCCACHE_REGION=us-west-2 SCCACHE_S3_NO_CREDENTIALS=1``. We also recommend setting ``SCCACHE_IDLE_TIMEOUT=0``. + Use an existing PyTorch installation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/python_only_dev.py b/python_only_dev.py index 1ca0f5c30b741..f70b4984025b3 100644 --- a/python_only_dev.py +++ b/python_only_dev.py @@ -1,92 +1,14 @@ -# enable python only development -# copy compiled files to the current directory directly +msg = """Old style python only build (without compilation) is deprecated, please check https://docs.vllm.ai/en/latest/getting_started/installation.html#python-only-build-without-compilation for the new way to do python only build (without compilation). -import argparse -import os -import shutil -import subprocess -import sys -import warnings +TL;DR: -parser = argparse.ArgumentParser( - description="Development mode for python-only code") -parser.add_argument('-q', - '--quit-dev', - action='store_true', - help='Set the flag to quit development mode') -args = parser.parse_args() +VLLM_USE_PRECOMPILED=1 pip install -e . -# cannot directly `import vllm` , because it will try to -# import from the current directory -output = subprocess.run([sys.executable, "-m", "pip", "show", "vllm"], - capture_output=True) +or -assert output.returncode == 0, "vllm is not installed" +export VLLM_COMMIT=33f460b17a54acb3b6cc0b03f4a17876cff5eafd # use full commit hash from the main branch +export VLLM_PRECOMPILED_WHEEL_LOCATION=https://vllm-wheels.s3.us-west-2.amazonaws.com/${VLLM_COMMIT}/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl +pip install -e . +""" # noqa -text = output.stdout.decode("utf-8") - -package_path = None -for line in text.split("\n"): - if line.startswith("Location: "): - package_path = line.split(": ")[1] - break - -assert package_path is not None, "could not find package path" - -cwd = os.getcwd() - -assert cwd != package_path, "should not import from the current directory" - -files_to_copy = [ - "vllm/_C.abi3.so", - "vllm/_moe_C.abi3.so", - "vllm/vllm_flash_attn/vllm_flash_attn_c.abi3.so", - "vllm/vllm_flash_attn/flash_attn_interface.py", - "vllm/vllm_flash_attn/__init__.py", - # "vllm/_version.py", # not available in nightly wheels yet -] - -# Try to create _version.py to avoid version related warning -# Refer to https://github.com/vllm-project/vllm/pull/8771 -try: - from setuptools_scm import get_version - get_version(write_to="vllm/_version.py") -except ImportError: - warnings.warn( - "To avoid warnings related to vllm._version, " - "you should install setuptools-scm by `pip install setuptools-scm`", - stacklevel=2) - -if not args.quit_dev: - for file in files_to_copy: - src = os.path.join(package_path, file) - dst = file - print(f"Copying {src} to {dst}") - shutil.copyfile(src, dst) - - pre_built_vllm_path = os.path.join(package_path, "vllm") - tmp_path = os.path.join(package_path, "vllm_pre_built") - current_vllm_path = os.path.join(cwd, "vllm") - - print(f"Renaming {pre_built_vllm_path} to {tmp_path} for backup") - shutil.copytree(pre_built_vllm_path, tmp_path) - shutil.rmtree(pre_built_vllm_path) - - print(f"Linking {current_vllm_path} to {pre_built_vllm_path}") - os.symlink(current_vllm_path, pre_built_vllm_path) -else: - vllm_symlink_path = os.path.join(package_path, "vllm") - vllm_backup_path = os.path.join(package_path, "vllm_pre_built") - current_vllm_path = os.path.join(cwd, "vllm") - - print(f"Unlinking {current_vllm_path} to {vllm_symlink_path}") - assert os.path.islink( - vllm_symlink_path - ), f"not in dev mode: {vllm_symlink_path} is not a symbolic link" - assert current_vllm_path == os.readlink( - vllm_symlink_path - ), "current directory is not the source code of package" - os.unlink(vllm_symlink_path) - - print(f"Recovering backup from {vllm_backup_path} to {vllm_symlink_path}") - os.rename(vllm_backup_path, vllm_symlink_path) +print(msg) diff --git a/setup.py b/setup.py index b936589869e76..182dabe449674 100644 --- a/setup.py +++ b/setup.py @@ -249,6 +249,74 @@ def run(self): self.copy_file(file, dst_file) +class repackage_wheel(build_ext): + """Extracts libraries and other files from an existing wheel.""" + default_wheel = "https://vllm-wheels.s3.us-west-2.amazonaws.com/nightly/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl" + + def run(self) -> None: + wheel_location = os.getenv("VLLM_PRECOMPILED_WHEEL_LOCATION", + self.default_wheel) + + assert _is_cuda( + ), "VLLM_USE_PRECOMPILED is only supported for CUDA builds" + + import zipfile + + if os.path.isfile(wheel_location): + wheel_path = wheel_location + print(f"Using existing wheel={wheel_path}") + else: + # Download the wheel from a given URL, assume + # the filename is the last part of the URL + wheel_filename = wheel_location.split("/")[-1] + + import tempfile + + # create a temporary directory to store the wheel + temp_dir = tempfile.mkdtemp(prefix="vllm-wheels") + wheel_path = os.path.join(temp_dir, wheel_filename) + + print(f"Downloading wheel from {wheel_location} to {wheel_path}") + + from urllib.request import urlretrieve + + try: + urlretrieve(wheel_location, filename=wheel_path) + except Exception as e: + from setuptools.errors import SetupError + + raise SetupError( + f"Failed to get vLLM wheel from {wheel_location}") from e + + with zipfile.ZipFile(wheel_path) as wheel: + files_to_copy = [ + "vllm/_C.abi3.so", + "vllm/_moe_C.abi3.so", + "vllm/vllm_flash_attn/vllm_flash_attn_c.abi3.so", + "vllm/vllm_flash_attn/flash_attn_interface.py", + "vllm/vllm_flash_attn/__init__.py", + # "vllm/_version.py", # not available in nightly wheels yet + ] + file_members = filter(lambda x: x.filename in files_to_copy, + wheel.filelist) + + for file in file_members: + print(f"Extracting and including {file.filename} " + "from existing wheel") + package_name = os.path.dirname(file.filename).replace("/", ".") + file_name = os.path.basename(file.filename) + + if package_name not in package_data: + package_data[package_name] = [] + + wheel.extract(file) + if file_name.endswith(".py"): + # python files shouldn't be added to package_data + continue + + package_data[package_name].append(file_name) + + def _is_hpu() -> bool: is_hpu_available = True try: @@ -403,6 +471,8 @@ def get_vllm_version() -> str: # skip this for source tarball, required for pypi if "sdist" not in sys.argv: version += f"{sep}cu{cuda_version_str}" + if envs.VLLM_USE_PRECOMPILED: + version += ".precompiled" elif _is_hip(): # Get the HIP version hipcc_version = get_hipcc_rocm_version() @@ -514,13 +584,18 @@ def _read_requirements(filename: str) -> List[str]: package_data = { "vllm": ["py.typed", "model_executor/layers/fused_moe/configs/*.json"] } -if envs.VLLM_USE_PRECOMPILED: - ext_modules = [] - package_data["vllm"].append("*.so") if _no_device(): ext_modules = [] +if not ext_modules: + cmdclass = {} +else: + cmdclass = { + "build_ext": + repackage_wheel if envs.VLLM_USE_PRECOMPILED else cmake_build_ext + } + setup( name="vllm", version=get_vllm_version(), @@ -557,7 +632,7 @@ def _read_requirements(filename: str) -> List[str]: "audio": ["librosa", "soundfile"], # Required for audio processing "video": ["decord"] # Required for video processing }, - cmdclass={"build_ext": cmake_build_ext} if len(ext_modules) > 0 else {}, + cmdclass=cmdclass, package_data=package_data, entry_points={ "console_scripts": [ diff --git a/vllm/envs.py b/vllm/envs.py index c896770e5f6bc..28797ac1e4af2 100644 --- a/vllm/envs.py +++ b/vllm/envs.py @@ -113,7 +113,8 @@ def get_default_config_root(): # If set, vllm will use precompiled binaries (*.so) "VLLM_USE_PRECOMPILED": - lambda: bool(os.environ.get("VLLM_USE_PRECOMPILED")), + lambda: bool(os.environ.get("VLLM_USE_PRECOMPILED")) or bool( + os.environ.get("VLLM_PRECOMPILED_WHEEL_LOCATION")), # CMake build type # If not set, defaults to "Debug" or "RelWithDebInfo" From 2a56e1264f3f0f32e25de42c32eac67cbc86a098 Mon Sep 17 00:00:00 2001 From: Woosuk Kwon Date: Wed, 4 Dec 2024 16:54:05 -0800 Subject: [PATCH 032/733] [V1] Fix when max_model_len is not divisible by block_size (#10903) Signed-off-by: Woosuk Kwon --- vllm/v1/worker/gpu_model_runner.py | 13 ++++++++++--- 1 file changed, 10 insertions(+), 3 deletions(-) diff --git a/vllm/v1/worker/gpu_model_runner.py b/vllm/v1/worker/gpu_model_runner.py index 4692762493f00..e8d964a722f60 100644 --- a/vllm/v1/worker/gpu_model_runner.py +++ b/vllm/v1/worker/gpu_model_runner.py @@ -260,7 +260,8 @@ def _prepare_inputs(self, scheduler_output: "SchedulerOutput"): # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2] # -> [0, 1, M, M + 1, M + 2, M + 3, M + 4, 2 * M, 2 * M + 1, 2 * M + 2] # where M is the max_model_len. - token_indices = positions_np + req_indices * self.max_model_len + token_indices = (positions_np + + req_indices * self.input_batch.token_ids_cpu.shape[1]) token_indices = torch.from_numpy(token_indices) input_ids = torch.empty((total_num_scheduled_tokens, ), dtype=torch.int32, @@ -273,9 +274,15 @@ def _prepare_inputs(self, scheduler_output: "SchedulerOutput"): out=input_ids) # Calculate the slot mapping. + # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2] + # -> [0, 0, K, K, K + 1, K + 1, K + 2, 2 * K, 2 * K, 2 * K + 1] + # where K is the max_num_blocks_per_req and the block size is 2. + # NOTE(woosuk): We can't simply use `token_indices // block_size` here + # because M (max_model_len) is not necessarily divisible by block_size. block_numbers = self.input_batch.block_table_cpu_tensor.flatten()[ - token_indices // self.block_size] - block_offsets = token_indices % self.block_size + req_indices * self.max_num_blocks_per_req + + positions_np // self.block_size] + block_offsets = torch.from_numpy(positions_np % self.block_size) slot_mapping = torch.empty((total_num_scheduled_tokens, ), dtype=torch.int32, device="cpu", From 7883c2bbe7d0ab47160d205822f7b188a5a2771b Mon Sep 17 00:00:00 2001 From: "Kevin H. Luu" Date: Wed, 4 Dec 2024 17:02:17 -0800 Subject: [PATCH 033/733] [benchmark] Make H100 benchmark optional (#10908) --- .buildkite/nightly-benchmarks/benchmark-pipeline.yaml | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/.buildkite/nightly-benchmarks/benchmark-pipeline.yaml b/.buildkite/nightly-benchmarks/benchmark-pipeline.yaml index dd2ce454ecb2d..64ba1b32fb074 100644 --- a/.buildkite/nightly-benchmarks/benchmark-pipeline.yaml +++ b/.buildkite/nightly-benchmarks/benchmark-pipeline.yaml @@ -65,10 +65,15 @@ steps: - VLLM_USAGE_SOURCE - HF_TOKEN + - block: "Run H100 Benchmark" + key: block-h100 + depends_on: ~ + - label: "H100" # skip: "use this flag to conditionally skip the benchmark step, useful for PR testing" agents: queue: H100 + depends_on: block-h100 plugins: - docker#v5.12.0: image: public.ecr.aws/q9t5s3a7/vllm-ci-postmerge-repo:$BUILDKITE_COMMIT From 8d370e91cb0049dc150c85710a08e85952504bfc Mon Sep 17 00:00:00 2001 From: Michael Goin Date: Wed, 4 Dec 2024 22:14:06 -0500 Subject: [PATCH 034/733] [Bugfix] Fallback to outlines for complex json schemas (#10899) Signed-off-by: mgoin --- tests/entrypoints/conftest.py | 31 +++++++++++++ tests/entrypoints/llm/test_guided_generate.py | 28 ++++++++++++ .../guided_decoding/__init__.py | 43 +++++++++++++++++++ 3 files changed, 102 insertions(+) diff --git a/tests/entrypoints/conftest.py b/tests/entrypoints/conftest.py index e7ef5637c8ccb..0f7d15e1d85aa 100644 --- a/tests/entrypoints/conftest.py +++ b/tests/entrypoints/conftest.py @@ -69,6 +69,37 @@ def sample_json_schema(): } +@pytest.fixture +def sample_complex_json_schema(): + return { + "type": "object", + "properties": { + "score": { + "type": "integer", + "minimum": 0, + "maximum": 100 # Numeric range + }, + "grade": { + "type": "string", + "pattern": "^[A-D]$" # Regex pattern + }, + "email": { + "type": "string", + "pattern": "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$" + }, + "tags": { + "type": "array", + "items": { + "type": "string", + "pattern": + "^[a-z]{1,10}$" # Combining length and pattern restrictions + } + } + }, + "required": ["score", "grade", "email", "tags"] + } + + @pytest.fixture def sample_guided_choice(): return [ diff --git a/tests/entrypoints/llm/test_guided_generate.py b/tests/entrypoints/llm/test_guided_generate.py index c3706f696b264..de6257cfc551c 100644 --- a/tests/entrypoints/llm/test_guided_generate.py +++ b/tests/entrypoints/llm/test_guided_generate.py @@ -76,6 +76,34 @@ def test_guided_json_completion(sample_json_schema, llm): jsonschema.validate(instance=output_json, schema=sample_json_schema) +@pytest.mark.skip_global_cleanup +def test_guided_complex_json_completion(sample_complex_json_schema, llm): + sampling_params = SamplingParams( + temperature=1.0, + max_tokens=1000, + guided_decoding=GuidedDecodingParams(json=sample_complex_json_schema)) + outputs = llm.generate(prompts=[ + f"Give an example JSON for an assignment grade " + f"that fits this schema: {sample_complex_json_schema}" + ] * 2, + sampling_params=sampling_params, + use_tqdm=True) + + assert outputs is not None + + for output in outputs: + assert output is not None + assert isinstance(output, RequestOutput) + prompt = output.prompt + + generated_text = output.outputs[0].text + assert generated_text is not None + print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") + output_json = json.loads(generated_text) + jsonschema.validate(instance=output_json, + schema=sample_complex_json_schema) + + @pytest.mark.skip_global_cleanup def test_guided_choice_completion(sample_guided_choice, llm): sampling_params = SamplingParams( diff --git a/vllm/model_executor/guided_decoding/__init__.py b/vllm/model_executor/guided_decoding/__init__.py index 3340bad38ab73..a81377341e095 100644 --- a/vllm/model_executor/guided_decoding/__init__.py +++ b/vllm/model_executor/guided_decoding/__init__.py @@ -15,6 +15,40 @@ logger = init_logger(__name__) +def has_xgrammar_unsupported_json_features(schema: dict) -> bool: + """Check if JSON schema contains features unsupported by xgrammar.""" + + def check_object(obj: dict) -> bool: + if not isinstance(obj, dict): + return False + + # Check for pattern restrictions + if "pattern" in obj: + return True + + # Check for numeric ranges + if obj.get("type") in ("integer", "number") and any( + key in obj for key in [ + "minimum", "maximum", "exclusiveMinimum", + "exclusiveMaximum", "multipleOf" + ]): + return True + + # Recursively check all nested objects and arrays + for value in obj.values(): + if isinstance(value, dict): + if check_object(value): + return True + elif isinstance(value, list): + for item in value: + if isinstance(item, dict) and check_object(item): + return True + + return False + + return check_object(schema) + + def maybe_backend_fallback( guided_params: GuidedDecodingParams) -> GuidedDecodingParams: # lm-format-enforce doesn't support grammar, fallback to xgrammar @@ -47,6 +81,15 @@ def maybe_backend_fallback( "Falling back to use outlines instead.") guided_params.backend = "outlines" + # xgrammar doesn't support some JSON schema features + elif (guided_params.json is not None + and has_xgrammar_unsupported_json_features(guided_params.json)): + logger.warning( + "xgrammar does not support advanced JSON schema features like " + "patterns or numeric ranges. " + "Falling back to use outlines instead.") + guided_params.backend = "outlines" + return guided_params From aa39a8e17537f9127b3da65dba6b33067bfd2f78 Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Thu, 5 Dec 2024 11:19:35 +0800 Subject: [PATCH 035/733] [Doc] Create a new "Usage" section (#10827) Signed-off-by: DarkLight1337 --- .../design/multimodal/multimodal_index.rst | 5 +- docs/source/index.rst | 25 +- .../models/enabling_multimodal_inputs.rst | 2 +- docs/source/models/supported_models.rst | 19 +- .../serving/openai_compatible_server.md | 4 +- .../compatibility_matrix.rst | 0 docs/source/{models => usage}/engine_args.rst | 0 docs/source/{serving => usage}/env_vars.rst | 0 docs/source/{serving => usage}/faq.rst | 2 + docs/source/{models => usage}/lora.rst | 4 +- .../vlm.rst => usage/multimodal_inputs.rst} | 248 ++++++++++++------ docs/source/{models => usage}/performance.rst | 0 docs/source/{models => usage}/spec_decode.rst | 8 +- .../{models => usage}/structured_outputs.rst | 0 docs/source/{serving => usage}/usage_stats.md | 0 vllm/attention/backends/rocm_flash_attn.py | 2 +- vllm/config.py | 8 +- vllm/engine/arg_utils.py | 2 +- vllm/engine/output_processor/multi_step.py | 2 +- vllm/executor/cpu_executor.py | 2 +- vllm/platforms/cpu.py | 2 +- vllm/spec_decode/spec_decode_worker.py | 2 +- vllm/utils.py | 2 +- vllm/worker/multi_step_model_runner.py | 2 +- vllm/worker/utils.py | 2 +- 25 files changed, 218 insertions(+), 125 deletions(-) rename docs/source/{serving => usage}/compatibility_matrix.rst (100%) rename docs/source/{models => usage}/engine_args.rst (100%) rename docs/source/{serving => usage}/env_vars.rst (100%) rename docs/source/{serving => usage}/faq.rst (99%) rename docs/source/{models => usage}/lora.rst (99%) rename docs/source/{models/vlm.rst => usage/multimodal_inputs.rst} (62%) rename docs/source/{models => usage}/performance.rst (100%) rename docs/source/{models => usage}/spec_decode.rst (98%) rename docs/source/{models => usage}/structured_outputs.rst (100%) rename docs/source/{serving => usage}/usage_stats.md (100%) diff --git a/docs/source/design/multimodal/multimodal_index.rst b/docs/source/design/multimodal/multimodal_index.rst index 30f543abc20c7..c6d47f90b62d5 100644 --- a/docs/source/design/multimodal/multimodal_index.rst +++ b/docs/source/design/multimodal/multimodal_index.rst @@ -7,7 +7,7 @@ Multi-Modality vLLM provides experimental support for multi-modal models through the :mod:`vllm.multimodal` package. -Multi-modal inputs can be passed alongside text and token prompts to :ref:`supported models ` +Multi-modal inputs can be passed alongside text and token prompts to :ref:`supported models ` via the ``multi_modal_data`` field in :class:`vllm.inputs.PromptType`. Currently, vLLM only has built-in support for image data. You can extend vLLM to process additional modalities @@ -15,9 +15,6 @@ by following :ref:`this guide `. Looking to add your own multi-modal model? Please follow the instructions listed :ref:`here `. -.. - TODO: Add usage of --limit-mm-per-prompt when multi-image input is officially supported - Guides ++++++ diff --git a/docs/source/index.rst b/docs/source/index.rst index 0692e949f1c77..86b1eed2d26ba 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -85,12 +85,8 @@ Documentation serving/deploying_with_nginx serving/distributed_serving serving/metrics - serving/env_vars - serving/usage_stats serving/integrations serving/tensorizer - serving/compatibility_matrix - serving/faq .. toctree:: :maxdepth: 1 @@ -99,12 +95,21 @@ Documentation models/supported_models models/adding_model models/enabling_multimodal_inputs - models/engine_args - models/lora - models/vlm - models/structured_outputs - models/spec_decode - models/performance + +.. toctree:: + :maxdepth: 1 + :caption: Usage + + usage/lora + usage/multimodal_inputs + usage/structured_outputs + usage/spec_decode + usage/compatibility_matrix + usage/performance + usage/faq + usage/engine_args + usage/env_vars + usage/usage_stats .. toctree:: :maxdepth: 1 diff --git a/docs/source/models/enabling_multimodal_inputs.rst b/docs/source/models/enabling_multimodal_inputs.rst index 49b5285c45590..5c1236e1a8972 100644 --- a/docs/source/models/enabling_multimodal_inputs.rst +++ b/docs/source/models/enabling_multimodal_inputs.rst @@ -3,7 +3,7 @@ Enabling Multimodal Inputs ========================== -This document walks you through the steps to extend a vLLM model so that it accepts :ref:`multi-modal ` inputs. +This document walks you through the steps to extend a vLLM model so that it accepts :ref:`multi-modal inputs `. .. seealso:: :ref:`adding_a_new_model` diff --git a/docs/source/models/supported_models.rst b/docs/source/models/supported_models.rst index 9f3b6f59068e2..5b416e04da745 100644 --- a/docs/source/models/supported_models.rst +++ b/docs/source/models/supported_models.rst @@ -471,6 +471,8 @@ Sentence Pair Scoring .. note:: These models are supported in both offline and online inference via Score API. +.. _supported_mm_models: + Multimodal Language Models ^^^^^^^^^^^^^^^^^^^^^^^^^^ @@ -489,8 +491,6 @@ On the other hand, modalities separated by :code:`/` are mutually exclusive. - e.g.: :code:`T / I` means that the model supports text-only and image-only inputs, but not text-with-image inputs. -.. _supported_vlms: - Text Generation --------------- @@ -646,6 +646,21 @@ Text Generation | :sup:`E` Pre-computed embeddings can be inputted for this modality. | :sup:`+` Multiple items can be inputted per text prompt for this modality. +.. important:: + To enable multiple multi-modal items per text prompt, you have to set :code:`limit_mm_per_prompt` (offline inference) + or :code:`--limit-mm-per-prompt` (online inference). For example, to enable passing up to 4 images per text prompt: + + .. code-block:: python + + llm = LLM( + model="Qwen/Qwen2-VL-7B-Instruct", + limit_mm_per_prompt={"image": 4}, + ) + + .. code-block:: bash + + vllm serve Qwen/Qwen2-VL-7B-Instruct --limit-mm-per-prompt image=4 + .. note:: vLLM currently only supports adding LoRA to the language backbone of multimodal models. diff --git a/docs/source/serving/openai_compatible_server.md b/docs/source/serving/openai_compatible_server.md index c39cef85897ed..d75e90807ca1d 100644 --- a/docs/source/serving/openai_compatible_server.md +++ b/docs/source/serving/openai_compatible_server.md @@ -32,7 +32,7 @@ We currently support the following OpenAI APIs: - [Completions API](https://platform.openai.com/docs/api-reference/completions) - *Note: `suffix` parameter is not supported.* - [Chat Completions API](https://platform.openai.com/docs/api-reference/chat) - - [Vision](https://platform.openai.com/docs/guides/vision)-related parameters are supported; see [Using VLMs](../models/vlm.rst). + - [Vision](https://platform.openai.com/docs/guides/vision)-related parameters are supported; see [Multimodal Inputs](../usage/multimodal_inputs.rst). - *Note: `image_url.detail` parameter is not supported.* - We also support `audio_url` content type for audio files. - Refer to [vllm.entrypoints.chat_utils](https://github.com/vllm-project/vllm/tree/main/vllm/entrypoints/chat_utils.py) for the exact schema. @@ -41,7 +41,7 @@ We currently support the following OpenAI APIs: - [Embeddings API](https://platform.openai.com/docs/api-reference/embeddings) - Instead of `inputs`, you can pass in a list of `messages` (same schema as Chat Completions API), which will be treated as a single prompt to the model according to its chat template. - - This enables multi-modal inputs to be passed to embedding models, see [Using VLMs](../models/vlm.rst). + - This enables multi-modal inputs to be passed to embedding models, see [this page](../usage/multimodal_inputs.rst) for details. - *Note: You should run `vllm serve` with `--task embedding` to ensure that the model is being run in embedding mode.* ## Score API for Cross Encoder Models diff --git a/docs/source/serving/compatibility_matrix.rst b/docs/source/usage/compatibility_matrix.rst similarity index 100% rename from docs/source/serving/compatibility_matrix.rst rename to docs/source/usage/compatibility_matrix.rst diff --git a/docs/source/models/engine_args.rst b/docs/source/usage/engine_args.rst similarity index 100% rename from docs/source/models/engine_args.rst rename to docs/source/usage/engine_args.rst diff --git a/docs/source/serving/env_vars.rst b/docs/source/usage/env_vars.rst similarity index 100% rename from docs/source/serving/env_vars.rst rename to docs/source/usage/env_vars.rst diff --git a/docs/source/serving/faq.rst b/docs/source/usage/faq.rst similarity index 99% rename from docs/source/serving/faq.rst rename to docs/source/usage/faq.rst index 9e858e612c8bf..ce327abd5fa20 100644 --- a/docs/source/serving/faq.rst +++ b/docs/source/usage/faq.rst @@ -1,3 +1,5 @@ +.. _faq: + Frequently Asked Questions =========================== diff --git a/docs/source/models/lora.rst b/docs/source/usage/lora.rst similarity index 99% rename from docs/source/models/lora.rst rename to docs/source/usage/lora.rst index ef0177eaf2162..c2c6fa2aebfaf 100644 --- a/docs/source/models/lora.rst +++ b/docs/source/usage/lora.rst @@ -1,7 +1,7 @@ .. _lora: -Using LoRA adapters -=================== +LoRA Adapters +============= This document shows you how to use `LoRA adapters `_ with vLLM on top of a base model. diff --git a/docs/source/models/vlm.rst b/docs/source/usage/multimodal_inputs.rst similarity index 62% rename from docs/source/models/vlm.rst rename to docs/source/usage/multimodal_inputs.rst index bcbe50a25fa09..c93f65327e31b 100644 --- a/docs/source/models/vlm.rst +++ b/docs/source/usage/multimodal_inputs.rst @@ -1,34 +1,31 @@ -.. _vlm: +.. _multimodal_inputs: -Using VLMs -========== +Multimodal Inputs +================= -vLLM provides experimental support for Vision Language Models (VLMs). See the :ref:`list of supported VLMs here `. -This document shows you how to run and serve these models using vLLM. +This page teaches you how to pass multi-modal inputs to :ref:`multi-modal models ` in vLLM. .. note:: - We are actively iterating on VLM support. See `this RFC `_ for upcoming changes, + We are actively iterating on multi-modal support. See `this RFC `_ for upcoming changes, and `open an issue on GitHub `_ if you have any feedback or feature requests. Offline Inference ----------------- -Single-image input -^^^^^^^^^^^^^^^^^^ - -The :class:`~vllm.LLM` class can be instantiated in much the same way as language-only models. - -.. code-block:: python - - llm = LLM(model="llava-hf/llava-1.5-7b-hf") - -To pass an image to the model, note the following in :class:`vllm.inputs.PromptType`: +To input multi-modal data, follow this schema in :class:`vllm.inputs.PromptType`: * ``prompt``: The prompt should follow the format that is documented on HuggingFace. * ``multi_modal_data``: This is a dictionary that follows the schema defined in :class:`vllm.multimodal.MultiModalDataDict`. +Image +^^^^^ + +You can pass a single image to the :code:`'image'` field of the multi-modal dictionary, as shown in the following examples: + .. code-block:: python + llm = LLM(model="llava-hf/llava-1.5-7b-hf") + # Refer to the HuggingFace repo for the correct format to use prompt = "USER: \nWhat is the content of this image?\nASSISTANT:" @@ -41,41 +38,6 @@ To pass an image to the model, note the following in :class:`vllm.inputs.PromptT "multi_modal_data": {"image": image}, }) - for o in outputs: - generated_text = o.outputs[0].text - print(generated_text) - - # Inference with image embeddings as input - image_embeds = torch.load(...) # torch.Tensor of shape (1, image_feature_size, hidden_size of LM) - outputs = llm.generate({ - "prompt": prompt, - "multi_modal_data": {"image": image_embeds}, - }) - - for o in outputs: - generated_text = o.outputs[0].text - print(generated_text) - - # Inference with image embeddings as input with additional parameters - # Specifically, we are conducting a trial run of Qwen2VL and MiniCPM-V with the new input format, which utilizes additional parameters. - mm_data = {} - - image_embeds = torch.load(...) # torch.Tensor of shape (num_images, image_feature_size, hidden_size of LM) - # For Qwen2VL, image_grid_thw is needed to calculate positional encoding. - mm_data['image'] = { - "image_embeds": image_embeds, - "image_grid_thw": torch.load(...) # torch.Tensor of shape (1, 3), - } - # For MiniCPM-V, image_size_list is needed to calculate details of the sliced image. - mm_data['image'] = { - "image_embeds": image_embeds, - "image_size_list": [image.size] # list of image sizes - } - outputs = llm.generate({ - "prompt": prompt, - "multi_modal_data": mm_data, - }) - for o in outputs: generated_text = o.outputs[0].text print(generated_text) @@ -102,12 +64,7 @@ To pass an image to the model, note the following in :class:`vllm.inputs.PromptT A code example can be found in `examples/offline_inference_vision_language.py `_. -Multi-image input -^^^^^^^^^^^^^^^^^ - -Multi-image input is only supported for a subset of VLMs, as shown :ref:`here `. - -To enable multiple multi-modal items per text prompt, you have to set ``limit_mm_per_prompt`` for the :class:`~vllm.LLM` class. +To substitute multiple images inside the same text prompt, you can pass in a list of images instead: .. code-block:: python @@ -118,10 +75,6 @@ To enable multiple multi-modal items per text prompt, you have to set ``limit_mm limit_mm_per_prompt={"image": 2}, # The maximum number to accept ) -Instead of passing in a single image, you can pass in a list of images. - -.. code-block:: python - # Refer to the HuggingFace repo for the correct format to use prompt = "<|user|>\n<|image_1|>\n<|image_2|>\nWhat is the content of each image?<|end|>\n<|assistant|>\n" @@ -169,30 +122,114 @@ Multi-image input can be extended to perform video captioning. We show this with generated_text = o.outputs[0].text print(generated_text) +Video +^^^^^ + +You can pass a list of NumPy arrays directly to the :code:`'video'` field of the multi-modal dictionary +instead of using multi-image input. + +Please refer to `examples/offline_inference_vision_language.py `_ for more details. + +Audio +^^^^^ + +You can pass a tuple :code:`(array, sampling_rate)` to the :code:`'audio'` field of the multi-modal dictionary. + +Please refer to `examples/offline_inference_audio_language.py `_ for more details. + +Embedding +^^^^^^^^^ + +To input pre-computed embeddings belonging to a data type (i.e. image, video, or audio) directly to the language model, +pass a tensor of shape :code:`(num_items, feature_size, hidden_size of LM)` to the corresponding field of the multi-modal dictionary. + +.. code-block:: python + + # Inference with image embeddings as input + llm = LLM(model="llava-hf/llava-1.5-7b-hf") + + # Refer to the HuggingFace repo for the correct format to use + prompt = "USER: \nWhat is the content of this image?\nASSISTANT:" + + # Embeddings for single image + # torch.Tensor of shape (1, image_feature_size, hidden_size of LM) + image_embeds = torch.load(...) + + outputs = llm.generate({ + "prompt": prompt, + "multi_modal_data": {"image": image_embeds}, + }) + + for o in outputs: + generated_text = o.outputs[0].text + print(generated_text) + +For Qwen2-VL and MiniCPM-V, we accept additional parameters alongside the embeddings: + +.. code-block:: python + + # Construct the prompt based on your model + prompt = ... + + # Embeddings for multiple images + # torch.Tensor of shape (num_images, image_feature_size, hidden_size of LM) + image_embeds = torch.load(...) + + # Qwen2-VL + llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4}) + mm_data = { + "image": { + "image_embeds": image_embeds, + # image_grid_thw is needed to calculate positional encoding. + "image_grid_thw": torch.load(...), # torch.Tensor of shape (1, 3), + } + } + + # MiniCPM-V + llm = LLM("openbmb/MiniCPM-V-2_6", trust_remote_code=True, limit_mm_per_prompt={"image": 4}) + mm_data = { + "image": { + "image_embeds": image_embeds, + # image_size_list is needed to calculate details of the sliced image. + "image_size_list": [image.size for image in images], # list of image sizes + } + } + + outputs = llm.generate({ + "prompt": prompt, + "multi_modal_data": mm_data, + }) + + for o in outputs: + generated_text = o.outputs[0].text + print(generated_text) + Online Inference ---------------- -OpenAI Vision API -^^^^^^^^^^^^^^^^^ +Our OpenAI-compatible server accepts multi-modal data via the `Chat Completions API `_. + +.. important:: + A chat template is **required** to use Chat Completions API. + + Although most models come with a chat template, for others you have to define one yourself. + The chat template can be inferred based on the documentation on the model's HuggingFace repo. + For example, LLaVA-1.5 (``llava-hf/llava-1.5-7b-hf``) requires a chat template that can be found `here `__. + +Image +^^^^^ -You can serve vision language models with vLLM's HTTP server that is compatible with `OpenAI Vision API `_. +Image input is supported according to `OpenAI Vision API `_. +Here is a simple example using Phi-3.5-Vision. -Below is an example on how to launch the same ``microsoft/Phi-3.5-vision-instruct`` with vLLM's OpenAI-compatible API server. +First, launch the OpenAI-compatible server: .. code-block:: bash vllm serve microsoft/Phi-3.5-vision-instruct --task generate \ --trust-remote-code --max-model-len 4096 --limit-mm-per-prompt image=2 -.. important:: - Since OpenAI Vision API is based on `Chat Completions API `_, - a chat template is **required** to launch the API server. - - Although Phi-3.5-Vision comes with a chat template, for other models you may have to provide one if the model's tokenizer does not come with it. - The chat template can be inferred based on the documentation on the model's HuggingFace repo. - For example, LLaVA-1.5 (``llava-hf/llava-1.5-7b-hf``) requires a chat template that can be found `here `_. - -To consume the server, you can use the OpenAI client like in the example below: +Then, you can use the OpenAI client as follows: .. code-block:: python @@ -252,22 +289,59 @@ A full code example can be found in `examples/openai_chat_completion_client_for_ .. note:: - By default, the timeout for fetching images through http url is ``5`` seconds. You can override this by setting the environment variable: + By default, the timeout for fetching images through HTTP URL is ``5`` seconds. + You can override this by setting the environment variable: .. code-block:: console $ export VLLM_IMAGE_FETCH_TIMEOUT= -Chat Embeddings API -^^^^^^^^^^^^^^^^^^^ +Video +^^^^^ + +Instead of :code:`image_url`, you can pass a video file via :code:`video_url`. + +You can use `these tests `_ as reference. + +.. note:: + + By default, the timeout for fetching videos through HTTP URL url is ``30`` seconds. + You can override this by setting the environment variable: + + .. code-block:: console + + $ export VLLM_VIDEO_FETCH_TIMEOUT= -vLLM's Chat Embeddings API is a superset of OpenAI's `Embeddings API `_, -where a list of ``messages`` can be passed instead of batched ``inputs``. This enables multi-modal inputs to be passed to embedding models. +Audio +^^^^^ + +Instead of :code:`image_url`, you can pass an audio file via :code:`audio_url`. + +A full code example can be found in `examples/openai_chat_completion_client_for_multimodal.py `_. + +.. note:: + + By default, the timeout for fetching audios through HTTP URL is ``10`` seconds. + You can override this by setting the environment variable: + + .. code-block:: console + + $ export VLLM_AUDIO_FETCH_TIMEOUT= + +Embedding +^^^^^^^^^ + +vLLM's Embeddings API is a superset of OpenAI's `Embeddings API `_, +where a list of chat ``messages`` can be passed instead of batched ``inputs``. This enables multi-modal inputs to be passed to embedding models. .. tip:: The schema of ``messages`` is exactly the same as in Chat Completions API. + You can refer to the above tutorials for more details on how to pass each type of multi-modal data. -In this example, we will serve the ``TIGER-Lab/VLM2Vec-Full`` model. +Usually, embedding models do not expect chat-based input, so we need to use a custom chat template to format the text and images. +Refer to the examples below for illustration. + +Here is an end-to-end example using VLM2Vec. To serve the model: .. code-block:: bash @@ -279,10 +353,8 @@ In this example, we will serve the ``TIGER-Lab/VLM2Vec-Full`` model. Since VLM2Vec has the same model architecture as Phi-3.5-Vision, we have to explicitly pass ``--task embedding`` to run this model in embedding mode instead of text generation mode. -.. important:: - - VLM2Vec does not expect chat-based input. We use a `custom chat template `_ - to combine the text and images together. + The custom chat template is completely different from the original one for this model, + and can be found `here `__. Since the request schema is not defined by OpenAI client, we post a request to the server using the lower-level ``requests`` library: @@ -310,7 +382,7 @@ Since the request schema is not defined by OpenAI client, we post a request to t response_json = response.json() print("Embedding output:", response_json["data"][0]["embedding"]) -Here is an example for serving the ``MrLight/dse-qwen2-2b-mrl-v1`` model. +Below is another example, this time using the ``MrLight/dse-qwen2-2b-mrl-v1`` model. .. code-block:: bash @@ -319,8 +391,10 @@ Here is an example for serving the ``MrLight/dse-qwen2-2b-mrl-v1`` model. .. important:: - Like with VLM2Vec, we have to explicitly pass ``--task embedding``. Additionally, ``MrLight/dse-qwen2-2b-mrl-v1`` requires an EOS token for embeddings, - which is handled by the jinja template. + Like with VLM2Vec, we have to explicitly pass ``--task embedding``. + + Additionally, ``MrLight/dse-qwen2-2b-mrl-v1`` requires an EOS token for embeddings, which is handled + by `this custom chat template `__. .. important:: diff --git a/docs/source/models/performance.rst b/docs/source/usage/performance.rst similarity index 100% rename from docs/source/models/performance.rst rename to docs/source/usage/performance.rst diff --git a/docs/source/models/spec_decode.rst b/docs/source/usage/spec_decode.rst similarity index 98% rename from docs/source/models/spec_decode.rst rename to docs/source/usage/spec_decode.rst index d57ffec53215d..67e8ede7654b7 100644 --- a/docs/source/models/spec_decode.rst +++ b/docs/source/usage/spec_decode.rst @@ -1,7 +1,7 @@ .. _spec_decode: -Speculative decoding in vLLM -============================ +Speculative decoding +==================== .. warning:: Please note that speculative decoding in vLLM is not yet optimized and does @@ -182,7 +182,7 @@ speculative decoding, breaking down the guarantees into three key areas: 3. **vLLM Logprob Stability** - vLLM does not currently guarantee stable token log probabilities (logprobs). This can result in different outputs for the same request across runs. For more details, see the FAQ section - titled *Can the output of a prompt vary across runs in vLLM?* in the `FAQs <../serving/faq>`_. + titled *Can the output of a prompt vary across runs in vLLM?* in the :ref:`FAQs `. **Conclusion** @@ -197,7 +197,7 @@ can occur due to following factors: **Mitigation Strategies** -For mitigation strategies, please refer to the FAQ entry *Can the output of a prompt vary across runs in vLLM?* in the `FAQs <../serving/faq>`_. +For mitigation strategies, please refer to the FAQ entry *Can the output of a prompt vary across runs in vLLM?* in the :ref:`FAQs `. Resources for vLLM contributors ------------------------------- diff --git a/docs/source/models/structured_outputs.rst b/docs/source/usage/structured_outputs.rst similarity index 100% rename from docs/source/models/structured_outputs.rst rename to docs/source/usage/structured_outputs.rst diff --git a/docs/source/serving/usage_stats.md b/docs/source/usage/usage_stats.md similarity index 100% rename from docs/source/serving/usage_stats.md rename to docs/source/usage/usage_stats.md diff --git a/vllm/attention/backends/rocm_flash_attn.py b/vllm/attention/backends/rocm_flash_attn.py index 9139c3c1314d8..19daeb729ee61 100644 --- a/vllm/attention/backends/rocm_flash_attn.py +++ b/vllm/attention/backends/rocm_flash_attn.py @@ -430,7 +430,7 @@ def forward( Returns: shape = [num_tokens, num_heads * head_size] """ - # Reminder: Please update docs/source/serving/compatibility_matrix.rst + # Reminder: Please update docs/source/usage/compatibility_matrix.rst # If the feature combo become valid if attn_type != AttentionType.DECODER: raise NotImplementedError("Encoder self-attention and " diff --git a/vllm/config.py b/vllm/config.py index 1cbab8ea30249..5c904914a71cf 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -509,7 +509,7 @@ def verify_async_output_proc(self, parallel_config, speculative_config, self.use_async_output_proc = False return - # Reminder: Please update docs/source/serving/compatibility_matrix.rst + # Reminder: Please update docs/source/usage/compatibility_matrix.rst # If the feature combo become valid if device_config.device_type not in ("cuda", "tpu", "xpu", "hpu"): logger.warning( @@ -525,7 +525,7 @@ def verify_async_output_proc(self, parallel_config, speculative_config, self.use_async_output_proc = False return - # Reminder: Please update docs/source/serving/compatibility_matrix.rst + # Reminder: Please update docs/source/usage/compatibility_matrix.rst # If the feature combo become valid if device_config.device_type == "cuda" and self.enforce_eager: logger.warning( @@ -540,7 +540,7 @@ def verify_async_output_proc(self, parallel_config, speculative_config, if self.task == "embedding": self.use_async_output_proc = False - # Reminder: Please update docs/source/serving/compatibility_matrix.rst + # Reminder: Please update docs/source/usage/compatibility_matrix.rst # If the feature combo become valid if speculative_config: logger.warning("Async output processing is not supported with" @@ -1704,7 +1704,7 @@ def verify_with_model_config(self, model_config: ModelConfig): model_config.quantization) def verify_with_scheduler_config(self, scheduler_config: SchedulerConfig): - # Reminder: Please update docs/source/serving/compatibility_matrix.rst + # Reminder: Please update docs/source/usage/compatibility_matrix.rst # If the feature combo become valid if scheduler_config.chunked_prefill_enabled: raise ValueError("LoRA is not supported with chunked prefill yet.") diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index 3b776c1d9d39f..0b304658f012c 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -1111,7 +1111,7 @@ def create_engine_config(self, disable_logprobs=self.disable_logprobs_during_spec_decoding, ) - # Reminder: Please update docs/source/serving/compatibility_matrix.rst + # Reminder: Please update docs/source/usage/compatibility_matrix.rst # If the feature combo become valid if self.num_scheduler_steps > 1: if speculative_config is not None: diff --git a/vllm/engine/output_processor/multi_step.py b/vllm/engine/output_processor/multi_step.py index 7a6ebb430541f..a9b638ed02a1e 100644 --- a/vllm/engine/output_processor/multi_step.py +++ b/vllm/engine/output_processor/multi_step.py @@ -65,7 +65,7 @@ def process_prompt_logprob(self, seq_group: SequenceGroup, @staticmethod @functools.lru_cache def _log_prompt_logprob_unsupported_warning_once(): - # Reminder: Please update docs/source/serving/compatibility_matrix.rst + # Reminder: Please update docs/source/usage/compatibility_matrix.rst # If the feature combo become valid logger.warning( "Prompt logprob is not supported by multi step workers. " diff --git a/vllm/executor/cpu_executor.py b/vllm/executor/cpu_executor.py index 336f9bc8efb20..6b4cb5a9a1d61 100644 --- a/vllm/executor/cpu_executor.py +++ b/vllm/executor/cpu_executor.py @@ -23,7 +23,7 @@ class CPUExecutor(ExecutorBase): def _init_executor(self) -> None: assert self.device_config.device_type == "cpu" - # Reminder: Please update docs/source/serving/compatibility_matrix.rst + # Reminder: Please update docs/source/usage/compatibility_matrix.rst # If the feature combo become valid assert self.lora_config is None, "cpu backend doesn't support LoRA" diff --git a/vllm/platforms/cpu.py b/vllm/platforms/cpu.py index b5333fbd6f502..680ee74129739 100644 --- a/vllm/platforms/cpu.py +++ b/vllm/platforms/cpu.py @@ -46,7 +46,7 @@ def check_and_update_config(cls, vllm_config: VllmConfig) -> None: import vllm.envs as envs from vllm.utils import GiB_bytes model_config = vllm_config.model_config - # Reminder: Please update docs/source/serving/compatibility_matrix.rst + # Reminder: Please update docs/source/usage/compatibility_matrix.rst # If the feature combo become valid if not model_config.enforce_eager: logger.warning( diff --git a/vllm/spec_decode/spec_decode_worker.py b/vllm/spec_decode/spec_decode_worker.py index 53634f7b0b366..ced7f53827665 100644 --- a/vllm/spec_decode/spec_decode_worker.py +++ b/vllm/spec_decode/spec_decode_worker.py @@ -104,7 +104,7 @@ def create_spec_worker(*args, **kwargs) -> "SpecDecodeWorker": return spec_decode_worker -# Reminder: Please update docs/source/serving/compatibility_matrix.rst +# Reminder: Please update docs/source/usage/compatibility_matrix.rst # If the feature combo become valid class SpecDecodeWorker(LoraNotSupportedWorkerBase): """Worker which implements speculative decoding. diff --git a/vllm/utils.py b/vllm/utils.py index 07bf82e24cbe6..6cee4847e57b4 100644 --- a/vllm/utils.py +++ b/vllm/utils.py @@ -47,7 +47,7 @@ # Exception strings for non-implemented encoder/decoder scenarios -# Reminder: Please update docs/source/serving/compatibility_matrix.rst +# Reminder: Please update docs/source/usage/compatibility_matrix.rst # If the feature combo become valid STR_NOT_IMPL_ENC_DEC_SWA = \ diff --git a/vllm/worker/multi_step_model_runner.py b/vllm/worker/multi_step_model_runner.py index 3ee0fb4dc943e..3ca0d88a42183 100644 --- a/vllm/worker/multi_step_model_runner.py +++ b/vllm/worker/multi_step_model_runner.py @@ -817,7 +817,7 @@ def _pythonize_sampler_output( for sgdx, (seq_group, sample_result) in enumerate(zip(seq_groups, samples_list)): - # Reminder: Please update docs/source/serving/compatibility_matrix.rst + # Reminder: Please update docs/source/usage/compatibility_matrix.rst # If the feature combo become valid # (Check for Guided Decoding) if seq_group.sampling_params.logits_processors: diff --git a/vllm/worker/utils.py b/vllm/worker/utils.py index f43635464ef00..5f71ec0c14df8 100644 --- a/vllm/worker/utils.py +++ b/vllm/worker/utils.py @@ -13,7 +13,7 @@ def assert_enc_dec_mr_supported_scenario( a supported scenario. ''' - # Reminder: Please update docs/source/serving/compatibility_matrix.rst + # Reminder: Please update docs/source/usage/compatibility_matrix.rst # If the feature combo become valid if enc_dec_mr.cache_config.enable_prefix_caching: From 1f958a7d52b24314e41c4bb56c51b1dce5405e05 Mon Sep 17 00:00:00 2001 From: Jee Jee Li Date: Thu, 5 Dec 2024 13:20:26 +0800 Subject: [PATCH 036/733] [Bugfix] Fix BNB loader target_modules (#10720) Signed-off-by: Jee Jee Li --- vllm/model_executor/model_loader/loader.py | 64 ++-------------------- 1 file changed, 6 insertions(+), 58 deletions(-) diff --git a/vllm/model_executor/model_loader/loader.py b/vllm/model_executor/model_loader/loader.py index b4921cc80797f..a0ea0e5fad3c2 100644 --- a/vllm/model_executor/model_loader/loader.py +++ b/vllm/model_executor/model_loader/loader.py @@ -6,7 +6,6 @@ import glob import inspect import itertools -import json import math import os import warnings @@ -18,7 +17,7 @@ import huggingface_hub import numpy as np import torch -from huggingface_hub import HfApi, hf_hub_download +from huggingface_hub import HfApi from torch import nn from transformers import AutoModelForCausalLM from transformers.utils import SAFE_WEIGHTS_INDEX_NAME @@ -704,51 +703,9 @@ def __init__(self, load_config: LoadConfig): self.unsharded_weights_modules: List[str] = [] # Save the module names that are sharded by column. self.column_sharded_weights_modules: List[str] = [] - # we don't need to quantize the whole model, only the target modules - # that are specified in the adapter config file. If the adapter config - # file is not provided, we will quantize the default modules. - if (not load_config.model_loader_extra_config - or "qlora_adapter_name_or_path" - not in load_config.model_loader_extra_config): - self.target_modules = [] - return - - qlora_adapter = load_config.model_loader_extra_config[ - "qlora_adapter_name_or_path"] - - config_file_path = self._get_config_file(qlora_adapter) - - with open(config_file_path) as f: - config = json.load(f) - self.target_modules = config["target_modules"] - # TODO: target_modules could be either a list or a regex string. - # We need to handle both cases. - assert isinstance(self.target_modules, - list), "Unsupported target_modules: " - f"{self.target_modules}" - - def _get_config_file(self, qlora_adapter: str) -> str: - is_local = os.path.isdir(qlora_adapter) - config_file_path = None - if is_local: - for file in self.possible_config_file_names: - config_file_path = os.path.join(qlora_adapter, file) - if os.path.exists(config_file_path): - break - else: - hf_api = HfApi() - repo_files = hf_api.list_repo_files(repo_id=qlora_adapter) - for file in self.possible_config_file_names: - if file in repo_files: - config_file_path = hf_hub_download(repo_id=qlora_adapter, - filename=file) - break - - if not config_file_path: - raise ValueError( - f"Cannot find adapter config file in {qlora_adapter}") - - return config_file_path + # Store all module names (from transformers) that support + # BNB quantization. + self.target_modules: List[str] = [] def _get_weight_files( self, @@ -1030,25 +987,16 @@ def _get_bnb_target_modules(self, model: nn.Module) -> None: inverse_stacked_mapping[packed] = [] inverse_stacked_mapping[packed].insert(idx, orig) - linear_module_lst = [] for name, module in model.named_modules(): if isinstance(module, (LinearBase, )): last_name = name.split(".")[-1] if sub_modules := inverse_stacked_mapping.get(last_name, []): # Map vllm's names to transformers' names. for sub_name in sub_modules: - linear_module_lst.append( + self.target_modules.append( name.replace(last_name, sub_name)) else: - linear_module_lst.append(name) - if self.target_modules: - # Update self.target_modules - self.target_modules = [ - qual_name for qual_name in linear_module_lst - if any(t in qual_name for t in self.target_modules) - ] - else: - self.target_modules = linear_module_lst + self.target_modules.append(name) assert (self.target_modules ), "vllm currently does not support BNB quantization for" f" {type(model).__name__}" From 39c89e71a84779c0758ec603efcded7a48bb5fc0 Mon Sep 17 00:00:00 2001 From: Travis Johnson Date: Wed, 4 Dec 2024 22:54:06 -0700 Subject: [PATCH 037/733] [Misc] Update llama 3.2 template to support system prompt with images (#10901) Signed-off-by: Travis Johnson --- examples/tool_chat_template_llama3.2_json.jinja | 12 ++---------- 1 file changed, 2 insertions(+), 10 deletions(-) diff --git a/examples/tool_chat_template_llama3.2_json.jinja b/examples/tool_chat_template_llama3.2_json.jinja index 39f902c1c3c40..2b290c0eede03 100644 --- a/examples/tool_chat_template_llama3.2_json.jinja +++ b/examples/tool_chat_template_llama3.2_json.jinja @@ -26,13 +26,11 @@ {%- endfor %} {%- endfor %} - {#- This block extracts the system message, so we can slot it into the right place. #} {%- if messages[0]['role'] == 'system' %} {%- if messages[0]['content'] is string %} {%- set system_message = messages[0]['content']|trim %} {%- else %} - {#- Support vLLM's transforming of a content string to JSON. #} {%- set system_message = messages[0]['content'][0]['text']|trim %} {%- endif %} {%- set messages = messages[1:] %} @@ -44,14 +42,8 @@ {%- endif %} {%- endif %} -{#- Including an image is not compatible with a system message #} -{%- if image_ns.has_images and not system_message == "" %} - {{- raise_exception("Prompting with images is incompatible with system messages and tool use.") }} -{%- endif %} - - -{#- System message, if there are no images #} -{%- if not image_ns.has_images %} +{#- System message if there are no images, if the user supplied one, or if tools are used (default tool system message) #} +{%- if system_message or not image_ns.has_images %} {{- "<|start_header_id|>system<|end_header_id|>\n\n" }} {%- if tools is not none %} {{- "Environment: ipython\n" }} From 571da8fc431ec36427ee1034a7779b23229b015e Mon Sep 17 00:00:00 2001 From: Jee Jee Li Date: Thu, 5 Dec 2024 21:22:28 +0800 Subject: [PATCH 038/733] [Misc][LoRA] Clean up the function interface of Punica (#10917) Signed-off-by: Jee Jee Li --- tests/lora/test_layers.py | 42 ++- vllm/lora/fully_sharded_layers.py | 175 +++++----- vllm/lora/layers.py | 538 +++++++++++------------------- vllm/lora/models.py | 8 +- vllm/lora/punica.py | 365 ++++++++++---------- 5 files changed, 497 insertions(+), 631 deletions(-) diff --git a/tests/lora/test_layers.py b/tests/lora/test_layers.py index 15e576cb065c7..a113e3f7abc1e 100644 --- a/tests/lora/test_layers.py +++ b/tests/lora/test_layers.py @@ -565,7 +565,9 @@ def _pretest(): @pytest.mark.parametrize("num_loras", [1, 2, 4, 8]) @pytest.mark.parametrize("device", CUDA_DEVICES) @pytest.mark.parametrize("stage", STAGES) -def test_linear_replicated(dist_init, num_loras, device, stage) -> None: +@pytest.mark.parametrize("bias_enabled", [True, False]) +def test_linear_replicated(dist_init, num_loras, device, stage, + bias_enabled) -> None: torch.cuda.set_device(device) torch.set_default_device(device) @@ -573,7 +575,8 @@ def test_linear_replicated(dist_init, num_loras, device, stage) -> None: max_loras = 8 lora_config = LoRAConfig(max_loras=max_loras, max_lora_rank=8, - lora_dtype=torch.float16) + lora_dtype=torch.float16, + bias_enabled=bias_enabled) def create_random_linear_replicated_layer(): @@ -585,7 +588,12 @@ def create_random_linear_replicated_layer(): lora_linear = ReplicatedLinearWithLoRA(linear) lora_linear.create_lora_weights(max_loras, lora_config) - + assert (lora_linear.n_slices == len(lora_linear.lora_a_stacked) == len( + lora_linear.lora_b_stacked) == 1) + if bias_enabled: + assert len(lora_linear.lora_bias_stacked) == lora_linear.n_slices + else: + assert lora_linear.lora_bias_stacked is None return linear, lora_linear for i in range(10): @@ -669,8 +677,9 @@ def create_random_linear_replicated_layer(): @pytest.mark.parametrize("fully_shard", [True, False]) @pytest.mark.parametrize("device", CUDA_DEVICES) @pytest.mark.parametrize("stage", STAGES) +@pytest.mark.parametrize("bias_enabled", [True, False]) def test_linear_parallel(dist_init, num_loras, orientation, fully_shard, - device, stage) -> None: + device, stage, bias_enabled) -> None: torch.cuda.set_device(device) torch.set_default_device(device) @@ -679,7 +688,8 @@ def test_linear_parallel(dist_init, num_loras, orientation, fully_shard, lora_config = LoRAConfig(max_loras=max_loras, max_lora_rank=8, fully_sharded_loras=fully_shard, - lora_dtype=torch.float16) + lora_dtype=torch.float16, + bias_enabled=bias_enabled) def create_random_linear_parallel_layer(): if orientation == "row": @@ -700,7 +710,12 @@ def create_random_linear_parallel_layer(): if not fully_shard else ColumnParallelLinearWithShardedLoRA(linear)) lora_linear.create_lora_weights(max_loras, lora_config) - + assert (lora_linear.n_slices == len(lora_linear.lora_a_stacked) == len( + lora_linear.lora_b_stacked) == 1) + if bias_enabled: + assert len(lora_linear.lora_bias_stacked) == lora_linear.n_slices + else: + assert lora_linear.lora_bias_stacked is None return linear, lora_linear for i in range(10): @@ -784,8 +799,9 @@ def create_random_linear_parallel_layer(): @pytest.mark.parametrize("fully_shard", [True, False]) @pytest.mark.parametrize("device", CUDA_DEVICES) @pytest.mark.parametrize("stage", STAGES) +@pytest.mark.parametrize("bias_enabled", [True, False]) def test_column_parallel_packed(dist_init, num_loras, repeats, fully_shard, - device, stage) -> None: + device, stage, bias_enabled) -> None: torch.cuda.set_device(device) torch.set_default_device(device) @@ -794,7 +810,8 @@ def test_column_parallel_packed(dist_init, num_loras, repeats, fully_shard, lora_config = LoRAConfig(max_loras=max_loras, max_lora_rank=8, fully_sharded_loras=fully_shard, - lora_dtype=torch.float16) + lora_dtype=torch.float16, + bias_enabled=bias_enabled) def create_column_parallel_packed_layer(): if repeats == 2: @@ -832,10 +849,16 @@ class FakeConfig: num_key_value_heads = 32 num_attention_heads = 32 + n_slices = repeats lora_linear.create_lora_weights(max_loras, lora_config, model_config=FakeConfig()) - + assert (lora_linear.n_slices == len(lora_linear.lora_a_stacked) == len( + lora_linear.lora_b_stacked) == n_slices) + if bias_enabled: + assert len(lora_linear.lora_bias_stacked) == lora_linear.n_slices + else: + assert lora_linear.lora_bias_stacked is None return linear, lora_linear for i in range(10): @@ -911,7 +934,6 @@ class FakeConfig: 512, lora_config.lora_extra_vocab_size, ) - # lora_linear.set_mapping(*mapping_info) lora_result = lora_linear(torch.cat(inputs))[0] expected_result = linear(torch.cat(inputs))[0] diff --git a/vllm/lora/fully_sharded_layers.py b/vllm/lora/fully_sharded_layers.py index e25e453201f01..545ec21ca74c1 100644 --- a/vllm/lora/fully_sharded_layers.py +++ b/vllm/lora/fully_sharded_layers.py @@ -1,5 +1,5 @@ # pylint: disable=unused-argument -from typing import TYPE_CHECKING, List, Optional, Union +from typing import TYPE_CHECKING, List, Optional, Tuple, Union, cast import torch import torch.nn as nn @@ -32,6 +32,44 @@ def dec(*args, **kwargs): return dec +def _mcp_apply(x, bias, layer: ColumnParallelLinearWithLoRA): + """ + For `ColumnParallelLinearWithLoRA` or classes that inherit from + `ColumnParallelLinearWithLoRA`, they share the same `apply` logic. + """ + assert (layer.n_slices == len(layer.lora_a_stacked) == len( + layer.lora_b_stacked) == len(layer.output_slices)) + if layer.lora_bias_stacked is not None: + assert layer.n_slices == len(layer.lora_bias_stacked) + + output = layer.base_layer.quant_method.apply(layer.base_layer, x, bias) + + x = x.view(-1, x.shape[-1]) + output, out_orig_shape = output.view(-1, output.shape[-1]), output.shape + + # Since communication is needed, the buffer is directly initialized as a + # tensor rather than a tuple of tensor. + buffers = torch.zeros( + (layer.n_slices, x.shape[0], layer.lora_a_stacked[0].shape[2]), + dtype=torch.float32, + device=x.device, + ) + + layer.punica_wrapper.add_shrink(buffers, x, layer.lora_a_stacked, 1.0) + buffers = tensor_model_parallel_all_gather(buffers) + layer.punica_wrapper.add_expand(output, + buffers, + layer.lora_b_stacked, + layer.lora_bias_stacked, + layer.output_slices, + offset_start=0, + add_input=True) + + output = output.view(*out_orig_shape) + # now have column partitioned and packed output + return output + + # these layers are based on the tensor parallelism strategy given in # Y. Sheng et al., S-LoRA: Serving Thousands of Concurrent LoRA Adapters. 2023, # https://arxiv.org/abs/2311.03285. @@ -51,34 +89,15 @@ class ColumnParallelLinearWithShardedLoRA(ColumnParallelLinearWithLoRA): # gather operation. def slice_lora_a(self, lora_a: torch.Tensor) -> torch.Tensor: tp_rank = get_tensor_model_parallel_rank() - shard_size = self.lora_a_stacked.shape[2] + shard_size = self.lora_a_stacked[0].shape[2] start_idx = tp_rank * shard_size lora_a = lora_a[:, start_idx:start_idx + shard_size] return lora_a - def apply(self, x: torch.Tensor, - bias: Optional[torch.Tensor]) -> torch.Tensor: - output = self.base_layer.quant_method.apply(self.base_layer, x, bias) - - x = x.view(-1, x.shape[-1]) - output, out_orig_shape = output.view(-1, - output.shape[-1]), output.shape - buffer = torch.zeros( - (x.shape[0], self.lora_a_stacked.shape[2]), - dtype=torch.float32, - device=x.device, - ) - self.punica_wrapper.add_shrink(buffer, x, self.lora_a_stacked, 1.0) - buffer = tensor_model_parallel_all_gather(buffer) - self.punica_wrapper.add_expand(output, - buffer, - self.lora_b_stacked, - self.bias_stacked, - add_input=True) - # now have column partitioned output - - output = output.view(*out_orig_shape) - return output + def apply(self, + x: torch.Tensor, + bias: Optional[torch.Tensor] = None) -> torch.Tensor: + return _mcp_apply(x, bias, self) @classmethod @_fully_sharded_can_replace @@ -99,46 +118,6 @@ def can_replace_layer( ) -def _mcp_apply(x, bias, layer: QKVParallelLinearWithLora): - """ - MergedColumnParallelLinearWithShardedLoRA and - MergedQKVParallelLinearWithShardedLora share the same - LoRa weight application method. - - The main difference is the step by shard_size for lora_b which can - vary for MergedQKVParallelLinearWithShardedLora but is constant for - MergedColumnParallelLinearWithShardedLoRA. - """ - # expecting 2 for column parallel and 3 for qkv - n = len(layer.lora_a_stacked) - output = layer.base_layer.quant_method.apply(layer.base_layer, x, bias) - - x = x.view(-1, x.shape[-1]) - output, out_orig_shape = output.view(-1, output.shape[-1]), output.shape - buffers = torch.zeros( - (n, x.shape[0], layer.lora_a_stacked[0].shape[2]), - dtype=torch.float32, - device=x.device, - ) - for idx in range(n): - layer.punica_wrapper.add_shrink(buffers[idx], x, - layer.lora_a_stacked[idx], 1.0) - - buffers = tensor_model_parallel_all_gather(buffers) - layer.punica_wrapper.add_expand_packed_nslice( - output, - buffers, - layer.lora_b_stacked, - layer.bias_stacked, - 1.0, - layer.output_slices, - ) - - output = output.view(*out_orig_shape) - # now have column partitioned and packed output - return output - - class MergedColumnParallelLinearWithShardedLoRA( MergedColumnParallelLinearWithLoRA): """ @@ -162,8 +141,9 @@ def slice_lora_a( ] return lora_a - def apply(self, x: torch.Tensor, - bias: Optional[torch.Tensor]) -> torch.Tensor: + def apply(self, + x: torch.Tensor, + bias: Optional[torch.Tensor] = None) -> torch.Tensor: return _mcp_apply(x, bias, self) @classmethod @@ -195,31 +175,15 @@ class QKVParallelLinearWithShardedLora(QKVParallelLinearWithLora): def slice_lora_a(self, lora_a: torch.Tensor) -> torch.Tensor: tp_rank = get_tensor_model_parallel_rank() - shard_size = self.lora_a_stacked.shape[2] + shard_size = self.lora_a_stacked[0].shape[2] start_idx = tp_rank * shard_size lora_a = lora_a[:, start_idx:start_idx + shard_size] return lora_a - def apply(self, x: torch.Tensor, - bias: Optional[torch.Tensor]) -> torch.Tensor: - output = self.base_layer.quant_method.apply(self.base_layer, x, bias) - - x = x.view(-1, x.shape[-1]) - output, out_orig_shape = output.view(-1, - output.shape[-1]), output.shape - buffer = torch.zeros((x.shape[0], self.lora_a_stacked.shape[2]), - dtype=torch.float32, - device=x.device) - self.punica_wrapper.add_shrink(buffer, x, self.lora_a_stacked, 1.0) - buffer = tensor_model_parallel_all_gather(buffer) - self.punica_wrapper.add_expand(output, - buffer, - self.lora_b_stacked, - self.bias_stacked, - add_input=True) - # now have column partitioned output - output = output.view(*out_orig_shape) - return output + def apply(self, + x: torch.Tensor, + bias: Optional[torch.Tensor] = None) -> torch.Tensor: + return _mcp_apply(x, bias, self) @classmethod @_fully_sharded_can_replace @@ -260,8 +224,9 @@ def slice_lora_a( ] return lora_a - def apply(self, x: torch.Tensor, - bias: Optional[torch.Tensor]) -> torch.Tensor: + def apply(self, + x: torch.Tensor, + bias: Optional[torch.Tensor] = None) -> torch.Tensor: return _mcp_apply(x, bias, self) @classmethod @@ -294,7 +259,7 @@ class RowParallelLinearWithShardedLoRA(RowParallelLinearWithLoRA): """ def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor: - shard_size = self.lora_b_stacked.shape[2] + shard_size = self.lora_b_stacked[0].shape[2] start_idx = self.tp_rank * shard_size end_idx = (self.tp_rank + 1) * shard_size lora_b = lora_b[:, start_idx:end_idx] @@ -303,20 +268,24 @@ def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor: def slice_bias(self, bias: torch.Tensor) -> torch.Tensor: if bias is None: return bias - shard_size = self.bias_stacked.shape[2] + self.lora_bias_stacked = cast(Tuple[torch.Tensor, ...], + self.lora_bias_stacked) + shard_size = self.lora_bias_stacked[0].shape[2] start_idx = self.tp_rank * shard_size end_idx = (self.tp_rank + 1) * shard_size bias = bias[start_idx:end_idx] return bias - def apply(self, x: torch.Tensor) -> torch.Tensor: + def apply(self, + x: torch.Tensor, + bias: Optional[torch.Tensor] = None) -> torch.Tensor: output = self.base_layer.quant_method.apply(self.base_layer, x) x = x.view(-1, x.shape[-1]) output, out_orig_shape = output.view(-1, output.shape[-1]), output.shape buffer = torch.zeros( - (x.shape[0], self.lora_a_stacked.shape[2]), + (self.n_slices, x.shape[0], self.lora_a_stacked[0].shape[2]), dtype=torch.float32, device=x.device, ) @@ -330,12 +299,18 @@ def apply(self, x: torch.Tensor) -> torch.Tensor: # remains is a standard all_reduce. User should be aware though that # the output is not the same as a normal row_parallel, it should be # reduced before being used - shard_size = self.lora_b_stacked.shape[2] - start_idx = self.tp_rank * shard_size - self.punica_wrapper.add_expand_slice(output, buffer, - self.lora_b_stacked, - self.bias_stacked, start_idx, - shard_size) + # NOTE offset are based on the rank. + shard_size = self.lora_b_stacked[0].shape[2] + offset_start = self.tp_rank * shard_size + self.punica_wrapper.add_expand( + output, + buffer, + self.lora_b_stacked, + self.lora_bias_stacked, + self.output_slices, + offset_start=offset_start, + add_input=True, + ) output = output.view(*out_orig_shape) return output diff --git a/vllm/lora/layers.py b/vllm/lora/layers.py index 73748b5ce511e..473e4bedf3d60 100644 --- a/vllm/lora/layers.py +++ b/vllm/lora/layers.py @@ -1,7 +1,7 @@ # pylint: disable=unused-argument import math from dataclasses import dataclass -from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union +from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union, cast import torch import torch.nn as nn @@ -18,11 +18,14 @@ tensor_model_parallel_gather) from vllm.distributed.utils import divide from vllm.lora.punica import PunicaWrapper +# yapf: disable from vllm.model_executor.layers.linear import (ColumnParallelLinear, + LinearBase, MergedColumnParallelLinear, QKVParallelLinear, ReplicatedLinear, RowParallelLinear) +# yapf: enable from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.rotary_embedding import ( LinearScalingRotaryEmbedding, RotaryEmbedding) @@ -249,13 +252,10 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: full_lora_a_embeddings.shape[1], -1, ) - - # Embedding layer only need expand op - self.punica_wrapper.add_expand(full_output, - full_lora_a_embeddings, - self.lora_b_stacked, - bias_all=None, - add_input=True) + self.punica_wrapper.add_lora_embedding(full_output, + full_lora_a_embeddings, + self.lora_b_stacked, + add_input=True) return full_output.view_as(full_output_org) @classmethod @@ -269,14 +269,19 @@ def can_replace_layer( return type(source_layer) is VocabParallelEmbedding -class ReplicatedLinearWithLoRA(BaseLayerWithLoRA): +class BaseLinearLayerWithLoRA(BaseLayerWithLoRA): - def __init__(self, base_layer: ReplicatedLinear) -> None: + def __init__(self, base_layer: LinearBase): super().__init__() self.base_layer = base_layer self.input_size = self.base_layer.input_size - self.output_size = self.base_layer.output_size self.device = _get_lora_device(self.base_layer) + self.lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]] = None + + self.output_slices: Tuple[int, ...] + self.tp_size: int + self.output_size: int + self.n_slices: int def create_lora_weights( self, @@ -285,39 +290,64 @@ def create_lora_weights( model_config: Optional[PretrainedConfig] = None, ) -> None: self.lora_config = lora_config - lora_a_output_size = lora_config.max_lora_rank - self.lora_a_stacked = torch.zeros( - max_loras, - 1, - lora_a_output_size, - self.input_size, - dtype=lora_config.lora_dtype, - device=self.device, - ) - self.lora_b_stacked = torch.zeros( - max_loras, - 1, - self.output_size, - lora_config.max_lora_rank, - dtype=lora_config.lora_dtype, - device=self.device, - ) - if lora_config.bias_enabled: - self.bias_stacked = torch.zeros( + # + if isinstance(self.base_layer, ReplicatedLinear): + lora_a_out_size = lora_config.max_lora_rank + lora_b_out_size = self.output_size + + elif isinstance(self.base_layer, ColumnParallelLinear): + lora_a_out_size = (lora_config.max_lora_rank if + not lora_config.fully_sharded_loras else divide( + lora_config.max_lora_rank, self.tp_size)) + lora_b_out_size = self.output_size + + elif isinstance(self.base_layer, RowParallelLinear): + lora_a_out_size = lora_config.max_lora_rank + lora_b_out_size = (self.output_size if + not lora_config.fully_sharded_loras else divide( + self.output_size, self.tp_size)) + else: + raise NotImplementedError + + self.lora_a_stacked = tuple( + torch.zeros( max_loras, 1, - self.output_size, + lora_a_out_size, + self.input_size, dtype=lora_config.lora_dtype, device=self.device, - ) - else: - self.bias_stacked = None + ) for _ in range(self.n_slices)) + self.lora_b_stacked = tuple( + torch.zeros( + max_loras, + 1, + lora_b_out_size, + lora_config.max_lora_rank, + dtype=lora_config.lora_dtype, + device=self.device, + ) for _ in range(self.n_slices)) + if lora_config.bias_enabled: + lora_bias_out_size = lora_b_out_size + self.lora_bias_stacked = tuple( + torch.zeros( + max_loras, + 1, + lora_bias_out_size, + dtype=lora_config.lora_dtype, + device=self.device, + ) for _ in range(self.n_slices)) + self.output_slices = (self.lora_b_stacked[0].shape[2], ) def reset_lora(self, index: int): - self.lora_a_stacked[index] = 0 - self.lora_b_stacked[index] = 0 - if self.lora_config.bias_enabled: - self.bias_stacked[index] = 0 + for s_index in range(self.n_slices): + self.lora_a_stacked[s_index][index] = 0 + self.lora_b_stacked[s_index][index] = 0 + if self.lora_config.bias_enabled: + # Make mypy happy + self.lora_bias_stacked = cast(Tuple[torch.Tensor, ...], + self.lora_bias_stacked) + self.lora_bias_stacked[s_index][index] = 0 def set_lora( self, @@ -325,29 +355,56 @@ def set_lora( lora_a: torch.Tensor, lora_b: torch.Tensor, embeddings_tensor: Optional[torch.Tensor], - bias: Optional[torch.Tensor] = None, + lora_bias: Optional[torch.Tensor] = None, ): - self.reset_lora(index) + # Except for QKVParallelLinearWithLora and + # MergedColumnParallelLinearWithLoRA, all other linear LoRA layers + # store weights in a tuple of size 1. These two layers will + # override this function. + assert (len(self.lora_a_stacked) == len(self.lora_b_stacked) == + self.n_slices == 1) - self.lora_a_stacked[index, - 0, :lora_a.shape[1], :lora_a.shape[0]].copy_( - lora_a.T, non_blocking=True) - self.lora_b_stacked[index, - 0, :lora_b.shape[1], :lora_b.shape[0]].copy_( - lora_b.T, non_blocking=True) - if bias is not None: - self.bias_stacked[index, - 0, :bias.shape[0]].copy_(bias.T, - non_blocking=True) - - def apply(self, x: torch.Tensor, - bias: Optional[torch.Tensor]) -> torch.Tensor: + self.reset_lora(index) + if self.tp_size > 1: + lora_a = self.slice_lora_a(lora_a) + lora_b = self.slice_lora_b(lora_b) + if lora_bias is not None: + lora_bias = self.slice_bias(lora_bias) + + self.lora_a_stacked[0][index, + 0, :lora_a.shape[1], :lora_a.shape[0]].copy_( + lora_a.T, non_blocking=True) + self.lora_b_stacked[0][index, + 0, :lora_b.shape[1], :lora_b.shape[0]].copy_( + lora_b.T, non_blocking=True) + if lora_bias is not None: + + self.lora_bias_stacked = cast(Tuple[torch.Tensor, ...], + self.lora_bias_stacked) + assert len(self.lora_bias_stacked) + self.lora_bias_stacked[0][index, 0, :lora_bias.shape[0]].copy_( + lora_bias.T, non_blocking=True) + + def apply(self, + x: torch.Tensor, + bias: Optional[torch.Tensor] = None) -> torch.Tensor: output = self.base_layer.quant_method.apply(self.base_layer, x, bias) - self.punica_wrapper.add_lora(output, x, self.lora_a_stacked, - self.lora_b_stacked, self.bias_stacked, - 1.0) + self.punica_wrapper.add_lora_linear(output, x, self.lora_a_stacked, + self.lora_b_stacked, + self.lora_bias_stacked, 1.0, + self.output_slices) return output + +class ReplicatedLinearWithLoRA(BaseLinearLayerWithLoRA): + + def __init__(self, base_layer: ReplicatedLinear) -> None: + super().__init__(base_layer, ) + # To ensure interface compatibility, set to 1 always. + self.tp_size = 1 + self.output_size = self.base_layer.output_size + self.n_slices = 1 + def forward(self, input_): """Forward of ReplicatedLinearWithLoRA @@ -380,73 +437,26 @@ def can_replace_layer( return type(source_layer) is ReplicatedLinear -class ColumnParallelLinearWithLoRA(BaseLayerWithLoRA): +class ColumnParallelLinearWithLoRA(BaseLinearLayerWithLoRA): """ LoRA on top of ColumnParallelLinear layer. - LoRA B is sliced for tensor parallelism. + There are two types for the `base_layer`: + 1. ColumnParallelLinear, e.g.`dense_h_to_4h` in `FalconForCausalLM`. + 2. MergedColumnParallelLinear, e.g.`gate_up_proj` in `Phi3ForCausalLM`. """ def __init__(self, base_layer: ColumnParallelLinear) -> None: - super().__init__() + super().__init__(base_layer) # The base_layer type is ColumnParallelLinear or # MergedColumnParallelLinear, their weight sharding logic is # inconsistent when TP is greater than 1. self.is_merged_col_linear = type( base_layer) is MergedColumnParallelLinear - - self.base_layer = base_layer self.tp_size = get_tensor_model_parallel_world_size() - self.input_size = self.base_layer.input_size self.output_size = self.base_layer.output_size_per_partition - self.device = _get_lora_device(self.base_layer) - - def create_lora_weights( - self, - max_loras: int, - lora_config: LoRAConfig, - model_config: Optional[PretrainedConfig] = None, - ) -> None: - self.lora_config = lora_config - self.tp_size = get_tensor_model_parallel_world_size() - lora_a_output_size_per_partition = ( - lora_config.max_lora_rank if not lora_config.fully_sharded_loras - else divide(lora_config.max_lora_rank, self.tp_size)) - self.lora_a_stacked = torch.zeros( - max_loras, - 1, - lora_a_output_size_per_partition, - self.input_size, - dtype=lora_config.lora_dtype, - device=self.device, - ) - self.lora_b_stacked = torch.zeros( - max_loras, - 1, - self.output_size, - lora_config.max_lora_rank, - dtype=lora_config.lora_dtype, - device=self.device, - ) - - if lora_config.bias_enabled: - self.bias_stacked = torch.zeros( - max_loras, - 1, - self.output_size, - dtype=lora_config.lora_dtype, - device=self.device, - ) - else: - self.bias_stacked = None - - self.output_dim = self.lora_b_stacked.shape[2] - - def reset_lora(self, index: int): - self.lora_a_stacked[index] = 0 - self.lora_b_stacked[index] = 0 - if self.lora_config.bias_enabled: - self.bias_stacked[index] = 0 + # There is only one LoRA layer + self.n_slices = 1 def slice_lora_a(self, lora_a: torch.Tensor) -> torch.Tensor: return lora_a @@ -485,40 +495,6 @@ def slice_bias(self, bias: torch.Tensor) -> torch.Tensor: bias = bias[start_idx:end_idx] return bias - def set_lora( - self, - index: int, - lora_a: torch.Tensor, - lora_b: torch.Tensor, - embeddings_tensor: Optional[torch.Tensor], - bias: Optional[torch.Tensor] = None, - ): - self.reset_lora(index) - - if self.tp_size > 1: - lora_a = self.slice_lora_a(lora_a) - lora_b = self.slice_lora_b(lora_b) - bias = self.slice_bias(bias) - - self.lora_a_stacked[index, - 0, :lora_a.shape[1], :lora_a.shape[0]].copy_( - lora_a.T, non_blocking=True) - self.lora_b_stacked[index, - 0, :lora_b.shape[1], :lora_b.shape[0]].copy_( - lora_b.T, non_blocking=True) - if bias is not None: - self.bias_stacked[index, - 0, :bias.shape[0]].copy_(bias.T, - non_blocking=True) - - def apply(self, x: torch.Tensor, - bias: Optional[torch.Tensor]) -> torch.Tensor: - output = self.base_layer.quant_method.apply(self.base_layer, x, bias) - self.punica_wrapper.add_lora(output, x, self.lora_a_stacked, - self.lora_b_stacked, self.bias_stacked, - 1.0) - return output - def forward(self, input_): """Forward of ColumnParallelLinear @@ -568,6 +544,8 @@ class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA): def __init__(self, base_layer: MergedColumnParallelLinear) -> None: super().__init__(base_layer) + # There are two LoRA layers + self.n_slices = len(self.base_layer.output_sizes) def create_lora_weights( self, @@ -575,9 +553,13 @@ def create_lora_weights( lora_config: LoRAConfig, model_config: Optional[PretrainedConfig] = None, ) -> None: + """ + The main reason for overriding this function is to enhance code + maintainability. + """ self.lora_config = lora_config - n_slices = 2 - if not (len(self.base_layer.output_sizes) == n_slices + + if not (len(self.base_layer.output_sizes) == self.n_slices == 2 and self.base_layer.output_sizes[0] == self.base_layer.output_sizes[1]): raise ValueError( @@ -598,7 +580,7 @@ def create_lora_weights( self.input_size, dtype=lora_config.lora_dtype, device=self.device, - ) for _ in range(n_slices)) + ) for _ in range(self.n_slices)) self.lora_b_stacked = tuple( torch.zeros( max_loras, @@ -607,30 +589,19 @@ def create_lora_weights( lora_config.max_lora_rank, dtype=lora_config.lora_dtype, device=self.device, - ) for _ in range(n_slices)) + ) for _ in range(self.n_slices)) if lora_config.bias_enabled: - self.bias_stacked = tuple( + self.lora_bias_stacked = tuple( torch.zeros( max_loras, 1, self.output_size // 2, dtype=lora_config.lora_dtype, device=self.device, - ) for _ in range(n_slices)) - else: - self.bias_stacked = None + ) for _ in range(self.n_slices)) self.output_dim = self.lora_b_stacked[0].shape[2] self.output_slices = (self.output_dim, self.output_dim) - def reset_lora(self, index: int): - self.lora_a_stacked[0][index] = 0 - self.lora_a_stacked[1][index] = 0 - self.lora_b_stacked[0][index] = 0 - self.lora_b_stacked[1][index] = 0 - if self.lora_config.bias_enabled: - self.bias_stacked[0][index] = 0 - self.bias_stacked[1][index] = 0 - def slice_lora_a( self, lora_a: List[Union[torch.Tensor, None]] ) -> List[Union[torch.Tensor, None]]: @@ -668,15 +639,15 @@ def set_lora( lora_a: torch.Tensor, lora_b: torch.Tensor, embeddings_tensor: Optional[torch.Tensor], - bias: Optional[torch.Tensor] = None, + lora_bias: Optional[torch.Tensor] = None, ): self.reset_lora(index) if self.tp_size > 1: lora_a = self.slice_lora_a(lora_a) lora_b = self.slice_lora_b(lora_b) - if bias is not None: - bias = self.slice_bias(bias) + if lora_bias is not None: + lora_bias = self.slice_bias(lora_bias) if lora_a[0] is not None: self.lora_a_stacked[0][ @@ -685,10 +656,11 @@ def set_lora( self.lora_b_stacked[0][ index, 0, :lora_b[0].shape[1], :lora_b[0].shape[0]].copy_( lora_b[0].T, non_blocking=True) - if bias is not None and bias[0] is not None: - self.bias_stacked[0][index, - 0, :bias[0].shape[0]].copy_(bias[0].T, - non_blocking=True) + if lora_bias is not None and lora_bias[0] is not None: + self.lora_bias_stacked = cast(Tuple[torch.Tensor, ...], + self.lora_bias_stacked) + self.lora_bias_stacked[0][index, 0, :lora_bias[0].shape[0]].copy_( + lora_bias[0].T, non_blocking=True) if lora_a[1] is not None: self.lora_a_stacked[1][ index, 0, :lora_a[1].shape[1], :lora_a[1].shape[0]].copy_( @@ -696,18 +668,11 @@ def set_lora( self.lora_b_stacked[1][ index, 0, :lora_b[1].shape[1], :lora_b[1].shape[0]].copy_( lora_b[1].T, non_blocking=True) - if bias is not None and bias[1] is not None: - self.bias_stacked[1][index, - 0, :bias[1].shape[0]].copy_(bias[1].T, - non_blocking=True) - - def apply(self, x: torch.Tensor, - bias: Optional[torch.Tensor]) -> torch.Tensor: - output = self.base_layer.quant_method.apply(self.base_layer, x, bias) - self.punica_wrapper.add_lora_packed_nslice( - output, x, self.lora_a_stacked, self.lora_b_stacked, - self.bias_stacked, 1.0, (self.output_dim, self.output_dim)) - return output + if lora_bias is not None and lora_bias[1] is not None: + self.lora_bias_stacked = cast(Tuple[torch.Tensor, ...], + self.lora_bias_stacked) + self.lora_bias_stacked[1][index, 0, :lora_bias[1].shape[0]].copy_( + lora_bias[1].T, non_blocking=True) @classmethod @_not_fully_sharded_can_replace @@ -737,7 +702,6 @@ class QKVParallelLinearWithLora(ColumnParallelLinearWithLoRA): def __init__(self, base_layer: QKVParallelLinear) -> None: super().__init__(base_layer) - self.tp_size = get_tensor_model_parallel_world_size() self.q_proj_total_size = (self.base_layer.total_num_heads * self.base_layer.head_size) self.q_proj_shard_size = (self.base_layer.num_heads * @@ -746,6 +710,8 @@ def __init__(self, base_layer: QKVParallelLinear) -> None: self.base_layer.head_size) self.kv_proj_total_size = (self.base_layer.total_num_kv_heads * self.base_layer.head_size) + # There is only one LoRA layer + self.n_slices = 1 def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor: tp_rank = get_tensor_model_parallel_rank() @@ -780,32 +746,6 @@ def slice_bias(self, bias: torch.Tensor) -> torch.Tensor: bias = torch.cat([bias_q, bias_k, bias_v], dim=1) return bias - def set_lora( - self, - index: int, - lora_a: torch.Tensor, - lora_b: torch.Tensor, - embeddings_tensor: Optional[torch.Tensor], - bias: Optional[torch.Tensor] = None, - ): - self.reset_lora(index) - if self.tp_size > 1: - lora_a = self.slice_lora_a(lora_a) - lora_b = self.slice_lora_b(lora_b) - if bias is not None: - bias = self.slice_bias(bias) - - self.lora_a_stacked[index, - 0, :lora_a.shape[1], :lora_a.shape[0]].copy_( - lora_a.T, non_blocking=True) - self.lora_b_stacked[index, - 0, :lora_b.shape[1], :lora_b.shape[0]].copy_( - lora_b.T, non_blocking=True) - if bias is not None: - self.bias_stacked[index, - 0, :bias.shape[0]].copy_(bias.T, - non_blocking=True) - @classmethod @_not_fully_sharded_can_replace def can_replace_layer(cls, source_layer: nn.Module, @@ -828,6 +768,10 @@ class MergedQKVParallelLinearWithLora(ColumnParallelLinearWithLoRA): def __init__(self, base_layer: QKVParallelLinear) -> None: super().__init__(base_layer) + # There are three LoRA layer. + self.n_slices = len(self.base_layer.output_sizes) + self.tp_size = get_tensor_model_parallel_world_size() + self.tp_rank = get_tensor_model_parallel_rank() def create_lora_weights( self, @@ -835,9 +779,16 @@ def create_lora_weights( lora_config: LoRAConfig, model_config: Optional[PretrainedConfig] = None, ) -> None: + """ + The main reason for overloading this function is to handle inconsistent + weight dimensions in qkv lora. + """ self.lora_config = lora_config - self.tp_size = get_tensor_model_parallel_world_size() - self.tp_rank = get_tensor_model_parallel_rank() + + if not (len(self.base_layer.output_sizes) == self.n_slices == 3): + raise ValueError( + "LoRAColumnParallelLinear3Slice requires 3 slices.") + self.q_proj_shard_size = (self.base_layer.num_heads * self.base_layer.head_size) self.kv_proj_shard_size = (self.base_layer.num_kv_heads * @@ -902,7 +853,7 @@ def create_lora_weights( ), ) if lora_config.bias_enabled: - self.bias_stacked = ( + self.lora_bias_stacked = ( torch.zeros( max_loras, 1, @@ -925,9 +876,6 @@ def create_lora_weights( device=self.device, ), ) - else: - self.bias_stacked = None - self.output_slices = ( self.q_proj_shard_size, self.kv_proj_shard_size, @@ -939,18 +887,6 @@ def create_lora_weights( self.indices: torch.Tensor self.indices_len: List[int] - def reset_lora(self, index: int): - self.lora_a_stacked[0][index] = 0 - self.lora_b_stacked[0][index] = 0 - self.lora_a_stacked[1][index] = 0 - self.lora_b_stacked[1][index] = 0 - self.lora_a_stacked[2][index] = 0 - self.lora_b_stacked[2][index] = 0 - if self.lora_config.bias_enabled: - self.bias_stacked[0][index] = 0 - self.bias_stacked[1][index] = 0 - self.bias_stacked[2][index] = 0 - def slice_lora_a( self, lora_a: List[Union[torch.Tensor, None]] ) -> List[Union[torch.Tensor, None]]: @@ -1000,15 +936,15 @@ def set_lora( lora_a: torch.Tensor, lora_b: torch.Tensor, embeddings_tensor: Optional[torch.Tensor], - bias: Optional[torch.Tensor] = None, + lora_bias: Optional[torch.Tensor] = None, ): self.reset_lora(index) if self.tp_size > 1: lora_a = self.slice_lora_a(lora_a) lora_b = self.slice_lora_b(lora_b) - if bias is not None: - bias = self.slice_bias(bias) + if lora_bias is not None: + lora_bias = self.slice_bias(lora_bias) if lora_b[0] is not None: lora_b_q = lora_b[0] @@ -1039,26 +975,24 @@ def set_lora( index, 0, :lora_a[2].shape[1], :lora_a[2].shape[0]].copy_( lora_a[2].T, non_blocking=True) - if bias is not None: - if bias[0] is not None: - self.bias_stacked[0][index, 0, :bias[0].shape[0]].copy_( - bias[0].T, non_blocking=True) - if bias[1] is not None: - self.bias_stacked[1][index, 0, :bias[1].shape[0]].copy_( - bias[1].T, non_blocking=True) - if bias[2] is not None: - self.bias_stacked[2][index, 0, :bias[2].shape[0]].copy_( - bias[2].T, non_blocking=True) - - def apply(self, x: torch.Tensor, - bias: Optional[torch.Tensor]) -> torch.Tensor: - output = self.base_layer.quant_method.apply(self.base_layer, x, bias) - self.punica_wrapper.add_lora_packed_nslice(output, x, - self.lora_a_stacked, - self.lora_b_stacked, - self.bias_stacked, 1.0, - self.output_slices) - return output + if lora_bias is not None: + self.lora_bias_stacked = cast(Tuple[torch.Tensor, ...], + self.lora_bias_stacked) + if lora_bias[0] is not None: + self.lora_bias_stacked[0][index, + 0, :lora_bias[0].shape[0]].copy_( + lora_bias[0].T, + non_blocking=True) + if lora_bias[1] is not None: + self.lora_bias_stacked[1][index, + 0, :lora_bias[1].shape[0]].copy_( + lora_bias[1].T, + non_blocking=True) + if lora_bias[2] is not None: + self.lora_bias_stacked[2][index, + 0, :lora_bias[2].shape[0]].copy_( + lora_bias[2].T, + non_blocking=True) @classmethod @_not_fully_sharded_can_replace @@ -1073,76 +1007,25 @@ def can_replace_layer( and len(packed_modules_list) == 3) -class RowParallelLinearWithLoRA(BaseLayerWithLoRA): +class RowParallelLinearWithLoRA(BaseLinearLayerWithLoRA): def __init__(self, base_layer: RowParallelLinear) -> None: - super().__init__() - self.base_layer = base_layer + super().__init__(base_layer) + + self.tp_size = get_tensor_model_parallel_world_size() + # reset input_size self.input_size = self.base_layer.input_size_per_partition self.output_size = self.base_layer.output_size - self.device = _get_lora_device(self.base_layer) - def create_lora_weights( - self, - max_loras: int, - lora_config: LoRAConfig, - model_config: Optional[PretrainedConfig] = None, - ) -> None: - self.lora_config = lora_config self.tp_rank = get_tensor_model_parallel_rank() - self.lora_a_stacked = torch.zeros( - ( - max_loras, - 1, - lora_config.max_lora_rank, - self.input_size, - ), - dtype=lora_config.lora_dtype, - device=self.device, - ) - tp_size = get_tensor_model_parallel_world_size() - lora_b_output_size_per_partition = ( - self.output_size if not lora_config.fully_sharded_loras else - divide(self.output_size, tp_size)) - - self.lora_b_stacked = torch.zeros( - ( - max_loras, - 1, - lora_b_output_size_per_partition, - lora_config.max_lora_rank, - ), - dtype=lora_config.lora_dtype, - device=self.device, - ) - - if lora_config.bias_enabled: - self.bias_stacked = torch.zeros( - ( - max_loras, - 1, - self.output_size, - ), - dtype=lora_config.lora_dtype, - device=self.device, - ) - else: - self.bias_stacked = None - # Lazily initialized - self.indices: torch.Tensor - self.indices_len: List[int] - - def reset_lora(self, index: int): - self.lora_a_stacked[index] = 0 - self.lora_b_stacked[index] = 0 - if self.lora_config.bias_enabled: - self.bias_stacked[index] = 0 + # There is only one LoRA layer. + self.n_slices = 1 def slice_lora_a(self, lora_a: torch.Tensor) -> torch.Tensor: - tensor_model_parallel_rank = get_tensor_model_parallel_rank() + shard_size = self.input_size - start_idx = tensor_model_parallel_rank * shard_size - end_idx = (tensor_model_parallel_rank + 1) * shard_size + start_idx = self.tp_rank * shard_size + end_idx = (self.tp_rank + 1) * shard_size lora_a = lora_a[start_idx:end_idx, :] return lora_a @@ -1152,40 +1035,6 @@ def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor: def slice_bias(self, bias: torch.Tensor) -> torch.Tensor: return bias - def set_lora( - self, - index: int, - lora_a: torch.Tensor, - lora_b: torch.Tensor, - embeddings_tensor: Optional[torch.Tensor], - bias: Optional[torch.Tensor] = None, - ): - self.reset_lora(index) - - if self.base_layer.tp_size > 1: - lora_a = self.slice_lora_a(lora_a) - lora_b = self.slice_lora_b(lora_b) - if bias is not None: - bias = self.slice_bias(bias) - - self.lora_a_stacked[index, - 0, :lora_a.shape[1], :lora_a.shape[0]].copy_( - lora_a.T, non_blocking=True) - self.lora_b_stacked[index, - 0, :lora_b.shape[1], :lora_b.shape[0]].copy_( - lora_b.T, non_blocking=True) - if bias is not None: - self.bias_stacked[index, - 0, :bias.shape[0]].copy_(bias.T, - non_blocking=True) - - def apply(self, x: torch.Tensor) -> torch.Tensor: - output = self.base_layer.quant_method.apply(self.base_layer, x) - self.punica_wrapper.add_lora(output, x, self.lora_a_stacked, - self.lora_b_stacked, self.bias_stacked, - 1.0) - return output - def forward(self, input_): """Forward of RowParallelLinear @@ -1203,10 +1052,9 @@ def forward(self, input_): input_parallel = input_ else: # TODO: simplify code below - tp_rank = get_tensor_model_parallel_rank() splitted_input = split_tensor_along_last_dim( input_, num_partitions=self.base_layer.tp_size) - input_parallel = splitted_input[tp_rank].contiguous() + input_parallel = splitted_input[self.tp_rank].contiguous() # Matrix multiply. output_parallel = self.apply(input_parallel) diff --git a/vllm/lora/models.py b/vllm/lora/models.py index 2ffefe61427e3..9855b57d0c9c9 100644 --- a/vllm/lora/models.py +++ b/vllm/lora/models.py @@ -555,17 +555,17 @@ def create_dummy_lora( input_dim, output_dim, rank, - module.lora_a_stacked.dtype, + module.lora_a_stacked[0].dtype, "cpu", embeddings_tensor_dim=embeddings_tensor_dim, bias_enabled=bias_enabled) else: lora = LoRALayerWeights.create_dummy_lora_weights( module_name, - module.lora_a_stacked.shape[-1], - module.lora_b_stacked.shape[-2], + module.lora_a_stacked[0].shape[-1], + module.lora_b_stacked[0].shape[-2], rank, - module.lora_a_stacked.dtype, + module.lora_a_stacked[0].dtype, "cpu", bias_enabled=bias_enabled, ) diff --git a/vllm/lora/punica.py b/vllm/lora/punica.py index 3f775b7ba363e..563d1181d6fcb 100644 --- a/vllm/lora/punica.py +++ b/vllm/lora/punica.py @@ -362,7 +362,7 @@ def long_lora_indices(self) -> torch.Tensor: long_lora_len = self.indices_len[4] return self._long_lora_indices[:long_lora_len] - def shrink_prefill( + def _shrink_prefill( self, y: torch.Tensor, x: torch.Tensor, @@ -380,7 +380,7 @@ def shrink_prefill( scale, ) - def shrink_decode( + def _shrink_decode( self, y: torch.Tensor, x: torch.Tensor, @@ -389,7 +389,7 @@ def shrink_decode( ): bgmv_shrink(x, w_t_all, y, self.token_lora_indices, scale) - def expand_prefill( + def _expand_prefill( self, y: torch.Tensor, x: torch.Tensor, @@ -407,7 +407,7 @@ def expand_prefill( add_input, ) - def expand_decode( + def _expand_decode( self, y: torch.Tensor, x: torch.Tensor, @@ -416,7 +416,7 @@ def expand_decode( ): bgmv_expand(x, w_t_all, y, self.token_lora_indices, add_input) - def expand_slice_prefill( + def _expand_slice_prefill( self, y: torch.Tensor, x: torch.Tensor, @@ -438,7 +438,7 @@ def expand_slice_prefill( add_input, ) - def expand_slice_decode( + def _expand_slice_decode( self, y: torch.Tensor, x: torch.Tensor, @@ -450,41 +450,35 @@ def expand_slice_decode( bgmv_expand_slice(x, w_t_all, y, self.token_lora_indices, y_offset, y_slice_size, add_input) - def apply_bias( - self, - indices: torch.Tensor, - output: torch.Tensor, - bias_stacked: torch.Tensor, - ): - """Applies bias to output - - Input shapes: - bias_stacked: (num_loras, output_dim) - indices: (batch_size) - output: (batch_size, output_dim) + def _apply_expand(self, + y: torch.Tensor, + x: torch.Tensor, + w_t_all: torch.Tensor, + y_offset: Optional[int], + y_slice_size: Optional[int], + add_input: bool = True): + """ + Perform the ` y[:,y_offset:y_offset+y_slice_size]+=x@w_t_all` + computation, which is suitable for the + GEMM of lora'b. """ - org_output = output - output = output.view(-1, output.shape[-1]) - indices = indices.view(-1) - - bias_stacked = bias_stacked.view(-1, bias_stacked.shape[-1]) - bias_stacked = bias_stacked[indices] - bias_stacked[indices == -1] = 0 - output += bias_stacked - return output.view_as(org_output) + expand_slice_fun: Callable = (self._expand_slice_prefill + if self.is_prefill else + self._expand_slice_decode) + expand_slice_fun(y, x, w_t_all, y_offset, y_slice_size, add_input) - def apply_bias_packed_nslice( + def _apply_bias( self, indices: torch.Tensor, output: torch.Tensor, output_slices: Tuple[int, ...], - bias_stacked: Tuple[Optional[torch.Tensor], ...], + lora_bias_stacked: Tuple[Optional[torch.Tensor], ...], ): """Applies bias to output Input shapes: - bias_stacked: 3 element tuple of (num_loras, output_dim) + lora_bias_stacked: 3 element tuple of (num_loras, output_dim) indices: (batch_size) output: (batch_size, q_slice_size + 2*kv_slice_size) output_slices: n-1 element tuple of (slice_size...), @@ -496,7 +490,7 @@ def apply_bias_packed_nslice( offset_left = 0 for slice_idx, slice in enumerate(output_slices): - bias = bias_stacked[slice_idx] + bias = lora_bias_stacked[slice_idx] if bias is not None: bias = bias.view(-1, bias.shape[-1]) bias = bias[indices] @@ -506,7 +500,7 @@ def apply_bias_packed_nslice( return output.view_as(org_output) - def add_shrink( + def _apply_shrink( self, y: torch.Tensor, x: torch.Tensor, @@ -517,188 +511,215 @@ def add_shrink( Perform the ` y+=x@w_t_all` computation, which is suitable for the GEMM of lora'a. When `is_prefill is` true, it indicates that it is currently the - prefill stage, and the `shrink_prefill` function should be called. - Otherwise, it is the decode stage, and the shrink_decode function + prefill stage, and the `_shrink_prefill` function should be called. + Otherwise, it is the decode stage, and the _shrink_decode function should be called. """ - shrink_fun: Callable = (self.shrink_prefill - if self.is_prefill else self.shrink_decode) + y_org = y + y = y.view(-1, y.shape[-1]) + shrink_fun: Callable = (self._shrink_prefill + if self.is_prefill else self._shrink_decode) shrink_fun(y, x, w_t_all, scale) + y = y.view_as(y_org) - def add_expand( + def add_shrink( self, - y: torch.Tensor, + y: Union[Tuple[torch.Tensor, ...], torch.Tensor], x: torch.Tensor, - w_t_all: torch.Tensor, - bias_all: Optional[torch.Tensor], - add_input: bool = True, + lora_a_stacked: Tuple[torch.Tensor, ...], + scale: float, ): """ - Perform the ` y+=x@w_t_all+bias` computation, which is suitable for the - GEMM of lora'b. - When `is_prefill` is true, it indicates that it is currently the - prefill stage, and the `expand_prefill` function should be called. - Otherwise, it is the decode stage, and the expand_decode function + Performs GEMM for multiple slices of lora_a. + When `is_prefill is` true, it indicates that it is currently the + prefill stage, and the `_shrink_prefill` function should be called. + Otherwise, it is the decode stage, and the _shrink_decode function should be called. - """ - if bias_all is not None: - y = self.apply_bias(self.token_lora_indices, y, bias_all) - - expand_fun: Callable = (self.expand_prefill - if self.is_prefill else self.expand_decode) - expand_fun(y, x, w_t_all, add_input) - - def add_expand_slice(self, - y: torch.Tensor, - x: torch.Tensor, - w_t_all: torch.Tensor, - bias_all: Optional[torch.Tensor], - y_offset: Optional[int], - y_slice_size: Optional[int], - add_input: bool = True): - """ - Similar to `add_expand` - """ - if bias_all is not None: - y = self.apply_bias(self.token_lora_indices, y, bias_all) + + Semantics: + for i in range(len(lora_a_stacked)): + y[i] += (x @ lora_a_stacked[i]) * scale + + Args: + y (Union[Tuple[torch.Tensor, ...], torch.Tensor]): Output tensors + x (torch.Tensor): Input tensor + lora_a_stacked (Tuple[torch.Tensor, ...]): lora_a's weights + scale (float): Scaling factor for the operation + """ - expand_slice_fun: Callable = (self.expand_slice_prefill - if self.is_prefill else - self.expand_slice_decode) - expand_slice_fun(y, x, w_t_all, y_offset, y_slice_size, add_input) + x = x.view(-1, x.shape[-1]) + # TODO fuse these kernels + for slice_idx in range(len(lora_a_stacked)): + self._apply_shrink(y[slice_idx], x, lora_a_stacked[slice_idx], + scale) - def add_expand_packed_nslice(self, y: torch.Tensor, x: torch.Tensor, - lora_b_stacked: Tuple[torch.Tensor, ...], - bias_stacked: Optional[Tuple[torch.Tensor, - ...]], - scale: float, - output_slices: Tuple[int, ...]) -> None: - """ - Similar to `add_expand` + def add_expand( + self, + y: torch.Tensor, + x: Union[Tuple[torch.Tensor, ...], torch.Tensor], + lora_b_stacked: Tuple[torch.Tensor, ...], + lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]], + output_slices: Tuple[int, ...], + offset_start: int = 0, + add_input=True, + ) -> None: """ + Performs GEMM and bias addition for multiple slices of lora_b. + + Semantics: + for i in range(len(lora_b_stacked)): + slice = output_slices[i] + y[:, offset:offset+slice] += x[i] @ lora_b_stacked[i] + + lora_bias_stacked[i] + offset += slice + + Args: + y (torch.Tensor): Output tensor. + x (Union[Tuple[torch.Tensor, ...], torch.Tensor]): Input tensors + lora_b_stacked (Tuple[torch.Tensor, ...]): lora_b's weight + lora_bias_stacked (Optional[Tuple[torch.Tensor, ...]]): + bias's weight + output_slices (Tuple[int, ...]): Every slice's size + add_input (bool): Defaults to True. + """ y_org = y y = y.view(-1, y.shape[-1]) - offset_left = 0 - if bias_stacked is not None: - self.apply_bias_packed_nslice(self.token_lora_indices, y, - output_slices, bias_stacked) + offset_left = offset_start + if lora_bias_stacked is not None: + self._apply_bias(self.token_lora_indices, y, output_slices, + lora_bias_stacked) for slice_idx in range(len(lora_b_stacked)): - self.add_expand_slice(y, - x[slice_idx], - lora_b_stacked[slice_idx], - None, - offset_left, - output_slices[slice_idx], - add_input=True) + self._apply_expand( + y, + x[slice_idx], + lora_b_stacked[slice_idx], + offset_left, + output_slices[slice_idx], + add_input=add_input, + ) offset_left += output_slices[slice_idx] - y = y.view_as(y_org) - def add_lora(self, - y: torch.Tensor, - x: torch.Tensor, - wa_t_all: torch.Tensor, - wb_t_all: torch.Tensor, - bias_all: Optional[torch.Tensor], - scale: float, - y_offset: Optional[int] = None, - y_slice_size: Optional[int] = None, - *, - buffer: Optional[torch.Tensor] = None) -> None: + def add_lora_embedding( + self, + y: torch.Tensor, + x: torch.Tensor, + lora_b_stacked: torch.Tensor, + add_input: bool = True, + ): + """ + Applies lora specifically for VocabParallelEmbeddingWithLoRA. + + Semantics: + y += x @ lora_b_stacked + + Args: + y (torch.Tensor): Output tensor. + x (torch.Tensor): Input tensor. + lora_b_stacked (torch.Tensor): lora_b's weights. + add_input (bool): Default to True. + + """ + + # Embedding layer only need expand op + expand_fun: Callable = (self._expand_prefill + if self.is_prefill else self._expand_decode) + expand_fun(y, x, lora_b_stacked, add_input) + + def add_lora_linear( + self, + y: torch.Tensor, + x: torch.Tensor, + lora_a_stacked: Tuple[torch.Tensor, ...], + lora_b_stacked: Tuple[torch.Tensor, ...], + lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]], + scale: float, + output_slices: Tuple[int, ...], + *, + buffer: Optional[Tuple[torch.Tensor, ...]] = None) -> None: """ + Applicable to linear-related lora. + Semantics: - y[i] += ( - x[i].unsqueeze(0) - @ wa_t_all[indices[i], layer_idx, :, :].transpose(-1, -2) - @ wb_t_all[indices[i], layer_idx, :, :].transpose(-1, -2) - * scale - ).squeeze(0)+bias[i] + for i in range(len(lora_a_stacked)): + y[i] += ( + x[i].unsqueeze(0) + @ lora_a_stacked[indices[i], layer_idx, :, :] + @ lora_b_stacked[indices[i], layer_idx, :, :] + * scale + ).squeeze(0)+lora_bias_stacked[i] + Args: - y (torch.Tensor): Output tensor. Will be changed in-place. + y (torch.Tensor): Output tensor. Will be changed in-place. x (torch.Tensor): Input tensor - wa_t_all (torch.Tensor): lora_a's weight - wb_t_all (torch.Tensor): lora_b's weight - bias_all: (torch.Tensor): lora's bias + lora_a_stacked (Tuple[torch.Tensor, ...]): lora_a's weight. + lora_b_stacked (Tuple[torch.Tensor, ...]): lora_b's weight. + lora_bias_stacked (Optional[Tuple[torch.Tensor, ...]]): lora's bias. scale (float): Scaling factor. - y_offset (Optional[int], optional): Offset to apply to the starting - column of y. - y_slice_size (Optional[int], optional): Size of the y column slice. - buffer (Optional[torch.Tensor], optional): Defaults to None. + output_slices (Tuple[int, ...]): Every slice's size. + buffer (Optional[Tuple[torch.Tensor, ...]]): Defaults to None. """ - y_org = y - y = y.view(-1, y.shape[-1]) - x = x.view(-1, x.shape[-1]) - r = wb_t_all.size(-1) + + assert len(lora_a_stacked) == len(lora_b_stacked) == len(output_slices) + if lora_bias_stacked is not None: + assert len(lora_bias_stacked) == len(output_slices) + y = self._apply_bias(self.token_lora_indices, y, output_slices, + lora_bias_stacked) + if buffer is None: + r = lora_b_stacked[0].size(-1) # We set the buffer to be float32 by default ,refer to: # https://github.com/triton-lang/triton/issues/1387 - buffer = torch.zeros((x.size(0), r), - dtype=torch.float32, - device=x.device) - if bias_all is not None: - y = self.apply_bias(self.token_lora_indices, y, bias_all) - self.add_shrink(buffer, x, wa_t_all, scale) - if y_offset is None and y_slice_size is None: - self.add_expand(y, buffer, wb_t_all, bias_all=None, add_input=True) - else: - self.add_expand_slice(y, - buffer, - wb_t_all, - None, - y_offset, - y_slice_size, - add_input=True) - y = y.view_as(y_org) - - def add_lora_packed_nslice(self, y: torch.Tensor, x: torch.Tensor, - lora_a_stacked: Tuple[torch.Tensor, ...], - lora_b_stacked: Tuple[torch.Tensor, ...], - bias_all: Tuple[Optional[torch.Tensor], - ...], scale: float, - output_slices: Tuple[int, ...]) -> None: - """ - Applies lora to each input. Similar to add_lora, This method is - used for layers that are composed of multiple sublayers - (slices) packed together. - """ - y_org = y - x = x.view(-1, x.shape[-1]) - y = y.view(-1, y.shape[-1]) - offset_left = 0 - if bias_all is not None: - y = self.apply_bias_packed_nslice(self.token_lora_indices, y, - output_slices, bias_all) - # TODO fuse these kernels - for slice_idx in range(len(output_slices)): - self.add_lora(y, x, lora_a_stacked[slice_idx], - lora_b_stacked[slice_idx], None, scale, offset_left, - output_slices[slice_idx]) - offset_left += output_slices[slice_idx] - - y = y.view_as(y_org) + buffer = tuple( + torch.zeros( + (x.size(0), r), dtype=torch.float32, device=x.device) + for _ in range(len(output_slices))) + self.add_shrink(buffer, x, lora_a_stacked, scale) + self.add_expand(y, + buffer, + lora_b_stacked, + None, + output_slices, + add_input=True) def add_lora_logits(self, y: torch.Tensor, x: torch.Tensor, - wa_t_all: torch.Tensor, - wb_t_all: torch.Tensor, + lora_a_stacked: torch.Tensor, + lora_b_stacked: torch.Tensor, scale, *, buffer: Optional[torch.Tensor] = None) -> None: """ - LogitsProcessorWithLoRA always using bgmv - """ + Applies lora specifically for LogitsProcessorWithLoRA. + + Semantics: + buffer = (x @ lora_a_stacked) * scale + y += buffer @ lora_b_stacked + + Args: + y (torch.Tensor): Output tensor. + x (torch.Tensor): Input tensor. + lora_a_stacked (torch.Tensor): lora_a's weights. + lora_b_stacked (torch.Tensor):lora_b's weights. + scale (float): Scaling factor. + buffer (Optional[torch.Tensor]):Default to None. + """ y_org = y y = y.view(-1, y.shape[-1]) x = x.view(-1, x.shape[-1]) - r = wb_t_all.size(-1) + r = lora_b_stacked.size(-1) if buffer is None: # We set the buffer to be float32 by default ,refer to: # https://github.com/triton-lang/triton/issues/1387 buffer = torch.zeros((x.size(0), r), dtype=torch.float32, device=x.device) - - bgmv_shrink(x, wa_t_all, buffer, self.sampler_indices, scale) - bgmv_expand(buffer, wb_t_all, y, self.sampler_indices, add_inputs=True) + # LogitsProcessorWithLoRA always using bgmv. + bgmv_shrink(x, lora_a_stacked, buffer, self.sampler_indices, scale) + bgmv_expand(buffer, + lora_b_stacked, + y, + self.sampler_indices, + add_inputs=True) y = y.view_as(y_org) From 998eeafe58c0263323b7fd8813c8b3d3f839bcbc Mon Sep 17 00:00:00 2001 From: Isotr0py Date: Fri, 6 Dec 2024 00:05:52 +0800 Subject: [PATCH 039/733] [CI/Build] Bump test transformers version (#10106) Signed-off-by: Isotr0py <2037008807@qq.com> Signed-off-by: DarkLight1337 Co-authored-by: DarkLight1337 --- requirements-test.txt | 2 +- .../vision_language/test_models.py | 25 +------------------ .../vision_language/test_pixtral.py | 2 +- .../vision_language/test_llava_next.py | 4 --- tests/models/test_initialization.py | 5 ---- 5 files changed, 3 insertions(+), 35 deletions(-) diff --git a/requirements-test.txt b/requirements-test.txt index a59b85023948b..19369254dbe26 100644 --- a/requirements-test.txt +++ b/requirements-test.txt @@ -550,7 +550,7 @@ tqdm==4.66.6 # transformers tqdm-multiprocess==0.0.11 # via lm-eval -transformers==4.45.2 +transformers==4.46.3 # via # lm-eval # peft diff --git a/tests/models/decoder_only/vision_language/test_models.py b/tests/models/decoder_only/vision_language/test_models.py index dbb0b4d350d10..924f19c4448b8 100644 --- a/tests/models/decoder_only/vision_language/test_models.py +++ b/tests/models/decoder_only/vision_language/test_models.py @@ -6,7 +6,6 @@ from typing import Type import pytest -import transformers from transformers import AutoModelForVision2Seq from transformers.utils import is_flash_attn_2_available @@ -187,12 +186,6 @@ comparator=check_outputs_equal, max_tokens=8, dtype="bfloat16", - marks=[ - pytest.mark.skipif( - transformers.__version__ < "4.46.2", - reason="Model broken in HF, see huggingface/transformers#34379" - ), - ] ), "fuyu": VLMTestInfo( models=["adept/fuyu-8b"], @@ -243,13 +236,7 @@ max_model_len=8192, max_num_seqs=2, auto_cls=AutoModelForVision2Seq, - marks=[ - pytest.mark.skipif( - transformers.__version__ < "4.46.0", - reason="Model introduced in HF >= 4.46.0" - ), - large_gpu_mark(min_gb=48), - ], + marks=[large_gpu_mark(min_gb=48)], ), "intern_vl": VLMTestInfo( models=[ @@ -318,12 +305,6 @@ auto_cls=AutoModelForVision2Seq, vllm_output_post_proc=model_utils.llava_video_vllm_to_hf_output, image_sizes=[((1669, 2560), (2560, 1669), (183, 488), (488, 183))], - marks=[ - pytest.mark.skipif( - transformers.__version__ < "4.46.2", - reason="Model broken with changes in transformers 4.46" - ) - ], ), "minicpmv_25": VLMTestInfo( models=["openbmb/MiniCPM-Llama3-V-2_5"], @@ -404,10 +385,6 @@ cuda_device_count_stateless() < 2, reason="Need at least 2 GPUs to run the test.", ), - pytest.mark.skipif( - transformers.__version__ < "4.46.2", - reason="Model broken in HF, see huggingface/transformers#34379" - ) ], **COMMON_BROADCAST_SETTINGS # type: ignore ), diff --git a/tests/models/decoder_only/vision_language/test_pixtral.py b/tests/models/decoder_only/vision_language/test_pixtral.py index 6233860747b9c..90c0fab99054c 100644 --- a/tests/models/decoder_only/vision_language/test_pixtral.py +++ b/tests/models/decoder_only/vision_language/test_pixtral.py @@ -228,7 +228,7 @@ def test_model_engine(vllm_runner, model: str, dtype: str) -> None: name_1="output") -@large_gpu_test(min_gb=24) +@large_gpu_test(min_gb=48) @pytest.mark.parametrize( "prompt,expected_ranges", [(_create_engine_inputs_hf(IMG_URLS[:1]), [{ diff --git a/tests/models/embedding/vision_language/test_llava_next.py b/tests/models/embedding/vision_language/test_llava_next.py index 329c6ba279f89..bab8d3897579e 100644 --- a/tests/models/embedding/vision_language/test_llava_next.py +++ b/tests/models/embedding/vision_language/test_llava_next.py @@ -2,7 +2,6 @@ import pytest import torch.nn.functional as F -import transformers from transformers import AutoModelForVision2Seq from ....conftest import IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner @@ -86,9 +85,6 @@ def _run_test( ) -@pytest.mark.skipif(transformers.__version__.startswith("4.46"), - reason="Model broken with changes in transformers 4.46") -@pytest.mark.core_model @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["half"]) def test_models_text( diff --git a/tests/models/test_initialization.py b/tests/models/test_initialization.py index 2a072737db043..3b728f2744fca 100644 --- a/tests/models/test_initialization.py +++ b/tests/models/test_initialization.py @@ -1,7 +1,6 @@ from unittest.mock import patch import pytest -import transformers from transformers import PretrainedConfig from vllm import LLM @@ -11,10 +10,6 @@ @pytest.mark.parametrize("model_arch", HF_EXAMPLE_MODELS.get_supported_archs()) def test_can_initialize(model_arch): - if (model_arch in {"Idefics3ForConditionalGeneration", "GlmForCausalLM"} - and transformers.__version__ < "4.46.0"): - pytest.skip(reason="Model introduced in HF >= 4.46.0") - model_info = HF_EXAMPLE_MODELS.get_hf_info(model_arch) if not model_info.is_available_online: pytest.skip("Model is not available online") From a43065272f73a7468b1a35dd44fb5b0ed80f88c7 Mon Sep 17 00:00:00 2001 From: Konrad Zawora Date: Thu, 5 Dec 2024 17:47:46 +0100 Subject: [PATCH 040/733] [Misc][Gaudi] Avoid torch.compile and enable lazy collectives (#10897) Signed-off-by: Konrad Zawora --- vllm/plugins/__init__.py | 14 ++++++++++++++ 1 file changed, 14 insertions(+) diff --git a/vllm/plugins/__init__.py b/vllm/plugins/__init__.py index 81ee9975cdc4a..ae6e5c0a3481f 100644 --- a/vllm/plugins/__init__.py +++ b/vllm/plugins/__init__.py @@ -29,6 +29,20 @@ def load_general_plugins(): if current_platform.is_xpu(): # see https://github.com/pytorch/pytorch/blob/8cada5cbe5450e17c26fb8b358116785324537b2/torch/_dynamo/config.py#L158 # noqa os.environ['TORCH_COMPILE_DISABLE'] = 'True' + if current_platform.is_hpu(): + # NOTE(kzawora): PT HPU lazy backend (PT_HPU_LAZY_MODE = 1) + # does not support torch.compile + # Eager backend (PT_HPU_LAZY_MODE = 0) must be selected for + # torch.compile support + is_lazy = os.environ.get('PT_HPU_LAZY_MODE', '1') == '1' + if is_lazy: + # see https://github.com/pytorch/pytorch/blob/43c5f59/torch/_dynamo/config.py#L158 + torch._dynamo.config.disable = True + # NOTE(kzawora) multi-HPU inference with HPUGraphs (lazy-only) + # requires enabling lazy collectives + # see https://docs.habana.ai/en/latest/PyTorch/Inference_on_PyTorch/Inference_Using_HPU_Graphs.html # noqa: E501 + os.environ['PT_HPU_ENABLE_LAZY_COLLECTIVES'] = 'true' + global plugins_loaded if plugins_loaded: return From 9743d64e4e04a88174c76553fcbffa33a18c7db5 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Thu, 5 Dec 2024 08:54:47 -0800 Subject: [PATCH 041/733] [ci][build] add tests for python only compilation (#10915) Signed-off-by: youkaichao --- .buildkite/test-pipeline.yaml | 11 +++++-- setup.py | 13 ++++---- .../lazy_torch_compile.py} | 0 tests/standalone_tests/python_only_compile.sh | 30 +++++++++++++++++++ 4 files changed, 46 insertions(+), 8 deletions(-) rename tests/{test_lazy_torch_compile.py => standalone_tests/lazy_torch_compile.py} (100%) create mode 100644 tests/standalone_tests/python_only_compile.sh diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index 455f02a2062f1..bf0de3f69f14e 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -50,9 +50,9 @@ steps: - tests/multimodal - tests/test_utils - tests/worker - - tests/test_lazy_torch_compile.py + - tests/standalone_tests/lazy_torch_compile.py commands: - - python3 test_lazy_torch_compile.py + - python3 standalone_tests/lazy_torch_compile.py - pytest -v -s mq_llm_engine # MQLLMEngine - pytest -v -s async_engine # AsyncLLMEngine - NUM_SCHEDULER_STEPS=4 pytest -v -s async_engine/test_async_llm_engine.py @@ -61,6 +61,13 @@ steps: - pytest -v -s test_utils.py # Utils - pytest -v -s worker # Worker +- label: Python-only Installation Test + source_file_dependencies: + - tests/standalone_tests/python_only_compile.sh + - setup.py + commands: + - bash standalone_tests/python_only_compile.sh + - label: Basic Correctness Test # 30min #mirror_hardwares: [amd] fast_check: true diff --git a/setup.py b/setup.py index 182dabe449674..fcfaa207c176a 100644 --- a/setup.py +++ b/setup.py @@ -465,14 +465,15 @@ def get_vllm_version() -> str: if envs.VLLM_TARGET_DEVICE == "empty": version += f"{sep}empty" elif _is_cuda(): - cuda_version = str(get_nvcc_cuda_version()) - if cuda_version != MAIN_CUDA_VERSION: - cuda_version_str = cuda_version.replace(".", "")[:3] - # skip this for source tarball, required for pypi - if "sdist" not in sys.argv: - version += f"{sep}cu{cuda_version_str}" if envs.VLLM_USE_PRECOMPILED: version += ".precompiled" + else: + cuda_version = str(get_nvcc_cuda_version()) + if cuda_version != MAIN_CUDA_VERSION: + cuda_version_str = cuda_version.replace(".", "")[:3] + # skip this for source tarball, required for pypi + if "sdist" not in sys.argv: + version += f"{sep}cu{cuda_version_str}" elif _is_hip(): # Get the HIP version hipcc_version = get_hipcc_rocm_version() diff --git a/tests/test_lazy_torch_compile.py b/tests/standalone_tests/lazy_torch_compile.py similarity index 100% rename from tests/test_lazy_torch_compile.py rename to tests/standalone_tests/lazy_torch_compile.py diff --git a/tests/standalone_tests/python_only_compile.sh b/tests/standalone_tests/python_only_compile.sh new file mode 100644 index 0000000000000..f00895c0997f1 --- /dev/null +++ b/tests/standalone_tests/python_only_compile.sh @@ -0,0 +1,30 @@ +#!/bin/bash +# This script tests if the python only compilation works correctly +# for users who do not have any compilers installed on their system + +set -e +set -x + +cd /vllm-workspace/ + +# uninstall vllm +pip3 uninstall -y vllm +# restore the original files +mv test_docs/vllm ./vllm + +# remove all compilers +apt remove --purge build-essential -y +apt autoremove -y + +echo 'import os; os.system("touch /tmp/changed.file")' >> vllm/__init__.py + +VLLM_USE_PRECOMPILED=1 pip3 install -vvv -e . + +# Run the script +python3 -c 'import vllm' + +# Check if the clangd log file was created +if [ ! -f /tmp/changed.file ]; then + echo "changed.file was not created, python only compilation failed" + exit 1 +fi From db87eb6c67271eb61ba9fd8559ce811a1a398a4d Mon Sep 17 00:00:00 2001 From: youkaichao Date: Thu, 5 Dec 2024 20:30:41 -0800 Subject: [PATCH 042/733] [torch.compile] use size tuning for specific sizes (#10933) Signed-off-by: youkaichao --- vllm/compilation/backends.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/vllm/compilation/backends.py b/vllm/compilation/backends.py index d49a83fe3981f..9773ba8cec779 100644 --- a/vllm/compilation/backends.py +++ b/vllm/compilation/backends.py @@ -43,6 +43,12 @@ def wrap_inductor(graph, if additional_inductor_config is not None: current_config.update(additional_inductor_config) + if isinstance(runtime_shape, int): + # for a specific batchsize, tuning triton kernel parameters + # can be beneficial + current_config["max_autotune"] = True + current_config["coordinate_descent_tuning"] = True + # inductor can inplace modify the graph, so we need to copy it # see https://github.com/pytorch/pytorch/issues/138980 graph = copy.deepcopy(graph) From b031a455a9fa9d57952281dac2a1146d6440790f Mon Sep 17 00:00:00 2001 From: youkaichao Date: Fri, 6 Dec 2024 02:07:15 -0800 Subject: [PATCH 043/733] [torch.compile] add logging for compilation time (#10941) Signed-off-by: youkaichao Co-authored-by: Woosuk Kwon --- vllm/compilation/backends.py | 56 ++++++++++++++++++++++++++++------ vllm/compilation/decorators.py | 5 +++ vllm/compilation/monitor.py | 14 +++++++++ vllm/config.py | 2 ++ vllm/engine/llm_engine.py | 4 +++ vllm/v1/engine/core.py | 4 +++ 6 files changed, 75 insertions(+), 10 deletions(-) create mode 100644 vllm/compilation/monitor.py diff --git a/vllm/compilation/backends.py b/vllm/compilation/backends.py index 9773ba8cec779..84dde558626af 100644 --- a/vllm/compilation/backends.py +++ b/vllm/compilation/backends.py @@ -1,5 +1,6 @@ import copy import dataclasses +import time from contextlib import ExitStack from typing import Any, Callable, Dict, List, Optional, Sequence, Set, Tuple from unittest.mock import patch @@ -14,6 +15,7 @@ from .counter import compilation_counter from .inductor_pass import InductorPass +from .monitor import end_monitoring_torch_compile from .pass_manager import PostGradPassManager logger = init_logger(__name__) @@ -22,20 +24,21 @@ def wrap_inductor(graph, example_inputs, additional_inductor_config, - do_logging=False, + compilation_config: CompilationConfig, + graph_index: int = 0, + num_graphs: int = 1, runtime_shape: Optional[int] = None, use_inductor: bool = True): + if graph_index == 0: + # before compiling the first graph, record the start time + global compilation_start_time + compilation_start_time = time.time() + if not use_inductor: return graph compilation_counter.num_inductor_compilations += 1 - if do_logging: - if runtime_shape is None: - logger.info("Compiling a graph for general shape") - else: - logger.info("Compiling a graph for shape %s", runtime_shape) - from torch._inductor import config current_config = config.shallow_copy_dict() from torch._inductor.compile_fx import compile_fx @@ -52,7 +55,23 @@ def wrap_inductor(graph, # inductor can inplace modify the graph, so we need to copy it # see https://github.com/pytorch/pytorch/issues/138980 graph = copy.deepcopy(graph) - return compile_fx(graph, example_inputs, config_patches=current_config) + compiled_graph = compile_fx(graph, + example_inputs, + config_patches=current_config) + + # after compiling the last graph, record the end time + if graph_index == num_graphs - 1: + now = time.time() + elapsed = now - compilation_start_time + compilation_config.compilation_time += elapsed + if runtime_shape is None: + logger.info("Compiling a graph for general shape takes %.2f s", + elapsed) + else: + logger.info("Compiling a graph for shape %s takes %.2f s", + runtime_shape, elapsed) + + return compiled_graph @dataclasses.dataclass @@ -114,6 +133,8 @@ def split_graph(graph: fx.GraphModule, # we share the global graph pool among all the backends global_graph_pool = None +compilation_start_time = 0.0 + class PiecewiseCompileInterpreter(torch.fx.Interpreter): """Code adapted from `torch.fx.passes.shape_prop.ShapeProp`. @@ -157,12 +178,15 @@ def call_module(self, target: torch.fx.node.Target, sym_shape_indices = [ i for i, x in enumerate(args) if isinstance(x, torch.SymInt) ] + global compilation_start_time compiled_graph_for_general_shape = wrap_inductor( submod, args, self.compilation_configs.inductor_compile_config, + self.compilation_configs, + graph_index=index, + num_graphs=len(self.compile_submod_names), runtime_shape=None, - do_logging=index == 0, use_inductor=self.compilation_configs.use_inductor) self.module.__dict__[target] = PiecewiseBackend( @@ -379,6 +403,8 @@ def __init__(self, graph: fx.GraphModule, # the entries for different shapes that we need to either # compile or capture cudagraph self.concrete_size_entries: Dict[int, ConcreteSizeEntry] = {} + self.to_be_compiled_sizes: Set[int] = self.compile_sizes.union( + self.capture_sizes) for shape in self.compile_sizes.union(self.capture_sizes): self.concrete_size_entries[shape] = ConcreteSizeEntry( runtime_shape=shape, @@ -389,6 +415,9 @@ def __init__(self, graph: fx.GraphModule, def __call__(self, *args) -> Any: if not self.first_run_finished: self.first_run_finished = True + # no specific sizes to compile + if self.is_last_graph and not self.to_be_compiled_sizes: + end_monitoring_torch_compile(self.compilation_configs) return self.compiled_graph_for_general_shape(*args) runtime_shape = args[self.sym_shape_indices[0]] @@ -403,15 +432,22 @@ def __call__(self, *args) -> Any: if entry.need_to_compile and not entry.compiled: entry.compiled = True + self.to_be_compiled_sizes.remove(runtime_shape) # args are real arguments entry.runnable = wrap_inductor( self.graph, args, self.compilation_configs.inductor_compile_config, + self.compilation_configs, + graph_index=self.piecewise_compile_index, + num_graphs=self.total_piecewise_compiles, runtime_shape=runtime_shape, - do_logging=self.is_first_graph, use_inductor=self.compilation_configs.use_inductor) + # finished compilations for all required shapes + if self.is_last_graph and not self.to_be_compiled_sizes: + end_monitoring_torch_compile(self.compilation_configs) + if not entry.use_cudagraph: return entry.runnable(*args) diff --git a/vllm/compilation/decorators.py b/vllm/compilation/decorators.py index 8700243c9d904..a32dced57e5b3 100644 --- a/vllm/compilation/decorators.py +++ b/vllm/compilation/decorators.py @@ -11,6 +11,8 @@ from vllm.sequence import IntermediateTensors from vllm.utils import supports_dynamo +from .monitor import start_monitoring_torch_compile + logger = init_logger(__name__) _T = TypeVar("_T", bound=type[nn.Module]) @@ -155,6 +157,9 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = '', **kwargs): TorchCompileWrapperWithCustomDispatcher.__init__( self, compilation_level=vllm_config.compilation_config.level) + if vllm_config.compilation_config.level == CompilationLevel.PIECEWISE: + start_monitoring_torch_compile(vllm_config.compilation_config) + cls.__init__ = __init__ def __call__(self, *args, **kwargs): diff --git a/vllm/compilation/monitor.py b/vllm/compilation/monitor.py new file mode 100644 index 0000000000000..f718e46423212 --- /dev/null +++ b/vllm/compilation/monitor.py @@ -0,0 +1,14 @@ +from vllm.config import CompilationConfig, CompilationLevel +from vllm.logger import init_logger + +logger = init_logger(__name__) + + +def start_monitoring_torch_compile(compilation_config: CompilationConfig): + pass + + +def end_monitoring_torch_compile(compilation_config: CompilationConfig): + if compilation_config.level == CompilationLevel.PIECEWISE: + logger.info("graph compilation takes %.2f s in total", + compilation_config.compilation_time) diff --git a/vllm/config.py b/vllm/config.py index 5c904914a71cf..a5e2702035a5c 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -2281,6 +2281,7 @@ def model_post_init(self, __context: Any) -> None: # keep track of enabled and disabled custom ops enabled_custom_ops: Counter[str] = PrivateAttr disabled_custom_ops: Counter[str] = PrivateAttr + compilation_time: float = PrivateAttr # Per-model forward context # Mainly used to store attention cls @@ -2319,6 +2320,7 @@ def model_post_init(self, __context: Any) -> None: self.enabled_custom_ops = Counter() self.disabled_custom_ops = Counter() self.static_forward_context = {} + self.compilation_time = 0.0 def init_backend(self) -> Union[str, Callable]: if self.level == CompilationLevel.NO_COMPILATION: diff --git a/vllm/engine/llm_engine.py b/vllm/engine/llm_engine.py index 1f3c6197ba1a8..26a8c94099a11 100644 --- a/vllm/engine/llm_engine.py +++ b/vllm/engine/llm_engine.py @@ -473,6 +473,7 @@ def _initialize_kv_caches(self) -> None: The workers will determine the number of blocks in both the GPU cache and the swap CPU cache. """ + start = time.time() num_gpu_blocks, num_cpu_blocks = ( self.model_executor.determine_num_available_blocks()) @@ -488,6 +489,9 @@ def _initialize_kv_caches(self) -> None: self.cache_config.num_cpu_blocks = num_cpu_blocks self.model_executor.initialize_cache(num_gpu_blocks, num_cpu_blocks) + elapsed = time.time() - start + logger.info(("init engine (profile, create kv cache, " + "warmup model) took %.2f seconds"), elapsed) @classmethod def _get_executor_cls(cls, diff --git a/vllm/v1/engine/core.py b/vllm/v1/engine/core.py index 397a33eed3896..751eb3b40a68d 100644 --- a/vllm/v1/engine/core.py +++ b/vllm/v1/engine/core.py @@ -67,6 +67,7 @@ def __init__( def _initialize_kv_caches(self, cache_config: CacheConfig) -> Tuple[int, int]: + start = time.time() num_gpu_blocks, _ = self.model_executor.determine_num_available_blocks( ) @@ -80,6 +81,9 @@ def _initialize_kv_caches(self, num_cpu_blocks = 0 self.model_executor.initialize_cache(num_gpu_blocks) + elapsed = time.time() - start + logger.info(("init engine (profile, create kv cache, " + "warmup model) took %.2f seconds"), elapsed) return num_gpu_blocks, num_cpu_blocks def add_request(self, request: EngineCoreRequest): From 222f5b082a62d0b2675cb461e223ae43368eea92 Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Fri, 6 Dec 2024 18:41:23 +0800 Subject: [PATCH 044/733] [CI/Build] Fix broken multimodal test (#10950) --- tests/models/embedding/vision_language/test_llava_next.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/tests/models/embedding/vision_language/test_llava_next.py b/tests/models/embedding/vision_language/test_llava_next.py index bab8d3897579e..329c6ba279f89 100644 --- a/tests/models/embedding/vision_language/test_llava_next.py +++ b/tests/models/embedding/vision_language/test_llava_next.py @@ -2,6 +2,7 @@ import pytest import torch.nn.functional as F +import transformers from transformers import AutoModelForVision2Seq from ....conftest import IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner @@ -85,6 +86,9 @@ def _run_test( ) +@pytest.mark.skipif(transformers.__version__.startswith("4.46"), + reason="Model broken with changes in transformers 4.46") +@pytest.mark.core_model @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["half"]) def test_models_text( From a1887f2c96480e597db8c35cb8389c4025fb4db9 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Fri, 6 Dec 2024 03:01:23 -0800 Subject: [PATCH 045/733] [torch.compile] fix deprecated code (#10948) Signed-off-by: youkaichao --- vllm/compilation/backends.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/vllm/compilation/backends.py b/vllm/compilation/backends.py index 84dde558626af..1206424ae1e3f 100644 --- a/vllm/compilation/backends.py +++ b/vllm/compilation/backends.py @@ -40,7 +40,7 @@ def wrap_inductor(graph, compilation_counter.num_inductor_compilations += 1 from torch._inductor import config - current_config = config.shallow_copy_dict() + current_config = config.get_config_copy() from torch._inductor.compile_fx import compile_fx if additional_inductor_config is not None: From 8b5963185512eb7799f12240570e0ac7e7462a88 Mon Sep 17 00:00:00 2001 From: Michael Goin Date: Fri, 6 Dec 2024 10:34:29 -0500 Subject: [PATCH 046/733] [Core] Support Lark grammars for XGrammar (#10870) Signed-off-by: mgoin --- .../guided_decoding/__init__.py | 8 - .../guided_decoding/xgrammar_decoding.py | 17 +- .../guided_decoding/xgrammar_utils.py | 162 ++++++++++++++++++ 3 files changed, 178 insertions(+), 9 deletions(-) create mode 100644 vllm/model_executor/guided_decoding/xgrammar_utils.py diff --git a/vllm/model_executor/guided_decoding/__init__.py b/vllm/model_executor/guided_decoding/__init__.py index a81377341e095..e631aec928ec5 100644 --- a/vllm/model_executor/guided_decoding/__init__.py +++ b/vllm/model_executor/guided_decoding/__init__.py @@ -73,14 +73,6 @@ def maybe_backend_fallback( "Falling back to use outlines instead.") guided_params.backend = "outlines" - # xgrammar only supports EBNF grammars and uses the GBNF format - # https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md - elif (guided_params.grammar is not None - and "::=" not in guided_params.grammar): - logger.warning("xgrammar only supports EBNF grammars. " - "Falling back to use outlines instead.") - guided_params.backend = "outlines" - # xgrammar doesn't support some JSON schema features elif (guided_params.json is not None and has_xgrammar_unsupported_json_features(guided_params.json)): diff --git a/vllm/model_executor/guided_decoding/xgrammar_decoding.py b/vllm/model_executor/guided_decoding/xgrammar_decoding.py index 8287cd6cf3aa0..b59a2269d2cd5 100644 --- a/vllm/model_executor/guided_decoding/xgrammar_decoding.py +++ b/vllm/model_executor/guided_decoding/xgrammar_decoding.py @@ -14,6 +14,9 @@ except ImportError: pass +from vllm.model_executor.guided_decoding.xgrammar_utils import ( + convert_lark_to_gbnf, grammar_is_likely_lark) + if TYPE_CHECKING: from transformers import PreTrainedTokenizer @@ -152,7 +155,19 @@ def from_guided_params(cls, tokenizer_hash=tokenizer_hash, max_threads=max_threads) elif guided_params.grammar: - return cls(grammar_str=guided_params.grammar, + # XGrammar only supports GBNF grammars, so we must convert Lark + if grammar_is_likely_lark(guided_params.grammar): + try: + grammar_str = convert_lark_to_gbnf(guided_params.grammar) + except ValueError as e: + raise ValueError( + "Failed to convert the grammar from Lark to GBNF. " + "Please either use GBNF grammar directly or specify" + " --guided-decoding-backend=outlines.\n" + f"Conversion error: {str(e)}") from e + else: + grammar_str = guided_params.grammar + return cls(grammar_str=grammar_str, vocab_size=model_config.hf_config.vocab_size, encoded_vocab=encoded_vocab, stop_token_ids=stop_token_ids, diff --git a/vllm/model_executor/guided_decoding/xgrammar_utils.py b/vllm/model_executor/guided_decoding/xgrammar_utils.py new file mode 100644 index 0000000000000..12b42245f4e3d --- /dev/null +++ b/vllm/model_executor/guided_decoding/xgrammar_utils.py @@ -0,0 +1,162 @@ +import re + + +def grammar_is_likely_lark(grammar_str: str) -> bool: + """ + Check if grammar appears to use Lark syntax. + + Args: + grammar_str: Input grammar string + + Returns: + bool: True if grammar appears to be in Lark format, False otherwise + + Examples: + >>> grammar_is_likely_lark("rule: 'abc'") + True + >>> grammar_is_likely_lark("rule ::= 'abc'") + False + """ + if not grammar_str or not isinstance(grammar_str, str): + return False + + for line in grammar_str.split('\n'): + # Remove both comment styles + line = re.sub(r'(#|//).*$', '', line).strip() + if not line: + continue + + # Look for Lark-style rule definitions + if ':' in line and '::=' not in line: + return True + + # Look for Lark-specific features + if any(pattern in line for pattern in ['?start:', '|', '~']): + return True + + return False + + +def convert_lark_to_gbnf(grammar_str: str) -> str: + """ + Convert a Lark grammar string to GBNF format. + + GBNF reference: + https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md + Lark grammar reference: + https://lark-parser.readthedocs.io/en/latest/grammar.html + + Args: + grammar_str: Input grammar in Lark format + + Returns: + str: Converted grammar in GBNF format + + Examples: + >>> print(convert_lark_to_gbnf("rule: 'hello'")) + root ::= rule + rule ::= "hello" + """ + if not isinstance(grammar_str, str): + raise ValueError(f"Grammar must be a string, got {type(grammar_str)}") + if not grammar_str.strip(): + raise ValueError("Grammar string cannot be empty") + + defined_rules = set() + referenced_rules = set() + output_lines = [] + + def clean_line(line: str) -> str: + """Remove comments and whitespace from line.""" + return re.sub(r'(#|//).*$', '', line).strip() + + def check_quotes(text: str, rule_name: str, line_num: int) -> None: + """Validate quote matching in text.""" + if text.count("'") % 2 != 0 or text.count('"') % 2 != 0: + raise ValueError( + f"Mismatched quotes in {rule_name} on line {line_num}") + + def extract_references(text: str) -> set: + """Extract rule references from text.""" + # Remove quoted strings and special characters + text = re.sub(r'"[^"]*"', '', text) + text = re.sub(r'[+*?()|\[\]{}]', ' ', text) + return set(re.findall(r'\b[a-zA-Z_][a-zA-Z0-9_]*\b', text)) + + # First pass: Find root rule and validate rule definitions + lines = [clean_line(line) for line in grammar_str.split('\n')] + first_rule = None + + for line_num, line in enumerate(lines, 1): + if not line or line.startswith('|'): + continue + + if ':' in line: + try: + name = line.split(':', 1)[0].strip().strip('?') + defined_rules.add(name) + if first_rule is None: + first_rule = name + if name == 'start': + first_rule = 'start' + except IndexError as e: + raise ValueError(f"Invalid rule format on line {line_num}. " + "Expected 'rule_name: definition'") from e + + if not defined_rules: + raise ValueError("No valid rules found in grammar") + + # Add root rule + output_lines.append(f"root ::= {first_rule}") + + # Second pass: Process rule definitions and alternatives + current_rule = None + current_definition = [] + + for line_num, line in enumerate(lines, 1): + if not line: + continue + + try: + if ':' in line and not line.startswith('|'): + # Save previous rule if exists + if current_rule: + output_lines.append( + f"{current_rule} ::= {' | '.join(current_definition)}") + + # Process new rule + name, definition = line.split(':', 1) + current_rule = name.strip().strip('?') + + check_quotes(definition, f"rule '{current_rule}'", line_num) + definition = re.sub(r"'([^']*)'", r'"\1"', definition) + referenced_rules.update(extract_references(definition)) + current_definition = [definition.strip()] + + elif line.startswith('|'): + if not current_rule: + raise ValueError(f"Alternative '|' on line {line_num} " + "without a preceding rule definition") + + alt_def = line[1:].strip() + check_quotes(alt_def, f"alternative for rule '{current_rule}'", + line_num) + alt_def = re.sub(r"'([^']*)'", r'"\1"', alt_def) + referenced_rules.update(extract_references(alt_def)) + current_definition.append(alt_def) + + except ValueError as e: + raise ValueError(f"Error on line {line_num}: {str(e)}") from e + + # Add final rule if exists + if current_rule: + output_lines.append( + f"{current_rule} ::= {' | '.join(current_definition)}") + + # Validate all rules are defined + undefined_rules = referenced_rules - defined_rules - {'root'} + if undefined_rules: + raise ValueError("Referenced rules are not defined: " + f"{', '.join(sorted(undefined_rules))}") + + return '\n'.join(output_lines) From 74062740416db8572627dda1f87925268ba2f1d3 Mon Sep 17 00:00:00 2001 From: Sam Stoelinga Date: Fri, 6 Dec 2024 09:03:56 -0800 Subject: [PATCH 047/733] [Doc] add KubeAI to serving integrations (#10837) Signed-off-by: Sam Stoelinga --- docs/source/serving/deploying_with_kubeai.rst | 17 +++++++++++++++++ docs/source/serving/integrations.rst | 1 + 2 files changed, 18 insertions(+) create mode 100644 docs/source/serving/deploying_with_kubeai.rst diff --git a/docs/source/serving/deploying_with_kubeai.rst b/docs/source/serving/deploying_with_kubeai.rst new file mode 100644 index 0000000000000..ec3c065320fd9 --- /dev/null +++ b/docs/source/serving/deploying_with_kubeai.rst @@ -0,0 +1,17 @@ +.. _deploying_with_kubeai: + +Deploying with KubeAI +===================== + +`KubeAI `_ is a Kubernetes operator that enables you to deploy and manage AI models on Kubernetes. It provides a simple and scalable way to deploy vLLM in production. Functionality such as scale-from-zero, load based autoscaling, model caching, and much more is provided out of the box with zero external dependencies. + + +Please see the Installation Guides for environment specific instructions: + +* `Any Kubernetes Cluster `_ +* `EKS `_ +* `GKE `_ + +Once you have KubeAI installed, you can +`configure text generation models `_ +using vLLM. \ No newline at end of file diff --git a/docs/source/serving/integrations.rst b/docs/source/serving/integrations.rst index f39997e0e44d9..0dd505a739863 100644 --- a/docs/source/serving/integrations.rst +++ b/docs/source/serving/integrations.rst @@ -6,6 +6,7 @@ Integrations run_on_sky deploying_with_kserve + deploying_with_kubeai deploying_with_triton deploying_with_bentoml deploying_with_cerebrium From c05cfb67da12f84bd142ba51cca98e59139bea42 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Fri, 6 Dec 2024 11:25:20 -0800 Subject: [PATCH 048/733] [misc] fix typo (#10960) Signed-off-by: youkaichao --- vllm/config.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/vllm/config.py b/vllm/config.py index a5e2702035a5c..fe4c85441fced 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -2082,7 +2082,7 @@ class KVTransferConfig(BaseModel): @classmethod def from_cli(cls, cli_value: str) -> "KVTransferConfig": - """Parse the CLI value for the compilation config.""" + """Parse the CLI value for the kv cache transfer config.""" return KVTransferConfig.model_validate_json(cli_value) def model_post_init(self, __context: Any) -> None: From dcdc3fafe535178037ef0a58f53607b2fb3e4190 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Fri, 6 Dec 2024 11:25:47 -0800 Subject: [PATCH 049/733] [ci] fix broken tests (#10956) Signed-off-by: youkaichao --- vllm/worker/model_runner.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/vllm/worker/model_runner.py b/vllm/worker/model_runner.py index 4388b3c1ee164..1bc5f65c7127f 100644 --- a/vllm/worker/model_runner.py +++ b/vllm/worker/model_runner.py @@ -1782,6 +1782,9 @@ def need_recv_kv(self, model_input, kv_caches) -> bool: kv_caches: vLLM's paged memory """ + if self.vllm_config.kv_transfer_config is None: + return False + prefill_meta = model_input.attn_metadata.prefill_metadata # check if the current run is profiling @@ -1789,9 +1792,6 @@ def need_recv_kv(self, model_input, kv_caches) -> bool: # check if the current run is prefill is_prefill_run = prefill_meta is not None - if self.vllm_config.kv_transfer_config is None: - return False - return self.vllm_config.kv_transfer_config.is_kv_consumer and ( not is_profile_run) and is_prefill_run @@ -1807,6 +1807,9 @@ def need_send_kv(self, model_input, kv_caches) -> bool: kv_caches: vLLM's paged memory """ + if self.vllm_config.kv_transfer_config is None: + return False + prefill_meta = model_input.attn_metadata.prefill_metadata # check if the current run is profiling @@ -1814,9 +1817,6 @@ def need_send_kv(self, model_input, kv_caches) -> bool: # check if the current run is prefill is_prefill_run = prefill_meta is not None - if self.vllm_config.kv_transfer_config is None: - return False - return self.vllm_config.kv_transfer_config.is_kv_producer and ( not is_profile_run) and is_prefill_run From 69d357ba125a8c4243c25d7d9162f1c93cfddd1f Mon Sep 17 00:00:00 2001 From: Russell Bryant Date: Fri, 6 Dec 2024 21:30:23 -0500 Subject: [PATCH 050/733] [Core] Cleanup startup logging a bit (#10961) Signed-off-by: Russell Bryant --- vllm/engine/arg_utils.py | 1 + vllm/entrypoints/openai/api_server.py | 8 ++++---- vllm/plugins/__init__.py | 2 +- 3 files changed, 6 insertions(+), 5 deletions(-) diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index 0b304658f012c..ccd9fac225cba 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -433,6 +433,7 @@ def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser: 'capping to sliding window size') parser.add_argument('--use-v2-block-manager', action='store_true', + default=True, help='[DEPRECATED] block manager v1 has been ' 'removed and SelfAttnBlockSpaceManager (i.e. ' 'block manager v2) is now the default. ' diff --git a/vllm/entrypoints/openai/api_server.py b/vllm/entrypoints/openai/api_server.py index 6bc31ef83ded4..c7bc30040279c 100644 --- a/vllm/entrypoints/openai/api_server.py +++ b/vllm/entrypoints/openai/api_server.py @@ -175,8 +175,8 @@ async def build_async_engine_client_from_engine_args( # Select random path for IPC. ipc_path = get_open_zmq_ipc_path() - logger.info("Multiprocessing frontend to use %s for IPC Path.", - ipc_path) + logger.debug("Multiprocessing frontend to use %s for IPC Path.", + ipc_path) # Start RPCServer in separate process (holds the LLMEngine). # the current process might have CUDA context, @@ -249,8 +249,8 @@ def mount_metrics(app: FastAPI): prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None) if prometheus_multiproc_dir_path is not None: - logger.info("vLLM to use %s as PROMETHEUS_MULTIPROC_DIR", - prometheus_multiproc_dir_path) + logger.debug("vLLM to use %s as PROMETHEUS_MULTIPROC_DIR", + prometheus_multiproc_dir_path) registry = CollectorRegistry() multiprocess.MultiProcessCollector(registry) diff --git a/vllm/plugins/__init__.py b/vllm/plugins/__init__.py index ae6e5c0a3481f..17f604ea0e202 100644 --- a/vllm/plugins/__init__.py +++ b/vllm/plugins/__init__.py @@ -57,7 +57,7 @@ def load_general_plugins(): discovered_plugins = entry_points(group='vllm.general_plugins') if len(discovered_plugins) == 0: - logger.info("No plugins found.") + logger.debug("No plugins found.") return logger.info("Available plugins:") for plugin in discovered_plugins: From acf092d34802b187f27daa8e1626f67552bde193 Mon Sep 17 00:00:00 2001 From: Jee Jee Li Date: Sat, 7 Dec 2024 12:08:54 +0800 Subject: [PATCH 051/733] [Bugfix] Fix test-pipeline.yaml (#10973) Signed-off-by: Jee Jee Li --- .buildkite/test-pipeline.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index bf0de3f69f14e..936e284d9675a 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -237,7 +237,7 @@ steps: source_file_dependencies: - vllm/lora - tests/lora - command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore lora/test_long_context.py lora/test_chatglm3_tp.py lora/test_llama_tp.py + command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py parallelism: 4 - label: "PyTorch Fullgraph Smoke Test" # 9min From 955fa9533afde0d232e73f079d72239c8a87c636 Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Sat, 7 Dec 2024 16:50:58 +0800 Subject: [PATCH 052/733] [3/N] Support and implement merged input processor for LLaVA model (#10676) Signed-off-by: DarkLight1337 Co-authored-by: Roger Wang --- tests/multimodal/test_mapper.py | 49 +-- tests/multimodal/test_processing.py | 277 +++++++++++----- .../vllm_add_dummy_model/my_llava.py | 12 +- vllm/inputs/registry.py | 42 ++- vllm/model_executor/models/llava.py | 219 +++++------- vllm/multimodal/base.py | 51 ++- vllm/multimodal/processing.py | 313 +++++++++++------- vllm/multimodal/registry.py | 67 +++- vllm/v1/engine/mm_input_mapper.py | 1 + vllm/v1/engine/processor.py | 16 +- 10 files changed, 626 insertions(+), 421 deletions(-) diff --git a/tests/multimodal/test_mapper.py b/tests/multimodal/test_mapper.py index 13ad4a7966b9d..71832acbd17b8 100644 --- a/tests/multimodal/test_mapper.py +++ b/tests/multimodal/test_mapper.py @@ -2,7 +2,7 @@ import numpy as np import pytest -from transformers import CLIPImageProcessor, LlavaNextImageProcessor +from transformers import LlavaNextImageProcessor from vllm.config import ModelConfig from vllm.multimodal import MultiModalRegistry @@ -14,49 +14,6 @@ def mm_registry(): return MultiModalRegistry() -@pytest.mark.parametrize("dtype", ["half", "float"]) -@pytest.mark.parametrize("size_factor", [0.25, 0.5, 1.0]) -def test_clip_image_processor(image_assets, mm_registry, dtype, size_factor): - MODEL_NAME = "llava-hf/llava-1.5-7b-hf" - - hf_processor = CLIPImageProcessor.from_pretrained(MODEL_NAME) - assert isinstance(hf_processor, CLIPImageProcessor) - - model_config = ModelConfig( - model=MODEL_NAME, - task="auto", - tokenizer=MODEL_NAME, - tokenizer_mode="auto", - trust_remote_code=False, - seed=0, - dtype=dtype, - revision=None, - limit_mm_per_prompt={"image": 1}, - ) - - mm_registry.init_mm_limits_per_prompt(model_config) - - for asset in image_assets: - image = rescale_image_size(asset.pil_image, size_factor) - - hf_result = hf_processor.preprocess( - image, - return_tensors="pt", - ) - vllm_result = mm_registry.map_input( - model_config, - {"image": image}, - ) - - assert hf_result.keys() == vllm_result.keys() - for key, hf_tensor in hf_result.items(): - hf_arr: np.ndarray = hf_tensor.numpy() - vllm_arr: np.ndarray = vllm_result[key].numpy() - - assert hf_arr.shape == vllm_arr.shape, f"Failed for key={key}" - assert np.allclose(hf_arr, vllm_arr), f"Failed for key={key}" - - @pytest.mark.parametrize("dtype", ["half", "float"]) @pytest.mark.parametrize("size_factor", [0.25, 0.5, 1.0]) def test_llava_next_image_processor(image_assets, mm_registry, dtype, @@ -107,7 +64,7 @@ def test_llava_next_image_processor(image_assets, mm_registry, dtype, (2, 1, False), (2, 2, True)], ) def test_mm_limits(image_assets, mm_registry, num_images, limit, is_valid): - MODEL_NAME = "llava-hf/llava-1.5-7b-hf" + MODEL_NAME = "llava-hf/llava-v1.6-mistral-7b-hf" model_config = ModelConfig( model=MODEL_NAME, @@ -138,7 +95,7 @@ def test_mm_limits(image_assets, mm_registry, num_images, limit, is_valid): # NOTE: We don't test zero images since the HF processor doesn't support it @pytest.mark.parametrize("num_images", [1, 2]) def test_image_mapper_multi(image_assets, mm_registry, num_images): - MODEL_NAME = "llava-hf/llava-1.5-7b-hf" + MODEL_NAME = "llava-hf/llava-v1.6-mistral-7b-hf" model_config = ModelConfig( model=MODEL_NAME, diff --git a/tests/multimodal/test_processing.py b/tests/multimodal/test_processing.py index b2367060c6c1b..ae668d1dd56c8 100644 --- a/tests/multimodal/test_processing.py +++ b/tests/multimodal/test_processing.py @@ -3,50 +3,15 @@ import pytest from transformers import BatchFeature -from vllm.multimodal.processing import (PromptReplacement, find_text_matches, - find_token_matches, iter_token_matches, - iter_token_runs, replace_text_matches) +from vllm.multimodal.processing import (PromptReplacement, _PlaceholderInfo, + find_text_matches, find_token_matches, + iter_placeholders, iter_token_matches, + replace_text_matches, + replace_token_matches) from vllm.transformers_utils.tokenizer import AnyTokenizer from vllm.utils import full_groupby -# yapf: disable -@pytest.mark.parametrize( - ("token_ids", "expected"), - [ - ([], []), - ( - [32000, 32000, 32000], - [{ "token_id": 32000, "start_idx": 0, "length": 3 }], - ), - ( - [9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918], - [ - { "token_id": 9833, "start_idx": 0, "length": 1 }, - { "token_id": 28747, "start_idx": 1, "length": 1 }, - { "token_id": 32000, "start_idx": 2, "length": 3 }, - { "token_id": 9833, "start_idx": 5, "length": 1 }, - { "token_id": 28747, "start_idx": 6, "length": 1 }, - { "token_id": 32000, "start_idx": 7, "length": 2 }, - { "token_id": 918, "start_idx": 9, "length": 1 }, - ], - ), - ], -) -# yapf: enable -def test_iter_token_runs(token_ids, expected): - result = list(iter_token_runs(token_ids)) - - # Only displayed on error - print("result:", result) - - # Manually constructed results - assert [item._asdict() for item in result] == expected - - # Invariants - assert sum(run_info.length for run_info in result) == len(token_ids) - - # yapf: disable @pytest.mark.parametrize( ("token_ids", "match_ids", "expected"), @@ -170,13 +135,11 @@ def test_find_token_matches(prompt, target_by_key, expected_by_key): # Should not be used since there is nothing to convert to token IDs mock_tokenizer = cast(AnyTokenizer, object()) - result = find_token_matches( - prompt, - [ - PromptReplacement(target, [], 0).bind(key, mock_tokenizer) - for key, target in target_by_key.items() - ], - ) + prompt_repls = [ + PromptReplacement(target, [], 0).bind(key, mock_tokenizer) + for key, target in target_by_key.items() + ] + result = find_token_matches(prompt, prompt_repls) # Only displayed on error print("result:", result) @@ -279,13 +242,11 @@ def test_find_text_matches(prompt, target_by_key, expected_by_key): # Should not be used since there is nothing to convert to text mock_tokenizer = cast(AnyTokenizer, object()) - result = find_text_matches( - prompt, - [ - PromptReplacement(target, [], 0).bind(key, mock_tokenizer) - for key, target in target_by_key.items() - ], - ) + prompt_repls = [ + PromptReplacement(target, [], 0).bind(key, mock_tokenizer) + for key, target in target_by_key.items() + ] + result = find_text_matches(prompt, prompt_repls) # Only displayed on error print("result:", result) @@ -303,7 +264,7 @@ def test_find_text_matches(prompt, target_by_key, expected_by_key): # yapf: disable @pytest.mark.parametrize( - ("prompt", "target_by_key", "repl_by_key", "expected_by_mm_count"), + ("prompt", "target_by_key", "repl_by_key"), [ ( "Image:Image:!", @@ -322,49 +283,201 @@ def test_find_text_matches(prompt, target_by_key, expected_by_key): # Test multiple repl_count "pattern_3": ("?", 2), }, - { - # Test no replacement - 0: "Image:Image:!", - # Test single replacement - 1: "Image:??", - # Test repeated replacement - 2: "??", - }, ), ] ) +@pytest.mark.parametrize( + ("mm_count", "expected"), + [ + (0, "Image:Image:!"), + (1, "Image:??"), + (2, "??"), + ] +) # yapf: enable def test_find_replace_text( prompt, target_by_key, repl_by_key, - expected_by_mm_count, + mm_count, + expected, ): # Should not be used since there is nothing to convert to text mock_tokenizer = cast(AnyTokenizer, object()) - matches = find_text_matches( + prompt_repls = [ + PromptReplacement(target, *repl_by_key[key]).bind(key, mock_tokenizer) + for key, target in target_by_key.items() + ] + matches = find_text_matches(prompt, prompt_repls) + + result = replace_text_matches( prompt, - [ - PromptReplacement(target, *repl_by_key[key]) \ - .bind(key, mock_tokenizer) - for key, target in target_by_key.items() - ], + matches, + {key: list(range(mm_count)) + for key in repl_by_key}, + BatchFeature(), ) - result_by_mm_count = { - mm_count: replace_text_matches( - prompt, - matches, - {key: list(range(mm_count)) - for key in repl_by_key}, - BatchFeature(), - ) - for mm_count in expected_by_mm_count - } # Only displayed on error print("matches:", matches) - print("result_by_mm_count:", result_by_mm_count) + print("result:", result) + + # Manually constructed results + assert result == expected + + +# yapf: disable +@pytest.mark.parametrize( + ("prompt", "target_by_key", "repl_by_key"), + [ + # Tokenized test cases of `test_find_replace_text` + # using the vocab of llava-hf/llava-v1.6-mistral-7b-hf + ( + [1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918], + { + # We use `` before `Image:` to test matches that + # occur out of order + "pattern_1": [32000], + "pattern_2": [9833, 28747], + "pattern_3": [918], + }, + { + # Test whether target is confused with repl_unit + "pattern_1": ([32000, 32000], 1), + # Test empty repl_unit + "pattern_2": ([], 1), + # Test multiple repl_count + "pattern_3": ([1550], 2), + }, + ), + ] +) +@pytest.mark.parametrize( + ("mm_count", "expected"), + [ + (0, [1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918]), + (1, [1, 32000, 32000, 9833, 28747, 32000, 32000, 1550, 1550]), + (2, [1, 32000, 32000, 32000, 32000, 32000, 1550, 1550]), + ] +) +# yapf: enable +def test_find_replace_tokens( + prompt, + target_by_key, + repl_by_key, + mm_count, + expected, +): + # Should not be used since there is nothing to convert to tokens + mock_tokenizer = cast(AnyTokenizer, object()) + + prompt_repls = [ + PromptReplacement(target, *repl_by_key[key]).bind(key, mock_tokenizer) + for key, target in target_by_key.items() + ] + matches = find_token_matches(prompt, prompt_repls) + + result = replace_token_matches( + prompt, + matches, + {key: list(range(mm_count)) + for key in repl_by_key}, + BatchFeature(), + ) + + # Only displayed on error + print("matches:", matches) + print("result:", result) + + # Manually constructed results + assert result == expected + + +# yapf: disable +@pytest.mark.parametrize( + "repl_by_key", + [ + { + "pattern_1": ([32000, 32000], 1), + "pattern_2": ([], 1), + "pattern_3": ([1550], 2), + }, + ], +) +@pytest.mark.parametrize( + ("prompt", "expected"), + [ + ( + [1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918], + [ + _PlaceholderInfo( + modality="pattern_1", + start_idx=6, + unit=[32000, 32000], + unit_count=1, + ), + ], + ), + ( + [1, 32000, 32000, 9833, 28747, 32000, 32000, 1550, 1550], + [ + _PlaceholderInfo( + modality="pattern_1", + start_idx=1, + unit=[32000, 32000], + unit_count=1, + ), + _PlaceholderInfo( + modality="pattern_1", + start_idx=5, + unit=[32000, 32000], + unit_count=1, + ), + _PlaceholderInfo( + modality="pattern_3", + start_idx=7, + unit=[1550], + unit_count=2, + ), + ], + ), + ( + [1, 32000, 32000, 32000, 32000, 32000, 1550, 1550], + [ + _PlaceholderInfo( + modality="pattern_1", + start_idx=1, + unit=[32000, 32000], + unit_count=2, + ), + _PlaceholderInfo( + modality="pattern_3", + start_idx=6, + unit=[1550], + unit_count=2, + ), + ], + ), + ] +) +def test_iter_placeholders( + repl_by_key, + prompt, + expected, +): + # Should not be used since there is nothing to convert to tokens + mock_tokenizer = cast(AnyTokenizer, object()) + + prompt_repls = [ + PromptReplacement([], *repl).bind(key, mock_tokenizer) + for key, repl in repl_by_key.items() + ] + + result = list(iter_placeholders(prompt_repls, prompt)) + + # Only displayed on error + print("result:", result) # Manually constructed results - assert result_by_mm_count == expected_by_mm_count + assert result == expected diff --git a/tests/plugins/vllm_add_dummy_model/vllm_add_dummy_model/my_llava.py b/tests/plugins/vllm_add_dummy_model/vllm_add_dummy_model/my_llava.py index 3ebd7864b8fc8..f2fc0755cae01 100644 --- a/tests/plugins/vllm_add_dummy_model/vllm_add_dummy_model/my_llava.py +++ b/tests/plugins/vllm_add_dummy_model/vllm_add_dummy_model/my_llava.py @@ -2,19 +2,17 @@ import torch -from vllm.inputs import INPUT_REGISTRY from vllm.model_executor.models.llava import (LlavaForConditionalGeneration, - dummy_data_for_llava, - get_max_llava_image_tokens, - input_processor_for_llava) + create_metadata_for_llava, + dummy_mm_kwargs_for_llava, + get_max_llava_image_tokens) from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY -@MULTIMODAL_REGISTRY.register_image_input_mapper() @MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_llava_image_tokens) -@INPUT_REGISTRY.register_dummy_data(dummy_data_for_llava) -@INPUT_REGISTRY.register_input_processor(input_processor_for_llava) +@MULTIMODAL_REGISTRY.register_processor_by_metadata(create_metadata_for_llava, + dummy_mm_kwargs_for_llava) class MyLlava(LlavaForConditionalGeneration): def compute_logits( diff --git a/vllm/inputs/registry.py b/vllm/inputs/registry.py index 85ab4355cc2e4..646554c72481a 100644 --- a/vllm/inputs/registry.py +++ b/vllm/inputs/registry.py @@ -232,19 +232,35 @@ def dummy_data_for_profiling( """ # Avoid circular import from vllm.model_executor.model_loader import get_model_architecture - - model_cls, _ = get_model_architecture(model_config) - if is_encoder_data: - dummy_factory = self._get_dummy_encoder_data_factory(model_cls) + from vllm.multimodal import MultiModalKwargs + from vllm.multimodal.utils import cached_get_tokenizer + + if mm_registry.has_processor(model_config): + tokenizer = cached_get_tokenizer( + model_config.tokenizer, + trust_remote_code=model_config.trust_remote_code, + ) + processor = mm_registry.create_processor(model_config, tokenizer) + + mm_counts = mm_registry.get_mm_limits_per_prompt(model_config) + mm_max_tokens = mm_registry.get_max_tokens_by_modality( + model_config) + + dummy_data = processor.get_dummy_data(seq_len, mm_counts, + mm_max_tokens) else: - dummy_factory = self._get_dummy_data_factory(model_cls) - mm_counts = mm_registry.get_mm_limits_per_prompt(model_config) - mm_processor_kwargs = get_allowed_kwarg_only_overrides( - dummy_factory, overrides=model_config.mm_processor_kwargs) + model_cls, _ = get_model_architecture(model_config) + if is_encoder_data: + dummy_factory = self._get_dummy_encoder_data_factory(model_cls) + else: + dummy_factory = self._get_dummy_data_factory(model_cls) + mm_counts = mm_registry.get_mm_limits_per_prompt(model_config) + mm_processor_kwargs = get_allowed_kwarg_only_overrides( + dummy_factory, overrides=model_config.mm_processor_kwargs) - dummy_data = dummy_factory(InputContext(model_config), seq_len, - _MultiModalCounts(mm_counts), - **mm_processor_kwargs) + dummy_data = dummy_factory(InputContext(model_config), seq_len, + _MultiModalCounts(mm_counts), + **mm_processor_kwargs) # Having more tokens is over-conservative but otherwise fine num_tokens = dummy_data.seq_data.prompt_token_ids @@ -257,7 +273,9 @@ def dummy_data_for_profiling( raise AssertionError( f"Expected at least {seq_len} dummy tokens for profiling, " f"but found {len(num_tokens)} tokens instead.") - if dummy_data.multi_modal_data is not None: + + if (dummy_data.multi_modal_data is not None and + not isinstance(dummy_data.multi_modal_data, MultiModalKwargs)): for k, v in dummy_data.multi_modal_data.items(): num_items = len(v) if isinstance(v, list) else 1 num_expected = mm_counts[k] diff --git a/vllm/model_executor/models/llava.py b/vllm/model_executor/models/llava.py index d375c1c9da2a9..953b89f1842af 100644 --- a/vllm/model_executor/models/llava.py +++ b/vllm/model_executor/models/llava.py @@ -1,17 +1,19 @@ from functools import cached_property +from types import MethodType from typing import (Iterable, List, Literal, Mapping, Optional, Protocol, Set, Tuple, TypedDict, Union) import torch import torch.nn as nn -from PIL import Image -from transformers import (CLIPVisionConfig, LlavaConfig, PixtralVisionConfig, - PretrainedConfig, SiglipVisionConfig) +from PIL.Image import Image +from transformers import (BatchFeature, CLIPVisionConfig, LlavaConfig, + PixtralVisionConfig, PretrainedConfig, + ProcessorMixin, SiglipVisionConfig) +from transformers.models.pixtral import PixtralProcessor from vllm.attention import AttentionMetadata from vllm.config import VllmConfig -from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, DummyData, - InputContext) +from vllm.inputs import InputContext from vllm.model_executor.layers.activation import get_act_fn from vllm.model_executor.layers.linear import (ColumnParallelLinear, RowParallelLinear) @@ -19,21 +21,20 @@ from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY -from vllm.multimodal.inputs import NestedTensors +from vllm.multimodal.inputs import MultiModalKwargs, NestedTensors +from vllm.multimodal.processing import (InputProcessingContext, + ModalityProcessingMetadata, + MultiModalProcessingMetadata, + MultiModalProcessor, PromptReplacement) from vllm.sequence import IntermediateTensors -from vllm.utils import is_list_of from .clip import (CLIPVisionModel, dummy_image_for_clip, - dummy_seq_data_for_clip, get_max_clip_image_tokens, - input_processor_for_clip) + get_max_clip_image_tokens) from .interfaces import SupportsMultiModal, SupportsPP from .pixtral import (PixtralHFVisionModel, dummy_image_for_pixtral_hf, - dummy_seq_data_for_pixtral_hf, - get_max_pixtral_hf_image_tokens, - input_processor_for_pixtral_hf) + get_max_pixtral_hf_image_tokens) from .siglip import (SiglipVisionModel, dummy_image_for_siglip, - dummy_seq_data_for_siglip, get_max_siglip_image_tokens, - input_processor_for_siglip) + get_max_siglip_image_tokens) from .utils import (AutoWeightsLoader, flatten_bn, init_vllm_registered_model, maybe_prefix, merge_multimodal_embeddings) @@ -113,102 +114,86 @@ def get_max_llava_image_tokens(ctx: InputContext): raise ValueError(f"Unexpected select feature strategy: {strategy}") -def dummy_data_for_llava(ctx: InputContext, seq_len: int, - mm_counts: Mapping[str, int]): +def dummy_mm_kwargs_for_llava(ctx: InputProcessingContext, + mm_counts: Mapping[str, int]): hf_config = ctx.get_hf_config(LlavaConfig) vision_config = hf_config.vision_config num_images = mm_counts["image"] - image_feature_size = get_max_llava_image_tokens(ctx) - if isinstance(vision_config, CLIPVisionConfig): - seq_data, ranges = dummy_seq_data_for_clip( - vision_config, - seq_len, - num_images, - image_token_id=hf_config.image_token_index, - image_feature_size_override=image_feature_size, - ) - - mm_data = dummy_image_for_clip(vision_config, num_images) - return DummyData(seq_data, mm_data, ranges) + data = dummy_image_for_clip(vision_config, num_images) elif isinstance(vision_config, SiglipVisionConfig): - seq_data, ranges = dummy_seq_data_for_siglip( - vision_config, - seq_len, - num_images, - image_token_id=hf_config.image_token_index, - image_feature_size_override=image_feature_size, - ) - - mm_data = dummy_image_for_siglip(vision_config, num_images) - return DummyData(seq_data, mm_data, ranges) + data = dummy_image_for_siglip(vision_config, num_images) elif isinstance(vision_config, PixtralVisionConfig): - seq_data, ranges = dummy_seq_data_for_pixtral_hf( - vision_config, - seq_len, - num_images, - image_token_id=hf_config.image_token_index, - image_feature_size_override=image_feature_size, - ) - - mm_data = dummy_image_for_pixtral_hf(vision_config, num_images) - return DummyData(seq_data, mm_data, ranges) + data = dummy_image_for_pixtral_hf(vision_config, num_images) + else: + msg = f"Unsupported vision config: {type(vision_config)}" + raise NotImplementedError(msg) - msg = f"Unsupported vision config: {type(vision_config)}" - raise NotImplementedError(msg) + hf_processor = ctx.get_hf_processor() + image_processor = hf_processor.image_processor # type: ignore + hf_inputs = image_processor.preprocess(data['image'], return_tensors="pt") + is_pixtral = isinstance(hf_processor, PixtralProcessor) + return MultiModalKwargs( + **hf_inputs, + is_pixtral=torch.tensor(is_pixtral), + ) -def input_processor_for_llava(ctx: InputContext, inputs: DecoderOnlyInputs): - multi_modal_data = inputs.get("multi_modal_data") - if multi_modal_data is None or "image" not in multi_modal_data: - return inputs - model_config = ctx.model_config +def create_metadata_for_llava( + ctx: InputProcessingContext) -> MultiModalProcessingMetadata: hf_config = ctx.get_hf_config(LlavaConfig) - vision_config = hf_config.vision_config + image_token_id = hf_config.image_token_index + + def get_repl_count( + mm_items: list[Image], + hf_inputs: BatchFeature, + item_idx: int, + ) -> int: + return get_max_llava_image_tokens(ctx) + + return { + "image": + ModalityProcessingMetadata(prompt_repls=[ + PromptReplacement(target=[image_token_id], + repl_unit=[image_token_id], + repl_count=get_repl_count), + ]), + } - image_data = multi_modal_data["image"] - if isinstance(image_data, Image.Image): - image_feature_size = get_max_llava_image_tokens(ctx) - elif is_list_of(image_data, Image.Image): - image_feature_size = [get_max_llava_image_tokens(ctx) - ] * len(image_data) - elif isinstance(image_data, torch.Tensor): - num_images, image_feature_size, hidden_size = image_data.shape - elif is_list_of(image_data, torch.Tensor): - image_feature_size = [item.shape[1] for item in image_data] - else: - raise TypeError(f"Invalid image type: {type(image_data)}") - if isinstance(vision_config, CLIPVisionConfig): - return input_processor_for_clip( - model_config, - vision_config, - inputs, - image_token_id=hf_config.image_token_index, - image_feature_size_override=image_feature_size, - ) - elif isinstance(vision_config, SiglipVisionConfig): - return input_processor_for_siglip( - model_config, - vision_config, - inputs, - image_token_id=hf_config.image_token_index, - image_feature_size_override=image_feature_size, - ) - elif isinstance(vision_config, PixtralVisionConfig): - # We ignore image_feature_size_override since we have non-uniform - # image sizes for Pixtral - return input_processor_for_pixtral_hf( - model_config, - vision_config, - inputs, - image_token_id=hf_config.image_token_index, - ) +class LlavaProcessor(MultiModalProcessor): - msg = f"Unsupported vision config: {type(vision_config)}" - raise NotImplementedError(msg) + def _patch_pixtral_processor(self, hf_processor: PixtralProcessor): + if getattr(hf_processor, "__is_patched__", False): + return # Already patched + + image_processor = hf_processor.image_processor # type: ignore + orig_preprocess = image_processor.preprocess + + def preprocess(__self, *args, **kwargs): + hf_inputs = orig_preprocess(*args, **kwargs) + hf_inputs["is_pixtral"] = torch.tensor(True) + return hf_inputs + + image_processor.preprocess = MethodType(preprocess, image_processor) + + hf_processor.__is_patched__ = True # type: ignore + + def _get_hf_processor(self) -> ProcessorMixin: + hf_processor = self.ctx.get_hf_processor() + + if isinstance(hf_processor, PixtralProcessor): + self._patch_pixtral_processor(hf_processor) + + return hf_processor + + def _get_dummy_mm_kwargs( + self, + mm_counts: Mapping[str, int], + ) -> MultiModalKwargs: + return dummy_mm_kwargs_for_llava(self.ctx, mm_counts) class LlavaLikeConfig(Protocol): @@ -291,10 +276,11 @@ def init_vision_tower_for_llava( raise NotImplementedError(msg) -@MULTIMODAL_REGISTRY.register_image_input_mapper() @MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_llava_image_tokens) -@INPUT_REGISTRY.register_dummy_data(dummy_data_for_llava) -@INPUT_REGISTRY.register_input_processor(input_processor_for_llava) +@MULTIMODAL_REGISTRY.register_processor(lambda ctx: LlavaProcessor( + ctx=ctx, + metadata=create_metadata_for_llava(ctx), +)) class LlavaForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP): # BitandBytes specific attributes bitsandbytes_stacked_params_mapping = { @@ -367,38 +353,10 @@ def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor: return data - def _validate_image_sizes(self, images: List[torch.Tensor], - sizes: List[torch.Tensor]) -> List[torch.Tensor]: - if not isinstance(sizes, list): - sizes = [sizes] - - total_images = sum(size.numel() // 2 for size in sizes) - if total_images != len(images): - raise ValueError("Mismatch in number of images. " - f"Expected {total_images}, got {len(images)}") - img_idx = 0 - for size in sizes: - # Flatten the size tensor to a list of (height, width) pairs - size = size.view(-1, 2).tolist() - for expected_h, expected_w in size: - if img_idx >= len(images): - raise ValueError("Ran out of images before sizes. " - f"{img_idx} >= {len(images)}") - img = images[img_idx] - if img.shape[-2:] != (expected_h, expected_w): - raise ValueError( - "Image size mismatch. Expected " - f"{(expected_h, expected_w)}, got {img.shape[-2:]}") - if img.shape[-3] != 3: - raise ValueError("Image channel mismatch. Expected 3, " - f"got {img.shape[-3]}") - img_idx += 1 - return images - def _parse_and_validate_image_input( self, **kwargs: object) -> Optional[LlavaImageInputs]: pixel_values = kwargs.pop("pixel_values", None) - image_sizes = kwargs.pop("image_sizes", None) + is_pixtral = kwargs.pop("is_pixtral", torch.tensor([False])) image_embeds = kwargs.pop("image_embeds", None) if pixel_values is None and image_embeds is None: @@ -409,9 +367,8 @@ def _parse_and_validate_image_input( raise ValueError("Incorrect type of pixel values. " f"Got type: {type(pixel_values)}") - # Case for models like PixtralHF that have dynamic image sizes - # so we need to produce a list of tensors - if image_sizes is not None: + assert isinstance(is_pixtral, torch.Tensor) + if is_pixtral.any(): images = pixel_values def flatten_to_3d_tensors(item): @@ -434,7 +391,7 @@ def flatten_to_3d_tensors(item): return LlavaImagePixelInputs( type="pixel_values", - data=self._validate_image_sizes(images, image_sizes), + data=images, ) return LlavaImagePixelInputs( diff --git a/vllm/multimodal/base.py b/vllm/multimodal/base.py index f93722523728d..7dba94b885b6d 100644 --- a/vllm/multimodal/base.py +++ b/vllm/multimodal/base.py @@ -226,16 +226,16 @@ def get_max_multimodal_tokens(self, model_config: "ModelConfig") -> int: """ # Avoid circular import from vllm.model_executor.model_loader import get_model_architecture + from vllm.model_executor.models import supports_multimodal model_cls, _ = get_model_architecture(model_config) - if model_cls not in self._input_mappers: + if not supports_multimodal(model_cls): return 0 max_mm_tokens = self._max_mm_tokens.get(model_cls) if max_mm_tokens is None: - raise KeyError(f"No maximum number of multi-modal tokens is given " - f"for model class {model_cls.__name__} in {self}.") + return 0 if callable(max_mm_tokens): mm_processor_kwargs = get_allowed_kwarg_only_overrides( @@ -326,26 +326,47 @@ def from_seq_group( src_ranges = [] dest_ranges = [] """ - if (not seq_group.multi_modal_data - or not seq_group.multi_modal_placeholders): - return seq_group.multi_modal_data, {} + seq_mm_data = seq_group.multi_modal_data + seq_mm_placeholders = seq_group.multi_modal_placeholders + + if not seq_mm_data or not seq_mm_placeholders: + return seq_mm_data, {} + + # For merged processor, we directly use mm_kwargs as mm_data + if isinstance(seq_mm_data, MultiModalKwargs): + placeholder_maps = dict[str, MultiModalPlaceholderMap]() + + for modality, placeholders in seq_mm_placeholders.items(): + placeholder_map = MultiModalPlaceholderMap() + + if positions: + placeholder_map.append_items_from_seq_group( + positions, + # Dummy, since we don't care about intersecting items + [None] * len(placeholders), + placeholders, + ) + + placeholder_maps[modality] = placeholder_map + + return seq_mm_data, placeholder_maps - mm_data = {**seq_group.multi_modal_data} - placeholder_maps: Dict[str, MultiModalPlaceholderMap] = defaultdict( + mm_data = {**seq_mm_data} + placeholder_maps = defaultdict[str, MultiModalPlaceholderMap]( MultiModalPlaceholderMap) - for ( - modality, - placeholders, - ) in seq_group.multi_modal_placeholders.items(): + for modality, placeholders in seq_mm_placeholders.items(): mm_items = mm_data.pop(modality) if not isinstance(mm_items, list): mm_items = [mm_items] if positions: - intersecting_items = placeholder_maps[ - modality].append_items_from_seq_group( - positions, mm_items, placeholders) + intersecting_items = placeholder_maps[modality] \ + .append_items_from_seq_group( + positions, + mm_items, + placeholders, + ) if intersecting_items: mm_data[modality] = intersecting_items diff --git a/vllm/multimodal/processing.py b/vllm/multimodal/processing.py index 28c8dda581982..4a1737991534f 100644 --- a/vllm/multimodal/processing.py +++ b/vllm/multimodal/processing.py @@ -3,14 +3,13 @@ from collections.abc import Callable, ItemsView, Iterable, Mapping, Sequence from dataclasses import dataclass from functools import lru_cache -from itertools import groupby from typing import Any, Generic, NamedTuple, Optional, Protocol, TypeVar, Union -import numpy as np -from transformers import BatchFeature +import torch +from transformers import BatchFeature, ProcessorMixin from typing_extensions import TypeAlias, TypedDict -from vllm.inputs import InputProcessingContext +from vllm.inputs import DummyData, InputProcessingContext from vllm.transformers_utils.tokenizer import AnyTokenizer, MistralTokenizer from vllm.utils import flatten_2d_lists, full_groupby, is_list_of @@ -256,63 +255,6 @@ def to_multi_format(data: MultiModalDataDict) -> dict[str, list[Any]]: return multi_data -class _TokenRun(NamedTuple): - token_id: int - - start_idx: int - length: int - - -def iter_token_runs(token_ids: list[int]) -> Iterable[_TokenRun]: - """ - Yield the starting index and length of each run of tokens that are the same. - """ - start_idx = 0 - - for token_id, it in groupby(token_ids): - length = sum(1 for _ in it) - yield _TokenRun(token_id=token_id, start_idx=start_idx, length=length) - - start_idx += length - - -class _PlaceholderInfo(NamedTuple): - modality: str - offset: int - length: int - - def to_range(self) -> PlaceholderRange: - return PlaceholderRange(offset=self.offset, length=self.length) - - -def iter_placeholders( - prompt_repls: Sequence[_BoundPromptReplacement[Any]], - token_ids: list[int], - *, - min_placeholder_count: int, -) -> Iterable[_PlaceholderInfo]: - """Yield each set of placeholder tokens found in :code:`token_ids`.""" - placeholder_ids_by_modality = { - modality: { - token_id - for prompt_repl in repls - for token_id in prompt_repl.repl_unit.token_ids - } - for modality, repls in full_groupby_modality(prompt_repls) - } - - for run_info in iter_token_runs(token_ids): - if run_info.length > min_placeholder_count: - for (modality, - placeholder_ids) in placeholder_ids_by_modality.items(): - if run_info.token_id in placeholder_ids: - yield _PlaceholderInfo( - modality=modality, - offset=run_info.start_idx, - length=run_info.length, - ) - - class _TokenMatch(NamedTuple): start_idx: int end_idx: int @@ -353,13 +295,9 @@ def start_idx(self) -> int: def end_idx(self) -> int: raise NotImplementedError + @property @abstractmethod - def get_repl( - self, - mm_items: list[_T], - hf_inputs: BatchFeature, - item_idx: int, - ) -> _S: + def repl_unit(self) -> _S: raise NotImplementedError def __repr__(self) -> str: @@ -380,15 +318,9 @@ def start_idx(self) -> int: def end_idx(self) -> int: return self.match.end_idx - def get_repl( - self, - mm_items: list[_T], - hf_inputs: BatchFeature, - item_idx: int, - ) -> list[int]: - prompt_repl = self.prompt_repl - count = prompt_repl.get_count(mm_items, hf_inputs, item_idx) - return prompt_repl.repl_unit.token_ids * count + @property + def repl_unit(self) -> list[int]: + return self.prompt_repl.repl_unit.token_ids @dataclass(repr=False) @@ -404,15 +336,26 @@ def start_idx(self) -> int: def end_idx(self) -> int: return self.match.end() - def get_repl( - self, - mm_items: list[_T], - hf_inputs: BatchFeature, - item_idx: int, - ) -> str: - prompt_repl = self.prompt_repl - count = prompt_repl.get_count(mm_items, hf_inputs, item_idx) - return prompt_repl.repl_unit.text * count + @property + def repl_unit(self) -> str: + return self.prompt_repl.repl_unit.text + + +class _PlaceholderInfo(NamedTuple): + modality: str + start_idx: int + unit: list[int] + unit_count: int + + @property + def length(self) -> int: + return len(self.unit) * self.unit_count + + def to_range(self) -> PlaceholderRange: + return PlaceholderRange( + offset=self.start_idx, + length=self.length, + ) def find_token_matches( @@ -447,15 +390,17 @@ def _resolve_matches( Resolve :code:`matches` to ensure that there are no overlapping matches, and sort them such that earlier matches take priority over later ones. """ - num_matches_by_idx = np.zeros(len(prompt), dtype=int) + seen_matches: list[Optional[_PromptReplacementMatch[_T, _S]]] \ + = [None] * len(prompt) + for match in matches: - num_matches_by_idx[match.start_idx:match.end_idx] += 1 + for idx in range(match.start_idx, match.end_idx): + if seen_matches[idx] is not None: + raise ValueError("Found overlapping matches " + f"({seen_matches[idx]} and {match}) " + f"at index={idx} of prompt={prompt}") - duplicate_matches_idxs, = np.nonzero(num_matches_by_idx > 1) - if len(duplicate_matches_idxs) > 0: - raise ValueError("Unable to find a unique replacement " - f"at indices={duplicate_matches_idxs} " - f"of prompt={prompt}") + seen_matches[idx] = match return sorted(matches, key=lambda x: x.start_idx) @@ -480,9 +425,12 @@ def _replace_matches( start_idx = match.start_idx end_idx = match.end_idx - repl_ids = match.get_repl(mm_items, hf_inputs, item_idx) + repl_unit = match.repl_unit + repl_info = match.prompt_repl + repl_count = repl_info.get_count(mm_items, hf_inputs, item_idx) - out_seqs.append(prompt[prev_end_idx:start_idx] + repl_ids) + out_seqs.append(prompt[prev_end_idx:start_idx] + + repl_unit * repl_count) prev_end_idx = end_idx next_idx_by_modality[modality] += 1 @@ -531,7 +479,57 @@ def replace_text_matches( return "".join(texts) -class MultiModalProcessor: +def _merge_placeholder_matches( + matches: Iterable[_PromptReplacementTokenMatch], +) -> Iterable[_PromptReplacementTokenMatch]: + current_match = None + + for match in sorted(matches, key=lambda x: x.start_idx): + if current_match is None: + current_match = match + elif (current_match.prompt_repl == match.prompt_repl + and current_match.end_idx == match.start_idx): + current_match = _PromptReplacementTokenMatch( + current_match.prompt_repl, + match=_TokenMatch(current_match.start_idx, match.end_idx), + ) + else: + yield current_match + current_match = match + + if current_match is not None: + yield current_match + + +def iter_placeholders( + prompt_repls: Sequence[_BoundPromptReplacement[Any]], + prompt: list[int], + *, + min_unit_count: int = 1, +) -> Iterable[_PlaceholderInfo]: + """Yield each set of placeholder tokens found in :code:`token_ids`.""" + if min_unit_count <= 0: + raise ValueError("`min_unit_count` must be a positive integer") + + matches = (_PromptReplacementTokenMatch(prompt_repl, match) + for prompt_repl in prompt_repls + if len(repl_unit := prompt_repl.repl_unit.token_ids) > 0 + for match in iter_token_matches(prompt, repl_unit)) + + for match in _merge_placeholder_matches(matches): + unit = match.repl_unit + placeholder = _PlaceholderInfo( + modality=match.modality, + start_idx=match.start_idx, + unit=unit, + unit_count=(match.end_idx - match.start_idx) // len(unit), + ) + + if placeholder.unit_count >= min_unit_count: + yield placeholder + + +class MultiModalProcessor(ABC): """ Helper class to process multi-modal inputs to be used in vLLM. """ @@ -546,6 +544,12 @@ def __init__( self.ctx = ctx self.metadata = metadata + def _get_hf_processor(self) -> ProcessorMixin: + return self.ctx.get_hf_processor() + + def _get_tokenizer(self) -> AnyTokenizer: + return self.ctx.tokenizer + def __call__( self, prompt: str, @@ -562,13 +566,13 @@ def _find_placeholders( # To avoid false positives from multi-input when detecting # whether placeholder tokens have been inserted, in case # the target sequence is a subset of the replacement tokens - min_placeholder_count: int = 16, + min_unit_count: int = 16, ) -> list[_PlaceholderInfo]: return list( iter_placeholders( all_prompt_repls, new_token_ids, - min_placeholder_count=min_placeholder_count, + min_unit_count=min_unit_count, )) def _apply_hf_processor( @@ -577,19 +581,49 @@ def _apply_hf_processor( mm_data: MultiModalDataDict, mm_processor_kwargs: Mapping[str, object], ) -> BatchFeature: - hf_processor = self.ctx.get_hf_processor() + hf_processor = self._get_hf_processor() + + processor_data = dict[str, Any]() + passthrough_data = dict[str, Any]() + for k, v in mm_data.items(): + # TODO: Make a separate modality for embedding inputs + # to avoid confusion + if k in ("image", "video", "audio"): + if isinstance(v, torch.Tensor) and v.ndim == 3: + # Pass through embedding inputs (single) + passthrough_data[f"{k}_embeds"] = [v] + elif is_list_of(v, torch.Tensor) and v[0].ndim == 2: + # Pass through embedding inputs (multi) + passthrough_data[f"{k}_embeds"] = v + else: + # Map keys to plural form, e.g.: image -> images + processor_data[f"{k}s"] = v + else: + processor_data[k] = v + + try: + hf_inputs = hf_processor( + text=prompt, # type: ignore + **processor_data, + **mm_processor_kwargs, + return_tensors="pt", + ) + except Exception as exc: + data = dict(text=prompt, **processor_data) - return hf_processor( - text=prompt, # type: ignore - **mm_data, - **mm_processor_kwargs, - ) + raise RuntimeError( + f"Failed to apply {type(hf_processor).__name__} " + f"on data={data} with kwargs={mm_processor_kwargs}") from exc + + hf_inputs.update(passthrough_data) + + return hf_inputs def _bind_prompt_replacements( self, mm_data: MultiModalDataDict, ) -> list[_BoundPromptReplacement[Any]]: - tokenizer = self.ctx.tokenizer + tokenizer = self._get_tokenizer() return [ prompt_repl.bind(modality, tokenizer) @@ -604,7 +638,7 @@ def _apply_prompt_replacements( token_ids: list[int], prompt_repls: Sequence[_BoundPromptReplacement[Any]], ) -> tuple[list[int], str, list[_PlaceholderInfo]]: - tokenizer = self.ctx.tokenizer + tokenizer = self._get_tokenizer() mm_items = to_multi_format(mm_data) token_matches = find_token_matches(token_ids, prompt_repls) @@ -620,7 +654,7 @@ def _apply_prompt_replacements( # of the search text in the prompt, we instead perform string # replacement on the decoded token IDs, then encode them back. if all( - len(matches) >= len(mm_data[modality]) + len(matches) >= len(mm_items[modality]) for modality, matches in full_groupby_modality(token_matches) ): # yapf: disable token_ids = replace_token_matches( @@ -648,15 +682,6 @@ def _apply_prompt_replacements( placeholders = self._find_placeholders(matched_repls, token_ids) - # Sanity check - assert len(placeholders) == len(matched_repls), dict( - # Log this information for easier debugging - text=text, - token_ids=token_ids, - placeholders=placeholders, - matched_repls=matched_repls, - ) - return token_ids, text, placeholders def apply( @@ -678,7 +703,7 @@ def apply( 3. Extract information about the placeholder tokens from the processed token IDs. """ - tokenizer = self.ctx.tokenizer + tokenizer = self._get_tokenizer() hf_inputs = self._apply_hf_processor(prompt_text, mm_data, mm_processor_kwargs) @@ -717,3 +742,59 @@ def apply( mm_kwargs=mm_kwargs, mm_placeholders=mm_placeholders, ) + + @abstractmethod + def _get_dummy_mm_kwargs( + self, + mm_counts: Mapping[str, int], + ) -> MultiModalKwargs: + """ + Build the input that corresponds to `mm_max_tokens` in + :meth:`get_dummy_data`. + """ + raise NotImplementedError + + def get_dummy_data( + self, + seq_len: int, + mm_counts: Mapping[str, int], + mm_max_tokens: Mapping[str, int], + ) -> DummyData: + # Avoid circular import + from vllm.sequence import SequenceData + + tokenizer = self._get_tokenizer() + + mm_placeholders = dict[str, _PlaceholderInfo]() + offset = 0 + + for modality, max_tokens in mm_max_tokens.items(): + if max_tokens == 0: + continue + + metadata = self.metadata[modality] + repl = metadata.prompt_repls[0].bind(modality, tokenizer) + repl_token_ids = repl.repl_unit.token_ids + + placeholders = _PlaceholderInfo( + modality=modality, + start_idx=offset, + unit=repl_token_ids, + unit_count=max_tokens // len(repl_token_ids), + ) + + mm_placeholders[modality] = placeholders + offset += placeholders.length + + prompt_token_ids = flatten_2d_lists( + [p.unit * p.unit_count for p in mm_placeholders.values()]) + prompt_token_ids.extend([0] * (seq_len - len(prompt_token_ids))) + + return DummyData( + seq_data=SequenceData.from_seqs(prompt_token_ids), + multi_modal_data=self._get_dummy_mm_kwargs(mm_counts), + multi_modal_placeholders={ + modality: [p.to_range()] + for modality, p in mm_placeholders.items() + }, + ) diff --git a/vllm/multimodal/registry.py b/vllm/multimodal/registry.py index b73daee98bd80..f51da8972d15b 100644 --- a/vllm/multimodal/registry.py +++ b/vllm/multimodal/registry.py @@ -15,7 +15,7 @@ from .base import MultiModalInputMapper, MultiModalPlugin, MultiModalTokensCalc from .image import ImagePlugin from .inputs import MultiModalDataDict, MultiModalKwargs, NestedTensors -from .processing import MultiModalProcessor +from .processing import MultiModalProcessingMetadata, MultiModalProcessor from .video import VideoPlugin if TYPE_CHECKING: @@ -200,9 +200,12 @@ def register_max_image_tokens( """ return self.register_max_multimodal_tokens("image", max_mm_tokens) - def get_max_multimodal_tokens(self, model_config: "ModelConfig") -> int: + def get_max_tokens_by_modality( + self, + model_config: "ModelConfig", + ) -> Mapping[str, int]: """ - Get the maximum number of multi-modal tokens + Get the maximum number of tokens from each modality for profiling the memory usage of a model. See :meth:`MultiModalPlugin.get_max_multimodal_tokens` for more details. @@ -212,9 +215,23 @@ def get_max_multimodal_tokens(self, model_config: "ModelConfig") -> int: """ limits_per_plugin = self._limits_by_model[model_config] - return sum((limits_per_plugin[key] * - plugin.get_max_multimodal_tokens(model_config)) - for key, plugin in self._plugins.items()) + return { + key: (limits_per_plugin[key] * + plugin.get_max_multimodal_tokens(model_config)) + for key, plugin in self._plugins.items() + } + + def get_max_multimodal_tokens(self, model_config: "ModelConfig") -> int: + """ + Get the maximum number of multi-modal tokens + for profiling the memory usage of a model. + + See :meth:`MultiModalPlugin.get_max_multimodal_tokens` for more details. + + Note: + This should be called after :meth:`init_mm_limits_per_prompt`. + """ + return sum(self.get_max_tokens_by_modality(model_config).values()) def init_mm_limits_per_prompt( self, @@ -270,7 +287,8 @@ def register_processor( factory: MultiModalProcessorFactory, ): """ - Register a multi-modal processor to a model class. + Register a multi-modal processor to a model class. The processor + is constructed lazily, hence a factory method should be passed. When the model receives multi-modal data, the provided function is invoked to transform the data into a dictionary of model inputs. @@ -293,6 +311,41 @@ def wrapper(model_cls: N) -> N: return wrapper + def register_processor_by_metadata( + self, + metadata_factory: Callable[[InputProcessingContext], + MultiModalProcessingMetadata], + get_dummy_mm_kwargs: Callable[ + [InputProcessingContext, Mapping[str, int]], MultiModalKwargs], + ): + """ + Convenience method to register a multi-modal processor to a model class + according to a function that constructs its metadata. + + When the model receives multi-modal data, the provided function is + invoked to transform the data into a dictionary of model inputs. + + See also: + - :ref:`input_processing_pipeline` + - :ref:`enabling_multimodal_inputs` + """ + + class ConcreteMultiModalProcessor(MultiModalProcessor): + + def _get_dummy_mm_kwargs( + self, + mm_counts: Mapping[str, int], + ) -> MultiModalKwargs: + return get_dummy_mm_kwargs(self.ctx, mm_counts) + + def factory(ctx: InputProcessingContext): + return ConcreteMultiModalProcessor( + ctx=ctx, + metadata=metadata_factory(ctx), + ) + + return self.register_processor(factory) + def has_processor(self, model_config: "ModelConfig") -> bool: """ Test whether a multi-modal processor is defined for a specific model. diff --git a/vllm/v1/engine/mm_input_mapper.py b/vllm/v1/engine/mm_input_mapper.py index 594c973678235..45882f8f076d4 100644 --- a/vllm/v1/engine/mm_input_mapper.py +++ b/vllm/v1/engine/mm_input_mapper.py @@ -12,6 +12,7 @@ def __init__( model_config: ModelConfig, mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY, ): + self.model_config = model_config self.mm_registry = mm_registry self.multi_modal_input_mapper = mm_registry.create_input_mapper( model_config) diff --git a/vllm/v1/engine/processor.py b/vllm/v1/engine/processor.py index 7a1ea2530abda..120fc64969552 100644 --- a/vllm/v1/engine/processor.py +++ b/vllm/v1/engine/processor.py @@ -7,7 +7,8 @@ from vllm.inputs.parse import is_encoder_decoder_inputs from vllm.inputs.preprocess import InputPreprocessor from vllm.lora.request import LoRARequest -from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalRegistry +from vllm.multimodal import (MULTIMODAL_REGISTRY, MultiModalKwargs, + MultiModalRegistry) from vllm.pooling_params import PoolingParams from vllm.prompt_adapter.request import PromptAdapterRequest from vllm.sampling_params import SamplingParams @@ -101,10 +102,15 @@ def process_inputs( self.generation_config_fields, eos_token_id) # Preprocess multi-modal data - mm_inputs = self.mm_input_mapper.process_inputs( - decoder_inputs.multi_modal_data, - decoder_inputs.mm_processor_kwargs) if len( - decoder_inputs.multi_modal_data) > 0 else None + if len(decoder_inputs.multi_modal_data) == 0: + mm_inputs = None + elif isinstance(decoder_inputs.multi_modal_data, MultiModalKwargs): + mm_inputs = [decoder_inputs.multi_modal_data] + else: + mm_inputs = self.mm_input_mapper.process_inputs( + decoder_inputs.multi_modal_data, + decoder_inputs.mm_processor_kwargs, + ) # Make Request for Detokenizer. detokenizer_request = DetokenizerRequest( From f13cf9ad5049e386f766014877dee78d2f438799 Mon Sep 17 00:00:00 2001 From: Gregory Shtrasberg <156009573+gshtras@users.noreply.github.com> Date: Sat, 7 Dec 2024 04:03:44 -0500 Subject: [PATCH 053/733] [Build] Fix for the Wswitch-bool clang warning (#10060) Signed-off-by: Gregory Shtrasberg --- csrc/attention/paged_attention_v1.cu | 11 ++++------- csrc/attention/paged_attention_v2.cu | 11 ++++------- 2 files changed, 8 insertions(+), 14 deletions(-) diff --git a/csrc/attention/paged_attention_v1.cu b/csrc/attention/paged_attention_v1.cu index 741cd0c82dc89..cb1a069942069 100644 --- a/csrc/attention/paged_attention_v1.cu +++ b/csrc/attention/paged_attention_v1.cu @@ -140,13 +140,10 @@ void paged_attention_v1_launcher( blocksparse_block_size, blocksparse_head_sliding_step); #define CALL_V1_LAUNCHER_SPARSITY(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE) \ - switch (is_block_sparse) { \ - case true: \ - CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, true); \ - break; \ - case false: \ - CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, false); \ - break; \ + if (is_block_sparse) { \ + CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, true); \ + } else { \ + CALL_V1_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, false); \ } // NOTE(woosuk): To reduce the compilation time, we omitted block sizes diff --git a/csrc/attention/paged_attention_v2.cu b/csrc/attention/paged_attention_v2.cu index 6de8d0bdd5b8d..c457bdb89008e 100644 --- a/csrc/attention/paged_attention_v2.cu +++ b/csrc/attention/paged_attention_v2.cu @@ -147,13 +147,10 @@ void paged_attention_v2_launcher( blocksparse_head_sliding_step); #define CALL_V2_LAUNCHER_SPARSITY(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE) \ - switch (is_block_sparse) { \ - case true: \ - CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, true); \ - break; \ - case false: \ - CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, false); \ - break; \ + if (is_block_sparse) { \ + CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, true); \ + } else { \ + CALL_V2_LAUNCHER(T, CACHE_T, BLOCK_SIZE, IS_FP8_KV_CACHE, false); \ } // NOTE(woosuk): To reduce the compilation time, we omitted block sizes From b26b4cd03c5468c68c3ce328ea6498a5d816870d Mon Sep 17 00:00:00 2001 From: Isotr0py Date: Sat, 7 Dec 2024 18:33:49 +0800 Subject: [PATCH 054/733] [Misc][LoRA] Refactor and clean MergedQKVParallelLinearWithLora implementation (#10958) Signed-off-by: Isotr0py <2037008807@qq.com> --- vllm/lora/layers.py | 323 ++++++++------------------------------------ 1 file changed, 60 insertions(+), 263 deletions(-) diff --git a/vllm/lora/layers.py b/vllm/lora/layers.py index 473e4bedf3d60..3e9c2ceb83eac 100644 --- a/vllm/lora/layers.py +++ b/vllm/lora/layers.py @@ -542,10 +542,20 @@ class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA): Both slices must have the same size. """ - def __init__(self, base_layer: MergedColumnParallelLinear) -> None: + def __init__( + self, base_layer: Union[MergedColumnParallelLinear, + QKVParallelLinear]) -> None: super().__init__(base_layer) # There are two LoRA layers - self.n_slices = len(self.base_layer.output_sizes) + self.tp_size = get_tensor_model_parallel_world_size() + self.tp_rank = get_tensor_model_parallel_rank() + # the output_sizes in MergedColumnParallelLinear is not sharded by tp + # we need to divide it by the tp_size to get correct slices size + output_sizes = self.base_layer.output_sizes + self.output_slices = tuple( + divide(output_size, self.tp_size) for output_size in output_sizes) + self.n_slices = len(self.output_slices) + self.output_ids = (self.tp_rank, ) * self.n_slices def create_lora_weights( self, @@ -559,15 +569,6 @@ def create_lora_weights( """ self.lora_config = lora_config - if not (len(self.base_layer.output_sizes) == self.n_slices == 2 - and self.base_layer.output_sizes[0] - == self.base_layer.output_sizes[1]): - raise ValueError( - "LoRAColumnParallelLinear2Slice requires 2 slices with " - "the same size.") - self.tp_size = get_tensor_model_parallel_world_size() - self.tp_rank = get_tensor_model_parallel_rank() - lora_a_output_size_per_partition = ( lora_config.max_lora_rank if not lora_config.fully_sharded_loras else divide(lora_config.max_lora_rank, self.tp_size)) @@ -585,22 +586,20 @@ def create_lora_weights( torch.zeros( max_loras, 1, - self.output_size // 2, + output_size, lora_config.max_lora_rank, dtype=lora_config.lora_dtype, device=self.device, - ) for _ in range(self.n_slices)) + ) for output_size in self.output_slices) if lora_config.bias_enabled: self.lora_bias_stacked = tuple( torch.zeros( max_loras, 1, - self.output_size // 2, + output_size, dtype=lora_config.lora_dtype, device=self.device, - ) for _ in range(self.n_slices)) - self.output_dim = self.lora_b_stacked[0].shape[2] - self.output_slices = (self.output_dim, self.output_dim) + ) for output_size in self.output_slices) def slice_lora_a( self, lora_a: List[Union[torch.Tensor, None]] @@ -610,27 +609,21 @@ def slice_lora_a( def slice_lora_b( self, lora_b: List[Union[torch.Tensor, None]] ) -> List[Union[torch.Tensor, None]]: - #NOTE: lora_b contains 2 subloras, and each sublora could be None. - shard_size = self.output_dim - start_idx = self.tp_rank * shard_size - end_idx = (self.tp_rank + 1) * shard_size - lora_b = [ - lora_b[0][:, start_idx:end_idx] if lora_b[0] is not None else None, - lora_b[1][:, start_idx:end_idx] if lora_b[1] is not None else None, - ] + for i, (shard_id, shard_size) in enumerate( + zip(self.output_ids, self.output_slices)): + if (lora_b_i := lora_b[i]) is not None: + lora_b[i] = lora_b_i[:, shard_size * shard_id:shard_size * + (shard_id + 1)] return lora_b def slice_bias( self, bias: List[Union[torch.Tensor, None]]) -> List[Union[torch.Tensor, None]]: - # NOTE : each bias could be None. - shard_size = self.output_dim - start_idx = self.tp_rank * shard_size - end_idx = (self.tp_rank + 1) * shard_size - bias = [ - bias[0][start_idx:end_idx] if bias[0] is not None else None, - bias[1][start_idx:end_idx] if bias[1] is not None else None - ] + for i, (shard_id, shard_size) in enumerate( + zip(self.output_ids, self.output_slices)): + if (bias_i := bias[i]) is not None: + bias[i] = bias_i[shard_size * shard_id:shard_size * + (shard_id + 1)] return bias def set_lora( @@ -649,30 +642,25 @@ def set_lora( if lora_bias is not None: lora_bias = self.slice_bias(lora_bias) - if lora_a[0] is not None: - self.lora_a_stacked[0][ - index, 0, :lora_a[0].shape[1], :lora_a[0].shape[0]].copy_( - lora_a[0].T, non_blocking=True) - self.lora_b_stacked[0][ - index, 0, :lora_b[0].shape[1], :lora_b[0].shape[0]].copy_( - lora_b[0].T, non_blocking=True) - if lora_bias is not None and lora_bias[0] is not None: - self.lora_bias_stacked = cast(Tuple[torch.Tensor, ...], - self.lora_bias_stacked) - self.lora_bias_stacked[0][index, 0, :lora_bias[0].shape[0]].copy_( - lora_bias[0].T, non_blocking=True) - if lora_a[1] is not None: - self.lora_a_stacked[1][ - index, 0, :lora_a[1].shape[1], :lora_a[1].shape[0]].copy_( - lora_a[1].T, non_blocking=True) - self.lora_b_stacked[1][ - index, 0, :lora_b[1].shape[1], :lora_b[1].shape[0]].copy_( - lora_b[1].T, non_blocking=True) - if lora_bias is not None and lora_bias[1] is not None: + for i in range(self.n_slices): + if (lora_a_i := lora_a[i]) is not None: + self.lora_a_stacked[i][ + index, 0, :lora_a_i.shape[1], :lora_a_i.shape[0]].copy_( + lora_a_i.T, non_blocking=True) + if (lora_b_i := lora_b[i]) is not None: + self.lora_b_stacked[i][ + index, 0, :lora_b_i.shape[1], :lora_b_i.shape[0]].copy_( + lora_b_i.T, non_blocking=True) + + if lora_bias is not None: self.lora_bias_stacked = cast(Tuple[torch.Tensor, ...], self.lora_bias_stacked) - self.lora_bias_stacked[1][index, 0, :lora_bias[1].shape[0]].copy_( - lora_bias[1].T, non_blocking=True) + for i in range(self.n_slices): + if (lora_bias_i := lora_bias[i]) is not None: + self.lora_bias_stacked[i][index, + 0, :lora_bias_i.shape[0]].copy_( + lora_bias_i.T, + non_blocking=True) @classmethod @_not_fully_sharded_can_replace @@ -755,8 +743,8 @@ def can_replace_layer(cls, source_layer: nn.Module, packed_modules_list) == 1 -class MergedQKVParallelLinearWithLora(ColumnParallelLinearWithLoRA): - """ColumnParallelLinear layer that is composed of 3 sublayers (slices) +class MergedQKVParallelLinearWithLora(MergedColumnParallelLinearWithLoRA): + """MergedColumnParallelLinear layer that is composed of 3 sublayers (slices) packed together in qkv proj fashion (q_proj + k_proj + v_proj -> qkv_proj). @@ -773,22 +761,6 @@ def __init__(self, base_layer: QKVParallelLinear) -> None: self.tp_size = get_tensor_model_parallel_world_size() self.tp_rank = get_tensor_model_parallel_rank() - def create_lora_weights( - self, - max_loras: int, - lora_config: LoRAConfig, - model_config: Optional[PretrainedConfig] = None, - ) -> None: - """ - The main reason for overloading this function is to handle inconsistent - weight dimensions in qkv lora. - """ - self.lora_config = lora_config - - if not (len(self.base_layer.output_sizes) == self.n_slices == 3): - raise ValueError( - "LoRAColumnParallelLinear3Slice requires 3 slices.") - self.q_proj_shard_size = (self.base_layer.num_heads * self.base_layer.head_size) self.kv_proj_shard_size = (self.base_layer.num_kv_heads * @@ -796,203 +768,28 @@ def create_lora_weights( self.q_shard_id = self.tp_rank self.kv_shard_id = self.tp_rank // self.base_layer.num_kv_head_replicas - lora_a_output_size_per_partition = ( - lora_config.max_lora_rank if not lora_config.fully_sharded_loras - else divide(lora_config.max_lora_rank, self.tp_size)) - # q, k, v - self.lora_a_stacked = ( - torch.zeros( - max_loras, - 1, - lora_a_output_size_per_partition, - self.input_size, - dtype=lora_config.lora_dtype, - device=self.device, - ), - torch.zeros( - max_loras, - 1, - lora_a_output_size_per_partition, - self.input_size, - dtype=lora_config.lora_dtype, - device=self.device, - ), - torch.zeros( - max_loras, - 1, - lora_a_output_size_per_partition, - self.input_size, - dtype=lora_config.lora_dtype, - device=self.device, - ), - ) - self.lora_b_stacked = ( - torch.zeros( - max_loras, - 1, - self.q_proj_shard_size, - lora_config.max_lora_rank, - dtype=lora_config.lora_dtype, - device=self.device, - ), - torch.zeros( - max_loras, - 1, - self.kv_proj_shard_size, - lora_config.max_lora_rank, - dtype=lora_config.lora_dtype, - device=self.device, - ), - torch.zeros( - max_loras, - 1, - self.kv_proj_shard_size, - lora_config.max_lora_rank, - dtype=lora_config.lora_dtype, - device=self.device, - ), - ) - if lora_config.bias_enabled: - self.lora_bias_stacked = ( - torch.zeros( - max_loras, - 1, - self.q_proj_shard_size, - dtype=lora_config.lora_dtype, - device=self.device, - ), - torch.zeros( - max_loras, - 1, - self.kv_proj_shard_size, - dtype=lora_config.lora_dtype, - device=self.device, - ), - torch.zeros( - max_loras, - 1, - self.kv_proj_shard_size, - dtype=lora_config.lora_dtype, - device=self.device, - ), - ) self.output_slices = ( self.q_proj_shard_size, self.kv_proj_shard_size, self.kv_proj_shard_size, ) - self.packed_indices: Optional[torch.Tensor] = None - self.standard_indices: Optional[torch.Tensor] = None - # lazily initialized. - self.indices: torch.Tensor - self.indices_len: List[int] - - def slice_lora_a( - self, lora_a: List[Union[torch.Tensor, None]] - ) -> List[Union[torch.Tensor, None]]: - return lora_a - - def slice_lora_b( - self, lora_b: List[Union[torch.Tensor, None]] - ) -> List[Union[torch.Tensor, None]]: - lora_b_q, lora_b_k, lora_b_v = None, None, None - if lora_b[0] is not None: - lora_b_q = lora_b[0][:, self.q_proj_shard_size * - self.q_shard_id:self.q_proj_shard_size * - (self.q_shard_id + 1), ] - if lora_b[1] is not None: - lora_b_k = lora_b[1][:, self.kv_proj_shard_size * - self.kv_shard_id:self.kv_proj_shard_size * - (self.kv_shard_id + 1), ] - if lora_b[2] is not None: - lora_b_v = lora_b[2][:, self.kv_proj_shard_size * - self.kv_shard_id:self.kv_proj_shard_size * - (self.kv_shard_id + 1), ] - lora_b = [lora_b_q, lora_b_k, lora_b_v] - return lora_b - - def slice_bias( - self, bias: List[Union[torch.Tensor, - None]]) -> List[Union[torch.Tensor, None]]: - bias_q, bias_k, bias_v = bias - if bias_q is not None: - bias_q = bias_q[self.q_proj_shard_size * - self.q_shard_id:self.q_proj_shard_size * - (self.q_shard_id + 1)] - if bias_k is not None: - bias_k = bias_k[self.kv_proj_shard_size * - self.kv_shard_id:self.kv_proj_shard_size * - (self.kv_shard_id + 1)] - if bias_v is not None: - bias_v = bias_v[self.kv_proj_shard_size * - self.kv_shard_id:self.kv_proj_shard_size * - (self.kv_shard_id + 1)] - bias = [bias_q, bias_k, bias_v] - return bias + self.output_ids = ( + self.q_shard_id, + self.kv_shard_id, + self.kv_shard_id, + ) - def set_lora( + def create_lora_weights( self, - index: int, - lora_a: torch.Tensor, - lora_b: torch.Tensor, - embeddings_tensor: Optional[torch.Tensor], - lora_bias: Optional[torch.Tensor] = None, - ): - self.reset_lora(index) - - if self.tp_size > 1: - lora_a = self.slice_lora_a(lora_a) - lora_b = self.slice_lora_b(lora_b) - if lora_bias is not None: - lora_bias = self.slice_bias(lora_bias) - - if lora_b[0] is not None: - lora_b_q = lora_b[0] - self.lora_b_stacked[0][ - index, 0, :lora_b_q.shape[1], :lora_b_q.shape[0]].copy_( - lora_b_q.T, non_blocking=True) - if lora_b[1] is not None: - lora_b_k = lora_b[1] - self.lora_b_stacked[1][ - index, 0, :lora_b_k.shape[1], :lora_b_k.shape[0]].copy_( - lora_b_k.T, non_blocking=True) - if lora_b[2] is not None: - lora_b_v = lora_b[2] - self.lora_b_stacked[2][ - index, 0, :lora_b_v.shape[1], :lora_b_v.shape[0]].copy_( - lora_b_v.T, non_blocking=True) - - if lora_a[0] is not None: - self.lora_a_stacked[0][ - index, 0, :lora_a[0].shape[1], :lora_a[0].shape[0]].copy_( - lora_a[0].T, non_blocking=True) - if lora_a[1] is not None: - self.lora_a_stacked[1][ - index, 0, :lora_a[1].shape[1], :lora_a[1].shape[0]].copy_( - lora_a[1].T, non_blocking=True) - if lora_a[2] is not None: - self.lora_a_stacked[2][ - index, 0, :lora_a[2].shape[1], :lora_a[2].shape[0]].copy_( - lora_a[2].T, non_blocking=True) - - if lora_bias is not None: - self.lora_bias_stacked = cast(Tuple[torch.Tensor, ...], - self.lora_bias_stacked) - if lora_bias[0] is not None: - self.lora_bias_stacked[0][index, - 0, :lora_bias[0].shape[0]].copy_( - lora_bias[0].T, - non_blocking=True) - if lora_bias[1] is not None: - self.lora_bias_stacked[1][index, - 0, :lora_bias[1].shape[0]].copy_( - lora_bias[1].T, - non_blocking=True) - if lora_bias[2] is not None: - self.lora_bias_stacked[2][index, - 0, :lora_bias[2].shape[0]].copy_( - lora_bias[2].T, - non_blocking=True) + max_loras: int, + lora_config: LoRAConfig, + model_config: Optional[PretrainedConfig] = None, + ) -> None: + """ + The main reason for overloading this function is to handle inconsistent + weight dimensions in qkv lora. + """ + super().create_lora_weights(max_loras, lora_config, model_config) @classmethod @_not_fully_sharded_can_replace From bf0e382e16065edebbbb414f7889d31523a569e1 Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Sat, 7 Dec 2024 22:22:52 +0800 Subject: [PATCH 055/733] [Model] Composite weight loading for multimodal Qwen2 (#10944) Signed-off-by: DarkLight1337 --- vllm/config.py | 10 +- vllm/model_executor/model_loader/loader.py | 4 +- vllm/model_executor/model_loader/utils.py | 10 +- vllm/model_executor/models/qwen2.py | 17 +- vllm/model_executor/models/qwen2_audio.py | 117 ++++---------- vllm/model_executor/models/qwen2_vl.py | 179 ++++++++++----------- vllm/model_executor/models/utils.py | 15 +- 7 files changed, 147 insertions(+), 205 deletions(-) diff --git a/vllm/config.py b/vllm/config.py index fe4c85441fced..db7046ab2c22d 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -2472,7 +2472,15 @@ def _get_quantization_config( return quant_config return None - def with_hf_config(self, hf_config: PretrainedConfig) -> "VllmConfig": + def with_hf_config( + self, + hf_config: PretrainedConfig, + architectures: Optional[list[str]] = None, + ) -> "VllmConfig": + if architectures is not None: + hf_config = copy.deepcopy(hf_config) + hf_config.architectures = architectures + model_config = copy.deepcopy(self.model_config) model_config.hf_config = hf_config diff --git a/vllm/model_executor/model_loader/loader.py b/vllm/model_executor/model_loader/loader.py index a0ea0e5fad3c2..fdc4c6305bd5e 100644 --- a/vllm/model_executor/model_loader/loader.py +++ b/vllm/model_executor/model_loader/loader.py @@ -101,12 +101,10 @@ def _initialize_model( vllm_config: VllmConfig, *, prefix: str = "", - architectures: Optional[list[str]] = None, ) -> nn.Module: """Initialize a model with the given configurations.""" model_config = vllm_config.model_config - model_class, _ = get_model_architecture(model_config, - architectures=architectures) + model_class, _ = get_model_architecture(model_config) signatures = inspect.signature(model_class.__init__) all_params = [param.name for param in signatures.parameters.values()] diff --git a/vllm/model_executor/model_loader/utils.py b/vllm/model_executor/model_loader/utils.py index 864dd04e79921..cfb89e0f336bc 100644 --- a/vllm/model_executor/model_loader/utils.py +++ b/vllm/model_executor/model_loader/utils.py @@ -1,6 +1,6 @@ """Utilities for selecting and loading models.""" import contextlib -from typing import Optional, Tuple, Type +from typing import Tuple, Type import torch from torch import nn @@ -20,12 +20,8 @@ def set_default_torch_dtype(dtype: torch.dtype): def get_model_architecture( - model_config: ModelConfig, - *, - architectures: Optional[list[str]] = None, -) -> Tuple[Type[nn.Module], str]: - if architectures is None: - architectures = getattr(model_config.hf_config, "architectures", []) + model_config: ModelConfig) -> Tuple[Type[nn.Module], str]: + architectures = getattr(model_config.hf_config, "architectures", []) # Special handling for quantized Mixtral. # FIXME(woosuk): This is a temporary hack. diff --git a/vllm/model_executor/models/qwen2.py b/vllm/model_executor/models/qwen2.py index 7d4cc4b69e614..3ce4eb5869f21 100644 --- a/vllm/model_executor/models/qwen2.py +++ b/vllm/model_executor/models/qwen2.py @@ -444,14 +444,17 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): self.model = Qwen2Model(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")) - if config.tie_word_embeddings: - self.lm_head = self.model.embed_tokens + if get_pp_group().is_last_rank: + if config.tie_word_embeddings: + self.lm_head = self.model.embed_tokens + else: + self.lm_head = ParallelLMHead(config.vocab_size, + config.hidden_size, + quant_config=quant_config, + prefix=maybe_prefix( + prefix, "lm_head")) else: - self.lm_head = ParallelLMHead(config.vocab_size, - config.hidden_size, - quant_config=quant_config, - prefix=maybe_prefix( - prefix, "lm_head")) + self.lm_head = PPMissingLayer() self.logits_processor = LogitsProcessor(config.vocab_size) self.sampler = get_sampler() diff --git a/vllm/model_executor/models/qwen2_audio.py b/vllm/model_executor/models/qwen2_audio.py index a0605fee82aca..48a2d470414b9 100644 --- a/vllm/model_executor/models/qwen2_audio.py +++ b/vllm/model_executor/models/qwen2_audio.py @@ -19,7 +19,7 @@ # See the License for the specific language governing permissions and # limitations under the License. """Inference-only Qwen2-Audio model compatible with HuggingFace weights.""" -from functools import lru_cache +from functools import cached_property, lru_cache from typing import (Iterable, List, Mapping, Optional, Set, Tuple, TypedDict, Union) @@ -34,12 +34,7 @@ from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, DummyData, InputContext, token_inputs) from vllm.logger import init_logger -from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler -from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead -from vllm.model_executor.model_loader.weight_utils import ( - default_weight_loader, maybe_remap_kv_scale_name) -from vllm.model_executor.models.qwen2 import Qwen2Model from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs from vllm.multimodal.inputs import NestedTensors @@ -47,15 +42,11 @@ from vllm.sequence import IntermediateTensors, SequenceData from .interfaces import SupportsMultiModal, SupportsPP -from .utils import merge_multimodal_embeddings +from .utils import (AutoWeightsLoader, init_vllm_registered_model, + maybe_prefix, merge_multimodal_embeddings) logger = init_logger(__name__) -_KEYS_TO_MODIFY_MAPPING = { - "language_model.lm_head": "lm_head", - "language_model.model": "language_model", -} - # # === Audio Inputs === # class Qwen2AudioInputs(TypedDict): @@ -281,25 +272,23 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): self.quant_config = quant_config - self.language_model = Qwen2Model( - vllm_config=vllm_config.with_hf_config(config.text_config), - prefix=prefix) - self.unpadded_vocab_size = config.text_config.vocab_size - if config.text_config.tie_word_embeddings: - self.lm_head = self.language_model.embed_tokens - else: - self.lm_head = ParallelLMHead(config.text_config.vocab_size, - config.text_config.hidden_size, - quant_config=quant_config) - logit_scale = getattr(config, "logit_scale", 1.0) - self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, - config.text_config.vocab_size, - logit_scale) - self.sampler = get_sampler() + self.language_model = init_vllm_registered_model( + vllm_config=vllm_config, + hf_config=config.text_config, + prefix=maybe_prefix(prefix, "language_model"), + architectures=["Qwen2ForCausalLM"], + ) self.make_empty_intermediate_tensors = ( self.language_model.make_empty_intermediate_tensors) + @cached_property + def sampler(self): + if hasattr(self.language_model, "sampler"): + return self.language_model.sampler + + return get_sampler() + def _validate_and_reshape_mm_tensor(self, mm_input: Union[torch.Tensor, List[torch.Tensor]], @@ -414,72 +403,30 @@ def forward( multimodal_embeddings) input_ids = None - hidden_states = self.language_model(input_ids, - positions, - kv_caches, - attn_metadata, - intermediate_tensors, - inputs_embeds=inputs_embeds) + hidden_states = self.language_model.model(input_ids, + positions, + kv_caches, + attn_metadata, + intermediate_tensors, + inputs_embeds=inputs_embeds) return hidden_states - def compute_logits(self, hidden_states: torch.Tensor, - sampling_metadata: SamplingMetadata) -> torch.Tensor: - logits = self.logits_processor(self.lm_head, hidden_states, - sampling_metadata) - return logits + def compute_logits( + self, + hidden_states: torch.Tensor, + sampling_metadata: SamplingMetadata, + ) -> Optional[torch.Tensor]: + return self.language_model.compute_logits(hidden_states, + sampling_metadata) def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: - next_tokens = self.sampler(logits, sampling_metadata) - return next_tokens + return self.language_model.sample(logits, sampling_metadata) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]: - stacked_params_mapping = [ - # (param_name, shard_name, shard_id) - ("qkv_proj", "q_proj", "q"), - ("qkv_proj", "k_proj", "k"), - ("qkv_proj", "v_proj", "v"), - ("gate_up_proj", "gate_proj", 0), - ("gate_up_proj", "up_proj", 1), - ] - params_dict = dict(self.named_parameters(remove_duplicate=False)) - loaded_params: Set[str] = set() - for name, loaded_weight in weights: - if "rotary_emb.inv_freq" in name: - continue - if (self.config.text_config.tie_word_embeddings - and "lm_head.weight" in name): - continue - for key_to_modify, new_key in _KEYS_TO_MODIFY_MAPPING.items(): - if key_to_modify in name: - name = name.replace(key_to_modify, new_key) - for (param_name, weight_name, shard_id) in stacked_params_mapping: - if weight_name not in name or 'audio' in name: - continue - name = name.replace(weight_name, param_name) - # Skip loading extra bias for GPTQ models. - if name.endswith(".bias") and name not in params_dict: - continue - param = params_dict[name] - weight_loader = param.weight_loader - weight_loader(param, loaded_weight, shard_id) - break - else: - # Skip loading extra bias for GPTQ models. - if name.endswith(".bias") and name not in params_dict: - continue - # Remapping the name of FP8 kv-scale. - name = maybe_remap_kv_scale_name(name, params_dict) - if name is None: - continue - - param = params_dict[name] - weight_loader = getattr(param, "weight_loader", - default_weight_loader) - weight_loader(param, loaded_weight) - loaded_params.add(name) - return loaded_params + loader = AutoWeightsLoader(self) + return loader.load_weights(weights) diff --git a/vllm/model_executor/models/qwen2_vl.py b/vllm/model_executor/models/qwen2_vl.py index 27175dbae7483..cfc90cdab01e4 100644 --- a/vllm/model_executor/models/qwen2_vl.py +++ b/vllm/model_executor/models/qwen2_vl.py @@ -21,7 +21,7 @@ # See the License for the specific language governing permissions and # limitations under the License. """Inference-only Qwen2-VL model compatible with HuggingFace weights.""" -from functools import partial +from functools import cached_property, partial from typing import (Any, Callable, Dict, Iterable, List, Literal, Mapping, Optional, Set, Tuple, Type, TypedDict, Union) @@ -40,7 +40,7 @@ from vllm.attention import AttentionMetadata from vllm.config import VllmConfig -from vllm.distributed import get_pp_group, parallel_state +from vllm.distributed import parallel_state from vllm.distributed import utils as dist_utils from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, DummyData, InputContext, token_inputs) @@ -49,15 +49,12 @@ from vllm.model_executor.layers.activation import QuickGELU from vllm.model_executor.layers.linear import (ColumnParallelLinear, RowParallelLinear) -from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.quantization.gptq import GPTQConfig from vllm.model_executor.layers.quantization.gptq_marlin import ( GPTQMarlinConfig) from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler -from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead from vllm.model_executor.model_loader.weight_utils import default_weight_loader -from vllm.model_executor.models.qwen2 import Qwen2Model from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.image import cached_get_image_processor from vllm.multimodal.inputs import (MultiModalData, MultiModalDataDict, @@ -69,9 +66,8 @@ from vllm.transformers_utils.processor import cached_get_processor from .interfaces import SupportsLoRA, SupportsMultiModal, SupportsPP -from .utils import (PPMissingLayer, get_vit_attn_backend, - is_pp_missing_parameter, - make_empty_intermediate_tensors_factory, maybe_prefix) +from .utils import (AutoWeightsLoader, WeightsMapper, get_vit_attn_backend, + init_vllm_registered_model, maybe_prefix) logger = init_logger(__name__) @@ -506,6 +502,8 @@ def __init__( mlp_ratio: float = vision_config.mlp_ratio self.spatial_merge_size = spatial_merge_size + self.num_heads = num_heads + self.embed_dim = embed_dim self.patch_embed = Qwen2VisionPatchEmbed( patch_size=patch_size, @@ -595,6 +593,53 @@ def forward( x = self.merger(x) return x + def load_weights(self, weights: Iterable[Tuple[str, + torch.Tensor]]) -> Set[str]: + stacked_params_mapping = [ + # (param_name, shard_name, shard_id) + ("qkv_proj", "q_proj", "q"), + ("qkv_proj", "k_proj", "k"), + ("qkv_proj", "v_proj", "v"), + ] + params_dict = dict(self.named_parameters(remove_duplicate=False)) + loaded_params: Set[str] = set() + + for name, loaded_weight in weights: + for (param_name, weight_name, shard_id) in stacked_params_mapping: + if weight_name not in name: + continue + name = name.replace(weight_name, param_name) + + param = params_dict[name] + weight_loader = param.weight_loader + weight_loader(param, loaded_weight, shard_id) + break + else: + if name.endswith("qkv.weight"): + visual_num_heads = self.num_heads + visual_embed_dim = self.embed_dim + head_size = visual_embed_dim // visual_num_heads + loaded_weight = loaded_weight.view(3, visual_num_heads, + head_size, + visual_embed_dim) + loaded_weight = loaded_weight.transpose(0, 1) + loaded_weight = loaded_weight.reshape(-1, visual_embed_dim) + elif name.endswith("qkv.bias"): + visual_num_heads = self.num_heads + visual_embed_dim = self.embed_dim + head_size = visual_embed_dim // visual_num_heads + loaded_weight = loaded_weight.view(3, visual_num_heads, + head_size) + loaded_weight = loaded_weight.transpose(0, 1) + loaded_weight = loaded_weight.reshape(-1) + + param = params_dict[name] + weight_loader = getattr(param, "weight_loader", + default_weight_loader) + weight_loader(param, loaded_weight) + loaded_params.add(name) + return loaded_params + # === Vision input helpers === # @@ -1082,27 +1127,21 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): prefix=maybe_prefix(prefix, "visual"), ) - self.model = Qwen2Model(vllm_config=vllm_config, - prefix=maybe_prefix(prefix, "model")) + self.language_model = init_vllm_registered_model( + vllm_config=vllm_config, + prefix=maybe_prefix(prefix, "language_model"), + architectures=["Qwen2ForCausalLM"], + ) - if get_pp_group().is_last_rank: - if config.tie_word_embeddings: - self.lm_head = self.model.embed_tokens - else: - self.lm_head = ParallelLMHead(config.vocab_size, - config.hidden_size, - quant_config=quant_config, - prefix=maybe_prefix( - prefix, "lm_head")) - else: - self.lm_head = PPMissingLayer() + self.make_empty_intermediate_tensors = ( + self.language_model.make_empty_intermediate_tensors) - self.logits_processor = LogitsProcessor(config.vocab_size) - self.sampler = get_sampler() + @cached_property + def sampler(self): + if hasattr(self.language_model, "sampler"): + return self.language_model.sampler - self.make_empty_intermediate_tensors = ( - make_empty_intermediate_tensors_factory( - ["hidden_states", "residual"], config.hidden_size)) + return get_sampler() def _maybe_ignore_quant_config(self, quant_config: QuantizationConfig): # GPTQ configs do not have a list of ignored modules, however AutoGPTQ @@ -1261,7 +1300,7 @@ def get_input_embeddings( multimodal_embeddings: Optional[List[Tuple[NestedTensors, str]]] = None, ) -> torch.Tensor: - inputs_embeds = self.model.get_input_embeddings(input_ids) + inputs_embeds = self.language_model.get_input_embeddings(input_ids) if multimodal_embeddings is not None: for embeddings, modality in multimodal_embeddings: if modality == "image": @@ -1330,7 +1369,7 @@ def forward( multimodal_embeddings) input_ids = None - hidden_states = self.model( + hidden_states = self.language_model.model( input_ids=input_ids, positions=positions, kv_caches=kv_caches, @@ -1340,80 +1379,28 @@ def forward( ) return hidden_states - def compute_logits(self, hidden_states: torch.Tensor, - sampling_metadata: SamplingMetadata) -> torch.Tensor: - logits = self.logits_processor(self.lm_head, hidden_states, - sampling_metadata) - return logits + def compute_logits( + self, + hidden_states: torch.Tensor, + sampling_metadata: SamplingMetadata, + ) -> Optional[torch.Tensor]: + return self.language_model.compute_logits(hidden_states, + sampling_metadata) def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: - next_tokens = self.sampler(logits, sampling_metadata) - return next_tokens + return self.language_model.sample(logits, sampling_metadata) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]: - stacked_params_mapping = [ - # (param_name, shard_name, shard_id) - ("qkv_proj", "q_proj", "q"), - ("qkv_proj", "k_proj", "k"), - ("qkv_proj", "v_proj", "v"), - ("gate_up_proj", "up_proj", 1), - ("gate_up_proj", "gate_proj", 0), - ] - params_dict = dict(self.named_parameters(remove_duplicate=False)) - loaded_params: Set[str] = set() - for name, loaded_weight in weights: - if "rotary_emb.inv_freq" in name: - continue - if self.config.tie_word_embeddings and "lm_head.weight" in name: - continue - for (param_name, weight_name, shard_id) in stacked_params_mapping: - if weight_name not in name: - continue - name = name.replace(weight_name, param_name) - # Skip loading extra bias for GPTQ models. - if name.endswith(".bias") and name not in params_dict: - continue - if is_pp_missing_parameter(name, self): - continue - param = params_dict[name] - weight_loader = param.weight_loader - weight_loader(param, loaded_weight, shard_id) - break - else: - if "visual" in name and name.endswith("qkv.weight"): - visual_num_heads = self.config.vision_config.num_heads - visual_embed_dim = self.config.vision_config.embed_dim - head_size = visual_embed_dim // visual_num_heads - loaded_weight = loaded_weight.view(3, visual_num_heads, - head_size, - visual_embed_dim) - loaded_weight = loaded_weight.transpose(0, 1) - loaded_weight = loaded_weight.reshape(-1, visual_embed_dim) - elif "visual" in name and name.endswith("qkv.bias"): - visual_num_heads = self.config.vision_config.num_heads - visual_embed_dim = self.config.vision_config.embed_dim - head_size = visual_embed_dim // visual_num_heads - loaded_weight = loaded_weight.view(3, visual_num_heads, - head_size) - loaded_weight = loaded_weight.transpose(0, 1) - loaded_weight = loaded_weight.reshape(-1) - try: - # Skip loading extra bias for GPTQ models. - if name.endswith(".bias") and name not in params_dict: - continue - if is_pp_missing_parameter(name, self): - continue - param = params_dict[name] - except KeyError: - raise ValueError(f"Unexpected weight: {name}") from None - - weight_loader = getattr(param, "weight_loader", - default_weight_loader) - weight_loader(param, loaded_weight) - loaded_params.add(name) - return loaded_params + hf_to_vllm_mapper = WeightsMapper( + orig_to_new_prefix={ + "lm_head.": "language_model.lm_head.", + "model.": "language_model.model.", + }) + + loader = AutoWeightsLoader(self) + return loader.load_weights(weights, mapper=hf_to_vllm_mapper) diff --git a/vllm/model_executor/models/utils.py b/vllm/model_executor/models/utils.py index 7a1e1f9bf2be4..5ec44955dbd80 100644 --- a/vllm/model_executor/models/utils.py +++ b/vllm/model_executor/models/utils.py @@ -17,7 +17,7 @@ from vllm.multimodal import MultiModalPlaceholderMap, NestedTensors from vllm.platforms import _Backend, current_platform from vllm.sequence import IntermediateTensors -from vllm.utils import is_pin_memory_available +from vllm.utils import is_pin_memory_available, print_warning_once logger = init_logger(__name__) @@ -251,12 +251,15 @@ def init_vllm_registered_model( """ from vllm.model_executor.model_loader.loader import _initialize_model + if hf_config is None and architectures is not None: + # So that the architectures field is overridden + hf_config = vllm_config.model_config.hf_config + if hf_config is not None: - vllm_config = vllm_config.with_hf_config(hf_config) + vllm_config = vllm_config.with_hf_config(hf_config, + architectures=architectures) - return _initialize_model(vllm_config=vllm_config, - prefix=prefix, - architectures=architectures) + return _initialize_model(vllm_config=vllm_config, prefix=prefix) @overload @@ -592,7 +595,7 @@ def get_vit_attn_backend(support_fa: bool = False) -> _Backend: if is_flash_attn_2_available(): selected_backend = _Backend.FLASH_ATTN else: - logger.warning( + print_warning_once( "Current `vllm-flash-attn` has a bug inside vision module, " "so we use xformers backend instead. You can run " "`pip install flash-attn` to use flash-attention backend.") From 1c768fe53713ef333d74a6645e6a59fb7516134f Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Sun, 8 Dec 2024 00:58:02 +0800 Subject: [PATCH 056/733] [Doc] Explicitly state that InternVL 2.5 is supported (#10978) Signed-off-by: DarkLight1337 --- docs/source/models/supported_models.rst | 4 ++-- examples/offline_inference_vision_language.py | 2 +- examples/offline_inference_vision_language_multi_image.py | 2 +- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/source/models/supported_models.rst b/docs/source/models/supported_models.rst index 5b416e04da745..d915def588e08 100644 --- a/docs/source/models/supported_models.rst +++ b/docs/source/models/supported_models.rst @@ -547,9 +547,9 @@ Text Generation - ✅︎ - * - :code:`InternVLChatModel` - - InternVL2 + - InternVL 2.5, Mono-InternVL, InternVL 2.0 - T + I\ :sup:`E+` - - :code:`OpenGVLab/Mono-InternVL-2B`, :code:`OpenGVLab/InternVL2-4B`, :code:`OpenGVLab/InternVL2-8B`, etc. + - :code:`OpenGVLab/InternVL2_5-4B`, :code:`OpenGVLab/Mono-InternVL-2B`, :code:`OpenGVLab/InternVL2-4B`, etc. - - ✅︎ * - :code:`LlavaForConditionalGeneration` diff --git a/examples/offline_inference_vision_language.py b/examples/offline_inference_vision_language.py index f08f22eec164a..56209c3c36ed4 100644 --- a/examples/offline_inference_vision_language.py +++ b/examples/offline_inference_vision_language.py @@ -223,7 +223,7 @@ def run_internvl(question: str, modality: str): # Stop tokens for InternVL # models variants may have different stop tokens # please refer to the model card for the correct "stop words": - # https://huggingface.co/OpenGVLab/InternVL2-2B#service + # https://huggingface.co/OpenGVLab/InternVL2-2B/blob/main/conversation.py stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|end|>"] stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens] return llm, prompt, stop_token_ids diff --git a/examples/offline_inference_vision_language_multi_image.py b/examples/offline_inference_vision_language_multi_image.py index 788b604cfd4a0..928bbef54eab7 100644 --- a/examples/offline_inference_vision_language_multi_image.py +++ b/examples/offline_inference_vision_language_multi_image.py @@ -165,7 +165,7 @@ def load_internvl(question: str, image_urls: List[str]) -> ModelRequestData: # Stop tokens for InternVL # models variants may have different stop tokens # please refer to the model card for the correct "stop words": - # https://huggingface.co/OpenGVLab/InternVL2-2B#service + # https://huggingface.co/OpenGVLab/InternVL2-2B/blob/main/conversation.py stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|end|>"] stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens] From 39e227c7ae3149eb8345ea1a1ffee672ef76c09a Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Sun, 8 Dec 2024 01:10:05 +0800 Subject: [PATCH 057/733] [Model] Update multi-modal processor to support Mantis(LLaVA) model (#10711) Signed-off-by: DarkLight1337 --- .buildkite/test-pipeline.yaml | 2 + docs/source/models/supported_models.rst | 6 +- examples/offline_inference_vision_language.py | 17 +++++ requirements-test.in | 3 - .../vision_language/test_models.py | 30 +++++--- .../vision_language/vlm_utils/core.py | 20 ++++-- .../vision_language/vlm_utils/model_utils.py | 35 +++++++++- .../vision_language/vlm_utils/types.py | 19 ++++-- tests/models/registry.py | 1 + .../vllm_add_dummy_model/my_llava.py | 6 +- vllm/model_executor/models/llava.py | 68 ++++++++++++++++--- vllm/model_executor/models/registry.py | 1 + vllm/multimodal/processing.py | 4 +- vllm/multimodal/registry.py | 41 +---------- 14 files changed, 175 insertions(+), 78 deletions(-) diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index 936e284d9675a..8f57006214c88 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -362,6 +362,7 @@ steps: - tests/models/embedding/vision_language - tests/models/encoder_decoder/vision_language commands: + - pip install git+https://github.com/TIGER-AI-Lab/Mantis.git - pytest -v -s models/decoder_only/audio_language -m 'core_model or quant_model' - pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'core_model or quant_model' - pytest -v -s models/embedding/vision_language -m core_model @@ -377,6 +378,7 @@ steps: - tests/models/embedding/vision_language - tests/models/encoder_decoder/vision_language commands: + - pip install git+https://github.com/TIGER-AI-Lab/Mantis.git - pytest -v -s models/decoder_only/audio_language -m 'not core_model and not quant_model' # HACK - run phi3v tests separately to sidestep this transformers bug # https://github.com/huggingface/transformers/issues/34307 diff --git a/docs/source/models/supported_models.rst b/docs/source/models/supported_models.rst index d915def588e08..c9b3fa8485ff1 100644 --- a/docs/source/models/supported_models.rst +++ b/docs/source/models/supported_models.rst @@ -555,7 +555,7 @@ Text Generation * - :code:`LlavaForConditionalGeneration` - LLaVA-1.5 - T + I\ :sup:`E+` - - :code:`llava-hf/llava-1.5-7b-hf`, :code:`llava-hf/llava-1.5-13b-hf`, etc. + - :code:`llava-hf/llava-1.5-7b-hf`, :code:`TIGER-Lab/Mantis-8B-siglip-llama3` (see note), etc. - - ✅︎ * - :code:`LlavaNextForConditionalGeneration` @@ -664,6 +664,10 @@ Text Generation .. note:: vLLM currently only supports adding LoRA to the language backbone of multimodal models. +.. note:: + To use :code:`TIGER-Lab/Mantis-8B-siglip-llama3`, you have to install their GitHub repo (:code:`pip install git+https://github.com/TIGER-AI-Lab/Mantis.git`) + and pass :code:`--hf_overrides '{"architectures": ["MantisForConditionalGeneration"]}'` when running vLLM. + .. note:: The official :code:`openbmb/MiniCPM-V-2` doesn't work yet, so we need to use a fork (:code:`HwwwH/MiniCPM-V-2`) for now. For more details, please see: https://github.com/vllm-project/vllm/pull/4087#issuecomment-2250397630 diff --git a/examples/offline_inference_vision_language.py b/examples/offline_inference_vision_language.py index 56209c3c36ed4..c6a274ee5894b 100644 --- a/examples/offline_inference_vision_language.py +++ b/examples/offline_inference_vision_language.py @@ -419,6 +419,22 @@ def run_aria(question: str, modality: str): return llm, prompt, stop_token_ids +# Mantis +def run_mantis(question: str, modality: str): + assert modality == "image" + + llama3_template = '<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n' # noqa: E501 + prompt = llama3_template.format(f"{question}\n") + + llm = LLM( + model="TIGER-Lab/Mantis-8B-siglip-llama3", + max_model_len=4096, + hf_overrides={"architectures": ["MantisForConditionalGeneration"]}, + ) + stop_token_ids = [128009] + return llm, prompt, stop_token_ids + + model_example_map = { "llava": run_llava, "llava-next": run_llava_next, @@ -441,6 +457,7 @@ def run_aria(question: str, modality: str): "glm4v": run_glm4v, "idefics3": run_idefics3, "aria": run_aria, + "mantis": run_mantis, } diff --git a/requirements-test.in b/requirements-test.in index 44972866ddc4b..c0b228148ab31 100644 --- a/requirements-test.in +++ b/requirements-test.in @@ -24,9 +24,6 @@ mistral_common[opencv] >= 1.5.0 # required for pixtral test datamodel_code_generator # required for minicpm3 test lm-eval[api]==0.4.4 # required for model evaluation test -# TODO: Add this after fully implementing llava(mantis) -# git+https://github.com/TIGER-AI-Lab/Mantis.git # required for llava(mantis) test - # quantization bitsandbytes>=0.44.0 buildkite-test-collector==0.1.9 diff --git a/tests/models/decoder_only/vision_language/test_models.py b/tests/models/decoder_only/vision_language/test_models.py index 924f19c4448b8..ed8f34a677f84 100644 --- a/tests/models/decoder_only/vision_language/test_models.py +++ b/tests/models/decoder_only/vision_language/test_models.py @@ -34,7 +34,7 @@ "dtype": "half", "max_tokens": 5, "tensor_parallel_size": 2, - "model_kwargs": {"device_map": "auto"}, + "hf_model_kwargs": {"device_map": "auto"}, "image_size_factors": [(.25, 0.5, 1.0)], "distributed_executor_backend": ( "ray", @@ -108,7 +108,7 @@ "cherry_blossom": "What is in the picture?", }), auto_cls=AutoModelForVision2Seq, - postprocess_inputs=model_utils.get_key_type_post_processor( + postprocess_inputs=model_utils.cast_dtype_post_processor( "pixel_values" ), vllm_output_post_proc=model_utils.paligemma_vllm_to_hf_output, @@ -151,7 +151,7 @@ "cherry_blossom": "Please infer the season with reason.", }), multi_image_prompt="Describe the two images shortly.", # noqa: E501 - postprocess_inputs=model_utils.get_key_type_post_processor("pixel_values"), + postprocess_inputs=model_utils.cast_dtype_post_processor("pixel_values"), stop_str=["<|im_end|>"], image_size_factors=[(0.10, 0.15)], max_tokens=64, @@ -177,7 +177,7 @@ prompt_formatter=lambda img_prompt: f"USER: {img_prompt}\nASSISTANT:", max_model_len=4096, auto_cls=AutoModelForVision2Seq, - postprocess_inputs=model_utils.get_key_type_post_processor( + postprocess_inputs=model_utils.cast_dtype_post_processor( "pixel_values" ), # For chameleon, we only compare the sequences @@ -281,7 +281,7 @@ prompt_formatter=lambda vid_prompt: f"<|im_start|>user\n{vid_prompt}<|im_end|>\n<|im_start|>assistant\n", # noqa: E501 num_video_frames=16, max_model_len=16384, - postprocess_inputs=model_utils.get_key_type_post_processor( + postprocess_inputs=model_utils.cast_dtype_post_processor( "pixel_values_videos" ), auto_cls=AutoModelForVision2Seq, @@ -306,6 +306,20 @@ vllm_output_post_proc=model_utils.llava_video_vllm_to_hf_output, image_sizes=[((1669, 2560), (2560, 1669), (183, 488), (488, 183))], ), + "mantis": VLMTestInfo( + models=["TIGER-Lab/Mantis-8B-siglip-llama3"], + test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE), + prompt_formatter=lambda img_prompt: f"<|start_header_id|>user<|end_header_id|>\n\n{img_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", # noqa: E501 + max_model_len=4096, + postprocess_inputs=model_utils.cast_dtype_post_processor( + "pixel_values" + ), + vllm_runner_kwargs={"hf_overrides": {"architectures": ["MantisForConditionalGeneration"]}}, # noqa: E501 + get_stop_token_ids=lambda tok: [128009], + auto_cls=AutoModelForVision2Seq, + vllm_output_post_proc=model_utils.mantis_vllm_to_hf_output, + patch_hf_runner=model_utils.mantis_patch_hf_runner, + ), "minicpmv_25": VLMTestInfo( models=["openbmb/MiniCPM-Llama3-V-2_5"], test_type=VLMTestType.IMAGE, @@ -342,7 +356,7 @@ # max_num_seqs=2, # task="generate", # # use eager mode for hf runner since phi3v didn't work with flash_attn - # model_kwargs={"_attn_implementation": "eager"}, + # hf_model_kwargs={"_attn_implementation": "eager"}, # use_tokenizer_eos=True, # vllm_output_post_proc=model_utils.phi3v_vllm_to_hf_output, # num_logprobs=10, @@ -373,7 +387,7 @@ prompt_formatter=lambda img_prompt: f"USER: {img_prompt}\nASSISTANT:", max_model_len=4096, auto_cls=AutoModelForVision2Seq, - postprocess_inputs=model_utils.get_key_type_post_processor( + postprocess_inputs=model_utils.cast_dtype_post_processor( "pixel_values" ), vllm_output_post_proc = lambda vllm_output, model: vllm_output[:2], @@ -438,7 +452,7 @@ test_type=VLMTestType.CUSTOM_INPUTS, max_model_len=16384, max_num_seqs=2, - postprocess_inputs=model_utils.get_key_type_post_processor( + postprocess_inputs=model_utils.cast_dtype_post_processor( "pixel_values" ), auto_cls=AutoModelForVision2Seq, diff --git a/tests/models/decoder_only/vision_language/vlm_utils/core.py b/tests/models/decoder_only/vision_language/vlm_utils/core.py index 88349ef9a3a69..54b7b0733210f 100644 --- a/tests/models/decoder_only/vision_language/vlm_utils/core.py +++ b/tests/models/decoder_only/vision_language/vlm_utils/core.py @@ -3,9 +3,11 @@ import torch from PIL.Image import Image -from transformers import AutoTokenizer, BatchEncoding +from transformers import AutoTokenizer, BatchEncoding, PreTrainedTokenizerBase from transformers.models.auto.auto_factory import _BaseAutoModelClass +from vllm.config import TaskOption + from .....conftest import HfRunner, VllmRunner from .types import RunnerOutput @@ -28,13 +30,15 @@ def run_test( use_tokenizer_eos: bool, postprocess_inputs: Callable[[BatchEncoding], BatchEncoding], comparator: Callable[..., None], - get_stop_token_ids: Optional[Callable[[AutoTokenizer], List[int]]], + get_stop_token_ids: Optional[Callable[[PreTrainedTokenizerBase], + List[int]]], stop_str: Optional[List[str]], tokenizer_mode: str, limit_mm_per_prompt: Dict[str, int], - model_kwargs: Optional[Dict[str, Any]], + vllm_runner_kwargs: Optional[Dict[str, Any]], + hf_model_kwargs: Optional[Dict[str, Any]], patch_hf_runner: Optional[Callable[[HfRunner], HfRunner]], - task: str = "auto", + task: TaskOption = "auto", runner_mm_key: str = "images", distributed_executor_backend: Optional[str] = None, tensor_parallel_size: int = 1, @@ -58,6 +62,9 @@ def run_test( if stop_str: vllm_kwargs["stop"] = stop_str + if vllm_runner_kwargs is None: + vllm_runner_kwargs = {} + with vllm_runner(model, tokenizer_mode=tokenizer_mode, max_model_len=max_model_len, @@ -67,7 +74,8 @@ def run_test( tensor_parallel_size=tensor_parallel_size, distributed_executor_backend=distributed_executor_backend, enforce_eager=enforce_eager, - task=task) as vllm_model: + task=task, + **vllm_runner_kwargs) as vllm_model: for prompts, media in vllm_inputs: vllm_kwargs[runner_mm_key] = media vllm_output = vllm_model.generate_greedy_logprobs( @@ -78,7 +86,7 @@ def run_test( dtype=dtype, auto_cls=auto_cls, postprocess_inputs=postprocess_inputs, - model_kwargs=model_kwargs) + model_kwargs=hf_model_kwargs) # Some models need to patch things like the model processor, e.g., internvl if patch_hf_runner is not None: diff --git a/tests/models/decoder_only/vision_language/vlm_utils/model_utils.py b/tests/models/decoder_only/vision_language/vlm_utils/model_utils.py index 15f15dd7d8030..3eca8fb9dcb1a 100644 --- a/tests/models/decoder_only/vision_language/vlm_utils/model_utils.py +++ b/tests/models/decoder_only/vision_language/vlm_utils/model_utils.py @@ -126,6 +126,16 @@ def llava_onevision_vllm_to_hf_output(vllm_output: RunnerOutput, return hf_output_ids, hf_output_str, out_logprobs +def mantis_vllm_to_hf_output(vllm_output: RunnerOutput, + model: str) -> RunnerOutput: + """Sanitize vllm output [mantis] to compare with hf output.""" + output_ids, output_str, out_logprobs = vllm_output + + hf_output_str = output_str + "<|eot_id|>" + + return output_ids, hf_output_str, out_logprobs + + def phi3v_vllm_to_hf_output(vllm_output: RunnerOutput, model: str) -> RunnerOutput: """Sanitize vllm output [phi3v] to be comparable with hf output.""" @@ -184,7 +194,7 @@ def get_llava_embeddings(image_assets: _ImageAssets): ####### postprocessors to run on HF BatchEncoding -def get_key_type_post_processor( +def cast_dtype_post_processor( hf_inp_key: str) -> Callable[[BatchEncoding, str], BatchEncoding]: """Gets a handle to a post processor which converts a given key into a target data type.""" @@ -418,3 +428,26 @@ def _internvl_generate( ) return outputs + + +def mantis_patch_hf_runner(hf_model: HfRunner) -> HfRunner: + from mantis.models.mllava import MLlavaProcessor + + hf_model.processor = MLlavaProcessor.from_pretrained(hf_model.model_name) + + orig_generate = hf_model.model.generate + tokenizer = hf_model.processor.tokenizer + + def _generate(self, *args, **kwargs): + return orig_generate( + *args, + **kwargs, + eos_token_id=[ + tokenizer.eos_token_id, + tokenizer.convert_tokens_to_ids("<|eot_id|>"), + ], + ) + + hf_model.model.generate = types.MethodType(_generate, hf_model.model) + + return hf_model diff --git a/tests/models/decoder_only/vision_language/vlm_utils/types.py b/tests/models/decoder_only/vision_language/vlm_utils/types.py index d410fa8c653ce..e2e0c6390fcb9 100644 --- a/tests/models/decoder_only/vision_language/vlm_utils/types.py +++ b/tests/models/decoder_only/vision_language/vlm_utils/types.py @@ -7,9 +7,11 @@ import torch from PIL.Image import Image from pytest import MarkDecorator -from transformers import AutoModelForCausalLM, AutoTokenizer, BatchEncoding +from transformers import (AutoModelForCausalLM, BatchEncoding, + PreTrainedTokenizerBase) from transformers.models.auto.auto_factory import _BaseAutoModelClass +from vllm.config import TaskOption from vllm.sequence import SampleLogprobs from vllm.utils import identity @@ -66,7 +68,7 @@ class ImageSizeWrapper(NamedTuple): class VLMTestInfo(NamedTuple): """Holds the configuration for 1+ tests for one model architecture.""" - models: Union[List[str]] + models: List[str] test_type: Union[VLMTestType, Iterable[VLMTestType]] # Should be None only if this is a CUSTOM_INPUTS test @@ -92,18 +94,20 @@ class VLMTestInfo(NamedTuple): enforce_eager: bool = True max_model_len: int = 1024 max_num_seqs: int = 256 - task: str = "auto" + task: TaskOption = "auto" tensor_parallel_size: int = 1 + vllm_runner_kwargs: Optional[Dict[str, Any]] = None # Optional callable which gets a list of token IDs from the model tokenizer - get_stop_token_ids: Optional[Callable[[AutoTokenizer], List[int]]] = None + get_stop_token_ids: Optional[Callable[[PreTrainedTokenizerBase], + List[int]]] = None # Optional list of strings to stop generation, useful when stop tokens are # not special tokens in the tokenizer stop_str: Optional[List[str]] = None # Exposed options for HF runner - model_kwargs: Optional[Dict[str, Any]] = None - # Indicates we should explicitly pass the EOS from the tokeniezr + hf_model_kwargs: Optional[Dict[str, Any]] = None + # Indicates we should explicitly pass the EOS from the tokenizer use_tokenizer_eos: bool = False auto_cls: Type[_BaseAutoModelClass] = AutoModelForCausalLM # Callable to pass to the HF runner to run on inputs; for now, we also pass @@ -164,6 +168,7 @@ def get_non_parametrized_runner_kwargs(self): "max_num_seqs": self.max_num_seqs, "task": self.task, "tensor_parallel_size": self.tensor_parallel_size, + "vllm_runner_kwargs": self.vllm_runner_kwargs, "hf_output_post_proc": self.hf_output_post_proc, "vllm_output_post_proc": self.vllm_output_post_proc, "auto_cls": self.auto_cls, @@ -171,8 +176,8 @@ def get_non_parametrized_runner_kwargs(self): "postprocess_inputs": self.postprocess_inputs, "comparator": self.comparator, "get_stop_token_ids": self.get_stop_token_ids, + "hf_model_kwargs": self.hf_model_kwargs, "stop_str": self.stop_str, - "model_kwargs": self.model_kwargs, "patch_hf_runner": self.patch_hf_runner, "tokenizer_mode": self.tokenizer_mode } diff --git a/tests/models/registry.py b/tests/models/registry.py index 461f453d8b1c3..a89518820045f 100644 --- a/tests/models/registry.py +++ b/tests/models/registry.py @@ -176,6 +176,7 @@ class _HfExamplesInfo: "LlavaNextForConditionalGeneration": _HfExamplesInfo("llava-hf/llava-v1.6-mistral-7b-hf"), # noqa: E501 "LlavaNextVideoForConditionalGeneration": _HfExamplesInfo("llava-hf/LLaVA-NeXT-Video-7B-hf"), # noqa: E501 "LlavaOnevisionForConditionalGeneration": _HfExamplesInfo("llava-hf/llava-onevision-qwen2-0.5b-ov-hf"), # noqa: E501 + "MantisForConditionalGeneration": _HfExamplesInfo("TIGER-Lab/Mantis-8B-siglip-llama3"), # noqa: E501 "MiniCPMV": _HfExamplesInfo("openbmb/MiniCPM-Llama3-V-2_5", trust_remote_code=True), "MolmoForCausalLM": _HfExamplesInfo("allenai/Molmo-7B-D-0924", diff --git a/tests/plugins/vllm_add_dummy_model/vllm_add_dummy_model/my_llava.py b/tests/plugins/vllm_add_dummy_model/vllm_add_dummy_model/my_llava.py index f2fc0755cae01..2f4194a63fc25 100644 --- a/tests/plugins/vllm_add_dummy_model/vllm_add_dummy_model/my_llava.py +++ b/tests/plugins/vllm_add_dummy_model/vllm_add_dummy_model/my_llava.py @@ -3,16 +3,14 @@ import torch from vllm.model_executor.models.llava import (LlavaForConditionalGeneration, - create_metadata_for_llava, - dummy_mm_kwargs_for_llava, + LlavaProcessor, get_max_llava_image_tokens) from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY @MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_llava_image_tokens) -@MULTIMODAL_REGISTRY.register_processor_by_metadata(create_metadata_for_llava, - dummy_mm_kwargs_for_llava) +@MULTIMODAL_REGISTRY.register_processor(LlavaProcessor) class MyLlava(LlavaForConditionalGeneration): def compute_logits( diff --git a/vllm/model_executor/models/llava.py b/vllm/model_executor/models/llava.py index 953b89f1842af..65c6bd07bfff0 100644 --- a/vllm/model_executor/models/llava.py +++ b/vllm/model_executor/models/llava.py @@ -22,10 +22,11 @@ from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.inputs import MultiModalKwargs, NestedTensors -from vllm.multimodal.processing import (InputProcessingContext, +from vllm.multimodal.processing import (BaseMultiModalProcessor, + InputProcessingContext, ModalityProcessingMetadata, MultiModalProcessingMetadata, - MultiModalProcessor, PromptReplacement) + PromptReplacement) from vllm.sequence import IntermediateTensors from .clip import (CLIPVisionModel, dummy_image_for_clip, @@ -163,7 +164,13 @@ def get_repl_count( } -class LlavaProcessor(MultiModalProcessor): +class LlavaProcessor(BaseMultiModalProcessor): + + def __init__(self, ctx: InputProcessingContext) -> None: + super().__init__( + ctx=ctx, + metadata=create_metadata_for_llava(ctx), + ) def _patch_pixtral_processor(self, hf_processor: PixtralProcessor): if getattr(hf_processor, "__is_patched__", False): @@ -193,7 +200,30 @@ def _get_dummy_mm_kwargs( self, mm_counts: Mapping[str, int], ) -> MultiModalKwargs: - return dummy_mm_kwargs_for_llava(self.ctx, mm_counts) + hf_config = self.ctx.get_hf_config(LlavaConfig) + vision_config = hf_config.vision_config + num_images = mm_counts["image"] + + if isinstance(vision_config, CLIPVisionConfig): + data = dummy_image_for_clip(vision_config, num_images) + elif isinstance(vision_config, SiglipVisionConfig): + data = dummy_image_for_siglip(vision_config, num_images) + elif isinstance(vision_config, PixtralVisionConfig): + data = dummy_image_for_pixtral_hf(vision_config, num_images) + else: + msg = f"Unsupported vision config: {type(vision_config)}" + raise NotImplementedError(msg) + + hf_processor = self._get_hf_processor() + image_processor = hf_processor.image_processor # type: ignore + hf_inputs = image_processor.preprocess(data['image'], + return_tensors="pt") + is_pixtral = isinstance(hf_processor, PixtralProcessor) + + return MultiModalKwargs( + **hf_inputs, + is_pixtral=torch.tensor(is_pixtral), + ) class LlavaLikeConfig(Protocol): @@ -277,10 +307,7 @@ def init_vision_tower_for_llava( @MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_llava_image_tokens) -@MULTIMODAL_REGISTRY.register_processor(lambda ctx: LlavaProcessor( - ctx=ctx, - metadata=create_metadata_for_llava(ctx), -)) +@MULTIMODAL_REGISTRY.register_processor(LlavaProcessor) class LlavaForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP): # BitandBytes specific attributes bitsandbytes_stacked_params_mapping = { @@ -559,3 +586,28 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]: loader = AutoWeightsLoader(self) return loader.load_weights(weights) + + +class MantisProcessor(LlavaProcessor): + + def _get_hf_processor(self) -> ProcessorMixin: + try: + from mantis.models.mllava import MLlavaProcessor + except ModuleNotFoundError as exc: + raise ModuleNotFoundError( + "You need to `pip install " + "git+https://github.com/TIGER-AI-Lab/Mantis.git` " + "to use this model") from exc + + processor = MLlavaProcessor.from_pretrained( + self.ctx.model_config.tokenizer) + assert isinstance(processor, ProcessorMixin) + return processor + + +# To use this model, please use +# `--hf_overrides '{"architectures": ["MantisForConditionalGeneration"]}'` +@MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_llava_image_tokens) +@MULTIMODAL_REGISTRY.register_processor(MantisProcessor) +class MantisForConditionalGeneration(LlavaForConditionalGeneration): + pass diff --git a/vllm/model_executor/models/registry.py b/vllm/model_executor/models/registry.py index c66fbce018a62..e69596aa915b5 100644 --- a/vllm/model_executor/models/registry.py +++ b/vllm/model_executor/models/registry.py @@ -152,6 +152,7 @@ "LlavaNextForConditionalGeneration": ("llava_next", "LlavaNextForConditionalGeneration"), # noqa: E501 "LlavaNextVideoForConditionalGeneration": ("llava_next_video", "LlavaNextVideoForConditionalGeneration"), # noqa: E501 "LlavaOnevisionForConditionalGeneration": ("llava_onevision", "LlavaOnevisionForConditionalGeneration"), # noqa: E501 + "MantisForConditionalGeneration": ("llava", "MantisForConditionalGeneration"), # noqa: E501 "MiniCPMV": ("minicpmv", "MiniCPMV"), "MolmoForCausalLM": ("molmo", "MolmoForCausalLM"), "NVLM_D": ("nvlm_d", "NVLM_D_Model"), diff --git a/vllm/multimodal/processing.py b/vllm/multimodal/processing.py index 4a1737991534f..c3a95d60e6fe6 100644 --- a/vllm/multimodal/processing.py +++ b/vllm/multimodal/processing.py @@ -529,9 +529,9 @@ def iter_placeholders( yield placeholder -class MultiModalProcessor(ABC): +class BaseMultiModalProcessor(ABC): """ - Helper class to process multi-modal inputs to be used in vLLM. + Abstract base class to process multi-modal inputs to be used in vLLM. """ def __init__( diff --git a/vllm/multimodal/registry.py b/vllm/multimodal/registry.py index f51da8972d15b..6ab6c0fe2f12e 100644 --- a/vllm/multimodal/registry.py +++ b/vllm/multimodal/registry.py @@ -15,7 +15,7 @@ from .base import MultiModalInputMapper, MultiModalPlugin, MultiModalTokensCalc from .image import ImagePlugin from .inputs import MultiModalDataDict, MultiModalKwargs, NestedTensors -from .processing import MultiModalProcessingMetadata, MultiModalProcessor +from .processing import BaseMultiModalProcessor from .video import VideoPlugin if TYPE_CHECKING: @@ -26,7 +26,7 @@ N = TypeVar("N", bound=Type[nn.Module]) MultiModalProcessorFactory: TypeAlias = Callable[[InputProcessingContext], - MultiModalProcessor] + BaseMultiModalProcessor] """ Constructs a :class:`MultiModalProcessor` instance from the context. @@ -311,41 +311,6 @@ def wrapper(model_cls: N) -> N: return wrapper - def register_processor_by_metadata( - self, - metadata_factory: Callable[[InputProcessingContext], - MultiModalProcessingMetadata], - get_dummy_mm_kwargs: Callable[ - [InputProcessingContext, Mapping[str, int]], MultiModalKwargs], - ): - """ - Convenience method to register a multi-modal processor to a model class - according to a function that constructs its metadata. - - When the model receives multi-modal data, the provided function is - invoked to transform the data into a dictionary of model inputs. - - See also: - - :ref:`input_processing_pipeline` - - :ref:`enabling_multimodal_inputs` - """ - - class ConcreteMultiModalProcessor(MultiModalProcessor): - - def _get_dummy_mm_kwargs( - self, - mm_counts: Mapping[str, int], - ) -> MultiModalKwargs: - return get_dummy_mm_kwargs(self.ctx, mm_counts) - - def factory(ctx: InputProcessingContext): - return ConcreteMultiModalProcessor( - ctx=ctx, - metadata=metadata_factory(ctx), - ) - - return self.register_processor(factory) - def has_processor(self, model_config: "ModelConfig") -> bool: """ Test whether a multi-modal processor is defined for a specific model. @@ -360,7 +325,7 @@ def create_processor( self, model_config: "ModelConfig", tokenizer: AnyTokenizer, - ) -> MultiModalProcessor: + ) -> BaseMultiModalProcessor: """ Create a multi-modal processor for a specific model and tokenizer. """ From c889d5888bf6bbfbe3f4ea55bf27ce84a239c3d0 Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Sun, 8 Dec 2024 01:20:49 +0800 Subject: [PATCH 058/733] [Doc] Explicitly state that PP isn't compatible with speculative decoding yet (#10975) Signed-off-by: DarkLight1337 --- docs/source/usage/spec_decode.rst | 3 +++ tests/distributed/test_pipeline_parallel.py | 16 +++++++++++++--- vllm/model_executor/models/exaone.py | 3 ++- vllm/model_executor/models/granite.py | 5 +++-- vllm/model_executor/models/llama.py | 3 ++- vllm/model_executor/models/nemotron.py | 4 +++- vllm/model_executor/models/solar.py | 3 ++- vllm/spec_decode/spec_decode_worker.py | 4 ++++ 8 files changed, 32 insertions(+), 9 deletions(-) diff --git a/docs/source/usage/spec_decode.rst b/docs/source/usage/spec_decode.rst index 67e8ede7654b7..f1f1917f974bb 100644 --- a/docs/source/usage/spec_decode.rst +++ b/docs/source/usage/spec_decode.rst @@ -8,6 +8,9 @@ Speculative decoding not usually yield inter-token latency reductions for all prompt datasets or sampling parameters. The work to optimize it is ongoing and can be followed in `this issue. `_ +.. warning:: + Currently, speculative decoding in vLLM is not compatible with pipeline parallelism. + This document shows how to use `Speculative Decoding `_ with vLLM. Speculative decoding is a technique which improves inter-token latency in memory-bound LLM inference. diff --git a/tests/distributed/test_pipeline_parallel.py b/tests/distributed/test_pipeline_parallel.py index 386877e0e0a2c..b818ca921fcb0 100644 --- a/tests/distributed/test_pipeline_parallel.py +++ b/tests/distributed/test_pipeline_parallel.py @@ -247,9 +247,19 @@ def _compare_tp( *, method: Literal["generate", "encode"], ): - tp_size, pp_size, eager_mode, chunked_prefill = parallel_setup - multi_node_only, trust_remote_code, tokenizer_mode, \ - load_format, hf_overrides = test_options + ( + tp_size, + pp_size, + eager_mode, + chunked_prefill, + ) = parallel_setup + ( + multi_node_only, + trust_remote_code, + tokenizer_mode, + load_format, + hf_overrides, + ) = test_options if num_gpus_available < tp_size * pp_size: pytest.skip(f"Need at least {tp_size} x {pp_size} GPUs") diff --git a/vllm/model_executor/models/exaone.py b/vllm/model_executor/models/exaone.py index 5ca26d53a17e7..0398f0943a70a 100644 --- a/vllm/model_executor/models/exaone.py +++ b/vllm/model_executor/models/exaone.py @@ -473,10 +473,11 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, config.vocab_size, logit_scale) - self.sampler = get_sampler() else: self.lm_head = PPMissingLayer() + self.sampler = get_sampler() + self.make_empty_intermediate_tensors = ( self.transformer.make_empty_intermediate_tensors) diff --git a/vllm/model_executor/models/granite.py b/vllm/model_executor/models/granite.py index bd2394e71c973..f9e0443b9a508 100644 --- a/vllm/model_executor/models/granite.py +++ b/vllm/model_executor/models/granite.py @@ -400,16 +400,17 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): self.lm_head.weight = self.model.embed_tokens.weight logit_scale = getattr(config, "logit_scale", 1.0) - if hasattr(config, "logits_scaling"): logit_scale /= config.logits_scaling + self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, config.vocab_size, scale=logit_scale) - self.sampler = get_sampler() else: self.lm_head = PPMissingLayer() + self.sampler = get_sampler() + def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.get_input_embeddings(input_ids) diff --git a/vllm/model_executor/models/llama.py b/vllm/model_executor/models/llama.py index 31dfb235ae877..733b1bc7d80ac 100644 --- a/vllm/model_executor/models/llama.py +++ b/vllm/model_executor/models/llama.py @@ -540,10 +540,11 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, config.vocab_size, logit_scale) - self.sampler = get_sampler() else: self.lm_head = PPMissingLayer() + self.sampler = get_sampler() + self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors) diff --git a/vllm/model_executor/models/nemotron.py b/vllm/model_executor/models/nemotron.py index c7b4c22b6896b..34cb9981c167b 100644 --- a/vllm/model_executor/models/nemotron.py +++ b/vllm/model_executor/models/nemotron.py @@ -435,9 +435,11 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, config.vocab_size, logit_scale) - self.sampler = get_sampler() else: self.lm_head = PPMissingLayer() + + self.sampler = get_sampler() + self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors) diff --git a/vllm/model_executor/models/solar.py b/vllm/model_executor/models/solar.py index f58710d215056..caae0b65d7d10 100644 --- a/vllm/model_executor/models/solar.py +++ b/vllm/model_executor/models/solar.py @@ -443,10 +443,11 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, config.vocab_size, logit_scale) - self.sampler = get_sampler() else: self.lm_head = PPMissingLayer() + self.sampler = get_sampler() + self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors) diff --git a/vllm/spec_decode/spec_decode_worker.py b/vllm/spec_decode/spec_decode_worker.py index ced7f53827665..2689802161987 100644 --- a/vllm/spec_decode/spec_decode_worker.py +++ b/vllm/spec_decode/spec_decode_worker.py @@ -54,6 +54,10 @@ def create_spec_worker(*args, **kwargs) -> "SpecDecodeWorker": speculative_config: SpeculativeConfig = vllm_config.speculative_config assert speculative_config is not None + if vllm_config.parallel_config.pipeline_parallel_size > 1: + raise NotImplementedError("Speculative decoding is currently " + "incompatible with pipeline parallelism") + draft_worker_kwargs = kwargs.copy() kwargs["model_runner_cls"] = TargetModelRunner From 78029b34ed1be46baf06f92c9e971ea1961d0867 Mon Sep 17 00:00:00 2001 From: zhou fan <1247714429@qq.com> Date: Sun, 8 Dec 2024 01:21:18 +0800 Subject: [PATCH 059/733] [BugFix][Kernel]: fix illegal memory access in causal_conv1d when conv_states is None (#10928) Signed-off-by: xffxff <1247714429@qq.com> --- csrc/mamba/causal_conv1d/causal_conv1d.cu | 2 +- tests/kernels/test_causal_conv1d.py | 39 +++++++++++++---------- 2 files changed, 23 insertions(+), 18 deletions(-) diff --git a/csrc/mamba/causal_conv1d/causal_conv1d.cu b/csrc/mamba/causal_conv1d/causal_conv1d.cu index 498d069c05f0d..dd1e6de2e0180 100644 --- a/csrc/mamba/causal_conv1d/causal_conv1d.cu +++ b/csrc/mamba/causal_conv1d/causal_conv1d.cu @@ -424,7 +424,7 @@ void causal_conv1d_fwd_kernel(ConvParamsBase params) { // and the one before it (chunk = n_chunks - 1 and chunk = n_chunks - 2), // (which occurs when `final_state_position` is a non-positivie index) // we load the correct data from smem_exchange from both chunks, the last chunk iteration and the one before it - if (final_state_position < 0 && seqlen > kWidth){ + if (conv_states != nullptr && final_state_position < 0 && seqlen > kWidth){ input_t vals_load[kNElts] = {0}; if ((chunk == n_chunks - 2) && (tidx == kNThreads - 1)){ // chunk = n_chunks - 2, a segment of the final state sits in the last index diff --git a/tests/kernels/test_causal_conv1d.py b/tests/kernels/test_causal_conv1d.py index f9b11018288be..51be2425d7dd7 100644 --- a/tests/kernels/test_causal_conv1d.py +++ b/tests/kernels/test_causal_conv1d.py @@ -149,13 +149,14 @@ def causal_conv1d_opcheck_fn(x: torch.Tensor, @pytest.mark.parametrize("itype", [torch.bfloat16, torch.float]) @pytest.mark.parametrize("silu_activation", [True]) @pytest.mark.parametrize("has_bias", [True]) +@pytest.mark.parametrize("has_initial_state", [True, False]) @pytest.mark.parametrize("width", [4]) @pytest.mark.parametrize( 'seqlen', [1, 8, 16, 32, 64, 128, 256, 512, 784, 1024, 1025, 2048, 4096]) @pytest.mark.parametrize('dim', [64]) @pytest.mark.parametrize('batch', [1]) def test_causal_conv1d(batch, dim, seqlen, width, has_bias, silu_activation, - itype): + has_initial_state, itype): device = "cuda" rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3) if itype == torch.bfloat16: @@ -167,11 +168,18 @@ def test_causal_conv1d(batch, dim, seqlen, width, has_bias, silu_activation, weight = torch.randn(dim, width, device=device, dtype=itype) bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None - initial_states = torch.randn(batch, - dim, - width - 1, - device=device, - dtype=itype) + if has_initial_state: + initial_states = torch.randn(batch, + dim, + width - 1, + device=device, + dtype=itype) + has_initial_state_tensor = torch.ones(batch, + dtype=torch.bool, + device=x.device) + else: + initial_states = None + has_initial_state_tensor = None x_ref = x.clone() weight_ref = weight.clone() bias_ref = bias.clone() if bias is not None else None @@ -183,9 +191,7 @@ def test_causal_conv1d(batch, dim, seqlen, width, has_bias, silu_activation, bias, activation=activation, conv_states=initial_states, - has_initial_state=torch.ones(batch, - dtype=torch.bool, - device=x.device)) + has_initial_state=has_initial_state_tensor) out_ref, final_states_ref = causal_conv1d_ref( x_ref, weight_ref, @@ -193,11 +199,12 @@ def test_causal_conv1d(batch, dim, seqlen, width, has_bias, silu_activation, initial_states=initial_states_ref, return_final_states=True, activation=activation) - assert initial_states is not None and final_states_ref is not None - assert torch.allclose(initial_states, - final_states_ref, - rtol=rtol, - atol=atol) + if has_initial_state: + assert initial_states is not None and final_states_ref is not None + assert torch.allclose(initial_states, + final_states_ref, + rtol=rtol, + atol=atol) assert torch.allclose(out, out_ref, rtol=rtol, atol=atol) causal_conv1d_opcheck_fn(x, @@ -205,9 +212,7 @@ def test_causal_conv1d(batch, dim, seqlen, width, has_bias, silu_activation, bias, activation=activation, conv_states=initial_states, - has_initial_state=torch.ones(batch, - dtype=torch.bool, - device=x.device)) + has_initial_state=has_initial_state_tensor) @pytest.mark.parametrize("itype", [torch.bfloat16]) From 1b62745b1d00153c5e99879edaf0c2d7ceb4e2c6 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Sat, 7 Dec 2024 09:33:45 -0800 Subject: [PATCH 060/733] [core][executor] simplify instance id (#10976) Signed-off-by: youkaichao --- vllm/config.py | 7 ++++++- vllm/envs.py | 6 ------ vllm/executor/cpu_executor.py | 6 +----- vllm/executor/multiproc_gpu_executor.py | 5 +---- vllm/executor/ray_gpu_executor.py | 7 +------ vllm/executor/ray_hpu_executor.py | 7 +------ vllm/executor/ray_tpu_executor.py | 6 +----- vllm/executor/ray_xpu_executor.py | 6 +----- vllm/utils.py | 25 +++++++++---------------- vllm/worker/worker_base.py | 2 +- 10 files changed, 22 insertions(+), 55 deletions(-) diff --git a/vllm/config.py b/vllm/config.py index db7046ab2c22d..d1c4f995ad015 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -27,7 +27,8 @@ get_hf_text_config, get_pooling_config, get_sentence_transformer_tokenizer_config, is_encoder_decoder, uses_mrope) from vllm.utils import (GiB_bytes, cuda_device_count_stateless, get_cpu_memory, - print_warning_once, resolve_obj_by_qualname) + print_warning_once, random_uuid, + resolve_obj_by_qualname) if TYPE_CHECKING: from ray.util.placement_group import PlacementGroup @@ -2408,6 +2409,7 @@ class VllmConfig: init=True) # type: ignore kv_transfer_config: KVTransferConfig = field(default=None, init=True) # type: ignore + instance_id: str = "" @staticmethod def get_graph_batch_size(batch_size: int) -> int: @@ -2573,6 +2575,9 @@ def __post_init__(self): current_platform.check_and_update_config(self) + if not self.instance_id: + self.instance_id = random_uuid()[:5] + def __str__(self): return ("model=%r, speculative_config=%r, tokenizer=%r, " "skip_tokenizer_init=%s, tokenizer_mode=%s, revision=%s, " diff --git a/vllm/envs.py b/vllm/envs.py index 28797ac1e4af2..ab12a7b48dc53 100644 --- a/vllm/envs.py +++ b/vllm/envs.py @@ -8,7 +8,6 @@ VLLM_RPC_BASE_PATH: str = tempfile.gettempdir() VLLM_USE_MODELSCOPE: bool = False VLLM_RINGBUFFER_WARNING_INTERVAL: int = 60 - VLLM_INSTANCE_ID: Optional[str] = None VLLM_NCCL_SO_PATH: Optional[str] = None LD_LIBRARY_PATH: Optional[str] = None VLLM_USE_TRITON_FLASH_ATTN: bool = False @@ -175,11 +174,6 @@ def get_default_config_root(): "VLLM_USE_MODELSCOPE": lambda: os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true", - # Instance id represents an instance of the VLLM. All processes in the same - # instance should have the same instance id. - "VLLM_INSTANCE_ID": - lambda: os.environ.get("VLLM_INSTANCE_ID", None), - # Interval in seconds to log a warning message when the ring buffer is full "VLLM_RINGBUFFER_WARNING_INTERVAL": lambda: int(os.environ.get("VLLM_RINGBUFFER_WARNING_INTERVAL", "60")), diff --git a/vllm/executor/cpu_executor.py b/vllm/executor/cpu_executor.py index 6b4cb5a9a1d61..2816b5c5c1f88 100644 --- a/vllm/executor/cpu_executor.py +++ b/vllm/executor/cpu_executor.py @@ -10,8 +10,7 @@ from vllm.model_executor.layers.sampler import SamplerOutput from vllm.prompt_adapter.request import PromptAdapterRequest from vllm.sequence import ExecuteModelRequest -from vllm.utils import (get_distributed_init_method, get_open_port, - get_vllm_instance_id, make_async) +from vllm.utils import get_distributed_init_method, get_open_port, make_async from vllm.worker.worker_base import WorkerWrapperBase logger = init_logger(__name__) @@ -31,9 +30,6 @@ def _init_executor(self) -> None: # Environment variables for CPU executor # - # Ensure that VLLM_INSTANCE_ID is set, to be inherited by workers - os.environ["VLLM_INSTANCE_ID"] = get_vllm_instance_id() - # Disable torch async compiling which won't work with daemonic processes os.environ["TORCHINDUCTOR_COMPILE_THREADS"] = "1" diff --git a/vllm/executor/multiproc_gpu_executor.py b/vllm/executor/multiproc_gpu_executor.py index a6c05a71d2b6f..c450209f0eb91 100644 --- a/vllm/executor/multiproc_gpu_executor.py +++ b/vllm/executor/multiproc_gpu_executor.py @@ -16,7 +16,7 @@ from vllm.triton_utils.importing import HAS_TRITON from vllm.utils import (_run_task_with_lock, cuda_device_count_stateless, cuda_is_initialized, get_distributed_init_method, - get_open_port, get_vllm_instance_id, make_async, + get_open_port, make_async, update_environment_variables) if HAS_TRITON: @@ -37,9 +37,6 @@ def _init_executor(self) -> None: world_size = self.parallel_config.world_size tensor_parallel_size = self.parallel_config.tensor_parallel_size - # Ensure that VLLM_INSTANCE_ID is set, to be inherited by workers - os.environ["VLLM_INSTANCE_ID"] = get_vllm_instance_id() - # Disable torch async compiling which won't work with daemonic processes os.environ["TORCHINDUCTOR_COMPILE_THREADS"] = "1" diff --git a/vllm/executor/ray_gpu_executor.py b/vllm/executor/ray_gpu_executor.py index 6542b18ae70b1..6554cda6b637b 100644 --- a/vllm/executor/ray_gpu_executor.py +++ b/vllm/executor/ray_gpu_executor.py @@ -15,8 +15,7 @@ from vllm.model_executor.layers.sampler import SamplerOutput from vllm.sequence import ExecuteModelRequest from vllm.utils import (_run_task_with_lock, get_distributed_init_method, - get_ip, get_open_port, get_vllm_instance_id, - make_async) + get_ip, get_open_port, make_async) if ray is not None: from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy @@ -220,14 +219,10 @@ def sort_by_driver_then_worker_ip(worker): " environment variable, make sure it is unique for" " each node.") - VLLM_INSTANCE_ID = get_vllm_instance_id() - # Set environment variables for the driver and workers. all_args_to_update_environment_variables = [({ "CUDA_VISIBLE_DEVICES": ",".join(map(str, node_gpus[node_id])), - "VLLM_INSTANCE_ID": - VLLM_INSTANCE_ID, "VLLM_TRACE_FUNCTION": str(envs.VLLM_TRACE_FUNCTION), **({ diff --git a/vllm/executor/ray_hpu_executor.py b/vllm/executor/ray_hpu_executor.py index a74328e5aa272..91c84d9214a60 100644 --- a/vllm/executor/ray_hpu_executor.py +++ b/vllm/executor/ray_hpu_executor.py @@ -15,8 +15,7 @@ from vllm.model_executor.layers.sampler import SamplerOutput from vllm.sequence import ExecuteModelRequest from vllm.utils import (_run_task_with_lock, get_distributed_init_method, - get_ip, get_open_port, get_vllm_instance_id, - make_async) + get_ip, get_open_port, make_async) if ray is not None: from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy @@ -196,12 +195,8 @@ def sort_by_driver_then_worker_ip(worker): "environment variable, make sure it is unique for" " each node.") - VLLM_INSTANCE_ID = get_vllm_instance_id() - # Set environment variables for the driver and workers. all_args_to_update_environment_variables = [({ - "VLLM_INSTANCE_ID": - VLLM_INSTANCE_ID, "VLLM_TRACE_FUNCTION": str(envs.VLLM_TRACE_FUNCTION), }, ) for (node_id, _) in worker_node_and_gpu_ids] diff --git a/vllm/executor/ray_tpu_executor.py b/vllm/executor/ray_tpu_executor.py index c227b5e283c68..3ee59397bf4c9 100644 --- a/vllm/executor/ray_tpu_executor.py +++ b/vllm/executor/ray_tpu_executor.py @@ -13,7 +13,7 @@ from vllm.model_executor.layers.sampler import SamplerOutput from vllm.sequence import ExecuteModelRequest from vllm.utils import (get_distributed_init_method, get_ip, get_open_port, - get_vllm_instance_id, make_async) + make_async) if ray is not None: from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy @@ -144,12 +144,8 @@ def sort_by_driver_then_worker_ip(worker): for i, (node_id, _) in enumerate(worker_node_and_gpu_ids): node_workers[node_id].append(i) - VLLM_INSTANCE_ID = get_vllm_instance_id() - # Set environment variables for the driver and workers. all_args_to_update_environment_variables = [({ - "VLLM_INSTANCE_ID": - VLLM_INSTANCE_ID, "VLLM_TRACE_FUNCTION": str(envs.VLLM_TRACE_FUNCTION), }, ) for _ in worker_node_and_gpu_ids] diff --git a/vllm/executor/ray_xpu_executor.py b/vllm/executor/ray_xpu_executor.py index 2b1cdc09b0a9f..61f5d6a65e999 100644 --- a/vllm/executor/ray_xpu_executor.py +++ b/vllm/executor/ray_xpu_executor.py @@ -5,7 +5,7 @@ from vllm.executor.ray_gpu_executor import RayGPUExecutor, RayGPUExecutorAsync from vllm.executor.xpu_executor import XPUExecutor from vllm.logger import init_logger -from vllm.utils import get_vllm_instance_id, make_async +from vllm.utils import make_async logger = init_logger(__name__) @@ -17,12 +17,8 @@ def _get_env_vars_to_be_updated(self): worker_node_and_gpu_ids = self._run_workers("get_node_and_gpu_ids", use_dummy_driver=True) - VLLM_INSTANCE_ID = get_vllm_instance_id() - # Set environment variables for the driver and workers. all_args_to_update_environment_variables = [({ - "VLLM_INSTANCE_ID": - VLLM_INSTANCE_ID, "VLLM_TRACE_FUNCTION": str(envs.VLLM_TRACE_FUNCTION), }, ) for (_, _) in worker_node_and_gpu_ids] diff --git a/vllm/utils.py b/vllm/utils.py index 6cee4847e57b4..1f19d9eacd16d 100644 --- a/vllm/utils.py +++ b/vllm/utils.py @@ -24,9 +24,9 @@ from collections.abc import Iterable, Mapping from functools import lru_cache, partial, wraps from platform import uname -from typing import (Any, AsyncGenerator, Awaitable, Callable, Dict, Generic, - Hashable, List, Literal, Optional, OrderedDict, Set, Tuple, - Type, TypeVar, Union, overload) +from typing import (TYPE_CHECKING, Any, AsyncGenerator, Awaitable, Callable, + Dict, Generic, Hashable, List, Literal, Optional, + OrderedDict, Set, Tuple, Type, TypeVar, Union, overload) from uuid import uuid4 import numpy as np @@ -43,6 +43,9 @@ from vllm.logger import enable_trace_function_call, init_logger from vllm.platforms import current_platform +if TYPE_CHECKING: + from vllm.config import VllmConfig + logger = init_logger(__name__) # Exception strings for non-implemented encoder/decoder scenarios @@ -335,17 +338,6 @@ def random_uuid() -> str: return str(uuid.uuid4().hex) -@lru_cache(maxsize=None) -def get_vllm_instance_id() -> str: - """ - If the environment variable VLLM_INSTANCE_ID is set, return it. - Otherwise, return a random UUID. - Instance id represents an instance of the VLLM. All processes in the same - instance should have the same instance id. - """ - return envs.VLLM_INSTANCE_ID or f"vllm-instance-{random_uuid()}" - - @lru_cache(maxsize=None) def in_wsl() -> bool: # Reference: https://github.com/microsoft/WSL/issues/4071 @@ -997,7 +989,7 @@ def find_nccl_library() -> str: return so_file -def enable_trace_function_call_for_thread() -> None: +def enable_trace_function_call_for_thread(vllm_config: "VllmConfig") -> None: """Set up function tracing for the current thread, if enabled via the VLLM_TRACE_FUNCTION environment variable """ @@ -1009,7 +1001,8 @@ def enable_trace_function_call_for_thread() -> None: filename = (f"VLLM_TRACE_FUNCTION_for_process_{os.getpid()}" f"_thread_{threading.get_ident()}_" f"at_{datetime.datetime.now()}.log").replace(" ", "_") - log_path = os.path.join(tmp_dir, "vllm", get_vllm_instance_id(), + log_path = os.path.join(tmp_dir, "vllm", + f"vllm-instance-{vllm_config.instance_id}", filename) os.makedirs(os.path.dirname(log_path), exist_ok=True) enable_trace_function_call(log_path) diff --git a/vllm/worker/worker_base.py b/vllm/worker/worker_base.py index 7c0bc5a678956..6d00102e0a324 100644 --- a/vllm/worker/worker_base.py +++ b/vllm/worker/worker_base.py @@ -439,7 +439,7 @@ def init_worker(self, *args, **kwargs): Here we inject some common logic before initializing the worker. Arguments are passed to the worker class constructor. """ - enable_trace_function_call_for_thread() + enable_trace_function_call_for_thread(self.vllm_config) # see https://github.com/NVIDIA/nccl/issues/1234 os.environ['NCCL_CUMEM_ENABLE'] = '0' From 7be15d9356a10c6ae3537565548e4f8bf46f35dd Mon Sep 17 00:00:00 2001 From: youkaichao Date: Sat, 7 Dec 2024 12:06:08 -0800 Subject: [PATCH 061/733] [core][misc] remove use_dummy driver for _run_workers (#10920) Signed-off-by: youkaichao --- vllm/executor/ray_gpu_executor.py | 27 ++++++++++++--------------- vllm/executor/ray_hpu_executor.py | 28 ++++++++++++---------------- vllm/executor/ray_tpu_executor.py | 21 ++++++++++----------- vllm/executor/ray_xpu_executor.py | 11 +++++++++-- 4 files changed, 43 insertions(+), 44 deletions(-) diff --git a/vllm/executor/ray_gpu_executor.py b/vllm/executor/ray_gpu_executor.py index 6554cda6b637b..4263fb27265f6 100644 --- a/vllm/executor/ray_gpu_executor.py +++ b/vllm/executor/ray_gpu_executor.py @@ -188,8 +188,14 @@ def sort_by_driver_then_worker_ip(worker): self.workers = sorted(self.workers, key=sort_by_driver_then_worker_ip) # Get the set of GPU IDs used on each node. - worker_node_and_gpu_ids = self._run_workers("get_node_and_gpu_ids", - use_dummy_driver=True) + worker_node_and_gpu_ids = [] + for worker in [self.driver_dummy_worker] + self.workers: + if worker is None: + # driver_dummy_worker can be None when using ray spmd worker. + continue + worker_node_and_gpu_ids.append( + ray.get(worker.get_node_and_gpu_ids.remote()) \ + ) # type: ignore node_workers = defaultdict(list) # node id -> list of worker ranks node_gpus = defaultdict(list) # node id -> list of gpu ids @@ -329,7 +335,6 @@ def _run_workers( async_run_tensor_parallel_workers_only: bool = False, all_args: Optional[List[Tuple[Any, ...]]] = None, all_kwargs: Optional[List[Dict[str, Any]]] = None, - use_dummy_driver: bool = False, max_concurrent_workers: Optional[int] = None, **kwargs, ) -> Any: @@ -389,18 +394,10 @@ def _run_workers( driver_kwargs = kwargs if all_kwargs is None else all_kwargs[0] # Start the driver worker after all the ray workers. - if not use_dummy_driver: - driver_worker_output = [ - self.driver_worker.execute_method(method, *driver_args, - **driver_kwargs) - ] - else: - assert self.driver_dummy_worker is not None - driver_worker_output = [ - ray.get( - self.driver_dummy_worker.execute_method.remote( - method, *driver_args, **driver_kwargs)) - ] + driver_worker_output = [ + self.driver_worker.execute_method(method, *driver_args, + **driver_kwargs) + ] # Get the results of the ray workers. if self.workers: diff --git a/vllm/executor/ray_hpu_executor.py b/vllm/executor/ray_hpu_executor.py index 91c84d9214a60..f3025cb537ab8 100644 --- a/vllm/executor/ray_hpu_executor.py +++ b/vllm/executor/ray_hpu_executor.py @@ -163,9 +163,14 @@ def sort_by_driver_then_worker_ip(worker): # node will be placed first. self.workers = sorted(self.workers, key=sort_by_driver_then_worker_ip) - # Get the set of GPU IDs used on each node. - worker_node_and_gpu_ids = self._run_workers("get_node_and_gpu_ids", - use_dummy_driver=True) + worker_node_and_gpu_ids = [] + for worker in [self.driver_dummy_worker] + self.workers: + if worker is None: + # driver_dummy_worker can be None when using ray spmd worker. + continue + worker_node_and_gpu_ids.append( + ray.get(worker.get_node_and_gpu_ids.remote()) \ + ) # type: ignore node_workers = defaultdict(list) # node id -> list of worker ranks node_gpus = defaultdict(list) # node id -> list of gpu ids @@ -296,7 +301,6 @@ def _run_workers( async_run_tensor_parallel_workers_only: bool = False, all_args: Optional[List[Tuple[Any, ...]]] = None, all_kwargs: Optional[List[Dict[str, Any]]] = None, - use_dummy_driver: bool = False, max_concurrent_workers: Optional[int] = None, **kwargs, ) -> Any: @@ -356,18 +360,10 @@ def _run_workers( driver_kwargs = kwargs if all_kwargs is None else all_kwargs[0] # Start the driver worker after all the ray workers. - if not use_dummy_driver: - driver_worker_output = [ - self.driver_worker.execute_method(method, *driver_args, - **driver_kwargs) - ] - else: - assert self.driver_dummy_worker is not None - driver_worker_output = [ - ray.get( - self.driver_dummy_worker.execute_method.remote( - method, *driver_args, **driver_kwargs)) - ] + driver_worker_output = [ + self.driver_worker.execute_method(method, *driver_args, + **driver_kwargs) + ] # Get the results of the ray workers. if self.workers: diff --git a/vllm/executor/ray_tpu_executor.py b/vllm/executor/ray_tpu_executor.py index 3ee59397bf4c9..5118c13934f0d 100644 --- a/vllm/executor/ray_tpu_executor.py +++ b/vllm/executor/ray_tpu_executor.py @@ -137,8 +137,14 @@ def sort_by_driver_then_worker_ip(worker): self.workers = sorted(self.workers, key=sort_by_driver_then_worker_ip) # Get the set of TPU IDs used on each node. - worker_node_and_gpu_ids = self._run_workers("get_node_and_gpu_ids", - use_dummy_driver=True) + worker_node_and_gpu_ids = [] + for worker in [self.driver_dummy_worker] + self.workers: + if worker is None: + # driver_dummy_worker can be None when using ray spmd worker. + continue + worker_node_and_gpu_ids.append( + ray.get(worker.get_node_and_gpu_ids.remote()) \ + ) # type: ignore node_workers = defaultdict(list) for i, (node_id, _) in enumerate(worker_node_and_gpu_ids): @@ -199,7 +205,6 @@ def _run_workers( async_run_remote_workers_only: bool = False, all_args: Optional[List[Tuple[Any, ...]]] = None, all_kwargs: Optional[List[Dict[str, Any]]] = None, - use_dummy_driver: bool = False, max_concurrent_workers: Optional[int] = None, use_ray_compiled_dag: bool = False, **kwargs, @@ -241,14 +246,8 @@ def _run_workers( driver_kwargs = kwargs if all_kwargs is None else all_kwargs[0] # Start the driver worker after all the ray workers. - if not use_dummy_driver: - driver_worker_output = self.driver_worker.execute_method( - method, *driver_args, **driver_kwargs) - else: - assert self.driver_dummy_worker is not None - driver_worker_output = ray.get( - self.driver_dummy_worker.execute_method.remote( - method, *driver_args, **driver_kwargs)) + driver_worker_output = self.driver_worker.execute_method( + method, *driver_args, **driver_kwargs) # Get the results of the ray workers. if self.workers: ray_worker_outputs = ray.get(ray_worker_outputs) diff --git a/vllm/executor/ray_xpu_executor.py b/vllm/executor/ray_xpu_executor.py index 61f5d6a65e999..d2086f5fef26c 100644 --- a/vllm/executor/ray_xpu_executor.py +++ b/vllm/executor/ray_xpu_executor.py @@ -1,6 +1,8 @@ import asyncio from typing import List, Optional +import ray + import vllm.envs as envs from vllm.executor.ray_gpu_executor import RayGPUExecutor, RayGPUExecutorAsync from vllm.executor.xpu_executor import XPUExecutor @@ -14,8 +16,13 @@ class RayXPUExecutor(RayGPUExecutor, XPUExecutor): def _get_env_vars_to_be_updated(self): # Get the set of GPU IDs used on each node. - worker_node_and_gpu_ids = self._run_workers("get_node_and_gpu_ids", - use_dummy_driver=True) + worker_node_and_gpu_ids = [] + for worker in [self.driver_dummy_worker] + self.workers: + if worker is None: + # driver_dummy_worker can be None when using ray spmd worker. + continue + worker_node_and_gpu_ids.append( + ray.get(worker.get_node_and_gpu_ids.remote())) # type: ignore # Set environment variables for the driver and workers. all_args_to_update_environment_variables = [({ From fd57d2b5347e8fe6da9287553d4b5a3aaf2e6693 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Sun, 8 Dec 2024 03:05:21 -0800 Subject: [PATCH 062/733] [torch.compile] allow candidate compile sizes (#10984) Signed-off-by: youkaichao --- tests/engine/test_arg_utils.py | 8 +++---- vllm/config.py | 44 +++++++++++++++++----------------- vllm/engine/arg_utils.py | 5 +--- vllm/entrypoints/llm.py | 6 +---- 4 files changed, 28 insertions(+), 35 deletions(-) diff --git a/tests/engine/test_arg_utils.py b/tests/engine/test_arg_utils.py index de78d41ad12eb..4e269de9fc40b 100644 --- a/tests/engine/test_arg_utils.py +++ b/tests/engine/test_arg_utils.py @@ -50,12 +50,12 @@ def test_compilation_config(): args = parser.parse_args(["-O=3"]) assert args.compilation_config.level == 3 - # set to json - args = parser.parse_args(["--compilation-config", '{"level": 3}']) + # set to string form of a dict + args = parser.parse_args(["--compilation-config", "{'level': 3}"]) assert args.compilation_config.level == 3 - # set to json - args = parser.parse_args(['--compilation-config={"level": 3}']) + # set to string form of a dict + args = parser.parse_args(["--compilation-config={'level': 3}"]) assert args.compilation_config.level == 3 diff --git a/vllm/config.py b/vllm/config.py index d1c4f995ad015..164622b5af34e 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -1,3 +1,4 @@ +import ast import copy import enum import hashlib @@ -2191,14 +2192,10 @@ class CompilationConfig(BaseModel): - use_inductor: whether to use inductor compilation. - False: inductor compilation is not used. graph runs in eager. - True: inductor compilation is used. one graph for symbolic shape - is compiled. In addition, compile for different sizes specified - in inductor_compile_sizes, using configurations + is compiled. In addition, compile for cudagraph sizes that are + in candidate_compile_sizes, using configurations in inductor_compile_config. - - inductor_compile_sizes: sizes to compile for inductor. - - inductor_specialize_for_cudagraph_no_more_than: an optional integer - to specialize inductor for cudagraph sizes no more than the - specified size. It is useful when we want to specialize inductor - with a subset of cudagraph sizes. + - candidate_compile_sizes: sizes to compile for inductor. - inductor_compile_config: additional configurations for inductor. - None: use default configurations. - inductor_passes: additional passes for inductor. It is a dictionary @@ -2227,8 +2224,7 @@ class CompilationConfig(BaseModel): ]) use_inductor: bool = True - inductor_specialize_for_cudagraph_no_more_than: Optional[int] = None - inductor_compile_sizes: Optional[List[int]] = Field(default=None) + candidate_compile_sizes: Optional[List[int]] = Field(default=None) inductor_compile_config: Dict = Field(default_factory=dict) inductor_passes: Dict[str, str] = Field(default_factory=dict) @@ -2294,7 +2290,9 @@ def from_cli(cls, cli_value: str) -> "CompilationConfig": """Parse the CLI value for the compilation config.""" if cli_value in ["0", "1", "2", "3"]: return cls(level=int(cli_value)) - return CompilationConfig.model_validate_json(cli_value) + # do not use `eval`, it is dangerous and can execute arbitrary code + dict_value = ast.literal_eval(cli_value) + return CompilationConfig.model_validate(dict_value) def model_post_init(self, __context: Any) -> None: @@ -2355,18 +2353,20 @@ def init_with_cudagraph_sizes(self, sizes_to_specialize: List[int]): logger.info(("cudagraph sizes specified by model runner" " %s is overridden by config %s"), sizes_to_specialize, self.cudagraph_capture_sizes) - if self.inductor_specialize_for_cudagraph_no_more_than is not None: - assert self.inductor_compile_sizes is None, ( - "inductor_compile_sizes should be None when " - "inductor_specialize_for_cudagraph_no_more_than is not None") - self.compile_sizes = [ - x for x in self.capture_sizes - if x <= self.inductor_specialize_for_cudagraph_no_more_than - ] - else: - if self.inductor_compile_sizes is None: - self.inductor_compile_sizes = [] - self.compile_sizes = self.inductor_compile_sizes + + if self.candidate_compile_sizes is None: + self.candidate_compile_sizes = [] + self.compile_sizes = [ + x for x in self.candidate_compile_sizes if x in self.capture_sizes + ] + ignored_sizes = [ + x for x in self.candidate_compile_sizes + if x not in self.capture_sizes + ] + if ignored_sizes: + logger.warning(("candidate_compile_sizes %s are ignored " + "because they are not cudagraph capture sizes."), + ignored_sizes) # sort to make sure cudagraph capture sizes are in descending order self.capture_sizes.sort(reverse=True) diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index ccd9fac225cba..96c11ec2b4f9e 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -209,12 +209,9 @@ def __post_init__(self): # support `EngineArgs(compilation_config={...})` # without having to manually construct a # CompilationConfig object - if isinstance(self.compilation_config, (int)): + if isinstance(self.compilation_config, (int, dict)): self.compilation_config = CompilationConfig.from_cli( str(self.compilation_config)) - elif isinstance(self.compilation_config, (dict)): - self.compilation_config = CompilationConfig.from_cli( - json.dumps(self.compilation_config)) # Setup plugins from vllm.plugins import load_general_plugins diff --git a/vllm/entrypoints/llm.py b/vllm/entrypoints/llm.py index 65fa9873df28c..8de30ccd18a11 100644 --- a/vllm/entrypoints/llm.py +++ b/vllm/entrypoints/llm.py @@ -1,5 +1,4 @@ import itertools -import json import warnings from contextlib import contextmanager from typing import (Any, ClassVar, Dict, List, Optional, Sequence, Tuple, Type, @@ -186,12 +185,9 @@ def __init__( kwargs["disable_log_stats"] = True if compilation_config is not None: - if isinstance(compilation_config, (int)): + if isinstance(compilation_config, (int, dict)): compilation_config_instance = CompilationConfig.from_cli( str(compilation_config)) - elif isinstance(compilation_config, (dict)): - compilation_config_instance = CompilationConfig.from_cli( - json.dumps(compilation_config)) else: compilation_config_instance = compilation_config else: From a11f3265282c712d1d9fa75368e2a8c40019fbb7 Mon Sep 17 00:00:00 2001 From: Roger Wang <136131678+ywang96@users.noreply.github.com> Date: Sun, 8 Dec 2024 04:50:51 -0800 Subject: [PATCH 063/733] [V1] Initial support of multimodal models for V1 re-arch (#10699) Signed-off-by: Roger Wang --- vllm/engine/arg_utils.py | 16 +-- vllm/model_executor/models/interfaces.py | 5 + vllm/model_executor/models/internvl.py | 68 ++++++++++--- vllm/model_executor/models/molmo.py | 72 ++++++++++++-- vllm/model_executor/models/pixtral.py | 121 +++++++++++++++++------ vllm/model_executor/models/utils.py | 28 +++++- vllm/multimodal/inputs.py | 3 +- vllm/multimodal/utils.py | 10 +- vllm/v1/core/scheduler.py | 4 +- vllm/v1/engine/llm_engine.py | 24 ++++- vllm/v1/engine/mm_input_mapper.py | 2 +- 11 files changed, 284 insertions(+), 69 deletions(-) diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index 96c11ec2b4f9e..3db069ec64ee4 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -1050,9 +1050,12 @@ def create_engine_config(self, # long context (> 32K) models. This is to avoid OOM errors in the # initial memory profiling phase. - # Chunked prefill is currently disabled for multimodal models by - # default. - if use_long_context and not model_config.is_multimodal_model: + # For multimodal models, chunked prefill is disabled by default in + # V0, but enabled by design in V1 + if model_config.is_multimodal_model: + self.enable_chunked_prefill = bool(envs.VLLM_USE_V1) + + elif use_long_context: is_gpu = device_config.device_type == "cuda" use_sliding_window = (model_config.get_sliding_window() is not None) @@ -1241,12 +1244,9 @@ def _override_v1_engine_config(self, engine_config: VllmConfig) -> None: Override the EngineConfig's configs based on the usage context for V1. """ assert envs.VLLM_USE_V1, "V1 is not enabled" - # TODO (ywang96): Enable APC by default when VLM supports it. if engine_config.model_config.is_multimodal_model: - logger.warning( - "Prefix caching is currently not supported for multimodal " - "models and has been disabled.") - engine_config.cache_config.enable_prefix_caching = False + # TODO (ywang96): Enable APC by default when VLM supports it. + assert not engine_config.cache_config.enable_prefix_caching @dataclass diff --git a/vllm/model_executor/models/interfaces.py b/vllm/model_executor/models/interfaces.py index 01a381381ccec..c3979eab905db 100644 --- a/vllm/model_executor/models/interfaces.py +++ b/vllm/model_executor/models/interfaces.py @@ -36,6 +36,11 @@ def get_multimodal_embeddings(self, **kwargs) -> Optional[T]: """ Returns multimodal embeddings generated from multimodal kwargs to be merged with text embeddings. + + The output embeddings must be one of the following formats: + - A list or tuple of 2D tensors, where each tensor corresponds to + each input image. + - A single 3D tensor, with the batch dimension grouping the 2D tensors. """ ... diff --git a/vllm/model_executor/models/internvl.py b/vllm/model_executor/models/internvl.py index d5a7781fecfc3..42c769f79e202 100644 --- a/vllm/model_executor/models/internvl.py +++ b/vllm/model_executor/models/internvl.py @@ -26,7 +26,7 @@ InternVisionPatchModel) from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs -from vllm.multimodal.inputs import NestedTensors +from vllm.multimodal.inputs import NestedTensors, PlaceholderRange from vllm.multimodal.utils import cached_get_tokenizer from vllm.sequence import IntermediateTensors from vllm.utils import is_list_of @@ -52,12 +52,18 @@ class InternVLImagePixelInputs(TypedDict): Shape: `(batch_size * num_images * (1 + num_patches), num_channels, height, width)` """ + patches_per_image: List[int] + """ + List of number of total patches for each image in the batch. + """ class InternVLImageEmbeddingInputs(TypedDict): type: Literal["image_embeds"] - data: torch.Tensor - """Shape: `(batch_size * num_images, image_feature_size, hidden_size)` + data: NestedTensors + """ + A tensor of shape `(num_images, total_image_feature_size, hidden_size)` + or a list of tensors of shape `(total_image_feature_size, hidden_size)` `hidden_size` must match the hidden size of language model backbone. """ @@ -349,10 +355,32 @@ def input_processor( new_prompt = self._expand_image_prompt(prompt, image_feature_sizes, num_patches) new_prompt_token_ids = tokenizer.encode(new_prompt) + img_context_token_id = tokenizer.encode(self.img_context_token, + add_special_tokens=False) + assert len(img_context_token_id) == 1, \ + (f"Invalid image token '{self.img_context_token}': A valid image " + f"token encodes to a single token ID, got {img_context_token_id}.") + img_context_token_id = img_context_token_id[0] + + # Get precise tracking of placeholder positions + token_idx = image_idx = 0 + placeholder_ranges = [] + while token_idx < len(new_prompt_token_ids): + if new_prompt_token_ids[token_idx] == img_context_token_id: + curr_image_featue_size = image_feature_sizes[image_idx] + placeholder_ranges.append( + PlaceholderRange(offset=token_idx, + length=curr_image_featue_size)) + image_idx += 1 + token_idx += curr_image_featue_size + else: + token_idx += 1 - return token_inputs(prompt=prompt, - prompt_token_ids=new_prompt_token_ids, - multi_modal_data=multi_modal_data) + return token_inputs( + prompt=prompt, + prompt_token_ids=new_prompt_token_ids, + multi_modal_data=multi_modal_data, + multi_modal_placeholders={"image": placeholder_ranges}) def input_mapper( self, @@ -614,26 +642,46 @@ def _parse_and_validate_image_input( if not isinstance(pixel_values, (torch.Tensor, list)): raise ValueError("Incorrect type of pixel values. " f"Got type: {type(pixel_values)}") + + patches_per_image = [] + for request_pixel_values in pixel_values: + for image_pixel_values in request_pixel_values: + patches_per_image.append(image_pixel_values.shape[0]) # We need to flatten (B, N, P) to (B*N*P), # so we call flatten_bn twice. return InternVLImagePixelInputs( type="pixel_values", data=self._validate_pixel_values( flatten_bn(flatten_bn(pixel_values), concat=True)), - ) + patches_per_image=patches_per_image) raise AssertionError("This line should be unreachable.") def _process_image_input( self, image_input: InternVLImageInputs, - ) -> torch.Tensor: + ) -> Tuple[torch.Tensor]: if image_input["type"] == "image_embeds": return image_input["data"] assert self.vision_model is not None + image_embeds = self.extract_feature(image_input["data"]) + patches_per_image = image_input["patches_per_image"] + if len(patches_per_image) == 1: + image_embeds = image_embeds.unsqueeze(0) + return image_embeds + + # NOTE: Image embeddings are split into separate tensors for each image + # by the size of each embedding. + feature_size = image_embeds.shape[1] + image_embeds = image_embeds.view(-1, + self.config.text_config.hidden_size) + image_feature_sizes = [ + num_patches * feature_size for num_patches in patches_per_image + ] + image_embeds = image_embeds.split(image_feature_sizes) return image_embeds def _set_visual_token_mask(self, input_ids: torch.Tensor) -> torch.Tensor: @@ -696,13 +744,11 @@ def forward( "inputs_embeds": inputs_embeds, } + # Only required if the model is mono-architecture if self.visual_token_mask is not None: - # overwrite visual_token_mask and img_context_token_id back to None, - # so that this doesn't need to depend on encoder output forward_kwargs.update( {"visual_token_mask": self.visual_token_mask}) self.visual_token_mask = None - self.img_context_token_id = None hidden_states = self.language_model.model(**forward_kwargs) return hidden_states diff --git a/vllm/model_executor/models/molmo.py b/vllm/model_executor/models/molmo.py index d1fcbd167c199..a328b5a2aeea7 100644 --- a/vllm/model_executor/models/molmo.py +++ b/vllm/model_executor/models/molmo.py @@ -37,7 +37,7 @@ ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs -from vllm.multimodal.inputs import NestedTensors +from vllm.multimodal.inputs import NestedTensors, PlaceholderRange from vllm.multimodal.utils import cached_get_tokenizer from vllm.sequence import (VLLM_TOKEN_ID_ARRAY_TYPE, IntermediateTensors, SequenceData) @@ -46,12 +46,16 @@ from .interfaces import SupportsMultiModal, SupportsPP from .utils import (AutoWeightsLoader, WeightsMapper, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, - maybe_prefix) + maybe_prefix, merge_multimodal_embeddings) # TODO: hard-coded for now. Consider making it configurable. VIT_LAYERS = [-2, -9] NUM_PREFIX_TOKENS = 1 ADDITIONAL_VOCAB_SIZE = 128 +DEFAULT_IMAGE_PATCH_TOKEN_ID = 152066 +DEFAULT_IM_START_TOKEN_ID = 152067 +DEFAULT_IM_END_TOKEN_ID = 152064 +DEFAULT_IM_COL_TOKEN_ID = 152065 class MolmoImageInputs(TypedDict): @@ -75,6 +79,11 @@ class MolmoImageInputs(TypedDict): `(batch_size, num_crops, num_patch)` """ + image_start_end: Tuple[int, int] + """Starting and ending index of placeholder + tokens + """ + @dataclass class VisionBackboneConfig: @@ -918,6 +927,8 @@ def image_input_mapper_for_molmo( ctx: InputContext, data: object, ): + if isinstance(data, list): + data = data[0] return MultiModalKwargs(data) @@ -967,7 +978,22 @@ def dummy_data_for_molmo(ctx: InputContext, seq_len: int, if "image_masks" in out: dummy_imgdata["image_masks"] = out["image_masks"] dummy_imgdata["seq_len"] = torch.tensor(seq_len, dtype=torch.long) - return DummyData(dummy_seqdata, {"image": dummy_imgdata}) + size = 0 + offset = -1 + for i in range(len(token_ids)): + if token_ids[i] in (DEFAULT_IMAGE_PATCH_TOKEN_ID, + DEFAULT_IM_START_TOKEN_ID, DEFAULT_IM_END_TOKEN_ID, + DEFAULT_IM_COL_TOKEN_ID): + if offset < 0: + offset = i + size += 1 + dummy_imgdata["image_start_end"] = (offset, offset + size) + return DummyData(seq_data=dummy_seqdata, + multi_modal_data={"image": dummy_imgdata}, + multi_modal_placeholders={ + "image": + [PlaceholderRange(offset=offset, length=size)] + }) def pad_images( @@ -1055,19 +1081,34 @@ def input_processor_for_molmo(ctx: InputContext, inputs: DecoderOnlyInputs): if image_masks is not None: image_data["image_masks"] = image_masks - image_data["seq_len"] = torch.tensor(len(out["input_ids"]), + new_prompt_token_ids = out["input_ids"].tolist() + image_data["seq_len"] = torch.tensor(len(new_prompt_token_ids), dtype=torch.long) multi_modal_data = dict(image=image_data) + size = 0 + offset = -1 + for i in range(len(new_prompt_token_ids)): + if new_prompt_token_ids[i] in (DEFAULT_IMAGE_PATCH_TOKEN_ID, + DEFAULT_IM_START_TOKEN_ID, + DEFAULT_IM_END_TOKEN_ID, + DEFAULT_IM_COL_TOKEN_ID): + if offset < 0: + offset = i + size += 1 + image_data["image_start_end"] = (offset, offset + size) prompt = inputs.get("prompt") if prompt is None: - prompt = tokenizer.decode(out["input_ids"]) + prompt = tokenizer.decode(new_prompt_token_ids) return token_inputs( - prompt_token_ids=out["input_ids"], + prompt_token_ids=new_prompt_token_ids, prompt=prompt, multi_modal_data=multi_modal_data, + multi_modal_placeholders={ + "image": [PlaceholderRange(offset=offset, length=size)] + }, ) @@ -1113,6 +1154,7 @@ def _parse_and_validate_image_input( ) -> Optional[MolmoImageInputs]: images = kwargs.pop("images", None) image_masks = kwargs.pop("image_masks", None) + image_start_end = kwargs.pop("image_start_end", None) if images is None: return None @@ -1130,6 +1172,7 @@ def _parse_and_validate_image_input( image_input_idx=image_input_idx, seq_len=seq_len, image_masks=image_masks, + image_start_end=image_start_end, ) def _process_image_input( @@ -1178,9 +1221,16 @@ def get_multimodal_embeddings(self, **kwargs) -> Optional[NestedTensors]: # Note: In this original implementation from AI2, the final # vision_embeddings will be always be the same length - # of input embedddings, which is not very efficient. - # TODO(ywang96): see if this can be optimized. + # of input embeddings. vision_embeddings = torch.einsum('nd,nm->md', image_features, mat) + + # Split by the sizes of the input sequences. For each full embedding, + # extract the actual vision embeddings to be merged. + vision_embeddings = list(vision_embeddings.split(seq_len.tolist())) + for i in range(len(vision_embeddings)): + start, end = image_input['image_start_end'][i] + vision_embeddings[i] = vision_embeddings[i][start:end] + return vision_embeddings def get_input_embeddings( @@ -1190,7 +1240,11 @@ def get_input_embeddings( ) -> torch.Tensor: inputs_embeds = self.model.get_input_embeddings(input_ids) if multimodal_embeddings is not None: - inputs_embeds = inputs_embeds + multimodal_embeddings + inputs_embeds = merge_multimodal_embeddings( + input_ids, inputs_embeds, multimodal_embeddings, [ + DEFAULT_IMAGE_PATCH_TOKEN_ID, DEFAULT_IM_START_TOKEN_ID, + DEFAULT_IM_END_TOKEN_ID, DEFAULT_IM_COL_TOKEN_ID + ]) return inputs_embeds def forward( diff --git a/vllm/model_executor/models/pixtral.py b/vllm/model_executor/models/pixtral.py index 215727cadd954..c6786c363ab4a 100644 --- a/vllm/model_executor/models/pixtral.py +++ b/vllm/model_executor/models/pixtral.py @@ -48,6 +48,9 @@ except ImportError: USE_XFORMERS_OPS = False +PIXTRAL_IMAGE_BREAK_ID = 12 +PIXTRAL_IMAGE_END_ID = 13 + def get_max_pixtral_image_tokens(ctx: InputContext): tokenizer = cached_get_tokenizer( @@ -68,7 +71,6 @@ def dummy_data_for_pixtral(ctx: InputContext, seq_len: int, tokenizer_mode=ctx.model_config.tokenizer_mode) mm_encoder = tokenizer.mistral.instruct_tokenizer.mm_encoder - patch_size = mm_encoder.mm_config.image_patch_size image_token_id = mm_encoder.special_ids.img mm_config = ctx.model_config.multimodal_config @@ -78,8 +80,8 @@ def dummy_data_for_pixtral(ctx: InputContext, seq_len: int, size = 256 image = Image.new("RGB", (size, size), color=0) - image_feature_size = (size**2) // (patch_size**2) - + encoding = tokenizer.instruct.mm_encoder(ImageChunk(image=image)) + image_feature_size = len(encoding.tokens) num_image_tokens = image_feature_size * num_images seq_data = SequenceData.from_prompt_token_counts( (image_token_id, num_image_tokens), @@ -101,14 +103,13 @@ def input_mapper_for_pixtral(ctx: InputContext, Args: ctx: Context of the loaded model. - data: data potentially containing image/image embeddings to be mapped - to pixel_values in .forward() for a visual QWenLMHeadModel model. + data: data potentially containing PIL images to be processed + and mapped to `images`. Returns: MultiModalKwargs containing the stacked normalized images tensor or image embeddings. """ - # Early exit if we have provided an image to a language only Qwen model model_config = ctx.model_config tokenizer = cached_get_tokenizer( model_config.tokenizer, tokenizer_mode=model_config.tokenizer_mode) @@ -116,35 +117,67 @@ def input_mapper_for_pixtral(ctx: InputContext, data_list = data if isinstance(data, list) else [data] images = [] + image_tokens_list = [] for image_data in data_list: image = ImageChunk(image=image_data) encoding = tokenizer.instruct.mm_encoder(image) image = torch.from_numpy(encoding.image).to(device="cuda", dtype=torch.float16) images.append(image) + image_tokens_list.append(encoding.tokens) - return MultiModalKwargs({"images": images}) + image_tokens = torch.tensor([ + token_id for image_tokens in image_tokens_list + for token_id in image_tokens + ]) + return MultiModalKwargs({"images": images, "image_tokens": image_tokens}) def input_processor_for_pixtral(ctx: InputContext, inputs: DecoderOnlyInputs): multi_modal_data = inputs.get("multi_modal_data") - if multi_modal_data is not None and "image" in multi_modal_data: - tokenizer = cached_get_tokenizer( - ctx.model_config.tokenizer, - tokenizer_mode=ctx.model_config.tokenizer_mode) - - mm_encoder = tokenizer.mistral.instruct_tokenizer.mm_encoder - image_token_id = mm_encoder.special_ids.img + if multi_modal_data is None or "image" not in multi_modal_data: + return inputs - if image_token_id not in inputs['prompt_token_ids']: - raise ValueError( - f"You've passed {inputs=} without {image_token_id=}" - " Make sure to process your input via mistral_common's" - " tokenizer or pass a chat completion request. For more" - " For more info, see: " - "https://github.com/vllm-project/vllm/issues/8411.") + prompt_token_ids = inputs.get("prompt_token_ids") + prompt = inputs.get("prompt") + tokenizer = cached_get_tokenizer( + ctx.model_config.tokenizer, + tokenizer_mode=ctx.model_config.tokenizer_mode) - return inputs + mm_encoder = tokenizer.mistral.instruct_tokenizer.mm_encoder + image_token_id = mm_encoder.special_ids.img + image_break_id = mm_encoder.special_ids.img_break + image_end_id = mm_encoder.special_ids.img_end + + if image_token_id not in inputs['prompt_token_ids']: + raise ValueError( + f"You've passed {inputs=} without {image_token_id=}" + " Make sure to process your input via mistral_common's" + " tokenizer or pass a chat completion request. For more" + " For more info, see: " + "https://github.com/vllm-project/vllm/issues/8411.") + + # Get precise tracking of placeholder positions + placeholder_ranges = [] + curr_offset = -1 + curr_length = 0 + for i in range(len(prompt_token_ids)): + if prompt_token_ids[i] in (image_token_id, image_break_id): + if curr_offset < 0: + curr_offset = i + curr_length += 1 + elif prompt_token_ids[i] == image_end_id: + curr_length += 1 + placeholder_ranges.append( + PlaceholderRange(offset=curr_offset, length=curr_length)) + curr_offset = -1 + curr_length = 0 + else: + pass + return token_inputs(prompt=prompt, + prompt_token_ids=prompt_token_ids, + multi_modal_data=multi_modal_data, + multi_modal_placeholders={"image": placeholder_ranges}) @MULTIMODAL_REGISTRY.register_image_input_mapper(input_mapper_for_pixtral) @@ -192,11 +225,29 @@ def sampler(self): return get_sampler() def get_multimodal_embeddings(self, **kwargs) -> Optional[NestedTensors]: - image_input = self._parse_and_validate_image_input(**kwargs) + image_input, image_tokens = self._parse_and_validate_image_input( + **kwargs) if image_input is None: return None + vision_embeddings = self._process_image_input(image_input) - return vision_embeddings + + # NOTE: We patch the outputs of the vision encoder with embeddings + # from `[IMG_BREAK]` and `[IMG_END]` tokens. + image_embeds = self.language_model.get_input_embeddings(image_tokens) + image_token_mask = image_tokens == self.vision_args.image_token_id + image_embeds[image_token_mask] = vision_embeddings + + # NOTE: Image embeddings are split into separate tensors for each image + # by the indices of `[IMG_END]` token. + split_indices = torch.where( + image_tokens == PIXTRAL_IMAGE_END_ID)[0] + 1 + if len(split_indices) <= 1: + # Do not split, return as tensor of shape [1, fs, hs] + return image_embeds.unsqueeze(0) + + image_embeds = image_embeds.tensor_split(split_indices.cpu()) + return image_embeds def get_input_embeddings( self, @@ -206,8 +257,10 @@ def get_input_embeddings( inputs_embeds = self.language_model.get_input_embeddings(input_ids) if multimodal_embeddings is not None: inputs_embeds = merge_multimodal_embeddings( - input_ids, inputs_embeds, multimodal_embeddings, - self.vision_args.image_token_id) + input_ids, inputs_embeds, multimodal_embeddings, [ + self.vision_args.image_token_id, PIXTRAL_IMAGE_END_ID, + PIXTRAL_IMAGE_BREAK_ID + ]) return inputs_embeds def forward( @@ -245,10 +298,11 @@ def forward( def _parse_and_validate_image_input( self, images: Optional[Union[List[List[torch.Tensor]], List[torch.Tensor], - torch.Tensor]] = None + torch.Tensor]] = None, + image_tokens: Optional[torch.Tensor] = None, ) -> Optional[List[torch.Tensor]]: if images is None: - return None + return None, None if isinstance(images, torch.Tensor): # if passed as batch take all images @@ -267,7 +321,16 @@ def _parse_and_validate_image_input( images = flatten_images - return images + if isinstance(image_tokens, torch.Tensor): + # image_tokens are batched + image_tokens = image_tokens.flatten() + elif isinstance(image_tokens, list): + # image_tokens are of different lengths thus passed as a list + image_tokens = torch.cat(image_tokens) + + assert image_tokens.dim() == 1 + + return images, image_tokens def _process_image_input(self, image_input: List[torch.Tensor]) -> torch.Tensor: diff --git a/vllm/model_executor/models/utils.py b/vllm/model_executor/models/utils.py index 5ec44955dbd80..269b66806adf4 100644 --- a/vllm/model_executor/models/utils.py +++ b/vllm/model_executor/models/utils.py @@ -409,16 +409,42 @@ def merge_multimodal_embeddings( input_ids: torch.Tensor, inputs_embeds: torch.Tensor, multimodal_embeddings: NestedTensors, - placeholder_token_id: int, + placeholder_token_id: Union[int, List[int]], ) -> torch.Tensor: """ Merge ``multimodal_embeddings`` into ``inputs_embeds`` by overwriting the positions in ``inputs_embeds`` corresponding to placeholder tokens in ``input_ids``. + + ``placeholder_token_id`` can be a list of token ids (e.g, token ids + of img_start, img_break, and img_end tokens) when needed: This means + the order of these tokens in the ``input_ids`` MUST MATCH the order of + their embeddings in ``multimodal_embeddings`` since we need to + slice-merge instead of individually scattering. + + For example, if input_ids is "TTTTTSIIIBIIIBIIIETTT", where + - T is text token + - S is image start token + - I is image embedding token + - B is image break token + - E is image end token. + + Then the image embeddings (that correspond to I's) from vision encoder + must be padded with embeddings of S, B, and E in the same order of + input_ids for a correct embedding merge. Note: This updates ``inputs_embeds`` in place. """ + if isinstance(placeholder_token_id, list): + placeholder_token_id = torch.tensor(placeholder_token_id, + device=input_ids.device) + return _merge_multimodal_embeddings( + inputs_embeds, + torch.isin(input_ids, placeholder_token_id), + multimodal_embeddings, + ) + return _merge_multimodal_embeddings( inputs_embeds, (input_ids == placeholder_token_id), diff --git a/vllm/multimodal/inputs.py b/vllm/multimodal/inputs.py index 640c7c04b8817..229a8fbdf5831 100644 --- a/vllm/multimodal/inputs.py +++ b/vllm/multimodal/inputs.py @@ -96,7 +96,8 @@ class PlaceholderRange(TypedDict): """The length of the placeholder.""" -NestedTensors = Union[List["NestedTensors"], List[torch.Tensor], torch.Tensor] +NestedTensors = Union[List["NestedTensors"], List[torch.Tensor], torch.Tensor, + Tuple[torch.Tensor, ...]] """ Uses a list instead of a tensor if the dimensions of each element do not match. """ diff --git a/vllm/multimodal/utils.py b/vllm/multimodal/utils.py index d4333b7519b47..c898ca4e6573e 100644 --- a/vllm/multimodal/utils.py +++ b/vllm/multimodal/utils.py @@ -535,11 +535,13 @@ def repeat_and_pad_placeholder_tokens( return new_prompt, new_token_ids, placeholder_ranges -def consecutive_placeholder_ranges(num_items: int, - item_size: int) -> List[PlaceholderRange]: +def consecutive_placeholder_ranges( + num_items: int, + item_size: int, + initial_offset: int = 0) -> List[PlaceholderRange]: """Returns a list of consecutive PlaceholderRanges of a fixed size""" return [ - PlaceholderRange(offset=i * item_size, length=item_size) - for i in range(num_items) + PlaceholderRange(offset=initial_offset + i * item_size, + length=item_size) for i in range(num_items) ] diff --git a/vllm/v1/core/scheduler.py b/vllm/v1/core/scheduler.py index f1f26f4e8d443..1203d35fc985f 100644 --- a/vllm/v1/core/scheduler.py +++ b/vllm/v1/core/scheduler.py @@ -73,12 +73,12 @@ def __init__( # has the Transformer architecture (e.g., ViT). # FIXME(woosuk): Below are placeholder values. We need to calculate the # actual values from the configurations. - self.max_num_encoder_input_tokens = 2048 + self.max_num_encoder_input_tokens = 16384 # NOTE(woosuk): For the models without encoder (e.g., text-only models), # the encoder cache will not be initialized and used, regardless of # the cache size. This is because the memory space for the encoder cache # is preallocated in the profiling run. - self.encoder_cache_manager = EncoderCacheManager(cache_size=2048) + self.encoder_cache_manager = EncoderCacheManager(cache_size=16384) def schedule(self) -> "SchedulerOutput": # NOTE(woosuk) on the scheduling algorithm: diff --git a/vllm/v1/engine/llm_engine.py b/vllm/v1/engine/llm_engine.py index 312c0242a45dd..994e68669108e 100644 --- a/vllm/v1/engine/llm_engine.py +++ b/vllm/v1/engine/llm_engine.py @@ -1,5 +1,7 @@ from typing import Dict, List, Mapping, Optional, Type, Union +from typing_extensions import TypeVar + from vllm.config import VllmConfig from vllm.engine.arg_utils import EngineArgs from vllm.engine.metrics_types import StatLoggerBase @@ -12,7 +14,8 @@ from vllm.pooling_params import PoolingParams from vllm.prompt_adapter.request import PromptAdapterRequest from vllm.sampling_params import SamplingParams -from vllm.transformers_utils.tokenizer_group import init_tokenizer_from_configs +from vllm.transformers_utils.tokenizer_group import ( + BaseTokenizerGroup, init_tokenizer_from_configs) from vllm.usage.usage_lib import UsageContext from vllm.v1.engine.core_client import EngineCoreClient from vllm.v1.engine.detokenizer import Detokenizer @@ -21,6 +24,8 @@ logger = init_logger(__name__) +_G = TypeVar("_G", bound=BaseTokenizerGroup, default=BaseTokenizerGroup) + class LLMEngine: """Legacy LLMEngine for backwards compatibility.""" @@ -169,5 +174,18 @@ def start_profile(self): def stop_profile(self): self.engine_core.profile(False) - def get_tokenizer_group(self, group_type): - pass + def get_tokenizer_group( + self, + group_type: Type[_G] = BaseTokenizerGroup, + ) -> _G: + tokenizer_group = self.tokenizer + + if tokenizer_group is None: + raise ValueError("Unable to get tokenizer because " + "skip_tokenizer_init is True") + if not isinstance(tokenizer_group, group_type): + raise TypeError("Invalid type of tokenizer group. " + f"Expected type: {group_type}, but " + f"found type: {type(tokenizer_group)}") + + return tokenizer_group diff --git a/vllm/v1/engine/mm_input_mapper.py b/vllm/v1/engine/mm_input_mapper.py index 45882f8f076d4..7ad6882b04520 100644 --- a/vllm/v1/engine/mm_input_mapper.py +++ b/vllm/v1/engine/mm_input_mapper.py @@ -33,7 +33,7 @@ def process_inputs( num_images = len(image_inputs) for i in range(num_images): mm_input = self.multi_modal_input_mapper( - {"image": [image_inputs[i]]}, + {"image": image_inputs[i]}, mm_processor_kwargs=mm_processor_kwargs, ) mm_inputs.append(mm_input) From 43b05fa314e90e551d87211e8bdde2e2bb5a0bdc Mon Sep 17 00:00:00 2001 From: youkaichao Date: Sun, 8 Dec 2024 11:18:18 -0800 Subject: [PATCH 064/733] [torch.compile][misc] fix comments (#10993) Signed-off-by: youkaichao --- vllm/config.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/vllm/config.py b/vllm/config.py index 164622b5af34e..38cf642b23cda 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -2177,8 +2177,8 @@ class CompilationConfig(BaseModel): TODO: move outside cudagraph logic into compilation. torch.compile will handle cudagraph capture logic in the future. - cudagraph_capture_sizes: sizes to capture cudagraph. - - None: capture sizes are inferred from compilation context. - - List[int]: capture sizes are specified. + - None (default): capture sizes are inferred from vllm config. + - List[int]: capture sizes are specified as given. - cudagraph_num_of_warmups: number of warmup runs for cudagraph. It means the first several runs will be treated as warmup runs. Only after that, the execution will be recorded, and the recorded From 46004e83a2e0b908f28099d93171bfb4934e4722 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Sun, 8 Dec 2024 17:28:27 -0800 Subject: [PATCH 065/733] [misc] clean up and unify logging (#10999) Signed-off-by: youkaichao --- vllm/config.py | 73 ++++++++++++++++++--------------------- vllm/engine/llm_engine.py | 54 ++--------------------------- 2 files changed, 37 insertions(+), 90 deletions(-) diff --git a/vllm/config.py b/vllm/config.py index 38cf642b23cda..7fbe04eaaf4f8 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -2579,45 +2579,40 @@ def __post_init__(self): self.instance_id = random_uuid()[:5] def __str__(self): - return ("model=%r, speculative_config=%r, tokenizer=%r, " - "skip_tokenizer_init=%s, tokenizer_mode=%s, revision=%s, " - "override_neuron_config=%s, tokenizer_revision=%s, " - "trust_remote_code=%s, dtype=%s, max_seq_len=%d, " - "download_dir=%r, load_format=%s, tensor_parallel_size=%d, " - "pipeline_parallel_size=%d, " - "disable_custom_all_reduce=%s, quantization=%s, " - "enforce_eager=%s, kv_cache_dtype=%s, " - "quantization_param_path=%s, device_config=%s, " - "decoding_config=%r, observability_config=%r, " - "seed=%d, served_model_name=%s, " - "num_scheduler_steps=%d, enable_prefix_caching=%s, " - "use_async_output_proc=%s, mm_processor_kwargs=%s") % \ - (self.model_config.model, self.speculative_config, - self.model_config.tokenizer, - self.model_config.skip_tokenizer_init, - self.model_config.tokenizer_mode, - self.model_config.revision, - self.model_config.override_neuron_config, - self.model_config.tokenizer_revision, - self.model_config.trust_remote_code, - self.model_config.dtype, - self.model_config.max_model_len, - self.load_config.download_dir, - self.load_config.load_format, - self.parallel_config.tensor_parallel_size, - self.parallel_config.pipeline_parallel_size, - self.parallel_config.disable_custom_all_reduce, - self.model_config.quantization, - self.model_config.enforce_eager, - self.cache_config.cache_dtype, - self.model_config.quantization_param_path, - self.device_config.device, self.decoding_config, - self.observability_config, self.model_config.seed, - self.model_config.served_model_name, - self.scheduler_config.num_scheduler_steps, - self.cache_config.enable_prefix_caching, - self.model_config.use_async_output_proc, - self.model_config.mm_processor_kwargs) + return ( + f"model={self.model_config.model!r}," + f" speculative_config={self.speculative_config!r}," + f" tokenizer={self.model_config.tokenizer!r}, " + f"skip_tokenizer_init={self.model_config.skip_tokenizer_init}," + f" tokenizer_mode={self.model_config.tokenizer_mode}, " + f"revision={self.model_config.revision}, " + f"override_neuron_config={self.model_config.override_neuron_config}," + f" tokenizer_revision={self.model_config.tokenizer_revision}, " + f"trust_remote_code={self.model_config.trust_remote_code}, " + f"dtype={self.model_config.dtype}, " + f"max_seq_len={self.model_config.max_model_len}," + f" download_dir={self.load_config.download_dir!r}, " + f"load_format={self.load_config.load_format}, " + f"tensor_parallel_size={self.parallel_config.tensor_parallel_size}," + f" pipeline_parallel_size={self.parallel_config.pipeline_parallel_size}, " # noqa + f"disable_custom_all_reduce={self.parallel_config.disable_custom_all_reduce}, " # noqa + f"quantization={self.model_config.quantization}, " + f"enforce_eager={self.model_config.enforce_eager}, " + f"kv_cache_dtype={self.cache_config.cache_dtype}, " + f"quantization_param_path={self.model_config.quantization_param_path}," + f" device_config={self.device_config.device}, " + f"decoding_config={self.decoding_config!r}, " + f"observability_config={self.observability_config!r}, " + f"seed={self.model_config.seed}, " + f"served_model_name={self.model_config.served_model_name}, " + f"num_scheduler_steps={self.scheduler_config.num_scheduler_steps}, " + f"multi_step_stream_outputs={self.scheduler_config.multi_step_stream_outputs}, " # noqa + f"enable_prefix_caching={self.cache_config.enable_prefix_caching}, " + f"chunked_prefill_enabled={self.scheduler_config.chunked_prefill_enabled}, " # noqa + f"use_async_output_proc={self.model_config.use_async_output_proc}, " + f"mm_processor_kwargs={self.model_config.mm_processor_kwargs}, " + f"pooler_config={self.model_config.pooler_config!r}," + f" compilation_config={self.compilation_config!r}") _current_vllm_config: Optional[VllmConfig] = None diff --git a/vllm/engine/llm_engine.py b/vllm/engine/llm_engine.py index 26a8c94099a11..560f84a008291 100644 --- a/vllm/engine/llm_engine.py +++ b/vllm/engine/llm_engine.py @@ -247,60 +247,12 @@ def __init__( ) logger.info( - "Initializing an LLM engine (v%s) with config: " - "model=%r, speculative_config=%r, tokenizer=%r, " - "skip_tokenizer_init=%s, tokenizer_mode=%s, revision=%s, " - "override_neuron_config=%s, tokenizer_revision=%s, " - "trust_remote_code=%s, dtype=%s, max_seq_len=%d, " - "download_dir=%r, load_format=%s, tensor_parallel_size=%d, " - "pipeline_parallel_size=%d, " - "disable_custom_all_reduce=%s, quantization=%s, " - "enforce_eager=%s, kv_cache_dtype=%s, " - "quantization_param_path=%s, device_config=%s, " - "decoding_config=%r, observability_config=%r, " - "seed=%d, served_model_name=%s, " - "num_scheduler_steps=%d, chunked_prefill_enabled=%s " - "multi_step_stream_outputs=%s, enable_prefix_caching=%s, " - "use_async_output_proc=%s, use_cached_outputs=%s, " - "mm_processor_kwargs=%s, pooler_config=%r," - "compilation_config=%r", + "Initializing an LLM engine (v%s) with config: %r," + "use_cached_outputs=%s, ", VLLM_VERSION, - self.model_config.model, - self.speculative_config, - self.model_config.tokenizer, - self.model_config.skip_tokenizer_init, - self.model_config.tokenizer_mode, - self.model_config.revision, - self.model_config.override_neuron_config, - self.model_config.tokenizer_revision, - self.model_config.trust_remote_code, - self.model_config.dtype, - self.model_config.max_model_len, - self.load_config.download_dir, - self.load_config.load_format, - self.parallel_config.tensor_parallel_size, - self.parallel_config.pipeline_parallel_size, - self.parallel_config.disable_custom_all_reduce, - self.model_config.quantization, - self.model_config.enforce_eager, - self.cache_config.cache_dtype, - self.model_config.quantization_param_path, - self.device_config.device, - self.decoding_config, - self.observability_config, - self.model_config.seed, - self.model_config.served_model_name, - self.scheduler_config.num_scheduler_steps, - self.scheduler_config.chunked_prefill_enabled, - self.scheduler_config.multi_step_stream_outputs, - self.cache_config.enable_prefix_caching, - self.model_config.use_async_output_proc, + vllm_config, use_cached_outputs, - self.model_config.mm_processor_kwargs, - self.model_config.pooler_config, - vllm_config.compilation_config, ) - # TODO(woosuk): Print more configs in debug mode. self.log_stats = log_stats self.use_cached_outputs = use_cached_outputs From af7c4a92e654684066e61518d6ed90feda983635 Mon Sep 17 00:00:00 2001 From: Roger Wang <136131678+ywang96@users.noreply.github.com> Date: Sun, 8 Dec 2024 22:29:16 -0800 Subject: [PATCH 066/733] [Doc][V1] Add V1 support column for multimodal models (#10998) Signed-off-by: Roger Wang --- docs/source/models/supported_models.rst | 26 ++++++++++++++++++++++++- 1 file changed, 25 insertions(+), 1 deletion(-) diff --git a/docs/source/models/supported_models.rst b/docs/source/models/supported_models.rst index c9b3fa8485ff1..4e5b10967e3bb 100644 --- a/docs/source/models/supported_models.rst +++ b/docs/source/models/supported_models.rst @@ -495,7 +495,7 @@ Text Generation --------------- .. list-table:: - :widths: 25 25 15 25 5 5 + :widths: 25 25 15 20 5 5 5 :header-rows: 1 * - Architecture @@ -504,47 +504,55 @@ Text Generation - Example HF Models - :ref:`LoRA ` - :ref:`PP ` + - V1 * - :code:`AriaForConditionalGeneration` - Aria - T + I - :code:`rhymes-ai/Aria` - - ✅︎ + - * - :code:`Blip2ForConditionalGeneration` - BLIP-2 - T + I\ :sup:`E` - :code:`Salesforce/blip2-opt-2.7b`, :code:`Salesforce/blip2-opt-6.7b`, etc. - - ✅︎ + - * - :code:`ChameleonForConditionalGeneration` - Chameleon - T + I - :code:`facebook/chameleon-7b` etc. - - ✅︎ + - * - :code:`FuyuForCausalLM` - Fuyu - T + I - :code:`adept/fuyu-8b` etc. - - ✅︎ + - * - :code:`ChatGLMModel` - GLM-4V - T + I - :code:`THUDM/glm-4v-9b` etc. - ✅︎ - ✅︎ + - * - :code:`H2OVLChatModel` - H2OVL - T + I\ :sup:`E+` - :code:`h2oai/h2ovl-mississippi-800m`, :code:`h2oai/h2ovl-mississippi-2b`, etc. - - ✅︎ + - * - :code:`Idefics3ForConditionalGeneration` - Idefics3 - T + I - :code:`HuggingFaceM4/Idefics3-8B-Llama3` etc. - ✅︎ + - - * - :code:`InternVLChatModel` - InternVL 2.5, Mono-InternVL, InternVL 2.0 @@ -552,96 +560,112 @@ Text Generation - :code:`OpenGVLab/InternVL2_5-4B`, :code:`OpenGVLab/Mono-InternVL-2B`, :code:`OpenGVLab/InternVL2-4B`, etc. - - ✅︎ + - ✅︎ * - :code:`LlavaForConditionalGeneration` - LLaVA-1.5 - T + I\ :sup:`E+` - :code:`llava-hf/llava-1.5-7b-hf`, :code:`TIGER-Lab/Mantis-8B-siglip-llama3` (see note), etc. - - ✅︎ + - ✅︎ * - :code:`LlavaNextForConditionalGeneration` - LLaVA-NeXT - T + I\ :sup:`E+` - :code:`llava-hf/llava-v1.6-mistral-7b-hf`, :code:`llava-hf/llava-v1.6-vicuna-7b-hf`, etc. - - ✅︎ + - * - :code:`LlavaNextVideoForConditionalGeneration` - LLaVA-NeXT-Video - T + V - :code:`llava-hf/LLaVA-NeXT-Video-7B-hf`, etc. - - ✅︎ + - * - :code:`LlavaOnevisionForConditionalGeneration` - LLaVA-Onevision - T + I\ :sup:`+` + V\ :sup:`+` - :code:`llava-hf/llava-onevision-qwen2-7b-ov-hf`, :code:`llava-hf/llava-onevision-qwen2-0.5b-ov-hf`, etc. - - ✅︎ + - * - :code:`MiniCPMV` - MiniCPM-V - T + I\ :sup:`E+` - :code:`openbmb/MiniCPM-V-2` (see note), :code:`openbmb/MiniCPM-Llama3-V-2_5`, :code:`openbmb/MiniCPM-V-2_6`, etc. - ✅︎ - ✅︎ + - * - :code:`MllamaForConditionalGeneration` - Llama 3.2 - T + I\ :sup:`+` - :code:`meta-llama/Llama-3.2-90B-Vision-Instruct`, :code:`meta-llama/Llama-3.2-11B-Vision`, etc. - - + - * - :code:`MolmoForCausalLM` - Molmo - T + I - :code:`allenai/Molmo-7B-D-0924`, :code:`allenai/Molmo-72B-0924`, etc. - - ✅︎ + - ✅︎ * - :code:`NVLM_D_Model` - NVLM-D 1.0 - T + I\ :sup:`E+` - :code:`nvidia/NVLM-D-72B`, etc. - - ✅︎ + - ✅︎ * - :code:`PaliGemmaForConditionalGeneration` - PaliGemma - T + I\ :sup:`E` - :code:`google/paligemma-3b-pt-224`, :code:`google/paligemma-3b-mix-224`, etc. - - ✅︎ + - * - :code:`Phi3VForCausalLM` - Phi-3-Vision, Phi-3.5-Vision - T + I\ :sup:`E+` - :code:`microsoft/Phi-3-vision-128k-instruct`, :code:`microsoft/Phi-3.5-vision-instruct` etc. - - ✅︎ + - ✅︎ * - :code:`PixtralForConditionalGeneration` - Pixtral - T + I\ :sup:`+` - :code:`mistralai/Pixtral-12B-2409`, :code:`mistral-community/pixtral-12b` etc. - - ✅︎ + - ✅︎ * - :code:`QWenLMHeadModel` - Qwen-VL - T + I\ :sup:`E+` - :code:`Qwen/Qwen-VL`, :code:`Qwen/Qwen-VL-Chat`, etc. - ✅︎ - ✅︎ + - * - :code:`Qwen2AudioForConditionalGeneration` - Qwen2-Audio - T + A\ :sup:`+` - :code:`Qwen/Qwen2-Audio-7B-Instruct` - - ✅︎ + - * - :code:`Qwen2VLForConditionalGeneration` - Qwen2-VL - T + I\ :sup:`E+` + V\ :sup:`E+` - :code:`Qwen/Qwen2-VL-2B-Instruct`, :code:`Qwen/Qwen2-VL-7B-Instruct`, :code:`Qwen/Qwen2-VL-72B-Instruct`, etc. - ✅︎ - ✅︎ + - * - :code:`UltravoxModel` - Ultravox - T + A\ :sup:`E+` - :code:`fixie-ai/ultravox-v0_3` - - ✅︎ + - | :sup:`E` Pre-computed embeddings can be inputted for this modality. | :sup:`+` Multiple items can be inputted per text prompt for this modality. From d1c2e15eb31ef12e688ce0cb71895f88eaf4cd4f Mon Sep 17 00:00:00 2001 From: youkaichao Date: Sun, 8 Dec 2024 23:09:04 -0800 Subject: [PATCH 067/733] [torch.compile] add dynamo time tracking (#11005) Signed-off-by: youkaichao --- vllm/compilation/backends.py | 6 ++++++ vllm/compilation/decorators.py | 6 +++--- vllm/compilation/monitor.py | 9 +++++++-- 3 files changed, 16 insertions(+), 5 deletions(-) diff --git a/vllm/compilation/backends.py b/vllm/compilation/backends.py index 1206424ae1e3f..f002a8ff905b1 100644 --- a/vllm/compilation/backends.py +++ b/vllm/compilation/backends.py @@ -265,7 +265,13 @@ def configure_post_pass(self): def __call__(self, graph: fx.GraphModule, example_inputs) -> Callable: + # when dynamo calls the backend, it means the bytecode + # transform and analysis are done compilation_counter.num_graphs_seen += 1 + from .monitor import torch_compile_start_time + dynamo_time = time.time() - torch_compile_start_time + logger.info("Dynamo bytecode transform time: %.2f s", dynamo_time) + self.compilation_configs.compilation_time += dynamo_time # we control the compilation process, each instance can only be # called once diff --git a/vllm/compilation/decorators.py b/vllm/compilation/decorators.py index a32dced57e5b3..938430fe2a501 100644 --- a/vllm/compilation/decorators.py +++ b/vllm/compilation/decorators.py @@ -145,6 +145,7 @@ def _support_torch_compile( def __init__(self, *, vllm_config: VllmConfig, prefix: str = '', **kwargs): old_init(self, vllm_config=vllm_config, prefix=prefix, **kwargs) + self.vllm_config = vllm_config # for CompilationLevel.DYNAMO_AS_IS , the upper level model runner # will handle the compilation, so we don't need to do anything here. self.do_not_compile = \ @@ -157,9 +158,6 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = '', **kwargs): TorchCompileWrapperWithCustomDispatcher.__init__( self, compilation_level=vllm_config.compilation_config.level) - if vllm_config.compilation_config.level == CompilationLevel.PIECEWISE: - start_monitoring_torch_compile(vllm_config.compilation_config) - cls.__init__ = __init__ def __call__(self, *args, **kwargs): @@ -186,6 +184,8 @@ def __call__(self, *args, **kwargs): raise ValueError( "Unsupported dynamic dimensions" f" {dims} for argument {k} with type {type(arg)}.") + # here, it is the starting point of the `torch.compile` process + start_monitoring_torch_compile(self.vllm_config.compilation_config) # if we don't use custom dispatcher, we can directly call the # compiled function and let torch.compile handle the dispatching, diff --git a/vllm/compilation/monitor.py b/vllm/compilation/monitor.py index f718e46423212..3348674b09af2 100644 --- a/vllm/compilation/monitor.py +++ b/vllm/compilation/monitor.py @@ -1,14 +1,19 @@ +import time + from vllm.config import CompilationConfig, CompilationLevel from vllm.logger import init_logger logger = init_logger(__name__) +torch_compile_start_time: float = 0.0 + def start_monitoring_torch_compile(compilation_config: CompilationConfig): - pass + global torch_compile_start_time + torch_compile_start_time = time.time() def end_monitoring_torch_compile(compilation_config: CompilationConfig): if compilation_config.level == CompilationLevel.PIECEWISE: - logger.info("graph compilation takes %.2f s in total", + logger.info("torch.compile takes %.2f s in total", compilation_config.compilation_time) From c690357928fd2812f450bfb0c3629a816f5e9a55 Mon Sep 17 00:00:00 2001 From: Roger Wang <136131678+ywang96@users.noreply.github.com> Date: Mon, 9 Dec 2024 08:27:10 -0800 Subject: [PATCH 068/733] [V1] Fix Detokenizer loading in `AsyncLLM` (#10997) Signed-off-by: Roger Wang --- vllm/v1/engine/async_llm.py | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/vllm/v1/engine/async_llm.py b/vllm/v1/engine/async_llm.py index 4ef372fd8464b..0bcccda2bf329 100644 --- a/vllm/v1/engine/async_llm.py +++ b/vllm/v1/engine/async_llm.py @@ -65,7 +65,12 @@ def __init__( input_registry) # Detokenizer (converts EngineCoreOutputs --> RequestOutput). - self.detokenizer = Detokenizer(vllm_config.model_config.tokenizer) + self.detokenizer = Detokenizer( + tokenizer_name=vllm_config.model_config.tokenizer, + tokenizer_mode=vllm_config.model_config.tokenizer_mode, + trust_remote_code=vllm_config.model_config.trust_remote_code, + revision=vllm_config.model_config.tokenizer_revision, + ) # EngineCore (starts the engine in background process). self.engine_core = EngineCoreClient.make_client( From e691b26f6fae5a3a1c220d15f20de83c7d78ed51 Mon Sep 17 00:00:00 2001 From: Russell Bryant Date: Mon, 9 Dec 2024 11:44:27 -0500 Subject: [PATCH 069/733] [Core] Require xgrammar >= 0.1.6 (#11021) Signed-off-by: Russell Bryant --- requirements-common.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements-common.txt b/requirements-common.txt index 72fb020a82c4e..112528880c0ac 100644 --- a/requirements-common.txt +++ b/requirements-common.txt @@ -19,7 +19,7 @@ prometheus-fastapi-instrumentator >= 7.0.0 tiktoken >= 0.6.0 # Required for DBRX tokenizer lm-format-enforcer >= 0.10.9, < 0.11 outlines >= 0.0.43, < 0.1 -xgrammar >= 0.1.5; platform_machine == "x86_64" +xgrammar >= 0.1.6; platform_machine == "x86_64" typing_extensions >= 4.10 filelock >= 3.16.1 # need to contain https://github.com/tox-dev/filelock/pull/317 partial-json-parser # used for parsing partial JSON outputs From aea2fc38c3b31b9a8ea7d1cffb8f37a2da6f6075 Mon Sep 17 00:00:00 2001 From: wangxiyuan Date: Tue, 10 Dec 2024 01:24:46 +0800 Subject: [PATCH 070/733] [Platform] Move `async output` check to platform (#10768) Signed-off-by: wangxiyuan --- vllm/config.py | 17 +++-------------- vllm/platforms/cpu.py | 6 +++++- vllm/platforms/cuda.py | 12 +++++++++++- vllm/platforms/hpu.py | 6 +++++- vllm/platforms/interface.py | 11 +++++++++++ vllm/platforms/neuron.py | 6 +++++- vllm/platforms/openvino.py | 6 +++++- vllm/platforms/rocm.py | 12 +++++++++++- vllm/platforms/tpu.py | 6 +++++- vllm/platforms/xpu.py | 6 +++++- 10 files changed, 66 insertions(+), 22 deletions(-) diff --git a/vllm/config.py b/vllm/config.py index 7fbe04eaaf4f8..29f0839dcabba 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -513,11 +513,10 @@ def verify_async_output_proc(self, parallel_config, speculative_config, # Reminder: Please update docs/source/usage/compatibility_matrix.rst # If the feature combo become valid - if device_config.device_type not in ("cuda", "tpu", "xpu", "hpu"): + if not current_platform.is_async_output_supported(self.enforce_eager): logger.warning( - "Async output processing is only supported for CUDA, TPU, XPU " - "and HPU." - "Disabling it for other platforms.") + "Async output processing is not supported on the " + "current platform type %s.", current_platform.device_type) self.use_async_output_proc = False return @@ -527,16 +526,6 @@ def verify_async_output_proc(self, parallel_config, speculative_config, self.use_async_output_proc = False return - # Reminder: Please update docs/source/usage/compatibility_matrix.rst - # If the feature combo become valid - if device_config.device_type == "cuda" and self.enforce_eager: - logger.warning( - "To see benefits of async output processing, enable CUDA " - "graph. Since, enforce-eager is enabled, async output " - "processor cannot be used") - self.use_async_output_proc = not self.enforce_eager - return - # Async postprocessor is not necessary with embedding mode # since there is no token generation if self.task == "embedding": diff --git a/vllm/platforms/cpu.py b/vllm/platforms/cpu.py index 680ee74129739..e5142b985d1f2 100644 --- a/vllm/platforms/cpu.py +++ b/vllm/platforms/cpu.py @@ -1,4 +1,4 @@ -from typing import TYPE_CHECKING +from typing import TYPE_CHECKING, Optional import psutil import torch @@ -37,6 +37,10 @@ def get_default_attn_backend(cls, selected_backend: _Backend) -> _Backend: def get_device_total_memory(cls, device_id: int = 0) -> int: return psutil.virtual_memory().total + @classmethod + def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool: + return False + @classmethod def inference_mode(cls): return torch.no_grad() diff --git a/vllm/platforms/cuda.py b/vllm/platforms/cuda.py index 846a1869da228..edaf377b501df 100644 --- a/vllm/platforms/cuda.py +++ b/vllm/platforms/cuda.py @@ -4,7 +4,7 @@ import os from functools import lru_cache, wraps -from typing import TYPE_CHECKING, Callable, List, TypeVar +from typing import TYPE_CHECKING, Callable, List, Optional, TypeVar import pynvml import torch @@ -88,6 +88,16 @@ def get_device_name(cls, device_id: int = 0) -> str: def get_device_total_memory(cls, device_id: int = 0) -> int: raise NotImplementedError + @classmethod + def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool: + if enforce_eager: + logger.warning( + "To see benefits of async output processing, enable CUDA " + "graph. Since, enforce-eager is enabled, async output " + "processor cannot be used") + return False + return True + @classmethod def is_full_nvlink(cls, device_ids: List[int]) -> bool: raise NotImplementedError diff --git a/vllm/platforms/hpu.py b/vllm/platforms/hpu.py index 10aaa6d54962c..7f22bee3eaa74 100644 --- a/vllm/platforms/hpu.py +++ b/vllm/platforms/hpu.py @@ -1,4 +1,4 @@ -from typing import TYPE_CHECKING +from typing import TYPE_CHECKING, Optional import torch @@ -20,6 +20,10 @@ class HpuPlatform(Platform): def get_default_attn_backend(cls, selected_backend: _Backend) -> _Backend: return _Backend.HPU_ATTN + @classmethod + def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool: + return True + @staticmethod def inference_mode(): return torch.no_grad() diff --git a/vllm/platforms/interface.py b/vllm/platforms/interface.py index 0be7df7941b8b..db06d2c18e681 100644 --- a/vllm/platforms/interface.py +++ b/vllm/platforms/interface.py @@ -6,11 +6,15 @@ import numpy as np import torch +from vllm.logger import init_logger + if TYPE_CHECKING: from vllm.config import VllmConfig else: VllmConfig = None +logger = init_logger(__name__) + class _Backend(enum.Enum): FLASH_ATTN = enum.auto() @@ -147,6 +151,13 @@ def get_device_total_memory(cls, device_id: int = 0) -> int: """Get the total memory of a device in bytes.""" raise NotImplementedError + @classmethod + def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool: + """ + Check if the current platform supports async output. + """ + raise NotImplementedError + @classmethod def inference_mode(cls): """A device-specific wrapper of `torch.inference_mode`. diff --git a/vllm/platforms/neuron.py b/vllm/platforms/neuron.py index 87655ea198303..1e5c4bddfa24f 100644 --- a/vllm/platforms/neuron.py +++ b/vllm/platforms/neuron.py @@ -1,4 +1,4 @@ -from typing import TYPE_CHECKING +from typing import TYPE_CHECKING, Optional from .interface import Platform, PlatformEnum @@ -18,6 +18,10 @@ class NeuronPlatform(Platform): def get_device_name(cls, device_id: int = 0) -> str: return "neuron" + @classmethod + def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool: + return False + @classmethod def check_and_update_config(cls, vllm_config: VllmConfig) -> None: parallel_config = vllm_config.parallel_config diff --git a/vllm/platforms/openvino.py b/vllm/platforms/openvino.py index 29b61e955d9ab..e0f8e8b4b49fe 100644 --- a/vllm/platforms/openvino.py +++ b/vllm/platforms/openvino.py @@ -1,4 +1,4 @@ -from typing import TYPE_CHECKING +from typing import TYPE_CHECKING, Optional import torch @@ -37,6 +37,10 @@ def get_default_attn_backend(cls, selected_backend: _Backend) -> _Backend: def get_device_name(self, device_id: int = 0) -> str: return "openvino" + @classmethod + def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool: + return False + @classmethod def inference_mode(self): return torch.inference_mode(mode=True) diff --git a/vllm/platforms/rocm.py b/vllm/platforms/rocm.py index 3c14fbc179f69..66674e3ebe91f 100644 --- a/vllm/platforms/rocm.py +++ b/vllm/platforms/rocm.py @@ -1,6 +1,6 @@ import os from functools import lru_cache -from typing import TYPE_CHECKING +from typing import TYPE_CHECKING, Optional import torch @@ -72,6 +72,16 @@ def get_device_total_memory(cls, device_id: int = 0) -> int: device_props = torch.cuda.get_device_properties(device_id) return device_props.total_memory + @classmethod + def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool: + if enforce_eager: + logger.warning( + "To see benefits of async output processing, enable CUDA " + "graph. Since, enforce-eager is enabled, async output " + "processor cannot be used") + return False + return True + @classmethod def check_and_update_config(cls, vllm_config: VllmConfig) -> None: parallel_config = vllm_config.parallel_config diff --git a/vllm/platforms/tpu.py b/vllm/platforms/tpu.py index b138f7e1c54c5..10d874349f36b 100644 --- a/vllm/platforms/tpu.py +++ b/vllm/platforms/tpu.py @@ -1,4 +1,4 @@ -from typing import TYPE_CHECKING +from typing import TYPE_CHECKING, Optional import torch @@ -35,6 +35,10 @@ def get_device_name(cls, device_id: int = 0) -> str: def get_device_total_memory(cls, device_id: int = 0) -> int: raise NotImplementedError + @classmethod + def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool: + return True + @classmethod def inference_mode(cls): return torch.no_grad() diff --git a/vllm/platforms/xpu.py b/vllm/platforms/xpu.py index 9665786f4c499..11dbd04d55671 100644 --- a/vllm/platforms/xpu.py +++ b/vllm/platforms/xpu.py @@ -1,4 +1,4 @@ -from typing import TYPE_CHECKING +from typing import TYPE_CHECKING, Optional import torch @@ -41,6 +41,10 @@ def get_device_total_memory(cls, device_id: int = 0) -> int: device_props = torch.xpu.get_device_properties(device_id) return device_props.total_memory + @classmethod + def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool: + return True + @staticmethod def inference_mode(): return torch.no_grad() From 679a15cbdb64d1806286ecc0dd317768c58cdbf9 Mon Sep 17 00:00:00 2001 From: Hosang <156028780+hyoon1@users.noreply.github.com> Date: Mon, 9 Dec 2024 12:30:40 -0500 Subject: [PATCH 071/733] Fix max_seqlens_q/k initialization for Navi GPUs (#310) - max_seqlens_q/k variables were not correctly initialized for Navi GPUs leading to incorrect outputs. - ensure that the correct values are passed to the attn_fwd kernel based on the GPU type. --- vllm/attention/ops/triton_flash_attention.py | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/vllm/attention/ops/triton_flash_attention.py b/vllm/attention/ops/triton_flash_attention.py index a49df831b46ea..3671c2f91e3b7 100644 --- a/vllm/attention/ops/triton_flash_attention.py +++ b/vllm/attention/ops/triton_flash_attention.py @@ -912,9 +912,8 @@ def check_and_convert(t, scale): p_descale = 1.0 / p_scale o_descale = 1.0 / o_scale - if is_navi(): - max_seqlens_q = 0 - max_seqlens_k = 0 + arg_max_seqlens_q = 0 if is_navi() else max_seqlens_q + arg_max_seqlens_k = 0 if is_navi() else max_seqlens_k attn_fwd[grid]( q, @@ -944,8 +943,8 @@ def check_and_convert(t, scale): HQ=nheads_q, HK=nheads_k, ACTUAL_BLOCK_DMODEL=head_size, - MAX_SEQLENS_Q=max_seqlens_q, - MAX_SEQLENS_K=max_seqlens_k, + MAX_SEQLENS_Q=arg_max_seqlens_q, + MAX_SEQLENS_K=arg_max_seqlens_k, IS_CAUSAL=causal, VARLEN=True, BLOCK_DMODEL=padded_d_model, From 25b79d9fd38e2c53ce281be23241d8939ec7320c Mon Sep 17 00:00:00 2001 From: Varun Sundar Rabindranath Date: Mon, 9 Dec 2024 12:33:41 -0500 Subject: [PATCH 072/733] [V1] Input Batch Relocation (#10962) Signed-off-by: Varun Sundar Rabindranath Co-authored-by: Varun Sundar Rabindranath --- vllm/v1/worker/gpu_input_batch.py | 280 +++++++++++++++++++++++++++++ vllm/v1/worker/gpu_model_runner.py | 273 +--------------------------- 2 files changed, 283 insertions(+), 270 deletions(-) create mode 100644 vllm/v1/worker/gpu_input_batch.py diff --git a/vllm/v1/worker/gpu_input_batch.py b/vllm/v1/worker/gpu_input_batch.py new file mode 100644 index 0000000000000..457784bb0287c --- /dev/null +++ b/vllm/v1/worker/gpu_input_batch.py @@ -0,0 +1,280 @@ +# Datastructures defining an input batch + +from dataclasses import dataclass +from typing import TYPE_CHECKING, Dict, List, Optional, Set + +import numpy as np +import torch + +from vllm.multimodal import MultiModalKwargs +from vllm.sampling_params import SamplingParams, SamplingType +from vllm.v1.sample.metadata import SamplingMetadata + +if TYPE_CHECKING: + from vllm.multimodal.inputs import PlaceholderRange + + +@dataclass +class CachedRequestState: + + req_id: str + prompt_token_ids: List[int] + prompt: Optional[str] + mm_inputs: List[MultiModalKwargs] + mm_positions: List["PlaceholderRange"] + sampling_params: SamplingParams + generator: Optional[torch.Generator] + + block_ids: List[int] + num_computed_tokens: int + output_token_ids: List[int] + + @property + def num_tokens(self) -> int: + return len(self.prompt_token_ids) + len(self.output_token_ids) + + +class InputBatch: + + def __init__( + self, + max_num_reqs: int, + max_model_len: int, + max_num_blocks_per_req: int, + device: torch.device, + pin_memory: bool, + ): + self.max_num_reqs = max_num_reqs + self.max_model_len = max_model_len + self.max_num_blocks_per_req = max_num_blocks_per_req + self.device = device + self.pin_memory = pin_memory + + self.req_ids: List[Optional[str]] = [None] * max_num_reqs + self.req_id_to_index: Dict[str, int] = {} + + self.token_ids_cpu = np.empty((max_num_reqs, max_model_len), + dtype=np.int32) + self.num_computed_tokens_cpu = np.empty(max_num_reqs, dtype=np.int32) + + # Attention-related. + self.block_table = torch.zeros((max_num_reqs, max_num_blocks_per_req), + device=self.device, + dtype=torch.int32) + self.block_table_cpu_tensor = torch.zeros( + (max_num_reqs, max_num_blocks_per_req), + device="cpu", + dtype=torch.int32, + pin_memory=pin_memory, + ) + self.block_table_cpu = self.block_table_cpu_tensor.numpy() + + # Sampling-related. + self.temperature = torch.empty((max_num_reqs, ), + dtype=torch.float32, + device=device) + self.temperature_cpu_tensor = torch.empty((max_num_reqs, ), + dtype=torch.float32, + device="cpu", + pin_memory=pin_memory) + self.temperature_cpu = self.temperature_cpu_tensor.numpy() + self.greedy_reqs: Set[str] = set() + self.random_reqs: Set[str] = set() + + self.top_p = torch.empty((max_num_reqs, ), + dtype=torch.float32, + device=device) + self.top_p_cpu_tensor = torch.empty((max_num_reqs, ), + dtype=torch.float32, + device="cpu", + pin_memory=pin_memory) + self.top_p_cpu = self.top_p_cpu_tensor.numpy() + self.top_p_reqs: Set[str] = set() + + self.top_k = torch.empty((max_num_reqs, ), + dtype=torch.int32, + device=device) + self.top_k_cpu_tensor = torch.empty((max_num_reqs, ), + dtype=torch.int32, + device="cpu", + pin_memory=pin_memory) + self.top_k_cpu = self.top_k_cpu_tensor.numpy() + self.top_k_reqs: Set[str] = set() + + # req_index -> generator + self.generators: Dict[int, torch.Generator] = {} + + self.num_logprobs: Dict[str, int] = {} + self.prompt_logprob_reqs: Set[str] = set() + + def add_request( + self, + request: "CachedRequestState", + req_index: Optional[int] = None, + ) -> None: + if req_index is None: + req_index = self.num_reqs + assert req_index < self.max_num_reqs + + req_id = request.req_id + self.req_ids[req_index] = req_id + self.req_id_to_index[req_id] = req_index + + # Copy the prompt token ids and output token ids. + num_prompt_tokens = len(request.prompt_token_ids) + self.token_ids_cpu[ + req_index, :num_prompt_tokens] = request.prompt_token_ids + start_idx = num_prompt_tokens + end_idx = start_idx + len(request.output_token_ids) + self.token_ids_cpu[req_index, + start_idx:end_idx] = request.output_token_ids + + self.num_computed_tokens_cpu[req_index] = request.num_computed_tokens + num_blocks = len(request.block_ids) + self.block_table_cpu[req_index, :num_blocks] = request.block_ids + + sampling_params = request.sampling_params + self.temperature_cpu[req_index] = sampling_params.temperature + if sampling_params.sampling_type == SamplingType.GREEDY: + self.greedy_reqs.add(req_id) + else: + self.random_reqs.add(req_id) + + self.top_p_cpu[req_index] = sampling_params.top_p + if sampling_params.top_p < 1: + self.top_p_reqs.add(req_id) + self.top_k_cpu[req_index] = sampling_params.top_k + if sampling_params.top_k > 0: + self.top_k_reqs.add(req_id) + + self.generators[req_index] = request.generator + + num_logprobs = sampling_params.logprobs + if num_logprobs is not None and num_logprobs > 0: + self.num_logprobs[req_id] = num_logprobs + if sampling_params.prompt_logprobs: + self.prompt_logprob_reqs.add(req_id) + + def remove_request(self, req_id: str) -> Optional[int]: + req_index = self.req_id_to_index.pop(req_id, None) + if req_index is None: + return None + self.req_ids[req_index] = None + + self.greedy_reqs.discard(req_id) + self.random_reqs.discard(req_id) + self.top_p_reqs.discard(req_id) + self.top_k_reqs.discard(req_id) + self.generators.pop(req_index, None) + self.num_logprobs.pop(req_id, None) + self.prompt_logprob_reqs.discard(req_id) + return req_index + + def clear(self) -> None: + self.req_ids = [None] * self.max_num_reqs + self.req_id_to_index.clear() + self.greedy_reqs.clear() + self.random_reqs.clear() + self.top_p_reqs.clear() + self.top_k_reqs.clear() + self.generators.clear() + self.num_logprobs.clear() + self.prompt_logprob_reqs.clear() + + def condense(self, empty_req_indices: List[int]) -> None: + if self.num_reqs == 0: + # The batched states are empty. + return + + # NOTE(woosuk): This function assumes that the empty_req_indices + # is sorted in descending order. + last_req_index = self.num_reqs + len(empty_req_indices) - 1 + while empty_req_indices: + # Find the largest non-empty index. + while last_req_index in empty_req_indices: + last_req_index -= 1 + + # Find the smallest empty index. + empty_index = empty_req_indices.pop() + if empty_index >= last_req_index: + break + + # Swap the states. + req_id = self.req_ids[last_req_index] + self.req_ids[empty_index] = req_id + self.req_ids[last_req_index] = None + self.req_id_to_index[req_id] = empty_index + + # TODO(woosuk): Optimize the copy of token_ids_cpu and + # block_table_cpu. + self.token_ids_cpu[empty_index] = self.token_ids_cpu[ + last_req_index] + self.num_computed_tokens_cpu[ + empty_index] = self.num_computed_tokens_cpu[last_req_index] + self.block_table_cpu[empty_index] = self.block_table_cpu[ + last_req_index] + self.temperature_cpu[empty_index] = self.temperature_cpu[ + last_req_index] + self.top_p_cpu[empty_index] = self.top_p_cpu[last_req_index] + self.top_k_cpu[empty_index] = self.top_k_cpu[last_req_index] + generator = self.generators.pop(last_req_index, None) + if generator is not None: + self.generators[empty_index] = generator + + # Decrement last_req_index since it is now empty. + last_req_index -= 1 + + def make_sampling_metadata( + self, + skip_copy: bool = False, + ) -> SamplingMetadata: + if not skip_copy: + self.temperature[:self.num_reqs].copy_( + self.temperature_cpu_tensor[:self.num_reqs], non_blocking=True) + self.top_p[:self.num_reqs].copy_( + self.top_p_cpu_tensor[:self.num_reqs], non_blocking=True) + self.top_k[:self.num_reqs].copy_( + self.top_k_cpu_tensor[:self.num_reqs], non_blocking=True) + return SamplingMetadata( + temperature=self.temperature[:self.num_reqs], + all_greedy=self.all_greedy, + all_random=self.all_random, + top_p=self.top_p[:self.num_reqs], + top_k=self.top_k[:self.num_reqs], + no_top_p=self.no_top_p, + no_top_k=self.no_top_k, + generators=self.generators, + max_num_logprobs=self.max_num_logprobs, + ) + + @property + def num_reqs(self) -> int: + return len(self.req_id_to_index) + + @property + def all_greedy(self) -> bool: + return len(self.random_reqs) == 0 + + @property + def all_random(self) -> bool: + return len(self.greedy_reqs) == 0 + + @property + def no_top_p(self) -> bool: + return len(self.top_p_reqs) == 0 + + @property + def no_top_k(self) -> bool: + return len(self.top_k_reqs) == 0 + + @property + def max_num_logprobs(self) -> int: + return max(self.num_logprobs.values()) if self.num_logprobs else 0 + + @property + def no_logprob(self) -> bool: + return len(self.num_logprobs) == 0 + + @property + def no_prompt_logprob(self) -> bool: + return len(self.prompt_logprob_reqs) == 0 diff --git a/vllm/v1/worker/gpu_model_runner.py b/vllm/v1/worker/gpu_model_runner.py index e8d964a722f60..7f95be06188e3 100644 --- a/vllm/v1/worker/gpu_model_runner.py +++ b/vllm/v1/worker/gpu_model_runner.py @@ -1,7 +1,6 @@ import gc import time -from dataclasses import dataclass -from typing import TYPE_CHECKING, Dict, List, Optional, Set, Tuple +from typing import TYPE_CHECKING, Dict, List, Optional, Tuple import numpy as np import torch @@ -15,16 +14,16 @@ from vllm.logger import init_logger from vllm.model_executor.model_loader import get_model from vllm.multimodal import MultiModalKwargs -from vllm.sampling_params import SamplingParams, SamplingType +from vllm.sampling_params import SamplingType from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, DeviceMemoryProfiler, cdiv, is_pin_memory_available) from vllm.v1.attention.backends.flash_attn import (FlashAttentionBackend, FlashAttentionMetadata) from vllm.v1.outputs import ModelRunnerOutput from vllm.v1.sample.metadata import SamplingMetadata +from vllm.v1.worker.gpu_input_batch import CachedRequestState, InputBatch if TYPE_CHECKING: - from vllm.multimodal.inputs import PlaceholderRange from vllm.v1.core.scheduler import SchedulerOutput logger = init_logger(__name__) @@ -609,269 +608,3 @@ def _get_padded_batch_size(self, batch_size: int) -> Optional[int]: if batch_size <= size: return size return None - - -@dataclass -class CachedRequestState: - - req_id: str - prompt_token_ids: List[int] - prompt: Optional[str] - mm_inputs: List[MultiModalKwargs] - mm_positions: List["PlaceholderRange"] - sampling_params: SamplingParams - generator: Optional[torch.Generator] - - block_ids: List[int] - num_computed_tokens: int - output_token_ids: List[int] - - @property - def num_tokens(self) -> int: - return len(self.prompt_token_ids) + len(self.output_token_ids) - - -class InputBatch: - - def __init__( - self, - max_num_reqs: int, - max_model_len: int, - max_num_blocks_per_req: int, - device: torch.device, - pin_memory: bool, - ): - self.max_num_reqs = max_num_reqs - self.max_model_len = max_model_len - self.max_num_blocks_per_req = max_num_blocks_per_req - self.device = device - self.pin_memory = pin_memory - - self.req_ids: List[Optional[str]] = [None] * max_num_reqs - self.req_id_to_index: Dict[str, int] = {} - - self.token_ids_cpu = np.empty((max_num_reqs, max_model_len), - dtype=np.int32) - self.num_computed_tokens_cpu = np.empty(max_num_reqs, dtype=np.int32) - - # Attention-related. - self.block_table = torch.zeros((max_num_reqs, max_num_blocks_per_req), - device=self.device, - dtype=torch.int32) - self.block_table_cpu_tensor = torch.zeros( - (max_num_reqs, max_num_blocks_per_req), - device="cpu", - dtype=torch.int32, - pin_memory=pin_memory, - ) - self.block_table_cpu = self.block_table_cpu_tensor.numpy() - - # Sampling-related. - self.temperature = torch.empty((max_num_reqs, ), - dtype=torch.float32, - device=device) - self.temperature_cpu_tensor = torch.empty((max_num_reqs, ), - dtype=torch.float32, - device="cpu", - pin_memory=pin_memory) - self.temperature_cpu = self.temperature_cpu_tensor.numpy() - self.greedy_reqs: Set[str] = set() - self.random_reqs: Set[str] = set() - - self.top_p = torch.empty((max_num_reqs, ), - dtype=torch.float32, - device=device) - self.top_p_cpu_tensor = torch.empty((max_num_reqs, ), - dtype=torch.float32, - device="cpu", - pin_memory=pin_memory) - self.top_p_cpu = self.top_p_cpu_tensor.numpy() - self.top_p_reqs: Set[str] = set() - - self.top_k = torch.empty((max_num_reqs, ), - dtype=torch.int32, - device=device) - self.top_k_cpu_tensor = torch.empty((max_num_reqs, ), - dtype=torch.int32, - device="cpu", - pin_memory=pin_memory) - self.top_k_cpu = self.top_k_cpu_tensor.numpy() - self.top_k_reqs: Set[str] = set() - - # req_index -> generator - self.generators: Dict[int, torch.Generator] = {} - - self.num_logprobs: Dict[str, int] = {} - self.prompt_logprob_reqs: Set[str] = set() - - def add_request( - self, - request: "CachedRequestState", - req_index: Optional[int] = None, - ) -> None: - if req_index is None: - req_index = self.num_reqs - assert req_index < self.max_num_reqs - - req_id = request.req_id - self.req_ids[req_index] = req_id - self.req_id_to_index[req_id] = req_index - - # Copy the prompt token ids and output token ids. - num_prompt_tokens = len(request.prompt_token_ids) - self.token_ids_cpu[ - req_index, :num_prompt_tokens] = request.prompt_token_ids - start_idx = num_prompt_tokens - end_idx = start_idx + len(request.output_token_ids) - self.token_ids_cpu[req_index, - start_idx:end_idx] = request.output_token_ids - - self.num_computed_tokens_cpu[req_index] = request.num_computed_tokens - num_blocks = len(request.block_ids) - self.block_table_cpu[req_index, :num_blocks] = request.block_ids - - sampling_params = request.sampling_params - self.temperature_cpu[req_index] = sampling_params.temperature - if sampling_params.sampling_type == SamplingType.GREEDY: - self.greedy_reqs.add(req_id) - else: - self.random_reqs.add(req_id) - - self.top_p_cpu[req_index] = sampling_params.top_p - if sampling_params.top_p < 1: - self.top_p_reqs.add(req_id) - self.top_k_cpu[req_index] = sampling_params.top_k - if sampling_params.top_k > 0: - self.top_k_reqs.add(req_id) - - self.generators[req_index] = request.generator - - num_logprobs = sampling_params.logprobs - if num_logprobs is not None and num_logprobs > 0: - self.num_logprobs[req_id] = num_logprobs - if sampling_params.prompt_logprobs: - self.prompt_logprob_reqs.add(req_id) - - def remove_request(self, req_id: str) -> Optional[int]: - req_index = self.req_id_to_index.pop(req_id, None) - if req_index is None: - return None - self.req_ids[req_index] = None - - self.greedy_reqs.discard(req_id) - self.random_reqs.discard(req_id) - self.top_p_reqs.discard(req_id) - self.top_k_reqs.discard(req_id) - self.generators.pop(req_index, None) - self.num_logprobs.pop(req_id, None) - self.prompt_logprob_reqs.discard(req_id) - return req_index - - def clear(self) -> None: - self.req_ids = [None] * self.max_num_reqs - self.req_id_to_index.clear() - self.greedy_reqs.clear() - self.random_reqs.clear() - self.top_p_reqs.clear() - self.top_k_reqs.clear() - self.generators.clear() - self.num_logprobs.clear() - self.prompt_logprob_reqs.clear() - - def condense(self, empty_req_indices: List[int]) -> None: - if self.num_reqs == 0: - # The batched states are empty. - return - - # NOTE(woosuk): This function assumes that the empty_req_indices - # is sorted in descending order. - last_req_index = self.num_reqs + len(empty_req_indices) - 1 - while empty_req_indices: - # Find the largest non-empty index. - while last_req_index in empty_req_indices: - last_req_index -= 1 - - # Find the smallest empty index. - empty_index = empty_req_indices.pop() - if empty_index >= last_req_index: - break - - # Swap the states. - req_id = self.req_ids[last_req_index] - self.req_ids[empty_index] = req_id - self.req_ids[last_req_index] = None - self.req_id_to_index[req_id] = empty_index - - # TODO(woosuk): Optimize the copy of token_ids_cpu and - # block_table_cpu. - self.token_ids_cpu[empty_index] = self.token_ids_cpu[ - last_req_index] - self.num_computed_tokens_cpu[ - empty_index] = self.num_computed_tokens_cpu[last_req_index] - self.block_table_cpu[empty_index] = self.block_table_cpu[ - last_req_index] - self.temperature_cpu[empty_index] = self.temperature_cpu[ - last_req_index] - self.top_p_cpu[empty_index] = self.top_p_cpu[last_req_index] - self.top_k_cpu[empty_index] = self.top_k_cpu[last_req_index] - generator = self.generators.pop(last_req_index, None) - if generator is not None: - self.generators[empty_index] = generator - - # Decrement last_req_index since it is now empty. - last_req_index -= 1 - - def make_sampling_metadata( - self, - skip_copy: bool = False, - ) -> SamplingMetadata: - if not skip_copy: - self.temperature[:self.num_reqs].copy_( - self.temperature_cpu_tensor[:self.num_reqs], non_blocking=True) - self.top_p[:self.num_reqs].copy_( - self.top_p_cpu_tensor[:self.num_reqs], non_blocking=True) - self.top_k[:self.num_reqs].copy_( - self.top_k_cpu_tensor[:self.num_reqs], non_blocking=True) - return SamplingMetadata( - temperature=self.temperature[:self.num_reqs], - all_greedy=self.all_greedy, - all_random=self.all_random, - top_p=self.top_p[:self.num_reqs], - top_k=self.top_k[:self.num_reqs], - no_top_p=self.no_top_p, - no_top_k=self.no_top_k, - generators=self.generators, - max_num_logprobs=self.max_num_logprobs, - ) - - @property - def num_reqs(self) -> int: - return len(self.req_id_to_index) - - @property - def all_greedy(self) -> bool: - return len(self.random_reqs) == 0 - - @property - def all_random(self) -> bool: - return len(self.greedy_reqs) == 0 - - @property - def no_top_p(self) -> bool: - return len(self.top_p_reqs) == 0 - - @property - def no_top_k(self) -> bool: - return len(self.top_k_reqs) == 0 - - @property - def max_num_logprobs(self) -> int: - return max(self.num_logprobs.values()) if self.num_logprobs else 0 - - @property - def no_logprob(self) -> bool: - return len(self.num_logprobs) == 0 - - @property - def no_prompt_logprob(self) -> bool: - return len(self.prompt_logprob_reqs) == 0 From edc4fa31888b4a41060acb7b16250540f051ad59 Mon Sep 17 00:00:00 2001 From: "Kevin H. Luu" Date: Mon, 9 Dec 2024 11:46:58 -0800 Subject: [PATCH 073/733] [ci/build] Recompile CI dependencies list with Python 3.12 (#11013) Signed-off-by: kevin --- requirements-test.txt | 25 ++----------------------- 1 file changed, 2 insertions(+), 23 deletions(-) diff --git a/requirements-test.txt b/requirements-test.txt index 19369254dbe26..38a064bca449a 100644 --- a/requirements-test.txt +++ b/requirements-test.txt @@ -1,8 +1,8 @@ # -# This file is autogenerated by pip-compile with Python 3.9 +# This file is autogenerated by pip-compile with Python 3.12 # by the following command: # -# pip-compile requirements-test.in +# python3.12 -m piptools compile requirements-test.in -o requirements-test.txt # absl-py==2.1.0 # via rouge-score @@ -27,10 +27,6 @@ anyio==4.6.2.post1 # via httpx argcomplete==3.5.1 # via datamodel-code-generator -async-timeout==4.0.3 - # via - # aiohttp - # redis attrs==24.2.0 # via # aiohttp @@ -111,10 +107,6 @@ email-validator==2.2.0 # via pydantic evaluate==0.4.3 # via lm-eval -exceptiongroup==1.2.2 - # via - # anyio - # pytest fastrlock==0.8.2 # via cupy-cuda12x filelock==3.16.1 @@ -165,8 +157,6 @@ idna==3.10 # httpx # requests # yarl -importlib-resources==6.4.5 - # via matplotlib inflect==5.6.2 # via datamodel-code-generator iniconfig==2.0.0 @@ -518,12 +508,6 @@ timm==1.0.11 # via -r requirements-test.in tokenizers==0.20.3 # via transformers -toml==0.10.2 - # via datamodel-code-generator -tomli==2.0.2 - # via - # black - # pytest torch==2.5.1 # via # -r requirements-test.in @@ -567,12 +551,9 @@ typepy[datetime]==1.3.2 # tabledata typing-extensions==4.12.2 # via - # anyio - # black # huggingface-hub # librosa # mistral-common - # multidict # pydantic # pydantic-core # torch @@ -590,8 +571,6 @@ xxhash==3.5.0 # evaluate yarl==1.17.1 # via aiohttp -zipp==3.20.2 - # via importlib-resources zstandard==0.23.0 # via lm-eval From 3b61cb450d899dc423feb264c297d4d18d701678 Mon Sep 17 00:00:00 2001 From: Woosuk Kwon Date: Mon, 9 Dec 2024 12:38:46 -0800 Subject: [PATCH 074/733] [V1] Further reduce CPU overheads in flash-attn (#10989) Signed-off-by: Woosuk Kwon --- csrc/cache_kernels.cu | 14 ++++++++++++-- vllm/v1/attention/backends/flash_attn.py | 21 ++++++++++++++++----- 2 files changed, 28 insertions(+), 7 deletions(-) diff --git a/csrc/cache_kernels.cu b/csrc/cache_kernels.cu index 1be806bbfa43c..8a95279f9a25a 100644 --- a/csrc/cache_kernels.cu +++ b/csrc/cache_kernels.cu @@ -307,10 +307,20 @@ void reshape_and_cache_flash( torch::Tensor& key_cache, // [num_blocks, block_size, num_heads, head_size] torch::Tensor& value_cache, // [num_blocks, block_size, num_heads, head_size] - torch::Tensor& slot_mapping, // [num_tokens] + torch::Tensor& slot_mapping, // [num_tokens] or [num_actual_tokens] const std::string& kv_cache_dtype, const double k_scale, const double v_scale) { - int num_tokens = key.size(0); + // NOTE(woosuk): In vLLM V1, key.size(0) can be different from + // slot_mapping.size(0) because of padding for CUDA graphs. + // In vLLM V0, key.size(0) is always equal to slot_mapping.size(0) because + // both include padding. + // In vLLM V1, however, key.size(0) can be larger than slot_mapping.size(0) + // since key includes padding for CUDA graphs, while slot_mapping does not. + // In this case, slot_mapping.size(0) represents the actual number of tokens + // before padding. + // For compatibility with both cases, we use slot_mapping.size(0) as the + // number of tokens. + int num_tokens = slot_mapping.size(0); int num_heads = key.size(1); int head_size = key.size(2); int block_size = key_cache.size(1); diff --git a/vllm/v1/attention/backends/flash_attn.py b/vllm/v1/attention/backends/flash_attn.py index d37989055c2e5..251a103e60f06 100644 --- a/vllm/v1/attention/backends/flash_attn.py +++ b/vllm/v1/attention/backends/flash_attn.py @@ -138,14 +138,25 @@ def forward( # Profiling run. return output - num_actual_tokens = attn_metadata.num_actual_tokens + # IMPORTANT! + # NOTE(woosuk): With piece-wise CUDA graphs, this method is executed in + # eager-mode PyTorch. Thus, we need to be careful about any CPU overhead + # in this method. For example, `view` and `slice` (or `[:n]`) operations + # are surprisingly slow even in the case they do not invoke any GPU ops. + # Minimize the PyTorch ops in this method as much as possible. + # Whenever making a change in this method, please benchmark the + # performance to make sure it does not introduce any overhead. + num_actual_tokens = attn_metadata.num_actual_tokens # Reshape the input keys and values and store them in the cache. - key_cache = kv_cache[0] - value_cache = kv_cache[1] + # NOTE(woosuk): Here, key and value are padded while slot_mapping is + # not padded. However, we don't need to do key[:num_actual_tokens] and + # value[:num_actual_tokens] because the reshape_and_cache_flash op uses + # the slot_mapping's shape to determine the number of actual tokens. + key_cache, value_cache = kv_cache.unbind(0) torch.ops._C_cache_ops.reshape_and_cache_flash( - key[:num_actual_tokens], - value[:num_actual_tokens], + key, + value, key_cache, value_cache, attn_metadata.slot_mapping, From ca871491edb0fba11fe9aa94300bd8d282fa29e1 Mon Sep 17 00:00:00 2001 From: Jee Jee Li Date: Tue, 10 Dec 2024 04:54:44 +0800 Subject: [PATCH 075/733] [Misc][LoRA] Abstract PunicaWrapper (#10955) Signed-off-by: Jee Jee Li --- tests/lora/test_layers.py | 49 +- vllm/lora/layers.py | 7 +- vllm/lora/models.py | 8 +- vllm/lora/punica.py | 725 -------------------- vllm/lora/punica_wrapper/__init__.py | 7 + vllm/lora/punica_wrapper/punica_base.py | 480 +++++++++++++ vllm/lora/punica_wrapper/punica_gpu.py | 358 ++++++++++ vllm/lora/punica_wrapper/punica_selector.py | 14 + vllm/lora/punica_wrapper/utils.py | 159 +++++ 9 files changed, 1058 insertions(+), 749 deletions(-) delete mode 100644 vllm/lora/punica.py create mode 100644 vllm/lora/punica_wrapper/__init__.py create mode 100644 vllm/lora/punica_wrapper/punica_base.py create mode 100644 vllm/lora/punica_wrapper/punica_gpu.py create mode 100644 vllm/lora/punica_wrapper/punica_selector.py create mode 100644 vllm/lora/punica_wrapper/utils.py diff --git a/tests/lora/test_layers.py b/tests/lora/test_layers.py index a113e3f7abc1e..fb8c0b2a7ba26 100644 --- a/tests/lora/test_layers.py +++ b/tests/lora/test_layers.py @@ -28,7 +28,7 @@ # yapf: enable from vllm.lora.models import (LongContextLoRAContext, LoRALayerWeights, PackedLoRALayerWeights) -from vllm.lora.punica import PunicaWrapper +from vllm.lora.punica_wrapper import get_punica_wrapper from vllm.model_executor.layers.linear import (ColumnParallelLinear, MergedColumnParallelLinear, QKVParallelLinear, @@ -48,11 +48,12 @@ torch.float32: (5e-3, 5e-3), torch.bfloat16: (3e-2, 2e-2), } -CUDA_DEVICES = [ +# TODO: Modify this based on platform +DEVICES = [ f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2) ] -# We will launch different triton kernels between the prefill and decode +#For GPU, we will launch different triton kernels between the prefill and decode # stages, so we need to verify this. prefill stage(True) or decode stage(False) STAGES = [True, False] @@ -192,9 +193,18 @@ def create_random_inputs( return inputs, index_mapping, prompt_mapping +def check_punica_wrapper(punica_wrapper) -> bool: + if current_platform.is_cuda_alike(): + from vllm.lora.punica_wrapper.punica_gpu import PunicaWrapperGPU + + return type(punica_wrapper) is PunicaWrapperGPU + else: + return False + + @torch.inference_mode() @pytest.mark.parametrize("num_loras", [1, 2, 4, 8]) -@pytest.mark.parametrize("device", CUDA_DEVICES) +@pytest.mark.parametrize("device", DEVICES) @pytest.mark.parametrize("vocab_size", [512, 32000, 64000, 128000]) @pytest.mark.parametrize("stage", STAGES) def test_embeddings(dist_init, num_loras, device, vocab_size, stage) -> None: @@ -205,7 +215,8 @@ def test_embeddings(dist_init, num_loras, device, vocab_size, stage) -> None: torch.set_default_device(device) max_loras = 8 - punica_wrapper = PunicaWrapper(8192, 256, device) + punica_wrapper = get_punica_wrapper(8192, 256, device) + assert check_punica_wrapper(punica_wrapper) lora_config = LoRAConfig(max_loras=max_loras, max_lora_rank=8, lora_dtype=torch.float16) @@ -296,7 +307,7 @@ def create_random_embedding_layer(): # @pytest.mark.skip( # reason="Fails when loras are in any slot other than the first.") @pytest.mark.parametrize("num_loras", [1, 2, 4, 8]) -@pytest.mark.parametrize("device", CUDA_DEVICES) +@pytest.mark.parametrize("device", DEVICES) @pytest.mark.parametrize("vocab_size", [512, 32000, 64000, 128000]) @pytest.mark.parametrize("stage", STAGES) def test_embeddings_with_new_embeddings(dist_init, num_loras, device, @@ -305,7 +316,8 @@ def test_embeddings_with_new_embeddings(dist_init, num_loras, device, torch.cuda.set_device(device) torch.set_default_device(device) max_loras = 8 - punica_wrapper = PunicaWrapper(8192, 256, device) + punica_wrapper = get_punica_wrapper(8192, 256, device) + assert check_punica_wrapper(punica_wrapper) lora_config = LoRAConfig(max_loras=max_loras, max_lora_rank=8, lora_dtype=torch.float16) @@ -432,7 +444,7 @@ def create_random_embedding_layer(): @torch.inference_mode() @pytest.mark.parametrize("num_loras", [1, 2, 4, 8]) -@pytest.mark.parametrize("device", CUDA_DEVICES) +@pytest.mark.parametrize("device", DEVICES) @pytest.mark.parametrize("vocab_size", [512, 32000, 64000, 256512]) @pytest.mark.parametrize("stage", STAGES) def test_lm_head_logits_processor(dist_init, num_loras, device, vocab_size, @@ -441,7 +453,8 @@ def test_lm_head_logits_processor(dist_init, num_loras, device, vocab_size, torch.cuda.set_device(device) torch.set_default_device(device) max_loras = 8 - punica_wrapper = PunicaWrapper(8192, 256, device) + punica_wrapper = get_punica_wrapper(8192, 256, device) + assert check_punica_wrapper(punica_wrapper) lora_config = LoRAConfig(max_loras=max_loras, max_lora_rank=8, lora_dtype=torch.float16) @@ -563,7 +576,7 @@ def _pretest(): @torch.inference_mode() @pytest.mark.parametrize("num_loras", [1, 2, 4, 8]) -@pytest.mark.parametrize("device", CUDA_DEVICES) +@pytest.mark.parametrize("device", DEVICES) @pytest.mark.parametrize("stage", STAGES) @pytest.mark.parametrize("bias_enabled", [True, False]) def test_linear_replicated(dist_init, num_loras, device, stage, @@ -571,7 +584,8 @@ def test_linear_replicated(dist_init, num_loras, device, stage, torch.cuda.set_device(device) torch.set_default_device(device) - punica_wrapper = PunicaWrapper(8192, 256, device) + punica_wrapper = get_punica_wrapper(8192, 256, device) + assert check_punica_wrapper(punica_wrapper) max_loras = 8 lora_config = LoRAConfig(max_loras=max_loras, max_lora_rank=8, @@ -675,7 +689,7 @@ def create_random_linear_replicated_layer(): @pytest.mark.parametrize("num_loras", [1, 2, 4, 8]) @pytest.mark.parametrize("orientation", ["row", "column"]) @pytest.mark.parametrize("fully_shard", [True, False]) -@pytest.mark.parametrize("device", CUDA_DEVICES) +@pytest.mark.parametrize("device", DEVICES) @pytest.mark.parametrize("stage", STAGES) @pytest.mark.parametrize("bias_enabled", [True, False]) def test_linear_parallel(dist_init, num_loras, orientation, fully_shard, @@ -683,7 +697,8 @@ def test_linear_parallel(dist_init, num_loras, orientation, fully_shard, torch.cuda.set_device(device) torch.set_default_device(device) - punica_wrapper = PunicaWrapper(8192, 256, device) + punica_wrapper = get_punica_wrapper(8192, 256, device) + assert check_punica_wrapper(punica_wrapper) max_loras = 8 lora_config = LoRAConfig(max_loras=max_loras, max_lora_rank=8, @@ -797,7 +812,7 @@ def create_random_linear_parallel_layer(): @pytest.mark.parametrize("num_loras", [1, 2, 4, 8]) @pytest.mark.parametrize("repeats", [1, 2, 3]) @pytest.mark.parametrize("fully_shard", [True, False]) -@pytest.mark.parametrize("device", CUDA_DEVICES) +@pytest.mark.parametrize("device", DEVICES) @pytest.mark.parametrize("stage", STAGES) @pytest.mark.parametrize("bias_enabled", [True, False]) def test_column_parallel_packed(dist_init, num_loras, repeats, fully_shard, @@ -805,7 +820,8 @@ def test_column_parallel_packed(dist_init, num_loras, repeats, fully_shard, torch.cuda.set_device(device) torch.set_default_device(device) - punica_wrapper = PunicaWrapper(8192, 256, device) + punica_wrapper = get_punica_wrapper(8192, 256, device) + assert check_punica_wrapper(punica_wrapper) max_loras = 8 lora_config = LoRAConfig(max_loras=max_loras, max_lora_rank=8, @@ -963,7 +979,8 @@ def test_rotary_embedding_long_context(dist_init, num_loras, device, seed = 0 current_platform.seed_everything(seed) torch.set_default_device(device) - punica_wrapper = PunicaWrapper(8192, 256, device) + punica_wrapper = get_punica_wrapper(8192, 256, device) + assert check_punica_wrapper(punica_wrapper) max_loras = 8 lora_config = LoRAConfig(max_loras=max_loras, max_lora_rank=8, diff --git a/vllm/lora/layers.py b/vllm/lora/layers.py index 3e9c2ceb83eac..38cb846578d5c 100644 --- a/vllm/lora/layers.py +++ b/vllm/lora/layers.py @@ -17,7 +17,6 @@ tensor_model_parallel_all_reduce, tensor_model_parallel_gather) from vllm.distributed.utils import divide -from vllm.lora.punica import PunicaWrapper # yapf: disable from vllm.model_executor.layers.linear import (ColumnParallelLinear, LinearBase, @@ -33,7 +32,7 @@ VocabParallelEmbedding) if TYPE_CHECKING: - pass + from vllm.lora.punica_wrapper import PunicaWrapperBase def _get_lora_device(base_layer: nn.Module) -> torch.device: @@ -115,9 +114,9 @@ def set_lora( def set_mapping( self, - punica_wrapper: PunicaWrapper, + punica_wrapper, ): - self.punica_wrapper: PunicaWrapper = punica_wrapper + self.punica_wrapper: PunicaWrapperBase = punica_wrapper @classmethod def can_replace_layer( diff --git a/vllm/lora/models.py b/vllm/lora/models.py index 9855b57d0c9c9..49cd9f0c236ad 100644 --- a/vllm/lora/models.py +++ b/vllm/lora/models.py @@ -21,7 +21,7 @@ LinearScalingRotaryEmbeddingWithLora, LoRAMapping) from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights -from vllm.lora.punica import PunicaWrapper +from vllm.lora.punica_wrapper import get_punica_wrapper from vllm.lora.utils import (from_layer, from_layer_logits_processor, is_regex_target_modules, parse_fine_tuned_lora_name, replace_submodule) @@ -331,9 +331,9 @@ def __init__( self.lora_index_to_id: List[Optional[int]] = [None] * self.lora_slots self.vocab_size = vocab_size self.long_lora_context: Optional[LongContextLoRAContext] = None - self.punica_wrapper = PunicaWrapper(max_num_batched_tokens, - max_batches=self.max_num_seqs, - device=self.device) + self.punica_wrapper = get_punica_wrapper(max_num_batched_tokens, + max_batches=self.max_num_seqs, + device=self.device) # Scaling factor -> offset to the sin_cos_cache to it. # Used for long context lora. self.scaling_factor_to_offset: Dict[float, int] = {} diff --git a/vllm/lora/punica.py b/vllm/lora/punica.py deleted file mode 100644 index 563d1181d6fcb..0000000000000 --- a/vllm/lora/punica.py +++ /dev/null @@ -1,725 +0,0 @@ -""" -Based on: -Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., & Krishnamurthy, A. (2023). -Punica: Multi-Tenant LoRA Serving. -https://arxiv.org/abs/2310.18547 -""" - -from typing import TYPE_CHECKING, Callable, List, Optional, Tuple, Union - -import torch - -from vllm.triton_utils import HAS_TRITON - -if HAS_TRITON: - from vllm.lora.ops.bgmv_expand import bgmv_expand - from vllm.lora.ops.bgmv_expand_slice import bgmv_expand_slice - from vllm.lora.ops.bgmv_shrink import bgmv_shrink - from vllm.lora.ops.sgmv_expand import sgmv_expand - from vllm.lora.ops.sgmv_expand_slice import sgmv_expand_slice - from vllm.lora.ops.sgmv_shrink import sgmv_shrink - -if TYPE_CHECKING: - # avoid circuit import - from vllm.lora.layers import LoRAMapping - from vllm.lora.models import LongContextLoRAContext - - -def compute_meta( - token_lora_tensor: torch.Tensor -) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, int, int, bool]: - """ - Get the information required for the sgmv kernel. With the features: - 1. If consecutive requests in the batch use the same LoRA, this function - will combine them into a single request, improving sgmv kernel inference - performance. - 2. At the beginning of each prefill stage inference, recalculations are - needed based on the input, but only once. - """ - - lora_indices_tensor, seq_length_tensor = torch.unique_consecutive( - token_lora_tensor, return_counts=True) - cum_result = torch.cumsum(seq_length_tensor, dim=0) - b_seq_start_tensor = torch.zeros_like(seq_length_tensor) - b_seq_start_tensor[1:].copy_(cum_result[:-1]) - max_length = seq_length_tensor.max().item() - token_nums = seq_length_tensor.sum().item() - batch_size = lora_indices_tensor.size(0) - no_lora = False - # -1 means no lora should be applied. Use `no_lora` to determine whether - # the current step requires LoRA. If LoRA is not needed, the prefill stage - # does not need to launch the triton kernel, which can improve performance - if batch_size == 1 and lora_indices_tensor == -1: - no_lora = True - return (b_seq_start_tensor, seq_length_tensor, lora_indices_tensor, - batch_size, max_length, token_nums, no_lora) - - -# TODO see if this can be vectorized -def convert_mapping( - mapping: "LoRAMapping", - lora_index_to_id: List[Optional[int]], - max_loras: int, - vocab_size: int, - extra_vocab_size: int, - device: torch.device, - long_lora_context: Optional["LongContextLoRAContext"] = None, -) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, - Optional[torch.Tensor], List[int]]: - """Converts LoRAMapping to index tensors. - - Args: - mapping: LoRAMapping mapping rows in a batch to LoRA ids. - lora_index_to_id: List mapping LoRA ids to LoRA indices. - max_loras: Maximum number of LoRAs. - vocab_size: Model vocab size. - extra_vocab_size: Extra vocab size each LoRA can have. - long_lora_context: Passed if there are long context lora in a batch. - - Returns: - A tuple of tensors: - base_indices: Tensor of shape [batch_size] mapping batch rows to - LoRA indices. - sampler_indices: Tensor of shape [batch_size] mapping requests to - LoRA indices for sampler. For generation, this will be the - same as base_indicies. For prefill, this will map requests - to LoRA indices. - sampler_indices_padded: Tensor of shape [batch_size] mapping - requests to LoRA indices for sampler with padding. - Same as sampler_indicies, but -1 is replaced with - max_loras. - embeddings_indices: Tensor of shape [2, batch_size] mapping - requests to embedding indices. First row is for embeddings - added by the LoRAs, second row is for the LoRA.lora_a - embeddings. - long_lora_indices: Tensor of shape [batch_size] mapping - requests to RoPE offsets and rot dims for long LoRAs. - None if long context lora doesn't exist. - indices_len: List of lengths of the above tensors. It contains - (base_indices, sampler_indices, sampler_indices_padded, - embeddings_indices, long_lora_indices). - """ - index_mapping_indices: List[int] = list(mapping.index_mapping).copy() - embedding_indices = index_mapping_indices.copy() - lora_indices = index_mapping_indices.copy() - long_lora_offsets: Optional[torch.Tensor] = None - if long_lora_context: - long_lora_offsets = torch.zeros(len(index_mapping_indices), - device=device, - dtype=torch.long) - prompt_mapping: List[int] = [ - lora_index_to_id.index(x) if x > 0 else -1 - for x in mapping.prompt_mapping - ] - lora_idx = None - for i in range(len(index_mapping_indices)): - # TODO index can be slow. optimize - lora_idx = (lora_index_to_id.index(index_mapping_indices[i]) - if index_mapping_indices[i] > 0 else -1) - embedding_indices[i] = lora_idx if index_mapping_indices[i] > 0 else 0 - lora_indices[i] = lora_idx - if long_lora_context: - assert long_lora_offsets is not None - lora_offset: int = long_lora_context.offsets_by_lora_id.get( - index_mapping_indices[i], 0) - long_lora_offsets[i] = lora_offset - - indices_list: List[Union[List[int], torch.Tensor]] = [ - index_mapping_indices, - lora_indices, - embedding_indices, - ] - if long_lora_context: - assert long_lora_offsets is not None - indices_list.append(long_lora_offsets) - indices = torch.tensor(indices_list, dtype=torch.long, device=device) - prompt_mapping_tensor = torch.tensor(prompt_mapping, - dtype=torch.long, - device=device) - embeddings_indices = torch.stack([ - indices[2] * extra_vocab_size, - indices[2] * (vocab_size + extra_vocab_size), - ]) - embeddings_indices[embeddings_indices == -1] = max_loras - 1 - base_indices = indices[1] - sampler_indices = prompt_mapping_tensor - sampler_indices_padded = sampler_indices.clone() - sampler_indices_padded[sampler_indices_padded == -1] = max_loras - 1 - sampler_indices_padded = torch.arange( - 0, len(sampler_indices_padded), device=device, dtype=torch.long) + ( - sampler_indices_padded * len(sampler_indices_padded)) - long_lora_indices = None - long_lora_indices_len: Optional[int] = None - if long_lora_context: - long_lora_indices = indices[3] - long_lora_indices_len = long_lora_indices.shape[-1] - # Contain length of indices tensors. Used to index into each tensor. - indices_len = [ - base_indices.shape[-1], - sampler_indices.shape[-1], - sampler_indices_padded.shape[-1], - embeddings_indices.shape[-1], - ] - if long_lora_indices_len is not None: - indices_len.append(long_lora_indices_len) - else: - # If long_lora doesn't exist,append None - indices_len.append(None) - - return ( - base_indices, - sampler_indices, - sampler_indices_padded, - embeddings_indices, - long_lora_indices, - indices_len, - ) - - -class PunicaWrapper: - """ - PunicaWrapper is designed to manage and provide metadata for the punica - kernel. The main function is to maintain the state information for - Multi-LoRA, and to provide the interface for the punica kernel. - """ - - def __init__(self, max_num_batched_tokens: int, max_batches: int, - device: Union[torch.device, str]): - self._token_lora_indices = torch.empty(max_num_batched_tokens, - dtype=torch.long, - device=device) - self._sampler_indices = torch.empty(max_num_batched_tokens, - dtype=torch.long, - device=device) - self._sampler_indices_padded = torch.empty(max_num_batched_tokens, - dtype=torch.long, - device=device) - self._embeddings_indices = torch.empty(2, - max_num_batched_tokens, - dtype=torch.long, - device=device) - self._long_lora_indices = torch.empty(max_num_batched_tokens, - dtype=torch.long, - device=device) - - # 5 is the number of indicies tensors. - # base_indices, sampler_indices, sampler_indices_padded, - # embeddings_indices,long_lora_indices - self.indices_len: List[Optional[int]] = [None] * 5 - # these attributes are the information required for sgmv kernel - self._seq_start_locs = torch.empty(max_batches, - dtype=torch.long, - device=device) - self._seq_lengths = torch.empty(max_batches, - dtype=torch.long, - device=device) - self._lora_indices_per_batch = torch.empty(max_batches, - dtype=torch.long, - device=device) - self.device: torch.device = device - self.max_length: int = 0 - self.token_nums: int = 0 - self.batch_size: int = -1 - self.is_prefill = False - self.no_lora = False - - def update_metadata( - self, - mapping: "LoRAMapping", - lora_index_to_id: List[Optional[int]], - max_loras: int, - vocab_size: int, - extra_vocab_size: int, - long_lora_context: Optional["LongContextLoRAContext"] = None, - ): - - self._update_base_metadata(mapping, lora_index_to_id, max_loras, - vocab_size, extra_vocab_size, - long_lora_context) - if mapping.is_prefill: - # Update metadata required for prefill-related operators. - self._update_prefill_metada(self.token_lora_indices) - self.is_prefill = True - else: - self.is_prefill = False - - def _update_base_metadata( - self, - mapping: "LoRAMapping", - lora_index_to_id: List[Optional[int]], - max_loras: int, - vocab_size: int, - extra_vocab_size: int, - long_lora_context: Optional["LongContextLoRAContext"] = None, - ): - ( - base_indices, - sampler_indices, - sampler_indices_padded, - embeddings_indices, - long_lora_offsets_tensor, - indices_len, - ) = convert_mapping( - mapping, - lora_index_to_id, - max_loras, - vocab_size, - extra_vocab_size, - self.device, - long_lora_context, - ) - self._token_lora_indices[:base_indices.shape[0]].copy_(base_indices) - self._sampler_indices[:sampler_indices.shape[0]].copy_(sampler_indices) - self._sampler_indices_padded[:sampler_indices_padded.shape[0]].copy_( - sampler_indices_padded) - self._embeddings_indices[:embeddings_indices. - shape[0], :embeddings_indices.shape[1]].copy_( - embeddings_indices) - if long_lora_offsets_tensor is not None: - self._long_lora_indices[:long_lora_offsets_tensor.shape[0]].copy_( - long_lora_offsets_tensor) - else: - self._long_lora_indices.zero_() - self.indices_len[:] = indices_len - - def _update_prefill_metada(self, token_lora_tensor: torch.Tensor) -> None: - - (b_seq_start_tensor, seq_length_tensor, lora_indices_tensor, - batch_size, max_length, token_nums, - no_lora) = compute_meta(token_lora_tensor) - - self._seq_start_locs[:b_seq_start_tensor.shape[0]].copy_( - b_seq_start_tensor) - self._seq_lengths[:seq_length_tensor.shape[0]].copy_(seq_length_tensor) - self._lora_indices_per_batch[:lora_indices_tensor.shape[0]].copy_( - lora_indices_tensor) - self.batch_size = batch_size - self.max_length = max_length - self.token_nums = token_nums - self.no_lora = no_lora - - @property - def prefill_metadata( - self - ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, int, int]: - """ - This property provides a convenient way to access the necessary - metadata for prefill-related kernel computations. - 1. seq_start_locs: Tensor of sequence start positions. - 2. seq_lengths: Tensor of sequence lengths. - 3. lora_indices_per_batch: Tensor of lora indices, and an index of - -1 means no lora should be applied. - 4. batch_size: Batch size after clustering identical lora indices. - 5. max_length: The maximum sequence length in the batch. - 6. token_nums: The token numbers in the batch. - """ - return (self._seq_start_locs[:self.batch_size], - self._seq_lengths[:self.batch_size], - self._lora_indices_per_batch[:self.batch_size], - self.batch_size, self.max_length, self.token_nums) - - @property - def token_lora_indices(self) -> torch.Tensor: - """ - This property provides the lora indices corresponding to each token - in the batch. An index of -1 means no lora should be applied. - """ - token_lora_len = self.indices_len[0] - return self._token_lora_indices[:token_lora_len] - - @property - def sampler_indices(self) -> torch.Tensor: - """ - This property is used to access the lora indices specifically for - LogitsProcessorWithLoRA. - """ - sampler_indices_len = self.indices_len[1] - return self._sampler_indices[:sampler_indices_len] - - @property - def sampler_indices_padded(self) -> torch.Tensor: - """ - This property provides access to padded sampler indices. - """ - indices_padded_len = self.indices_len[2] - return self._sampler_indices_padded[:indices_padded_len] - - @property - def embeddings_indices(self) -> torch.Tensor: - """ - This property provides access to the indices used for lora embeddings, - specifically for VocabParallelEmbeddingWithLoRA. - """ - embeddings_indices_len = self.indices_len[3] - return self._embeddings_indices[:, :embeddings_indices_len] - - @property - def long_lora_indices(self) -> torch.Tensor: - """ - This property provides access to the indices used for long context - lora, specifically for LinearScalingRotaryEmbeddingWithLora. - """ - long_lora_len = self.indices_len[4] - return self._long_lora_indices[:long_lora_len] - - def _shrink_prefill( - self, - y: torch.Tensor, - x: torch.Tensor, - w_t_all: torch.Tensor, - scale: float, - ): - #No LoRA request, so return directly - if self.no_lora: - return - sgmv_shrink( - x, - w_t_all, - y, - *self.prefill_metadata, - scale, - ) - - def _shrink_decode( - self, - y: torch.Tensor, - x: torch.Tensor, - w_t_all: torch.Tensor, - scale: float, - ): - bgmv_shrink(x, w_t_all, y, self.token_lora_indices, scale) - - def _expand_prefill( - self, - y: torch.Tensor, - x: torch.Tensor, - w_t_all: torch.Tensor, - add_input: bool, - ): - #No LoRA request, so return directly - if self.no_lora: - return - sgmv_expand( - x, - w_t_all, - y, - *self.prefill_metadata, - add_input, - ) - - def _expand_decode( - self, - y: torch.Tensor, - x: torch.Tensor, - w_t_all: torch.Tensor, - add_input: bool, - ): - bgmv_expand(x, w_t_all, y, self.token_lora_indices, add_input) - - def _expand_slice_prefill( - self, - y: torch.Tensor, - x: torch.Tensor, - w_t_all: torch.Tensor, - y_offset: Optional[int], - y_slice_size: Optional[int], - add_input: bool, - ): - #No LoRA request, so return directly - if self.no_lora: - return - sgmv_expand_slice( - x, - w_t_all, - y, - *self.prefill_metadata, - y_offset, - y_slice_size, - add_input, - ) - - def _expand_slice_decode( - self, - y: torch.Tensor, - x: torch.Tensor, - w_t_all: torch.Tensor, - y_offset: Optional[int], - y_slice_size: Optional[int], - add_input: bool, - ): - bgmv_expand_slice(x, w_t_all, y, self.token_lora_indices, y_offset, - y_slice_size, add_input) - - def _apply_expand(self, - y: torch.Tensor, - x: torch.Tensor, - w_t_all: torch.Tensor, - y_offset: Optional[int], - y_slice_size: Optional[int], - add_input: bool = True): - """ - Perform the ` y[:,y_offset:y_offset+y_slice_size]+=x@w_t_all` - computation, which is suitable for the - GEMM of lora'b. - """ - - expand_slice_fun: Callable = (self._expand_slice_prefill - if self.is_prefill else - self._expand_slice_decode) - expand_slice_fun(y, x, w_t_all, y_offset, y_slice_size, add_input) - - def _apply_bias( - self, - indices: torch.Tensor, - output: torch.Tensor, - output_slices: Tuple[int, ...], - lora_bias_stacked: Tuple[Optional[torch.Tensor], ...], - ): - """Applies bias to output - - Input shapes: - lora_bias_stacked: 3 element tuple of (num_loras, output_dim) - indices: (batch_size) - output: (batch_size, q_slice_size + 2*kv_slice_size) - output_slices: n-1 element tuple of (slice_size...), - where n is number of slices - """ - org_output = output - output = output.view(-1, output.shape[-1]) - indices = indices.view(-1) - - offset_left = 0 - for slice_idx, slice in enumerate(output_slices): - bias = lora_bias_stacked[slice_idx] - if bias is not None: - bias = bias.view(-1, bias.shape[-1]) - bias = bias[indices] - bias[indices == -1] = 0 - output[:, offset_left:offset_left + slice] += bias - offset_left += slice - - return output.view_as(org_output) - - def _apply_shrink( - self, - y: torch.Tensor, - x: torch.Tensor, - w_t_all: torch.Tensor, - scale: float, - ): - """ - Perform the ` y+=x@w_t_all` computation, which is suitable for the - GEMM of lora'a. - When `is_prefill is` true, it indicates that it is currently the - prefill stage, and the `_shrink_prefill` function should be called. - Otherwise, it is the decode stage, and the _shrink_decode function - should be called. - """ - y_org = y - y = y.view(-1, y.shape[-1]) - shrink_fun: Callable = (self._shrink_prefill - if self.is_prefill else self._shrink_decode) - shrink_fun(y, x, w_t_all, scale) - y = y.view_as(y_org) - - def add_shrink( - self, - y: Union[Tuple[torch.Tensor, ...], torch.Tensor], - x: torch.Tensor, - lora_a_stacked: Tuple[torch.Tensor, ...], - scale: float, - ): - """ - Performs GEMM for multiple slices of lora_a. - When `is_prefill is` true, it indicates that it is currently the - prefill stage, and the `_shrink_prefill` function should be called. - Otherwise, it is the decode stage, and the _shrink_decode function - should be called. - - Semantics: - for i in range(len(lora_a_stacked)): - y[i] += (x @ lora_a_stacked[i]) * scale - - Args: - y (Union[Tuple[torch.Tensor, ...], torch.Tensor]): Output tensors - x (torch.Tensor): Input tensor - lora_a_stacked (Tuple[torch.Tensor, ...]): lora_a's weights - scale (float): Scaling factor for the operation - """ - - x = x.view(-1, x.shape[-1]) - # TODO fuse these kernels - for slice_idx in range(len(lora_a_stacked)): - self._apply_shrink(y[slice_idx], x, lora_a_stacked[slice_idx], - scale) - - def add_expand( - self, - y: torch.Tensor, - x: Union[Tuple[torch.Tensor, ...], torch.Tensor], - lora_b_stacked: Tuple[torch.Tensor, ...], - lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]], - output_slices: Tuple[int, ...], - offset_start: int = 0, - add_input=True, - ) -> None: - """ - Performs GEMM and bias addition for multiple slices of lora_b. - - Semantics: - for i in range(len(lora_b_stacked)): - slice = output_slices[i] - y[:, offset:offset+slice] += x[i] @ lora_b_stacked[i] + - lora_bias_stacked[i] - offset += slice - - Args: - y (torch.Tensor): Output tensor. - x (Union[Tuple[torch.Tensor, ...], torch.Tensor]): Input tensors - lora_b_stacked (Tuple[torch.Tensor, ...]): lora_b's weight - lora_bias_stacked (Optional[Tuple[torch.Tensor, ...]]): - bias's weight - output_slices (Tuple[int, ...]): Every slice's size - add_input (bool): Defaults to True. - """ - y_org = y - y = y.view(-1, y.shape[-1]) - offset_left = offset_start - if lora_bias_stacked is not None: - self._apply_bias(self.token_lora_indices, y, output_slices, - lora_bias_stacked) - for slice_idx in range(len(lora_b_stacked)): - self._apply_expand( - y, - x[slice_idx], - lora_b_stacked[slice_idx], - offset_left, - output_slices[slice_idx], - add_input=add_input, - ) - offset_left += output_slices[slice_idx] - y = y.view_as(y_org) - - def add_lora_embedding( - self, - y: torch.Tensor, - x: torch.Tensor, - lora_b_stacked: torch.Tensor, - add_input: bool = True, - ): - """ - Applies lora specifically for VocabParallelEmbeddingWithLoRA. - - Semantics: - y += x @ lora_b_stacked - - Args: - y (torch.Tensor): Output tensor. - x (torch.Tensor): Input tensor. - lora_b_stacked (torch.Tensor): lora_b's weights. - add_input (bool): Default to True. - - """ - - # Embedding layer only need expand op - expand_fun: Callable = (self._expand_prefill - if self.is_prefill else self._expand_decode) - expand_fun(y, x, lora_b_stacked, add_input) - - def add_lora_linear( - self, - y: torch.Tensor, - x: torch.Tensor, - lora_a_stacked: Tuple[torch.Tensor, ...], - lora_b_stacked: Tuple[torch.Tensor, ...], - lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]], - scale: float, - output_slices: Tuple[int, ...], - *, - buffer: Optional[Tuple[torch.Tensor, ...]] = None) -> None: - """ - Applicable to linear-related lora. - - Semantics: - for i in range(len(lora_a_stacked)): - y[i] += ( - x[i].unsqueeze(0) - @ lora_a_stacked[indices[i], layer_idx, :, :] - @ lora_b_stacked[indices[i], layer_idx, :, :] - * scale - ).squeeze(0)+lora_bias_stacked[i] - - Args: - y (torch.Tensor): Output tensor. Will be changed in-place. - x (torch.Tensor): Input tensor - lora_a_stacked (Tuple[torch.Tensor, ...]): lora_a's weight. - lora_b_stacked (Tuple[torch.Tensor, ...]): lora_b's weight. - lora_bias_stacked (Optional[Tuple[torch.Tensor, ...]]): lora's bias. - scale (float): Scaling factor. - output_slices (Tuple[int, ...]): Every slice's size. - buffer (Optional[Tuple[torch.Tensor, ...]]): Defaults to None. - """ - - assert len(lora_a_stacked) == len(lora_b_stacked) == len(output_slices) - if lora_bias_stacked is not None: - assert len(lora_bias_stacked) == len(output_slices) - y = self._apply_bias(self.token_lora_indices, y, output_slices, - lora_bias_stacked) - - if buffer is None: - r = lora_b_stacked[0].size(-1) - # We set the buffer to be float32 by default ,refer to: - # https://github.com/triton-lang/triton/issues/1387 - buffer = tuple( - torch.zeros( - (x.size(0), r), dtype=torch.float32, device=x.device) - for _ in range(len(output_slices))) - self.add_shrink(buffer, x, lora_a_stacked, scale) - self.add_expand(y, - buffer, - lora_b_stacked, - None, - output_slices, - add_input=True) - - def add_lora_logits(self, - y: torch.Tensor, - x: torch.Tensor, - lora_a_stacked: torch.Tensor, - lora_b_stacked: torch.Tensor, - scale, - *, - buffer: Optional[torch.Tensor] = None) -> None: - """ - Applies lora specifically for LogitsProcessorWithLoRA. - - Semantics: - buffer = (x @ lora_a_stacked) * scale - y += buffer @ lora_b_stacked - - Args: - y (torch.Tensor): Output tensor. - x (torch.Tensor): Input tensor. - lora_a_stacked (torch.Tensor): lora_a's weights. - lora_b_stacked (torch.Tensor):lora_b's weights. - scale (float): Scaling factor. - buffer (Optional[torch.Tensor]):Default to None. - """ - y_org = y - y = y.view(-1, y.shape[-1]) - x = x.view(-1, x.shape[-1]) - r = lora_b_stacked.size(-1) - if buffer is None: - # We set the buffer to be float32 by default ,refer to: - # https://github.com/triton-lang/triton/issues/1387 - buffer = torch.zeros((x.size(0), r), - dtype=torch.float32, - device=x.device) - # LogitsProcessorWithLoRA always using bgmv. - bgmv_shrink(x, lora_a_stacked, buffer, self.sampler_indices, scale) - bgmv_expand(buffer, - lora_b_stacked, - y, - self.sampler_indices, - add_inputs=True) - y = y.view_as(y_org) diff --git a/vllm/lora/punica_wrapper/__init__.py b/vllm/lora/punica_wrapper/__init__.py new file mode 100644 index 0000000000000..48ada3926ea46 --- /dev/null +++ b/vllm/lora/punica_wrapper/__init__.py @@ -0,0 +1,7 @@ +from vllm.lora.punica_wrapper.punica_base import PunicaWrapperBase +from vllm.lora.punica_wrapper.punica_selector import get_punica_wrapper + +__all__ = [ + "PunicaWrapperBase", + "get_punica_wrapper", +] diff --git a/vllm/lora/punica_wrapper/punica_base.py b/vllm/lora/punica_wrapper/punica_base.py new file mode 100644 index 0000000000000..0a5a84bdd8deb --- /dev/null +++ b/vllm/lora/punica_wrapper/punica_base.py @@ -0,0 +1,480 @@ +""" +Based on: +Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., & Krishnamurthy, A. (2023). +Punica: Multi-Tenant LoRA Serving. +https://arxiv.org/abs/2310.18547 +""" + +from abc import ABC, abstractmethod +from typing import TYPE_CHECKING, List, Optional, Tuple, Union + +import torch + +from .utils import compute_meta, convert_mapping + +if TYPE_CHECKING: + # avoid circuit import + from vllm.lora.layers import LoRAMapping + from vllm.lora.models import LongContextLoRAContext + + +class PunicaWrapperABC(ABC): + """ + PunicaWrapper ABC. + """ + + @abstractmethod + def update_metadata( + self, + mapping: "LoRAMapping", + lora_index_to_id: List[Optional[int]], + max_loras: int, + vocab_size: int, + extra_vocab_size: int, + long_lora_context: Optional["LongContextLoRAContext"] = None, + **kwargs, + ) -> None: + """ + Update the lora-related metadata + """ + raise NotImplementedError + + @abstractmethod + def add_shrink( + self, + y: Union[Tuple[torch.Tensor, ...], torch.Tensor], + x: torch.Tensor, + lora_a_stacked: Tuple[torch.Tensor, ...], + scale: float, + **kwargs, + ) -> None: + """ + Performs GEMM for multiple slices of lora_a. + """ + + raise NotImplementedError + + @abstractmethod + def add_expand( + self, + y: torch.Tensor, + x: Union[Tuple[torch.Tensor, ...], torch.Tensor], + lora_b_stacked: Tuple[torch.Tensor, ...], + lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]], + output_slices: Tuple[int, ...], + offset_start: int = 0, + add_input=True, + **kwargs, + ) -> None: + """ + Performs GEMM and bias addition for multiple slices of lora_b. + """ + raise NotImplementedError + + @abstractmethod + def add_lora_embedding( + self, + y: torch.Tensor, + x: torch.Tensor, + lora_b_stacked: torch.Tensor, + add_input: bool = True, + **kwargs, + ) -> None: + """ + Applies lora specifically for VocabParallelEmbeddingWithLoRA, + and this layer only requires the expand operation. + """ + raise NotImplementedError + + @abstractmethod + def add_lora_linear(self, + y: torch.Tensor, + x: torch.Tensor, + lora_a_stacked: Tuple[torch.Tensor, ...], + lora_b_stacked: Tuple[torch.Tensor, ...], + lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]], + scale: float, + output_slices: Tuple[int, ...], + *, + buffer: Optional[Tuple[torch.Tensor, ...]] = None, + **kwargs) -> None: + """ + Applicable to linear-related lora. + """ + + raise NotImplementedError + + @abstractmethod + def add_lora_logits(self, + y: torch.Tensor, + x: torch.Tensor, + lora_a_stacked: torch.Tensor, + lora_b_stacked: torch.Tensor, + scale, + *, + buffer: Optional[torch.Tensor] = None, + **kwargs) -> None: + """ + Applies lora specifically for LogitsProcessorWithLoRA. + """ + raise NotImplementedError + + +class PunicaWrapperBase(PunicaWrapperABC): + """ + PunicaWrapperBase is designed to manage and provide metadata for the punica + kernel. The main function is to maintain the state information for + Multi-LoRA, and to provide the interface for the punica. + """ + + def __init__(self, max_num_batched_tokens: int, max_batches: int, + device: Union[torch.device, str], **kwargs): + self._token_lora_indices = torch.empty(max_num_batched_tokens, + dtype=torch.long, + device=device) + self._sampler_indices = torch.empty(max_num_batched_tokens, + dtype=torch.long, + device=device) + self._sampler_indices_padded = torch.empty(max_num_batched_tokens, + dtype=torch.long, + device=device) + self._embeddings_indices = torch.empty(2, + max_num_batched_tokens, + dtype=torch.long, + device=device) + self._long_lora_indices = torch.empty(max_num_batched_tokens, + dtype=torch.long, + device=device) + + # 5 is the number of indicies tensors. + # base_indices, sampler_indices, sampler_indices_padded, + # embeddings_indices,long_lora_indices + self.indices_len: List[Optional[int]] = [None] * 5 + # these attributes are the information required for sgmv kernel + self._seq_start_locs = torch.empty(max_batches, + dtype=torch.long, + device=device) + self._seq_lengths = torch.empty(max_batches, + dtype=torch.long, + device=device) + self._lora_indices_per_batch = torch.empty(max_batches, + dtype=torch.long, + device=device) + self.device: torch.device = device + self.max_length: int = 0 + self.token_nums: int = 0 + self.batch_size: int = -1 + self.is_prefill = False + self.no_lora = False + + def _update_base_metadata( + self, + mapping: "LoRAMapping", + lora_index_to_id: List[Optional[int]], + max_loras: int, + vocab_size: int, + extra_vocab_size: int, + long_lora_context: Optional["LongContextLoRAContext"] = None, + ): + ( + base_indices, + sampler_indices, + sampler_indices_padded, + embeddings_indices, + long_lora_offsets_tensor, + indices_len, + ) = convert_mapping( + mapping, + lora_index_to_id, + max_loras, + vocab_size, + extra_vocab_size, + self.device, + long_lora_context, + ) + self._token_lora_indices[:base_indices.shape[0]].copy_(base_indices) + self._sampler_indices[:sampler_indices.shape[0]].copy_(sampler_indices) + self._sampler_indices_padded[:sampler_indices_padded.shape[0]].copy_( + sampler_indices_padded) + self._embeddings_indices[:embeddings_indices. + shape[0], :embeddings_indices.shape[1]].copy_( + embeddings_indices) + if long_lora_offsets_tensor is not None: + self._long_lora_indices[:long_lora_offsets_tensor.shape[0]].copy_( + long_lora_offsets_tensor) + else: + self._long_lora_indices.zero_() + self.indices_len[:] = indices_len + + def _update_prefill_metada(self, token_lora_tensor: torch.Tensor) -> None: + + (b_seq_start_tensor, seq_length_tensor, lora_indices_tensor, + batch_size, max_length, token_nums, + no_lora) = compute_meta(token_lora_tensor) + + self._seq_start_locs[:b_seq_start_tensor.shape[0]].copy_( + b_seq_start_tensor) + self._seq_lengths[:seq_length_tensor.shape[0]].copy_(seq_length_tensor) + self._lora_indices_per_batch[:lora_indices_tensor.shape[0]].copy_( + lora_indices_tensor) + self.batch_size = batch_size + self.max_length = max_length + self.token_nums = token_nums + self.no_lora = no_lora + + def _apply_bias( + self, + indices: torch.Tensor, + output: torch.Tensor, + output_slices: Tuple[int, ...], + lora_bias_stacked: Tuple[Optional[torch.Tensor], ...], + ): + """Applies bias to output + + Input shapes: + lora_bias_stacked: 3 element tuple of (num_loras, output_dim) + indices: (batch_size) + output: (batch_size, q_slice_size + 2*kv_slice_size) + output_slices: n-1 element tuple of (slice_size...), + where n is number of slices + """ + org_output = output + output = output.view(-1, output.shape[-1]) + indices = indices.view(-1) + + offset_left = 0 + for slice_idx, slice in enumerate(output_slices): + bias = lora_bias_stacked[slice_idx] + if bias is not None: + bias = bias.view(-1, bias.shape[-1]) + bias = bias[indices] + bias[indices == -1] = 0 + output[:, offset_left:offset_left + slice] += bias + offset_left += slice + + return output.view_as(org_output) + + @property + def prefill_metadata( + self + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, int, int]: + """ + This property provides a convenient way to access the necessary + metadata for prefill-related kernel computations. + 1. seq_start_locs: Tensor of sequence start positions. + 2. seq_lengths: Tensor of sequence lengths. + 3. lora_indices_per_batch: Tensor of lora indices, and an index of + -1 means no lora should be applied. + 4. batch_size: Batch size after clustering identical lora indices. + 5. max_length: The maximum sequence length in the batch. + 6. token_nums: The token numbers in the batch. + """ + return (self._seq_start_locs[:self.batch_size], + self._seq_lengths[:self.batch_size], + self._lora_indices_per_batch[:self.batch_size], + self.batch_size, self.max_length, self.token_nums) + + @property + def token_lora_indices(self) -> torch.Tensor: + """ + This property provides the lora indices corresponding to each token + in the batch. An index of -1 means no lora should be applied. + """ + token_lora_len = self.indices_len[0] + return self._token_lora_indices[:token_lora_len] + + @property + def sampler_indices(self) -> torch.Tensor: + """ + This property is used to access the lora indices specifically for + LogitsProcessorWithLoRA. + """ + sampler_indices_len = self.indices_len[1] + return self._sampler_indices[:sampler_indices_len] + + @property + def sampler_indices_padded(self) -> torch.Tensor: + """ + This property provides access to padded sampler indices. + """ + indices_padded_len = self.indices_len[2] + return self._sampler_indices_padded[:indices_padded_len] + + @property + def embeddings_indices(self) -> torch.Tensor: + """ + This property provides access to the indices used for lora embeddings, + specifically for VocabParallelEmbeddingWithLoRA. + """ + embeddings_indices_len = self.indices_len[3] + return self._embeddings_indices[:, :embeddings_indices_len] + + @property + def long_lora_indices(self) -> torch.Tensor: + """ + This property provides access to the indices used for long context + lora, specifically for LinearScalingRotaryEmbeddingWithLora. + """ + long_lora_len = self.indices_len[4] + return self._long_lora_indices[:long_lora_len] + + def update_metadata( + self, + mapping: "LoRAMapping", + lora_index_to_id: List[Optional[int]], + max_loras: int, + vocab_size: int, + extra_vocab_size: int, + long_lora_context: Optional["LongContextLoRAContext"] = None, + **kwargs): + + self._update_base_metadata(mapping, lora_index_to_id, max_loras, + vocab_size, extra_vocab_size, + long_lora_context) + if mapping.is_prefill: + # Update metadata required for prefill-related operators. + self._update_prefill_metada(self.token_lora_indices) + self.is_prefill = True + else: + self.is_prefill = False + + @abstractmethod + def add_shrink(self, y: Union[Tuple[torch.Tensor, ...], torch.Tensor], + x: torch.Tensor, lora_a_stacked: Tuple[torch.Tensor, ...], + scale: float, **kwargs) -> None: + """ + Performs GEMM for multiple slices of lora_a. + + Semantics: + for i in range(len(lora_a_stacked)): + y[i] += (x @ lora_a_stacked[i]) * scale + + Args: + y (Union[Tuple[torch.Tensor, ...], torch.Tensor]): Output tensors + x (torch.Tensor): Input tensor + lora_a_stacked (Tuple[torch.Tensor, ...]): lora_a's weights + scale (float): Scaling factor for the operation + + """ + # TODO: implement it based on torch ops + raise NotImplementedError + + @abstractmethod + def add_expand(self, + y: torch.Tensor, + x: Union[Tuple[torch.Tensor, ...], torch.Tensor], + lora_b_stacked: Tuple[torch.Tensor, ...], + lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]], + output_slices: Tuple[int, ...], + offset_start: int = 0, + add_input=True, + **kwargs) -> None: + """ + Performs GEMM and bias addition for multiple slices of lora_b. + + Semantics: + for i in range(len(lora_b_stacked)): + slice = output_slices[i] + y[:, offset:offset+slice] += x[i] @ lora_b_stacked[i] + + lora_bias_stacked[i] + offset += slice + + Args: + y (torch.Tensor): Output tensor. + x (Union[Tuple[torch.Tensor, ...], torch.Tensor]): Input tensors + lora_b_stacked (Tuple[torch.Tensor, ...]): lora_b's weight + lora_bias_stacked (Optional[Tuple[torch.Tensor, ...]]): + bias's weight + output_slices (Tuple[int, ...]): Every slice's size + add_input (bool): Defaults to True. + + """ + # TODO: implement it based on torch ops + raise NotImplementedError + + @abstractmethod + def add_lora_embedding(self, + y: torch.Tensor, + x: torch.Tensor, + lora_b_stacked: torch.Tensor, + add_input: bool = True, + **kwargs) -> None: + """ + Applies lora specifically for VocabParallelEmbeddingWithLoRA. + and this layer only requires the expand operation. + Semantics: + y += x @ lora_b_stacked + + Args: + y (torch.Tensor): Output tensor. + x (torch.Tensor): Input tensor. + lora_b_stacked (torch.Tensor): lora_b's weights. + add_input (bool): Default to True. + """ + # TODO: implement it based on torch ops + raise NotImplementedError + + @abstractmethod + def add_lora_linear(self, + y: torch.Tensor, + x: torch.Tensor, + lora_a_stacked: Tuple[torch.Tensor, ...], + lora_b_stacked: Tuple[torch.Tensor, ...], + lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]], + scale: float, + output_slices: Tuple[int, ...], + *, + buffer: Optional[Tuple[torch.Tensor, ...]] = None, + **kwargs) -> None: + """ + Applicable to linear-related lora. + + Semantics: + for i in range(len(lora_a_stacked)): + y[i] += ( + x[i].unsqueeze(0) + @ lora_a_stacked[indices[i], layer_idx, :, :] + @ lora_b_stacked[indices[i], layer_idx, :, :] + * scale + ).squeeze(0)+lora_bias_stacked[i] + + Args: + y (torch.Tensor): Output tensor. Will be changed in-place. + x (torch.Tensor): Input tensor + lora_a_stacked (Tuple[torch.Tensor, ...]): lora_a's weight. + lora_b_stacked (Tuple[torch.Tensor, ...]): lora_b's weight. + lora_bias_stacked (Optional[Tuple[torch.Tensor, ...]]): lora's bias. + scale (float): Scaling factor. + output_slices (Tuple[int, ...]): Every slice's size. + buffer (Optional[Tuple[torch.Tensor, ...]]): Defaults to None. + """ + # TODO: implement it based on torch ops + raise NotImplementedError + + @abstractmethod + def add_lora_logits(self, + y: torch.Tensor, + x: torch.Tensor, + lora_a_stacked: torch.Tensor, + lora_b_stacked: torch.Tensor, + scale, + *, + buffer: Optional[torch.Tensor] = None, + **kwargs) -> None: + """ + Applies lora specifically for LogitsProcessorWithLoRA. + + Semantics: + buffer = (x @ lora_a_stacked) * scale + y += buffer @ lora_b_stacked + + Args: + y (torch.Tensor): Output tensor. + x (torch.Tensor): Input tensor. + lora_a_stacked (torch.Tensor): lora_a's weights. + lora_b_stacked (torch.Tensor):lora_b's weights. + scale (float): Scaling factor. + buffer (Optional[torch.Tensor]):Default to None. + """ + # TODO: implement it based on torch ops + raise NotImplementedError diff --git a/vllm/lora/punica_wrapper/punica_gpu.py b/vllm/lora/punica_wrapper/punica_gpu.py new file mode 100644 index 0000000000000..b2af29de129ce --- /dev/null +++ b/vllm/lora/punica_wrapper/punica_gpu.py @@ -0,0 +1,358 @@ +""" +Based on: +Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., & Krishnamurthy, A. (2023). +Punica: Multi-Tenant LoRA Serving. +https://arxiv.org/abs/2310.18547 +""" + +from typing import Callable, Optional, Tuple, Union, final + +import torch + +from vllm.triton_utils import HAS_TRITON + +if HAS_TRITON: + from vllm.lora.ops.bgmv_expand import bgmv_expand + from vllm.lora.ops.bgmv_expand_slice import bgmv_expand_slice + from vllm.lora.ops.bgmv_shrink import bgmv_shrink + from vllm.lora.ops.sgmv_expand import sgmv_expand + from vllm.lora.ops.sgmv_expand_slice import sgmv_expand_slice + from vllm.lora.ops.sgmv_shrink import sgmv_shrink + +from .punica_base import PunicaWrapperBase + + +@final +class PunicaWrapperGPU(PunicaWrapperBase): + """ + PunicaWrapperGPU is designed to manage and provide metadata for the punica + kernel. The main function is to maintain the state information for + Multi-LoRA, and to provide the interface for the punica triton kernel. + """ + + def __init__(self, max_num_batched_tokens: int, max_batches: int, + device: Union[torch.device, str], **kwargs): + PunicaWrapperBase.__init__(self, max_num_batched_tokens, max_batches, + device) + + def _shrink_prefill( + self, + y: torch.Tensor, + x: torch.Tensor, + w_t_all: torch.Tensor, + scale: float, + ): + #No LoRA request, so return directly + if self.no_lora: + return + sgmv_shrink( + x, + w_t_all, + y, + *self.prefill_metadata, + scale, + ) + + def _shrink_decode( + self, + y: torch.Tensor, + x: torch.Tensor, + w_t_all: torch.Tensor, + scale: float, + ): + bgmv_shrink(x, w_t_all, y, self.token_lora_indices, scale) + + def _expand_prefill( + self, + y: torch.Tensor, + x: torch.Tensor, + w_t_all: torch.Tensor, + add_input: bool, + ): + #No LoRA request, so return directly + if self.no_lora: + return + sgmv_expand( + x, + w_t_all, + y, + *self.prefill_metadata, + add_input, + ) + + def _expand_decode( + self, + y: torch.Tensor, + x: torch.Tensor, + w_t_all: torch.Tensor, + add_input: bool, + ): + bgmv_expand(x, w_t_all, y, self.token_lora_indices, add_input) + + def _expand_slice_prefill( + self, + y: torch.Tensor, + x: torch.Tensor, + w_t_all: torch.Tensor, + y_offset: Optional[int], + y_slice_size: Optional[int], + add_input: bool, + ): + #No LoRA request, so return directly + if self.no_lora: + return + sgmv_expand_slice( + x, + w_t_all, + y, + *self.prefill_metadata, + y_offset, + y_slice_size, + add_input, + ) + + def _expand_slice_decode( + self, + y: torch.Tensor, + x: torch.Tensor, + w_t_all: torch.Tensor, + y_offset: Optional[int], + y_slice_size: Optional[int], + add_input: bool, + ): + bgmv_expand_slice(x, w_t_all, y, self.token_lora_indices, y_offset, + y_slice_size, add_input) + + def _apply_expand( + self, + y: torch.Tensor, + x: torch.Tensor, + w_t_all: torch.Tensor, + y_offset: Optional[int], + y_slice_size: Optional[int], + add_input: bool = True, + ): + """ + Perform the ` y[:,y_offset:y_offset+y_slice_size]+=x@w_t_all` + computation, which is suitable for the + GEMM of lora'b. + """ + + expand_slice_fun: Callable = (self._expand_slice_prefill + if self.is_prefill else + self._expand_slice_decode) + expand_slice_fun(y, x, w_t_all, y_offset, y_slice_size, add_input) + + def _apply_shrink(self, y: torch.Tensor, x: torch.Tensor, + w_t_all: torch.Tensor, scale: float): + """ + Perform the ` y+=x@w_t_all` computation, which is suitable for the + GEMM of lora'a. + When `is_prefill is` true, it indicates that it is currently the + prefill stage, and the `_shrink_prefill` function should be called. + Otherwise, it is the decode stage, and the _shrink_decode function + should be called. + """ + y_org = y + y = y.view(-1, y.shape[-1]) + shrink_fun: Callable = (self._shrink_prefill + if self.is_prefill else self._shrink_decode) + shrink_fun(y, x, w_t_all, scale) + y = y.view_as(y_org) + + def add_shrink(self, y: Union[Tuple[torch.Tensor, ...], torch.Tensor], + x: torch.Tensor, lora_a_stacked: Tuple[torch.Tensor, ...], + scale: float, **kwargs): + """ + Performs GEMM for multiple slices of lora_a. + When `is_prefill is` true, it indicates that it is currently the + prefill stage, and the `_shrink_prefill` function should be called. + Otherwise, it is the decode stage, and the _shrink_decode function + should be called. + + Semantics: + for i in range(len(lora_a_stacked)): + y[i] += (x @ lora_a_stacked[i]) * scale + + Args: + y (Union[Tuple[torch.Tensor, ...], torch.Tensor]): Output tensors + x (torch.Tensor): Input tensor + lora_a_stacked (Tuple[torch.Tensor, ...]): lora_a's weights + scale (float): Scaling factor for the operation + """ + + x = x.view(-1, x.shape[-1]) + # TODO fuse these kernels + for slice_idx in range(len(lora_a_stacked)): + self._apply_shrink(y[slice_idx], x, lora_a_stacked[slice_idx], + scale) + + def add_expand(self, + y: torch.Tensor, + x: Union[Tuple[torch.Tensor, ...], torch.Tensor], + lora_b_stacked: Tuple[torch.Tensor, ...], + lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]], + output_slices: Tuple[int, ...], + offset_start: int = 0, + add_input=True, + **kwargs) -> None: + """ + Performs GEMM and bias addition for multiple slices of lora_b. + + Semantics: + for i in range(len(lora_b_stacked)): + slice = output_slices[i] + y[:, offset:offset+slice] += x[i] @ lora_b_stacked[i] + + lora_bias_stacked[i] + offset += slice + + Args: + y (torch.Tensor): Output tensor. + x (Union[Tuple[torch.Tensor, ...], torch.Tensor]): Input tensors + lora_b_stacked (Tuple[torch.Tensor, ...]): lora_b's weight + lora_bias_stacked (Optional[Tuple[torch.Tensor, ...]]): + bias's weight + output_slices (Tuple[int, ...]): Every slice's size + add_input (bool): Defaults to True. + """ + y_org = y + y = y.view(-1, y.shape[-1]) + offset_left = offset_start + if lora_bias_stacked is not None: + self._apply_bias(self.token_lora_indices, y, output_slices, + lora_bias_stacked) + for slice_idx in range(len(lora_b_stacked)): + self._apply_expand( + y, + x[slice_idx], + lora_b_stacked[slice_idx], + offset_left, + output_slices[slice_idx], + add_input=add_input, + ) + offset_left += output_slices[slice_idx] + y = y.view_as(y_org) + + def add_lora_embedding(self, + y: torch.Tensor, + x: torch.Tensor, + lora_b_stacked: torch.Tensor, + add_input: bool = True, + **kwargs) -> None: + """ + Applies lora specifically for VocabParallelEmbeddingWithLoRA. + + Semantics: + y += x @ lora_b_stacked + + Args: + y (torch.Tensor): Output tensor. + x (torch.Tensor): Input tensor. + lora_b_stacked (torch.Tensor): lora_b's weights. + add_input (bool): Default to True. + """ + + # Embedding layer only need expand op + expand_fun: Callable = (self._expand_prefill + if self.is_prefill else self._expand_decode) + expand_fun(y, x, lora_b_stacked, add_input) + + def add_lora_linear(self, + y: torch.Tensor, + x: torch.Tensor, + lora_a_stacked: Tuple[torch.Tensor, ...], + lora_b_stacked: Tuple[torch.Tensor, ...], + lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]], + scale: float, + output_slices: Tuple[int, ...], + *, + buffer: Optional[Tuple[torch.Tensor, ...]] = None, + **kwargs) -> None: + """ + Applicable to linear-related lora. + + Semantics: + for i in range(len(lora_a_stacked)): + y[i] += ( + x[i].unsqueeze(0) + @ lora_a_stacked[indices[i], layer_idx, :, :] + @ lora_b_stacked[indices[i], layer_idx, :, :] + * scale + ).squeeze(0)+lora_bias_stacked[i] + + Args: + y (torch.Tensor): Output tensor. Will be changed in-place. + x (torch.Tensor): Input tensor + lora_a_stacked (Tuple[torch.Tensor, ...]): lora_a's weight. + lora_b_stacked (Tuple[torch.Tensor, ...]): lora_b's weight. + lora_bias_stacked (Optional[Tuple[torch.Tensor, ...]]): lora's bias. + scale (float): Scaling factor. + output_slices (Tuple[int, ...]): Every slice's size. + buffer (Optional[Tuple[torch.Tensor, ...]]): Defaults to None. + """ + + assert len(lora_a_stacked) == len(lora_b_stacked) == len(output_slices) + if lora_bias_stacked is not None: + assert len(lora_bias_stacked) == len(output_slices) + y = self._apply_bias(self.token_lora_indices, y, output_slices, + lora_bias_stacked) + + if buffer is None: + r = lora_b_stacked[0].size(-1) + # We set the buffer to be float32 by default ,refer to: + # https://github.com/triton-lang/triton/issues/1387 + buffer = tuple( + torch.zeros( + (x.size(0), r), dtype=torch.float32, device=x.device) + for _ in range(len(output_slices))) + self.add_shrink(buffer, x, lora_a_stacked, scale, **kwargs) + self.add_expand(y, + buffer, + lora_b_stacked, + None, + output_slices, + add_input=True, + **kwargs) + + def add_lora_logits(self, + y: torch.Tensor, + x: torch.Tensor, + lora_a_stacked: torch.Tensor, + lora_b_stacked: torch.Tensor, + scale, + *, + buffer: Optional[torch.Tensor] = None, + **kwargs) -> None: + """ + Applies lora specifically for LogitsProcessorWithLoRA. + + Semantics: + buffer = (x @ lora_a_stacked) * scale + y += buffer @ lora_b_stacked + + Args: + y (torch.Tensor): Output tensor. + x (torch.Tensor): Input tensor. + lora_a_stacked (torch.Tensor): lora_a's weights. + lora_b_stacked (torch.Tensor):lora_b's weights. + scale (float): Scaling factor. + buffer (Optional[torch.Tensor]):Default to None. + """ + y_org = y + y = y.view(-1, y.shape[-1]) + x = x.view(-1, x.shape[-1]) + r = lora_b_stacked.size(-1) + if buffer is None: + # We set the buffer to be float32 by default ,refer to: + # https://github.com/triton-lang/triton/issues/1387 + buffer = torch.zeros((x.size(0), r), + dtype=torch.float32, + device=x.device) + # LogitsProcessorWithLoRA always using bgmv. + bgmv_shrink(x, lora_a_stacked, buffer, self.sampler_indices, scale) + bgmv_expand(buffer, + lora_b_stacked, + y, + self.sampler_indices, + add_inputs=True) + y = y.view_as(y_org) diff --git a/vllm/lora/punica_wrapper/punica_selector.py b/vllm/lora/punica_wrapper/punica_selector.py new file mode 100644 index 0000000000000..df6c1bdc7dd71 --- /dev/null +++ b/vllm/lora/punica_wrapper/punica_selector.py @@ -0,0 +1,14 @@ +from vllm.platforms import current_platform +from vllm.utils import print_info_once + +from .punica_base import PunicaWrapperBase + + +def get_punica_wrapper(*args, **kwargs) -> PunicaWrapperBase: + if current_platform.is_cuda_alike(): + # Lazy import to avoid ImportError + from vllm.lora.punica_wrapper.punica_gpu import PunicaWrapperGPU + print_info_once("Using PunicaWrapperGPU.") + return PunicaWrapperGPU(*args, **kwargs) + else: + raise NotImplementedError diff --git a/vllm/lora/punica_wrapper/utils.py b/vllm/lora/punica_wrapper/utils.py new file mode 100644 index 0000000000000..7360c8c09e3ac --- /dev/null +++ b/vllm/lora/punica_wrapper/utils.py @@ -0,0 +1,159 @@ +from typing import TYPE_CHECKING, List, Optional, Tuple, Union + +import torch + +if TYPE_CHECKING: + # avoid circuit import + from vllm.lora.layers import LoRAMapping + from vllm.lora.models import LongContextLoRAContext + + +def compute_meta( + token_lora_tensor: torch.Tensor +) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, int, int, bool]: + """ + Get the information required for the sgmv kernel. With the features: + 1. If consecutive requests in the batch use the same LoRA, this function + will combine them into a single request, improving sgmv kernel inference + performance. + 2. At the beginning of each prefill stage inference, recalculations are + needed based on the input, but only once. + """ + + lora_indices_tensor, seq_length_tensor = torch.unique_consecutive( + token_lora_tensor, return_counts=True) + cum_result = torch.cumsum(seq_length_tensor, dim=0) + b_seq_start_tensor = torch.zeros_like(seq_length_tensor) + b_seq_start_tensor[1:].copy_(cum_result[:-1]) + max_length = seq_length_tensor.max().item() + token_nums = seq_length_tensor.sum().item() + batch_size = lora_indices_tensor.size(0) + no_lora = False + # -1 means no lora should be applied. Use `no_lora` to determine whether + # the current step requires LoRA. If LoRA is not needed, the prefill stage + # does not need to launch the triton kernel, which can improve performance + if batch_size == 1 and lora_indices_tensor == -1: + no_lora = True + return (b_seq_start_tensor, seq_length_tensor, lora_indices_tensor, + batch_size, max_length, token_nums, no_lora) + + +# TODO see if this can be vectorized +def convert_mapping( + mapping: "LoRAMapping", + lora_index_to_id: List[Optional[int]], + max_loras: int, + vocab_size: int, + extra_vocab_size: int, + device: torch.device, + long_lora_context: Optional["LongContextLoRAContext"] = None, +) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, + Optional[torch.Tensor], List[int]]: + """Converts LoRAMapping to index tensors. + + Args: + mapping: LoRAMapping mapping rows in a batch to LoRA ids. + lora_index_to_id: List mapping LoRA ids to LoRA indices. + max_loras: Maximum number of LoRAs. + vocab_size: Model vocab size. + extra_vocab_size: Extra vocab size each LoRA can have. + long_lora_context: Passed if there are long context lora in a batch. + + Returns: + A tuple of tensors: + base_indices: Tensor of shape [batch_size] mapping batch rows to + LoRA indices. + sampler_indices: Tensor of shape [batch_size] mapping requests to + LoRA indices for sampler. For generation, this will be the + same as base_indicies. For prefill, this will map requests + to LoRA indices. + sampler_indices_padded: Tensor of shape [batch_size] mapping + requests to LoRA indices for sampler with padding. + Same as sampler_indicies, but -1 is replaced with + max_loras. + embeddings_indices: Tensor of shape [2, batch_size] mapping + requests to embedding indices. First row is for embeddings + added by the LoRAs, second row is for the LoRA.lora_a + embeddings. + long_lora_indices: Tensor of shape [batch_size] mapping + requests to RoPE offsets and rot dims for long LoRAs. + None if long context lora doesn't exist. + indices_len: List of lengths of the above tensors. It contains + (base_indices, sampler_indices, sampler_indices_padded, + embeddings_indices, long_lora_indices). + """ + index_mapping_indices: List[int] = list(mapping.index_mapping).copy() + embedding_indices = index_mapping_indices.copy() + lora_indices = index_mapping_indices.copy() + long_lora_offsets: Optional[torch.Tensor] = None + if long_lora_context: + long_lora_offsets = torch.zeros(len(index_mapping_indices), + device=device, + dtype=torch.long) + prompt_mapping: List[int] = [ + lora_index_to_id.index(x) if x > 0 else -1 + for x in mapping.prompt_mapping + ] + lora_idx = None + for i in range(len(index_mapping_indices)): + # TODO index can be slow. optimize + lora_idx = (lora_index_to_id.index(index_mapping_indices[i]) + if index_mapping_indices[i] > 0 else -1) + embedding_indices[i] = lora_idx if index_mapping_indices[i] > 0 else 0 + lora_indices[i] = lora_idx + if long_lora_context: + assert long_lora_offsets is not None + lora_offset: int = long_lora_context.offsets_by_lora_id.get( + index_mapping_indices[i], 0) + long_lora_offsets[i] = lora_offset + + indices_list: List[Union[List[int], torch.Tensor]] = [ + index_mapping_indices, + lora_indices, + embedding_indices, + ] + if long_lora_context: + assert long_lora_offsets is not None + indices_list.append(long_lora_offsets) + indices = torch.tensor(indices_list, dtype=torch.long, device=device) + prompt_mapping_tensor = torch.tensor(prompt_mapping, + dtype=torch.long, + device=device) + embeddings_indices = torch.stack([ + indices[2] * extra_vocab_size, + indices[2] * (vocab_size + extra_vocab_size), + ]) + embeddings_indices[embeddings_indices == -1] = max_loras - 1 + base_indices = indices[1] + sampler_indices = prompt_mapping_tensor + sampler_indices_padded = sampler_indices.clone() + sampler_indices_padded[sampler_indices_padded == -1] = max_loras - 1 + sampler_indices_padded = torch.arange( + 0, len(sampler_indices_padded), device=device, dtype=torch.long) + ( + sampler_indices_padded * len(sampler_indices_padded)) + long_lora_indices = None + long_lora_indices_len: Optional[int] = None + if long_lora_context: + long_lora_indices = indices[3] + long_lora_indices_len = long_lora_indices.shape[-1] + # Contain length of indices tensors. Used to index into each tensor. + indices_len = [ + base_indices.shape[-1], + sampler_indices.shape[-1], + sampler_indices_padded.shape[-1], + embeddings_indices.shape[-1], + ] + if long_lora_indices_len is not None: + indices_len.append(long_lora_indices_len) + else: + # If long_lora doesn't exist,append None + indices_len.append(None) + + return ( + base_indices, + sampler_indices, + sampler_indices_padded, + embeddings_indices, + long_lora_indices, + indices_len, + ) From a811dd660856a5c222a1447fe1d93deccbc162fd Mon Sep 17 00:00:00 2001 From: Isotr0py Date: Tue, 10 Dec 2024 04:55:10 +0800 Subject: [PATCH 076/733] [Model] merged input processor for Phi-3-Vision models (#10977) Signed-off-by: Isotr0py <2037008807@qq.com> Co-authored-by: Cyrus Leung --- tests/entrypoints/openai/test_vision.py | 4 +- .../openai/test_vision_embedding.py | 4 +- .../mm_processor_kwargs/test_phi3v.py | 136 ++------ tests/multimodal/test_processor_kwargs.py | 169 +++++----- vllm/inputs/registry.py | 4 +- vllm/model_executor/models/phi3v.py | 298 +++++------------- vllm/multimodal/processing.py | 29 +- 7 files changed, 235 insertions(+), 409 deletions(-) diff --git a/tests/entrypoints/openai/test_vision.py b/tests/entrypoints/openai/test_vision.py index 157d873a75b4d..a0b6edd566561 100644 --- a/tests/entrypoints/openai/test_vision.py +++ b/tests/entrypoints/openai/test_vision.py @@ -89,7 +89,7 @@ async def test_single_chat_session_image(client: openai.AsyncOpenAI, choice = chat_completion.choices[0] assert choice.finish_reason == "length" assert chat_completion.usage == openai.types.CompletionUsage( - completion_tokens=10, prompt_tokens=772, total_tokens=782) + completion_tokens=10, prompt_tokens=775, total_tokens=785) message = choice.message message = chat_completion.choices[0].message @@ -181,7 +181,7 @@ async def test_single_chat_session_image_base64encoded( choice = chat_completion.choices[0] assert choice.finish_reason == "length" assert chat_completion.usage == openai.types.CompletionUsage( - completion_tokens=10, prompt_tokens=772, total_tokens=782) + completion_tokens=10, prompt_tokens=775, total_tokens=785) message = choice.message message = chat_completion.choices[0].message diff --git a/tests/entrypoints/openai/test_vision_embedding.py b/tests/entrypoints/openai/test_vision_embedding.py index d0c43b47bf0af..425f2a10ec855 100644 --- a/tests/entrypoints/openai/test_vision_embedding.py +++ b/tests/entrypoints/openai/test_vision_embedding.py @@ -95,5 +95,5 @@ async def test_image_embedding(server: RemoteOpenAIServer, model_name: str, assert len(embeddings["data"]) == 1 assert len(embeddings["data"][0]["embedding"]) == 3072 assert embeddings["usage"]["completion_tokens"] == 0 - assert embeddings["usage"]["prompt_tokens"] == 762 - assert embeddings["usage"]["total_tokens"] == 762 + assert embeddings["usage"]["prompt_tokens"] == 765 + assert embeddings["usage"]["total_tokens"] == 765 diff --git a/tests/models/decoder_only/vision_language/mm_processor_kwargs/test_phi3v.py b/tests/models/decoder_only/vision_language/mm_processor_kwargs/test_phi3v.py index 60a8f63eb5faa..c16192a1e1438 100644 --- a/tests/models/decoder_only/vision_language/mm_processor_kwargs/test_phi3v.py +++ b/tests/models/decoder_only/vision_language/mm_processor_kwargs/test_phi3v.py @@ -2,12 +2,10 @@ from typing import Optional import pytest -import torch -from transformers import AutoImageProcessor, AutoTokenizer +from transformers import AutoTokenizer -from vllm.inputs import InputContext, token_inputs +from vllm.inputs import InputContext, InputProcessingContext from vllm.model_executor.models.phi3v import _IMAGE_TOKEN_ID -from vllm.multimodal import MultiModalRegistry from .....conftest import _ImageAssets from ....utils import build_model_context @@ -17,15 +15,9 @@ # Wrap lazy imports to avoid initializing CUDA during test collection @pytest.fixture() -def input_processor_for_phi3v(): - from vllm.model_executor.models.phi3v import input_processor_for_phi3v - return input_processor_for_phi3v - - -@pytest.fixture() -def dummy_data_for_phi3v(): - from vllm.model_executor.models.phi3v import dummy_data_for_phi3v - return dummy_data_for_phi3v +def processor_for_phi3v(): + from vllm.model_executor.models.phi3v import Phi3VProcessor + return Phi3VProcessor @pytest.fixture() @@ -34,53 +26,6 @@ def get_max_phi3v_image_tokens(): return get_max_phi3v_image_tokens -@pytest.mark.parametrize("model", models) -@pytest.mark.parametrize("num_crops", [4, 16, None]) -def test_input_mapper_override(model: str, image_assets: _ImageAssets, - num_crops: Optional[int]): - """Ensure that the [default] input mapper handles num_crops properly.""" - # We pass the processor kwargs here since for this model, we fall back to - # the default mapper; this will fall back to the HF mapper and forward - # mm_processor_kwargs to it. - mm_processor_kwargs = { - "num_crops": num_crops - } if num_crops is not None else {} - ctx = build_model_context( - model_name=model, - tokenizer_name=model, - trust_remote_code=True, - mm_processor_kwargs=mm_processor_kwargs, - ) - - hf_processor = AutoImageProcessor.from_pretrained(model, - trust_remote_code=True, - **mm_processor_kwargs) - - mm_registry = MultiModalRegistry() - mm_registry.init_mm_limits_per_prompt(ctx.model_config) - - image = image_assets[0].pil_image - hf_result = hf_processor.preprocess( - image, - return_tensors="pt", - ) - - vllm_result = mm_registry.map_input( - ctx.model_config, - {"image": image}, - ) - - assert torch.all(hf_result["image_sizes"] == vllm_result["image_sizes"]) - assert torch.all( - hf_result["num_img_tokens"] == vllm_result["num_img_tokens"]) - - # For pixel values, the second axis should be the num_crops + 1 - # for the rescaled original image. The default value in VLLM falls - # back to the HF config, which is why we compare to the processor num_crops - assert torch.all(hf_result["pixel_values"] == vllm_result["pixel_values"]) - assert vllm_result["pixel_values"].shape[1] == hf_processor.num_crops + 1 - - @pytest.mark.parametrize("model", models) @pytest.mark.parametrize("num_crops,expected_max_tokens", [ (4, 781), @@ -112,48 +57,20 @@ def test_max_tokens_override(get_max_phi3v_image_tokens, model: str, @pytest.mark.parametrize("model", models) -@pytest.mark.parametrize("num_crops,toks_per_img,num_imgs", [ - (4, 781, 1), - (4, 781, 2), - (16, 2653, 1), - (16, 2653, 2), -]) -def test_dummy_data_override(dummy_data_for_phi3v, model: str, num_crops: int, - toks_per_img: int, num_imgs: int): - """Ensure dummy_data_for_phi3v handles num_crops properly.""" - # Same as the previous test - don't initialize mm_processor_kwargs - # in this test and assume that the kwargs will be correctly expanded by - # the partial when calling the dummy data func. - ctx = build_model_context( - model_name=model, - tokenizer_name=model, - trust_remote_code=True, - mm_processor_kwargs=None, - ) - - dummy_data = dummy_data_for_phi3v( - ctx=ctx, - seq_len=8192, # Should be bigger than num_imgs * toks_per_img - mm_counts={"image": num_imgs}, - num_crops=num_crops, - ) - sequence_data = dummy_data.seq_data - # Ensure we have the right number of placeholders per num_crops size - img_tok_count = sequence_data.get_token_ids().count(_IMAGE_TOKEN_ID) - assert img_tok_count == toks_per_img * num_imgs - - -@pytest.mark.parametrize("model", models) -@pytest.mark.parametrize("num_crops,expected_toks_per_img,num_imgs", [ - (4, 757, 1), - (4, 757, 2), - (16, 1921, 1), - (16, 1921, 2), -]) -def test_input_processor_override(input_processor_for_phi3v, - image_assets: _ImageAssets, model: str, - num_crops: int, expected_toks_per_img: int, - num_imgs: int): +@pytest.mark.parametrize( + "num_crops,expected_toks_per_img,num_imgs", + [ + (4, 757, 1), + (4, 757, 2), + (16, 1921, 1), + (16, 1921, 2), + # the default num_crops of phi-3.5-vision is 4 + (None, 757, 2), + (None, 757, 2), + ]) +def test_processor_override(processor_for_phi3v, image_assets: _ImageAssets, + model: str, num_crops: Optional[int], + expected_toks_per_img: int, num_imgs: int): """Ensure input_processor_for_phi3v handles num_crops properly.""" # Same as the previous test - don't initialize mm_processor_kwargs # in this test and assume that the kwargs will be correctly expanded by @@ -163,19 +80,20 @@ def test_input_processor_override(input_processor_for_phi3v, tokenizer_name=model, trust_remote_code=True, ) - tokenizer = AutoTokenizer.from_pretrained(model) + tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True) + ctx = InputProcessingContext(ctx.model_config, tokenizer) # Build the image str / prompt based on the number of images we pass img_str = "".join([f"<|image_{idx}|>\n" for idx in range(1, num_imgs + 1)]) prompt = f"<|user|>\n{img_str}<|end|>\n<|assistant|>\n" images = [image_assets[0].pil_image] * num_imgs - inputs = token_inputs(prompt_token_ids=tokenizer.encode(prompt), - prompt=prompt, - multi_modal_data={"image": images}) + mm_data = {"image": images} + mm_processor_kwargs = {} + if num_crops is not None: + mm_processor_kwargs = {"num_crops": num_crops} - processed_inputs = input_processor_for_phi3v(ctx, - inputs, - num_crops=num_crops) + processor = processor_for_phi3v(ctx) + processed_inputs = processor.apply(prompt, mm_data, mm_processor_kwargs) # Ensure we have the right number of placeholders per num_crops size img_tok_count = processed_inputs["prompt_token_ids"].count(_IMAGE_TOKEN_ID) diff --git a/tests/multimodal/test_processor_kwargs.py b/tests/multimodal/test_processor_kwargs.py index e6c8793989e13..d141cdf1f083b 100644 --- a/tests/multimodal/test_processor_kwargs.py +++ b/tests/multimodal/test_processor_kwargs.py @@ -15,13 +15,13 @@ # Used for fast tests where the model doesn't matter DUMMY_MODEL_ID = "facebook/opt-125m" # Used for tests that need a multimodal model -MULTIMODAL_MODEL_ID = "microsoft/Phi-3.5-vision-instruct" +MULTIMODAL_MODEL_ID = "OpenGVLab/InternVL2-2B" # For mm_processor_kwargs - we test overrides by defining mocks for each place # it is used, and ensuring that we can pass processor kwargs an override value # to receive the intended result for things like sequence length etc. -DEFAULT_NUM_CROPS = 4 -NUM_CROPS_OVERRIDE = 16 +DEFAULT_MAX_DYNAMIC_PATCH = 6 +MAX_DYNAMIC_PATCH_OVERRIDE = 4 # Mocks for all of the places that we use the mm_processor_kwargs @@ -33,10 +33,11 @@ def use_processor_mock(): def custom_processor(ctx: InputContext, inputs: DecoderOnlyInputs, *, - num_crops=DEFAULT_NUM_CROPS): + max_dynamic_patch=DEFAULT_MAX_DYNAMIC_PATCH): # For testing purposes, we don't worry about the prompt - return token_inputs(prompt_token_ids=[], - mm_processor_kwargs={"num_crops": num_crops}) + return token_inputs( + prompt_token_ids=[], + mm_processor_kwargs={"max_dynamic_patch": max_dynamic_patch}) with patch("vllm.inputs.registry.InputRegistry._get_model_input_processor", return_value=custom_processor): @@ -52,9 +53,9 @@ def custom_dummy_data_factory(self, seq_len: int, mm_counts: Mapping[str, int], *, - num_crops=DEFAULT_NUM_CROPS): + max_dynamic_patch=DEFAULT_MAX_DYNAMIC_PATCH): seq_data = SequenceData( - array(VLLM_TOKEN_ID_ARRAY_TYPE, [0] * num_crops)) + array(VLLM_TOKEN_ID_ARRAY_TYPE, [0] * max_dynamic_patch)) return DummyData(seq_data, None) with patch( @@ -65,15 +66,15 @@ def custom_dummy_data_factory(self, # Lazy import to avoid CUDA reinitialization error def mm_model_cls(): - from vllm.model_executor.models.phi3v import Phi3VForCausalLM + from vllm.model_executor.models.internvl import InternVLChatModel - return Phi3VForCausalLM + return InternVLChatModel # lambda whose signature matches max token calcs extra & mapper + extra kwargs -get_num_crops = lambda ctx, *, num_crops=DEFAULT_NUM_CROPS: num_crops -custom_mapper = lambda ctx, data, *, num_crops=DEFAULT_NUM_CROPS: { - "pixel_values": torch.zeros(size=(1, num_crops + 1, 3, 336, 336)) +get_max_dynamic_patch = lambda ctx, *, max_dynamic_patch=DEFAULT_MAX_DYNAMIC_PATCH: max_dynamic_patch # noqa: E501 +custom_mapper = lambda ctx, data, *, max_dynamic_patch=DEFAULT_MAX_DYNAMIC_PATCH: { # noqa: E501 + "pixel_values": torch.zeros(size=(1, max_dynamic_patch + 1, 3, 448, 448)) } @@ -88,27 +89,28 @@ def test_default_processor_is_a_noop(): assert proc_inputs is proc_outputs -def _get_num_crops_info(init_num_crops: int, inference_num_crops: int): - """Get the init / inference kwargs and expected num_crops for this test.""" - # If we have a value for num_crops, pass the override value and make +def _get_max_dynamic_patch_info(init_max_dynamic_patch: int, + inference_max_dynamic_patch: int): + """Get the init / inference kwargs and expected max_dynamic_patch.""" + # If we have a value for max_dynamic_patch, pass the override value and make # sure we get that value as a return-value from out mock processor, # otherwise fall back to the default value - init_kwargs = None if init_num_crops is None else { - "num_crops": init_num_crops + init_kwargs = None if init_max_dynamic_patch is None else { + "max_dynamic_patch": init_max_dynamic_patch } - inference_kwargs = None if inference_num_crops is None else { - "num_crops": inference_num_crops + inference_kwargs = None if inference_max_dynamic_patch is None else { + "max_dynamic_patch": inference_max_dynamic_patch } - if inference_num_crops is not None: - expected_seq_count = inference_num_crops - elif init_num_crops is not None: - expected_seq_count = init_num_crops + if inference_max_dynamic_patch is not None: + expected_seq_count = inference_max_dynamic_patch + elif init_max_dynamic_patch is not None: + expected_seq_count = init_max_dynamic_patch else: - expected_seq_count = DEFAULT_NUM_CROPS + expected_seq_count = DEFAULT_MAX_DYNAMIC_PATCH return init_kwargs, inference_kwargs, expected_seq_count -def _get_processed_num_crops( +def _get_processed_max_dynamic_patch( processor: Callable[[ProcessorInputs], ProcessorInputs], inference_kwargs: Optional[Dict[str, int]], ) -> int: @@ -120,27 +122,30 @@ def _get_processed_num_crops( assert "type" in processed_inputs assert processed_inputs["type"] == "token" assert "mm_processor_kwargs" in processed_inputs - return processed_inputs["mm_processor_kwargs"]["num_crops"] + return processed_inputs["mm_processor_kwargs"]["max_dynamic_patch"] -@pytest.mark.parametrize("init_num_crops,inference_num_crops", [ - (None, None), - (NUM_CROPS_OVERRIDE, None), - (DEFAULT_NUM_CROPS, NUM_CROPS_OVERRIDE), -]) -def test_input_processor_kwargs(use_processor_mock, init_num_crops, - inference_num_crops): +@pytest.mark.parametrize( + "init_max_dynamic_patch,inference_max_dynamic_patch", [ + (None, None), + (MAX_DYNAMIC_PATCH_OVERRIDE, None), + (DEFAULT_MAX_DYNAMIC_PATCH, MAX_DYNAMIC_PATCH_OVERRIDE), + ]) +def test_input_processor_kwargs(use_processor_mock, init_max_dynamic_patch, + inference_max_dynamic_patch): """Ensure input processors can use processor kwargs.""" dummy_registry = InputRegistry() - init_kwargs, inference_kwargs, expected_seq_count = _get_num_crops_info( - init_num_crops, inference_num_crops) + (init_kwargs, inference_kwargs, + expected_seq_count) = _get_max_dynamic_patch_info( + init_max_dynamic_patch, inference_max_dynamic_patch) ctx = build_model_context(DUMMY_MODEL_ID, mm_processor_kwargs=init_kwargs) processor = dummy_registry.create_input_processor(ctx.model_config) - num_crops_val = _get_processed_num_crops(processor, inference_kwargs) + max_dynamic_patch_val = _get_processed_max_dynamic_patch( + processor, inference_kwargs) - assert num_crops_val == expected_seq_count + assert max_dynamic_patch_val == expected_seq_count @pytest.mark.parametrize( @@ -165,18 +170,21 @@ def test_processor_with_sad_kwarg_overrides(use_processor_mock, processor = dummy_registry.create_input_processor(ctx.model_config) # Should filter out the inference time kwargs - num_crops_val = _get_processed_num_crops(processor, mm_processor_kwargs) - assert num_crops_val == DEFAULT_NUM_CROPS + max_dynamic_patch_val = _get_processed_max_dynamic_patch( + processor, mm_processor_kwargs) + assert max_dynamic_patch_val == DEFAULT_MAX_DYNAMIC_PATCH ### Test overrides for the dummy data -@pytest.mark.parametrize("num_crops", [None, NUM_CROPS_OVERRIDE]) -def test_dummy_data_kwarg_overrides(use_dummy_data_mock, num_crops): +@pytest.mark.parametrize("max_dynamic_patch", + [None, MAX_DYNAMIC_PATCH_OVERRIDE]) +def test_dummy_data_kwarg_overrides(use_dummy_data_mock, max_dynamic_patch): """Ensure dummy data factories can use processor kwargs.""" - mm_processor_kwargs = None if num_crops is None else { - "num_crops": num_crops + mm_processor_kwargs = None if max_dynamic_patch is None else { + "max_dynamic_patch": max_dynamic_patch } - expected_seq_count = DEFAULT_NUM_CROPS if num_crops is None else num_crops + expected_seq_count = (DEFAULT_MAX_DYNAMIC_PATCH + if max_dynamic_patch is None else max_dynamic_patch) dummy_registry = InputRegistry() ctx = build_model_context(DUMMY_MODEL_ID, mm_processor_kwargs=mm_processor_kwargs) @@ -217,17 +225,20 @@ def test_dummy_data_with_sad_kwarg_overrides(use_dummy_data_mock, # len is solely dependent on the value of the mm_processor_kwargs. dummy_data = dummy_registry.dummy_data_for_profiling( ctx.model_config, seq_len=-1, mm_registry=mm_registry) - assert len(dummy_data.seq_data.prompt_token_ids) == DEFAULT_NUM_CROPS + assert len( + dummy_data.seq_data.prompt_token_ids) == DEFAULT_MAX_DYNAMIC_PATCH ### Test overrides for the max token count per multimodal instance -@pytest.mark.parametrize("num_crops", [None, NUM_CROPS_OVERRIDE]) -def test_max_tokens_kwarg_overrides(num_crops): +@pytest.mark.parametrize("max_dynamic_patch", + [None, MAX_DYNAMIC_PATCH_OVERRIDE]) +def test_max_tokens_kwarg_overrides(max_dynamic_patch): """Ensure max token calcs can use processor kwargs.""" - mm_processor_kwargs = None if num_crops is None else { - "num_crops": num_crops + mm_processor_kwargs = None if max_dynamic_patch is None else { + "max_dynamic_patch": max_dynamic_patch } - expected_seq_count = DEFAULT_NUM_CROPS if num_crops is None else num_crops + expected_seq_count = (DEFAULT_MAX_DYNAMIC_PATCH + if max_dynamic_patch is None else max_dynamic_patch) ctx = build_model_context(MULTIMODAL_MODEL_ID, task="generate", @@ -239,11 +250,11 @@ def test_max_tokens_kwarg_overrides(num_crops): mm_registry.init_mm_limits_per_prompt(ctx.model_config) # Patch the image registry for phi3v with our lambda that is compatible # with overrides, then ensure that calling the method correctly echos - # our num_crops value back from the mm_processor_kwargs. + # our max_dynamic_patch value back from the mm_processor_kwargs. with patch.object( mm_registry._get_plugin("image"), "_max_mm_tokens", - {mm_model_cls(): get_num_crops}, + {mm_model_cls(): get_max_dynamic_patch}, ): max_multimodal_tokens = mm_registry.get_max_multimodal_tokens( ctx.model_config) @@ -279,26 +290,29 @@ def test_max_tokens_with_sad_kwarg_overrides(mm_processor_kwargs): with patch.object( mm_registry._get_plugin("image"), "_max_mm_tokens", - {mm_model_cls(): get_num_crops}, + {mm_model_cls(): get_max_dynamic_patch}, ): max_multimodal_tokens = mm_registry.get_max_multimodal_tokens( ctx.model_config) - assert max_multimodal_tokens == DEFAULT_NUM_CROPS + assert max_multimodal_tokens == DEFAULT_MAX_DYNAMIC_PATCH ### Test overrides for the mapper -@pytest.mark.parametrize("num_crops", [DEFAULT_NUM_CROPS, NUM_CROPS_OVERRIDE]) -def test_default_mapper_with_processor_kwargs(image_assets, num_crops): +@pytest.mark.parametrize( + "max_dynamic_patch", + [DEFAULT_MAX_DYNAMIC_PATCH, MAX_DYNAMIC_PATCH_OVERRIDE]) +def test_default_mapper_with_processor_kwargs(image_assets, max_dynamic_patch): """Ensure that the mapper processor kwargs can fall back to HF models.""" # NOTE - we don't validate bad inputs for the default mapper, because it's # through the automodel interface in transformers, so we can't easily # inspect what kwargs are or are not allowed. - ctx = build_model_context(MULTIMODAL_MODEL_ID, - task="generate", - trust_remote_code=True, - mm_processor_kwargs={"num_crops": num_crops}, - limit_mm_per_prompt={"image": 1}) + ctx = build_model_context( + MULTIMODAL_MODEL_ID, + task="generate", + trust_remote_code=True, + mm_processor_kwargs={"max_dynamic_patch": max_dynamic_patch}, + limit_mm_per_prompt={"image": 1}) mm_registry = MultiModalRegistry() mm_registry.init_mm_limits_per_prompt(ctx.model_config) @@ -307,20 +321,22 @@ def test_default_mapper_with_processor_kwargs(image_assets, num_crops): mm_inputs = {"image": image} mapped_inputs = mm_registry.map_input(ctx.model_config, mm_inputs) - # Phi3v pixel vals should have shape: [batch, num_crops+1, 3, 336, 336] - assert mapped_inputs["pixel_values"].shape[1] == num_crops + 1 + # pixel vals should have shape: [batch, max_dynamic_patch+1, ...] + assert mapped_inputs["pixel_values"].shape[1] == max_dynamic_patch + 1 -@pytest.mark.parametrize("init_num_crops,inference_num_crops", [ - (None, None), - (NUM_CROPS_OVERRIDE, None), - (DEFAULT_NUM_CROPS, NUM_CROPS_OVERRIDE), -]) -def test_custom_mapper_kwarg_overrides(image_assets, init_num_crops, - inference_num_crops): +@pytest.mark.parametrize( + "init_max_dynamic_patch,inference_max_dynamic_patch", [ + (None, None), + (MAX_DYNAMIC_PATCH_OVERRIDE, None), + (DEFAULT_MAX_DYNAMIC_PATCH, MAX_DYNAMIC_PATCH_OVERRIDE), + ]) +def test_custom_mapper_kwarg_overrides(image_assets, init_max_dynamic_patch, + inference_max_dynamic_patch): """Ensure custom mappers can use processor kwargs.""" - init_kwargs, inference_kwargs, expected_seq_count = _get_num_crops_info( - init_num_crops, inference_num_crops) + (init_kwargs, inference_kwargs, + expected_seq_count) = _get_max_dynamic_patch_info( + init_max_dynamic_patch, inference_max_dynamic_patch) ctx = build_model_context(MULTIMODAL_MODEL_ID, task="generate", @@ -335,7 +351,7 @@ def test_custom_mapper_kwarg_overrides(image_assets, init_num_crops, # Patch the image registry for phi3v with our lambda that is compatible # with overrides, then ensure that calling the method correctly echos - # our num_crops value back from the mm_processor_kwargs. + # our max_dynamic_patch value back from the mm_processor_kwargs. mm_registry._get_plugin("image").register_input_mapper(custom_mapper)( mm_model_cls()) mapped_inputs = mm_registry.map_input(ctx.model_config, mm_inputs, @@ -373,11 +389,12 @@ def test_custom_mapper_with_sad_kwarg_overrides(image_assets, # Patch the image registry for phi3v with our lambda that is compatible # with overrides, then ensure that calling the method correctly echos - # our num_crops value back from the mm_processor_kwargs. + # our max_dynamic_patch value back from the mm_processor_kwargs. mm_registry._get_plugin("image").register_input_mapper(custom_mapper)( mm_model_cls()) # Should filter out the inference time kwargs mapped_inputs = mm_registry.map_input( ctx.model_config, mm_inputs, mm_processor_kwargs=mm_processor_kwargs) - assert mapped_inputs["pixel_values"].shape[1] == DEFAULT_NUM_CROPS + 1 + assert mapped_inputs["pixel_values"].shape[1] == ( + DEFAULT_MAX_DYNAMIC_PATCH + 1) diff --git a/vllm/inputs/registry.py b/vllm/inputs/registry.py index 646554c72481a..0dfed3b7e61bf 100644 --- a/vllm/inputs/registry.py +++ b/vllm/inputs/registry.py @@ -69,12 +69,12 @@ class InputProcessingContext(InputContext): tokenizer: AnyTokenizer """The tokenizer used to tokenize the inputs.""" - def get_hf_processor(self) -> ProcessorMixin: + def get_hf_processor(self, **kwargs) -> ProcessorMixin: return cached_get_processor( self.model_config.tokenizer, tokenizer=self.tokenizer, # Override the tokenizer with ours trust_remote_code=self.model_config.trust_remote_code, - ) + **kwargs) N = TypeVar("N", bound=Type[nn.Module]) diff --git a/vllm/model_executor/models/phi3v.py b/vllm/model_executor/models/phi3v.py index eef23029a2aca..3c7854ce388ab 100644 --- a/vllm/model_executor/models/phi3v.py +++ b/vllm/model_executor/models/phi3v.py @@ -12,22 +12,18 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -import itertools -import re -from functools import cached_property, lru_cache -from typing import (Any, Dict, Iterable, List, Literal, Mapping, Optional, Set, - Tuple, TypedDict, Union) +from functools import cached_property +from typing import (Iterable, List, Literal, Mapping, Optional, Set, Tuple, + TypedDict, Union) -import numpy as np import torch import torch.nn as nn -from PIL import Image -from transformers import CLIPVisionConfig, PretrainedConfig +from transformers import (BatchFeature, CLIPVisionConfig, PretrainedConfig, + ProcessorMixin) from vllm.attention import AttentionMetadata -from vllm.config import ModelConfig, VllmConfig -from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, DummyData, - InputContext, token_inputs) +from vllm.config import VllmConfig +from vllm.inputs import InputContext from vllm.logger import init_logger from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler @@ -36,12 +32,18 @@ from vllm.model_executor.models.clip import CLIPVisionModel from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.multimodal import MULTIMODAL_REGISTRY -from vllm.multimodal.inputs import NestedTensors, PlaceholderRange -from vllm.multimodal.utils import cached_get_tokenizer, repeat_and_pad_token +from vllm.multimodal.image import cached_get_image_processor +from vllm.multimodal.inputs import MultiModalKwargs, NestedTensors +from vllm.multimodal.processing import (BaseMultiModalProcessor, + InputProcessingContext, + ModalityProcessingMetadata, + MultiModalDataDict, + MultiModalProcessingMetadata, + PromptReplacement) from vllm.sequence import IntermediateTensors from vllm.utils import is_list_of -from .clip import dummy_image_for_clip, dummy_seq_data_for_clip +from .clip import dummy_image_for_clip from .interfaces import SupportsMultiModal, SupportsPP from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn, init_vllm_registered_model, maybe_prefix, @@ -303,231 +305,99 @@ def add_image_newline(self, image_features_hd): return image_features_hd_newline -# Based on https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/blob/main/image_processing_phi3_v.py#L57 -def _calc_padded_size(*, width: int, height: int, padding_unit: int = 336): - target_height = int(np.ceil(height / padding_unit) * padding_unit) - top_padding = int((target_height - height) / 2) - bottom_padding = target_height - height - top_padding - padded_width = width - padded_height = height + top_padding + bottom_padding - return padded_width, padded_height - - -# Based on https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/blob/main/image_processing_phi3_v.py#L90 -def _calc_hd_transform_size(*, width: int, height: int, hd_num: int): - transposed = False - if width < height: - width, height = height, width - transposed = True - - ratio = width / height - scale = 1 - while scale * np.ceil(scale / ratio) <= hd_num: - scale += 1 - scale -= 1 - - new_width = int(scale * 336) - new_height = int(new_width / ratio) - - padded_width, padded_height = _calc_padded_size(width=new_width, - height=new_height) - - if transposed: - padded_width, padded_height = padded_height, padded_width - - return padded_width, padded_height - - -# Based on https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/blob/main/image_processing_phi3_v.py#L181 -def get_phi3v_image_feature_size( - hf_config: Dict[str, Any], - *, - input_height: int, - input_width: int, - num_crops: int, -) -> int: - if num_crops is None: - num_crops = hf_config.get("num_crops", 16) - new_width, new_height = _calc_hd_transform_size(width=input_width, - height=input_height, - hd_num=num_crops) - - return (new_height // 336 * new_width // 336 + 1) * 144 + 1 \ - + (new_height // 336 + 1) * 12 - - def get_max_phi3v_image_tokens(ctx: InputContext, *, num_crops: Optional[int] = None): + mm_processor_kwargs = {} + if num_crops is not None: + mm_processor_kwargs["num_crops"] = num_crops - return get_phi3v_image_feature_size( - ctx.get_hf_image_processor_config(), - input_height=MAX_IMAGE_FEATURE_SIZE_HEIGHT, - input_width=MAX_IMAGE_FEATURE_SIZE_WIDTH, - num_crops=num_crops, + model_config = ctx.model_config + image_processor = cached_get_image_processor( + model_config.model, + trust_remote_code=model_config.trust_remote_code, + **mm_processor_kwargs, + ) + + num_tokens = image_processor.calc_num_image_tokens_from_image_size( + width=MAX_IMAGE_FEATURE_SIZE_WIDTH, + height=MAX_IMAGE_FEATURE_SIZE_HEIGHT, ) + return num_tokens -def dummy_data_for_phi3v(ctx: InputContext, - seq_len: int, - mm_counts: Mapping[str, int], - *, - num_crops: Optional[int] = None): +def dummy_mm_kwargs_for_phi3v(ctx: InputProcessingContext, + mm_counts: Mapping[str, int]): num_images = mm_counts["image"] - image_feature_size = get_max_phi3v_image_tokens(ctx, num_crops=num_crops) - - seq_data, ranges = dummy_seq_data_for_clip( - CLIP_VIT_LARGE_PATCH14_336_CONFIG, - seq_len, - num_images, - image_token_id=_IMAGE_TOKEN_ID, - image_feature_size_override=image_feature_size, - ) - mm_data = dummy_image_for_clip( + data = dummy_image_for_clip( CLIP_VIT_LARGE_PATCH14_336_CONFIG, num_images, image_width_override=MAX_IMAGE_FEATURE_SIZE_WIDTH, image_height_override=MAX_IMAGE_FEATURE_SIZE_HEIGHT, ) - return DummyData(seq_data, mm_data, ranges) - + hf_processor = ctx.get_hf_processor() + image_processor = hf_processor.image_processor # type: ignore + hf_inputs = image_processor.preprocess(data['image'], return_tensors="pt") -@lru_cache -def _get_image_placeholder_token_id_candidates( - model_config: ModelConfig, - idx: int, -) -> List[List[int]]: - assert idx > 0 + return MultiModalKwargs(**hf_inputs) - tokenizer = cached_get_tokenizer(model_config.tokenizer) - # This is used when the image token is at the start of the string - start_candidate = tokenizer.encode(f"<|image_{idx}|>", - add_special_tokens=False) +def create_metadata_for_phi3v( + ctx: InputProcessingContext) -> MultiModalProcessingMetadata: + return { + "image": + ModalityProcessingMetadata(prompt_repls=[ + PromptReplacement(target=[_IMAGE_TOKEN_ID], + repl_unit=[_IMAGE_TOKEN_ID], + repl_count=get_max_phi3v_image_tokens(ctx)), + ]), + } - # This is used when the image token is in the middle of the string - # We need to get the token for "<", not "▁<" - # https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/raw/main/tokenizer.json - a_token_id, = tokenizer.encode("a", add_special_tokens=False) - a_token_id_, *middle_candidate = tokenizer.encode(f"a<|image_{idx}|>", - add_special_tokens=False) - assert a_token_id == a_token_id_ - return [start_candidate, middle_candidate] +class Phi3VProcessor(BaseMultiModalProcessor): + def __init__(self, ctx: InputProcessingContext) -> None: + super().__init__( + ctx=ctx, + metadata=create_metadata_for_phi3v(ctx), + ) -def input_processor_for_phi3v(ctx: InputContext, - inputs: DecoderOnlyInputs, - *, - num_crops: Optional[int] = None): - multi_modal_data = inputs.get("multi_modal_data") - if multi_modal_data is None or "image" not in multi_modal_data: - return inputs - - model_config = ctx.model_config - hf_config = ctx.get_hf_image_processor_config() - - image_data = multi_modal_data["image"] - if isinstance(image_data, Image.Image): - w, h = image_data.size - image_feature_size = [ - get_phi3v_image_feature_size(hf_config, - input_width=w, - input_height=h, - num_crops=num_crops) - ] - image_data = [image_data] - elif is_list_of(image_data, Image.Image): - image_feature_size = [] - for image in image_data: - w, h = image.size - image_feature_size.append( - get_phi3v_image_feature_size(hf_config, - input_width=w, - input_height=h, - num_crops=num_crops)) - elif isinstance(image_data, torch.Tensor): - image_feature_size = [image_data.shape[0]] - image_data = [image_data] - elif is_list_of(image_data, torch.Tensor): - image_feature_size = [item.shape[0] for item in image_data] - else: - raise TypeError(f"Invalid image type: {type(image_data)}") - - prompt = inputs.get("prompt") - if prompt is None: - # for async server request, we assume prompt and its token_ids is always - # in correct format. And num_image_tags == len(image_data) always True. - image_idx = range(1, len(image_data) + 1) - new_prompt = None - else: - image_idx = sorted(map(int, re.findall(r"<\|image_(\d+)\|>+", prompt))) - if prompt.count("<|image|>") > 0: - logger.warning("Please follow the prompt format that is " - "documented on HuggingFace which does not involve " - "repeating <|image|> tokens.") - elif (num_image_tags := len(image_idx)) > 1: - assert num_image_tags == len( - image_data), "The count of image_placeholder not match image's" - new_prompt = prompt - - prompt_token_ids = inputs["prompt_token_ids"].copy() - - # masked placeholder with image token id - for idx in image_idx: - candidates = _get_image_placeholder_token_id_candidates(model_config, - idx=idx) - - for candidate in candidates: - for i in range(len(prompt_token_ids) - len(candidate) + 1): - if prompt_token_ids[i:i + len(candidate)] == candidate: - prompt_token_ids[i:i + - len(candidate)] = ([_IMAGE_TOKEN_ID] * - len(candidate)) - break - - # merge consecutive tag ids - merged_token_ids: List[int] = [] - for is_placeholder, token_ids in itertools.groupby( - prompt_token_ids, lambda x: x == _IMAGE_TOKEN_ID): - if is_placeholder: - merged_token_ids.append(_IMAGE_TOKEN_ID) - else: - merged_token_ids.extend(list(token_ids)) - - # TODO: Move this to utils or integrate with clip. - new_token_ids: List[int] = [] - placeholder_ranges: List[PlaceholderRange] = [] - placeholder_idx = 0 - while merged_token_ids: - token_id = merged_token_ids.pop(0) - if token_id == _IMAGE_TOKEN_ID: - replacement_ids = repeat_and_pad_token( - _IMAGE_TOKEN_ID, - repeat_count=image_feature_size[placeholder_idx], - ) - placeholder_ranges.append({ - "offset": len(new_token_ids), - "length": len(replacement_ids) - }) - new_token_ids.extend(replacement_ids) - placeholder_idx += 1 - else: - new_token_ids.append(token_id) - - # NOTE: Create a defensive copy of the original inputs - return token_inputs(prompt_token_ids=new_token_ids, - prompt=new_prompt, - multi_modal_data=multi_modal_data, - multi_modal_placeholders={"image": placeholder_ranges}) + def _get_hf_processor( + self, + *, + num_crops: Optional[int] = None, + ) -> ProcessorMixin: + if num_crops is not None: + return self.ctx.get_hf_processor(num_crops=num_crops) + return self.ctx.get_hf_processor() + + def _apply_hf_processor( + self, + prompt: str, + mm_data: MultiModalDataDict, + mm_processor_kwargs: Mapping[str, object], + ) -> BatchFeature: + processed_outputs = super()._apply_hf_processor( + prompt, mm_data, mm_processor_kwargs) + # Phi3v processor has inserted -1, -2 etc as placeholder in prompt_ids, + # which will cause OverflowError when decoding the prompt_ids. + # Therefore, we need to do an early replacement here + token_ids = processed_outputs['input_ids'] + token_ids[token_ids < 0] = _IMAGE_TOKEN_ID + processed_outputs['input_ids'] = token_ids + return processed_outputs + + def _get_dummy_mm_kwargs( + self, + mm_counts: Mapping[str, int], + ) -> MultiModalKwargs: + return dummy_mm_kwargs_for_phi3v(self.ctx, mm_counts) -@MULTIMODAL_REGISTRY.register_image_input_mapper() @MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_phi3v_image_tokens) -@INPUT_REGISTRY.register_dummy_data(dummy_data_for_phi3v) -@INPUT_REGISTRY.register_input_processor(input_processor_for_phi3v) +@MULTIMODAL_REGISTRY.register_processor(Phi3VProcessor) class Phi3VForCausalLM(nn.Module, SupportsMultiModal, SupportsPP): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): diff --git a/vllm/multimodal/processing.py b/vllm/multimodal/processing.py index c3a95d60e6fe6..922c83b6fd8a9 100644 --- a/vllm/multimodal/processing.py +++ b/vllm/multimodal/processing.py @@ -3,7 +3,8 @@ from collections.abc import Callable, ItemsView, Iterable, Mapping, Sequence from dataclasses import dataclass from functools import lru_cache -from typing import Any, Generic, NamedTuple, Optional, Protocol, TypeVar, Union +from typing import (Any, Dict, Generic, NamedTuple, Optional, Protocol, + TypeVar, Union, cast) import torch from transformers import BatchFeature, ProcessorMixin @@ -11,7 +12,8 @@ from vllm.inputs import DummyData, InputProcessingContext from vllm.transformers_utils.tokenizer import AnyTokenizer, MistralTokenizer -from vllm.utils import flatten_2d_lists, full_groupby, is_list_of +from vllm.utils import (flatten_2d_lists, full_groupby, is_list_of, + resolve_mm_processor_kwargs) from .inputs import (AudioItem, ImageItem, MultiModalDataDict, MultiModalInputsV2, MultiModalKwargs, PlaceholderRange, @@ -543,8 +545,14 @@ def __init__( self.ctx = ctx self.metadata = metadata + self.init_mm_processor_kwargs = (ctx.model_config.mm_processor_kwargs + or {}) - def _get_hf_processor(self) -> ProcessorMixin: + def _get_hf_processor( + self, + **mm_processor_kwargs: Mapping[str, object], + ) -> ProcessorMixin: + # by default, we won't pass any kwargs to the processor initialization return self.ctx.get_hf_processor() def _get_tokenizer(self) -> AnyTokenizer: @@ -581,7 +589,13 @@ def _apply_hf_processor( mm_data: MultiModalDataDict, mm_processor_kwargs: Mapping[str, object], ) -> BatchFeature: - hf_processor = self._get_hf_processor() + # some mm_processor_kwargs may be used in processor initialization + # instead of processor call + processor_init_kwargs = { + **self.init_mm_processor_kwargs, + **mm_processor_kwargs, + } + hf_processor = self._get_hf_processor(**processor_init_kwargs) processor_data = dict[str, Any]() passthrough_data = dict[str, Any]() @@ -601,6 +615,13 @@ def _apply_hf_processor( else: processor_data[k] = v + # filter mm_processor_kwargs used in processor call + mm_processor_kwargs = resolve_mm_processor_kwargs( + self.init_mm_processor_kwargs, + cast(Dict[str, Any], mm_processor_kwargs), + hf_processor, + ) + try: hf_inputs = hf_processor( text=prompt, # type: ignore From cbcbdb1ceb9c219d13b2386e101992c399410551 Mon Sep 17 00:00:00 2001 From: Konrad Zawora Date: Mon, 9 Dec 2024 22:21:06 +0100 Subject: [PATCH 077/733] [Bugfix][Hardware][Gaudi] Bump vllm_hpu_extension version (#11028) Signed-off-by: Konrad Zawora --- requirements-hpu.txt | 2 +- vllm/attention/backends/hpu_attn.py | 11 +++++++++++ 2 files changed, 12 insertions(+), 1 deletion(-) diff --git a/requirements-hpu.txt b/requirements-hpu.txt index 4674efb812cfd..17d40d0ee131a 100644 --- a/requirements-hpu.txt +++ b/requirements-hpu.txt @@ -8,4 +8,4 @@ pandas tabulate setuptools>=61 setuptools-scm>=8 -vllm-hpu-extension @ git+https://github.com/HabanaAI/vllm-hpu-extension.git@fd7f2e6 +vllm-hpu-extension @ git+https://github.com/HabanaAI/vllm-hpu-extension.git@e096d6f diff --git a/vllm/attention/backends/hpu_attn.py b/vllm/attention/backends/hpu_attn.py index 2c62e565c04c7..f90d15d4207e7 100644 --- a/vllm/attention/backends/hpu_attn.py +++ b/vllm/attention/backends/hpu_attn.py @@ -111,8 +111,16 @@ def __init__( self.matmul_qk = Matmul() self.softmax = Softmax() self.matmul_av = Matmul() + self.batch2block_matmul = Matmul() + self.block2batch_matmul = Matmul() + # NOTE(kzawora): Contiguous PA is off until model runner supports it self.k_cache = VLLMKVCache() + self.k_cache.use_contiguous_pa = False self.v_cache = VLLMKVCache() + self.v_cache.use_contiguous_pa = False + # NOTE(kzawora): Pipelined PA is off until model runner supports it + ops.pa_impl = ops.pa + self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads self.sliding_window = sliding_window self.alibi_slopes = alibi_slopes @@ -228,9 +236,12 @@ def forward( block_mapping=attn_metadata.block_mapping, block_bias=attn_metadata.attn_bias, block_scales=attn_metadata.block_scales, + block_groups=None, scale=self.scale, matmul_qk_op=self.matmul_qk, matmul_av_op=self.matmul_av, + batch2block_matmul_op=self.batch2block_matmul, + block2batch_matmul_op=self.block2batch_matmul, keys_fetch_func=self.k_cache.fetch_from_cache, values_fetch_func=self.v_cache.fetch_from_cache) # Reshape the output tensor. From 1a2f8fb828f0444705db319786b2e901159f184e Mon Sep 17 00:00:00 2001 From: youkaichao Date: Mon, 9 Dec 2024 13:47:24 -0800 Subject: [PATCH 078/733] [v1] fix use compile sizes (#11000) Signed-off-by: youkaichao --- vllm/config.py | 1 + vllm/v1/worker/gpu_model_runner.py | 3 +++ 2 files changed, 4 insertions(+) diff --git a/vllm/config.py b/vllm/config.py index 29f0839dcabba..5fb9563fcf3a3 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -2522,6 +2522,7 @@ def __post_init__(self): self.compilation_config.custom_ops = ["none"] self.compilation_config.use_cudagraph = True self.compilation_config.use_inductor = True + self.compilation_config.cudagraph_num_of_warmups = 1 self.compilation_config.pass_config.enable_fusion = False self.compilation_config.pass_config.enable_reshape = False self.compilation_config.level = CompilationLevel.PIECEWISE diff --git a/vllm/v1/worker/gpu_model_runner.py b/vllm/v1/worker/gpu_model_runner.py index 7f95be06188e3..c601aca13feaf 100644 --- a/vllm/v1/worker/gpu_model_runner.py +++ b/vllm/v1/worker/gpu_model_runner.py @@ -582,6 +582,9 @@ def capture_model(self) -> None: # can reuse the memory pool allocated for the large shapes. with graph_capture(): for num_tokens in reversed(self.cudagraph_batch_sizes): + for _ in range(self.vllm_config.compilation_config. + cudagraph_num_of_warmups): + self._dummy_run(self.model, num_tokens, self.kv_caches) self._dummy_run(self.model, num_tokens, self.kv_caches) end_time = time.perf_counter() From 9c6459e4cb020ec1ad9ea08cac9309b83d432fc8 Mon Sep 17 00:00:00 2001 From: xendo Date: Mon, 9 Dec 2024 22:53:24 +0100 Subject: [PATCH 079/733] [Neuron] Upgrade neuron to 2.20.2 (#11016) Signed-off-by: Jerzy Zagorski Co-authored-by: Jerzy Zagorski --- Dockerfile.neuron | 3 ++- vllm/utils.py | 2 +- 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/Dockerfile.neuron b/Dockerfile.neuron index 76dbd4c04d3f3..77162bc82de62 100644 --- a/Dockerfile.neuron +++ b/Dockerfile.neuron @@ -1,5 +1,6 @@ # default base image -ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.1.2-neuronx-py310-sdk2.20.0-ubuntu20.04" +# https://gallery.ecr.aws/neuron/pytorch-inference-neuronx +ARG BASE_IMAGE="public.ecr.aws/neuron/pytorch-inference-neuronx:2.1.2-neuronx-py310-sdk2.20.2-ubuntu20.04" FROM $BASE_IMAGE diff --git a/vllm/utils.py b/vllm/utils.py index 1f19d9eacd16d..2bb1fb2af40f4 100644 --- a/vllm/utils.py +++ b/vllm/utils.py @@ -1628,7 +1628,7 @@ def direct_register_custom_op( library object. If you want to bind the operator to a different library, make sure the library object is alive when the operator is used. """ - if is_in_doc_build(): + if is_in_doc_build() or not supports_custom_op(): return import torch.library if hasattr(torch.library, "infer_schema"): From b63ba848323efd88207b12d7582501d525503b8a Mon Sep 17 00:00:00 2001 From: Gregory Shtrasberg <156009573+gshtras@users.noreply.github.com> Date: Mon, 9 Dec 2024 17:00:29 -0500 Subject: [PATCH 080/733] [ROCm][bugfix] scpecilative decoding worker class (#11035) Signed-off-by: Gregory Shtrasberg --- vllm/platforms/rocm.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/vllm/platforms/rocm.py b/vllm/platforms/rocm.py index 66674e3ebe91f..0133f26a0b1bc 100644 --- a/vllm/platforms/rocm.py +++ b/vllm/platforms/rocm.py @@ -93,6 +93,8 @@ def check_and_update_config(cls, vllm_config: VllmConfig) -> None: elif vllm_config.speculative_config: parallel_config.worker_cls = \ "vllm.spec_decode.spec_decode_worker.create_spec_worker" + parallel_config.sd_worker_cls = \ + "vllm.worker.worker.Worker" else: parallel_config.worker_cls = "vllm.worker.worker.Worker" From 22f9066285861cc7cdb49d5caad995582ae3cd36 Mon Sep 17 00:00:00 2001 From: Gregory Shtrasberg <156009573+gshtras@users.noreply.github.com> Date: Mon, 9 Dec 2024 17:22:28 -0500 Subject: [PATCH 081/733] Setting the value for the scpecilative decoding worker class on rocm platform (#313) Signed-off-by: Gregory Shtrasberg --- vllm/platforms/rocm.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/vllm/platforms/rocm.py b/vllm/platforms/rocm.py index 00efa056f7ef0..d2f7cd40e25b2 100644 --- a/vllm/platforms/rocm.py +++ b/vllm/platforms/rocm.py @@ -150,6 +150,8 @@ def check_and_update_config(cls, vllm_config: VllmConfig) -> None: elif vllm_config.speculative_config: parallel_config.worker_cls = \ "vllm.spec_decode.spec_decode_worker.create_spec_worker" + parallel_config.sd_worker_cls = \ + "vllm.worker.worker.Worker" else: parallel_config.worker_cls = "vllm.worker.worker.Worker" From 401a541bf79ecaa313185f3d5ba12ddb8d202805 Mon Sep 17 00:00:00 2001 From: Gregory Shtrasberg Date: Mon, 9 Dec 2024 22:42:01 +0000 Subject: [PATCH 082/733] format --- vllm/config.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/vllm/config.py b/vllm/config.py index 66478d6c77adb..ead5fbbf50741 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -1647,8 +1647,8 @@ def _verify_args(self) -> None: "typical_acceptance_sampler.") if (self.draft_token_acceptance_method != 'rejection_sampler' - and self.draft_token_acceptance_method - != 'typical_acceptance_sampler'): + and self.draft_token_acceptance_method != + 'typical_acceptance_sampler'): raise ValueError( "Expected draft_token_acceptance_method to be either " "rejection_sampler or typical_acceptance_sampler. Instead it " @@ -2115,8 +2115,8 @@ def from_cli(cls, cli_value: str) -> "KVTransferConfig": def model_post_init(self, __context: Any) -> None: if all([ - self.kv_connector is not None, self.kv_connector - != "PyNcclConnector" + self.kv_connector is not None, + self.kv_connector != "PyNcclConnector" ]): raise ValueError(f"Unsupported kv_connector: {self.kv_connector}. " f"Supported connectors are " From 5ed5d5f128d26a48c1b1db16c319fcb96c93799d Mon Sep 17 00:00:00 2001 From: Richard Liu <39319471+richardsliu@users.noreply.github.com> Date: Mon, 9 Dec 2024 15:07:48 -0800 Subject: [PATCH 083/733] Build tpu image in release pipeline (#10936) Signed-off-by: Richard Liu Co-authored-by: Kevin H. Luu --- .buildkite/release-pipeline.yaml | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) diff --git a/.buildkite/release-pipeline.yaml b/.buildkite/release-pipeline.yaml index 93e118fb3eab8..2de6fceb0c3fe 100644 --- a/.buildkite/release-pipeline.yaml +++ b/.buildkite/release-pipeline.yaml @@ -39,3 +39,19 @@ steps: - "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7" - "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain ." - "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT" + + - label: "Build and publish TPU release image" + depends_on: ~ + if: build.env("NIGHTLY") == "1" + agents: + queue: tpu_queue_postmerge + commands: + - "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --tag vllm/vllm-tpu:nightly --tag vllm/vllm-tpu:$BUILDKITE_COMMIT --progress plain -f Dockerfile.tpu ." + - "docker push vllm/vllm-tpu:nightly" + - "docker push vllm/vllm-tpu:$BUILDKITE_COMMIT" + plugins: + - docker-login#v3.0.0: + username: vllm + password-env: DOCKERHUB_TOKEN + env: + DOCKER_BUILDKIT: "1" From 6faec545057e6152e92e8ab619fc018e20864943 Mon Sep 17 00:00:00 2001 From: Woosuk Kwon Date: Mon, 9 Dec 2024 15:08:19 -0800 Subject: [PATCH 084/733] [V1] Do not store `None` in self.generators (#11038) Signed-off-by: Woosuk Kwon --- vllm/v1/worker/gpu_input_batch.py | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/vllm/v1/worker/gpu_input_batch.py b/vllm/v1/worker/gpu_input_batch.py index 457784bb0287c..25d95ac6e26af 100644 --- a/vllm/v1/worker/gpu_input_batch.py +++ b/vllm/v1/worker/gpu_input_batch.py @@ -102,6 +102,8 @@ def __init__( self.top_k_reqs: Set[str] = set() # req_index -> generator + # NOTE(woosuk): The indices of the requests that do not have their own + # generator should not be included in the dictionary. self.generators: Dict[int, torch.Generator] = {} self.num_logprobs: Dict[str, int] = {} @@ -147,7 +149,10 @@ def add_request( if sampling_params.top_k > 0: self.top_k_reqs.add(req_id) - self.generators[req_index] = request.generator + # NOTE(woosuk): self.generators should not include the requests that + # do not have their own generator. + if request.generator is not None: + self.generators[req_index] = request.generator num_logprobs = sampling_params.logprobs if num_logprobs is not None and num_logprobs > 0: From 6d525288c1a40ee70f9cff2fe08657f23bae88dc Mon Sep 17 00:00:00 2001 From: Michael Goin Date: Mon, 9 Dec 2024 20:15:34 -0500 Subject: [PATCH 085/733] [Docs] Add dedicated tool calling page to docs (#10554) Signed-off-by: mgoin Co-authored-by: Tyler Michael Smith --- docs/source/index.rst | 1 + .../serving/openai_compatible_server.md | 217 ------------- docs/source/usage/tool_calling.md | 287 ++++++++++++++++++ 3 files changed, 288 insertions(+), 217 deletions(-) create mode 100644 docs/source/usage/tool_calling.md diff --git a/docs/source/index.rst b/docs/source/index.rst index 86b1eed2d26ba..c45c941b00e20 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -102,6 +102,7 @@ Documentation usage/lora usage/multimodal_inputs + usage/tool_calling usage/structured_outputs usage/spec_decode usage/compatibility_matrix diff --git a/docs/source/serving/openai_compatible_server.md b/docs/source/serving/openai_compatible_server.md index d75e90807ca1d..f75653106cf66 100644 --- a/docs/source/serving/openai_compatible_server.md +++ b/docs/source/serving/openai_compatible_server.md @@ -361,220 +361,3 @@ $ vllm serve SOME_MODEL --config config.yaml **NOTE** In case an argument is supplied simultaneously using command line and the config file, the value from the commandline will take precedence. The order of priorities is `command line > config file values > defaults`. - ---- - -## Tool calling in the chat completion API -vLLM currently supports named function calling, as well as the `auto` and `none` options for the `tool_choice` field in the chat completion API. The `tool_choice` option `required` is **not yet supported** but on the roadmap. - -It is the callers responsibility to prompt the model with the tool information, vLLM will not automatically manipulate the prompt. -Please see below for recommended configuration and chat templates to use when function calling is to be used with the different models. - - -### Named Function Calling -vLLM supports named function calling in the chat completion API by default. It does so using Outlines, so this is -enabled by default, and will work with any supported model. You are guaranteed a validly-parsable function call - not a -high-quality one. - -vLLM will use guided decoding to ensure the response matches the tool parameter object defined by the JSON schema in the `tools` parameter. - -To use a named function, you need to define the functions in the `tools` parameter of the chat completion request, and -specify the `name` of one of the tools in the `tool_choice` parameter of the chat completion request. - - -### Automatic Function Calling -To enable this feature, you should set the following flags: -* `--enable-auto-tool-choice` -- **mandatory** Auto tool choice. tells vLLM that you want to enable the model to generate its own tool calls when it -deems appropriate. -* `--tool-call-parser` -- select the tool parser to use (listed below). Additional tool parsers -will continue to be added in the future, and also can register your own tool parsers in the `--tool-parser-plugin`. -* `--tool-parser-plugin` -- **optional** tool parser plugin used to register user defined tool parsers into vllm, the registered tool parser name can be specified in `--tool-call-parser`. -* `--chat-template` -- **optional** for auto tool choice. the path to the chat template which handles `tool`-role messages and `assistant`-role messages -that contain previously generated tool calls. Hermes, Mistral and Llama models have tool-compatible chat templates in their -`tokenizer_config.json` files, but you can specify a custom template. This argument can be set to `tool_use` if your model has a tool use-specific chat -template configured in the `tokenizer_config.json`. In this case, it will be used per the `transformers` specification. More on this [here](https://huggingface.co/docs/transformers/en/chat_templating#why-do-some-models-have-multiple-templates) -from HuggingFace; and you can find an example of this in a `tokenizer_config.json` [here](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B/blob/main/tokenizer_config.json) - -If your favorite tool-calling model is not supported, please feel free to contribute a parser & tool use chat template! - - -#### Hermes Models (`hermes`) - -All Nous Research Hermes-series models newer than Hermes 2 Pro should be supported. -* `NousResearch/Hermes-2-Pro-*` -* `NousResearch/Hermes-2-Theta-*` -* `NousResearch/Hermes-3-*` - - -_Note that the Hermes 2 **Theta** models are known to have degraded tool call quality & capabilities due to the merge -step in their creation_. - -Flags: `--tool-call-parser hermes` - - -#### Mistral Models (`mistral`) - -Supported models: -* `mistralai/Mistral-7B-Instruct-v0.3` (confirmed) -* Additional mistral function-calling models are compatible as well. - -Known issues: -1. Mistral 7B struggles to generate parallel tool calls correctly. -2. Mistral's `tokenizer_config.json` chat template requires tool call IDs that are exactly 9 digits, which is -much shorter than what vLLM generates. Since an exception is thrown when this condition -is not met, the following additional chat templates are provided: - -* `examples/tool_chat_template_mistral.jinja` - this is the "official" Mistral chat template, but tweaked so that -it works with vLLM's tool call IDs (provided `tool_call_id` fields are truncated to the last 9 digits) -* `examples/tool_chat_template_mistral_parallel.jinja` - this is a "better" version that adds a tool-use system prompt -when tools are provided, that results in much better reliability when working with parallel tool calling. - - -Recommended flags: `--tool-call-parser mistral --chat-template examples/tool_chat_template_mistral_parallel.jinja` - - -#### Llama Models (`llama3_json`) - -Supported models: -* `meta-llama/Meta-Llama-3.1-8B-Instruct` -* `meta-llama/Meta-Llama-3.1-70B-Instruct` -* `meta-llama/Meta-Llama-3.1-405B-Instruct` -* `meta-llama/Meta-Llama-3.1-405B-Instruct-FP8` - -The tool calling that is supported is the [JSON based tool calling](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/#json-based-tool-calling). For [pythonic tool calling](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/text_prompt_format.md#zero-shot-function-calling) in Llama-3.2 models, see the `pythonic` tool parser below. -Other tool calling formats like the built in python tool calling or custom tool calling are not supported. - -Known issues: -1. Parallel tool calls are not supported. -2. The model can generate parameters with a wrong format, such as generating - an array serialized as string instead of an array. - -The `tool_chat_template_llama3_json.jinja` file contains the "official" Llama chat template, but tweaked so that -it works better with vLLM. - -Recommended flags: `--tool-call-parser llama3_json --chat-template examples/tool_chat_template_llama3_json.jinja` - -#### IBM Granite - -Supported models: -* `ibm-granite/granite-3.0-8b-instruct` - -Recommended flags: `--tool-call-parser granite --chat-template examples/tool_chat_template_granite.jinja` - -`examples/tool_chat_template_granite.jinja`: this is a modified chat template from the original on Huggingface. Parallel function calls are supported. - -* `ibm-granite/granite-20b-functioncalling` - -Recommended flags: `--tool-call-parser granite-20b-fc --chat-template examples/tool_chat_template_granite_20b_fc.jinja` - -`examples/tool_chat_template_granite_20b_fc.jinja`: this is a modified chat template from the original on Huggingface, which is not vLLM compatible. It blends function description elements from the Hermes template and follows the same system prompt as "Response Generation" mode from [the paper](https://arxiv.org/abs/2407.00121). Parallel function calls are supported. - - -#### InternLM Models (`internlm`) - -Supported models: -* `internlm/internlm2_5-7b-chat` (confirmed) -* Additional internlm2.5 function-calling models are compatible as well - -Known issues: -* Although this implementation also supports InternLM2, the tool call results are not stable when testing with the `internlm/internlm2-chat-7b` model. - -Recommended flags: `--tool-call-parser internlm --chat-template examples/tool_chat_template_internlm2_tool.jinja` - - -#### Jamba Models (`jamba`) -AI21's Jamba-1.5 models are supported. -* `ai21labs/AI21-Jamba-1.5-Mini` -* `ai21labs/AI21-Jamba-1.5-Large` - - -Flags: `--tool-call-parser jamba` - - -#### Models with Pythonic Tool Calls (`pythonic`) - -A growing number of models output a python list to represent tool calls instead of using JSON. This has the advantage of inherently supporting parallel tool calls and removing ambiguity around the JSON schema required for tool calls. The `pythonic` tool parser can support such models. - -As a concrete example, these models may look up the weather in San Francisco and Seattle by generating: -```python -[get_weather(city='San Francisco', metric='celsius'), get_weather(city='Seattle', metric='celsius')] -``` - -Limitations: -* The model must not generate both text and tool calls in the same generation. This may not be hard to change for a specific model, but the community currently lacks consensus on which tokens to emit when starting and ending tool calls. (In particular, the Llama 3.2 models emit no such tokens.) -* Llama's smaller models struggle to use tools effectively. - -Example supported models: -* `meta-llama/Llama-3.2-1B-Instruct`\* (use with `examples/tool_chat_template_llama3.2_pythonic.jinja`) -* `meta-llama/Llama-3.2-3B-Instruct`\* (use with `examples/tool_chat_template_llama3.2_pythonic.jinja`) -* `Team-ACE/ToolACE-8B` (use with `examples/tool_chat_template_toolace.jinja`) -* `fixie-ai/ultravox-v0_4-ToolACE-8B` (use with `examples/tool_chat_template_toolace.jinja`) - -Flags: `--tool-call-parser pythonic --chat-template {see_above}` - ---- -**WARNING** -Llama's smaller models frequently fail to emit tool calls in the correct format. Your mileage may vary. - ---- - - -### How to write a tool parser plugin - -A tool parser plugin is a Python file containing one or more ToolParser implementations. You can write a ToolParser similar to the `Hermes2ProToolParser` in vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py. - -Here is a summary of a plugin file: - -```python - -# import the required packages - -# define a tool parser and register it to vllm -# the name list in register_module can be used -# in --tool-call-parser. you can define as many -# tool parsers as you want here. -@ToolParserManager.register_module(["example"]) -class ExampleToolParser(ToolParser): - def __init__(self, tokenizer: AnyTokenizer): - super().__init__(tokenizer) - - # adjust request. e.g.: set skip special tokens - # to False for tool call output. - def adjust_request( - self, request: ChatCompletionRequest) -> ChatCompletionRequest: - return request - - # implement the tool call parse for stream call - def extract_tool_calls_streaming( - self, - previous_text: str, - current_text: str, - delta_text: str, - previous_token_ids: Sequence[int], - current_token_ids: Sequence[int], - delta_token_ids: Sequence[int], - request: ChatCompletionRequest, - ) -> Union[DeltaMessage, None]: - return delta - - # implement the tool parse for non-stream call - def extract_tool_calls( - self, - model_output: str, - request: ChatCompletionRequest, - ) -> ExtractedToolCallInformation: - return ExtractedToolCallInformation(tools_called=False, - tool_calls=[], - content=text) - - -``` - -Then you can use this plugin in the command line like this. -``` - --enable-auto-tool-choice \ - --tool-parser-plugin - --tool-call-parser example \ - --chat-template \ -``` - diff --git a/docs/source/usage/tool_calling.md b/docs/source/usage/tool_calling.md new file mode 100644 index 0000000000000..f8be023307b0c --- /dev/null +++ b/docs/source/usage/tool_calling.md @@ -0,0 +1,287 @@ +# Tool Calling + +vLLM currently supports named function calling, as well as the `auto` and `none` options for the `tool_choice` field in the chat completion API. The `tool_choice` option `required` is **not yet supported** but on the roadmap. + +## Quickstart + +Start the server with tool calling enabled. This example uses Meta's Llama 3.1 8B model, so we need to use the llama3 tool calling chat template from the vLLM examples directory: + +```bash +vllm serve meta-llama/Llama-3.1-8B-Instruct \ + --enable-auto-tool-choice \ + --tool-call-parser llama3_json \ + --chat-template examples/tool_chat_template_llama3_json.jinja +``` + +Next, make a request to the model that should result in it using the available tools: + +```python +from openai import OpenAI +import json + +client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy") + +def get_weather(location: str, unit: str): + return f"Getting the weather for {location} in {unit}..." +tool_functions = {"get_weather": get_weather} + +tools = [{ + "type": "function", + "function": { + "name": "get_weather", + "description": "Get the current weather in a given location", + "parameters": { + "type": "object", + "properties": { + "location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"}, + "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]} + }, + "required": ["location", "unit"] + } + } +}] + +response = client.chat.completions.create( + model=client.models.list().data[0].id, + messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}], + tools=tools, + tool_choice="auto" +) + +tool_call = response.choices[0].message.tool_calls[0].function +print(f"Function called: {tool_call.name}") +print(f"Arguments: {tool_call.arguments}") +print(f"Result: {get_weather(**json.loads(tool_call.arguments))}") +``` + +Example output: +``` +Function called: get_weather +Arguments: {"location": "San Francisco, CA", "unit": "fahrenheit"} +Result: Getting the weather for San Francisco, CA in fahrenheit... +``` + +This example demonstrates: +- Setting up the server with tool calling enabled +- Defining an actual function to handle tool calls +- Making a request with `tool_choice="auto"` +- Handling the structured response and executing the corresponding function + +You can also specify a particular function using named function calling by setting `tool_choice={"type": "function", "function": {"name": "get_weather"}}`. Note that this will use the guided decoding backend - so the first time this is used, there will be several seconds of latency (or more) as the FSM is compiled for the first time before it is cached for subsequent requests. + +Remember that it's the callers responsibility to: +1. Define appropriate tools in the request +2. Include relevant context in the chat messages +3. Handle the tool calls in your application logic + +For more advanced usage, including parallel tool calls and different model-specific parsers, see the sections below. + +## Named Function Calling +vLLM supports named function calling in the chat completion API by default. It does so using Outlines through guided decoding, so this is +enabled by default, and will work with any supported model. You are guaranteed a validly-parsable function call - not a +high-quality one. + +vLLM will use guided decoding to ensure the response matches the tool parameter object defined by the JSON schema in the `tools` parameter. +For best results, we recommend ensuring that the expected output format / schema is specified in the prompt to ensure that the model's intended generation is aligned with the schema that it's being forced to generate by the guided decoding backend. + +To use a named function, you need to define the functions in the `tools` parameter of the chat completion request, and +specify the `name` of one of the tools in the `tool_choice` parameter of the chat completion request. + + +## Automatic Function Calling + +To enable this feature, you should set the following flags: +* `--enable-auto-tool-choice` -- **mandatory** Auto tool choice. tells vLLM that you want to enable the model to generate its own tool calls when it +deems appropriate. +* `--tool-call-parser` -- select the tool parser to use (listed below). Additional tool parsers +will continue to be added in the future, and also can register your own tool parsers in the `--tool-parser-plugin`. +* `--tool-parser-plugin` -- **optional** tool parser plugin used to register user defined tool parsers into vllm, the registered tool parser name can be specified in `--tool-call-parser`. +* `--chat-template` -- **optional** for auto tool choice. the path to the chat template which handles `tool`-role messages and `assistant`-role messages +that contain previously generated tool calls. Hermes, Mistral and Llama models have tool-compatible chat templates in their +`tokenizer_config.json` files, but you can specify a custom template. This argument can be set to `tool_use` if your model has a tool use-specific chat +template configured in the `tokenizer_config.json`. In this case, it will be used per the `transformers` specification. More on this [here](https://huggingface.co/docs/transformers/en/chat_templating#why-do-some-models-have-multiple-templates) +from HuggingFace; and you can find an example of this in a `tokenizer_config.json` [here](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B/blob/main/tokenizer_config.json) + +If your favorite tool-calling model is not supported, please feel free to contribute a parser & tool use chat template! + + +### Hermes Models (`hermes`) + +All Nous Research Hermes-series models newer than Hermes 2 Pro should be supported. +* `NousResearch/Hermes-2-Pro-*` +* `NousResearch/Hermes-2-Theta-*` +* `NousResearch/Hermes-3-*` + + +_Note that the Hermes 2 **Theta** models are known to have degraded tool call quality & capabilities due to the merge +step in their creation_. + +Flags: `--tool-call-parser hermes` + + +### Mistral Models (`mistral`) + +Supported models: +* `mistralai/Mistral-7B-Instruct-v0.3` (confirmed) +* Additional mistral function-calling models are compatible as well. + +Known issues: +1. Mistral 7B struggles to generate parallel tool calls correctly. +2. Mistral's `tokenizer_config.json` chat template requires tool call IDs that are exactly 9 digits, which is +much shorter than what vLLM generates. Since an exception is thrown when this condition +is not met, the following additional chat templates are provided: + +* `examples/tool_chat_template_mistral.jinja` - this is the "official" Mistral chat template, but tweaked so that +it works with vLLM's tool call IDs (provided `tool_call_id` fields are truncated to the last 9 digits) +* `examples/tool_chat_template_mistral_parallel.jinja` - this is a "better" version that adds a tool-use system prompt +when tools are provided, that results in much better reliability when working with parallel tool calling. + + +Recommended flags: `--tool-call-parser mistral --chat-template examples/tool_chat_template_mistral_parallel.jinja` + + +### Llama Models (`llama3_json`) + +Supported models: +* `meta-llama/Meta-Llama-3.1-8B-Instruct` +* `meta-llama/Meta-Llama-3.1-70B-Instruct` +* `meta-llama/Meta-Llama-3.1-405B-Instruct` +* `meta-llama/Meta-Llama-3.1-405B-Instruct-FP8` + +The tool calling that is supported is the [JSON based tool calling](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/#json-based-tool-calling). For [pythonic tool calling](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/text_prompt_format.md#zero-shot-function-calling) in Llama-3.2 models, see the `pythonic` tool parser below. +Other tool calling formats like the built in python tool calling or custom tool calling are not supported. + +Known issues: +1. Parallel tool calls are not supported. +2. The model can generate parameters with a wrong format, such as generating + an array serialized as string instead of an array. + +The `tool_chat_template_llama3_json.jinja` file contains the "official" Llama chat template, but tweaked so that +it works better with vLLM. + +Recommended flags: `--tool-call-parser llama3_json --chat-template examples/tool_chat_template_llama3_json.jinja` + +#### IBM Granite + +Supported models: +* `ibm-granite/granite-3.0-8b-instruct` + +Recommended flags: `--tool-call-parser granite --chat-template examples/tool_chat_template_granite.jinja` + +`examples/tool_chat_template_granite.jinja`: this is a modified chat template from the original on Huggingface. Parallel function calls are supported. + +* `ibm-granite/granite-20b-functioncalling` + +Recommended flags: `--tool-call-parser granite-20b-fc --chat-template examples/tool_chat_template_granite_20b_fc.jinja` + +`examples/tool_chat_template_granite_20b_fc.jinja`: this is a modified chat template from the original on Huggingface, which is not vLLM compatible. It blends function description elements from the Hermes template and follows the same system prompt as "Response Generation" mode from [the paper](https://arxiv.org/abs/2407.00121). Parallel function calls are supported. + + +### InternLM Models (`internlm`) + +Supported models: +* `internlm/internlm2_5-7b-chat` (confirmed) +* Additional internlm2.5 function-calling models are compatible as well + +Known issues: +* Although this implementation also supports InternLM2, the tool call results are not stable when testing with the `internlm/internlm2-chat-7b` model. + +Recommended flags: `--tool-call-parser internlm --chat-template examples/tool_chat_template_internlm2_tool.jinja` + + +### Jamba Models (`jamba`) +AI21's Jamba-1.5 models are supported. +* `ai21labs/AI21-Jamba-1.5-Mini` +* `ai21labs/AI21-Jamba-1.5-Large` + + +Flags: `--tool-call-parser jamba` + + +### Models with Pythonic Tool Calls (`pythonic`) + +A growing number of models output a python list to represent tool calls instead of using JSON. This has the advantage of inherently supporting parallel tool calls and removing ambiguity around the JSON schema required for tool calls. The `pythonic` tool parser can support such models. + +As a concrete example, these models may look up the weather in San Francisco and Seattle by generating: +```python +[get_weather(city='San Francisco', metric='celsius'), get_weather(city='Seattle', metric='celsius')] +``` + +Limitations: +* The model must not generate both text and tool calls in the same generation. This may not be hard to change for a specific model, but the community currently lacks consensus on which tokens to emit when starting and ending tool calls. (In particular, the Llama 3.2 models emit no such tokens.) +* Llama's smaller models struggle to use tools effectively. + +Example supported models: +* `meta-llama/Llama-3.2-1B-Instruct`\* (use with `examples/tool_chat_template_llama3.2_pythonic.jinja`) +* `meta-llama/Llama-3.2-3B-Instruct`\* (use with `examples/tool_chat_template_llama3.2_pythonic.jinja`) +* `Team-ACE/ToolACE-8B` (use with `examples/tool_chat_template_toolace.jinja`) +* `fixie-ai/ultravox-v0_4-ToolACE-8B` (use with `examples/tool_chat_template_toolace.jinja`) + +Flags: `--tool-call-parser pythonic --chat-template {see_above}` + +--- +**WARNING** +Llama's smaller models frequently fail to emit tool calls in the correct format. Your mileage may vary. + +--- + + +## How to write a tool parser plugin + +A tool parser plugin is a Python file containing one or more ToolParser implementations. You can write a ToolParser similar to the `Hermes2ProToolParser` in vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py. + +Here is a summary of a plugin file: + +```python + +# import the required packages + +# define a tool parser and register it to vllm +# the name list in register_module can be used +# in --tool-call-parser. you can define as many +# tool parsers as you want here. +@ToolParserManager.register_module(["example"]) +class ExampleToolParser(ToolParser): + def __init__(self, tokenizer: AnyTokenizer): + super().__init__(tokenizer) + + # adjust request. e.g.: set skip special tokens + # to False for tool call output. + def adjust_request( + self, request: ChatCompletionRequest) -> ChatCompletionRequest: + return request + + # implement the tool call parse for stream call + def extract_tool_calls_streaming( + self, + previous_text: str, + current_text: str, + delta_text: str, + previous_token_ids: Sequence[int], + current_token_ids: Sequence[int], + delta_token_ids: Sequence[int], + request: ChatCompletionRequest, + ) -> Union[DeltaMessage, None]: + return delta + + # implement the tool parse for non-stream call + def extract_tool_calls( + self, + model_output: str, + request: ChatCompletionRequest, + ) -> ExtractedToolCallInformation: + return ExtractedToolCallInformation(tools_called=False, + tool_calls=[], + content=text) + + +``` + +Then you can use this plugin in the command line like this. +``` + --enable-auto-tool-choice \ + --tool-parser-plugin + --tool-call-parser example \ + --chat-template \ +``` + From d1f6d1c8af892c7269f113711783374eebb52511 Mon Sep 17 00:00:00 2001 From: Isotr0py Date: Tue, 10 Dec 2024 10:23:07 +0800 Subject: [PATCH 086/733] [Model] Add has_weight to RMSNorm and re-enable weights loading tracker for Mamba (#10739) Signed-off-by: Isotr0py <2037008807@qq.com> --- vllm/model_executor/layers/layernorm.py | 11 ++++++-- .../layers/mamba/mamba_mixer.py | 26 +++++++++++++------ vllm/model_executor/models/mamba.py | 9 +++++-- 3 files changed, 34 insertions(+), 12 deletions(-) diff --git a/vllm/model_executor/layers/layernorm.py b/vllm/model_executor/layers/layernorm.py index 345919c5d1636..43ea4eb5a4d1a 100644 --- a/vllm/model_executor/layers/layernorm.py +++ b/vllm/model_executor/layers/layernorm.py @@ -20,6 +20,7 @@ def __init__( hidden_size: int, eps: float = 1e-6, var_hidden_size: Optional[int] = None, + has_weight: bool = True, ) -> None: super().__init__() @@ -27,7 +28,11 @@ def __init__( self.variance_epsilon = eps self.variance_size_override = (None if var_hidden_size == hidden_size else var_hidden_size) - self.weight = nn.Parameter(torch.ones(hidden_size)) + self.has_weight = has_weight + + self.weight = torch.ones(hidden_size) + if self.has_weight: + self.weight = nn.Parameter(self.weight) def forward_native( self, @@ -59,7 +64,9 @@ def forward_native( variance = x_var.pow(2).mean(dim=-1, keepdim=True) x = x * torch.rsqrt(variance + self.variance_epsilon) - x = x.to(orig_dtype) * self.weight + x = x.to(orig_dtype) + if self.has_weight: + x = x * self.weight if residual is None: return x else: diff --git a/vllm/model_executor/layers/mamba/mamba_mixer.py b/vllm/model_executor/layers/mamba/mamba_mixer.py index 8ef0a6cdf2c52..10bec75f49fdf 100644 --- a/vllm/model_executor/layers/mamba/mamba_mixer.py +++ b/vllm/model_executor/layers/mamba/mamba_mixer.py @@ -40,6 +40,7 @@ def __init__(self, use_conv_bias: bool, use_bias: bool, use_rms_norm: bool, + rms_norm_has_weight: bool = True, rms_norm_eps: float = 1e-5, activation="silu"): super().__init__() @@ -105,14 +106,23 @@ def A_weight_loader(param: Parameter, loaded_weight: torch.Tensor): input_is_parallel=True, ) - self.dt_layernorm = RMSNorm(time_step_rank, - eps=rms_norm_eps) if use_rms_norm else None - - self.b_layernorm = RMSNorm(ssm_state_size, - eps=rms_norm_eps) if use_rms_norm else None - - self.c_layernorm = RMSNorm(ssm_state_size, - eps=rms_norm_eps) if use_rms_norm else None + self.dt_layernorm = RMSNorm( + time_step_rank, + eps=rms_norm_eps, + has_weight=rms_norm_has_weight, + ) if use_rms_norm else None + + self.b_layernorm = RMSNorm( + ssm_state_size, + eps=rms_norm_eps, + has_weight=rms_norm_has_weight, + ) if use_rms_norm else None + + self.c_layernorm = RMSNorm( + ssm_state_size, + eps=rms_norm_eps, + has_weight=rms_norm_has_weight, + ) if use_rms_norm else None def forward_native(self, hidden_states: torch.Tensor, attn_metadata: AttentionMetadata, diff --git a/vllm/model_executor/models/mamba.py b/vllm/model_executor/models/mamba.py index b32032e411b0a..8bdcd2c5aad1f 100644 --- a/vllm/model_executor/models/mamba.py +++ b/vllm/model_executor/models/mamba.py @@ -1,5 +1,5 @@ """PyTorch MAMBA model.""" -from typing import Iterable, List, Optional, Tuple +from typing import Iterable, List, Optional, Set, Tuple import torch from torch import nn @@ -47,6 +47,7 @@ def __init__(self, use_conv_bias=config.use_conv_bias, use_bias=config.use_bias, use_rms_norm=self.is_falcon_mamba, + rms_norm_has_weight=not self.is_falcon_mamba, rms_norm_eps=mixer_rms_eps, activation=config.hidden_act) @@ -241,8 +242,10 @@ def sample( next_tokens = self.sampler(logits, sampling_metadata) return next_tokens - def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): + def load_weights(self, weights: Iterable[Tuple[str, + torch.Tensor]]) -> Set[str]: params_dict = dict(self.named_parameters()) + loaded_params: Set[str] = set() for name, loaded_weight in weights: if "A_log" in name: name = name.replace("A_log", "A") @@ -254,3 +257,5 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) + loaded_params.add(name) + return loaded_params From 391d7b2763df0b90a975c7232f38c4de4be2ff85 Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Tue, 10 Dec 2024 13:45:47 +0800 Subject: [PATCH 087/733] [Bugfix] Fix usage of `deprecated` decorator (#11025) Signed-off-by: DarkLight1337 --- vllm/engine/llm_engine.py | 8 +-- vllm/engine/multiprocessing/__init__.py | 8 +-- vllm/engine/multiprocessing/client.py | 16 +++--- vllm/entrypoints/llm.py | 72 ++++++++++++------------- 4 files changed, 52 insertions(+), 52 deletions(-) diff --git a/vllm/engine/llm_engine.py b/vllm/engine/llm_engine.py index 560f84a008291..8fc69d96d321e 100644 --- a/vllm/engine/llm_engine.py +++ b/vllm/engine/llm_engine.py @@ -677,12 +677,10 @@ def stop_remote_worker_execution_loop(self) -> None: self.model_executor.stop_remote_worker_execution_loop() @overload - @deprecated("'inputs' will be renamed to 'prompt") def add_request( self, request_id: str, - *, - inputs: PromptType, + prompt: PromptType, params: Union[SamplingParams, PoolingParams], arrival_time: Optional[float] = None, lora_request: Optional[LoRARequest] = None, @@ -693,10 +691,12 @@ def add_request( ... @overload + @deprecated("'inputs' will be renamed to 'prompt") def add_request( self, request_id: str, - prompt: PromptType, + *, + inputs: PromptType, params: Union[SamplingParams, PoolingParams], arrival_time: Optional[float] = None, lora_request: Optional[LoRARequest] = None, diff --git a/vllm/engine/multiprocessing/__init__.py b/vllm/engine/multiprocessing/__init__.py index 7020012e8bb86..420f540d0b5f4 100644 --- a/vllm/engine/multiprocessing/__init__.py +++ b/vllm/engine/multiprocessing/__init__.py @@ -35,11 +35,9 @@ class RPCProcessRequest: priority: int = 0 @overload - @deprecated("'inputs' will be renamed to 'prompt") def __init__( self, - *, - inputs: PromptType, + prompt: PromptType, params: Union[SamplingParams, PoolingParams], request_id: str, lora_request: Optional[LoRARequest] = None, @@ -50,9 +48,11 @@ def __init__( ... @overload + @deprecated("'inputs' will be renamed to 'prompt") def __init__( self, - prompt: PromptType, + *, + inputs: PromptType, params: Union[SamplingParams, PoolingParams], request_id: str, lora_request: Optional[LoRARequest] = None, diff --git a/vllm/engine/multiprocessing/client.py b/vllm/engine/multiprocessing/client.py index 7e4f81b2cf8e2..32bd83305bb8f 100644 --- a/vllm/engine/multiprocessing/client.py +++ b/vllm/engine/multiprocessing/client.py @@ -415,11 +415,9 @@ def dead_error(self) -> BaseException: return ENGINE_DEAD_ERROR(self._errored_with) @overload - @deprecated("'inputs' will be renamed to 'prompt") def generate( self, - *, - inputs: PromptType, + prompt: PromptType, sampling_params: SamplingParams, request_id: str, lora_request: Optional[LoRARequest] = None, @@ -430,9 +428,11 @@ def generate( ... @overload + @deprecated("'inputs' will be renamed to 'prompt") def generate( self, - prompt: PromptType, + *, + inputs: PromptType, sampling_params: SamplingParams, request_id: str, lora_request: Optional[LoRARequest] = None, @@ -487,11 +487,9 @@ def generate( prompt_adapter_request, priority) @overload - @deprecated("'inputs' will be renamed to 'prompt") def encode( self, - *, - inputs: PromptType, + prompt: PromptType, pooling_params: PoolingParams, request_id: str, lora_request: Optional[LoRARequest] = None, @@ -501,9 +499,11 @@ def encode( ... @overload + @deprecated("'inputs' will be renamed to 'prompt") def encode( self, - prompt: PromptType, + *, + inputs: PromptType, pooling_params: PoolingParams, request_id: str, lora_request: Optional[LoRARequest] = None, diff --git a/vllm/entrypoints/llm.py b/vllm/entrypoints/llm.py index 8de30ccd18a11..2a02187223a33 100644 --- a/vllm/entrypoints/llm.py +++ b/vllm/entrypoints/llm.py @@ -252,8 +252,21 @@ def set_tokenizer(self, tokenizer: AnyTokenizer) -> None: else: tokenizer_group.tokenizer = get_cached_tokenizer(tokenizer) + @overload + def generate( + self, + prompts: Union[PromptType, Sequence[PromptType]], + /, + *, + sampling_params: Optional[Union[SamplingParams, + Sequence[SamplingParams]]] = None, + use_tqdm: bool = True, + lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None, + ) -> List[RequestOutput]: + ... + @overload # LEGACY: single (prompt + optional token ids) - @deprecated("'prompt_token_ids' will become part of 'prompts") + @deprecated("'prompt_token_ids' will become part of 'prompts'") def generate( self, prompts: str, @@ -266,7 +279,7 @@ def generate( ... @overload # LEGACY: multi (prompt + optional token ids) - @deprecated("'prompt_token_ids' will become part of 'prompts") + @deprecated("'prompt_token_ids' will become part of 'prompts'") def generate( self, prompts: List[str], @@ -279,7 +292,7 @@ def generate( ... @overload # LEGACY: single (token ids + optional prompt) - @deprecated("'prompt_token_ids' will become part of 'prompts") + @deprecated("'prompt_token_ids' will become part of 'prompts'") def generate( self, prompts: Optional[str] = None, @@ -293,7 +306,7 @@ def generate( ... @overload # LEGACY: multi (token ids + optional prompt) - @deprecated("'prompt_token_ids' will become part of 'prompts") + @deprecated("'prompt_token_ids' will become part of 'prompts'") def generate( self, prompts: Optional[List[str]] = None, @@ -307,7 +320,7 @@ def generate( ... @overload # LEGACY: single or multi token ids [pos-only] - @deprecated("'prompt_token_ids' will become part of 'prompts") + @deprecated("'prompt_token_ids' will become part of 'prompts'") def generate( self, prompts: None, @@ -318,19 +331,6 @@ def generate( ) -> List[RequestOutput]: ... - @overload - def generate( - self, - prompts: Union[PromptType, Sequence[PromptType]], - /, - *, - sampling_params: Optional[Union[SamplingParams, - Sequence[SamplingParams]]] = None, - use_tqdm: bool = True, - lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None, - ) -> List[RequestOutput]: - ... - @deprecate_kwargs( "prompt_token_ids", is_deprecated=lambda: LLM.DEPRECATE_LEGACY, @@ -672,8 +672,21 @@ def chat( lora_request=lora_request, ) + @overload + def encode( + self, + prompts: Union[PromptType, Sequence[PromptType]], + /, + *, + pooling_params: Optional[Union[PoolingParams, + Sequence[PoolingParams]]] = None, + use_tqdm: bool = True, + lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None, + ) -> List[PoolingRequestOutput]: + ... + @overload # LEGACY: single (prompt + optional token ids) - @deprecated("'prompt_token_ids' will become part of 'prompts") + @deprecated("'prompt_token_ids' will become part of 'prompts'") def encode( self, prompts: str, @@ -686,7 +699,7 @@ def encode( ... @overload # LEGACY: multi (prompt + optional token ids) - @deprecated("'prompt_token_ids' will become part of 'prompts") + @deprecated("'prompt_token_ids' will become part of 'prompts'") def encode( self, prompts: List[str], @@ -699,7 +712,7 @@ def encode( ... @overload # LEGACY: single (token ids + optional prompt) - @deprecated("'prompt_token_ids' will become part of 'prompts") + @deprecated("'prompt_token_ids' will become part of 'prompts'") def encode( self, prompts: Optional[str] = None, @@ -713,7 +726,7 @@ def encode( ... @overload # LEGACY: multi (token ids + optional prompt) - @deprecated("'prompt_token_ids' will become part of 'prompts") + @deprecated("'prompt_token_ids' will become part of 'prompts'") def encode( self, prompts: Optional[List[str]] = None, @@ -727,7 +740,7 @@ def encode( ... @overload # LEGACY: single or multi token ids [pos-only] - @deprecated("'prompt_token_ids' will become part of 'prompts") + @deprecated("'prompt_token_ids' will become part of 'prompts'") def encode( self, prompts: None, @@ -738,19 +751,6 @@ def encode( ) -> List[PoolingRequestOutput]: ... - @overload - def encode( - self, - prompts: Union[PromptType, Sequence[PromptType]], - /, - *, - pooling_params: Optional[Union[PoolingParams, - Sequence[PoolingParams]]] = None, - use_tqdm: bool = True, - lora_request: Optional[Union[List[LoRARequest], LoRARequest]] = None, - ) -> List[PoolingRequestOutput]: - ... - @deprecate_kwargs( "prompt_token_ids", is_deprecated=lambda: LLM.DEPRECATE_LEGACY, From 980ad394a83a6f12c576a035922db3c2e743beff Mon Sep 17 00:00:00 2001 From: Joe Runde Date: Mon, 9 Dec 2024 22:46:29 -0700 Subject: [PATCH 088/733] [Frontend] Use request id from header (#10968) Signed-off-by: Joe Runde --- docs/requirements-docs.txt | 1 + vllm/entrypoints/openai/api_server.py | 4 ++-- vllm/entrypoints/openai/serving_chat.py | 3 ++- vllm/entrypoints/openai/serving_completion.py | 4 ++-- vllm/entrypoints/openai/serving_embedding.py | 4 ++-- vllm/entrypoints/openai/serving_engine.py | 11 ++++++++++- vllm/entrypoints/openai/serving_score.py | 4 ++-- vllm/entrypoints/openai/serving_tokenization.py | 9 ++++++--- 8 files changed, 27 insertions(+), 13 deletions(-) diff --git a/docs/requirements-docs.txt b/docs/requirements-docs.txt index 5c80645b405ae..ca2da4cd66d2d 100644 --- a/docs/requirements-docs.txt +++ b/docs/requirements-docs.txt @@ -16,5 +16,6 @@ mistral_common >= 1.5.0 aiohttp starlette openai # Required by docs/source/serving/openai_compatible_server.md's vllm.entrypoints.openai.cli_args +fastapi # Required by docs/source/serving/openai_compatible_server.md's vllm.entrypoints.openai.cli_args partial-json-parser # Required by docs/source/serving/openai_compatible_server.md's vllm.entrypoints.openai.cli_args requests diff --git a/vllm/entrypoints/openai/api_server.py b/vllm/entrypoints/openai/api_server.py index c7bc30040279c..0f93eb54111ad 100644 --- a/vllm/entrypoints/openai/api_server.py +++ b/vllm/entrypoints/openai/api_server.py @@ -305,7 +305,7 @@ async def health(raw_request: Request) -> Response: async def tokenize(request: TokenizeRequest, raw_request: Request): handler = tokenization(raw_request) - generator = await handler.create_tokenize(request) + generator = await handler.create_tokenize(request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) @@ -319,7 +319,7 @@ async def tokenize(request: TokenizeRequest, raw_request: Request): async def detokenize(request: DetokenizeRequest, raw_request: Request): handler = tokenization(raw_request) - generator = await handler.create_detokenize(request) + generator = await handler.create_detokenize(request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) diff --git a/vllm/entrypoints/openai/serving_chat.py b/vllm/entrypoints/openai/serving_chat.py index 54ca0463bcab1..0af7613a473a4 100644 --- a/vllm/entrypoints/openai/serving_chat.py +++ b/vllm/entrypoints/openai/serving_chat.py @@ -176,7 +176,8 @@ async def create_chat_completion( logger.exception("Error in preprocessing prompt inputs") return self.create_error_response(str(e)) - request_id = f"chatcmpl-{request.request_id}" + request_id = "chatcmpl-" \ + f"{self._base_request_id(raw_request, request.request_id)}" request_metadata = RequestResponseMetadata(request_id=request_id) if raw_request: diff --git a/vllm/entrypoints/openai/serving_completion.py b/vllm/entrypoints/openai/serving_completion.py index fc1c4908d6650..c54d5f07cf58c 100644 --- a/vllm/entrypoints/openai/serving_completion.py +++ b/vllm/entrypoints/openai/serving_completion.py @@ -30,7 +30,7 @@ from vllm.sampling_params import BeamSearchParams, SamplingParams from vllm.sequence import Logprob from vllm.transformers_utils.tokenizer import AnyTokenizer -from vllm.utils import merge_async_iterators, random_uuid +from vllm.utils import merge_async_iterators logger = init_logger(__name__) @@ -86,7 +86,7 @@ async def create_completion( "suffix is not currently supported") model_name = self.base_model_paths[0].name - request_id = f"cmpl-{random_uuid()}" + request_id = f"cmpl-{self._base_request_id(raw_request)}" created_time = int(time.time()) request_metadata = RequestResponseMetadata(request_id=request_id) diff --git a/vllm/entrypoints/openai/serving_embedding.py b/vllm/entrypoints/openai/serving_embedding.py index 2cbb252610e39..3f7b75e893cad 100644 --- a/vllm/entrypoints/openai/serving_embedding.py +++ b/vllm/entrypoints/openai/serving_embedding.py @@ -19,7 +19,7 @@ from vllm.entrypoints.openai.serving_engine import BaseModelPath, OpenAIServing from vllm.logger import init_logger from vllm.outputs import PoolingOutput, PoolingRequestOutput -from vllm.utils import merge_async_iterators, random_uuid +from vllm.utils import merge_async_iterators logger = init_logger(__name__) @@ -110,7 +110,7 @@ async def create_embedding( "dimensions is currently not supported") model_name = request.model - request_id = f"embd-{random_uuid()}" + request_id = f"embd-{self._base_request_id(raw_request)}" created_time = int(time.monotonic()) truncate_prompt_tokens = None diff --git a/vllm/entrypoints/openai/serving_engine.py b/vllm/entrypoints/openai/serving_engine.py index 8232c6116c1bd..63f27b955461e 100644 --- a/vllm/entrypoints/openai/serving_engine.py +++ b/vllm/entrypoints/openai/serving_engine.py @@ -6,6 +6,7 @@ from typing import (Any, Callable, Dict, Iterable, Iterator, List, Mapping, Optional, Sequence, Tuple, TypedDict, Union) +from fastapi import Request from pydantic import Field from starlette.datastructures import Headers from typing_extensions import Annotated @@ -47,7 +48,7 @@ from vllm.tracing import (contains_trace_headers, extract_trace_headers, log_tracing_disabled_warning) from vllm.transformers_utils.tokenizer import AnyTokenizer, MistralTokenizer -from vllm.utils import AtomicCounter, is_list_of, make_async +from vllm.utils import AtomicCounter, is_list_of, make_async, random_uuid logger = init_logger(__name__) @@ -565,6 +566,14 @@ async def _get_trace_headers( return None + @staticmethod + def _base_request_id(raw_request: Request, + default: Optional[str] = None) -> Optional[str]: + """Pulls the request id to use from a header, if provided""" + default = default or random_uuid() + return raw_request.headers.get( + "X-Request-Id", default) if raw_request is not None else default + @staticmethod def _get_decoded_token(logprob: Logprob, token_id: int, diff --git a/vllm/entrypoints/openai/serving_score.py b/vllm/entrypoints/openai/serving_score.py index a1f14449ba9c3..fed06fa452955 100644 --- a/vllm/entrypoints/openai/serving_score.py +++ b/vllm/entrypoints/openai/serving_score.py @@ -15,7 +15,7 @@ from vllm.logger import init_logger from vllm.outputs import PoolingRequestOutput from vllm.transformers_utils.tokenizers.mistral import MistralTokenizer -from vllm.utils import make_async, merge_async_iterators, random_uuid +from vllm.utils import make_async, merge_async_iterators logger = init_logger(__name__) @@ -102,7 +102,7 @@ async def create_score( return error_check_ret model_name = request.model - request_id = f"score-{random_uuid()}" + request_id = f"score-{self._base_request_id(raw_request)}" created_time = int(time.monotonic()) truncate_prompt_tokens = request.truncate_prompt_tokens diff --git a/vllm/entrypoints/openai/serving_tokenization.py b/vllm/entrypoints/openai/serving_tokenization.py index 9c3dc2c98b2dd..2e849333680d4 100644 --- a/vllm/entrypoints/openai/serving_tokenization.py +++ b/vllm/entrypoints/openai/serving_tokenization.py @@ -1,5 +1,7 @@ from typing import Final, List, Optional, Union +from fastapi import Request + from vllm.config import ModelConfig from vllm.engine.protocol import EngineClient from vllm.entrypoints.chat_utils import ChatTemplateContentFormatOption @@ -17,7 +19,6 @@ LoRAModulePath, OpenAIServing) from vllm.logger import init_logger -from vllm.utils import random_uuid logger = init_logger(__name__) @@ -48,12 +49,13 @@ def __init__( async def create_tokenize( self, request: TokenizeRequest, + raw_request: Request, ) -> Union[TokenizeResponse, ErrorResponse]: error_check_ret = await self._check_model(request) if error_check_ret is not None: return error_check_ret - request_id = f"tokn-{random_uuid()}" + request_id = f"tokn-{self._base_request_id(raw_request)}" try: ( @@ -112,12 +114,13 @@ async def create_tokenize( async def create_detokenize( self, request: DetokenizeRequest, + raw_request: Request, ) -> Union[DetokenizeResponse, ErrorResponse]: error_check_ret = await self._check_model(request) if error_check_ret is not None: return error_check_ret - request_id = f"tokn-{random_uuid()}" + request_id = f"tokn-{self._base_request_id(raw_request)}" ( lora_request, From bc192a2b099558ec94864974b2a91b84c271a84d Mon Sep 17 00:00:00 2001 From: Patrick von Platen Date: Tue, 10 Dec 2024 07:09:32 +0100 Subject: [PATCH 089/733] [Pixtral] Improve loading (#11040) --- vllm/model_executor/models/pixtral.py | 56 ++++++++++++--------------- 1 file changed, 25 insertions(+), 31 deletions(-) diff --git a/vllm/model_executor/models/pixtral.py b/vllm/model_executor/models/pixtral.py index c6786c363ab4a..94a4ab882c1a9 100644 --- a/vllm/model_executor/models/pixtral.py +++ b/vllm/model_executor/models/pixtral.py @@ -1,6 +1,5 @@ from dataclasses import dataclass, fields from functools import cached_property -from itertools import tee from typing import Iterable, List, Mapping, Optional, Set, Tuple, Union import numpy @@ -359,38 +358,33 @@ def is_vision_encoder_weights(weight: Tuple[str, torch.Tensor]): def is_vision_lang_adapter_weights(weight: Tuple[str, torch.Tensor]): return weight[0].startswith("vision_language_adapter") - def is_vision_weights(weight: Tuple[str, torch.Tensor]): - return is_vision_encoder_weights( - weight) or is_vision_lang_adapter_weights(weight) - - llm_weights, vision_encoder_weights, vision_lang_adapter_weights = tee( - weights, 3) - - # llm - llm_weights = filter(lambda x: not is_vision_weights(x), llm_weights) - self.language_model.load_weights(llm_weights) - - # vision encoder - vision_encoder_weights = filter(is_vision_encoder_weights, - vision_encoder_weights) + # Get references to parameters for direct loading vision_encoder_dict = dict(self.vision_encoder.named_parameters()) - for name, loaded_weight in vision_encoder_weights: - # cut 'vision_encoder.' - name = '.'.join(name.split(".")[1:]) - param = vision_encoder_dict[name] - - default_weight_loader(param, loaded_weight) - - # adapter - vision_lang_adapter_weights = filter(is_vision_lang_adapter_weights, - vision_lang_adapter_weights) - vision_lang_adpter_dict = dict( + vision_lang_adapter_dict = dict( self.vision_language_adapter.named_parameters()) - for name, loaded_weight in vision_lang_adapter_weights: - # cut 'vision_language_adapter.' - name = '.'.join(name.split(".")[1:]) - param = vision_lang_adpter_dict[name] - default_weight_loader(param, loaded_weight) + + def llm_weights_generator(): + # Single pass over weights + for name, w in weights: + if is_vision_encoder_weights((name, w)): + # Load vision encoder weights directly + trimmed_name = '.'.join(name.split(".")[1:]) + param = vision_encoder_dict[trimmed_name] + with torch.no_grad(): + default_weight_loader(param, w) + elif is_vision_lang_adapter_weights((name, w)): + # Load vision-language adapter weights directly + trimmed_name = '.'.join(name.split(".")[1:]) + param = vision_lang_adapter_dict[trimmed_name] + with torch.no_grad(): + default_weight_loader(param, w) + else: + # LLM weights: yield them to be loaded + # by language_model.load_weights + yield (name, w) + + # Now we call the language model load with the generator + self.language_model.load_weights(llm_weights_generator()) # Vision encoder From 28b3a1c7e596c08efac0fcfa59a629d16197be30 Mon Sep 17 00:00:00 2001 From: Tyler Michael Smith Date: Tue, 10 Dec 2024 01:28:14 -0500 Subject: [PATCH 090/733] [V1] Multiprocessing Tensor Parallel Support for v1 (#9856) Signed-off-by: Tyler Michael Smith --- .../test_basic_correctness.py | 16 + tests/conftest.py | 11 +- .../device_communicators/shm_broadcast.py | 76 ++-- vllm/executor/multiproc_gpu_executor.py | 47 +-- vllm/executor/multiproc_worker_utils.py | 42 ++ .../model_executor/layers/logits_processor.py | 5 +- vllm/platforms/cuda.py | 28 +- vllm/utils.py | 26 ++ vllm/v1/core/scheduler.py | 4 +- vllm/v1/engine/async_llm.py | 18 +- vllm/v1/engine/core.py | 74 ++-- vllm/v1/engine/core_client.py | 13 +- vllm/v1/engine/llm_engine.py | 19 +- vllm/v1/executor/abstract.py | 48 +++ vllm/v1/executor/multiproc_executor.py | 375 ++++++++++++++++++ .../{gpu_executor.py => uniproc_executor.py} | 12 +- vllm/v1/outputs.py | 6 +- vllm/v1/sample/sampler.py | 3 +- vllm/v1/utils.py | 33 +- vllm/v1/worker/gpu_model_runner.py | 12 +- vllm/v1/worker/gpu_worker.py | 11 +- 21 files changed, 733 insertions(+), 146 deletions(-) create mode 100644 vllm/v1/executor/abstract.py create mode 100644 vllm/v1/executor/multiproc_executor.py rename vllm/v1/executor/{gpu_executor.py => uniproc_executor.py} (90%) diff --git a/tests/basic_correctness/test_basic_correctness.py b/tests/basic_correctness/test_basic_correctness.py index fcba253d159f3..11d05cefb7313 100644 --- a/tests/basic_correctness/test_basic_correctness.py +++ b/tests/basic_correctness/test_basic_correctness.py @@ -26,6 +26,14 @@ TARGET_TEST_SUITE = os.environ.get("TARGET_TEST_SUITE", "L4") +@pytest.fixture(autouse=True) +def v1(run_with_both_engines): + # Simple autouse wrapper to run both engines for each test + # This can be promoted up to conftest.py to run for every + # test in a package + pass + + def test_vllm_gc_ed(): """Verify vllm instance is GC'ed when it is deleted""" llm = LLM("facebook/opt-125m") @@ -36,6 +44,7 @@ def test_vllm_gc_ed(): assert weak_llm() is None +@pytest.mark.skip_v1 @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("backend", ["FLASH_ATTN", "XFORMERS", "FLASHINFER"]) @pytest.mark.parametrize("dtype", ["half"]) @@ -118,6 +127,11 @@ def test_models_distributed( if attention_backend: os.environ["VLLM_ATTENTION_BACKEND"] = attention_backend + # Import VLLM_USE_V1 dynamically to handle patching + from vllm.envs import VLLM_USE_V1 + if VLLM_USE_V1 and distributed_executor_backend != "mp": + pytest.skip(f"Skip {distributed_executor_backend} for V1") + dtype = "half" max_tokens = 5 @@ -143,6 +157,7 @@ def test_models_distributed( ) +@pytest.mark.skip_v1 def test_model_with_failure(vllm_runner) -> None: try: with patch("vllm.model_executor.models.opt.OPTForCausalLM.forward", @@ -169,6 +184,7 @@ def test_model_with_failure(vllm_runner) -> None: os.remove(filename) +@pytest.mark.skip_v1 def test_failure_with_async_out_proc(vllm_runner) -> None: filename = None diff --git a/tests/conftest.py b/tests/conftest.py index d6be8f5b00af8..7606e0f11dfeb 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -5,7 +5,6 @@ from enum import Enum from typing import (Any, Callable, Dict, List, Optional, Tuple, Type, TypedDict, TypeVar, Union) -from unittest.mock import patch import numpy as np import pytest @@ -110,7 +109,7 @@ def prompts(self, prompts: _VideoAssetPrompts) -> List[str]: @pytest.fixture(params=[True, False]) -def run_with_both_engines(request): +def run_with_both_engines(request, monkeypatch): # Automatically runs tests twice, once with V1 and once without use_v1 = request.param # Tests decorated with `@skip_v1` are only run without v1 @@ -119,11 +118,11 @@ def run_with_both_engines(request): if use_v1: if skip_v1: pytest.skip("Skipping test on vllm V1") - with patch('vllm.envs.VLLM_USE_V1', True): - yield + monkeypatch.setenv('VLLM_USE_V1', '1') else: - with patch('vllm.envs.VLLM_USE_V1', False): - yield + monkeypatch.setenv('VLLM_USE_V1', '0') + + yield @pytest.fixture(autouse=True) diff --git a/vllm/distributed/device_communicators/shm_broadcast.py b/vllm/distributed/device_communicators/shm_broadcast.py index 2ff1a1ead99c1..9a2d8918d96e5 100644 --- a/vllm/distributed/device_communicators/shm_broadcast.py +++ b/vllm/distributed/device_communicators/shm_broadcast.py @@ -1,10 +1,11 @@ import os import pickle +import sys import time from contextlib import contextmanager from dataclasses import dataclass, field from multiprocessing import shared_memory -from typing import List, Optional +from typing import List, Optional, Tuple from unittest.mock import patch import torch @@ -21,6 +22,20 @@ logger = init_logger(__name__) +# We prefer to use os.sched_yield as it results in tighter polling loops, +# measured to be around 3e-7 seconds. However on earlier versions of Python +# os.sched_yield() does not release the GIL, so we fall back to time.sleep(0) +USE_SCHED_YIELD = ((sys.version_info[:3] >= (3, 11, 1)) + or (sys.version_info[:2] == (3, 10) + and sys.version_info[2] >= 8)) + + +def sched_yield(): + if USE_SCHED_YIELD: + os.sched_yield() + else: + time.sleep(0) + class ShmRingBuffer: @@ -114,11 +129,14 @@ def __init__(self, # and we should suppress the error pass + def handle(self): + return (self.n_reader, self.max_chunk_bytes, self.max_chunks, + self.shared_memory.name) + def __reduce__(self): return ( self.__class__, - (self.n_reader, self.max_chunk_bytes, self.max_chunks, - self.shared_memory.name), + self.handle(), ) def __del__(self): @@ -147,7 +165,7 @@ class Handle: connect_ip: str local_reader_ranks: List[int] = field(default_factory=list) - buffer: Optional[ShmRingBuffer] = None + buffer_handle: Optional[Tuple[int, int, int, str]] = None local_subscribe_port: Optional[int] = None remote_subscribe_port: Optional[int] = None @@ -228,7 +246,7 @@ def __init__( self.handle = Handle( connect_ip=connect_ip, local_reader_ranks=local_reader_ranks, - buffer=self.buffer, + buffer_handle=self.buffer.handle(), local_subscribe_port=local_subscribe_port, remote_subscribe_port=remote_subscribe_port, ) @@ -247,8 +265,8 @@ def create_from_handle(handle: Handle, rank) -> "MessageQueue": context = Context() if rank in handle.local_reader_ranks: - assert handle.buffer is not None - self.buffer = handle.buffer + assert handle.buffer_handle is not None + self.buffer = ShmRingBuffer(*handle.buffer_handle) self.current_idx = 0 self.local_reader_rank = handle.local_reader_ranks.index(rank) self._is_local_reader = True @@ -314,7 +332,7 @@ def wait_until_ready(self): assert recv == b"READY" @contextmanager - def acquire_write(self): + def acquire_write(self, timeout: Optional[float] = None): assert self._is_writer, "Only writers can acquire write" start_time = time.monotonic() n_warning = 1 @@ -329,16 +347,20 @@ def acquire_write(self): # we need to wait until it is read by all readers # Release the processor to other threads - os.sched_yield() + sched_yield() - # if we wait for a long time, we should warn the user + # if we wait for a long time, log a message if (time.monotonic() - start_time > VLLM_RINGBUFFER_WARNING_INTERVAL * n_warning): - logger.warning( - "No available block found in %s second. ", - VLLM_RINGBUFFER_WARNING_INTERVAL) + logger.debug("No available block found in %s second. ", + VLLM_RINGBUFFER_WARNING_INTERVAL) n_warning += 1 + # if we time out, raise an exception + if (timeout is not None + and time.monotonic() - start_time > timeout): + raise TimeoutError + continue # found a block that is either # (1) not written @@ -365,7 +387,7 @@ def acquire_write(self): break @contextmanager - def acquire_read(self): + def acquire_read(self, timeout: Optional[float] = None): assert self._is_local_reader, "Only readers can acquire read" start_time = time.monotonic() n_warning = 1 @@ -383,16 +405,20 @@ def acquire_read(self): # we need to wait until it is written # Release the processor to other threads - os.sched_yield() + sched_yield() - # if we wait for a long time, we should warn the user + # if we wait for a long time, log a message if (time.monotonic() - start_time > VLLM_RINGBUFFER_WARNING_INTERVAL * n_warning): - logger.warning( - "No available block found in %s second. ", - VLLM_RINGBUFFER_WARNING_INTERVAL) + logger.debug("No available block found in %s second. ", + VLLM_RINGBUFFER_WARNING_INTERVAL) n_warning += 1 + # if we time out, raise an exception + if (timeout is not None + and time.monotonic() - start_time > timeout): + raise TimeoutError + continue # found a block that is not read by this reader # let caller read from the buffer @@ -406,24 +432,26 @@ def acquire_read(self): 1) % self.buffer.max_chunks break - def enqueue(self, obj): + def enqueue(self, obj, timeout: Optional[float] = None): + """ Write to message queue with optional timeout (in seconds) """ assert self._is_writer, "Only writers can enqueue" serialized_obj = pickle.dumps(obj, protocol=pickle.HIGHEST_PROTOCOL) if self.n_local_reader > 0: if len(serialized_obj) >= self.buffer.max_chunk_bytes: - with self.acquire_write() as buf: + with self.acquire_write(timeout) as buf: buf[0] = 1 # overflow self.local_socket.send(serialized_obj) else: - with self.acquire_write() as buf: + with self.acquire_write(timeout) as buf: buf[0] = 0 # not overflow buf[1:len(serialized_obj) + 1] = serialized_obj if self.n_remote_reader > 0: self.remote_socket.send(serialized_obj) - def dequeue(self): + def dequeue(self, timeout: Optional[float] = None): + """ Read from message queue with optional timeout (in seconds) """ if self._is_local_reader: - with self.acquire_read() as buf: + with self.acquire_read(timeout) as buf: overflow = buf[0] == 1 if not overflow: # no need to know the size of serialized object diff --git a/vllm/executor/multiproc_gpu_executor.py b/vllm/executor/multiproc_gpu_executor.py index c450209f0eb91..fc58163cade64 100644 --- a/vllm/executor/multiproc_gpu_executor.py +++ b/vllm/executor/multiproc_gpu_executor.py @@ -3,25 +3,19 @@ from functools import partial from typing import Any, List, Optional -import torch - from vllm.executor.distributed_gpu_executor import ( # yapf: disable DistributedGPUExecutor, DistributedGPUExecutorAsync) from vllm.executor.gpu_executor import create_worker -from vllm.executor.multiproc_worker_utils import (ProcessWorkerWrapper, - ResultHandler, WorkerMonitor) +from vllm.executor.multiproc_worker_utils import ( + ProcessWorkerWrapper, ResultHandler, WorkerMonitor, + set_multiprocessing_worker_envs) from vllm.logger import init_logger from vllm.model_executor.layers.sampler import SamplerOutput from vllm.sequence import ExecuteModelRequest -from vllm.triton_utils.importing import HAS_TRITON from vllm.utils import (_run_task_with_lock, cuda_device_count_stateless, - cuda_is_initialized, get_distributed_init_method, - get_open_port, make_async, + get_distributed_init_method, get_open_port, make_async, update_environment_variables) -if HAS_TRITON: - from vllm.triton_utils import maybe_set_triton_cache_manager - logger = init_logger(__name__) @@ -37,30 +31,8 @@ def _init_executor(self) -> None: world_size = self.parallel_config.world_size tensor_parallel_size = self.parallel_config.tensor_parallel_size - # Disable torch async compiling which won't work with daemonic processes - os.environ["TORCHINDUCTOR_COMPILE_THREADS"] = "1" - - # Configure thread parallelism if OMP_NUM_THREADS isn't set - # - # Helps to avoid CPU contention. The default of spawning a thread per - # core combined with multiprocessing for each GPU can have a negative - # impact on performance. The contention is amplified when running in a - # container where CPU limits can cause throttling. - default_omp_num_threads = 1 - if "OMP_NUM_THREADS" not in os.environ and ( - current_parallelism := - torch.get_num_threads()) > default_omp_num_threads: - logger.warning( - "Reducing Torch parallelism from %d threads to %d to avoid " - "unnecessary CPU contention. Set OMP_NUM_THREADS in the " - "external environment to tune this value as needed.", - current_parallelism, default_omp_num_threads) - os.environ["OMP_NUM_THREADS"] = str(default_omp_num_threads) - torch.set_num_threads(default_omp_num_threads) - - # workaround for https://github.com/vllm-project/vllm/issues/6103 - if HAS_TRITON and world_size > 1: - maybe_set_triton_cache_manager() + # Set multiprocessing envs that are common to V0 and V1 + set_multiprocessing_worker_envs(self.parallel_config) # Multiprocessing-based executor does not support multi-node setting. # Since it only works for single node, we can use the loopback address @@ -122,13 +94,6 @@ def _check_executor_parameters(self): "CUDA_VISIBLE_DEVICES": (",".join(map(str, range(world_size)))) }) - if (cuda_is_initialized() - and os.environ.get("VLLM_WORKER_MULTIPROC_METHOD") != "spawn"): - logger.warning("CUDA was previously initialized. We must use " - "the `spawn` multiprocessing start method. Setting " - "VLLM_WORKER_MULTIPROC_METHOD to 'spawn'.") - os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn" - cuda_device_count = cuda_device_count_stateless() # Use confusing message for more common TP-only case. assert tensor_parallel_size <= cuda_device_count, ( diff --git a/vllm/executor/multiproc_worker_utils.py b/vllm/executor/multiproc_worker_utils.py index 884267d23dfc8..fe475db6d3f57 100644 --- a/vllm/executor/multiproc_worker_utils.py +++ b/vllm/executor/multiproc_worker_utils.py @@ -11,8 +11,15 @@ from typing import (Any, Callable, Dict, Generic, List, Optional, TextIO, TypeVar, Union) +import torch + import vllm.envs as envs from vllm.logger import init_logger +from vllm.triton_utils.importing import HAS_TRITON +from vllm.utils import cuda_is_initialized + +if HAS_TRITON: + from vllm.triton_utils import maybe_set_triton_cache_manager logger = init_logger(__name__) @@ -270,3 +277,38 @@ def write_with_prefix(s: str): def get_mp_context(): mp_method = envs.VLLM_WORKER_MULTIPROC_METHOD return multiprocessing.get_context(mp_method) + + +def set_multiprocessing_worker_envs(parallel_config): + """ Set up environment variables that should be used when there are workers + in a multiprocessing environment. This should be called by the parent + process before worker processes are created""" + + if (cuda_is_initialized() + and os.environ.get("VLLM_WORKER_MULTIPROC_METHOD") != "spawn"): + logger.warning("CUDA was previously initialized. We must use " + "the `spawn` multiprocessing start method. Setting " + "VLLM_WORKER_MULTIPROC_METHOD to 'spawn'.") + os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn" + + # Configure thread parallelism if OMP_NUM_THREADS isn't set + # + # Helps to avoid CPU contention. The default of spawning a thread per + # core combined with multiprocessing for each GPU can have a negative + # impact on performance. The contention is amplified when running in a + # container where CPU limits can cause throttling. + default_omp_num_threads = 1 + if "OMP_NUM_THREADS" not in os.environ and ( + current_parallelism := + torch.get_num_threads()) > default_omp_num_threads: + logger.warning( + "Reducing Torch parallelism from %d threads to %d to avoid " + "unnecessary CPU contention. Set OMP_NUM_THREADS in the " + "external environment to tune this value as needed.", + current_parallelism, default_omp_num_threads) + os.environ["OMP_NUM_THREADS"] = str(default_omp_num_threads) + torch.set_num_threads(default_omp_num_threads) + + # workaround for https://github.com/vllm-project/vllm/issues/6103 + if HAS_TRITON and parallel_config.world_size > 1: + maybe_set_triton_cache_manager() diff --git a/vllm/model_executor/layers/logits_processor.py b/vllm/model_executor/layers/logits_processor.py index fb76b1b17925e..2bc7e458494f7 100644 --- a/vllm/model_executor/layers/logits_processor.py +++ b/vllm/model_executor/layers/logits_processor.py @@ -5,6 +5,7 @@ import torch import torch.nn as nn +import vllm.envs as envs from vllm.distributed import (tensor_model_parallel_all_gather, tensor_model_parallel_gather) from vllm.model_executor.layers.vocab_parallel_embedding import ( @@ -42,7 +43,9 @@ def __init__(self, # Soft cap the logits. Used in Gemma 2. self.soft_cap = soft_cap # Whether to use gather or all-gather to gather the logits. - self.use_gather = not current_platform.is_tpu() + + self.use_gather = not current_platform.is_tpu( + ) and not envs.VLLM_USE_V1 def forward( self, diff --git a/vllm/platforms/cuda.py b/vllm/platforms/cuda.py index edaf377b501df..10f83fd304281 100644 --- a/vllm/platforms/cuda.py +++ b/vllm/platforms/cuda.py @@ -12,6 +12,7 @@ # import custom ops, trigger op registration import vllm._C # noqa +import vllm.envs as envs from vllm.logger import init_logger from .interface import DeviceCapability, Platform, PlatformEnum @@ -110,17 +111,28 @@ def log_warnings(cls): def check_and_update_config(cls, vllm_config: VllmConfig) -> None: parallel_config = vllm_config.parallel_config scheduler_config = vllm_config.scheduler_config + if parallel_config.worker_cls == "auto": if scheduler_config.is_multi_step: - parallel_config.worker_cls = \ - "vllm.worker.multi_step_worker.MultiStepWorker" + if envs.VLLM_USE_V1: + raise NotImplementedError + else: + parallel_config.worker_cls = \ + "vllm.worker.multi_step_worker.MultiStepWorker" elif vllm_config.speculative_config: - parallel_config.worker_cls = \ - "vllm.spec_decode.spec_decode_worker.create_spec_worker" - parallel_config.sd_worker_cls = \ - "vllm.worker.worker.Worker" + if envs.VLLM_USE_V1: + raise NotImplementedError + else: + parallel_config.worker_cls = \ + "vllm.spec_decode.spec_decode_worker.create_spec_worker" + parallel_config.sd_worker_cls = \ + "vllm.worker.worker.Worker" else: - parallel_config.worker_cls = "vllm.worker.worker.Worker" + if envs.VLLM_USE_V1: + parallel_config.worker_cls = \ + "vllm.v1.worker.gpu_worker.Worker" + else: + parallel_config.worker_cls = "vllm.worker.worker.Worker" # NVML utils @@ -249,4 +261,4 @@ def is_full_nvlink(cls, physical_device_ids: List[int]) -> bool: if not isinstance(pynvml, _MockModule): CudaPlatform.log_warnings() except ModuleNotFoundError: - CudaPlatform.log_warnings() \ No newline at end of file + CudaPlatform.log_warnings() diff --git a/vllm/utils.py b/vllm/utils.py index 2bb1fb2af40f4..7cdb2cb320b05 100644 --- a/vllm/utils.py +++ b/vllm/utils.py @@ -10,6 +10,7 @@ import inspect import ipaddress import os +import signal import socket import subprocess import sys @@ -1652,3 +1653,28 @@ def resolve_obj_by_qualname(qualname: str) -> Any: module_name, obj_name = qualname.rsplit(".", 1) module = importlib.import_module(module_name) return getattr(module, obj_name) + + +def kill_process_tree(pid: int): + """ + Kills all descendant processes of the given pid by sending SIGKILL. + + Args: + pid (int): Process ID of the parent process + """ + try: + parent = psutil.Process(pid) + except psutil.NoSuchProcess: + return + + # Get all children recursively + children = parent.children(recursive=True) + + # Send SIGKILL to all children first + for child in children: + with contextlib.suppress(ProcessLookupError): + os.kill(child.pid, signal.SIGKILL) + + # Finally kill the parent + with contextlib.suppress(ProcessLookupError): + os.kill(pid, signal.SIGKILL) diff --git a/vllm/v1/core/scheduler.py b/vllm/v1/core/scheduler.py index 1203d35fc985f..a3e85c20cc664 100644 --- a/vllm/v1/core/scheduler.py +++ b/vllm/v1/core/scheduler.py @@ -5,6 +5,8 @@ from vllm.config import CacheConfig, LoRAConfig, SchedulerConfig from vllm.logger import init_logger +from vllm.multimodal import MultiModalKwargs +from vllm.multimodal.base import PlaceholderRange from vllm.sampling_params import SamplingParams from vllm.v1.core.encoder_cache_manager import EncoderCacheManager from vllm.v1.core.kv_cache_manager import KVCacheManager @@ -383,7 +385,7 @@ def update_from_output( model_runner_output: "ModelRunnerOutput", ) -> List[EngineCoreOutput]: # NOTE(woosuk): This method doesn't consider speculative decoding. - sampled_token_ids = model_runner_output.sampled_token_ids_cpu.tolist() + sampled_token_ids = model_runner_output.sampled_token_ids num_scheduled_tokens = scheduler_output.num_scheduled_tokens new_running: List[Request] = [] engine_core_outputs: List[EngineCoreOutput] = [] diff --git a/vllm/v1/engine/async_llm.py b/vllm/v1/engine/async_llm.py index 0bcccda2bf329..26fd650aee4b7 100644 --- a/vllm/v1/engine/async_llm.py +++ b/vllm/v1/engine/async_llm.py @@ -20,7 +20,7 @@ from vllm.v1.engine.core_client import EngineCoreClient from vllm.v1.engine.detokenizer import Detokenizer from vllm.v1.engine.processor import Processor -from vllm.v1.executor.gpu_executor import GPUExecutor +from vllm.v1.executor.abstract import Executor logger = init_logger(__name__) @@ -30,7 +30,7 @@ class AsyncLLM(EngineClient): def __init__( self, vllm_config: VllmConfig, - executor_class: Type[GPUExecutor], + executor_class: Type[Executor], log_stats: bool, usage_context: UsageContext = UsageContext.ENGINE_CONTEXT, stat_loggers: Optional[Dict[str, StatLoggerBase]] = None, @@ -119,14 +119,24 @@ def from_engine_args( def shutdown(self): """Shutdown, cleaning up the background proc and IPC.""" - self.engine_core.shutdown() + if engine_core := getattr(self, "engine_core", None): + engine_core.shutdown() if handler := getattr(self, "output_handler", None): handler.cancel() @classmethod def _get_executor_cls(cls, vllm_config: VllmConfig): - return GPUExecutor + distributed_executor_backend = ( + vllm_config.parallel_config.distributed_executor_backend) + if distributed_executor_backend == "mp": + from vllm.v1.executor.multiproc_executor import MultiprocExecutor + executor_class = MultiprocExecutor + else: + assert (distributed_executor_backend is None) + from vllm.v1.executor.uniproc_executor import UniprocExecutor + executor_class = UniprocExecutor + return executor_class async def add_request( self, diff --git a/vllm/v1/engine/core.py b/vllm/v1/engine/core.py index 751eb3b40a68d..fdb241e6753fb 100644 --- a/vllm/v1/engine/core.py +++ b/vllm/v1/engine/core.py @@ -1,12 +1,12 @@ import multiprocessing import pickle import queue +import signal import threading import time -from contextlib import contextmanager from multiprocessing.process import BaseProcess from multiprocessing.sharedctypes import Synchronized -from typing import Any, Iterator, List, Tuple, Type, Union +from typing import List, Tuple, Type, Union import zmq import zmq.asyncio @@ -20,9 +20,10 @@ EngineCoreProfile, EngineCoreRequest, EngineCoreRequestType) from vllm.v1.engine.mm_input_mapper import MMInputMapper -from vllm.v1.executor.gpu_executor import GPUExecutor +from vllm.v1.executor.abstract import Executor from vllm.v1.request import Request, RequestStatus from vllm.v1.serial_utils import PickleEncoder +from vllm.v1.utils import make_zmq_socket from vllm.version import __version__ as VLLM_VERSION logger = init_logger(__name__) @@ -38,7 +39,7 @@ class EngineCore: def __init__( self, vllm_config: VllmConfig, - executor_class: Type[GPUExecutor], + executor_class: Type[Executor], usage_context: UsageContext, ): assert vllm_config.model_config.task != "embedding" @@ -80,7 +81,7 @@ def _initialize_kv_caches(self, num_gpu_blocks = num_gpu_blocks_override num_cpu_blocks = 0 - self.model_executor.initialize_cache(num_gpu_blocks) + self.model_executor.initialize(num_gpu_blocks) elapsed = time.time() - start logger.info(("init engine (profile, create kv cache, " "warmup model) took %.2f seconds"), elapsed) @@ -112,8 +113,11 @@ def step(self) -> List[EngineCoreOutput]: scheduler_output, output) return engine_core_outputs + def shutdown(self): + self.model_executor.shutdown() + def profile(self, is_start=True): - self.model_executor.worker.profile(is_start) + self.model_executor.profile(is_start) class EngineCoreProc(EngineCore): @@ -124,7 +128,7 @@ class EngineCoreProc(EngineCore): def __init__( self, vllm_config: VllmConfig, - executor_class: Type[GPUExecutor], + executor_class: Type[Executor], usage_context: UsageContext, input_path: str, output_path: str, @@ -151,32 +155,9 @@ def __init__( daemon=True).start() # Send Readiness signal to EngineClient. - with self.make_socket(ready_path, zmq.constants.PUSH) as ready_socket: + with make_zmq_socket(ready_path, zmq.constants.PUSH) as ready_socket: ready_socket.send_string(EngineCoreProc.READY_STR) - @contextmanager - def make_socket(self, path: str, type: Any) -> Iterator[zmq.Socket]: - """Context manager for use """ - - ctx = zmq.Context() - try: - socket = ctx.socket(type) - - if type == zmq.constants.PULL: - socket.connect(path) - elif type == zmq.constants.PUSH: - socket.bind(path) - else: - raise ValueError(f"Unknown Socket Type: {type}") - - yield socket - - except KeyboardInterrupt: - logger.debug("EngineCore had Keyboard Interrupt.") - - finally: - ctx.destroy(linger=0) - @staticmethod def wait_for_startup( proc: BaseProcess, @@ -209,7 +190,7 @@ def wait_for_startup( @staticmethod def make_engine_core_process( vllm_config: VllmConfig, - executor_class: Type[GPUExecutor], + executor_class: Type[Executor], usage_context: UsageContext, input_path: str, output_path: str, @@ -244,17 +225,38 @@ def make_engine_core_process( def run_engine_core(*args, **kwargs): """Launch EngineCore busy loop in background process.""" + # Signal handler used for graceful termination. + # SystemExit exception is only raised once to allow this and worker + # processes to terminate without error + shutdown_requested = False + + def signal_handler(signum, frame): + nonlocal shutdown_requested + if not shutdown_requested: + shutdown_requested = True + raise SystemExit() + + # Either SIGTERM or SIGINT will terminate the engine_core + signal.signal(signal.SIGTERM, signal_handler) + signal.signal(signal.SIGINT, signal_handler) + + engine_core = None try: engine_core = EngineCoreProc(*args, **kwargs) engine_core.run_busy_loop() - except KeyboardInterrupt: + except SystemExit: logger.debug("EngineCore interrupted.") except BaseException as e: logger.exception(e) raise e + finally: + if engine_core is not None: + engine_core.shutdown() + engine_core = None + def run_busy_loop(self): """Core busy loop of the EngineCore.""" @@ -272,6 +274,8 @@ def run_busy_loop(self): logger.debug("EngineCore busy loop waiting.") if self.should_shutdown: return + except BaseException: + raise # 2) Handle any new client requests (Abort or Add). while not self.input_queue.empty(): @@ -321,7 +325,7 @@ def process_input_socket(self, input_path: str): decoder_add_req = PickleEncoder() decoder_abort_req = PickleEncoder() - with self.make_socket(input_path, zmq.constants.PULL) as socket: + with make_zmq_socket(input_path, zmq.constants.PULL) as socket: while True: # (RequestType, RequestData) type_frame, data_frame = socket.recv_multipart(copy=False) @@ -349,7 +353,7 @@ def process_output_socket(self, output_path: str): # Reuse send buffer. buffer = bytearray() - with self.make_socket(output_path, zmq.constants.PUSH) as socket: + with make_zmq_socket(output_path, zmq.constants.PUSH) as socket: while True: engine_core_outputs = self.output_queue.get() outputs = EngineCoreOutputs(outputs=engine_core_outputs) diff --git a/vllm/v1/engine/core_client.py b/vllm/v1/engine/core_client.py index 835963f7ee86c..ee89cece73141 100644 --- a/vllm/v1/engine/core_client.py +++ b/vllm/v1/engine/core_client.py @@ -1,5 +1,4 @@ import multiprocessing -import time from typing import List, Union import msgspec @@ -7,7 +6,7 @@ import zmq.asyncio from vllm.logger import init_logger -from vllm.utils import get_open_zmq_ipc_path +from vllm.utils import get_open_zmq_ipc_path, kill_process_tree from vllm.v1.engine import (EngineCoreOutput, EngineCoreOutputs, EngineCoreProfile, EngineCoreRequest, EngineCoreRequestType) @@ -99,6 +98,12 @@ def add_request(self, request: EngineCoreRequest) -> None: def abort_requests(self, request_ids: List[str]) -> None: self.engine_core.abort_requests(request_ids) + def shutdown(self): + self.engine_core.shutdown() + + def __del__(self): + self.shutdown() + async def profile(self, is_start=True) -> None: self.engine_core.profile(is_start) @@ -163,10 +168,10 @@ def shutdown(self): # Shutdown the process if needed. if hasattr(self, "proc") and self.proc.is_alive(): self.proc.terminate() + self.proc.join(5) - time.sleep(5) if self.proc.is_alive(): - self.proc.kill() + kill_process_tree(self.proc.pid) def __del__(self): self.shutdown() diff --git a/vllm/v1/engine/llm_engine.py b/vllm/v1/engine/llm_engine.py index 994e68669108e..1b3a9f12d009e 100644 --- a/vllm/v1/engine/llm_engine.py +++ b/vllm/v1/engine/llm_engine.py @@ -20,7 +20,7 @@ from vllm.v1.engine.core_client import EngineCoreClient from vllm.v1.engine.detokenizer import Detokenizer from vllm.v1.engine.processor import Processor -from vllm.v1.executor.gpu_executor import GPUExecutor +from vllm.v1.executor.abstract import Executor logger = init_logger(__name__) @@ -33,7 +33,7 @@ class LLMEngine: def __init__( self, vllm_config: VllmConfig, - executor_class: Type[GPUExecutor], + executor_class: Type[Executor], log_stats: bool, usage_context: UsageContext = UsageContext.ENGINE_CONTEXT, stat_loggers: Optional[Dict[str, StatLoggerBase]] = None, @@ -104,10 +104,17 @@ def from_engine_args( @classmethod def _get_executor_cls(cls, vllm_config: VllmConfig): - return GPUExecutor - - def stop_remote_worker_execution_loop(self) -> None: - raise NotImplementedError("TP not implemented yet.") + distributed_executor_backend = ( + vllm_config.parallel_config.distributed_executor_backend) + if distributed_executor_backend == "mp": + from vllm.v1.executor.multiproc_executor import MultiprocExecutor + executor_class = MultiprocExecutor + else: + assert (distributed_executor_backend is None) + from vllm.v1.executor.uniproc_executor import UniprocExecutor + executor_class = UniprocExecutor + + return executor_class def get_num_unfinished_requests(self) -> int: return self.detokenizer.get_num_unfinished_requests() diff --git a/vllm/v1/executor/abstract.py b/vllm/v1/executor/abstract.py new file mode 100644 index 0000000000000..9cd267581ad18 --- /dev/null +++ b/vllm/v1/executor/abstract.py @@ -0,0 +1,48 @@ +from abc import ABC, abstractmethod +from typing import Dict, Optional, Tuple + +from vllm.config import VllmConfig +from vllm.v1.outputs import ModelRunnerOutput + + +class Executor(ABC): + """Abstract class for executors.""" + + @abstractmethod + def __init__(self, vllm_config: VllmConfig) -> None: + raise NotImplementedError + + @abstractmethod + def initialize(self, num_gpu_blocks: int) -> None: + raise NotImplementedError + + @abstractmethod + def determine_num_available_blocks(self) -> Tuple[int, int]: + raise NotImplementedError + + @abstractmethod + def execute_model( + self, + scheduler_output, + ) -> ModelRunnerOutput: + raise NotImplementedError + + @abstractmethod + def profile(self, is_start=True): + raise NotImplementedError + + @abstractmethod + def shutdown(self): + pass + + @abstractmethod + def check_health(self) -> None: + raise NotImplementedError + + @abstractmethod + def collective_rpc(self, + method: str, + timeout: Optional[float] = None, + args: Tuple = (), + kwargs: Optional[Dict] = None) -> []: + raise NotImplementedError diff --git a/vllm/v1/executor/multiproc_executor.py b/vllm/v1/executor/multiproc_executor.py new file mode 100644 index 0000000000000..f8f3d583618cf --- /dev/null +++ b/vllm/v1/executor/multiproc_executor.py @@ -0,0 +1,375 @@ +import atexit +import os +import pickle +import signal +import sys +import time +from dataclasses import dataclass +from enum import Enum, auto +from multiprocessing.process import BaseProcess +from typing import Dict, List, Optional, Tuple + +import zmq + +from vllm.config import VllmConfig +from vllm.distributed import (destroy_distributed_environment, + destroy_model_parallel) +from vllm.distributed.device_communicators.shm_broadcast import (Handle, + MessageQueue) +from vllm.executor.multiproc_worker_utils import ( + _add_prefix, get_mp_context, set_multiprocessing_worker_envs) +from vllm.logger import init_logger +from vllm.utils import (get_distributed_init_method, get_open_port, + get_open_zmq_ipc_path) +from vllm.v1.outputs import ModelRunnerOutput +from vllm.v1.utils import make_zmq_socket +from vllm.worker.worker_base import WorkerWrapperBase + +logger = init_logger(__name__) + +POLLING_TIMEOUT_MS = 5000 +POLLING_TIMEOUT_S = POLLING_TIMEOUT_MS // 1000 + + +class MultiprocExecutor: + + def __init__(self, vllm_config: VllmConfig) -> None: + # Call self.shutdown at exit to clean up + # and ensure workers will be terminated. + atexit.register(self.shutdown) + + self.vllm_config = vllm_config + self.parallel_config = vllm_config.parallel_config + + self.world_size = self.parallel_config.world_size + tensor_parallel_size = self.parallel_config.tensor_parallel_size + assert self.world_size == tensor_parallel_size, ( + f"world_size ({self.world_size}) must be equal to the " + f"tensor_parallel_size ({tensor_parallel_size}). " + f"Pipeline parallelism is not yet implemented in v1") + + # Set multiprocessing envs that are common to V0 and V1 + set_multiprocessing_worker_envs(self.parallel_config) + + # Multiprocessing-based executor does not support multi-node setting. + # Since it only works for single node, we can use the loopback address + # 127.0.0.1 for communication. + distributed_init_method = get_distributed_init_method( + "127.0.0.1", get_open_port()) + + # Initialize worker and set up message queues for SchedulerOutputs + # and ModelRunnerOutputs + self.rpc_broadcast_mq = MessageQueue(self.world_size, self.world_size) + scheduler_output_handle = self.rpc_broadcast_mq.export_handle() + + # Create workers + self.workers: List[WorkerProcHandle] = [] + for rank in range(self.world_size): + worker = WorkerProc.make_worker_process(vllm_config, rank, rank, + distributed_init_method, + scheduler_output_handle) + self.workers.append(worker) + + # Ensure message queues are ready. Will deadlock if re-ordered + # Must be kept consistent with the WorkerProc + self.rpc_broadcast_mq.wait_until_ready() + for w in self.workers: + w.worker_response_mq.wait_until_ready() + + def initialize(self, num_gpu_blocks: int) -> None: + """ + Initialize the KV caches and begin the model execution loop of the + underlying workers. + """ + self.collective_rpc("initialize_cache", args=(num_gpu_blocks, )) + self.collective_rpc("compile_or_warm_up_model") + + def determine_num_available_blocks(self) -> Tuple[int, int]: + """ + Determine the number of available KV blocks by invoking the + underlying worker. + """ + num_blocks = self.collective_rpc("determine_num_available_blocks") + + # Since we use a shared centralized controller, we take the minimum + # number of blocks across all workers to make sure all the memory + # operators can be applied to all workers. + num_gpu_blocks = min(b[0] for b in num_blocks) + num_cpu_blocks = min(b[1] for b in num_blocks) + + return num_gpu_blocks, num_cpu_blocks + + def collective_rpc(self, + method: str, + timeout: Optional[float] = None, + args: Tuple = (), + kwargs: Optional[Dict] = None) -> []: + """ + Execute an RPC call on workers. + + Args: + method: Name of the worker method to execute + timeout: Maximum time in seconds to wait for execution. Rases a + TimeoutError on timeout. None means wait indefinitely. + args: Positional arguments to pass to the worker method + kwargs: Keyword arguments to pass to the worker method + + Returns: + List of results from each worker + """ + start_time = time.monotonic() + kwargs = kwargs or {} + + try: + self.rpc_broadcast_mq.enqueue((method, args, kwargs)) + + responses = [None] * self.world_size + for w in self.workers: + dequeue_timeout = timeout - (time.monotonic() - start_time() + ) if timeout is not None else None + status, result = w.worker_response_mq.dequeue( + timeout=dequeue_timeout) + + if status != WorkerProc.ResponseStatus.SUCCESS: + if isinstance(result, Exception): + raise result + else: + raise RuntimeError("Worker failed") + + responses[w.rank] = result + + return responses + except TimeoutError as e: + raise TimeoutError(f"RPC call to {method} timed out.") from e + except Exception as e: + # Re-raise any other exceptions + raise e + + def execute_model( + self, + scheduler_output, + ) -> ModelRunnerOutput: + model_output = self.collective_rpc("execute_model", + args=(scheduler_output, ))[0] + return model_output + + def profile(self, is_start=True): + self.collective_rpc("profile", args=(is_start, )) + return + + def _ensure_worker_termination(self): + """Ensure that all worker processes are terminated. Assumes workers have + received termination requests. Waits for processing, then sends + termination and kill signals if needed.""" + + def wait_for_termination(procs, timeout): + start_time = time.time() + while time.time() - start_time < timeout: + if all(not proc.is_alive() for proc in procs): + return True + time.sleep(0.1) + return False + + # Send SIGTERM if still running + active_procs = [w.proc for w in self.workers if w.proc.is_alive()] + self.workers = None + for p in active_procs: + p.terminate() + if wait_for_termination(active_procs, 4): + return + + # Send SIGKILL if still running + active_procs = [p for p in active_procs if p.is_alive()] + for p in active_procs: + p.kill() + + def shutdown(self): + """Properly shut down the executor and its workers""" + if (hasattr(self, 'workers') and self.workers is not None): + for w in self.workers: #TODO: not sure if needed + w.worker_response_mq = None + self._ensure_worker_termination() + + self.rpc_broadcast_mq = None + + def check_health(self) -> None: + self.collective_rpc("check_health", timeout=10) + return + + +@dataclass +class WorkerProcHandle: + proc: BaseProcess + rank: int + ready_path: str + worker_response_mq: MessageQueue # The worker process writes to this MQ + + +class WorkerProc: + """Wrapper that runs one Worker in a separate process.""" + + READY_STR = "READY" + + def __init__( + self, + vllm_config: VllmConfig, + local_rank: int, + rank: int, + distributed_init_method: str, + input_shm_handle: Handle, + ready_path: str, + ): + self.rank = rank + wrapper = WorkerWrapperBase(vllm_config=vllm_config) + wrapper.init_worker(vllm_config, local_rank, rank, + distributed_init_method) + self.worker = wrapper.worker + + pid = os.getpid() + _add_prefix(sys.stdout, f"VllmWorker rank={rank}", pid) + _add_prefix(sys.stderr, f"VllmWorker rank={rank}", pid) + + # Initialize MessageQueue for receiving SchedulerOutput + self.rpc_broadcast_mq = MessageQueue.create_from_handle( + input_shm_handle, self.worker.rank) + + # Initializes a message queue for sending the model output + self.worker_response_mq = MessageQueue(1, 1) + worker_response_mq_handle = self.worker_response_mq.export_handle() + + # Send Readiness signal to EngineCore process. + with make_zmq_socket(ready_path, zmq.constants.PUSH) as ready_socket: + payload = pickle.dumps(worker_response_mq_handle, + protocol=pickle.HIGHEST_PROTOCOL) + ready_socket.send_string(WorkerProc.READY_STR) + ready_socket.send(payload) + + self.worker.initialize() + self.worker.load_model() + + @staticmethod + def make_worker_process( + vllm_config: VllmConfig, + local_rank: int, + rank: int, + distributed_init_method: str, + input_shm_handle, # Receive SchedulerOutput + ) -> WorkerProcHandle: + context = get_mp_context() + + # ZMQ path for worker to send ready message and shm_broadcast handle + # back to core process. + ready_path = get_open_zmq_ipc_path() + + process_kwargs = { + "vllm_config": vllm_config, + "local_rank": local_rank, + "rank": rank, + "distributed_init_method": distributed_init_method, + "input_shm_handle": input_shm_handle, + "ready_path": ready_path, + } + # Run EngineCore busy loop in background process. + proc = context.Process(target=WorkerProc.worker_main, + kwargs=process_kwargs, + daemon=True) + proc.start() + + # Wait for startup + worker_response_mq_handle = WorkerProc.wait_for_startup( + proc, ready_path) + + worker_response_mq = MessageQueue.create_from_handle( + worker_response_mq_handle, 0) + + return WorkerProcHandle(proc, rank, ready_path, worker_response_mq) + + def shutdown(self): + self.rpc_broadcast_mq = None + self.worker_response_mq = None + destroy_model_parallel() + destroy_distributed_environment() + + @staticmethod + def worker_main(*args, **kwargs): + """ Worker initialization and execution loops. + This runs a background process """ + + # Signal handler used for graceful termination. + # SystemExit exception is only raised once to allow this and worker + # processes to terminate without error + shutdown_requested = False + + def signal_handler(signum, frame): + nonlocal shutdown_requested + if not shutdown_requested: + shutdown_requested = True + raise SystemExit() + + # Either SIGTERM or SIGINT will terminate the worker + signal.signal(signal.SIGTERM, signal_handler) + signal.signal(signal.SIGINT, signal_handler) + + worker = None + try: + worker = WorkerProc(*args, **kwargs) + + # Ensure message queues are ready. Will deadlock if re-ordered. + # Must be kept consistent with the Executor + worker.rpc_broadcast_mq.wait_until_ready() + worker.worker_response_mq.wait_until_ready() + + worker.worker_busy_loop() + + except SystemExit: + logger.debug("Worker interrupted.") + + except BaseException as e: + logger.exception(e) + raise + + finally: + # Clean up once worker exits busy loop + if worker is not None: + worker.shutdown() + worker = None + + @staticmethod + def wait_for_startup( + proc: BaseProcess, + ready_path: str, + ) -> Optional[Handle]: + """Wait until the Worker is ready.""" + with make_zmq_socket(ready_path, zmq.constants.PULL) as socket: + + # Wait for Worker to send READY. + while socket.poll(timeout=POLLING_TIMEOUT_MS) == 0: + logger.debug("Waiting for WorkerProc to startup.") + + if not proc.is_alive(): + raise RuntimeError("WorkerProc failed to start.") + + message = socket.recv_string() + assert message == WorkerProc.READY_STR + handle_frame = socket.recv(copy=False) + handle = pickle.loads(handle_frame.buffer) + return handle + + class ResponseStatus(Enum): + SUCCESS = auto() + FAILURE = auto() + + def worker_busy_loop(self): + """Main busy loop for Multiprocessing Workers""" + while True: + method, args, kwargs = self.rpc_broadcast_mq.dequeue() + + try: + output = getattr(self.worker, method)(*args, **kwargs) + except BaseException as e: + self.worker_response_mq.enqueue( + (WorkerProc.ResponseStatus.FAILURE, e)) + continue + + self.worker_response_mq.enqueue( + (WorkerProc.ResponseStatus.SUCCESS, output)) diff --git a/vllm/v1/executor/gpu_executor.py b/vllm/v1/executor/uniproc_executor.py similarity index 90% rename from vllm/v1/executor/gpu_executor.py rename to vllm/v1/executor/uniproc_executor.py index f71fa16b16e27..9b1d9a40950c6 100644 --- a/vllm/v1/executor/gpu_executor.py +++ b/vllm/v1/executor/uniproc_executor.py @@ -10,7 +10,7 @@ logger = init_logger(__name__) -class GPUExecutor: +class UniprocExecutor: def __init__(self, vllm_config: VllmConfig) -> None: self.vllm_config = vllm_config @@ -54,7 +54,7 @@ def determine_num_available_blocks(self) -> Tuple[int, int]: """ return self.worker.determine_num_available_blocks() - def initialize_cache(self, num_gpu_blocks: int) -> None: + def initialize(self, num_gpu_blocks: int) -> None: """Initialize the KV cache by invoking the underlying worker. """ # NOTE: This is logged in the executor because there can be >1 worker @@ -71,7 +71,13 @@ def execute_model( output = self.worker.execute_model(scheduler_output) return output + def profile(self, is_start: bool = True): + self.worker.profile(is_start) + + def shutdown(self): + self.worker = None + def check_health(self) -> None: - # GPUExecutor will always be healthy as long as + # UniprocExecutor will always be healthy as long as # it's running. return diff --git a/vllm/v1/outputs.py b/vllm/v1/outputs.py index 8574987728844..acc3a944e21b9 100644 --- a/vllm/v1/outputs.py +++ b/vllm/v1/outputs.py @@ -8,7 +8,7 @@ class SamplerOutput: # [num_reqs] - sampled_token_ids: torch.Tensor + sampled_token_ids: List[int] # [num_reqs, max_num_logprobs + 1] logprob_token_ids: Optional[torch.Tensor] @@ -20,6 +20,8 @@ class SamplerOutput: prompt_logprobs: Optional[torch.Tensor] +# ModelRunnerOutput is serialized and sent to the scheduler process. +# This is expensive for torch.Tensor so prefer to use List instead. @dataclass class ModelRunnerOutput: @@ -29,7 +31,7 @@ class ModelRunnerOutput: req_id_to_index: Dict[str, int] # [num_reqs] - sampled_token_ids_cpu: torch.Tensor + sampled_token_ids: List[int] # [num_reqs, max_num_logprobs + 1] logprob_token_ids_cpu: Optional[torch.Tensor] diff --git a/vllm/v1/sample/sampler.py b/vllm/v1/sample/sampler.py index 927f274541c4d..d1a755be01ff7 100644 --- a/vllm/v1/sample/sampler.py +++ b/vllm/v1/sample/sampler.py @@ -37,8 +37,9 @@ def forward( topk_logprobs = None topk_indices = None + # NOTE: CPU-GPU synchronization happens here. sampler_output = SamplerOutput( - sampled_token_ids=sampled, + sampled_token_ids=sampled.tolist(), logprob_token_ids=topk_indices, logprobs=topk_logprobs, prompt_logprob_token_ids=None, diff --git a/vllm/v1/utils.py b/vllm/v1/utils.py index 4b26749712e32..6e7a7d4fe12cd 100644 --- a/vllm/v1/utils.py +++ b/vllm/v1/utils.py @@ -1,4 +1,11 @@ -from typing import Generic, List, TypeVar, overload +from contextlib import contextmanager +from typing import Any, Generic, Iterator, List, TypeVar, overload + +import zmq + +from vllm.logger import init_logger + +logger = init_logger(__name__) T = TypeVar("T") @@ -62,3 +69,27 @@ def __contains__(self, item): def __len__(self): return len(self._x) + + +@contextmanager +def make_zmq_socket(path: str, type: Any) -> Iterator[zmq.Socket]: + """Context manager for a ZMQ socket""" + + ctx = zmq.Context() + try: + socket = ctx.socket(type) + + if type == zmq.constants.PULL: + socket.connect(path) + elif type == zmq.constants.PUSH: + socket.bind(path) + else: + raise ValueError(f"Unknown Socket Type: {type}") + + yield socket + + except KeyboardInterrupt: + logger.debug("Worker had Keyboard Interrupt.") + + finally: + ctx.destroy(linger=0) diff --git a/vllm/v1/worker/gpu_model_runner.py b/vllm/v1/worker/gpu_model_runner.py index c601aca13feaf..0a5adfb28c9bd 100644 --- a/vllm/v1/worker/gpu_model_runner.py +++ b/vllm/v1/worker/gpu_model_runner.py @@ -34,6 +34,7 @@ class GPUModelRunner: def __init__( self, vllm_config: VllmConfig, + device: torch.device, input_registry: InputRegistry = INPUT_REGISTRY, ): self.vllm_config = vllm_config @@ -43,7 +44,6 @@ def __init__( self.load_config = vllm_config.load_config self.parallel_config = vllm_config.parallel_config self.scheduler_config = vllm_config.scheduler_config - self.device_config = vllm_config.device_config self.speculative_config = vllm_config.speculative_config self.prompt_adapter_config = vllm_config.prompt_adapter_config self.observability_config = vllm_config.observability_config @@ -52,7 +52,7 @@ def __init__( cache_config = self.cache_config scheduler_config = self.scheduler_config parallel_config = self.parallel_config - self.device = self.device_config.device + self.device = device self.pin_memory = is_pin_memory_available() self.dtype = self.model_config.dtype if cache_config.cache_dtype == "auto": @@ -477,9 +477,7 @@ def execute_model( sampling_metadata=sampling_metadata, ) - # NOTE: CPU-GPU synchronization happens here. - sampled_token_ids = sampler_output.sampled_token_ids.cpu() - sampled_token_ids_list = sampled_token_ids.tolist() + sampled_token_ids = sampler_output.sampled_token_ids # TODO(woosuk): The following loop can be slow since it iterates over # the requests one by one. Optimize. num_reqs = self.input_batch.num_reqs @@ -490,7 +488,7 @@ def execute_model( assert seq_len <= req_state.num_tokens if seq_len == req_state.num_tokens: # Append the sampled token to the output token ids. - token_id = sampled_token_ids_list[i] + token_id = sampled_token_ids[i] self.input_batch.token_ids_cpu[i, seq_len] = token_id req_state.output_token_ids.append(token_id) else: @@ -512,7 +510,7 @@ def execute_model( model_runner_output = ModelRunnerOutput( req_ids=self.input_batch.req_ids[:num_reqs], req_id_to_index=self.input_batch.req_id_to_index, - sampled_token_ids_cpu=sampled_token_ids, + sampled_token_ids=sampled_token_ids, logprob_token_ids_cpu=logprob_token_ids, logprobs_cpu=logprobs, ) diff --git a/vllm/v1/worker/gpu_worker.py b/vllm/v1/worker/gpu_worker.py index d33b55a8a9f9a..d32848c3775ae 100644 --- a/vllm/v1/worker/gpu_worker.py +++ b/vllm/v1/worker/gpu_worker.py @@ -15,6 +15,7 @@ from vllm.model_executor import set_random_seed from vllm.platforms import current_platform from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, get_dtype_size +from vllm.v1.core.scheduler import SchedulerOutput from vllm.v1.outputs import ModelRunnerOutput from vllm.v1.worker.gpu_model_runner import GPUModelRunner @@ -56,7 +57,6 @@ def __init__( from vllm.utils import init_cached_hf_modules init_cached_hf_modules() - self.model_runner = GPUModelRunner(vllm_config) # Torch profiler. Enabled and configured through env vars: # VLLM_TORCH_PROFILER_DIR=/path/to/save/trace if envs.VLLM_TORCH_PROFILER_DIR: @@ -103,6 +103,9 @@ def initialize(self): # Set random seed. set_random_seed(self.model_config.seed) + # Construct the model runner + self.model_runner = GPUModelRunner(self.vllm_config, self.device) + def load_model(self) -> None: self.model_runner.load_model() @@ -198,7 +201,7 @@ def execute_model( scheduler_output: "SchedulerOutput", ) -> ModelRunnerOutput: output = self.model_runner.execute_model(scheduler_output) - # TODO(woosuk): Send the output to the engine process. + return output if self.rank == 0 else None return output def profile(self, is_start=True): @@ -209,6 +212,10 @@ def profile(self, is_start=True): else: self.profiler.stop() + def check_health(self) -> None: + # worker will always be healthy as long as it's running. + return + def init_worker_distributed_environment( parallel_config: ParallelConfig, From ebf778061db4e67c6903f8d6e8ad97c3db0174d8 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Mon, 9 Dec 2024 22:35:36 -0800 Subject: [PATCH 091/733] monitor metrics of tokens per step using cudagraph batchsizes (#11031) Signed-off-by: youkaichao --- tests/metrics/test_metrics.py | 2 +- vllm/engine/llm_engine.py | 6 ++++-- vllm/engine/metrics.py | 25 ++++++++++++++++--------- vllm/engine/metrics_types.py | 3 ++- 4 files changed, 23 insertions(+), 13 deletions(-) diff --git a/tests/metrics/test_metrics.py b/tests/metrics/test_metrics.py index 4a824c7acef21..b3c7850556f90 100644 --- a/tests/metrics/test_metrics.py +++ b/tests/metrics/test_metrics.py @@ -411,7 +411,7 @@ def log(self, *args, **kwargs): logger = _RayPrometheusStatLogger( local_interval=0.5, labels=dict(model_name=engine.model_config.served_model_name), - max_model_len=engine.model_config.max_model_len) + vllm_config=engine.vllm_config) engine.add_logger("ray", logger) for i, prompt in enumerate(example_prompts): engine.add_request( diff --git a/vllm/engine/llm_engine.py b/vllm/engine/llm_engine.py index 8fc69d96d321e..6eca304b45f07 100644 --- a/vllm/engine/llm_engine.py +++ b/vllm/engine/llm_engine.py @@ -232,6 +232,7 @@ def __init__( use_cached_outputs: bool = False, ) -> None: + self.vllm_config = vllm_config self.model_config = vllm_config.model_config self.cache_config = vllm_config.cache_config self.lora_config = vllm_config.lora_config @@ -385,13 +386,14 @@ def get_tokenizer_for_seq(sequence: Sequence) -> AnyTokenizer: self.stat_loggers = { "logging": LoggingStatLogger( - local_interval=_LOCAL_LOGGING_INTERVAL_SEC), + local_interval=_LOCAL_LOGGING_INTERVAL_SEC, + vllm_config=vllm_config), "prometheus": PrometheusStatLogger( local_interval=_LOCAL_LOGGING_INTERVAL_SEC, labels=dict( model_name=self.model_config.served_model_name), - max_model_len=self.model_config.max_model_len), + vllm_config=vllm_config), } self.stat_loggers["prometheus"].info("cache_config", self.cache_config) diff --git a/vllm/engine/metrics.py b/vllm/engine/metrics.py index a5ae21c3966a7..c8aec8dd3afa3 100644 --- a/vllm/engine/metrics.py +++ b/vllm/engine/metrics.py @@ -6,6 +6,7 @@ import numpy as np import prometheus_client +from vllm.config import VllmConfig from vllm.engine.metrics_types import (StatLoggerBase, Stats, SupportsMetricsInfo) from vllm.executor.ray_utils import ray @@ -44,10 +45,12 @@ class Metrics: _counter_cls = prometheus_client.Counter _histogram_cls = prometheus_client.Histogram - def __init__(self, labelnames: List[str], max_model_len: int): + def __init__(self, labelnames: List[str], vllm_config: VllmConfig): # Unregister any existing vLLM collectors (for CI/CD) self._unregister_vllm_metrics() + max_model_len = vllm_config.model_config.max_model_len + # System stats # Scheduler State self.gauge_scheduler_running = self._gauge_cls( @@ -115,11 +118,15 @@ def __init__(self, labelnames: List[str], max_model_len: int): name="vllm:tokens_total", documentation="Number of prefill plus generation tokens processed.", labelnames=labelnames) + buckets = [1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8096] + if not vllm_config.model_config.enforce_eager: + buckets = vllm_config.compilation_config.capture_sizes.copy() + buckets.sort() self.histogram_iteration_tokens = self._histogram_cls( name="vllm:iteration_tokens_total", documentation="Histogram of number of tokens per engine_step.", labelnames=labelnames, - buckets=[1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8096]) + buckets=buckets) self.histogram_time_to_first_token = self._histogram_cls( name="vllm:time_to_first_token_seconds", documentation="Histogram of time to first token in seconds.", @@ -361,10 +368,10 @@ class RayMetrics(Metrics): _histogram_cls: Type[prometheus_client.Histogram] = cast( Type[prometheus_client.Histogram], _RayHistogramWrapper) - def __init__(self, labelnames: List[str], max_model_len: int): + def __init__(self, labelnames: List[str], vllm_config: VllmConfig): if ray_metrics is None: raise ImportError("RayMetrics requires Ray to be installed.") - super().__init__(labelnames, max_model_len) + super().__init__(labelnames, vllm_config) def _unregister_vllm_metrics(self) -> None: # No-op on purpose @@ -421,8 +428,8 @@ def get_throughput(tracked_stats: List[int], now: float, class LoggingStatLogger(StatLoggerBase): """LoggingStatLogger is used in LLMEngine to log to Stdout.""" - def __init__(self, *args, **kwargs) -> None: - super().__init__(*args, **kwargs) + def __init__(self, local_interval: float, vllm_config: VllmConfig) -> None: + super().__init__(local_interval, vllm_config) self.last_prompt_throughput: Optional[float] = None self.last_generation_throughput: Optional[float] = None @@ -515,12 +522,12 @@ class PrometheusStatLogger(StatLoggerBase): _gauge_cls = prometheus_client.Gauge def __init__(self, local_interval: float, labels: Dict[str, str], - max_model_len: int) -> None: - super().__init__(local_interval) + vllm_config: VllmConfig) -> None: + super().__init__(local_interval, vllm_config) # Prometheus metrics self.labels = labels self.metrics = self._metrics_cls(labelnames=list(labels.keys()), - max_model_len=max_model_len) + vllm_config=vllm_config) def _log_gauge(self, gauge, data: Union[int, float]) -> None: # Convenience function for logging to gauge. diff --git a/vllm/engine/metrics_types.py b/vllm/engine/metrics_types.py index 5f7ec3bbcb269..5c7a430d11c5a 100644 --- a/vllm/engine/metrics_types.py +++ b/vllm/engine/metrics_types.py @@ -16,6 +16,7 @@ from dataclasses import dataclass from typing import Dict, List, Optional, Protocol +from vllm.config import VllmConfig from vllm.spec_decode.metrics import SpecDecodeWorkerMetrics @@ -77,7 +78,7 @@ def metrics_info(self) -> Dict[str, str]: class StatLoggerBase(ABC): """Base class for StatLogger.""" - def __init__(self, local_interval: float) -> None: + def __init__(self, local_interval: float, vllm_config: VllmConfig) -> None: # Tracked stats over current local logging interval. self.num_prompt_tokens: List[int] = [] self.num_generation_tokens: List[int] = [] From e35879c27601b09aab49e054786ce2a459f7a384 Mon Sep 17 00:00:00 2001 From: Jeff Cook Date: Mon, 9 Dec 2024 23:54:22 -0700 Subject: [PATCH 092/733] [Bugfix] Fix xgrammar failing to read a vocab_size from LlavaConfig on PixtralHF. (#11043) --- vllm/model_executor/guided_decoding/xgrammar_decoding.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/vllm/model_executor/guided_decoding/xgrammar_decoding.py b/vllm/model_executor/guided_decoding/xgrammar_decoding.py index b59a2269d2cd5..80e88dd5b4b37 100644 --- a/vllm/model_executor/guided_decoding/xgrammar_decoding.py +++ b/vllm/model_executor/guided_decoding/xgrammar_decoding.py @@ -148,7 +148,7 @@ def from_guided_params(cls, else: json_str = guided_params.json return cls(json_str=json_str, - vocab_size=model_config.hf_config.vocab_size, + vocab_size=model_config.hf_text_config.vocab_size, encoded_vocab=encoded_vocab, stop_token_ids=stop_token_ids, backend_str=backend_str, @@ -168,7 +168,7 @@ def from_guided_params(cls, else: grammar_str = guided_params.grammar return cls(grammar_str=grammar_str, - vocab_size=model_config.hf_config.vocab_size, + vocab_size=model_config.hf_text_config.vocab_size, encoded_vocab=encoded_vocab, stop_token_ids=stop_token_ids, backend_str=backend_str, @@ -176,7 +176,7 @@ def from_guided_params(cls, max_threads=max_threads) elif guided_params.json_object: return cls(json_object=True, - vocab_size=model_config.hf_config.vocab_size, + vocab_size=model_config.hf_text_config.vocab_size, encoded_vocab=encoded_vocab, stop_token_ids=stop_token_ids, backend_str=backend_str, From bfd610430c04d2962a03a2db304fb13b09b4f1b3 Mon Sep 17 00:00:00 2001 From: Diego Marinho Date: Tue, 10 Dec 2024 18:08:10 +1100 Subject: [PATCH 093/733] Update README.md (#11034) --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index cfeb24cbb5823..ed5161ccffb45 100644 --- a/README.md +++ b/README.md @@ -16,6 +16,7 @@ Easy, fast, and cheap LLM serving for everyone --- *Latest News* 🔥 +- [2024/12] vLLM joins [pytorch ecosystem](https://pytorch.org/blog/vllm-joins-pytorch)! Easy, Fast, and Cheap LLM Serving for Everyone! - [2024/11] We hosted [the seventh vLLM meetup](https://lu.ma/h0qvrajz) with Snowflake! Please find the meetup slides from vLLM team [here](https://docs.google.com/presentation/d/1e3CxQBV3JsfGp30SwyvS3eM_tW-ghOhJ9PAJGK6KR54/edit?usp=sharing), and Snowflake team [here](https://docs.google.com/presentation/d/1qF3RkDAbOULwz9WK5TOltt2fE9t6uIc_hVNLFAaQX6A/edit?usp=sharing). - [2024/10] We have just created a developer slack ([slack.vllm.ai](https://slack.vllm.ai)) focusing on coordinating contributions and discussing features. Please feel free to join us there! - [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team [here](https://docs.google.com/presentation/d/1B_KQxpHBTRa_mDF-tR6i8rWdOU5QoTZNcEg2MKZxEHM/edit?usp=sharing). Learn more from the [talks](https://www.youtube.com/playlist?list=PLzTswPQNepXl6AQwifuwUImLPFRVpksjR) from other vLLM contributors and users! From 82c73fd5104e010c2c98820f3e761e1e4f36c135 Mon Sep 17 00:00:00 2001 From: Gene Der Su Date: Mon, 9 Dec 2024 23:41:11 -0800 Subject: [PATCH 094/733] [Bugfix] cuda error running llama 3.2 (#11047) --- vllm/platforms/cuda.py | 35 ++++++++++++++++++++++++++++------- 1 file changed, 28 insertions(+), 7 deletions(-) diff --git a/vllm/platforms/cuda.py b/vllm/platforms/cuda.py index 10f83fd304281..ae1fd6d5ce068 100644 --- a/vllm/platforms/cuda.py +++ b/vllm/platforms/cuda.py @@ -4,7 +4,8 @@ import os from functools import lru_cache, wraps -from typing import TYPE_CHECKING, Callable, List, Optional, TypeVar +from typing import (TYPE_CHECKING, Callable, List, Optional, Tuple, TypeVar, + Union) import pynvml import torch @@ -78,7 +79,9 @@ class CudaPlatformBase(Platform): dispatch_key: str = "CUDA" @classmethod - def get_device_capability(cls, device_id: int = 0) -> DeviceCapability: + def get_device_capability(cls, + device_id: int = 0 + ) -> Optional[DeviceCapability]: raise NotImplementedError @classmethod @@ -144,11 +147,29 @@ class NvmlCudaPlatform(CudaPlatformBase): @classmethod @lru_cache(maxsize=8) @with_nvml_context - def get_device_capability(cls, device_id: int = 0) -> DeviceCapability: - physical_device_id = device_id_to_physical_device_id(device_id) - handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id) - major, minor = pynvml.nvmlDeviceGetCudaComputeCapability(handle) - return DeviceCapability(major=major, minor=minor) + def get_device_capability(cls, + device_id: int = 0 + ) -> Optional[DeviceCapability]: + try: + physical_device_id = device_id_to_physical_device_id(device_id) + handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id) + major, minor = pynvml.nvmlDeviceGetCudaComputeCapability(handle) + return DeviceCapability(major=major, minor=minor) + except RuntimeError: + return None + + @classmethod + @lru_cache(maxsize=8) + @with_nvml_context + def has_device_capability( + cls, + capability: Union[Tuple[int, int], int], + device_id: int = 0, + ) -> bool: + try: + return super().has_device_capability(capability, device_id) + except RuntimeError: + return False @classmethod @lru_cache(maxsize=8) From fe2e10c71b98a43ccde0e8aba0d4fe0d23369538 Mon Sep 17 00:00:00 2001 From: Maxime Fournioux <55544262+mfournioux@users.noreply.github.com> Date: Tue, 10 Dec 2024 10:19:27 +0100 Subject: [PATCH 095/733] Add example of helm chart for vllm deployment on k8s (#9199) Signed-off-by: Maxime Fournioux <55544262+mfournioux@users.noreply.github.com> --- .github/workflows/lint-and-deploy.yaml | 81 ++++++ docs/source/index.rst | 1 + .../serving/architecture_helm_deployment.png | Bin 0 -> 991484 bytes docs/source/serving/deploying_with_helm.rst | 253 +++++++++++++++++ examples/chart-helm/.helmignore | 6 + examples/chart-helm/Chart.yaml | 21 ++ examples/chart-helm/ct.yaml | 3 + examples/chart-helm/lintconf.yaml | 42 +++ examples/chart-helm/templates/_helpers.tpl | 164 +++++++++++ examples/chart-helm/templates/configmap.yaml | 11 + .../chart-helm/templates/custom-objects.yaml | 6 + examples/chart-helm/templates/deployment.yaml | 122 ++++++++ examples/chart-helm/templates/hpa.yaml | 31 ++ examples/chart-helm/templates/job.yaml | 37 +++ .../templates/poddisruptionbudget.yaml | 7 + examples/chart-helm/templates/pvc.yaml | 13 + examples/chart-helm/templates/secrets.yaml | 10 + examples/chart-helm/templates/service.yaml | 14 + examples/chart-helm/values.schema.json | 265 ++++++++++++++++++ examples/chart-helm/values.yaml | 119 ++++++++ 20 files changed, 1206 insertions(+) create mode 100644 .github/workflows/lint-and-deploy.yaml create mode 100644 docs/source/serving/architecture_helm_deployment.png create mode 100644 docs/source/serving/deploying_with_helm.rst create mode 100644 examples/chart-helm/.helmignore create mode 100644 examples/chart-helm/Chart.yaml create mode 100644 examples/chart-helm/ct.yaml create mode 100644 examples/chart-helm/lintconf.yaml create mode 100644 examples/chart-helm/templates/_helpers.tpl create mode 100644 examples/chart-helm/templates/configmap.yaml create mode 100644 examples/chart-helm/templates/custom-objects.yaml create mode 100644 examples/chart-helm/templates/deployment.yaml create mode 100644 examples/chart-helm/templates/hpa.yaml create mode 100644 examples/chart-helm/templates/job.yaml create mode 100644 examples/chart-helm/templates/poddisruptionbudget.yaml create mode 100644 examples/chart-helm/templates/pvc.yaml create mode 100644 examples/chart-helm/templates/secrets.yaml create mode 100644 examples/chart-helm/templates/service.yaml create mode 100644 examples/chart-helm/values.schema.json create mode 100644 examples/chart-helm/values.yaml diff --git a/.github/workflows/lint-and-deploy.yaml b/.github/workflows/lint-and-deploy.yaml new file mode 100644 index 0000000000000..ab6f6e5d2060d --- /dev/null +++ b/.github/workflows/lint-and-deploy.yaml @@ -0,0 +1,81 @@ +name: Lint and Deploy Charts + +on: pull_request + +jobs: + lint-and-deploy: + runs-on: ubuntu-latest + steps: + - name: Checkout + uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 + with: + fetch-depth: 0 + + - name: Set up Helm + uses: azure/setup-helm@fe7b79cd5ee1e45176fcad797de68ecaf3ca4814 # v4.2.0 + with: + version: v3.14.4 + + #Python is required because ct lint runs Yamale and yamllint which require Python. + - uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0 + with: + python-version: '3.13' + + - name: Set up chart-testing + uses: helm/chart-testing-action@e6669bcd63d7cb57cb4380c33043eebe5d111992 # v2.6.1 + with: + version: v3.10.1 + + - name: Run chart-testing (lint) + run: ct lint --target-branch ${{ github.event.repository.default_branch }} --chart-dirs examples/chart-helm --charts examples/chart-helm + + - name: Setup minio + run: | + docker network create vllm-net + docker run -d -p 9000:9000 --name minio --net vllm-net \ + -e "MINIO_ACCESS_KEY=minioadmin" \ + -e "MINIO_SECRET_KEY=minioadmin" \ + -v /tmp/data:/data \ + -v /tmp/config:/root/.minio \ + minio/minio server /data + export AWS_ACCESS_KEY_ID=minioadmin + export AWS_SECRET_ACCESS_KEY=minioadmin + export AWS_EC2_METADATA_DISABLED=true + mkdir opt-125m + cd opt-125m && curl -O -Ls "https://huggingface.co/facebook/opt-125m/resolve/main/{pytorch_model.bin,config.json,generation_config.json,merges.txt,special_tokens_map.json,tokenizer_config.json,vocab.json}" && cd .. + aws --endpoint-url http://127.0.0.1:9000/ s3 mb s3://testbucket + aws --endpoint-url http://127.0.0.1:9000/ s3 cp opt-125m/ s3://testbucket/opt-125m --recursive + + - name: Create kind cluster + uses: helm/kind-action@0025e74a8c7512023d06dc019c617aa3cf561fde # v1.10.0 + + - name: Build the Docker image vllm cpu + run: docker buildx build -f Dockerfile.cpu -t vllm-cpu-env . + + - name: Configuration of docker images, network and namespace for the kind cluster + run: | + docker pull amazon/aws-cli:2.6.4 + kind load docker-image amazon/aws-cli:2.6.4 --name chart-testing + kind load docker-image vllm-cpu-env:latest --name chart-testing + docker network connect vllm-net "$(docker ps -aqf "name=chart-testing-control-plane")" + kubectl create ns ns-vllm + + - name: Run chart-testing (install) + run: | + export AWS_ACCESS_KEY_ID=minioadmin + export AWS_SECRET_ACCESS_KEY=minioadmin + helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/chart-helm -f examples/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env" + + - name: curl test + run: | + kubectl -n ns-vllm port-forward service/test-vllm-service 8001:80 & + sleep 10 + CODE="$(curl -v -f --location http://localhost:8001/v1/completions \ + --header "Content-Type: application/json" \ + --data '{ + "model": "opt-125m", + "prompt": "San Francisco is a", + "max_tokens": 7, + "temperature": 0 + }'):$CODE" + echo "$CODE" \ No newline at end of file diff --git a/docs/source/index.rst b/docs/source/index.rst index c45c941b00e20..ebf1361976c5e 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -82,6 +82,7 @@ Documentation serving/openai_compatible_server serving/deploying_with_docker serving/deploying_with_k8s + serving/deploying_with_helm serving/deploying_with_nginx serving/distributed_serving serving/metrics diff --git a/docs/source/serving/architecture_helm_deployment.png b/docs/source/serving/architecture_helm_deployment.png new file mode 100644 index 0000000000000000000000000000000000000000..8f9ca29795ffe442c2d22a5ba79c3896e36eb2eb GIT binary patch literal 991484 zcmce;XIPV2*EXz-iVX`$5h)G|NS6-MEFc|}-XkC&(xi7X41;u#7J5)1Aiehzl_rE5 zdP@|fmk1;T2qEtk=brm`pSkCLpZMeZe(3?^%D(pAYprvg>s%}1iIy_WdFJycPMn}o zRZ-MAapK(T6DQ6f&z=E(l0v8+1pYbcuA}_$MA-n#>WLFKPpB$B(DSj_nDhQ{Z47t! zOGwVmJDQ5u_%u6Tn-AZS*l6YRijf;neX%h-X)4B*f8BqB=Ej~N{r5 z;^+F~Br#DN0~cFDLzj<3K5t~XXQ$0&W%)17+9q;qLs^(lQk^<`<>vk0PW&(b=@X&q zzx}#jq#JqvfByXkM}hChl8>yu?YkhD#iDF0`;O#t#>{rVxfNlK&&09Nq60wkZP!MT ztWDi5?)3xoXl`^Mb9T%@&V1e6jKI}Rle+#fw4HTZw07GK3l|~{tGKK@JHe)Np;9l* zxv|?6-Muj9A|L*A0bYCs%`#kU9hX|*i!ckq&4HlXf^uN|3pvALv+Y3Hmqr1?d&QA6 zdoR%9({-srhG5@;6z5Gy_@4A2{2iJmZm>H^0TkJ$kbqu^u(sNgUXEpOAHadZ1LlX- zi+_jTt7G5k+Cg(S^M&$j0!t;bJ?V$O zZY#UOR1K{F!k+&AvEN_cs9pzazbDmr2nwuE7D5NuJit@=>iZV^dP@Zo=L zmnk$iBXrf&WA3iO%4l(p`WhzqGJBLIT3?<7*%}h4+h}v;Ihn8Hf3#p{{pAg}DEEBI z=A>xdR-0;`6kqMNnOl#bu~*S?{LRK{ea2qFFsm81jIIPH#?nbNkzJNKE(og;Air0f z4fRh%HcAP1k?zVvHXHOYr{O-uyk%ncl&FCAcX)B4e0$%I2ni~zH5PAY(w|Js6 z3nO=>T^VfQ+6-lF>VhJ+m`pv<4f9^h@}w}I{oI0iL?y^Dh%|t{b!nqjxdc8rOfpWO)|2JA4BY=$Y*;sEc~Vtq2oKf?ZCp^jGr!h2wt#mp1}{+ zWFS9Q7PIS#l#JH32Ev(kHiu-tc0On&bpOh?Y3@4Hx+N!KL74A1BW|`}$6e=5l=Wu! z!o##93tnI99YYHu99g+bj2q$R82Q_%<3l2FV3qm8DGsaqTRz>v@ongx8c#xatTLejM zD4q5t)@x`@CUe(jR2C%Wmcf*Q!D>rD=k5X4PLQ`1y_O5F$xVdH)_Vks^WJL1`ucrW z^H<6iEH+?KMhz}o?Bc@%4JXAVEUe}tiRQ=U#a15(mzNKN)G@VLDX1cgLv=KKwRPB~ z2Pe|y|8&*Q`rH0fSjSfq7hV4CPmOBe{Ph_~|8gww-BBL$LL%sg^n_;O96`O?d-RW; zhyr)9j9UgKuNo)YmY0Sbaa6!>4>tYhr!0lKyy?1<=9~v?-4!vXQ=(Y?oY^jnKLYc# z(aYd?arHwj7Yw3>%pLM}F*A`7b^TVMT8N}F5`)7C%nIyVj@h+{D`Cl;XV#!g$ZuJN;v(^mv2z*oawSa9o3BJr~huU{i{LrUurzQOxddU%oS zK?beGo{3k%WRo&Ha+~$u_dis6qKVCk*2W3BYgKk+(*wjUU%6)x0 zouV{K@*}Fm(##5-z}+XeKYosL>rCM~JqRLwtD4ClOsp-R;W7l-=O!t-@A+|$n}Tl$ zY*#ltBkJ}7CWjt}yLL0lxSEwQjVKP%69)vFoziDl{o60W28U#wzWOpo6TF(rtOC~O zDgpx(>;s@%YCS5FPP+xSnsX&r^C1Dfi6)=*A{Y3`-qz;~RvuTc%u*~Ybbbvohap{Jh zj#W-?X?eLDh1eoBS_*al`U^Nqrp<%KeZ~vS(;TRFQ+987#2uf))rdiTWydjq!XTUT z!*k9&GobXhbDLX_+`Ch_lG)M3x~iTM9^Y5HroG&@nytBFmKg)^QB2J=Up9$*uNAX0 zyY2aMO!&-}oAuNtJ88dBYAt>z8?6g}6;T(}l{G_Z1>SiT`v-R~I7plL$wR-CO=|E-QUw7HTUir zVgpoJVaL7t68@WrdaLr2@XvCnB<#+!(81yy3_9tW*CN+4WDeZKpm6jK{Vmp|RcRtx zUGmVWHEYnA2wO*b1g6)QB7H;mXKWcEb1f@)oACoPEWxR*aXF@7uOZhlK#71jl-p1@uVDO4L2ldbR_(K4rG!0}x@n<#Us zfz&WdbV9pVOTivm*$rcIX&68HbPHZTm2I2Qh@bzlA-1i+y9*fuK|M0=9>y zR$$|wi&HrlR7*!P5hH=<5jOYs?y$~4H~G-u#${qKj5>{1|E*?3)@uDzHQ7xO&~oJV z+|k|~jBq2FRy#v7L)2ia^K_yVB{(hl0I{nW+VE>E%>W z1B+Lok*ZU*Ap>e2jtuUKes_6Yez!8{oUFlMKNz6Sm#-eL8d@uBB;P)S=M9&98=Gan zBXRpr^k&Olmap<|^r9`^;S_`=T$ zm+KOC3=)sGH*7R++2p9yua6PstGRfHO>S`cek)D?4l?H5DBA4;zxlR@dg6u4LHj-d zvM+to)@10^=t!$v1PjDwlJUn|F7xW?qtkYcS=PJGH*8U7)gx4l)f@A)_AG*yrToTz z;oD2$3K}`}3JNKB_)#9uMqeJZ{TRB%vHsY9?fF86SAR*6h>e|b1eFrO)c51!0wx2b z=f$7P9Ub9WhL)HxDwuU_a$V=^bq0xDy{-SW!8S@Av4K~ zc;3RiNM2u40}jpf6Do8keNCHs4u%9t{LQ{a35f$K9Gg9ITX#&;_yksKa8878TY_^c zT6Ba(uK6gfZ?z7?`J^xFp|IOWFi#cJm}xcWpYh3T7_89QQ={sT}+?Vpb@B-9xjyrBL2|d z6CKujNUvF=A~~IncE3M$tg~363l+=`m%v@9=1R~NuLda`H_u|~OLm1cKeHUXI#B#< zzj-GMyoiF2xCgMKaQQ1z+F|ywtNrDum^q9zKi;Q$AjQKR7e%$uzjNd6{#T@;1qy=m zO)g5#-19h43@gMZCf|7?R(V@L?s~<7xJ{U@n5%$5D}K_s93Lamco1Hqn4S}1S(rXZq^FHqmk};mIY_`A=!gmPultp*5G463x4P=LqVYqo;~?Xsah-)l2$^D{r%PTqlM=cAq)%)1XC zSJ7s>`0U0?xjZ>QXDgLYL|UK=jz@6M8&Ab1=_T-TG1zNkTB!32Bi5Z@x zw=3J9{e~9TNVBwza3lG6-vSoOM)FS;Lj^g zxmuX>0!nQ-LfrOX&BEQZQ%jvKQikimlTGdwP+ttn(>ocowdBbsq*X{YU34J(^xH=? zwpn4FX}R=SnpHW5x?mTZg8#VMf)Ss&3M6~?J0NY;{5*YTC_XsKH18 zr54vWkA-KY4tzo}Pn+Q-5pg;6CRJSWky_Y3 z8Six!Ni9TeP6V$p{dr`fj||%P2~@Y-HUrz?tHzXSkO7U@)qD4Lc8A4Y^^Y14op=bX zJCdf;zBWg4O@}?%IeNmILuEJuaSa5ENXwzWt^-b{6^P`LfF1K{p338l)ln+rDAlo= z9D3SrT|C1pL~q~^GN#*BLc18#(JQ%Zjgl;1%Np?%(tv4YL9oAl1&E_=fP@_ z_sI}?9H}RU*x^gRlP-Q$AGqe6ex!GxgNWsv?pqG?xi4~@3_6=~=)WRGQc|2eY&+xP z^ehDhtdk31Mbr~6`o31BpK(tNLZfSD2b(5bvYV+a3{HQ{Sq3$YYwC;i0x#ZcO!w5j zMG2Cip}NCk+@>?LR2R6A`!xHTbc^eU$mZ^^d>B*L84h*Ttr{$3JENA@utGJWlIMYh zHo`p+^qi+>19mb>pj4_^fHO_}YI>}Fpb)3=w*XZH3OZV_b6}V^Z$GY6yt*qbK%ZV4 zy_MuHw~luiJ`W)X!qr(CUmipzth(O}Wc%i1e0lyFv8~UKlpj`t#Hpho`VaVUyVdLU z2r~)y-s7DBIQ^0LfdTcV zx#ozvk&Exz=!~OcCD-wb*%pml$Jn)6-vhO=RX%+^E!9dMX$coZ(X+IodUK-Rf#NLS zNO8ye>kg7#i$W>ocVs-l#uzmA1E!o!2z1ha?YJsdd3Z3TgixRaX1AFG3;MMJ6vbeJ zW${h~&R%*G8wjnpnM2<(IVry$pyf)RR&HedE_uFJbFf${6Z^%W>2g-VX6vk$EB0kF zT}IRqTVE4OQ9R8UBpzfMh=P)JVwoDpU&w*|IO7=c{6SuFdz- zam0G0kN&O>66D7Ymh)2VRQ%Ku0rp*fw9CcC6(t*bJ+kCO0_|Hk8@^wx*ig&3>E7Uh z{SB&9MY{K`j6B)uxni2+>B5lrb#w-}bLC5`HHB!GIR)q*kmz% zu7_>J!r)zj?6T?7sB5}`hF^Nze@)~4oX36>0CAT~N0s9vN=t4~7s5FrKhuxt)f=1HrxykxF_>*>3Uy()%PRY zedNW$`6rD#Yf5wiIvUA93MP0u{!pDhuvg!l&o5VM{juUxc**%&7_jJVua;`J(5mTf z;o|wO_vdo0=cpt(s^1%G9Iy!%SM4-tf^FYxFb;H4)CkET$(sbRl5SH=M-goLx2B-Q3146JuZ*_Iu z<58uKy7uLQULkw?L=U-bG|ce0KKk*YzgntUP_T{KX zVQ#>(lC)mm>I&3#omj1wCPI5mVsB@4`$AQ;==F4!UIVf4*z^Iev2T|X6Eo1VpqY5W zfxktkCbe2gDFyq@li8&c?^10GgS|rfRGS+fG)5gS)+QA_B2k%Ce)qXn;a6EuzCW8FH&$AFT zp0ZVtV^#HYxV6b!yA~Zu`#_Q|y9~MtuerT3fi^sD;T5TTf>}m*w~Jz2uK9v*!}T`B z%|Tj?gGmYU-K4vfSiGu&R^;M6K~|plUyEVx2R+(nI=vU*e53=UW9-UYpTVExaZ|`8 zK(~vKxNC#_BYn5Pqm949!*RxaMCEdb{>yr}KUh}W<4JV-ljDFiQC9Tn6g~kQB;hn~ zt)9&)kWzL66ePmgAP=5_ZsUfs?pbxh7LYm~g?>-fE~;Nn(SPaP;tyUuDi%Xwec=xa zY}622HV3dDnGg@ugIz*1(@tNJG~*!oI8u0>AYhKhV`?ASc4k&Xo5k3ecl4Gpao8Y& zFXlLHB8gkxR|}w_RB4Sj>lFw#tLZIfd`(H;T)*B|^Jijs$#EnqPSgE@U8!kXj>#|qyoz`6 zYsfLO$`mN-LgD+RR_I0x_MruE%DQ~bxMLzQ7wpF7KYjVvpEW<@FqI_&-e)M3N?MM3|GC4)fM@O7^m0?FwPPr5-C@Sg z<~w8S-OqkGl`C}g#t|w?d?L@y-_r+ja0UkF!8CgXLUn849*%1=!`uR}c$R{(d~Vkj z6l-~m;I1ds7L3c96q6&$0W?TF?LhumBuYx98`mS}EF_aADMy4ws_=YuG$~!V99P2r zSSkB#zlqwd&P>QovByZ;UPBe6j?cvM_WHS|8VrYI`p(fCo&>41<=wU+ymI;Ge2N2$ z$u>a*b2%3~<=p{b-ZF%vZYA6!S8DE6@2=t~K%piU!)MT~Lhc;$fuyZrzUJSbH5n(+ zMk(~aUr7acFo3+a|J1C5$T*u&)>*gOrn*FDz+-=lGbC@l#4X~+Dlr=$_Vn;-7VT-B zRXjkKf$is4w&SwTJV7Fga;_ZV2i>wUzFp2hc>KR=9O1~og6Z88tHG;Sd{SyE zmtb|mRsmD~sYEq>%rd|n@@xyasGmD)%^kzn>^po60AcUL(Oq_3TJI5FCLUKeT&SPj z>r}1>BO&v-ytlXVsTFqQU%bHwDdP9kA#7%!)1PZDXlw&zkCLR+%vd`$on!PQi9mv+ z!TrmqUAO!&A9Zq^nn*fju#N#TFUkqc_fJYTfp&~6^)E#y%amV{;ji_bve_7sM;Z+V z>?NqUo2{Y%f4XEFYfk(UiOAR(Q-AJ$;VF&$3Yo{f(~CU z`6f$zR_oBfRO-DGbGY8YBcqPz#t#~)RjHhQkNrMFV`^y8Td$(DmNXdzutWwmJR&4W zLScDvg@?oNL48t*+la(s%DkY-*Lx0aB`>UWO^i7>*ODES_=arz!Pm@%Z#uM$R6qRm z!Q7c&Mu^nAOo|A^$lROocj|qdOiMy8uL!ZpH$DO5TCFV-rHlwxbmCcsQE zb(a|Up3Z9FlZ72bV!!wniI^3_=u6kC=RxTTYL|nabAC!*%Jp-kwLkY&O#l;8th5}5 zv?Gn~vWcr-9TeA|I)J7q_zQ4#e@pd`ZOm~(NDS90WmNH z#K*sbustw=>Fy>;`s&LR+6_xw=(gJR>}gHhkPMVJt3)%c~uki{>($8WW!ItqVRjyG667oMYi zDvxNu>~eV0{mUip2$9nh^70>nkbOA63(zFuE zY`hy{FUWbY=(Ia9*HrUR10agpBpl@1URW7L0>_1i2wW7AqbKq9XKN3hm$|$V5I9v- zhm&JhkXtBCN;SgzJnzqDlmk^A@})C1E6yk_3~VBV#>@b+LL8ly&^gg;NkHN?p%Ct; z<)4?wE~z_R<;F`F)vPCNK#EvXOr>v?G9*D*w56r&7o$s(=Xav*9@p7pJ1Ua+-H^J= zO1#$7S4xrTTS}six&g@|UQv)W4Wd5prU^FWCN70nBDq*m81VMB-K_EQR{(DxRPkIt ziPxl(hi{?n#p%+L4tNg0+7UTNIOu(dtv0r2*E-(raSpHBUU&wa~tTIWHWn6^bBJ#aqRm#vnw;&`jD-bL7C z{j+b|WjC$H2KXLNctsg{s1`o}>LSmVLY95`E@>J+y~TO&`1$E_9a>v84;GM`$1Fff zil&rlgWr)o0!PxYnF_9wXMI^`3RLQ#aIQ-C(vjMHQNuvQYMU_ z;~D}Ms)33I?`vQQ$+cG6MJuUG3%hkCupk9yoT{VyOq*|WRObvot@q|D{i)3;!N82< z&-!BETc-`|PnWM6M>goZ%fMQwA5bZoz&e_0kbUtuqX!i)euav~@+=4>yv?xi{(7dM z>vdGQ?jJc8^-jP^KB9&`;pLopQmT`qH+=c`lJn~1dS0*3fU?s5_rJ6NGgTsyQ4o$k zlcu|!`nTI<_!JLpcL9_#Ih*Vw>{ z3!ah7g*Q_r(Hxt12O|v%ISgSo#SYZa+8Wp4NI(0=-C_xNLrFjNErrNUjMU8(^XWSd zO7NV}FyxwE945%r-hPV1SCj`*bNht}b4{U1F8AwA=`Z0vL`1!NO#LH-*KqEm2^D>x zotl^wBgp{}e22N6(=}vOJo?~xjU+-r@9oP45bYZV!nb~+M3%5jE+{cdO zI9KfdZ+!93;)~#y44+M=rD94|PJe7szq)KZ%**NiR|4`-gmuZDz1Yj*S0JF7xVZuq zehvXuAjCz2XK<7JIu@ER2*gDraNIBl)hR@TC8_KmqzZ{@7Xsznds=4e;YcqYDu@>qhTa1C!n;@#V{vPa#mtx#89oX^iZJE znM?=zb(3vJ>~}`_z*@bJFKa{nluf7&ZvF3S7P8{y!v@Ez3IEGoh1#Ge%+4m781MDt zdxwJK1r}i-mk3Kd_`4CAn6`R1o;CkFjaEeLuE+a{`<{>gT@n6&{wLV@!80@=Hr7y{ zq@DGStWA*efVHkW`QQ?mybv?L%$F<+mY#dLz&ReXJE72s`hE23-}dUiy@f4(aNw34 zuLW^FCi~*DT~yiCWt<$(l0C}pb=bXjVBsyKCz(g1z6$5QO&xou^k!0U+y4CO?+U?| z=scZ^t*@L{Cpm3^b?NTa1Qg4b%{q2mT`ec8Z3mB>)Q+8*w;6}F`)*Le3C@_ zs!8mbRnPzZPXG9p)Z|n0tVCay;~`aHpKounFFNFM1~D*}fO{{}csJ3t%d?5|do}GY z3m=D_^Q0n|JsO;g5jpPbTB6rd8R;mxX7`^NFpx{pnb^_B?G@$0qvxsAxGnauk{Z0n zWpER1I{@rfz=Kz}y9_a-Q^57!?W{GmU;wVO$lOWaUnxBZ#^9tV&m(KQu1AlcM?G)Y zCl3x+1&74VBP{>qCqE^7Ql)usjc?=og(9Jw%>#nn9a85gQCnTP`9z2+j7C-%dVS9- ztBq{3lfJ8^1;wOK5tg^$B#A>*!-BS#*T2GusQCjQim#7duxnylTnL+#yai#Wl(zlT zt{{`7i@QzU@8%;T=eb|Y5qmDU?mvPTR+no+Hf}8Ml@dt#+)U-a{C- zLc5^<0cM++x9tiPJstza@%)UOS5}kjK&jsUl2ndu*rsV+j7%NLzs6zMwkhQM!~cVmx$}$5>ki&5 z!_RZ^9Tl^Be-(rO=b8NHj@(~3-*PnN;5ut<*CB}p-yoj{+}Z1aheN%h?G@T~kqAf1 zHu6Mp{#7Zm5NppHQ#|Dhh>E%Z?Z?1HF7H35#5-FDXp*#0==Xm|5t{t^@ANdLz0b)Z( zqxD96G%ga>;V$6_lBa%_7IbD83g{r!Hzzd7{PRx|J{$-g373Hv_L!p^moxb+CfC~{ zrP3lSo6&(US`Kjj;#nniPcZw4{AD_BN-x#pD-C3g7{H^q4M4Z%wx?GBO+}UepvFa0 z%4*0*%1Gd$;R4p?AL z^-_Fk!>MpkCWsX&pf6>+{TsXfd54Z)>G+eU z@_J&N3S1TYb3K~QsMdifm&wD(6>;!oB!w?|b4Z2C0aULUohDUh>mr)Ov^Nm`u@YfU zJ#mf*q_uHvQ8@d&uao~swEWXoXk;?+?D-Kgz?pH8#t}#{-(0*sY;sv{Nz9X9$+ORz_U$l%Cm84b?Aa6j-?B ze4Tm1y#!{uG)+mu434e$r``e>a&x=No5EE*KhN@tva!ClXlnCGJF6YWlZqWKnp5(g1M!6QFR7c5*-8 zd;w7HPn>EE9PD36s*Mwr2{)r}haP_mWjdVuZUnBZ&2?WtU8Js9^G|;0AE4cPx8NYj zO$JajvB>tCXeN`_j_z`|9Og2==Oll6r*$)$dDEn((2eUWg+A)7->INNm#1j&tkvQBUa}Pk6kVzSrGVCnr(Lb~TCySoTrtl7o-Fh|ofo>tq zQfT~C0Jey_3x&X#d7Yq7Nzf=yZ?c*U=G(eTZdAa9hbK|^NPWS(-`lz8zZDEbk$Ysw zrh+rIU^8D@H}ld9rE9-rWLYm2kW4JfRNbfamdFQ_qZXOcy6$6ZHOV~T__S9f1G#4& zlp^Ie_KS#29i^6YRxIW|@PzaU=j&)~W)PjZNs36Rb|J+{W*-mWrSD!d6VE^AdfiIS z^`;QuxXX`&uB{8y8Dx$we|{ls7nSBA^@)Q*uN&OgaaWPj?|otpIERZ9_ZtA3O11R;kJN9jG^Tl(Q?ykh_$oYhTbAy7=1jqio}=9;jY) zm|n2KP`K#N*8usw?gCIsE}h!?o{W$A#bCB|V;xvd!ZhW}so2~kbiQ#38$VUKny}t2 z9jMKJBdMbzU(RAri?XK#YXC~_G(`ytxs3as=g4Sf+p;v$66gw%9M~jeRE2!j7v4x7 zB+OCtLymsZQTOZC;t*`XVi<0 z`f=eZ6mlg`7O7^?uJ;4(?&PLF?R(W(k+pT?+k)>86K8d9*uUor@L~qiiQg%GnjDob z_iLw?jwaXRL+%vT`?kOXG57AEShpW&Qm+fud6~6*wI931p+l+bZoJ&cME~TW=Th-GdbnSwq3H|K}F!~AIw~wv(=n%u{ zV%3m3cM31Ul{-SfOGtQ(ewXqdVxLEYTCVeXt2DL|lb|DVUYnb>cQ!q2|9i_dIU9|^jS7Evb!W&z95`HAHmUY6oG-d&s#e^65W zdCm2p%PyHl&B|zmO~{`@_UV2;kSYAc7BrpOV|k_6Vo_{0Ic;tbrGO=vPd)fn#I&~+ zetEug@R+rA33HWCpuy~?-0xjafSwlOlzy=fpMOgY)^FcIh+m44^K&v>)c8c{o8ZoF zh<{<+o=$NYJ2hK?C~{STS0gUnthSmw2q_C+N4MnWhy2xX_fuH%8OA>@5)9sc+<(Vb zN_gWB?txgKF}Wtcy>r?lqSANXJvhYAsAB@<BhMs|Iz|bgbkhqQn`SMLHt0IeBTFAy7qj* z2jhkM-AoOLm^9WIN=mYCe|UEk{NqUphE>KPv9-T3oqzs&LhVjV1|iKqnF*r${1*!2g;?naAZA_mj=s?(&d-*DJ}s9B{g5% zY(f&4#%sC}CtE!P3hEhnKQ4R(^7Z24mV!^TveV3Ea&AIiK+J;QYCXN~r%0Hx5z z?AcmJ#dQm{o#M({RzT-sOpkD*Vl}{R%mduU&#?}duJ5n=I8TyzUzZLQ8k$vi!fdFA z9CyC;koxy|N1Vab!I+Pjb1DBR7UB}C&qG<64H$rozw0D`{WrTBHWuL% zmcFhSf_0g6x}kJ3#mJbIjEqYwK8U#XL*PO;0sv%OYysyH3|uYuyvI~C(K>83&{+IP zF^NL^11KCn?TgKaxQvDQlw+N+#REBNMZ}UoQKlNj`TeEf3!ny(vcQG$^k?;3!$Jc_ z%PBS?gC$Imd+J%^&V!r2+I=G}HlE?(2^1QdzTo$z2~1}&o}JN}D^_69*}Q4k#TpRq zrjQ}=B+g})Z5jT(`yQ+82&s%bZiKgha!9QHWwRU|2V2HKuX}h|O=fs^0I~P|$gr;e z?A6_VITzby$~|BgBbhwiE|poBT_!!@uHyEB%K@WK%C~cCl_~TMSNhka|*!3D3YzphR<@a_({R>eD&GZc7=5QXEI#>(|P^Z3lZE)1w^>j#bsHr zuk81)3zg4`V=GDLo0Z_46AKjkQqjWuWgQi1VqTUMvoT_1L@e5SS zkn)3(aQucxcUiM5{0K?w{8fH6=?>5}9m<`s(Z8Iqo0~=~&Sg^gaV)#Om2u@rl`D=R zMNc?>h{CW2&{Ob$jr#4OH{1@tZ;d-gG&nV1f6ufx&FIo)foC&T{t8TUh`1y$qn{G} zg3@QgsJaz`Y%d;tk4Rs!15hzQB*g&g+1g9pnlnc{khP&wwTM3`EG-AG(WW+8839Vy z?#&ru?Z(Y?O{lD|8|+tkfCrS?`I@-y=(aF!*delue=m4_m{N{f?ev~f+Tol=fp zB0R5^q1Sed>K1gyIB%Iy=$Z5iKLB)7Y%4}iMY;g-y?ca+iDq!GdlBignMh#-JS9SQ?8x=< zgTYeQb|6Nv^rv@jwbn%ez3wL{I9obSc=+jP|hjapH;c&Zt@Sso_|Vk-m0BK zT^E)DEJ;ArW;NmIg zIbcW%+66oF^N1M8OWE-)3Kd-8q08oXw`NwG{=Y}WJlfgp-f%oT((*!o^RronT>ADd zEfz-dEQ_{`yZ0oF95-J~R5^JTQce@|zgin%>@dg38HxVxr+RT_8I?OfCWN}Qg!KlahkDO=lMNqCTumhW22WX<}SO1zs)rLM0xir18e>D@`R@$mzSGGG%K_@Yxy!fjKa56LW|<0I0m|)(Rfo z0Q}4un}0d*&{HqDU*ooF9DzALm>is0>3N)`HPtEJ3mR!}G)&Daj(IAFX%!y*TgW_g zma43s`Q((~|Aa;#__@gPnd|_(y`%5Cg=gwtY9U+Ud+p?%3O3e!hW$g>wf{za7g>E@ zCotV{7=??FH#dlpPVW~krtyTZ#&uK}?+r0eYTO>WMwfsI+I=v)zmz2mB;YEXvGtpk zs{F%V!)Yo?cm9PJgI_bgh+MCD&7Lgxcc(zZ^9qyrM1A0n z>|ey8-v|Y*R)f2R*a=Q~M%u=Nl@(x+(xWZs{HQEux9{twCY^ z8rF;#{uWj422ued6gj+F2}3HoUj>#jWq^4j4U;A7hc+?@Kyc#Nmr}Xf-#oGU1?w3b z<>com5_r|`hek=P@V=Tz<8jOk(2UM;|{j5$g+bZsw))*#mBz?ps@g z^(US9{qJSWeAAny17x9N--I0?eUV>6Og=9Hx&_jp(3J`D$KM{FLJ^kQ_YZ!7N4vC< zB*>&d8S3bVrWi+)_psxUGELksY*KT5qfYMxs;{TT?Q&CnuSGTKZxH5c#Xy?r+{sH1@P_1AwVStS`1kXa0d& z$z&6O>&Li|?||8miQpublO6xnd2DQ9Hkxr}J6=i19KvZ$-D$?{R%G(oli69H5_7ZJenS!($>^6_pa_o{%j zhg?vNBCA$4sq(&6TudlCH1Q0bj=1~%!7AaiUQ`Q^wHX3JRX+%Ei%h>n+BONZZYh?Q!?oNT9ITtS7B;>j@22bvwbsi^)1L%OS=S*s|@l|JX8lGRnOiuy16B zo7RknB+s_Yymp;kqc%jVC}{w3@eC~>v59lt$hGSLa$VhW|4I8*frXCRpr;tR=vo&f zrec)A)h#=BO?)fuT{Uq3786*IuFXpd^&Rx(W~_8UsYYs-WC9k6R)dRP@4a_9xO5G} z)_|x4DA!@b0D;dj*C#SFuoYohOJ|?YGO8EqDM{4J26DG8%{}*2lb@pPO*f7Ke8MG%uQ>sWJu6mr-vn}(^A_w> z?%_)sebz#+`Qg7tx3)cm+8?I5xwm#^3e4}s3`PSLE4ltjq{vgSFYa)EqHtN42Z(sa z)uWQpzhp@1e^`5|cBKw?RPanN?$$f98#?v?_dK4?n*uD zoVy{O=I-T_J#fjoq};nN30?NXod4-=0@9H&?>I4TgS!D-cxlq;~vMamVFEaCCiJkWkw}(DQybCHsgTP)QXycxy) z<7%DL5I{zpc2224ArCN9otz0^3=w0_ru=M1V z;NAsO8DU4Sk|cfqBi)uDR5O^R35nXqatkFvW;3u0c}NA-%pUj0{j)QpP{l0TRX`{c zt(js5fACAT$ggS3qVA8WcuY>dTC?G_8+*QVT^Kk0`f9_%9ARM#2$=E+3@tDe8L3@% zPG@X5>B-Iz5MhCiiwIy`Zh_WK&4WOFg8Oq5^}76ZXoP}Bv;iq)W&G~%H0X5zOX~`; zLd*KQHJAVz%2~W$twL8mPA9a1tfeOx1zumCX0tsXysZ!&cZ*$KoIEC#2fE}g7Uyy7 zIOUZ4ILhU(lc3B0FLzrs?n5&=;7U~eYJzmRfUx6|v@OT4_n%2z`CJ4MdHHE2^{)NH z8mB3)r9)EUHJV{t+>JpV)ul;g?Ktk&@}Qy<5TM)>?ZBRrUos>c^)qX=9cN@ZAl3uz z@_oRh@~H^~ z-A^cBdKy?~tQ2Uhb?tdNGTUAl+syjr}$NGPu`wPxcYynGmpHT^XZBeyd=BK{O; z0pkKhEYU`l@kM9;ius<*lH)+k?<{8jd(2-wjg&=@CHVHv(zWR0jg(4#e2~pAiA>|z zZjDo?&h|Z~s!ieUmEp0-maR?UHLJi;k-5RX1oh=>t&Q^J%HRA~bP|N$A#y=vkx5&w zC+(QD0X_TFf8J}*#yi^DP~p8inpQLrG*Wa^ob&0O)@%&xk&4;TeD=b+D|$3~F?H-x zWGiIGHJ^QkWQ~#iP<#i4At8ZU!^4$UJStBOlN0`a@~YAU{+mil_jFF>-Qm5-!69)a zw49?AueFjjH7#Ilfvh~6Q4nk8{qqXj9e$jQ(E!0A3GTr?1b4UK?he7--QBskOK=J9 zF2P-bOK^9Gsr2i9-P8T1XXan)ELPonxp!54bk#20fs5%B{K6;me(y8I2^rn<)9p0Y z@F=5N-F77df+gV(PQ63=3yDFKe5=d@+ZEyAoALlX+Hfwiwi3r?`e$)iaxL#qUshAr z6i_VOFolVX^)RRKQWUg_XcznhhYc^H)<`cNTutQ~i)*PL2( zKARNpuWAv}{t4Unf)^CzjQQ^>K`miM&3%~6C!72ze6Q`h*4z0mhbNXD8q%pBi<{?2 zKYftvZYT_AiJzgAFLsInHkMe+_;tlGxyHe?R5cI2TUKN1zfLTWRKQKi)F`9 zb9@@979Td2dSTM9FY%+~M$2i0Lu(kWvOt?j!PK0IbOz%Pha2XcsXiu&PyvpNrP6${ z{@f?OXL=&god=Sn*p{)*f8Iaf9eq*VAE}kUlC+q(A_?=lr!ZcsEEBq`7S4AjKk`9* zT*vTzq(zv<8;+6KJq+>(k&OB)Bj~B>R`cCgcYzfrlw0It=7JcG{D<&<1#Z%!3BPXT z#y2yBbu+}?p}g(ub2LmFgG~<9yPw(yriUo3e0HBws7zN?rNhum6l!j)L6Xc+GkO}x ze`3Ym8AMp(q9Fgxat~9qxO@60T)QG{H%&w)86u zI!o0@rRt=lu%AOk&z&c39}_-rO7~x9&-w0oU+y1Q@AMjnHsVu)4?-k}RazvXNu+~> z;#}~W)6AFQw$N3ihew_-jhycE**(rx-!(Mni^qutUs&dsC&pdrsTRU{Mz~0065PZ` zAU^WLxn)r`W!#Xx3p%k#x%dZp~$bb(svrZ(IM{ zh_Qi_#Z0uRM06MV{h3`ypdO>Gxi~@+qP4nrwOPVbop)wF@>{ud>*c26W~=-aNrbHh zXCBSf^l7Pr00B6-FVtJu$ROezXf(lFB?8urRWdD%>m-fW<;2Nrm?E(9CPFd$jegQ? zh(s=NyGlxT2fc;DI^M+o`-6|zAFO~!B4kX16vE{22bGoEi+DSk8z40yVMVN0n@H9C znIyyV2Uqr3mO_ZYj|^-E7>5)B)5IzdP9G6;^`-P)lN+y9)I9a$H5+Z^Mo}BV+tf=y zGh_2~g8El7_i+Nn@f9Ne{d}{Vi>dk%czME)mGkwsmhN;o#28lE)nzanJLJ($ z@lz?`qW4@CbB$Ui--G!ZZ=@EYtEu%X%QXn2Dq}BEvE&*mb*=fEbPhk$?cgmhRIIdr z%M^7mseNP?DMY_rt`jrmF3rR3@Q}cZBau>0nYpqT-52od|5tMk`5kyK5~|>5iA5h> zwVTb?=M^s1fhfJZ4J7MdB(p+uGb#8KUvUxOV!+^fF~FaLb-cZjSssFQAL2+#x97E( z3{`r)w!M5=XNZERP~t>0X=YT-wkrYv>;HbHq^xJFpr{lydBZ~z?QY8MfGMz}PsgE6X>ypmIXQUT`RW`#Z8B}6T z`&Uk+QT$!Nem4h$0+IQ8tLkzOTMktsZp3UtgylL1K8j`;Sd_)-^;_25HR%2wNOrn@ zZJQ^&&ILmK-EzJB!F2ebTa0Va8N8@sLyWhFV%rN3WM89|&0Vsqt}n+2^D^yBYzRFe z54P>QVTNzlTXsA@uf;L4R0|O6IFR@q^Aj|j9O^7Pu`5D*4zA?&73@RJyQesQ}~wkeaJR`zN;nQ#B_FnSfXaZ`(CyU>D_UcE&b?oS2;^68un_5H|6-W$S0zHHl;U#YEd&X1|^q@;<%i69GMhV zTOuN;+{C$f{K@fsUn9rJVMUa)fBYE6bI|Z|!iu+uEokac_a(AyN#)|(@cU`Wt-HpW zd1Axf2is4q9>s;ccP}yIT6Fue6?M(Qk4!oZnLjBB=pPlIc?^{%lpm|wwDP5dgf6=iA6w}S9oM%@w?`78G>?HEu zi&N(H@3d>3pB!ac5%rGWab=L<-r^W@`|VaaVbQay?*kQssWk65PWq1@^;9heg4d;5 znh1u*?A<-3i3G)xNFB*Q72m$>Y#zuwA3JA7_GWhvQWtKQO05n1^$fqlmwi+c2)w0g zr?c_xex9X4IMm1sM|(_>v~a~b&S=3e_RDoAK`!z31KS)9@`oz1^M+si%6lv53kf4p z@{V$Q@%Zq-6}-3^VHY+e^h`6S#hb6}LaB#ep4cGvYaw%h9I!g{eE3#MI?MIE zHR0Mw8h$%J>np})u!;mvp3qxZE5WMsl{p;?{{)ei3jMkXJ2G7n{wUf1O5cC1(N=?I+$Y+#(6Rhk?%Q$7zU|!1c=$a_)sE=UeZRP^ zd$g^c^l;mt1M<`%-XhL-kzRBigKToYG}!1W|cwPui5?B7}-r zE$Gv&62651c4Y?7c8aaZc?Sz9ne*?`=~Z3oi+HYlb_IhUq#DakQ(oToT$$Ker?0cU zb21LjheJ>%R@NCyMd5VRUYNh&F~z4}u4*@9m?$J%f+KI?STN_HKcFtG$gH#MPxDdc zg?*$Kazk-hZ|c_QvWLnvNPAyIP=MWQXg&HU7K)wmVHue-!J5`H3Hg@Gq`9qsbPKok z0sh|dcI2y8?{mIel;}(*1d(ycyW&|Iko)R`7_N-1j(lqRlu7O$PiHE~WQTMtN$_ZND{+H(ArvOG{zPefr)n z_Aedtn~$O$*jn4?eu$pLKW)sy%h>9*;XY)vKW)v`eC7y##<6l=v$&rutiqn(8GZvf zdu#UrjS&1l#~M(NFc`w9;%f|4E%G)*T(Fpoo8fKm6OVe_1~LDUjOU_+gfbxbElt?EA7(|PT7?bRxx;$YS{Zn1P-w}zNopZuf&|w~AF#=mO#PVh z_TZ(?+v~F?kR(&a;`^<+`4+v+{dQXaasaBKS79xjAJE`t%Nl{xp^3bhjUs*#0K@Q= z8i5SaA7H^I4ivmB{WhXcOl^WZ6CQpa@ZweLkZt0bJn)UPZl4$?0@=K~LKS+RsK~EH zB4^^MdVS(kO8u^NXrq@lv!1i%KkD$t&3g`$FBJp}udN2n9&N61^R-@1mT7(I#;8;~ zo`qr7V#CBz+$Uklm50(+iE@Vn?!7bp%;QOPNrdaxyAB5P$kaK}8-Bj-L75fkR)NR6 zo*!FCZc2AD|6U91uIjfty|AhD{ldl^xJwNe;SN!H!}E|s4t8>!ZgtG~9Sb8Wqv{$1 ztL?mnVpP}as%%j_^?liC5>8xYyKZ@a4qMqt4&eIaH&-uNV~Ckc(lAdnJWHGtA6y9> zubaA6UiA+H0$tl4?nLJ2LMvbTckGX-QSh=GX%TvO{H|Kpte$_8_+4z5nR?+1bewTP zCFPX-r2cV$jst3I`TlxGauxzdP6DcoH!&EQe_?JeK1FnbhS=qy4svzT_3nSNQmSp@ zFg!TnH9C(4WsZlN(9mpQBc8*qF*J<$Q6I5Bn>#4^S#90p=yR3r17(|gW(E;yBJ4y1efGKWyA1Y2(yd@YSK+H~wZXa@H%`o@ zg$a_zr$n;K0-o+(0x=dcX&)NVN?%&Hkk!1+!gpH&S8lr&G`;a9|D)dGgFvPNuVFy= z{_qH^#>s>gjzDQ2~rR^uDzzj)@Rv{J+lgad$bO(g3W7VAUTDt49_yZn*wpC_WULv$|H}R6;j~SAH-DaV; z4`VH~o;-wPeciK$T_OCyFx5%~2H5~(jfCoy``KVj{TdOR8j6cBkqHCV@Qj6f%>8zi zmx|((>%b|HU48#B@rAftl7|{^r~_Mg23jvR^90S3B*s@UqTti}B;uTVQsJq0z;*%w z2x^xg4(7Rm-Rs9k2PCG#zUnj~5g+%vW?SH=J}ZrmZ6o_G$jo~b&mANO`RC;i&GdP* z;ahK#P;j#x!D!^{50hppo3B#9MhX51QZ#Em1CLVKenF4n$3(T|mggy55;fZ{$;IXV zcAQzPd0z6XXkGR5uDx7n(Tm_$IPy%}$l#I$(e;N_zsw=ENs4B%PTUa@yc!Y}%@J~P zB>V;EpqZ0mc`7Hh85tna%L`hU$~QuS$cr=y=OF?NOb}Sdj%fx8Q_Lchp%}%>jhtJQ?%z{o&5M< zIBBLl#G8-;6{zS!kMM7I?hk7?B=7q2yL1WGs@t|9Y=}{y67YiMt%>?bY!;f@LhnuEsYCCp3pTjGNFrR--BImOC@v}Y5wVp`G zhWME{usQY%^K%S`E`1X+#~xR#Of)OV%zELe>Lh9J_QV_iWJH7OKCNra^x#P=XG zLeQ#tA+@EK$&D@$!&0+)%hj+i;8J>?=PfuN6$=`eeGN9xXFVo8rYV zA&FZxFO7DO z>ggV*XV>b-ixJQaR%7yn~7+D0a*t&tC$* zk>oaI4mcs5x%_9uMsq=dL(pIq@mf6h7GQYNZrJR@suy(ph(P`7*+apL@c2Nq%?~xq z82j4|;QV$2DS@1OkbV*6VLUm@Et{GBau2K$aB2xWxsl&N`+tfQXRE zvW%ZKS+zNb4M$o73;7$bOgrbkqGYDV23#<%{0tWlMWdE;?PGX4n z>ifGNU8fAIpO5g>Ts_**ZixEULaw*CC?(4RWUVfz6vFjecWR@hF_XQoL_2HULC!Op zOi*+gRP~_O8kc`-!ik>7>>I#cNb_K6bH=KLAZnm{;L`|VK!{>>vhwUdcQVz? zh#0Sk`gslArN$PfJSs;NrYcT=yl59^$5HS8#iHMc=R*ZZ>%(;<8CP$!zd@R7t5v3k zHT<|932TH(g(u3u-dMJ+qja0rvl{yANiUu#@9ME5T9U!st$=r6IR|;8rNEu<$hpvTgmQtwV$#o9cdE+`!v)gq2R&}%i8G?;$y z-cYOBttQHJG^ndg-F>IYE;@TkaO{fZzSB4w{~IoGl&IMw*f0Igo6CK9nG|o^($;^? zJ#M4aR|6iF!8YNNc&fQS`gJ@|x?gwZ_i|mdHDBGQC+7Ru#`{TgE_1m|+JMW1PiWau z&U;+*e0yql4)b}#Ohu(b<-U3CU|f2kgUHzL^83;CYnwLTez`H!H*AydUSfm3uk`Fm`i{>AS%9u; zB#kcV^A8oK)TK~03*CHG0Wi2RTG+DWaJo-IXYauG0)thG%#1hKd025190u_6r1Hhg zo}J0rJ+I3i$VZH*VHoTQ80rU?yp!lzJqwq6VniGS;y0*#Lire`_Se@YSJRBN<)6Eg zul!heRJjNx))!RN@oL=BAtrhbuM)o$e^MQT3`*B4DJI;o?t`DWq>8x zcn8IZRPpngll7zI!Iw|_-{mAm^re@AUAbDVbh_&5sg1jGmh?$3U5=OcP^x;H+Sq6J z%}0*!9nLmU_Zzd5^ur(~NdnY%9J1~Z?C~C%roLhKjWKr}q!MOpvAeUAG6Zy@@1_Iw z*uB+KW#)CHIZSXJ07U0%a&W62Q2#jW*Dem1e&Wtz|8aCWOy#!79?=KfD^{M7NNM;- z7kNPe%+MK|=AzCt5`wv@+vvzR-rLbS$HQ>yBm@S*w`+)n^+g+9IWS#nM~6H5?E`G$ z_83dt{gLbi4d8Oh1PEh$=4<~LlN&sEQ?Ac6O{==N?J4Fly3 z7#fU0OF;A-z{b(Td?+{-ZS zih_wE<_@kVO_ueOa!d&dw16zE1d*a`%ijL}RsB+ur`jUOoqdQYgYKe1{g(GQoeqE& z&Rc0hP7#f25@aEqmi>uVMI|04)7md#iEX88e1zBNuS^iV`%iYTSx+~199C2Z#0DcU zSV#8P&$*UzWzl`p+7)c8(+=NRHnE=`Y2$wiA9uvy;F>3_`xXl^O7O02(_<8FNfUriOkTlsocATaF_A`np4F6o? z>96_fyDa_|sYbO309^7F3RrOqNT$47S)fS8q6^`BP)4vc4-NSF7B$cE=x8WV5g4c7 zu)1s-jD422n5NuGq4bh@Saht2b_h-p+l_A_8eBJ8gBZRzANh$HO&ri0_P4ViENV0v zBtw$BaS&dn9rwGGv0)Z}ksUa?*%;Ov$E7IFXh}sVogS836ljYMnpRF3=_^=SMh4~K zhT$W88h3@_TN>LxKrPs?*Ezv(L+Mv}_*io{z}BHe#ivQ$n3kO!$YK+B_jNG)tK=NY zIsdz$T+Z-4E60ax{wXOS}WMYjzg*kTF#L!5=ugw8Dhr@6G8R z#|W-Gf(YrBHCWP@b9Y$6@HOr2c_Pc^RgCde_iXtXE?J@p^f{o;2niX(K#=K5Ril){ zCSfcJ72-Q!7413?)H8N&R&ClA0eU;;!1G_On+$dz3|PrLX|dcd`_huOK`D4jRhYMG zYyvN}m(djSsK@+Z=N6L#Mw$zT<0fJqv-MY(63Kp7!A|=Q2HmQ>Zzy$%IC`~DXr*wY zzDscK4ufca2eAPYN3LF6*dUU1kGrYwUzG@F+*_VXr`WvlL~p~BZzhi#_r|%YzU}tf zet&P!*d~nt^KBtw@I;k0P!Hv_lBd0kWTKA=ermK${sQYdE`V;88D4Uvo3hZLJTWiV zjwCExu~0cz>PUEv<>d>U(6zo-3cs`Br|{_XC@E+4Pf?SVNuc#L(-%?inh`YdYSiD zW=q$}a6J;d^rwn0w2WuE1it}Y!ZA3$cXL)_!3X7*@AAd&fE;}$?P>??scvb0dj*=C zO8{DD-*ZHOQ0Mx(3%|)hQ#)-%tqBcNAezAW=>#>1R5JC8$m}tB^iGMzuo!Z3c3g+4 zn@5+ky9ZFkDHYBv1#0xnBf<<&t%O(Fs(Mz0J9-p6Rly%62SQj~3UmND)rpAX!GW47 z)1jv?wZELhJh^=sSIt5vZYRTHm0j@!p4rGHd@=Btr9Bb=YN$n6==&(Ef7Qp;@V!1p z{v_j`TSU7*83T-z&e`O}SLge4`F$BjCrg?7OlXiSazGC0q z@i@@QOM7ZHZ+^@2Xcut)!GX0!V9!qoiiK!OkmFN+{b1l zaba0u?yj4SMFqE*yrC-l8DEYVzvJaKY!TuA^l)o=Y6O4-R}Zbv{4h694Z{twk)JOqPaAhZXa=9{2y9?|& z43J<|g!|YU%m)|kvMOx)2XI?hC~;f4vJ=p109W%51!soO;gUL3lkxxzOzEOrOWjD& zq42`&+GIFPu@yXwT z&WyU6oP3eV}tI=r>5@&B+mm2p|7Z5%qv6f%1o z1%OUUf)RoHD=$dc5=>i(x9?2M_$(S<%2RvXrQci+aDra}@*kHxUY7 zClxfIALMpTLLzdBLrnMnr8{4Ww~MGcBU{7*DEX}~;RI%bYjp%-T3M=ykG??sIMjVm zq@t0NwdA2EBPTBrB5^w6nL!gy-|;zCvF6nkJEN2m`qKG6Z=*Z9h6Q_#V8Okg0m9n= zs&%BCVD^mYrPe5Io_*9HENM6~b2gr%!ms;d2)u``%MchJ zNf~cY_s>`VFc`vu)E9UMH8r2UK(iL`OwmGoBLWvN5IFIJE*W}*Xo__VUI#m{&2_{L zOd4aVi9PGh`~h8CBC>+C{Hmr{nNZ?5hBeWeby}{F@Xl4fn=F%#7_dj0OR|Jqujqm=qNv@DR6L(zO+F?hmL_;TnEEpPZ*Z69PeGX)Rz45)+RfQoIP*0pkA|L|tz zZROzMw@3daa^{xTg>rNQ?&RIfrNiFi^Zny}eKOA2u=as{eT^F3rLXftq;Od&r>H?c zgganxqF4h3E(e?A^*)(ByZl6N;vMot6=))dXO>6Ga;Xn3^{ZWQbJI^3mC3N=sigbF zdZK|D9Xo|{jkqhGpFY5C(%;@BH;2CP9*(wXIr3aS;2s+5nVp0sN>6!2zq)_azO%T8 za&94!i4#PfbKeAmq)+>nHFgZNTKfgh@{0S9wf2EFC)$Z#Z148Hj&u^>a+b^mU%m95 z5ShIRYTQ!#Mt6ml6%fI5Dt8$!Z*8spxGwDrx+aPlXzItO9yGhXCbnZ6e)VnA&J2s# ztZ3MLReKl9GACJ3W|S|veIw_^Wc#>S!~GW+2O&7BXm=G=d|GisM&wlUOwEN?AM20k zKZ>WT#7e9XB9y}mG0tsS6x-w0R-TsdT|{jie#=JB{p)hCe3mTq$Ll*<-oai=1;qm# zt#>&c*U?)Z1+3F+=^~!60w`RLrH$M?c{*PkuFIl^#L4OWj-~r6VU%s3Q6oMl0mQI) zA#|G(Ht(}r8T)r}9?egD&}i4Jiz_=)F<8RT?kh4 zccl)N%?t=x(dJx=VF4dPrnsRd$Sj_f;7%uG@~p)+BEjhA^3-TT-Z-r8+*h>Z-0A1T zEJW5>eJEj1c@)932LI~4$T(kz7KG*g(?=;wR6Hr%V3hJ55txU)G%LIJR<1-IXU;w> zX@#9V4>SF;nELopet_QknbtHaL~NoqN-Iv4S%QRAK{$>1P6>_m_@ip~*paNMreko9 z3_zqDBKIAU1)0CMeQrJCXpr%Y^0)|c8OO2qe7U2Z2^)0Ov@--rq=hnSgz{(HyubEX z5gfIoH1cqrfx#cTuSazSv z(C$LI&YH$^Mhzo(WkVZ;Whyjd^Vd!Q%a~?lW0%HwSUe_oqKkE+69=I0*zv>LXtD!F zraud2mH-8^Fi`1kfrg6VZWFiN_8hZsjpfb^7G6Ps^CvHB#}V`CBJ+mCawuPydUsD{ z698hIxp2k4Wn?os4(Fm!lQ&UxZ*G{$am!l%5QMdL=^T0JS>5clin-MeZz9X(o(!$u z-fobyvQVbLJ?m_-n{lrlbQpyJl?qUgmUqny!&KXK_dW{|jP>T79_W?TNazV% zV%#QM?j&I=b@rF+ax&xlzt}C#QYSwd&1Ypk)`B1@c6c(WcZ29dca*=j-vU9e_9eoS z6gPnIWuni(?yOsnG@?fmiL&-I#!AP&Ui2@ZjE`sDP`GeCW=~g!2@NaznEjMOzyIr1 z6ik{p~9^`6?XWdNAkfngks6RpTxF$FG>k_NVx1$$@ zP)OO43K(NO)PtE3C1E#3PZ@U9oNQVs*Y=f*8bB@9j#iYd3SGOB3}Y2Fz88Jc?dKhi z9E`*S{|w_?qdQ0=-TmF|fcBXqMOet{VhR!!sMQi0hC8T8=DoL2x$m3XoqW+(93d=| z1KD?+996<)%)MzMFK5pcCn24bixnNelkB+rx7OtYAY`viG!wQT?AMKr?ThF7VmVFF z63k!9b;gdZ^;kWE-YzFsj+YeIw)gBxfV7kk9icXAU z{waf%FLX5L$>^}{ir1fz@G<;=v$5QKb{l*=o#2AnheFWlDol{2;c@NRsiIDyGv7bB z>ozelvNnHiJXzeKZ)AT!TLzaO?vIIltCFWXcFIdoaTDGrs_Yg}Ej_h^?f$kGqM2bt z+9f|+Ih_j~a0A{}AFBCOInO4MLFfpogf4(6NhiT)l0xM5{Pu-fv}hMBFIge3xo+T& ziA=}w{0Snd7s#|EfU46Hnr-j#7hVUoGtU+@#pQM29;_)vsUdx#ydKeyW9u%D0j69c zHXDs6lX(KqtXj0ly<)-9T#JVJ(2kL(;>uGvWn!qZZL4rzR9JaAhZki!ab;84>zBP- zSV7gNrIVB)ZumYOy;xp@>%t0l$2PCBji;Z*n>Yt8P??WO1X|Q>NywL6uUJ+fn~Kj< z+s)^>fnLZpZdjdzm@ArFY+3EfBe#52zL>lH88}pqH5ol=K!E75%RdUcQ%R59qxd|2CwqxO!h%QqtuJMMf$DG{)+)LY+ zBk=Fft9pHFC+s8XCs^Y&E>2x-lrqif)dvf1_j&`h6dm9J-@ee_Nr&o7I})gjPqp6| z7S4xW|3RGp+uvpKburAFRX^?Oqdn~LpXVfU0DZo4im34sAm)9AB*1(N!&&JDBU@OZ zH_`Homw?P(luw_PhMZsb61nRuJnx$x&o_P`cVYl$YnWTkhRhso$5n%asIWoVN4DN!hgfj4PIU*bvP9r2YMVS zIlgJiP~}ARr+>|YG)xAF&aVr+dD=(mY`;4)`~o0wK=Zxmd;_pG3 z^mCdVN^a8%$d2oVwFh@^vJ_a&557=+4O%aj8!?9$h(X#`FIDtHiQnH(j_{E_UY<>u zeshBWRU9eLBT0!RS6OLCAUFwmZM;jsHii|2-|P+v6$e1pDs(0k?dfJ$giUHOAuoc2 zjC2-uwVy3sFTN0WQOXa4mQ-dvY&VHF(5t1O?HMF76!$OtG;Cxl3&T-YQe}+0z;9$5 zZIuAc4NK-?$#TjSd#F2qrP-;wUzJUkIcH&Mdb=Bo#DlDskQ&?P4vDsd-uELo=D<@= z35uOZ0T#cjP|JI?%iO+1irn7pVfE+5U`edp4YMYJLHUMPlzYiW*wHf`pq&eOj=1V5Od)2ayzte)JKhetrPHlje!osA*rIlra z^oTxjJOfJuE@pcrrE$9cx;hU0+u+-s+jnd(xr9bHXU%P(!&o|fM)_ZDnz;pvqjHnG z%{>nv338(oZlI*cUKHRm?lV+E+CGJ%Ni7fbUCSQla=JC~#0k z_=CHAts5s61WDhgcZtZQt+Xh5$?#M1PMQ;vqc|MPKGO#p#z zN?AL-#Mp9ynYHihro~sNBWllwEX_wn;qVv~Va_EK(>$o*%ZF&XjWSV-enhw)@fzXB z4dVwhBAE_9@DIFq#JVAzhkOJH7NyHUYgq>l_hEj|_>tJZoi|yla5+`RZIR&dnWGsK z#*r~eq@18~Y9*($?F1AjGd#26?Y0y16ZO-#bVt-QrIM-S`om*3t-A-?+1p<~bE7#q zBGoLQiRSXZWj${Hg4)1$YMiR}y2y2kF%4k*~k7BHu7A8e0@TfBMackwI$o+9U~JPVIQrK z{BDJ4Gl1k{C28SlafNc&#QIUZ8D~I|+4Dm>GC;ZZsJAK`m>d?fP9h^zg-a*$siHzb zS;tpptMx(K$Jst<^Hwx#0=fx=T>HBh4`kaT#~<}9`YQ-Z3srkN42}wz-Y2cZK5k#l zGG#u-WT=h;t8y;6Y;iJh@($O&Nq(+cV!7$Hn`oSwA)Huto<^5pO{Q!txXl&7lA-AI zC{R8Kx_k}UIJa)s%-xI&o~&2HWC66W5-w#e^J>>UPb1bJywwYaZcMnEDR2h*dMD@0 znUM-L-+7iN>wIJ!M;*xn6u!fUM%pnDL``{5WI>OEzqNgZc+*CUnH^l_BWV=8EQgBT za6OT(CLvLTWuFT}Sal4Jkb&T=L^CzZgY0SqidH6KcDk4UgtbE?}P3E0OJp`Il2C+1-<4kcXhS&qDeAG z`WK2dG@C3R620WdLZk5C%?M{_D4o%}zuPZ_MU{u@Yg!az4gi7VcBmhsrGkU%B)^UE zXz1uCKtxMA!_P2BamUzV^YApZoh^N0HaWGYR@ZR*#E;dyWB${@t+YTEnwO@5>LK85 z$Wno{?Il$+H;+y5o$mH`$4`K0QBG5P`KUolqaDfxmQHE>KIE$6roG_s!y+?okzX9N zh`4j``0^$*xySb_O%}yabXf#B%-&D1**M+AP|dH7O%JTsMIeRbF^H`Whs&^hI59j@ z;WRvY*lHea7S+WB3sU-ouN!cy2ALgkKL%F_=Dt+l`ih zN;0afzSoB(mh5I$zMLzH+f6uPQtbGRa}&U6{uatAy(eh{p`o(iUmm&;8z2LxgoTe`!Rk{UidL1GL`QEQVCEU~*FU}Og|sp0Za*>{#Tw`{j<)^e)p*X&wmD2RT0yIo zj*A|wRO*Cyn~1cnbIp;I9x-l;M~;;2v@dmS-&iM|e#1$2ef2zi;zIrX!wKXTi;QxG z{tIlT!v>EKFQ8%~Ii=mBbcx~zpLZVWAfr#Rz%no?Pqvwe{*D#|8d6kbM~qx%(B@{^ zGl$w5@O-ny$a{HMTxN?DvL!luxI2I8JJ|qSc2N?``V58w3^(gM+d~0ob*e&}pTPih zTV5OC#?^!FF>>(=)1rNtt%t=NWt5})s;{u@1)=EUyE*<~*Ogg&$AK_Q%jnQi%nZ9I zaqfsZK)J7&`tztu%}91MIsvD8dUNL%DSbL?m!WLyv_S@B+G0{t7jTN~@)Nou%O#do zcc_YT8oI24Yll6yBv#v2h1IgZtQ%3>A>IY`WfE!pmY(_w zNv%IchD*r$zq6qbgHfR|$oV>k9qJZyTYL%2K`eW>-G6HMTiF>SaE3Uhf`SPe)Lb^7 zm|(-trGdS=B6wKAMuWh~oAV~=IC{te`V6T6`l1qd*CFSvABWAhPfTBEe&M5@=?f%E$BBCZ-_P-Ji$ZB%cvkdq9>g_@!JOU|0Q6Eni^AYzJY4NyQscGbQNvr>dn(dWwl$^6Edq_Dw3t3=PPDQ=Zy4ewTe>81Kl3w(?g6iQbWPvAcf_B4rHWVDf zw@_)yQc9~kN8j|NZz6*8vxRYM{bF3Y54{Hu4lizbkw+3=xW(D6EY~Ehnq#btxu83` zaxzuV&iqV2v)2xX4X9V4*kLO1X*V#Usr2HOh^cgTWk#|{Q1G4Hf}7V2@Dqm=N6s^& zxKS@%X3wwX8O^bLYoapvZoHWMh8?4g1atE-ouy0<7b8tJ;K=2+6Gcey?zP^;_5+vHT!C9&^ zB1d3qs2>U8w0Y23r4SJikfp zD>JHNSXJ0w;d%Dd7&p<7=6&yEYhPm#j%l7uPh4Jl3Z_8V+yq!nS5L3#Q4XoEmt#?) z7X8U6H_3N~ELeA8A~6Ck>52UT*&=Kp*11J$&O2T|BM! zZ&lkLFOT4UcbLRzL6f~-eH*BkF8r^JaNo&%99(R41e(w3aS&vsC23C3Co;CK=1_~Q zHFjM4R!|rOvO@@$0HkVrq|RQB!$5lJz)R*QG2AjQ1j>^IPn%Z1^}QNM}?}rX=+CWiHTa_t~l(qlkibIP}C1){&f4)to#FNsHMGuyJ3W0Tt-W&ZF=Zl*OcLmKMB-jDB+%$G~(QCj$VSpisc z@}$tsQxGNW87dbbH{bOdXOPvpnm8jGFo}5YLLZVNKmeUnvR3XkpPAm?bc);`{E!4R zjhhbdmeXRZUFW)l{R~EK&01=2;0zLup#OrBS=NELi+o7IvK}ffHBl1Pg*pQmWJ^wA zy@lsCZ7$A#e&eGX#JrVG5+KBji7c$A6m1|#^*j;NjopLs%6j9Y`$|}U|wR*MJKzx5v1mN@HfW$w+oCF@OHxVpA z0?=Qo6?~gfsDGHIOTYVFTkS^ay<80z!JE_pjaf>?Z3gm$odE`_+eh05c8&7}o9>Z1 z&5puAHLi^0Co)J7C;ADhAjyH>bV~^(HD)K{5F-(h%nTw;+BzP{+^OgHli#)OKN&sy zN~{kH{1sG(lF>N=37`L4Q-vHOwKq@RzmS{D5K$BIFI+I8GSrw>c*0x_$I$t3A=JLU z$UFf>v3!1nQX1C+Cpeo;8Be?1oAMWd^_|W90H}g^eXO?>J1R2FbS4A#t&bIK{yk`APvAA2jb`BxZ|A zvf_bW4F?D~z18#P7@ridsoE&j*T|6t)`3{v4;A`q@MpZ*%m|MY#^)n}Pb6|D28tMThp0PmqR#FkIyPp$fpjY667J)|@6n^{y?<_x#=q7mNTND1F$R397XwR@X; z+kw;S6QN`Y?yrp@{Mj0W9~%~v%(qLZ0I7`w_sVvL_la1N@U!9mB(sDnBam~;Qz=X) zBld4nz>dd!yKCTPQgRbtn9IY=MQZe89@J5hFs3S-lC0@P_I>0&-84zylGOj`qgXb5 zGZx1VgHfD>g`j6Dd%*{CYBIYClR$XmT=kgZ$Ie)7l=Yt`!Pf?&EO+aCCJFhU`Lge$ zfbL+d(v+*54yl-1L$~=5R=^+HGr*kdFDQ35gM2AC?LzW}Vx$JxNQpqt=UP_OS=m1= z_-~EAd=M4rcR+3V$!l09(`jS1V}G`(e%JO0v;KUB1t6z%sEnwoe^*d#TNW|@a?=R) z(AZoys(wqgE!bNWR%tHdYAIK!!g}E3d#|(@H634SINA!lRz=Zw_!g-DP6fHZ!Xf}P zBH3y3H<1U^6sO>B0v4yAQ$x{l*}nE2u8Tn$ra!kWL$2m%8750Q zz}W!0QLg0|Il!zF>KrgeiYy7bqfh#&o>wJjUyBK@Qgs^pFe=Yem4sP4#)_@^<;fhzJ>7bzqyt^+LEDHK9H@IP7!{!mkO z`b({6F2@5AV{oC0;8&LWEth}a5)3KR2N1Vrdfz{^0K*NH62MLm2Wwa!URApgqJLzC zF>J8u&2GwPerrHyAF1oquTQO31jV3IiOoGOck#dSVt-7&b&!u5W)K2z+EVWnV_6?T zrFbJ5f_Xw^J%CX8C;9!$EL$fcw0X?p^qbj4uYVzCJz1{BW1LpvhKlzU{Nr|uok5*E z*^2^9p6u^}|KUNbzWPG=85}Kvi=pc_1Mi=c;!n%`~vin+; zaC2`V{`7u{*;RPkgR6tA{Ld@#g$eTkxvK)L>Qj{>tfp}tW01_sNI`!$8yYqEa^+(s zE|K?fR;AFA4l6DVmO>EO+(y;fe>s&`)JCt}pxV1FM|Q{Sh=(LA5a*BZK8=M7+m8tD zP9mH?-Cwc`V*$klX#C)c%;A4CQ3BXNcR3DElm0$LT(e=(T+If2D6p<-TK zhks_s6AS9WA&F%$aP(>aB^>w1n~efsZ*fgkf_R}FAi0lW2 z1A=`ZH_o5e`*$z&k9qdrUiz{T0o(zL#|m3Yt3hfZgMcj_W@?NzZJRwY`l=^-_0<8Uc>)CI<=(EO%m$u=Ri;HNMqzN;+o9+$(xVwf|`c2 z%71ri{QnN0LntzA`XS=>qdCxyKrG?X#ol8?otG#Ly!~@q#LBWJBCzIK)ONc?rxB7 zq`Q&suJa7Gd++!A&iQZn>CD{Ex>sE5S}_eLlWFZ4hJo5F6wJy=db9Xkep~OxsA8op zB4wlBimyqwY+vw?|6iQvmy{iq?kXWR>qLuN56p*y5e;gyJ8PBrf#7>WtTcS8|9j!x zfuB-@3@v*e{sFI5WUV7+<$n0Dw$D z!GdQXmWv6pOKmpw`F}aBXag4rvu&h<>%hg4Ru5op5EEi`T!P8k3K#>gk`9OnniZKRnZ0 z4+XfWFGov8f88EB2MEu>ytAjed}(A_b>JFF6pI)rjaWYxEGb@`(x{}m85@zti+Z*j z|NbX}{&CNLeU#{2Be^BeQPB~?8JZ&Xp>yMoE-;rB#hWkbVtwf?7MM)>=TnHjgk}Ra z-T*0S`F)M)8W&YraxqGI8-+uf2u@(YLUNW%wSQ)Ka+ESg}@)l5I22+(TC``#*EVwjn+tD9F#O(a{WAzNiu{ejzw(*=|%Bes~`pWuDvZj z-T#L-=hp#?<#?}1S`S#1l2ADCkiJk||2Xmw)6#i1_c{E_{s{=idij{O(vHd*SLlf~ zg&1k4z((|^Ai9r%>f;XzrFm5z$por#ZfCI6`6%*4xY2r;%*wg4PNco0TT?2`H7ixT z-p-iHi;E~rO^kG)ti|x(3vzeLn7e290y8ER*H<#lC+mM? z0gg4mm~R6ZtDU}) z^3p>9*1ye{%jzqS8~-@fAJ$J#tTYIdX7&F=Flrc<a zh|ZS};E~wL^JI2+Dj=s=$lysaxjcH4A5PtocN!}G$i))tY+8i2!%Ca46X-t0KSK4Y zr(n9=W@SyS7p!e8<&6LuXT}n4&iJ_6^Ip3Jp8Jc}`8Z!A^ZyNaC zsg;49bZ_;kspIKN?EuU)A**;P{ z*AbY}6Nzu?B6M79&f~uiYZdhc^5ZxF4U2Pmzb~*z?|H*Sf<1^u>h>`oa!+*_e>v4) zSSsY9e1@4_N_iZxv0&WRI2%mQRPwK7B0`0x%G|(ylnTekOc6DN&`igwcxlE_EGK*E zKtJ(12IV3DAlxmarhXc2xp0s!4MlLRE8kB-tco5$Ul#ULMIy zEwsLrNeQ^Q!-+QVZZ;wp0~)y84F~fqr+~+a<=ZpYJAJCwTgP_8uyxW>hL6;UlZtMA zp4em>=Yp4b^TzQ9XD8#aksV-M4p@&Dy?Cs_Ff7jLWEF)6Z1IS$x?pPCIzx{!<1Up4 zw);I**R>G~CryP;7tQ^wLn2_5`l4<^e5~VN`M2L7(+n63qmlfHPdqPfxi=>E=eC=l zmL-%1P0nP_Om1A;2;9Jvd0Q>;IG^ZV1Ka+9rV;UG*HY7LvL3Bf;j5)N-{ve7A%PdZ zieR72f5jyWDR>G=@~+%^ef@zzRo9YOXe_ki3m7G-wgzYTfQI!&JYaQ_i9_CG+N0+Q zkE6L`ii;H4pS(l(#QYj?ayvwL6nZR?1-aY#P#PPueVrGWvjt}Pqx;(Xqt{MS)l~W6 z?ou<^yH()jXc0uJc+c-S15^6z%XtMXT;z|bg&w6yGJ$t|7Gj^h5Lm)Jxj~?k*{BG;$cOWY0+XI<{r<3R23PBN>)$v@` z$T?>pxD}ET%v|QN1KZP0>cUE?*t0q91@mknj8gPIw1L+;2DU;f+{-Ko=6A)Ya5_mN zhFS8(dqHr{I9)|=x$3Q|Swt?je73-lVqIpfQC+?;#<^CMQJ?gjYPmX%EX6fKwoIN6 z;1pK;n5+iFvgA1B9-e(1#~#$`w6Q)`@mXBVp>0Ao2lg?_l9(8s8FmmyW7Lfm@l;F- zko(;L9N_Jq15wq^|E)^*>Y;(b>o8hxXtuM+5Prh~mUvzp!Rj2YYf-lw=kyxXh?hk1 zaOjPo2B}Yys1VsBV4Y0P@mc7Ati+MZ^M3HEh1$CqgyRuRihD;QhOiH@gp{SafUI9M zpy~PY+Jj@pS5lLLwE%A$#uz>mHc`*Lb;^ACmAQU6Ut`0&Z^y-;;|vd*T(?u^C~;mR zfs?O_M`LGIY5NF!J8rWjUs^S% zO?BtP&@3EwXSB&G`2sF}-L>6GQ=&6?w;&(Sb@-BK=rES@s<4|LkUj){;8jnFKFk>z zD68Yk+)ALGdO4HX|LjebYdC{}y(q9UlA^>D=baa#=I2umcyc62OQK14`ydfR`{iT# zO6QFjwHhbo-J5$c>eX)Q96>y)oABYhrRPCC>T8$Dm9!Fx#__4wVG8c0>=)5Q6tVA3 za9Y32jjo1?_9}wOea896z=hnD6V^aDY>Fr5y#lwnI%!ty`?AU!0Ahx zY&&7SYbRZjno*GiFo1lMR?C{2@L7ZNlLk>{LUM?0)Tp`w!R*{!Hg`*tT$XP zA%PzBsXAtTz6vJbANE@GM}PT;IRWxJ2622Rec_>sz0`YDcH1f`Q#CGKEK5mC zARu?+%M7XYV(COy4%FEebn{lU7jccbNW7va z<@oX{G(wmVSey9PY0G~64e}-KND+3r1hAfPQg_bK?*dfGKNZ3Ar1%wTFYWl3S05fl zONat6^@@|7?$=fRE`x8c`30%?wUq?x1viO)iHq9@nwVcS=5h3>7GD8=wX3X(l*iLx z_iizP^-hE&#Dws~1f)XhXrpBEF^?)-=j&ga++2Gsy+_Pq2bSV~0LEX+ zw#I=$GjU+g6X&**cMYo^0O-q(f;4zZpcDepmsCYKpWUqtK1ZTydz9LlL>Lm@tZ1oU z?}HM^)qZ=e!R>cTVh=zQEJt3m5E}F|f>|pW)IdAyXJ;WlMDlH9gFIo;rK5waX-=ms z32@G|)tp;+wsXAZo{NHH!ZK^(p-41KUB7ds${{O=6UVM@-a+JbvwwP@r41Jv?|{% zZ1eZ?cAyqBTPq5PmVqt0HJm|f>dI$>H{^D2Uq;kcTW@3yU6h9BO6ZBoaMIihQQc4J zp^&$EdGGaye=moB_r7!P=mqG046f!`kAw?o1M!=IDHQOqRj&>AOx#s+OZkaS95?$f z?G5(qf(E+3$f$svWHC}2VM>Q-x`s4A%vHrYy+_+6O&HiV2RLeilN3us_vnes8)!HM zI25I$%5KgI8DP&SBQQe|LZA5v03C-R;5f1m}0v5 zS)J;}LVHo)wZ#B?-NHjF4AeP}b`m3{J36urhIo)rBJO$fDCShwY%Hg;dC19)bf~L8 z8?kZk3lPEQ#{BKnf7xckQ^5vtoU+q1qYz%|cnS!hw4=Sz+Ahs?z5Dncez1x{&67nE zfllpTpuNFccy47n_L18T{y2sczmytps@MA6PpaWS3sdK5YqKc?cwZP1!-J)}GC&Ag zI~R3vN;6~;IZ}S}T^SZa8pch~z_=n%8lvz4e*0!8zzd|b6_FGzwbN4QJQMGPBypm! zs8WM$>%LsG&bDo(|2vxg22IKD$w7WO?!F&I|5dNiMsCO=M4<)9Ad2mDm)i*HT>?*z zbPXlB`WAmhSx@MN1pci=)lT2oNc=?VoF3PFyTr>yRu0=e!!Uyu{6=L8ml*mG0uR`m z3xgI@J#sVtg2jWPAD;d*D+nmKXU=k!#ZOYK<_SCVsDC^>TPmljFU&nS=v{kcyEUpY z*|0++EQkm!FAM6>g;{So+8z710nG1YX#>69DwLK&TD;eNCf^* ze-U4Ay!ip=aTCcVkvhQ10BBwazygQ@%yF0i zTG5U>&@r91}!2f~>LU0--bqUg-*Gh=GKN@#|~i(m})loK(3Sh6-%!BV^NT1i2*?UXkqKr9+L3la2r>R-zrZ3Kr*6J z&?;B?wVQ9alVCwg8X`<-Xh0t|z*;N7ki7@9StB*vELL(lJHH|c@rQfN>Bfh{Tfj0K z(OPa+(`*vGk(0^v&Tv&l3eBpi5O#G&z(tAdr*vgrqbT10#VFmtUYC31;REC7 zQVqig`(hyK$t<8lc_=$+qZX$2)%XBwASbA#Cm9b3=y9#_=YnkgZz3zW9iDhn!0+Wp zUY4`ZqBvMl^!y`r`wpZcpSOR-ZT?HN3fqmh_?Ju+!yhHuUK-OXRh7|Cy(H|BA2$){ zlro*GNOqLE(Cm5xW=PuF3Vv8bF#i;q=OXqL--qJ|9)eNo%x=7yvFTN#q4pX>idY01 zYZbcFV2UQ7d{>1?uozg}CIK|Akt@b*22Sb=|GN9X;|=Ju7(fP?9s23WlZz#Jd|h{p%`flisY8pV0L$tp0n2;|w%&bWaI zj}WL#8t-E9z{lg{B9>S*_$vIsyrQM8l)_&`=tFY@yC2QD)dnlRo(@vGNE zFMjz!;71FlE=J>#&?d*P_;D(rUi;Ln&g> zNz`@xl7PB|lc5_jkJ;$PJ#er_~y7QFf92{9Mxapz3CcM+9Nz1|%=psFg%9#q?`2;SX0fe~AC z%t=lij~->0Hzc*6+Jz}icFU_f5oyT%=mq%ZSqK#%vjZ)Hnb@T6-JOXKgMaQP;hU3c zmd$&zs`_H0GmbWS>3O6ag71nVO%Won?WmrFM4jTNp8XYhfj=9rNamDq>^-X5ihspd z{wa(KfIUVCy9Urzawu!3qAIX^Pg~VtBRYP6EruyP0|_+XN>UkqN@oFh5I*ReWi-t^ z!a&a7Y3w;Fkj*F=#bpy3Ft{lM^g&RN|+xsalQ`{u(hgjaz=CxEBT+Rgw92q31I zMeu`yXYKIZep&n@X}$4|5tt3r#tXd|=&*>$GJ710h256Pus#1Dyf1 z8z7>$_2zjImrniWd+sDzc9n3T%R(7QEXo#ZzyLOJP~3c~axF8I;Yk3{$x82Q1$83&iUjdARqL*weWXezb2;6pr$?6D6Fo!-m0#uDl5(1&Z4Hy z$SCl{ybmM5?+i~77VP75m>`+B<0AD|2>p?uXV}HGNuE#iLBa_~y~EgauuH<1uNy^I z_I>^4wB#dXPtclmVafWJW<$E>)b1zUfuZJyK#=i-{QadN3uHEGZrj!@-(b>=X1)p% zQ*Gq{D>KfBzBvP8>i4(IiGtYKYJwcfdk=8*#`O|Ohv+Ig_WbD%3P^2`o&Ar5MjM_) z**-5$4$oK zItWJ@K+N!dd%r!cp&R7j(a~Gsau>C+{;v>@t5d5%92%TW3LIHz+XU--HNPGC$LHO? z9W=t&prvF||1>A)yUakz&}{fKer9KxV6T5I4K^ zf-*;Suabwc!g!vB1mnl}B#=xK-|&5a`wyv1d};`B>)Q38!*w^b?kE|5y%%6?%R%UX z)Rj%!ApIa4Z5|_Vps;!36S7I#_d_IM-ffR~zaLQlymGRT!vang@%XXI@MY$WfUJyQ zDCTVC;fu?V(!6WCGd)dlCFw)>oj1JNJZP)4nV2~d6u&9Yr83BCoirs7jZ>>&{)#nY=*6vuLh1xHvW`EG`0H{UvalM135sn@k?%)6Z)#Q=GHZ>C`Z#aIn`pWoe&B2={2Fn9P{U zZ1gF*zPS^sDKXl2_CuF}GYrbVEc2l+3!A(Ayw{d<*|^-NWpw^lUy-WbG?rr*)~_ih zeBsV7*8oa`e#OTymY~fgh@U~+ljQhv8{&iYQT4-EEKZd%~r=QOg`P&Ml9T=NzOf)QH_`J2#7wq?O zzd0q)2t`5t5^>qe&gbLHY1(^b`Q){A4G*oF_twXyS(SGIrMBurl^&{RBoKA+BmW5K zR27_q{Hz1w_FxrOxAAY^KJlL4*@)5}YrAC|c!-F44CQ5xirO32s1RH8P?IV73hYRR zs;wwk?HLkUa(nY8oHz`=tZ7FplHc9qucyeBp1XkJTl|=KJ(5(ApVlKlRp0(B;K-0p zZ2VZP%!6}Z$^C5g?jyJoUI+!DAG#TU(EVK9bJ%}GS3-lf(+smM&Sm)>%r4708^<$2 zJ(mDfEv;8Xw#Pw61DqTWepfja6@FeEs{t=Oo`hqsls!l1C2zu@RsLUB^wY_LpZM|t z$SaHV-G#0570pMDMkVKQs($`2Ump{~G_UNac-7yW=fh%LI-a>g$3opmn&C_QI3FHH zg>{GeSVDc*Vivn*`OsqFADRg&Bi=n_y7~O6WQT`Vo>z#5C~ZmLk8l3z5I~_6yREIt zr5N zuox-{;$nKd4Qn=S^n9>m~D3eR(pvH;#ZqBcsTHI~P8DHd~PJ zm0)D?Rd|on@21+n4vi9~ucJC6Wy&<>+f&I^knYHb?!B-#%A&8sFC-p%)S1pPJN@V+ zW3={A{}6uTO&wZoKT{3%xgS+?+uZc}NRQWV>ipZwi3m@T#sa1jSMPMi+9@r)S?NT7 z%botRQWb^oH~Wh&hvv;7a0~zS5YB9Ot|C`i0>jG z?ZSV`E8F?GiC(rA$B%ykYp!8Eq)`hTGm{+&+v--sb%=MH+SdbJ!j?*S-57j1CG~fJ zhZ|sdEM_L$;r$=sN(902K2j)#hVqT3YpKHnuO3hZ+p=uj=#iK){{{l^vVa!`y*v0Ba`9WZ1#`1$~%N4^AQ$A`|ZyJb)*x|h+97+pBQq( zz4#OJes}668X$BDnh1j&zx)9>GEQW_^2Y2A9l#aTo_q+ueG5MvS^=k-qs=0HPS1?b zwD3iYdMR`>IdSWs+VFJ@a>qP6fSs*(|E{*-;hh?r?E}L1%f$cctwAF+bAEWbD;n=) zO)6;%G#!~-nb(FX1N4}4>}Et1gl~mJ05pEx#%P2f#hUX@;WkM(7j87T9~$-TYRxo~ zniMk25;P-=;p>-8pQ-GDo{idSj27>0X7~qHYMfOHK_UA+JMm8(DDRoH{8QJyUu9A) zylL+w_{!58i`;8mc>x7}&luiVaD0q1=X~pPl6v6PYF|+TA=$Ld+z9G?w}1<6gJ^nF z3FTLC1m6Q^ny0BW6G7Ysnx!!qEhxYu_rOkBx-d-TnhUO086egfl z*}-F;ukX7*N!6{3uQ2`>NvT9P1i>lJ*AXR}$_yLG%?gw!F}_#m)Ka3W2GRT9TH{2W z=OyVg-pu+(CIqBzO_u7Nhq~A3%SXsNi?z82fhwmB?e~%1Z3YN@aC=Cer8((8kMNrp z1wxAg9rHpmO-6|#tFmTdK?2VGVeDjG|Bn`q`3lu2SkL~@*Y8?9QGCZ+d+Ti5+U!>M z`e|XZHiu8QcCj#FRby-SGICY(wt0|Gkn2)ACb9{zx+jh^&xJg0b~SKtdHCHvCH@8F zL2?w9BQ-|BsFjY^lFws2sYGUWI%EQWx3phIXD9&rW@R2+>9PMdy;f`c_Rl>FzvzWq0!77k8uz*z9H(wB6(nP(?+dGGV&7VWF2d*A`T>6;xf zHLNu@xRyxV&6QFqcgFcGtR+pu-&eq1+>~ZCvsVY)NnD~M$~K`bSNh5 zXoQ@2J}=iPGuT`Qu&~C68iK5v*z?{70;oK*qM?!nsEX|kmlxXELP;G&WIC{mITdI) zGe-9uNDQB|N0t7I3;RVRJEy+VAwQrZ(8-IvhV}`^3$1qlay))e1o|n>qT$BtK)H z63iJ^Tc?D*uL|9^Y@zY;W1XGtgE)ro8_Wn;>-cz0Gythlfu^e^DyG z`>#1rL$&Iv_H|y%?ntba)4p#-N!!`;gk=D7k3Pk-oIF8gk9u{S;_*@1u?TM2^6obS zm^(ylryAM0nimT~;Gi>yCM2?A^6G{le82jScx9-fCB5f<8BzPd#F|aVtrzPh7yXfU zEwaX`^8`LL+rh!;N)5p->nZU=>V%Ml6k+! zey;O!llfgB7gRGBvaAc!!4F0LabO^k-JS3|*}Wc-#$}+LV251&9Mm+{OLht|GGaHW zg!~I+|MWSzLJfct`87{kHnX3wQb!Xst8@^&dH@zIz@+&!)=k&r4?>ta4AjA9Yd$h# z)4BWK{f)nJ(AIaUf&n85yNyYa(MQZ+omxtb>h{=i&p_{ro}NDQ zZB!u6J>?G#=jL6|P#fB+`JzO_^bc>%KtrsaNThluozpQhH&DWqa8xm&AM#fm{Bef4 z7tE4LOQBAQn`#-|`sA8E4{8}d5q;O(6oi*!w0qs_ihI+bMDD6yzCLG3GqR>X!5AQ| ziO7cDrpLn&Dpev~{{AtX3HVNYX_U_mH3L?ECkTGpQiBzOBR&#W@0k(KEAZvk?F>_g(^ofQg{pX^F80C>jvU!x!8MpE`I4~Is8IBl`rm)_T2Bp_#$BG zPpt9%0r?T{0^BO(>o~7l1S1vLK*e?A?~&t_JkUYr*2K){9yURmLUc25vov+5_irZ| zj)+g+)iih*J{A%A7WBc*%5KM~E$1{-o+(>K8BpSNgU-Tukp>`n>{RU7|Ld%`?!I9M zQm+i*GOiHUITs>X$DiKFD{B?2S?=(q;D|>hyQ8G zx9{yIfu?k2g92#eA(d(vheiXr86)dyBtN^?<%~?0t>vPd8%Y*Ov>Wv$iPy5&OW$291z{Y3@pl9Iz$v!(ooSD8L)_ zaO2C7GAV}KN8OZu?|R4m*{pt>^*^3cCMgw~)-?Q-*A2#<`xG%HR7tlDZ}pOZOxLeu zh=K$4U&MU>i8iQo9M7uD!NZ8T4=z+gxE^B*N5Lq+DJy4|ShLNZ5FjvT;jz2mZxuM{ z3Le0>zAhe)MIF9&$3cx8dj>jcm(+)M#Y{c!sG zQMGJN+&7DT3-&E)bzhHRZ7y(X9#X8SfgvOiapJ=^tY!a!SQ_3Sgei3ezlibWo$qLi zGjZz_&nwM`9izyh*N%&htSTm zzJZEqa|fFQm|3Be zYZ(IV4nX(VI=6zxO)7k(N!7SOBSZ^h=CuF=oSNTQl1MoCGx@!Zie(K| zaXl4hsEq|DeJ&56NM&(-_W+~{3PDnDA4S_fYp+iZd`s|5>K}Iu_6<#t zcqkUl$g@+US_!(W_8i+pOAv?JnA+M3g|; z@~d2}A9qGDp!nfAe&TYF96gvbTuEj8JbK}7$Oh2jSrp70&(kXeH3Dz7@edadI;PaJ zQ+c?boLNwfZ)^no0CK%rwf`-R76aM-GCS$m)7a9}4fSqp{z zFBr8U^R}|#T4Y0VsKS$WQgMgHS$$~9mj}U*0ElB@OnD~E9X81~Z{Mi*a_eN{pbZ4ZASblrk`p&5z_!Dj8egBEUfzH zyyww@F0j*MBN0u`|3Zry!hw01ns~&$%NX_z#0Lai zNRh`icL1V__o}53@*i5r&vieeKwhWm@ zxLceLyz}>O>&_qrT4GfN*OEm<*U}w0d2JtQoNI>x`lzGJwj~AUE+wqLMQY0o8UkE% z;n!o`ya}LEWi(ASzdjR5{FyGp8{Vq&cgcTuIB~DR#3)c&);T^tqb>{65g)7s17s>| z^@MLQno3Lye3u1VET-Ml_CuH&JQqgq-f%6Ft4DwN%OM%2LLTGuC&MIVU(o_By*C=Q z#}_sz{)j04PkG{`46d4&t>@eQC%5u63taOD42Kd+RdUZY>PC2MISJMYoofm0f)r?5 zi=@){hhZCBw5~9hR!jSPR;DVfn4QKDxuZ0*(;cShVRjX%pc+9&*%E*MJAfn4%h;B4w-K#b{fUh3vg z)Xk3!%3bZC(ATq^hFmp6cLtM=CALaDE^WvZvwPlL5n^ZK$sKf~aXhjk;Ba-Tkx|xr zA@Ha&Pc3!D1^MyBY`q1&DP`Z9Ejn*De0)btO-)VGD4rIx=xO(zoSr&H zNm54j=pO~!tk*faxMcHnDLS>E!FqR}tP)x$_{=(9GFr|xK#&XFzY~bxaO0J12$1wL z@%53Z`KBRTb&ch7>oZ^4|ANTh94$Ax7IQZlh4W_ z6;as{RQjXf2EZUJtctw}iQV}&L}n*fgl8xcK9L=FLdWkEcibsH&+;G7@PBb_I@oO3 z-)uPaG(Fs0leLllEGrk;ICFI!Qq69jA+wULUp|za>pTMyGz`->2dicdpI)h5&ZSk% zrCr>i2xrQ+N>n$(Yhcp^%oFIiPLEA+6xoQ+?HKsA82k6E`?Rck%J+ua7_as*QTs=Z zLsvILR8PZKC$G%ER3D79%s??>CE;|+IFeW`=7SzKj>!FxD!P=*`%)33EE|4KOeQx? zA_jWQ)|e1JN=!>~g~cUWTeguELz0qAl9EMorK%w&5+TFMX&8EVoe14&vTz{uh=ay@H9_OBl(??3=Zbv^c=Ww6UWWr5_ttc*He zJ_4xq=Lu|2vWS2@?=?{3z3CqMS(*F}G?ShqULFtyEzFA~HXkCw>27nem#me>^)67n zjEK}k34M_dX|P|QLQp!(rIqW}tCQ)Jx6)@f%LOQ;uzWbOJQi1HXSTeOqy`gBrb4w# zr5U6EJDtBJgYVkO#ILwGKSHrOH zu5lTJU3RWObF1_go5=AwF#g|NFF;dE*`O3JF> zp67A2nI6Lv^mmF0mYLx!BsNn8JU|EzlP0^7?H*AOu~upUsmX~8C>uykCMrE$-#RuK zC_b+0goihnp9qr}AR{k~r?dRCLUIQN7vb_GKGLc!9(BHKLu662Pl`&K3oSU%1RX!L zKt;-&#??*o$Rp3CZpGwzLr$IC1lsIqy}mk zmf6HW52bjkl(ytG8D=HNm`bl_T+x1HN%!ep>NBq}t{2acYIQqZDXmzW;W+K9pzfnQ(Yn_+ce_vE|L~RlBrv>D zM{MS`M~rGuD*0BfR$Ebw8idPHKuaH(v{v)n94}HIR4m85U>2DLMJ7~2J50Hf+;bEQ zz&-=Q@I#ALK~@WEL-wgD2iR)=@`^`PDgVfc;xs@2Wn6KdU5$5tZ)fkO;Xynsn+gul z=Wyb_w+;?NQc6ilRd;8%HBpj#UyG^t`2{sz_^d8L{}rNu_MW(LqPdk=i`Lg4)eASf zTqYOLm29}sL?2v{%F3NAv>2q#O#%13|NZV2_@APSn|Be-jNCS`x6A8!+;0hCNC zGG~#%jScbb*0)U3ALs=X$N*%1ZFM(lJTTP#QqU<-V>g3!%^&yifesp1fQK8DQfSrt z>pq@vKpw30G#`zs2c+a_kL@ldGk>+CS`~~7hwQm~NN|8&W4ySp;g+I=FxdGvvubrQR2^=3Y4A;V5)1tR8;euyJL}acCBq2h|E#<#t{ofN+#)M zEV9sP!<_qS7shcDBz9C>Ic<(ZYSH#yG4S(b{uB~)&yz+v0=IJ!uDXVRjTzpRnn8}u zYm#!}L8_XT{66@9!ADQdAgLH|jvMyV3+dfbRX_l-Cavh&xYa3jeYJ!M#2*w=%Or9r zrmJHV_YRfOuWx6ctnO^$jtI;ks!{%-!@H}{5%kJlG;(SD$yT~83vdrzMMwGAAw=Yo ze4%wNxC3)G)wu0%$hoiDVUYFhp2RUfn+6$SBQ+QlZ$o&+Y;W6EC|xzp`e|>)=AI6TZJ;cF08|?$#P8j z&$2%+ng0u9wnA>x=QpdQkH-)lX1TE(X03r+vs8g@RXb%<$eVcQVnN`KotQ9Uh&+tN zb;;Q$G^_D&tl*M{_;f-}cB6I5%+YGA{)0-?$ei;|;>ja`&5sMgbwv9&nM-N8Tr;Yj z`3GvZO@O+S1GVLkjgf9Lv@dL6n^m^ctSA9XUW5mTf@YsS{l}HNgd}e&3i~i|us!tK znvMMFW@?;R7^}XL9*VE|!Y@)a=oDs%xa*O;&3^l_*my3-{!>*JuCTDMrO9+gi2{T@ zJ3bp+jzTuVyAH*8jUd9>Dl#rIJpE#2nCuc*0xd{a$(ddDi|l(5-53Kj=<+efj%(d_ zna@Z4>t9_za-cX=A@D*5wRiLisHx#64JWlLBgHEO$+$hgm(6IXutYB)tOvt+CJe>M zuErSYe1GDtyvPfWQ^Cc-hBe!!dCR0B4L{>*m^^E$n&%qp9M#h(vD1O*CN#Dv$ZGbH zDv{h-xx>b8_OS$v>DlgPl*RD4p;&bqyt@bca(ymNPMP^Cp;EP2D+Hge)mBL~yN<$N z@4Yd<$KBOH0v!d_Kg?don?dQmP&ykA;&t!n{Mw$}BoFW1dMC8iafs{7LQzu=E30GO zkUR<*((YhP5U%C|?bD=@n~YU6bG&!&yFIdQXt|Habfb7&z(G-gd%vA5{d~WM@TXm# z%0b4mnKe0K^a;PLc(B-d_!&`pw>iKAA=q10a&BsEM|%x*!*aAocQ4-{ot?u%FC0@q zeOoyFD?k3&A>=*R_{-13I(CoQ2f(eWy=ffnKyPYTiVe68ip>GxulAo?eN4hc0QzH_ zmjlc#WX9{;ZlDZojcY>dfU=FTKa4>)M}1?;2}<3A(ZjkFO!NYBu!7}kCUq--UJw!0 zmI~!~Jl-a9MFe_3EUp5ydq&{ zD!^xBeRVLIQysiP&F`SA_!;-p(7{=+;C+QiEsq%pp;)qe>j;A3sR)yu_D!$YlYpAj zvuX$dDG&OyGn03?%;;?X1pf3K{ZAljB~XbRo{LHlR*tx0&UE&0zuSHx#yZcC4&^&S zdQ=KF1NB~^D+)EyqfXASchyZe)RL`bSO z^GB*uMy!4`8&mGtk{u0ux^lU=*nYNAKRROT6l#(YXd>&akjz=PX6KAqki7$)p1THZ zF!7~^4w3mQaLa})A6W+?M3OBkO#mO5Q?8&-lJ zIXgW~8dFEG@MecRbU)Irui7@J*nR|!2epy^f?e~WIGXug`2&euyTvVBxIG0UEFb}ISQ1iF$bblX;0G6a3M#imAGIcjlE~)TR@<@1nPaDzg!wdc;^_pN z^$7>Epj!D!wHFWwCNc7xrB-~Y!d8E8wL2J9I9Wy{P<7{JH9fO2lISCfhJ`YnNIRme zX)H%0$*%_6^7)mGMaaUvvPiq@@9&vuT^(d+xqCxN9kLzqzs_4Z<0*4{vPsQfz;^FV znqw3z<*Nys;Ei?>&t4*mURm-77)is1Lr3HlX&|h%V@dgXTkKHWYMjO3t#%EtmvTi_tLyX_eF!YzNu|R!6keXJCb3gfd6TZL#u$S_Dk6NbR(lD~`tW#?$MZ zO=|9ag3m!s(i^u9Hlg7k*+xRzc_d_K5^AnrIegY$xJ24caMvPT45nm>1fojN1pZQ; zm$?dw7Mk(~E(d6BsylDO!xUcLJvx%lm*>bHHlZwsa4sjrJQl~9hE>7`%F(&&F6|>9 zOFweKcgk~R$-ALfg_?--OD2?8nHtAQd0FJmLYbov*;K0cSCt;Ae&{^guaQ(gFzvxg z-48xVNX=4#+1;+%V07g^(T(#sgK<1>OrIE^6=M8W4g-T2(%{fg?>882WRFtx@s5eG zXGS$5TJ1_6f)Mkr??}`sd*kKfzPYJ!)hiy3R8+b*a|MA!5azkFGK(y?)Z^*;It`OB z-^>y9z=5H$J*u&ya#mjS?rSq&`J!95^%LrXc?H`VvnT!RhGXU14JuBEF;73}<{#a8M8I+Pi!bTGeYoP* zch>OQ$|qU;5w-#A+MAHYBRPWVgS--62Fl0yLTkLWn`!W=a!iE2P4iO z2jzVUXz#E3C62)H^oSX6U6{hj*D_Yjr|$`S(ZHSslFDno&Ey)~QtlM;vU4$8TR%rT zm%$VdwXzn~VjRH9uahoK``Dn2MD!jT);V>kUVcQ;LO3%U398%eUP|^^HPwc)VyQCB zrgKykEh@*LDO^}RBBRiH^AN5zzEgXN0a+tXwlT^V-=t7pS(vLO?%ZeoNEalw4?mO6 zDyMKpcEtJi>ac2*1=>~+eAQb=VakQxDf+NMF9TwN?|btGfAGvye%WGo&^hy91JbrA zk6VP~6O#7p5s?Pz4aB`j{zNfd{?ux5nE9qdk_=1vOc%$71ei4$>^#I5HvVhgR>PQz z+FcVpPfWU%qgYL_{E!}a9rW=L73GruYLe-nfTpFTWwu&?hCWj%G_b&O*Kp+{Z927i zX;Ljs@G&7EFV_3UtrTHY%^r5fV+%JZBF9UchtP98r497HkCb`dJ_*y5=B91I0du=W zF96qmzPe`hCAeMX6xYOEYW_#x_HPL<|0EjF@k^;HgdFXr;Vs{T?+BH*W1~E&OhX6e za4p|Lr;zoZtnnomd(gu^yCxLk5RP2cQ+d-+V)UiJ<;1+^czSXdVIR0vRbS7gf{L8e zo+4p4j}^2@aq%bvyJc9+A>5_#PlB3*R}x%zz0V4wLik%LY+M1-Bj^d4kkDYfO#MUcIYY zXEK=!7wX(GWk2&Y#@EB6rbaaCooveX4JdF`xC{5>s)tk6(#Pbp1Z8+tn14qS_e>MH;W1i-7&Q1K|n_qsFY|_~GfzJCZHc~rThN|-Q<*qoSo4~}KVKIj01Z4OPF)fBhnFAx| z@pGG4J$58qsNO?DHO*CxNeDY4ox>Mj&DTHGh zT;f3JZy8foUk&CFfoUTDOzCgS*JZtw;X=|_f-l0jPta0Ok&Tvgq_~5}vBXoiBOHRcV)E>!&tdSc4^UJESbo8*XEjGQoz}M2&TD7(6w-V!~b5aHEPmB7yEr0 ze2T;;?#H8}K~ zBbc$cq2-R!M#4pskG&LuGjR2Xi+>jj_>-4Uo^RLf%s%78)a#lmd9`(iy zWYlfJio#_HmCqBp{fSb>EGr-rF}2{9kZ`Joah{-{An%;_^VJ?=iYt8crNm8Bb)z_n zO&m4{N$Xt;VQWdXQfl2>^iTzCq$9iX12RB&8HRc@A_s5?*dhxou6nseGFhraFGa0F z6&kKps_<4}Wmp1-Pp41gW(xSB} zosOG-*&fEeHIF}>$1X!1F!UzLyGEz)t6y%>*L?cbrf^WMCg&7K72VM66^3Ytd~=9u zZ#&Ln<3tR*XtoNg9}}kq@ffP%5tpse4;nOv5!_)l>Xgib9Q0P#!>=CW`gcFi*N3)+tVG_n%0>7(I+GW%wQ^;T$u%*oB&1o z-0-BG&b`@}Wy?~v(mu3%o&FyZ!UW)dyz*ZZQ}Yf7p(c_JaOkhb1Rkcvj`{Oryxl%e z&TTZ-xIWX(lXn7U{FmLf08F$$mGbH?-Bm7V)PZ3bQ(+(aV4qtt@0rX$>OGtYNixY; zS2xfB_qR&pQNOp|IDL`*!2fbR>+$>L?qXis-f*b7SLK^TL&%upUa9TdLgPf35~{CM zxnu`xROD0$uAbKI@hYvbdBN>eZP++Ncz3cwu(+#(;9FW#JK= z!1gf=q$^e9MlJWe5mUuwT5DRA@?8vRI0s!cQwfe<8CO4SP(uByejF2WqpgGB?kz$)R! zrsh~-*=FPcBT)H9yPp?2cM^8)kINsvQ;>B(x%_)m-}!HCWXcN0uJgr>Xr&X@($f1PIdy+4 zltH2)?Wcz1AbQi|ggmSJ>txgY^PBtY)%4fv9tQdf_!BqM$D7Fh&aCv<+-(wAD}T4A zSy1Kp%k$r&?w@@GN7m!Rs?&k_wjYnG zP?yovE`FZ(j1B@dgXMC&*0x-pt$SNFQkxs5A+aa?Z&~7eFR|46q%-9LH0#VZQ_Zuw zIqr1hhPh-EyR#~bCg>%p204%9cDOI6M;B#X9n1LU)$G**AOZE{)CZ9OZRC;p01WyB zJHwd+=%;fejQQATqY7bmX;? zA}Iv=hm4SulCuwI|H=X!?|v>2MAEh9bH(O~inm(*K>S^j-StZevn1?DfpW6V$s&-n zFi>~qq`XV9pvP*4Z44$qt+#-~uo!^s6+@z@1!^g>!Pnek4C*)i@{L(xoHCceQ;ygC z;n$etC+ZyN(ZYcwfV@w@ZHWd9RskEAjkr8&lpoO@o z_a3;Fo|<4ZBs?V?3@J8X>?KqhISsXgn9a91h9FgkTL6g=2nHdfQ6zub;F~(>9I;FT zT%s)?N(TTx4O{v-!-ZGbknc#&RlqTcm&oCV3wRb5@+=?&`a%|FZAA|*UmY{Z8X3fSyC6wvJ6-MwzFE;X;_y zcjpJ-M(A?)&-vuhM*+0^i$PMyUSzJ%4NacUsWj)-H}A1$4$Myr8{EKuB?NmuyZV*5 zsg~NwWAO4?@C6&Gmm)q4HTc)YG|K%29qpgh+t*9 zh*~6U{K4d=tRUef*4#1NxdAyzX@Dc|QA4#)MV) zPAjAigU{A`dI>GRArg#YfDxQt8 zu)zULwyx*RYhrDeKmV0oJ*36lh~7H+imDBe%YKn~7xcwgf#amkw8Wb>_wxZQjkfIw zIXUM6Jk4e;`r5lWJkRwK4sI04grO1B)sS0?{n!)Nn$IyuQ-++&=?cEk?`P+6=v}(< zGdA>nd-*p#U^?X-j-%?0Sr!401?PXJ+M)cJyZJ3k`!$AO+7)xlfF~vY4^;b?t4NUd zmkGH5ahL)9N1UXp#n|C(oE#L$Ai!y|kbEu8`M@bdK)eZhQNfLv)=1a;~?yVw0dtjG%G9*?`POx;V zgRPYyXIPt90MjI+m5=BR?SMT>m(Oy`f>3G5YFP-MCCmm$OHPKsnYqdF+4if(9=$}` z4O!Xh9Q;C9Sp{+Z6xm>Wai9r%qYG@*`~u9tOgWswA+ve_dEG$yA-Boomu3heZ~*4G zku-SRHb^c%sB-`nVL-z*D|l|E{GcpKO}{GZ@L42Q2h2CB_={dFL$JlK+~qcbiAXwQ zm%feK`rG!m?dr18Q>T(xZT80CCO6HyyeZ8{QDt)#UI<#wm3rn>pHz!Fkc$;Tao8;l zLj$x=wF6k4G8vUb7@V`=({#=xo?k7a)DC1r(M5JV=-X6J z%S7AQ#9bpmQyIZ+KA!}wbfKN)i4jU9i`j%SQF)K7-v(a#ePgSYOKr_ouSJXizF0#z zOE)z9omsHSz#-@NyLbZO@iv`!{fKAY;A#eA{Fe!S$XGMKO??b&srVCTgc z?a+M>DlGz~yC{CNa0#E0$f>KrEYfEuMhScO0f*6I-QTjA_g{@&tGz3X)Gu6qe_Z$r z^qxz~plXMS3pgjO7b8sr2zJWD0<6c=OJNFYB`%Jy%OJv>WzEk`LOx7&8N$4lbzR?4 z>CY!&#&Q;0$}Udvg)mi>zgch!ef9nOrM-2&c4j#)(3O2n{x8d78y+xtNPHw5S5F`ps*2C^MOv2*k}n8`WShK#;3Ww$-rXTrCP-vz2PEJjyV3# zr3AzZ@t`+*SaSkWd*9B%I@&F6!y>$yKvr82KovI9M0?1>x9Knsu*u?iZ~daMTc%{4 z^j8YZS^-0H+<j44O?4NjTq0Ma|JxNEYHF9&9uWh>k{@qZ?aT z!2M$f`|W=*;YFd;A}tLxtd+=iL3M6kt!`qnvX(?p1A0hgC0Ae;UM0KWewc?Vt5m}% zh~$J`3CD!Frp1E&Gu}?AeQZ@lgLbYK4l4fy9|g{FM$HUMH3Wlmei)i}9KOyiO#w@# zh7P|nDcfo;4z6I5w|u^Ne&b#Avqx!9jvY|KTL%@JzRA8)ascp*6%NZ4v_+(7=n%Ar z8zN>@$2Q%%_4o66wRkoHdu_uMja9Tijoe1nG9Op~zOXDI)`7?gY91wBZI|X10%b5n zK{e2?$W$6ko|Mim{M2KQ{88~+oy#^GdHe!Y(U7{g-7REL9#pg3LON#`g_tr-zS>L$ z1{l($$_Lsz*&<{&n?hubiJt2_teCc#t-qZRnwGo3ftU?u5@iF8dfOf$JcY_jMTaM4 zK|k@K&Gm8j+vip4QIwnZ43RzUyZhKq(lzxm7?+C~n_RF=)>U0p#B3#zu_*o?mnkIUA~ zoyL5w?QHICDN#s=zBpL0c03(wr@U)dftP6k0T$fEKs8DWIM(!8t-JVO)5NV}(&Wa? z&Q!+CfA-RV2F7Zy8>>HB^+$W&57~?wQQ0^GUzsySmM;@Dya}=HJIy->gx2p7jVF&| z?FBQJC>R`CbXdjLV&Tq+;&MLQKkwGKfBpIUY>fhUgX(Xt|3^{(AAQILFMuI=CFJCx z^@o>8dr*zbBhBI6SPU_A(}hYZnLb-i8T+S(DJ?tc`SV-Xujzb6 z1(mP6LX2S_@#u8`#7$6**`ZnY(BG$!Fww?PW3x;tfLcGZ5pi=U>FY%(-pvcivLCpG z9<3Z%!I1Qz1E5=0uncxdl42We2sMOiM=As<$CM?Pch>5^&lDyVHIM(9jQr^(v zXAGmC7E8GeMPMF4I3TwGsxZTpEifqV)|Q-uY`p0VDG#uywXw_=YgM^R?U`` zT*u6O7_t{-%ZV=Vpl|BAb&??!Es)PdKa#?01q#dMTXcYAa=bnfL1QeF(j~IOE*J`+ z$HLJ>jbSe;D%E2~#VYAlC?=ULF&IJLRD__?i#G6%384T;E7PD=&Ud?vQZ}In6}RS= zq)}4U8W)W-5GhEl!6Uj7wE;L)-lrJ} z6~@v;PU~FM7#tHzS+g@(u13`op-!#BZbQjmslj&z+iB(c4O8U^Cp;5Yheso9L_)TLz2EwmIbEd~9(#rM7k9}x#y`&O?q9E3wXbVu z*p4IMX!3s=4X$VTlTJx||Mgs9Sqr^|VhHZY=p~=6;)x1+KS*QIrN)Q9ZS;T9nw)V& z=yIpw3e7Cx4hKUkHR^Rub;B8!$)@}hF<%9MqzE$3gRtX$}!oPmYsc9}iiZt`=rAiOSerfQCj?~PhLbG=+< zTuZ2pZt4-^=NwKnu?Y%nNe~kzUj5diGrc{rOh9?D&lE1<}I-%iV1TP5szH33F%tP87s>dyPqB3mNo%cQLkZR;D z&26pukkxeND486)?)P-^>1BM&^be!`qt5&)dHeA2!2NVw$M%qM>fwIt?r{{tzR0HfS*4bd;2Ybuv@Z>?k2m=7^-M+1k1@nJv-gy2Wh?JSd}oMW_ktcZpNh|Xlo4c^6xt`R*{rM zLAW|@I8lF75uitRbMhrBqkqu^s7hYE32kQ@2PObw2vrVXwQ7ujvX+R)DqZ>^4yM&a z??I3EE9|dlmA@Fr8}wo8sCKAUi;Qlj4>?lhdyKJ9t?sSbpg|8sYv-m6TF1mPXFwOV zA>Go5QbQG^yIR?lhI)Oy@wnhZIuoCYJL`cCz>p(Vgx3PtB@^g|fdw*1?A`4md3tlB zQN}huwAVm@^|i?A;mkhuRLO~ zt5jr3cB3l$(lK;JBo1mk4y&>YxjA|8nwF{XNGN?=>yHHplg(D)o1q?&_JF z1xY9Kt0QvrECJ17Bwq0AzIVh8HcL(fuVxp2U!vop@+Nt-upy4lf!B;aAU5~zmL-Y38VMDYxiZyT_%|RdHZZ2N?yJnTvhfQBQ^lq6mm*kZ%!i0ioik zUF+h|AK{#EX&K$R(N67RLR|?x>wLzs?|7gdkmJ_29i>@*0hUNKSYFRQkgqF#HGzuY zDG52>Twp*V`ER@kKn62u)eC8{KIXZIWWaq0o(LH6$z<7i&I3UKxG4SBBsG=@`xA)y z4|zmOBJ#F{Q!N=hamxjfOSuL>%@j3g4q;=aX(RvUOIt3;OD^#9%$v~zw-N(TFcfpx z1;`58bW+7k$paNF_QMScPD5#&S`EFYwdBJ;#9RqMBD`^hT6bk=s$VDcU2AGv$`^}y zzcr&5pen6SQaL~^xTAy<{BZ&h0mG5n8(wpCs8Kj~^RE8YDrQD;489$48F z9p>%G5GT}%mBu{5e+-twz@P0;ndu*qp!R2*hRpW{f2xzz!fMiZ8Fs1Vbq7iM3%m-J zB92!VMdA&7yd^|}=YSc0)I=U8N3d`pUqPeKpxwP7-WI@ueW<)xTCuNhRio$B)U-Tf z-JV}xg$WysNE;yt4u;#_HD&mgl|kL+p%xvQA1po`H#Th9ZVVcej*p{QeYwIlez@FS z{7!e?i~`7k0e{6%cq{c8;TZ8PO{NP5#`f3R86%nWjL;CS>?VeyIUaBqT7Zz?4f@{d zEyitTQf!=lt66b;#Kh}65y5ovwdcLWsOjC~r9DJ5 zQ<6Z>C*8=VjV}M?!+#t^`{qAR{l|-j?9Y}GAJ!wxE!%Hl16UnkGRAdT;~%a~nc4TCz7%nBHJ|qj zQkzUeXfUAeucB9YK%VUttm&cnqlxMQ$u0ad4-BT>PE9C1#Q(T@?F;(2u)#JD;hZ_3>m=%eV-&@m%m zCz*N{zt;@a7UfA6um)A{Jq>_A6@6DUpqykY((uF`ex1By?6#ilh^!qqZN0urk}LWf zr_p+EarJ%Jyjsf)x$cHKJ6~_6oh4Y1Rv+xht2bV`9PdQz4XcJN@2_J#`CO4NJQp@D zp5z8WlfI#i>t2}EMJGQV-1d8;esXR{-r2ta)Yu}winTq!>4xOjp)6;P{%B78=NICC z;WV22Z8{(Q#gRJmPpefvQ6%l>8w^G!AJ1Ri_StP%2;>)(DBqYh5TNfl*L}MmULo=MSn=>`#gXdGziA zZRcbYSPVB&MBwl9d{IZorP1hk@o^LbZIP@bUIzpr4HS8l?J2iS~4&;!S4EDX^P zcqnI3C3ASBnZ_}9!U=kaVHwjCz}706^Bf9{OV(47Eu;aC3Q|Nj8HOx^mJH%w*qfse zw01r%3Chh+6fnR3_Rx+k&qgo=*Ef+y>Xq*oRL>tA#Y>6LyD0e>(c{9wG9&uPVDhng zR52Z|Txxc9l3FI2m}n^#aysSLsq9Iy_EU@yk=NoD(o?rzw56_z)x??;ph2D~0@(tX zMu<>~Cjk-q<7=Gg7b!DhemscB0db{PZT1;V+7lrW zrZRE)T@s2DnsZ@SEc~S8iiWg$od}z3=up(}e@jn|5;kXB@vDOO)G4-<_R=PUwF@c_ znvD6_KSVOm7kNJR&cFM}-wU>|u&^4szSye&=fnSJIps_2x>?YVu-+{?e6e17>b)_x0XQZSISvEF#%@_87usy~~ATUzw{q@XWpwb}7CkNZB% zI}$h&-5ade2FHGX-2su#ws&Dg#7%t3rOph0p9C%3|2h^=5vBnUy2^E>MwG>7oc^?U z+E=}ulpU0o^_Uy>Y`7lfIMKHrP0QV)@#itS+!5M39&}e;c8!0ze?&NV+I}!5?eA-H zM3hC?$Ub|;O#XfAM8vnR!SD4ue{rl#JX@p;C0(FGl8YvHVwMr8Y?(xbo|tlJ!lg02 zcO+cv8U5p$EjOYTeV2TmTd5(>L`*Y$^13JL!(;b0T_}JDpndP;+^RKG!^jF;r6}Yn@>0YyuAqc4Ygz-RBWiz8FPNeC z4u#1y3n8jh`M2L8$DIkB?9xU3(?fe~HZN<5gLuBn;7BPUaD5GW~VSkcC$!@#3 zrVNB&P>w=e4lXbm^i}+Mb?7-UZveV4U5v`g^#7{|`)x4SX(PR$L|8c}u#=-lgCi!9vQ{MQdY%V+;z99GD zKl*Oh1X;Dmg%NZxo!lx|;_-OxuR4F6X&xGZ|B-a0@U}IuYi3t}I{}hC*awZ@Y-Jv~ z_k)L0yxwK`+}r5*j4*sBl@DSpk;*=t zcf;SAq>MAynBxm{1RLQcuu5sm**Kzma0(eltYn_bZeZx?G&@r*@F~5E$Qr$J&;&Y2 zWNKn0qIsmao#PIYs0@4hn4Js&G=&U^s#xh7{XC$BUnPZm=2&mhm7-lyc&1#w6C;f_TCR4p10Ukh{RMk#s zq=hI-Szk9uD&YaxYtxJ-Ny`ul@zi$9FiH3^i~8fGYg%>I7z95`Q}NePRV%vWHx0D2 zmPQ}tcMS+M;BpwBiaDca6T~Id_rph_37#lP{FV~C#?(x&SW?(0-Y;$YJ zwvqB5^)LyOgZ8pKOc1g>wh(;oH^U?)r+%JK->k~HL;l(64HnQn4oi!xHzpoZykFmV z{EE1{s8X*Kwo59SIcve3N=<5SA;8snK)Q6sJfHLCI%X$pep(BJ(y=$vua9hk&l|{H zNp+)pBq*2y4UbhGPOIw;S|e)+po`@EGg6e%S&si7ng1x>c<6tsC{vc_hu9%*kMyH; zXcfhm_75RZKbsO!K_Wyy3u0D+;?ou_M_|-GX_+9b=;dvr-0ydJC-Eb42nIJl=eSS6 zvwsqQjM@!I*p-K$nF;_14-GctDm(O`7BOl;#jKGUv+xp?ofXEnsws4$mHDD`n zb*OQVVg!rXd`#f}Sud4l5~pNohpg4eJhh-ZcQK?HcS6ib4KeaV6dD0~X#b?Z*HoU5 zJDJ)73S=uOp9kC%60}pJ)~_UyYe_EmHaZShV<@KMe?$DeH2bO-^t_Q%Q&S&x|Fe$q zWpqKRIwHl~S-MIG%{K>Nt2TnvD|_B}A9cDPJ4`)x{g#4C0rOiK>jE(=#~wacuQ9FQ zAHn)#gUWGPLB{glNK7}70H)u_jncR^=`;)nw1Xn+&-mF36{5nD{3Lu^%sZkdONnW% z_|0-vf6u-DMyoeoK-sBQ#`%n=_Q_#D@7{Lx^}+JWfm@Uz9Lo!KODAP$rr@i3liTn0 z6T^EKzCYaV00ufmz@EMwUYyx}?8AsAL~VOpSLfecOgZ&pOA|0ZuSUdwh1NGPxCKHL zO!`3`DOny;P|yp#&AgjxSQB*YNwEcPq8Dv4jKqZ{A5j83{S+WhFvGTjPfC-dmUd*F zi@J$>=3mdEyi{m!ML6kT2A<}X^cK)Gt}{W2S7_eYCY1kDOk=Rr;zCfHIT6ieRw6%z z0*&wh0BRXUB4blB(*i8#ydgcEBLa!sA$f!(59sJ;%2ct2vV_V&mTX>xLl@EJV8ci(?|cu(r2a z@Rx{y+3U%|FBi8_r+f40v&={LzV~AG&YsImp~R1kpiq(#n#?4Bib_6%Q-{U6$}fNB zhU!(Aj&l7F>9uA*$kCl#N^mP`Gx|k$&GHLTyTc^)#)Su~@1x7&F(?1^#I{ni#Fxm# zNSVF7lDd&@l_I}m!cSraR47HV6>eDJShuT)U!-)g;%T>`415Rw8Sa{QP#kz@R0du? z3k1&e1p+J?zWvx0Y2gqvA)Uy!9seBGi22U1m`cJiOHZGL`sby>ktMiAjI<5UI1=+A z`X)$bIPW^q2KcQ-Jl0DdlSr^wg-2;G4^PxG3Iha3QoZr5b{5aMT+&3Q_VA8Rlq%n% z|K{pvSK5qNxz$Aj5Se00p%0NGB>Y_Tp=^AC?rFSnH$1%0r3^(L*JwO`XsMQ35Hh9; zNFdCXH;l?t&&`JsZ0;4JvQZo}Moj6qz*&m9Q(!&1y#dM^1=6ATzWQzUe!0Ea)7YH6 z{&X7gRIDKWVEYXLvzgZF#1!>;lS+Allb1`{NF$U7_F#U8Ja^3eeAH8VyogPPp6!7| zrO67-3UNSmnR~O}n~OVA^l-GMh-HzJ6T>?jcT0YfgEK~_QyI*51jP5L2 zGz$_F?b6XM3il<#TEr2$_-pOui17aE_Y1!FS^Hhq3!$!i@!vJ?Sn2KV?k+{hc>9I{ z|D(UX!R9#4RyhcDvCw*ISez@sUFc`HGRyPF8D*pDz5I0d5795?t1*MP*#Y`Q_3#1} z5JTkbHtqRb5dD86ObTx))4L)Q8qak$rGGi!ZTGEEIv#v?emx3p&`0v#go4!tS>PA= zdE2q~O)~U{O*qG#vKI%ytzP@nIQ+^D%d4nB&i1{< zZ_Di>kO-iXtx1au!~~SEtJkXtd%ftzr$foYW~4AGEQ?;Utt=*axN8trQhBwcQ3`@M z5H@H%Zur&*-3jW5vp&Xzvr8D1b4b&_(R^6kvQ7TPI-)I;yR|`-5p{`ogpn#NHeK4K z%9!n_HzJNTk#gL>Q>|uCcw8-wh^svI9`Y{LssBN97_YssC4K?UiX54OF%?-n1=*~$ z$;1iot}m_M#k$O4)8hKm2TVlki#@yo4Gh3^v}%lM)@N71!tjsE`gbAh{$)I0Dz|;G zvJo>2dp?fgMO!F?;q{5IMrhsR;m+y^%6kHz>6F-rD}L(6`ThQ?BE)VQqlAxH;&J}H==kVg`A+9D3h*_ z`fYBxIBJ|fQxK)pWM_P-snfBd)4bxblOCtLt6ytI zILVSje;KM7T@Er*Plb2#nbhdz;U0Q=T(;}NwSOi2K&lhIjl!eWDf^$5GYsw5$q6>y zag(N}$3uOb<7sJU*BQ(7_dVjb>ZG;0FoMtD;X4I?%S!^Ids^h}mMXp72E;y^u?)0d z$@kP03xy^Gx}$-gOSPbac9(cmWr;H5A+& zP3fYcd3e}Xh+;(mQ)yRId;)IJS+)dbYdD2-1{?t5C*Y*b&!exAd8qnH}f6Pd%dX3-lIQS8<4A&agpRnx zN`j`%B!Me|4d+o^jvjCu##qhegF)>Q*JwvqojiX``u=*LvHAGgM}N>!<-fFg+5lZS zgWKb!6jn|oeZP8wuxAQf_cezeX8j;JZZCwk*IV8U_x_KPM3@oC*=sG@Ux)1I%Kt#*J039G+96ZdL4HUO$L{iy`D=god3Ox$96$y%+BYh zVGF`vct5-B2Z*E6QQDjqZ6$FF{#mm(iZQr%!O98>3SW!YwGl6c4MeAmxQ@}1f}@5y-dQ6? zExy}oHAZQ0NQEwLGR8zYk4j0gEb>!GP#(G|L{yqT5Xmh*jF!`}Liu=mHx-&2k1%6G#)c#$>Vt;$JRYD$Nw!jAIH(wM)TdXM!{b5lyzqNxS@wi6ynOP*i zchqn(AOS@)ib;nh`)}nD2)OH&AwHs8#*;Sdy8Z^K z8*Nt;LF=p09a-Xi{lS|T{lyH#fa+0rpPE{t!R!l(MO(8U<(=lq<4^0QE-+762={lZ&_!y=Adc3Xk@aB3Qp-n48esLMd``3- zhwgg6ne!q*GlLh4=24pO=9P$)!Rpf(ACeMTo7{J{^?4ss!m11}jGRm1peU2q*Y}+< z)W@$4Xp7qchJy5Ng7*^|RNlrhGV8t?8 z^AfC%Cx{PRvlk`GR_{sz0E1Q%0R@SQI?%%8U+`wtX` zKdfSz_xV)8P|kBjor;NOQ=2=c$uz7Bo*ha#D$o$$jKt0cPtiKwJU)dG3$eJXMQu=@ zh0<9`5}8y`LFk+3C&q1?wtKYW(?Fp&kOfL!W`ah6&c7ajo|hRE=FJ(_DRfw~DT0jv z&5HH?E~!D@C9V)I^o2Ho#U1*@oBlK-(L6#K!1mJsmwlw~+cobSV*dM$pcFoLW?HHL z^cK4&$sJZ*7Yut_CgYO~L?zUPUN3g$4}^sFm%OSl?#bV-mzVY(&ytAPxX^O?3H}aa zUI*xBJ5OL_I3ETy?Z>-2{BCdD>=Kz=16;-S0THz#9lEulyD6@|_77jo_)aq%nNTKE z*f1K4tpBUTSuKrV(}?GGBJtteu76M@O55Z7hMW2+xz(kHH}#L(y5W!R;jo*1F&2uu zn@}^Y>2VSKTiHO$pcP){Hf;1_&)R+?PM)QE`eQ7Z;IowBbP;^1tV|T)Bq!U5#2z|19-f!b^vrOzpmOya7;N+BCY85VB+gj?h_4V<6UpPp3p2&l2sUsk`+4$ zz+*--)3u~U2^Uv4v9d~}K*eZFHLODJ!xh<*iyu)6Nv5*c@lnHCF{f(igG!9Rgs%f% zHcPt{-^Q)SxLDKAFaj@mvSq2kF)2UAQlsnBOuD_K5p}V8xPKe);>-@wim(M(moe#^ z(8P8>idCjs+UN+uK~UBCIJgpyt5XvS!&dQ zz6>*A#ximol=+r>Wc_F><9AIs$FYKs2Xkh<^HiAmz`jUj8y(@K+hJ!Yo*G^1bg^e) zqBSGhm)BO`tr?AHOjQIU`)&X7XVv@pkrj}QCk2X=0zZSJT8_h&_=^99Fcmdbo`LNf zqb*~H;RFUY%N3Yo+ib?SEAJ(03R*(&MZVdNenV7tGTI`z8+IQ;B~_{zPOuvQv+6Bx z*o7`xU<}6&J3+;U_}%+T?2c9v`IX>Jk&s@KYE-{_z!<(a5|mLh+fW~s>=mS||NF#$dz|N;@KCTe zbeLk2=slQ&T~!P_3oM&#A63%^^3Rf>XzdOB9G3s#O0W%+f$$vyPtZ1tgwWS^OlssP zjzfx2mVk$={q2L|?18{A9EztQN2t&vnV=lYftfpCz}gK31LJ`dbWmc-`%^4`sGixO zFGX7F%N%U&%j6mn;3`+7c=dm$R->+T#~PlbjLxklv_0?nkiCuy>86|I0T7I0ia~RSrq^m~Id6)2S$heY?+zt$J3>nx#XLB6@_j(P$5h6GTjw zTHqgE?d=Y|49~RHie|>OsiXVC;dFTIYkugxv|OsqR=edx*%5X!l$6Q*+Bg)^n-teI zUh&?$&i6c~tb$cBc_c_fji%C4gm8uIl>t2@$}K}N<`VC*Hau7$6m&XsO@syFvv$=Z zFIZdmC>Olx-S3On5g^_4GIVH{<#cNoK27=~K428CWZQv2={-tXb{H{hE(#7NWUfvJ zIHNqH4Gs@9b3{o8tar*4z+cxc!>zqf!!^CL01Q1a-CM#8F^k*pqfe|81l*WwgNO1( zsfr5u%-3lbgr06Fn=^`zY({O)czy&xQsXm>#Fi`wp|R3)^EL>g^L$ z#Eb4o2pV>2#6<7o)NM{bHrCvBI1efXKO=m<{wiC!o7>th6yXP+9w#SIiSAn2amI21 z1#*Kt*zeNnRkLvw*6{dYbX|8pc#)q`;IwA5$we3Rr(pi4{Q3`j$nc9nYk#$2jh1fk zKMJZ4d^PXo2&$c!wEyzmBEQppCO7xZU#3McuM7duIG3c=)t{x(4DZwCgdd`Y)UyeJ zMA}6wgDxcm>OntX*bf*+)2M}ILs|)-%6Li)4se73tCGrhM2HNi0Ja@S*;Y6$!%(E@ zLt}iKuzZ#vT5co#J}|}&n37jMyLo`4X%T2!E-63+9!m)nE2Ui{3PX~vmDDPSMdE}Z zUrnQ^#e|xc%1Sy$1US1NU-et7L@M)-=XX!AJtNr(XWLR}#cCo-jj+<2^r(FuPr%W% zn$W2MkZHy8BpP2z+sOuq!cNtLnHkgI1JXt2;f0jH1Qm_^)D#X*=zqM>y<1aN>s) z;J)SwN0Z_3wldY5JInjxLwt`D`@7OAUU1h0_4&my<0uwX^HXD-+Q04y^MIMFMwqw7KUu|ns6FuQi1+L9@|KRdXQ7{|Radfk}VRsv! zs9fH$2zlx7Y^bPn29-);3qxVq6k?R599CJmI0Rk_nuUn3PDv1(4x2&lCsUJA>dWO9 ze-k;Qkj0@*RrOx}BX3*4BT(%D8POm;BVFt`mq?5!Vlrn)bSctE>)UiFo-)>B3jFR# z!lT5L(vgAUiS?qweRZj0c(!$xt)6*ohZ6Vjj$!lv?fN zIMh!o2FmHjsmPjX&jRM6fc7hJ&GFcvhBE$oiqv>uP%(mDCn_}L5#QTHQW^BLabp$) z%UPNq9X5EDcqHJL9qx~HjWKrNq-Hu{g+802H&CWXU9U)y4<4{C{y8|x<4~QHQ0^)B z&_J{~-hH=~{>I(;$S8@M>`qIPCQvKr5Q+T-1n_-=q?k%Zd`w1vqSr=e~c2f_nFXs z_KfU5O4q$2%zU|KQ0hn2ep6hc;IQ9k?|iDaP#5j1y7Zf-a$(#!1IDqLxObZR;ZbVy zuG3-pyj!xbpPLstzV@-9TUZ^4>%HnV9hW`%%{Yr6$;S9HHC?`FE3D`>U zLAtwPK)O>xQo3tsQ0b6vkd&@{dGGfh&)(1bfe)<3uvm-hJg?*U<$4rLRkw~+ZtRr3 zfSe5pld}q3!O_&=@ArWfNQ${?swrS=C(gu*ZXFsLJeC(subcotnJ$}o85G1SheD$O zzhL#%jP~vkD}+o82LOX2$JX9ZFN2t6)RJStY$~RvUulzS(>Mpv#nFw%vPk8}3g#si zD#oX<0RAZmdw@+isZ8sv1eo8Z0DaRW*zI$4j0AkFDIt9=e6CuK&Ji=d&R^z|Nr%Rj zL`-?73Xeag7f*!4HCc9?Zkt(CB#ihyj#-pwS%oa#kg7uDDX9*Xd|FPBS-jFd*q(FD*yY-;%i&rdLjwJ_JLTL^lHg zd(PiV7z(q<_g~voRBN>f7Iy4XLF|4)$`@($hwCd$pCBeNG6v-BrQda!X^2?Zn4(oa zYzixbIZuYo`dMcCKLkWCO2;{K7vu5J3v#-6E^PI?X;lfv~t)MudE5E zAx%JPpQA5>*-G_iqYkte1qDS}RXZl85>xQ}e3Q7QP5i1ro6t56I--2OCcvUU^Woyt zs~<(T=UD&J0^o5R-H_Zmb;Y>RhU?2{)Q|cxExjyhJ!@zB961kbRnq!;)MabOQq^&# zOYS`Ms(CYRU8Ai&sgq*Q?B8m*Knn4^sw%~znoY~?jp%AQ$I+R=wY@&ZQwvLpDdugnQx6N&a&~D~RNEZIzS%C4^0yMT=^f~21}rd!WvA8 zaDBWEyK}JHzHxnmWNsrOCRmD>>es_FLyhSGy1x4_H@=-Tvu%ynV!4glWDHcmG%Qh>lj5JjaZX>}h zQNDS=k%>MhkjQ(-AEm06@Jjk;2RKSaa&y_|wJl18fg4RnM%n z3_c>M)FvssGHs?RH$)$gfL+R5}aO`iodr`W`be zCFe04^B1?+qJ%vF7%*(uv zw>KA#WzX^u#u1^0D#>|;*JUK*R=#x0AFe<3Y`V*ZnupO#*huh$uL$0buDN-f4lUn* zpZgKM0W~e!DcOv)@E1#MA!15FqSM2xU8z-pZrn_qk)xu{^?1p4Hf`FONg%K|5{|x= zQ3R2tJHO$(F?7FavDFud9_&O4Jdq1UC`9k8#dN9kAr7S#TLrj{Ejz29Xz_P zT%#;gas(X_{^9GbaXhPk>((iByH2Iy9~V_cIyS4I{G|_TpE2 z3n_f<1{(rJ;ahWg0b}$Op=azeUvphN{PH8o3iaRg8Jj-MO15j11crYv19)(s%~8>UwlXC-1d-x37(Lza!z6@PTDiOl{5^N35V?C?!#! zBg_X}s{qL{?vG}_DE%!Nlh}Rp%4zd+jSwcWE&f?4U~+))erSJTKo07a)wh5K5!zr9 zL`GfL<0ak$V~0uQoQ<14_A z(Y#ZUttTBj*FUFMit-ZfGTLHcNP_Uk{Y)Moa*0c@ZNYYCch@K!oMVx(6V$?*Fjxaa zlle!q$bB5Z6=xq^SodkhoE&q>vgw;Ipi4h==Hf=i35G@{dN&BL3&-aJ>0E+_qU7T@ z@4I>RjC$G}x_f^0YG~t6)Uc)V&ZeA!_>SnES;``Mslsm~u~I3lR9CjM$p05| zvkwT&QbLR~@VnBC)^$8}<9mI7YR9fVP_ypl*GdZf6@CGto>l}qmCcS76%745>+$u3 zG(QQe9+JEL>1!;2RHK!r=SA>LF%T-D)i+m`5!3}By zB+RJY@qjjt?maL8L=9^LCWijBLdZ%6ZLXTBX)N_r6Ie+lqM-Y|XC#^_C<<(b| z4I*Mew-t(|u~sSIx`~x;?3aUr4pEpwRVoX}d4>UL2c8IfFHjSY?&We{NW(dP%0PBKJ~{VmXAr zFa}-PEW1HRB+%lZlq>=|PC6Tv3Aaq~3g5OPc?RCe0G0J<323(M@!q9-Fjq)bB5%SL zY!Z-YL16>#;WU(?Z#6AcDT~Gk%xhjPrNpUPg=T4_1s)zseq$nc+R--Y*c)k6*3u1* zI!8C(F<;+)V+fOUpti&Eiwi1)ktD@j2XULbdX*7Mw9V1^ z)}qSBGhFA5jAz1$0R9x9Z~{ANMB%hF`9h^_$*Bl@qAJ({TJ_xJY(vd|?gac_Z{nMG z2&sl%Ow6)cCcnc>mt79Y|6-&f9`S~GNS}}bui}J{+_b4*RhnLk5qFY(Zlh(GN1OCG z8pc*>Z$a}`lIa^Xdc9sf+0}q=`9tde@}PQi!4vddZB5N|Fu~JPBe8p*F!*TRH#|Hv zXX!M%zy#?Fk)9X>-416XK`FVp@mfZ{8scB8QDDL|5JVKJ2pr6ZC_mqKEGhAW6o zq={FNH!UELs05ae7ZRIxEzkgZf}l>yqBMMQgpIi)$+n|Z|KoSK5!dcs-bD!YtGlAf zO!`~wrIWF&w&gytky`TbW(KqaB>M+6Nhln>olKEEJD91`i4BCol*G8E-~aE+Ze@higViadlw?ECNE z5|I`9vl9oSq6IoN5st}=;5dlT$CJEBXR4$=;PPEGEoQV3GSoY$N>*>=kt^Wb&J%3x z(Fsw0A2DQ^ybIQV$V4|JfX1~4WgviL?yA6C>c`i)rDz;8PCQn#?_1U>LR?PKxwS!w zs@j!Il2;?iT*tvyBfh)ZQxY)KICN@F8PLqlUIBQ4e{ zMI;=>AA^;1*c&D=5?iH;yLg3>!4T;{E}v({#%R$eZ(AHJu(=Ex%mD81JG}~@tDnH`WX_~D76C z+wB^J` zSA!FFh8n*|ud?_Ug~+}Oht2>VTWArxN}5Ss3Wj|dYtfL}des21gbZ;J9Frzig1uD= zWFd_C(Cb?Y8noL7;RUp9$cQ2kn&i1d=iM3cz7kaFJk$H~P09R)1kPq&NW+Q>U4c%4 zMNE;N$`R@5Tk(X0%PYBa^>TU@;R^RRw1X+^!)BoIBN#QXc!|H*Slg|XHRnp{ap?B& zW+xX$Ef>0c5o7=@0*lb6ZEkxVXS*c;V13O%hf5b(b}@~iij67n#@ZLx8I$@7v90_b z8}V6Nul1xYrjiH}6S3Sbqn~Yf^0hR9PKL)beJqc{iHTswvpM%TO$=zTHg}T@z@1b1Y)JnCYenN++&y$`E@`9Tm{(KvOUOlEdf7{Rfe-WZFUbeC4aFS_1uVqmy91dYhofZ%@p>oo?ai9X)SV>1GkU)`rI%6?8GPc`MPN?f(0K{N2D-mqN@^vRh^(0Ed!yqcK0_&CYWe z<-=|vq1kG`!}F;ow&ef$XtyIRz|m8yYWw&I8s6=We&K#2gKV0RIILbqV+-+&EC6j& zM+u|p6;U#LP{AqqDc%!C5J66sl?k|q#47nE>6oL;Iy!|b-3jFi@TaQMNN4sBgOCHg zghwQThjlBj%m~Z?JDO^1P|WMHS4GVL480IIyI$g4-_>BoOQ86XD zT6?LZT(Jd|-w>}Kj9Cjr3TcCC!34nMyWNsp4=#W_M#-pw#)d-h@aBGO?Bl$$spM6g zH8`|RFt6^REqrZHbkwM-Ozt=94-OBS2Ux?ecOisMHXo!og0sM0W z1FQf&i;*E{CtXW7v-v+yo;PY87y3sYJJW2nnJ2SflEAW zL%j?TGQ7FPO2nNEFeRIeJ}2L0&?<3L!6b7SeOF&5^?}Hzd>Ng8kH*vBY6d$R*rRfc1X*$+KRvn^#iTyBpd|NI zJ^bcyy7+anmgHYe#Uw}Nbf~X;!$s)dvE_Ye=(-on$Lz8bu@wLRTH*c?)c{iRpqC1T7_y+tIsIPQLC;3a1daG}-}sj4uSe|po6TKz&8AzD{x)mHw%nH9t5-;Cu zWn!qU`)U8J7ZV@K7O84Ie{zy~9fUwo4CLjKY$!OX4oI6Y{UnZaRQvM6MxRB39}B=S zH-dTs${Kxe>-o~iCHa|^sfO?RU!-SR_1H4Z!+K3QM=85Vv>D5+nNq}Y`_h^RqLfN9 z_NK@+yI8YQ#*gSer1bQ0st{qGC$gewO0rK#YE_a&xFQnie!HhONeNGIXBom zfzNrfs-PLmCI2=5E3Ou~FWQFb=4lTq73S#bQtKBxd@u*cpv$CC_{GFqCA?MFe*jHM zbolte;9|K{8Zh{U%g$Kf!beKrQEWJT*h*631a!^jB?D_4E|zPHqw(Yotgf4FDWVR! zh~89eXbPs>IeEw|?+XH(TLp{=b~kyno5vcxjwfh4MvNR{XZ^&LSY{-gfhM zm`gqJ6=qNKSp*m4>uLNiG?Y-J=z9nJxD}E}lP+B+cxHi$aP9FCL8NO+uZx_1#p?n< zxX1bG)N%o}Ci6ERtM47BP9nQm5$^mqYy7{hE#Dd%);qgIVsw(Q-X3BkHp$Eb$~}OveKYS zYN?cD`8g&Ncp$zSppN?KwpHT66oF`}989Hh7sV?jR}Qj8X{jbv>QKiceJPoks;wqd zTd}khJQIhY9ZM+xE%tpgM158w|Ksm&$;6l|^bD|!!ApQcXgmTSQhRf~pT+D`XpGKm z04m1oty^r9HR zRF~HLJUQt3j$?!L0n481>`=0cog+v_my}dcP%~NxY+3oeJgtLenLto_5?7Bd+&{nF3&hy`k-p- z=xmm!y2qW+ZojYkEO_e{<+$}861S1M@FDOe;erGDAy@YH-sN@A2GIxrIe+<;$45na;~uJ-+K@7aT&&Ebqm@=G%jX!k7SicX!;qeK+GS+G9zrYq;_` zjv&tv`p}oo_owxy%bu%b9v(o@=p)psHowNy{S^hlMW@~wr0VfQ&+BUet0PFW+Z~l8 zGU~6Q|Kia8HO?IA{9`M1`YuSGd(VyEr>N_MJ0idm{-KPx(W-+F$eHFOfAOc;3v%6& zS<~rR$hr%_ueBaKY<(uytzo$0dCkqlrP-fIZ^C0Z+D{Q^N(UlE2hjV(M~M@A_|niD zZH$AZA%B&WG+3eJQ3jxBFviOgAr)$7S3PoNp% zB}yvbO`tKm2uudKjS^9%GmE9CXF)e^k5|PFr5RDKd{;y#Zv9upnp4MWt$ID!BSat| z+cRGQu)alZkvtaY`1_28%n(FV&D16$_AY!y|1}3$7kf=ZLIF8(%niR5Y;?=^oJf=8 z80|7?{>U;7z=@)x7Q>{9*Trn$_Tu$|#8rV0Oy$I0yrI-EjSHR)5CRZ{nvWtih`We> zD}2z{DaV6EmzjX}(v)G3M10ZoZex};L%g6{R+Q*0B4pmEPsw*)K99!zGko505gwrR zBb2%`IWMB!EfSy?Vyi_k_uZ>_yrq%AOPWi_49h$*>$S^s@r1LCiJ8KdaTJN#K(jx( z*;ZC-F=_q0M%)K8q(xr?>DTeN{M7*6utDl?2#_LJpr4f9=a7fT{9;EwiXrmMP#~vQ zVP|!XHH?4(V7+1>gM|ZA%vl~Hq3p9+C3?`JxSz%W?T9`~OhGEnqqXKk=@(hdzj$c` z&L3&;4M(eMp)Q5C^+Vx*9qR*MC*K5IPAI5iWLS+;mS0t#*!92i9v4;qz&TrO_$J72 z_fS;>bIM&5Ek+PQI2Zfn%a?2MPEJlWONh@gR7`!pKLuNdLLd;}L_7@37y*cWGJg0& zaWn}xmY9?tBD=sL^|Djn8Lib>>rY&T0M&VTDRwb$DJq-URm6Hv^BE~Wq9-DjQK!rC z(bJ>N-Ss^+Dk*E7#|Yuf#G0E+woFIB$WS=7@Yu1fsI)?KP4$WF$Z|<~KB`LPe;c0z za6TM63{?7m%ns>TTRU|8c(uMn_wAPk^qDEFtR~+f3pg5Yp`wSPZ`r-PS2Tx1e4bcb za>OLX58|?9a~n|c!E9^;fD9(Cs*3%e7Ac^cqSaSue(lAyOH925HoZq}UCq?e%lbfi zXrL>HCfp~Fw)HSn6&NRO{ul}nKH;W1Ib^G|I(V4Q#|tO~&6z*pa+yTaOc_5KWj3kN zu^5hSF+@qVcMY|8N=I?^#PG<`pgbs6l7bWXuWFT2T)AY0QACTV(9Hmbl!+!|LHUR^ zcvy6uS=Z*}IHy?IWZ<742UcrVH&Z1qh~ZgDp~WM{ zZ%GS+89+i=CsUZjfCvIGjfKw7M2nXXhDFK!MXX(`;lM_J)G{~6F_&lw*dR>8aAdH} z+!ziCnX*)bqdCK(Lk2w0?H1~;DE)J%ZK1TqB|XVs{ftCr`J>Dy#O2ygxqBiM9k6Ew z&=C%scA_4{hhu40v~4x>81NGMD+%4n1bl^{uCIYUAePer?Rn8~-J)7J z5UCjFjU)Dx zeeHeY6^zWmco<6G47BNRn!#cy8WY|@j(}1K*!Y`O%uI!6N89k88Pwk(1jA|~C80}@ z@ZBD*r`5&9h5LwL-(@~~Dh9UjO&*=O6CEStW_d+bFOb;G!8_mQJ3TWq?A7(amB7vq zxSsU=A1~8*tf55?PiYWv*jN1)Rc889h0H56`#D?pSAl(4Z!rln->fAY{f?Drnpg0hOq!Z{TV(LB zWZZMxH2IScnS-AP409O>D3GZ7yNTQ^Ad%kdIrbgkg_Xn-?OF9y%Hz@QA)+K| z;CSYn%`xstaU*}KiOweC+nj7V2lLpG9#zn#G2wo}V1NdL#dOr(-wn%5?xjL9v zK(xS%B00^+;?3gvIX|umIuU&MIaX3<+NXgGi4tjz=5l&A)>%*}T4OD=d*GdC1e&V6 zg=vr$0Gp~dgNY!&A`6I+^BqfkT1F&>3iM&(EKh=f=4ZxVzN(_!8;|Q?KkPm#j*~)2wKEsgnXSx5q6` ziyHXDmbg?Yb9&DtTMOmZ6fQL$6lZ-R;hZ}Rl$w=$7pY1)*H`p4q08x61Bve=+60@5tvk zNZ}rF;|L?MS_8Ttewm=X3pSmP^E*~r{kl?y^z1_1=Q8lgY;(Xbwgh`x?Esa=G_^do1 z^gQyr9CUb7!p{<`pl?#C8~U6L@ZDvZsce@aPc?(>AunTsa0bem-6`%K5r>)#mwW90 zr3Ki*)Ie6%Eq9uWX65ZkiPm=cMrRB-c%tB7cm0535?<@jS~R;t1&Nm769hiGA+9Hk zTE?nCJ;g+U(7L=|O>2seosC4RMM-JUP3hnFZ1An;8aU zH&mhYXBL`3v?an!(KWud;f}9pCWfYQ!9tih8K&m-cR z;;J}iT%_AfQEs3Wa1G=u%MWtKeKUQcsj?wk&i$x;t>o^ZsB<+akWXT&dcNV~W0_s5 zlBO(=0YM(7;MvJ||Vuf4$%t7R(CXx89y$7EhETRgTD4z8$ud?AK>P$9#Zv&W^sBfrAkRuh)vyRc z&ZwC2lHnEv0#Sp(A13d^YRTOH7~GmjVdyi5{e}h4l=2ufvQ?qC4A~S;{kZeZPPCm*ceaiqT85tV z?9FRIzf<~v6a+u3hg=qc=ZA~4ktmDitz{BzkBi7Y|DM)fp&&T?UMPcpbd54uM)dI# zZ4oD>yoLf97XOnU=*e4nW6&VDQ+SZl$&l6>AEV0y#6j5c`r8)Z_&6Oq3YYvz==$~F zkmi3x$^cmj3j9sjr|7rc1l|WzdEJ=oPn~s}T=-9$d)5A<0Bu8xS{glFYO0nfy}0*( ze>J=B-c z+sSO$d?uZcR-=>6CV=w5Kzs~k$Ru`9q`@to947xQV0q&13qiXQOl;yyo4%@6dJY{R zVhfqveQ%>lYVU7{dmdEx zbqMMEL=zd9r8|LQnt&ekw=nSNnq+HV1h0~Zts}2~X4)A`4@Slyj1aG-h2;@n-LF1V zKKLtmFX5^;`AO>OksY^RD29ZFu7{D?i#j^4UAM>ON(M9p0*QIhWkL62{lvaBO+HeX zyTliXXu|brHKosX)w&I`HoQ!uXWmHul=%4EM+ulY28xPtMPaol$unvG_e-mefaQ6_ zOD9zhe)c0)QSehWWT>#LOs1T-z8>+sDQ^AU8sO9)G0?d0qn$NJMu;V56nXfz$ zKF`?k0l@*v8cT7hIh{x@alc%cEi?7JIB(b9DjRulu%e~*9$x-F+vO*Jb2C|YeKucS z3dmRcpgQhm&JRt)Gks1StqlJ{TmQ$26AACWiZ-c!BBcMl8fC&gRkGP*R8D;5vUb=3 z2wm{!r!}LZS8~D)=VmYY&Fl8QlR2sHjQxm_y6((IA|)kt{2@VmRH;~a48;3`14BBTN&j4HN zR?-)J|GU7;DR#+;m%(?bg-~iTsJGYlKl4D_ub>e;nqp}+Ozfb4iNu!6785H*# z7x-4vl{mHEUM@9njE$~2c_w6K1eLD%qCjTB{31CEhF3CNZ#-4LY?7uCN(z%3tN{N1 z@~uZ>1md}IaqcK*Ama+K9nzt(Po}T|QB`UvAwAe+m8vAewoH`}+{zIR#&fM?h}cBz z3E^b=$()x|;*b*v4t21oENQEhqoWqVED2G@v(J~)Vt1G^w;uqu0uiwVPrX&um6Wh; zY;E5~_L$ZJ(YBR3^^)Rf3O-l=P(;fylQgA{j?P<*4&iGl zyu7vRZp7=&xJ>_OvYl+?n~t$u4Xyw0`^4PmA&I^1!Z=Y+4Hhhc9m8+#fBJr( znO=6;_a;XM`g5$}qZ~ri7>&ZKqQXs-S}_fN3Dqnh_`ehXZ*ltn7zIC}{C%xWcsz1} z8VRw#zQgbP1asQs{@lGsy>@Z$G*ZzeVJ$VFN%opV!DFvx2}0}k`~zOh{kHyvtDBpQ zFWvK+)A`nL^FmMomNF?YSGc_$7jV42JZw z8dM^s{qJ9e_hRklbtl`7LuH51-Fcby8=%?)e^{4N{(wiMijQSw0!hu{BvN=4Y+l^9 z2WZdGmubq+ni9}niw~FeOwlkIS7Km7!laQ+|GFW?`G>Y$UiE?)?$`A75%J5@1SOeb zu2noXmMd9`{z$4sdmBR+P^74TM41v+U*$F%VyIg zb;)LJOLGqNm|{-ra5cmpV$;RE9I77FsSjb>E(KOSRh{8WfT)bTX>|C$m46)p)hlk3 zWTs0Wl2EA{(TFy6=QoY{G5_{M!O>Tk8i%Q7WW88F3q$uA>kWG)B{;xEj+s$A=FU=%QBWH(K>1wEk4$b}7A>N%xtA ziBWRMyVt#BaxVO}L+X&dzEVq@>;&C-R)mdGaD*d3rkD zHUpl4e2z1vlXx%dHg4F7t%%FWH133ix28{%2&5eXQsDc{&Q%V&hTUxl+)bk(7#&t@V?O@M&1RS@|Z%^9m4FXIAPhhcRjP+KN zv(g>Cy&#?zrclHwGKcp3AE9K2f3{tH`snu~XyfLSU;X|*R|f-N?f56nr(7-^^YCX-rT#_7-u? zDt#s(8?^SXa4k_use^cn%vbj8ThqtG}N#;C5zJp=TOF^1z7<&-@`$>>2@Pe1 z=Q2?-{o$gB=tI@&vel#wJU_gO)o6rm_Eb-W4tJNaaqrYl_sr|#X>S+#)wW+{X7;Hb z9w#y#UYcF4LhbI+;gdr4XBn%WCknnWNcCKj*U7efeCP28UU$FZqq7UW{>{r#J%=ui zw&T_cpNr#dF3Zx!XZN48RT?~`smnP;(#=Oys`J;TIyH{_mbYz+w)aiDI>?m>n(!3? z8r{ss1U2Z||M|9Nlj*w+Cr}wdmF%zN3;Ft;>Jz`3BAL@hTxnW%E%5U-!|3Yanj`R& zl+T5qj^Cc5V1(M$wZ4@^tkss!uNhe+;QBHt`iPfEGwWdKQH8YZN7714v%v@V^W1}( z-O({G*H0_ic_u1il|b1MgRz8FOLU!r1}pLeQ4%4=du{heInTam4LURDtx?bQLJj+<q6j$KN(y_UF?cK9<$AcX0L0Qzt9{-qqYXCIc?FYlk8ALk$a`%SYaP$Q5k4P%NoBX)X9M#pW2h3;pYPeN==Qx8`Kjk>~Pr3>DetnDvPQI@m z=f__xoWO2rK&$^*QRs4d9B=7E!O3gnJ?9{k<_-$qKR=dC$r_@C-{&X%733eZOaA^~ zoVE~u=#4d&&MmdhoQ3jtA|6?C=<3ipiBwpSW()k%ZBpHNSH9BL?GRwH%qr|3vZM?hIJ`fu8T>(*}@K~+XvOBUrY>Bd3a8cBe&_Yb^ff(f%JN z-B=C`ob!)QBNEO_P0tBspSdk|Cup}ugxC`l`O7$B?f$tU0$*yZoyR*QyYKjCbsn9d z{sMcuuiCxOtld4yL(g)8k*FG~um={fwjBS+H2>1oHO)xM^9gsCDKGV4UN%+>=@SA% zF9Bvm*o(e^x75OC((Xo9ZpH{#I+Swo`od=;0ismM(V{8Bb~l;^IagzgI)R*`6amGi zN`WyiuyBK@nC^NcqB%msknUN!L-hy;19IwqEpXBBNoNo3Vc(!>mF}-EpxY9(Vequ# zHF0D$!6iqaBPk=y9_$_#vzwin>(f#Nj<$NYeYq$4PQ0t~pg2w64LUZ)f3HSx1^!iMDPQ3XV}`k(dE%D0Gl=?NZ$D2I7e`yfU#Tqm4VXHNj0leO0ycw= zgZ9fhT3Xte0bQsx%qmLBr_Oz%YCjvD_%#ccRuEn?eBjC=B{j+JW|qbpdxA+1yqB=? z(wxHP%oaQFsSdFgD5lkUWz2kbXi4HbvPyJ@?Dj6K}eDc3F%(7G8J#Bb554) zbYz{WPOmjI(I4E_0pkIDS&$mnkoCgIUHKw-OjS`Jcfd5B?%AS6@PGs22s%EaR4!CECJ zJz7|@Sba6w;NhZ?=N{F-;n~P9_tlP+3r#)WWmfGP(ak*urJTz54zmo-_YNjYO`*V`rZY3;*VG%FKik{Ik7y-n42R`7@=m%6!udnI)l7!uIE{?g>= zjb~$RXE3r*@1X#xot2Hr$#Ig}HYS&EbB&d70gNJW{;{#KwvVUsTg15+D_Nr~{*>qF zJ_A5QoP(d^-Ih@G!|ASvre+FUgj1GQ0JGuvJ;=DB(S^i+(v-?F=!0UyIKLd@5iIvj zOte`#jy}WkEcsXoyBP^i*22jS_nqaKqBPVDW`XGr$r@Z{$Bm!M_9|9*Q*FCa?Zhk> z=yB?!zx16r5orE#qf{FNoP>*2A4b~FCVA8=%+U??9`PkMKZq5Sdjlh1ns|W|+C}T# zVEgW8C$M@WDVN%*{3>F3aUKt2cM8HU&9`NqzkW^=e~uT6TX zh`+bYM`2{$mtl6D>~?bhOc|m@uNJ}a3SNpMq$#8Ow2H~_5?2`NZ5+C#aBwe-`tgyk z`jeD~$gjoRzS3yo&e6eTA^KYiIkK) zA<9bsr3pML{NtKq7(UUDgsDCkkY%4r^t|XI3SS0kMsbx5f7M6iNVu<#gJN%C{T}eY z1M(cP5z`9b7J=WxtSk{iheLU+-mR-Y2N>4lRW4{SESM5A`qjOni{h)ptMJV>^b5$+ zQ58S3r|J<(rh+SzPli)X-8*gg`32vzsgrzWpG*Uk#sPw$DhKqIbTji11<>%p3 zmK7`;;wP_h?qy+jEZ9BBvlP=>{QxkuYcMDx@$bjI&gOTZ%}NXDBMI zt~d~F`xAOk%t>ji&AF3mh9#m~&Rp(lB>dci0nPsWRls+ZN5@2X83uRsontQhtG%UY zSo28jZZBTqA~CzAXDjRoe$(Faif2#U? zqC5O3kRV;Z-cB__4|uhyqXplAW8eh@?Aia(b`Qa@wXxYMh-QZ>3EzsB-j|9z$^^Dj z6zgJyjc4%6O$c4^98WL8$I7?wLD%eS@cKXp5JW7 zS9sH|(b@euN_UoOFrF`|gr&4yWxKB=n#J);zNJ2f5MW#D*Q+X;Fc>Cwjgr8zQ1lF~ zrfCjxRPhsaM{br~WV&3RH@_U(!i^^i=UlFBKX|d@vn}*J!E?Lg7XAouSqTi1@80eB zaf!S!PE~V4jN@O2bZb2c&y#ms8o$2K)zmBzt;KhAF|-P3y7cX=n!LFfg>xH!=c<^- z&V4r}>c-^$4Md(AwXY79f6lQXpZ(s~TvfK2fh$e>R*mYsd^asZQRq10blONPI~&om-J8| zW87-Ri)itueF1Ld08QP)gw0Lyvfhva zIs{inO1Gij&`Rb;Ra#J_sy?w!`AOi23O!Lg~xig^Be?!-~zAyMUQPWL=5N;U{@)o99tsY0<=7o*h2Xfs3bk zX{8Ce1AGvHCx%6{zcHz7Uk}y??D2>SbL;|mIEsYXp>CYmK^_UD?VIl)wALU}#7GoT zyXI1e-xaC7LnVQ?l|{Ru$l=LJaUPX1i8sPpY{PqQQC=S7j(HX{Y<}fz`l^l%(gpVu z-=@dd)!rAv_eb2ZDQ+p;ig=vxgG_36$e2sZ)bielePdqhgu#cH-5MnoBVivW_NPi& zj1eP#LTPc00=ljiZAssb5FH*?*#BxB208~VsynWr>wV$2_sGb|){I3vRmgZqA@Hv& zzI;glMhc1irk%Xtm+6~VuJ#PXvy@rKuf_clD-jSX9YpGgh}iYPEiEnR@yeNpIr9l; zmO1xBwDChgIm0T=_wcr<t(V+O;dm<&Xv1RJ!K zJgEeJZ6LVWq1pDJXp(4dKxOiOZ3mVRU!>M_;YR zfE23s0V|a=tB1TADDE zG>elG&d^0P2mT@gep{$IT}0n%O>}b$CB_$^$G?<-<~q-gZk@mT{l>^TXqh57AIMA{ zRw)$(#|u6|kAS4NE8OWY&|0U^mA}=MOSJ)P>yF-lfp{;|5F_`T*2f$bXO`M7qqqvfxE;fwB1MQ}zqeurkl z@8{j>p7VUCkz?j1x>-fjKX4VWE9~&GD~WH9qfaK~Ema$(Bzp;f+mVbBheG-Y;}m@n zJEjeyq=(S*t?wE}3>VC%8_;enWj~Y%csL2;#s?^pQ&DA<=MmO^?r8r7s)UE@{e^~F zm($7qb9ByNlQB}#95X;b{2o3CUId;>Mf9yW8$u;pti~5Pf;Fr)&BQj*b3uNAH#GS0 zt#IERsrrgzq~+n*vkELjcjbKRR0gM};xV+DkDa~D8^y$LD-6D+y}{BHHGrwG&3&e~ zINOGvOlZAyG)0u}Rl!V)FcUZ45YSB3r+@VAn6`)pUiHKMz#KpSX@WH0OO-F!caBFU zztNyh@*s_AxiiAuoP3O655vRy+~({3jU)9Tol0c+6JI?1F0K+9sDZjw+>Mfauap!A zHPX*#oln5Fxe9j^_A>616E~t?p(D7@0wWL4kVNrcT7Zx0vz)`9ikE{mVTa~EAL^<` zk97*C++Q5)^~)j{{-Bar8qE5Gk$!$j$HdB-eBE^;YV&w`0DCROBXvEJvjBu3AUx?N zeo@hONa)H1d8*nwG`Ft{N@jsi7vcP=+>E(vsEjG%jC^2zh{T(tLW}0r2=VY2@K^aP zxtn7s5igCwu$ta%?9J_E|ekx zn%c;|?RR4XjNfvMIF@5GTEP@C(u{jXv%ALs`F^!-Quw}7%Lp!tUM}TBh<-e!P?20J z`(a2pCUMy4>~Y&kr^4Jz;;q_2%B0;KZ$&eqa4d?}Sr5l$gik$*7{*9z7G?z$Z_J^v z#0Xnrwbf2ra$4@CVOMwCs@zooQ6zOA?pV#Jo!S|s@~>q7K;?7VqpN_>A@p$Ccb=5{ zVE(@3+xR4}(V_!p%`Q^k{9nGKo6t!P0{IkxoXOJY_CAC$Dz0;!68^=eClY3l@K)!J z4zlt5Z1g2ici2?i+Nv9I3ZNuXyfk}eOiI!qlQz4rmlxqC98FxRpUxr#zTxigDYn#| z(LOk!nw=FtzZD~srBJ%{kF?ayxF+*?YOQ|03g=p|&3*sVSetq+HTBsoj-2b$4WWME z*VRAWzp4}Ga&J4b{Cd=!mkg9Xy8ENf-$mK|qTGyZCO_M7FxT-N(50Z7_oiy`eYXAM zFS7Li(Dl}DQHSsL?*!f5jdUrYG$Y;JEg>b{Jt*CRbV^Ex#DJ7^Ntb|hm(q>r?dR<8 zxxVMxd;bA*@x$;ub3bdn*1GHeZ>{qGzAu_|*9xv{KB|!fSM{LzK+bM!%t-Q|~?@CKh6Fm+6Bg0!~5hkTL!#48uZX}96BzM3( z=ZvYod5xStcq!TRuyhX5w-_s*=i3*^Rsu}?N)*X)Q$y1lD9Dgx+*&ti&(Y-3Kp1;md+6-TG7`k6#PyRtWOm^$uSWDnrlPzWGYX{ zm!p4-Jue~p6hucXL8l5*1sa>Q8I0z{FFwJQtm_mFD7cdIDSdd#&58fMpw^E+v@K+> z(>(hn)Ea+*x+Uu`XgAAzQ2gN=Z1a`n0qmt7MN-@WXLunQj>Al}eq*;YOtVWH;rv-3 zpXj{!_tTR&hIL(knZ8oO#ie&z^~%^H%7DJZ-19x0LAqcw;BV z8ZIqAfZE&Nwjfc7-THMmE9njS!S9;MWWfm;LJhHCd2{#)-_?4(ZI~pQzjfTC&YaOrzQ}5&`bBR?ZpLdOj*q6t?ay6(K(f8q_$uM&IFo4ra`|bD za-yWXT=6rqO(RnHy6PohS=eQ5_Qy>txw_L%6R54&UCAw z(t-Yd43AyhK=D+?h)jCCUALkz$*#np`FR0Pe zf2O+1ZFYeAdzhjvI7y9NLIVCiUb{V<4vcuto6H}G&1L#RwKsY%0j9O+dJ&x^JO7%_ zsqhCejxZs!^2DQp6{{uH%XjIZOd5}g*WHgc#xBckh4jj8E-@C>a~pf0Tp+J)5)XDyw?}n zoUzd|vJ7g4FQ1*CzZ(AeJAyW7;(i~fQAl;DY4^&ZsFi(S1j81h2w6%1yg!t2Es7;K zePw#@@#+5eq5H?j&T8R}NX83aWb?NUj>wVVM*!;JPO+Yru{Wzf(?@QKhOCb6(M#O! z9L>9rza_3SU%+YA zIBKYZ7)gZ`R}3@pBy!va-OG&3O?+#=It4(-A?q|V=F5tMZ2&5tLvY)>*@i>R;6^Y$ zZ9)80*Ut(Vq@Jg#?8bea)p>*&HBO3M!d>c8AE2`@-o3Vpde5tKY9AKpQp8YQo7Y+D z@rQ^5E{*j@9a695^2NvG0n<<8=B6i?Rv^ST{;m67q6A9EA$`;)958HHVzv{kJlI;x58`{4qYSyV-XhF6jpft|z#k%aYoKRq^2%gLYm%9n~zSaR{q* zGL$u$d%>jjT9mCY2dcd3SC;0LvDjj+B8>JQ#a#<6MQPHE?r#0c_(%_7{5yF(PZGCx zaXgnXTizXhYCFE99B61nFf3O5#8_`h+twN81EN98IMzAfSzGO6;u~+BAdoXE1z4>F z`;C3&U}IL+UrDep^yY~MqLS#B98OUY(;e34l6q1EUDbG)q zNNSGq2N{M68{r8$#SG)){q+Ha)A4Yo9Pg=00+I~IWH$k#~mmVO6ai{!9?@bG9Irj5b1pfjt3)@tlX4ssB!lhW8r zyWOiL=f58r7w)>AUm>f?kKV6+z*S8MSp^4Sq3zAI2uwyGh}PLrtgJBLD0pakuQqI& zi(-iVlO&|T%~(V`GlVYtpR`mBc=)ZTZvQd8zebKM^947ymDh8h_{R2(<7Qv~f*LYu9 zusD%Jt+MxkZWECfplo#d(S01k3r-h%y4i%h``WP)Kqq$xWk6PTjAJCdCu5O>YqI$G z0s!)0ahhrC&>D3TOB3`}a6E;HA{; z5%m~A$?9^Ah}arp`}?Rd{_4oTg=*z@m*aDWrQ-i?2>-uBmL`U_!0h0{uByILe8qK} zd_3*)L$GD7dHOG*e-AMdjkTen@sVGvVwH}o57QM}i5>UOAA{Z%9vg+&O_!jXZFnBd zXsEWIVg20g3MAh7-d-kZSeB3dBHkc3|GfxII*BOG_?a%U5BhvXKFjt)FKPcYqdQR% zIuj#Bvs^4=U7(-|nBnsLGFAME=nptnYKGw$d#}oM)d80zlaSDiA)M=DO7dO3u7)Qs2btr9nP6W)jEKb zRGd}wwV!^92TsXt)TJz_bb8MpHl?Yq#qyit6%hkgNPcvC*wpI0(Ho{k5Y@2fE<4@) z{HoNO3Y{of&&BS#n2xrMNgh2d9CL$u2HnCgLrnr+(dYX0zu3e;2@^<(@2p(p{j?zJ zpXraUji}eZoMx$L6*Jdq-rWeUD2omt zChmH>PBHA~-Hm^>={IX$iF$cA(VwkX(vF&dy<=tQQ|)o>sfj8WZ9DF&lFWbRR&$g? zd{GDp;k-ipCf|8?WR{sd#{jzOo~M&TJVCAFc8Ah#6o;b=ReLaqF*8X3wav0~{at@s z2$^fu^dm_oy-pMbJvX7Fexc4Oif7qoYpYK?7S=_Iu_vVww|h6{OdlqTU^9Z~0xFBt zZOJv6>B)9RQl>@YWc}6zeybeHyqSfcQBg}b`Ef_^+(KFKrNC0^p`+TKt)gUA z`)OQqa}78V1|4JpWf1A6+n@_20HreIoG?+gRJCkR86zJuKxXlzOwK~P@#xa(_jox! zjSoj`P2i515UHbCt}A)4gqkmQV@JF1)5@c<#$IP2uc1u5_s3B+fjL!z)sZI_slAs! z)5V2$ydQw43@rO$*cpU5m7=vc?x<7scuBayDTH#?BOeBdB(m)J^_BI4~f*w6Jp z(TME-iEECZNPXe}M~6|Bz#jpebF4wcxFo)W`n;IeJk#|Hgv3KuK{bO{2Ce|oV$E*Y zBW?aV3V7EbNl?&Xg>nSbBFZ~Eu7@VJS7tl8Mb31LSHve~mFSjs=oFAokkBm}$dP4x zWSaYlyYZ|`6x6(6f-FDwiZ909wZPI06b{yC@(OM&ikL1NfxQ`}L_=Fk64DyGN6pC% zyfSESUeGIXse@`msP2IIW@}c@Ohu{$#fece*(Rc;W-_|5eJ9g_h`^JimSCK{`g=;O z4fbPG38)ut;QC}ZFZQt|A?Nt4jn_Z-)=i>;`Kh6$uC58;a@xk{*Tj!%+~z~_hpGn~ zYvAPxZK+WXxMvRe#}v;vcoS`C5tI)BoiD!$l9oAXUJWY8pV$V5tCHu1Y*)gYwnI!c z#kWWDd4){(Egf&08rUVtIT>R`-p$B3A>5$}j?oiW;8?uxbSd|jHF9zL}mIUEpUlKC!RcF@!;v~>F} z2stumBj#sxG=^vO_ja^=JKsu0`fQq&>Zy@cl@Lw_ddeh~B(B##*&MzEsbB?PI2%in4FiL%RWLnK(ag7=Q6qu-I-5cJ>{LFY{_L@H7z*(HrA1v38!$P}A z`KLe`_CAB`OuW*7!(;@7)<=Z#A>z<0i)@g}OnN0gMkn~qk2vn6X#L{&sC3CS*5wj-Jv=LNYKsq$yfS^_ zdXp8xx?GMmQ5*koo<^yK2!LK1e}k{;_DAK9ek86-IWR_EdnqPrlrxR->sB~dCkn-L zkb;`3IxwHF+We!m^qH8io!D?e3ao$KJSclvgYhVL7(rbG`n7Mec+u^~i%MCGM02(|cH(c#Y`er2ABJL&AFl!DgS%OBEncd6<;rLTVlMPnxPq39 zLb#}6R0pgLOcq4xqemR#P}vRgUNJ1#6%boI6btbu$>ZZ5{>kHHiqhTp6NfdIRUV`P z)!KM37whPL9ZERJ592uOX&-U_V59bXrCrCLPU3{=M2Cgy+vmkB8)gvGI9G0jXwTd6 z+^YDPSXxkgyQDTFw_PlCY`Cz`jD)eCE%`<#x}- z&JA8m9J&Q8Pu%`y-G%zp+jL*L%N(pMYm_+dw!{(NSXq=E1+Ue;KV(Wt&SAn`edG|j zMf_?y9enA09g*XammR$GbaoW8Iy@dPD5om4-SA^6#L@998(wtS_SXDZnlFde->je7 z14jhDr|A()B8+Adk5m@FKA+*WP=(8etRw^PwwXxWDnU_h3TS zM^5j(5j^qswGOh1+VZI{Ds8R^Qq2PCDHU2TzB2o?F%{-Op=!#sV&MsA*s15%C|xr$ zu}Fbv$FilyqQ6KH^u)%*nrZq%d`gi)komdVSlVq0g^m=DrY_Ve%_yg9!otueUebPD zTKYQ|14l?By9EdT9o|~(!kDI7RHb62qLjvH+>P=D${58Fs^UoMozDkhdjV$2gQ>R+ zuk8{%ySHO*RF-SLIA<}JGwMkMV`)#h18==@!QF@q|c{gKhnQ0iZ- z6vbO2I%oU!>^zvdDDR{7M@7}DA(|tF9M9Gj%e5%;Qw?^FPFhS%+yBZu7933Th^Lg} zR9qNd;lZhaFAn||c*lA?ba}zTWgXUF{K(=`dQ`0oortf;NdlTCd&=OrAMu~HI&ZU%M^`DWz1%o;+ zbWK%eU!I!dP0Og4>whb|+GBJlS@3sE{QliBiaN*~ax;R?dP=U&hKB@CimD!ol|{PY zJ&^(704h@;h4gSXYCiNB%s#<0&YmCf_vyOx>}%ema?SB_%ei5i&}SZTm)6B}LTq@? zZ$O0a6mDAogOm-ChAh9eIEnn$8#eGML>c7#5|wNx)K>X|8AnZ!WjzQb8%(C9ndFB9 z0iNDrhZJj=`M9+-aDoZ^&0=^mj_@8G@`^skau?`W{ALa6nEcYkwlLeW%OuKyb+?u9 z1DeOIF;$_K8dVwmW41XN{>Lumu2)@#aDHhmVA##VxL*TWW zi{ay4av&+Lz9YxI_AR6$MRmcR&{z zH=~|a34|m?zb^Ywo4ig0N6DLEa8~%46t0*D*UgkPW<4%^Vd2Brg7y_Y9`&C@Egn9U z+((}Fi==L)FT^u-*+Ac%#Br^$_^*FE@N4z(3ACs%$CyZ z`Io2zO}aMjx!|6cMO=I~@ZemnUX{1ve>1<;C}VLNx;dXIGZZB4a*mUoc*6MT#LnAx zePur5j@w_AxrX)#{7&n9C_XWu8hBS_1kSyF5TbO>1)8(oGrSF%whMl{uKt>~}Je9g;#_?GRJ@5g*9G(Un#dz!rQ)tNPJW zO+qys8HG(9X+e8$ESbUibE^C8bO|L6na}N3=E$K!suHk&Ih@Ft#pc(DOAi zI5~{6ixEVl#eCqRZw{l#@AlpQRx(78mfo*Ia2$zAHi3^v5U-IV%5*@4Jlb>ntKDRV z9#bB3q2i?mPY)DIi~<=}Xwi_FeeEFalBg}M$9hDp7)pH6ZHKYTf}xIKUS3lpC(Qlv zrtkDKoABzddN0lNIEc0pAadv1s?%Neaa3yw0bma=>c|Y3uRD!o$^jdC@hCIS~U1fUaS*KGe%yjqShq5yPG8`!Vc*3ME~3 zeHgF?wC?E+2qMeaCZ8qu@DbNrP{D1aUlWiI-HNs4SgU$`-fD5{+w@WjY}44}6XR}{ zw2*eWGdA@^v#erUB%kNkNcf%7uH=^kMj%QmYLcsC$fvzkl09hao|se54o|b zriA@m*F9dh|FsPO4Pqcs`K*O#nwV5|Vc>{o;K-={0U?motply|8P|~V@u-5~j@hn$ zJ9o;cOz~NQVw>-`JtPh%K7WwZ_#va|#`PzIaCl=O6{#oo8+jnv>2qscq(vKyg8T0p&(Fq(7q|D>wi40XtK4}?-#{Hm|74?-fTvk4hnVC-edgy=)t zKmiUovWpYE_c zF!W315{Qf)qXo9cy_c_)ty}FJ_p*g(7tqv`eWZ+g5G+Q8Htu*Iy^}em~dATbXFfwrk?!1BRr3&5-xn&vVWcL~ELxAxBGuRNx;$TTkyA={X z<^10M17y+Q4HOseKUwEFy=&VEw{I59`8y$nyU!P(GfOlSAKWB{{VU#6M0f3%^V#-V zj~dBxA=u~q%xx=|GCpPX$?x~EkFEsGon2?JG; z*Nry!{h#PKJl0PEkv)o;k3sF&G7z z=oTAAXt+|{I5Z#SJX_7V>rQ>4f~Ary%}f8y=D5w9q_ao4PE7Pl2lHpDFcQVe94m#Izmoas6pwGMWpD zK5K2~Wq8h7B{2C((7MHhCaiqI*}6^lt@O@*_5`|mc|vDtznL43C0#thb70HR%BL)z zZ?9Fwj8@KAm9}ziEXSj`Ji2JudkJFS zSJ+Oy61j6Vk-xd16}ERgwuz-Vqb z@Trnj*Bx+}X~gPE@YG=EP@0sTIUZab=G%u*tJ{f(Bj5Vsmc4_yV zEmkT^yM&Q={N^7bAaAie8%s${7Z2`wof#su1{Km>H(6%=7j>?g(> z6`X6lh;{fO$O{(Q3~lOg$Z>x;S-2Ab4Y!7*sjlHtx2XBN>;TAahwonzPp+%SfS7lP z+y<9*jo%cqx_AyJJ4yKUt@P>S4M#EP57+pQzH{;9sV-byl8P=}jkU}1_ii(Fr4@yY zAM3)9ece{b?*~=>dSB@72RnGWtyqr_{`qcVy}n_;KjG=zauoe{$rOrTD zZth)D6W*Vj?LJGIk0-t+FF(upm;G-7`%Bf3l+T7gf6JLKyp2o}z0Voh&a&Q|E~J=s zO&4`t5Tksh=$`_7c;bWz@#oQDYr4;@Mu6u@>ZfJI3R90FO5?ZNMRZ3YWWVc^DsI}_ z+uMD#kG2fustPMs7#sNn3g%z5t;*y?_uVH!#^*BB*&(@?}RH*yNB>Bd5MyCUT- zi8dlqTT_9(I`mxmBJZkjpoRJJ@2CLC@YDJ7%x%;~OGDfTEb7cB^5lIH&rzZHt%K9z z{tA5dyT4jBf-89KvV;vkaO*;anO~u54Tw1<(9A!XD2U+{ZEYh&JgMYri;Q}AucB8s z)o7Iv1RHKGvmqnDuMRH}pZl^bHpbESE?=v`x(V<*msrFT%owV_+=!Zny|d+8P2&)+ zQOh)bqu`gcan)KpVMf>TL}jw%=baoXhCg(@tB_V1kKzBPZ=AOb@3f^T*ok%scMJW6 z^<}PX*;(Z$7#-`QyT4NDktX`RrRGj`;`>U70*W-s?o}E@EmwGWodBh%@tH1jV4xV& zr`W-0pT_qVMEN9skTkIN`eJ`B7!5iHU1T^&>JB`rdzF{?jT@m7FMeg)av%RqAl~I# z%qxwQrJX?`&&X}r;6OiIit@w^5rRGQWs-wRtu4R z(b*7G9Y*T$T5@dWUw*6FlM^whw81p#92jq=ssgqKR2eQ$PfuamT!%w9TSy6gX0pB_ zJRJya0tHw~MA}{SQ5IBzcNdd3gsPG-y^?GvH`T7t@sL08dr+pb(61=v(6>7aqv^3y zse}Q%6RHjt%s*)n++b6(!LW|>C1)TIrrTm7&|Iw=!CrcD5%IEl#jm0kbu#V|leIq( zM;#>_b>Zz!Ho4GGDs`(9YPei>7eXRKidk?VFAULu@3|L>MhlcDdWO57JYxT<$+&je zF*P>xS9PgiV&S3_B$SB$N(Cb|r^K-%dQrBQg&vV9wi$|@llVDmeQUfewY3O1#-96@#;9@RgsPB0jkEFv%^^5e$s8t^Nv}wAH+pzo{pF6-~kWd1jyDi+!gi@JRHo)_cYs3QaqP> z_eP~b_spb)0IxI1b^muZQ*o|ES!89Rgc$o`f zP}rh=PG#&|xsk3DuTg@lYGA|bg1Yn@LQ^pmB1pD6xgmX&zGOYY>oCQFx-T9r@|=sP@9L^b=^ZBKNX2veYQYpH&B8m*_>M}Y*I z$nsELCtdH} z2PvS)JQ#rYv*$I=zMd0#{jotU5?1FxZb9a)v`wU8^s1OL<65sw_Za!jUMPY!Z|NNH znEJ3jgSid=&_CRRD_UfkS7((<)pk9;SQ-jc8w2wsSHO_*Wt344aYpHv4XszA z>~-al9>-HU)cT8>*1}}g{fhvmx9NoRN3wE(`&&_gOb$%_&7050ftR!Y3~nVaucnnH zL3S_$zSI@a4!qa#0)*?Bxu>xF-UYu9L>+riy0!=)OQoRXs5m4aI^91k61P#3YJ&Dv zBafBEzCz!hcj1FlRM=R$URyEVfztA^Gx0`tDt9)xavYFh?+FuKZ5@smusD;@f2jZ- z;B`qz&)jS-q4@eZgsR1d`D@VFpwjLo0v-Ga%EJ3NUt@+rB(NQdnSPJ6&hM%wBn2nK_yH#b zJ7(Ww+HE3{kjmp=Z*tkOw;>JC<6Z+h1E%YB1YSIF@eao+7l9CA8$9+jEaWw_v;i7<{ zVQM`J-7tqorzcmE7T{apghl;`8xVWzgs- zhZf_B>lF>%ZvPQ(gD>FN3ix@=e9@3_+vJ0jB|gKk_|dY_D4THQhcnKUi)t2p7mIb$ z)WqT8pYt_mzDaLQ;&<=%r)ln_;bBG3KrYVFv`%BM$cOc#x}_kOELWu9mP>(0cV@gl z!^1AlE!%V7URoYDvHfrPGkxU6ZxACaERpM999tE|4qde$sUwE9A|9*S5AAks02H(# zAEu)fM|HCtRq-ovE<0dsPis3{qg4N~5<*!Cvt)RdAolQuXqR}ObRr;R*g>aORo08F zfLpWw4f|GhqoIe1vjvWh|afM6RMx$t}aqFG1 zLjyft0vlDaOPNJHT)YGn4{D2a;g^x7<2L9OB=N(CA_CxT_E zOUMW-L~Sv<6ES4*1y_3#7?1}45vt{u38{Ul4x(&_ z3PmjV#g(MyWEyz}1ie`*vd9q%mIWHj;iWNZZ4}f)Ev9L5OZq_mh1;pugTT&^v?h&h zJ!4TfmqiW`2@m{@CxP_cUI|J;uR@h`ep+kRDY-`J5$=X&l-ltTM@sdIs@u;?y}@o7 z%wm6qS1so|A}?=fR+30-Uv{wwVu3CGSc|J`I>dZ|Evv2g?ozjGB`FaNKlcZj?`_2J z=(5yb602j=A-SNL7lGSd^6aWXp=3PyvEr6V3UNtD41C-QU7R3B7$<`F7&uB*IZ3(A zLUfg*IM`p_#6y)qxzC?~?anO6lAnY+FV0!1=6s>h^sH_06`*&F()qO%B=tv;w z!6%2sT;c7~SR+^($(HhkMQ=i`7>IpOrgsY<$V**)5tEL}>m{L>WU87OePr5zv4-?>FxHYnW{3%aqXyEU-;NiU|onzl}FDFO&kl^;YXEr(hVUSr6LPqA+?XpiI zO=)bEf3F=|MI*v(De(7Tbh+RDT(SC28tI7GwfMwbxb1-Df1%|6eP)7D>cV>q9`l4$ zb;A#*3Iq1mmaLn(3p1%3IqW(f-@Vb??etFxsPizsb)nRci#*m_hCc)k(7uBHVAhwM9*vw|w212GXL%ViA^_JeO1S z>YTnE#$suko|-%rMH<4$ibWG?HHk?aYpKIljW=TALzg>>129z2X^3f$0LO`fd=m?6 zP9SwLy8&ZMt}(jbgC4CP;3c+PeRiA&V$A6Q}o1eKBrLNFY2K6^qk?A13vVZ|m6rPry#W*-oNPUwBz znyj};DOmEJR>hUkvr4MGO63I{Oloeu$u2|D@{L4_A)y=eWpQ%~bmWQZl?uk_%~mWQ z2%_YQm^C?uq%{vJ^c3uZ6c+0$U$!bHorXT6*uc01gF%i0(v-woXU~@R1xj*!MClba zUJPg61Akw! zHfSuA$sd&46SwaFEKPejZVZ+`uD2ID&ez(?!Cg%;74x^_WOUJK5@BV0FGbV=Y0V_g zWvL*z#Gu2$#nRQ|HkY94blE-FKV*1(XrFFIQ+;#Js8p2D`3>vO^+%>j-l$fBdj5K4 zOZupkXF&wJFJOFcP4jFuN$ad9G4{8(G~n;vBH^hN<<+Ed#;5GxJ_fWm{`H*<)5Nbx z%D=Jpm~#<(DIjVzY)L%zYe@%445&lKbdqgU@x80{Xuff5cTA^Z>>cSF=4h+^z2aMSaLquoMEiUraA}IQHU{;v`zkV zI0>H_Rle7XuZ?H0Jx)WunZ*^H%V*~wt&TCaCOx~z+eP34ESVgD_wFTMy0>qiUr z0d+P?n{4ws|5`n|m5%r}QEbLcXwepoiE^gn#u`GDfCbS=8t?{HIUXC2w+@ZNq6vG- zFqSLi`y_E7-y!XpJmSH%Y1pt6P+-6YW21XTXcxUX)e6rBV&h>y5G+6(*y^=J19ayF za*=c|Gk&&ovG7PGc3}RuNo&iUvG!iEOW@V^%3sICE*ygz<)f8u;I-f?quTt6S#eC z<=b;97G-VEVWrB6(!-X`wH@Td_J+=`}-G3W2LaFCp6$+FQ1aM12P4B;^)ebT~z| zGD275&f#Do!Mu3ZNxN1Fq%8gRtoV6n&Cc=#f~`H*J-PZKt(r}uV#aj?y%AxWwC|wu z&T^`8M_+T?TY(`%8$Pysb>P`c)cUJTJZfjg!Gyt8Ptq)8QBbe*!ZWJh!A&)lB|UyG z_S*)*$Mk1C=xoCr%3vg?H0fo0SEzNEw4XUFb+vx^DdCWjdV%BO*G3|@}zH1ktH26GROy?<-q%vX*`D!KwPbT1Hw3? zbO%>?T9xjOBw+D>`%aTOMU}2rgM)n!tC}0c3MhaABD;Y7+BLc%*W&Cw5^0i=hdqlS z@7;azE5!19J}QR@j`{9AO@KBhg7m03sd|K5oO-1JS;f{GK>aG`+TDPmYNsBfvl7gW zEUDZ>iF)v{(rQgUh!kIA4Y-gn+9&CcK-AcqVl4&JUktqY9&#WUp+#nClw$jdW`+B} z$Ln|C_3(|tCX)n*86(b;kxJG}73w^=b>!eipgVp9j0+*C0WaqQ+rqI0*W0XNj zo?xwpvhke1w81tT>>+lbI^`MKF~Kg9ex?y=LjsdqprdFw6rFI!bq^rcbzLyw?>D8} zz%`BhD|3|`T}W`^=PDW+>=xcq?0h8?f*N3PaTrKxnX$*}Hv0Tl<|fuz^NXO}alc}^5Tc3d)#;Oeze zStKh5SQhqdY4Ldm;dM{R5$%<|fkB3>-V{z|zV%zIVt39i*UBFy7Y>VjCkE1;XO&)% ztTAzLvWwI(QvJ+nz4+y|;gjf_p!joY|MDuRny3S4&quu0Oc@*jTG^oK zZ^x|k9cC+)zdrdj4JW()SJF#-a1WG%&fXqYejS?<`byezJ%@}b?1@CyD^??L;#f5s z>@SXsIwEp{kjf3%GZZp!o>>(Kntz%aAh_asOlc;*U;pg-)|j>zNx6n(d*7|NJ?h9g z?pHV4->Zq<7YCeebN&qe{r&8_UfkJMXYSHJdFg+Sw)`WUY-uq7^`xl2PVtWD%J_Ha zOA0JXQ{X0X{9b!iXLQ6_3Ca4>6}qjp9dfFsSo5C7?R)w((|F#uD6Yj3Z!6?Tw@u7; zxs@Pedjd}a1?gE6bW$!1`FApHhV-c+71Z&9;`IDF?3=T^ywCM>k|W2UiDgl<3dS2# zORFaIS+=|-r-?1O@5JxjcTpyoU%sr1!xUYld?^r`Yv_pfdOr&q%O$Rjqu3<1)f_RA!RtKpJHN>A5z3 zMX$1on@P+57nQ|4s?5)S7IJ?UP6LTNx#^y-Maj*Du~^l&yjKwu+GT3_8gk@&zY90B z$#YpgOOt7;3@i++YEclx@$&Jiq1@d6^RWg77xUetO7%^Cxb#X&S#a;?A*AfRtU|Q= z%01h|QBm3CW$;@D?>tYvv>(}EB>>LKlo>n1ZNNwrUjVO6=c_h>t5;4&`@~%-AlW*$ zsWvh)cqsaW6CuuthcjtS3dRg$E9fWb7(Yl^0S+CB+=xeP$XP=brfN#`{oT?JD7BrKq7_X)0zi|(W*YE zJM!jmn#D7?sSi@$9fr-)nwrnb7X%linw>+Pt8%DDe9Cd@Mn6zSzJSg&x5P9;Mxk#l zv0XmdtF%$q;{TxmQ6O4<`EAUyoKA{-ay^)GL)MIVN<>|E3N)Y@&c+zCs}9(WuG z0^RMD3XC~cQAmpjMge$%*I$$1Pg2*7fA>nMIrqI@g!$*OCrg-lCv^8AN>fvbhLCMe z80Ss>ZoFPR&EcHg>UE@%nm(GwOSr{8TvxgIK6TbKTxt57QtFxOUW$_IFT06)Q09eG z=l;*$RRbULzmu%XE1xUA@%vaAM}+#nbeV-Y3}cT;8D8sQBH!x|*IQZrrv$39R?_CR zpL}9wPrtC67M>VrM6pe19&pVqh-GKB-ogt~73G|xAm*@FAE1v!Cz-?sbWFLDcJeP3 zCx|~iJ*`Zo+a{5JZ1JOU0lK+(a>Un0o8t(daiiZVT&453_33vwQPsd^fhhllaXfer zk5d0&pAHHM!RgS~J(GiR(kJTH> z9+afksw<_d0?%&}=@3@Twm?dLM2~8L9OU!!-aC)dj}U9)p{rxYMam!%U@|dI&99mO zg@yJK2+fqfG!74>Wh?st+j8wbdn;|1$WMMEdvEefouvqS8EJrmFP^?!hA5^@UZ4zU zS7oW|O_#N_b+z(LSs|&z98g3s&~pdP{7eZVTGNqf)1(*cl4vlZGATJ{yCh)?m8pu< z;lM*vZj_s&PReUNd#9ry`r=x zt4U4*@qTi=3r0)*N`Q@Ds(e!b2u16>=GU^lR#EA7bNxRoz%(vKNZkP2PJ}n*eGiK` za7A&&qRLOE5dG2$Bz{|wR$`TGIS5~f5r|8K{%X(h%t;&2 z9V}SjH4%ZgaIa`L(Bh{b-CySh%8>-WQ1iRmW19yOSxrIDj$9r$MZ>2j`Nl=3E2r`C zpdVcj2YA~Eanh2eXEZNzdUx6{rj&j_EJh=2JKL`ol>kYjV{%M`S(9)Lx0%ie7;O!} zgnfg7ZR2mYRwoF%SV1kEq5dSSTLhQ0*?@@yVJWc1SdTae1vB z!Lf*>4Cw`nLoK>-+bieS2zF{ zwEZedkl0oZuh0)Hc)gMI$!SIPKwc&*_G@yDv?ZGVZL1;x{*NQ4T2%8fx)Y1`RFxN& zN`J4=_ID?)?OwOnHc$64p%D|Wwo4K&J|>|0JZ4X1j<24kCwib9CX!|c)sK3Ka(7>j zB2B^#ypb2VVp5cFo%Qzjj_IbmzcQ^RvlvvvTg$-7V2yQIlrH4KSA6_D#Eu!UBWRum z=R-;Q8QT5jn)!z2wPR60X%FW)LyTu0C??~}57*C82M1v>q=D*)@*mM-q-IkU&*>fH zX_LG8h-#x1wL=;y$M0gab*mEnO&`7?rTJ|EkW-4%lWXzCQeghci$c^|3jYK#knJGF z3)$rn&m@8reUr$J)UV8jDkQ4R$1e_>;o;F6a zw#N)BCH35=>uHfW=ojoCsbsPYB&0m1l^+{>$2RPzHL)xxGbO)D(U;V;wTWW4r+oVK z#b|CP8jt@(zIT@z2x>c;;E0F=`92-c#05}{{Rzl+wg9ID$;aNGXSp+S&9v4$WDK)e z+?X)x8&mk)+>REgR4%u8-Z-c}JD@jHf91#g2gf1yKbFWRK31QXy>@%f0HG2ceQ|HQ6tMTK2)b`wcXWF&+O@qk~XSwWAAas~mUXpn+Gfo~@ zp3QggiCP0g#O8mN{%t>CG*DpqyA20#pSa={m;R~vJTO@NEpHyB)GEU2{}fPth3w{f zS1acV$82ZA3I>hl{<5Kg0LszflO~`AE8Ibz= z0n$Zp3tU++R>eNEq+0C*4N}o$%_8W~;(@Q$S_lo~` zwf73KVXXZ)xePgkcYMtG{1({YE>IHio5=eA(DjyKZ7|xhFa!%yAZTz2?zF|-DK5ob z3KZAk5=yZID=jT<#frO^;O_2LiWZkr?8|%ZKKtzNx##`_9teS~thHul&HO>P>`UAF zi&+)HNv^O=+&#@ikGcp6tP59v{iaNjC9;siPq9_mvS+ z;YzQrdR(n|51%uilwJ_^j;I43bIuAvTFOk*bp0!q4PeAtDi;#(IiC?y5J8#t^TA+! zTDYbgUrLRq{SHUO_K4x2tv3y&P#t^p6aE^b56Ff)tRs3>o}74oK=PYgU-zFqtRf!M zxdov;Ickp2o-rohL21JMxul|FaXhcV1ik{+TqOmQIIE3&087Qz#fq7>AlGbpVr{bv zao-A27%E}SjR$$YTYRq2v8P4*W3%|xeMc`1vH#{RdBbjh3{9YzJ_-U)h>3a{&Z!mX zspQzNYG2gwfrOrNa{H_d!-z;V5XlLY1d>hI%0PXBmt@ZyhwWknLk>!cekSbFF&ELT z*P4w@YJC6Ajskwyznb89dC1dx#F#1OlQ^xhr03dvP441WmCl#vA;pz=!5gT5+_LG{ zyw#VmbHN*O6w!n|x~$p=1#|>miKm(ih^^MHZzmfh1nY?Iep^ZXKjy6ei+{7F3CBOK zuKwFN&HJT+Z-Q=ZDfC5^c~*a$?wd5R;J-D|=(=|KR~h_Pg4T{nsuqr_#@T9?*j ze@CwD67)I#bFo}bO=h^WI)nyKgr@)8qG{%YT;9{*`mgctqPqoaU5PGM@?`HmXnNUiY$z*n+H>-c_o`y5HTIf^^a zk1>0mdx#Cwgi5%Y;O#zD`_j7W89Y&i9{<3jV3f1P0kTD#aB_}18>Y^6v`2B5XTOR1_^EQ&>qDJPWNakZ9qsVSECppcaJv`@`#e>8MV=g1mo!;t?AI>31J>-vtnF+)#kF1IC#`bMBx8)}-INh$6+X>3 z<9xb(e1%4SfQF=~+vQ6ZWmB8xb{vy(qb;=*yMsj*flV&akPmy|N!A*K3ot$+niAkM zki%98Mc|;}h@~0%J{o2C+v*xtQ3DW8{vByH^5`nNIu?Cig+@%vnUg#x&TH}wOwWN+ zF{NCZy7{BJhl_+u?M^Hec$Z0D5dkOEE#xLgH4a6EcU>~H1`ZK9z@$k8wqA%)f8L7h zwHF~kWwFQLD;A+& zRz64lTC|k#J1$v255PdY)rWf@aB~*aEVRZi>JL)MmyE!t;2aF*_q<3gEkwl^`Zbmb zD=Xu=Wx1Ov(dD;;vra{#fLHf`4!y{vGWX@3AYkbJ%YbG`d4;ui4rHSLtNL+zy#4)G zE!u5re?jjrP9F92D})^5XCp9|Hv=`h!6HRn2-_PPF)khC%Ae|%- zP}x<5*>i$zDeMOj`ZqKRnm%AANU$zE-dd9Fu^wgo$2oOI#3otroo3KdslX=yRsrJv z_5uUNhM)2Td0+Y2jn>}Q*7E+(S#)e{7t*wcZPN4mCqRD-pj^Yh);=&VR8#EtOH>v) zIXQl(IWD!-=NQQ>>K~O~>8U{9BaInYvq^+^V`1_AF7x-t3xRxI#ns3!=xsFn#-6TR z-ng#^-)tgHWE2`tElvGgDb2qIY<6n+$S3fwn7`lLm5ln3t%mq89~x0kv8d$T@x2+1 zbHiPP&+fRM?Je87(u2DW5BAzH6kUhBNI$|om@myt-y_MI=}l%Wtv6}Ds$K?zu{0~0%!_c#Oz$56AJ9w2nYzL^ z#AU9n!s7e~RrL+a!%4iZ_90s-3V&iw$umdaHK#GnC5#hpScx;_vtpl4+{S9yz}vs2 zlidvXl+x618IpcK<4|O{T28#Cpny&|$#A~)kRD?rYfK$gIb z@^9=wf#x*rBR1kMFXBu%AGF*6P;*L1%U<};HE_KmDmo|iXJvlYP7@n4g9^{U0^v^} z>b5IuP4DYnFUkIUbqkvz(wnVcfo`1T!5jwn6#5Js#5@ZN#{?DcHkeKSga%0JCY82XzI^uTt(G>TluS zfWFgY(Wj{|;0m=g0DWdt&IE4Qxhwe+C=*IOy(_@$$Doqr6W5ML}pVxGi`c#qpkPS(>@CCW(l ziUH`|<^eurYr!{Wa467-%-^-C5s*o zwF%CQk+0QdMrqaX92?aIzu)%ul6C&&FpCR0V_(rJp6O zwdUg^b@=smxZvsejHw3Fa0T>a;BCgw7l!7$h5(1wjAumE%Ja;!D&ALloFuRuqRjjT zBQFf|gS-kf>Wj~w^e<>T&d)_Q zn}{&was`y~!P#(mn=%vwE>TPVyhK8(TtR>_de+|D4ko%FW0eAV371or1DPw3IEpL2 zpp>*z==g)XNy#;)2-0wN(DqvG)w_!WU}|k}qXJcke{#;uJaQ zX&9a#r-o5wE`dc}<&+I+BmL%*FJHOCJYuF2yuOTdJ`s)Nm4ab}i{De8dENjoS3Nde z_`rC6wsYHTBV0W{OHcZk8_l4(#-5=O{Y^@bS(SlrM>jMJrkUg7Eqf*# z#D;9CrQH0;xLwnG0*UVP^9|t)o;SOg==j@4FKRyW*_MjY+DLt=ynRNec}Ez}LKX6O zyDN9QU;ax6hx$1N4h{~|wul#4ciL}#zo>vTa~hb_A!f&j_r@^gArHAfQ))xvW(#$1 zr_FyqH~&ZVCzn8*wP1&A9`PKfNYiVZv#nmR03#^b?c(0d@UzZ_JLlMb?i?cixADvGo~eIpry)pJiFGs6~>nn)BFD@8J4{P2G)(Y})RR zT^85I8x@_68#P%r1nYT@cK>duR9t{c5=jawQfF;x=(216I9OawyWi9C%srI&KiS6QEZRBtTW=RVJ zd?;+tbF9kp_4A>qGL`1Nj{< z0gTKP+XYewZF4n7(yge!Ui-)O`s>$~k%z%54+R3C3*a}(G`E2*UqLT9sy^oo4GKIk zegEiAnYjYAO0|qo-Hz;i1KNmlbuxR#0C-ca`Ir@NXga>_ZAV0(0Qy+QuojGAXXD`v zb!nA;7gH$gpXo)|_5AI~o>eTU+-N_A>&R0enu;=z8LwAh&ZHq06TQ6a$_ii)B6*3R zm!`_?5PNcCgxf)~G9I`RZTdeOn8ysewgAw0#569IU-luLlWWOyI~RfP`=ZHwVTiz) zG1``XN4q_ zD&Op8c;V+kw%eOtQ?1b9PK`yk_zffr>Ux;sEO2RY64iiRL^bD}drQdi7C zaHzX+Y+u`NPho5$^SQzX2~>F>w!mxkOG_Okh!0=Pqql~1+B){+m||7I=m_K48W4UX zP4GxN6H(Qac3gk~q>KmFBTp30=-17-(Cr`_E)r1)&hPh==##=ccu0CXx=iz@2-U27 zuULUCN;@jT9;i7f5`(Xb?hAAStzipzgZ{+u8N!xh)wwB%Fq9Lc4r_stll8GVV6!ox zLN)mJ7puV}VZ_TyTfa^w`lQ}B#9`mNw3)pKrxME%d1$-18yIo%}Le*-6$mTjIQWX zPXh_w7<=Zt$LEPtt+Nql2-Q@_W|$;}jrUOGX&n?3?y(J$uxi+OJ8g&TfBkH2CtoOs zfQTCFi8)zX%NH`}({qKt{cuf$TGv!Gx8>x`U_;Hc`^KZgoA6>X0Jmuewd@_v3W?28 zq-Wq~;dhgI@bNpxHjF8!cZ~>>ZDtg*6SS)L4h@W2&fvq3}g zC~f<=@WFZbZT6VLSPHdi@NWU(?IG>2;+y8Egu~RI^DNq($XlMT>C7ugOJ}h|#ru?r z))*6&rTM2*IB$6S2pP1fU^j7ER8}w70>jNC1{ZukF#tYX|IQ=5L9~whgLze=_*xSA z^FH3h+sn5XV+C&UhWv2nk+oP!*Uy(@jT1^+C5xbvO>|-=oMW_C0$0)(p$M&d6C)E9 zs*!f;p%=qYV-xlX1`M#&NU=DqH$3p9oqV;0U1=I0y9kpe8D~P`2x$Y=%~{zNPOK>o zLeexeBX$Iq6)NoRd^qArbE++B(Iz)w;i}NRC9R#YClzff53oay;?6-0;CPttQ zVo?4~5m_mfb^2vjT!-#5uI1SWsv?HxSCVyxWlE0e-zz(E5V%h3U0D0szpsAUu&%{< zZ7Dr|Se$|U|JLjO>>9Oz(Q7hlDW^+ww-x?VMbp&t(7R8nP^$wncH~xmr?=6?>n8us z<cnBqC@7p4U5A$AOW7y$mXq^%1rB5R}P(TS+rJ5cb2w6K9bF)AzUMdMqczj5ZF zs&T;}>Q|tAGKtI~7JdV8ZT+YOVp1Jgi>c~oRFFGT|} z4n<+AWKfpS@=D=G=Jc&i&sKQ?MRB5mL)U28L`kj7Ey~Yhl&I&xwEFlRBhOGcHnY3} zId^=i_0M7x*vrbSJnr$NV|#CqO&Jpd7ukHP?Ti8tc-n7}9sGgx&|otq-L>z-7t`oF z*N*uYeLv7B8mRZvH>{l|8RG283s1t=e%UtHMl>!2!b%lT?$N zIdLeCj|k-ow{mN{!0>zebJDf&wF3Mu$hYn0TrVm&Kh$?<;+t5~k0XYNt2SJXBHhRM zih~8MfA)h~$qsx@Z|wGpd?C6@hqb&C#f*x}q_-rdgVkNmJ$if^TAJKvuu=*1>s$O6GDQ2YG1{1`gOVW4s-DgQ@$lu%g$Le<{M83-msCw7sYN zd;MIU^U`mQ6fPU16;7IJ!=s{7NqGeGwMJ8nJLx#{(u8_O(?P~n9>X}4#~l6K+f_8K zH-AhoLHzLDWaC&pE~>Egn89(6>V_LWWLJMNdy|z}tvEAoQ$43+?zr3xD`W4f~m26_doE zC1!Nw{UQHcrA2~ABfNXB+U9gZf&lobVKxmde-5Q|m;;5zN^1OY(bE?@{LB={eeQET zb}QoBUW+QY(32VO>Tv|={)pUL^7rI~Yw8_MeYW-#bKtIi8Tm8jP{7^0W>{wny+`=A zXvB3>XtQKoW* z85%kiy_3n7o1YBzE&OXnwsLz4_(?vy^_jJwQKWMlC#Y^V@8pHYE(F(Ov=`0ePM!7l z#aP>^IcP1&p69sZDa177b|)J4tRMS*9=}(gfYS0if(19{j=?`3k2K22ket`^GhM^O z7bnJg{gHqUlFA;Jbt(GveVPpTyk;oQ8m3QQf8YLhv;Pa1MHUP+)B;Kth0!1EH)bBU zB6*5w`q{HnGF^im8c-Fl4Ae4x)hu*y zmG^|T8vQms_ADViBZ?dtwn4sH3w}_FE+M7OgOEVEWYxUQkb4QCFKZvgvAaG*nVjAo zKeNGb+1Y>VSl+i_t&j=oz9(BhnZ|xf*6&#{#~9HQtst5`*$MN2iXDBP>cEo3CEAG9 z4ngk&vV+u|;s8G%_r2$~T$BC`Xo%9i6iuI;C4{>Ne+`o~Y7mFcfs8`?@Q$o7F5}ml3CHiN&4+P4`k#nJr@@qQjHA?F})%_&VEVp zporgtb|XcZMd|5`28whaQVIlmMKdoYB)w*rkSdr zQ(Lvz>Y7sdDc#i8e@=IQDt-lsBqbraZ|tBiS>^oiBHEDpjzHeZL_ebvq;Dz39hdN& zGq+rzW5zzc>0+1L<_~fZ*8qd#a>gW|v}f_h8!lju?!yuniK%8#ESAjJLtd&NKQhsg z+8>v5m43(d*^^S-0A5Y1_pW9VPd}Dw3p)%V8rPqQkRWiEz`W`Euf=?q$E2~9c5zZ8 zs}C2`MR>vJ*=-W|tl2MU(godQJ|SRmGKGi zB!R(&&lwrycWq83#bmkALX+;Xy7kJ1cwN$xxw4;X}{n`Fb zjHyk^T|JW`1>h7Wj+$ICjK?6N zF4nogMT>ZoI$XN5Mf%&<}&q4H|yNP;%Lg;uxadaD^G8(a#1WhFs?yEt)6+~g`8C0Qe%G>WIs zS+FG?)dBqg0#s_`M#8HbTm2DTzyb`12aJ@wLiBkKY5~4u%vzvNHE_+P{tfbtB0}<) zt$&<-r$5lJAnhYz8No-9*rNhA-`Aa*hY(R>6sCoS-ZYFjs;#hh({JY)o-+~=bleEf zRhmap+;l`Ru+l}nI1w?hmWlGaO1c|h^u98=Fcu*X_svK^F)nCVu@>>)-GcLbD$XR^ zcUgEV=Cg>IwGtLzkt?g2?ybDr|11$>H-VGWZ_k-A%jeWi=obCa%L${$FPkxL)s~C1 z-oh+f%PVmm&He)& zdNjiL$EWVor%#sd>soEdF)Esl_AmlkIC@=YAvF92+7W> z2R>7pcX)vzqf}p;-)NW+1j`0&KGYWaeq$9-{HK@Tkml@2l%L#`B`A$cdunxQH&M-= zPkuw`z}8!@!5!xb(%!lkLw zs#{YEgs^xWCzB}*q`PQT{*)1S*heh*(g!uC25I|8V<~7J@RUy{iO;yAUK!=3tiFaY z29Zq$-6r)lp)2sSk0E*jFbYKYT$ zg3PKZBujWKZ(ogW^D;<4a-i-XT5ml{5yoWW3vJxjTu=QjT^90zBt6oMXV9OeWeU{C%j^`ouk}jt1w96T9g`(@Q6X*2e%K- zueb`;9U=E~LfwLPN_=5kII-*GCqA0h8KCXr3jSoI1aZotiw05q3oenZjh)JiWJ6W5 z{z~UXlrPJ1A?EGqa2rtBvMVR)K8n#z|8ck=GP0n)d%H&jzRLdQscUGyH(B9WePB`It z+GAINNWP^TYX*xG5ffSQQJftv?EufNga`fy8A60=LorPtLzJ9^4%bT2H=(=ZJxJvu zibZsk+eZ^}y*oc9*2#LsIvwGGzKiwGxXvO_tUp+m7*h3_*Pgmn4I;&!YvZ7;zGMJvmM3%mj;;F_Gbi#|q z0+x8wac=EWk+|vcmmdmIIcl_b{r|^JV$>O z8b=}K|5Y;oUSB4@ht0n2-AIk<;X5JQFNg2mPFioaS= zbKoQ2y99g-^cbKJC@;5_Lbo`4X7?`|88X*R{WlV|=ArprtP zj-QH<&5t#ZA&Qv?h#L*cm^wNB*@0a_16H7lSB-q46U<|_KadaA$hf!dF0xT{L8`w!4Jns+AKk|v+S zCJs~++G3(7;)IdL7^H}Z_4tgQ3EVxCXekDH=kXjxoq#^#Ox&uD6jJfTv@o51a^Xz$ z(`KaxPGdku2;s6OgRX`{3^!qatFtM0HC~GyRT@?tFlt{yn~v|KHIXF=Ex{8=+dxUABx${7Ss+LgZHC9~?H zv@g%dr%Jq_KkdCUIdPWGEJbB#8JptFoNsCz6Mb5x6r?v?H#(-z?BB!e3p6_{PL@F5 z7tNnsjYf(S#wnU9dz0WduwE}qJWi>EzX1hZ2HSCe{`mO?25uu+J{jq-ej1I>|K6J) zVK|rmZnnz}!~h%qm)3-TBMZZ%xOVN&5eNO&AiUv`k%-D_%9D8G zCOWJAHmfIr`&+nC(;vd~jPI+su-5MrKRh#0x%tRcZXitC;>Gm$DqffaS}2v}rl^lm z(Xs9IDP?}xr0Cfpl=YbI1CLA;tE`tM-%(l8VAD;5u4S!AqJiQ2`@E%w>lW|pPKqL? zyyTOl{i!*e$m-26*d=K-OVMZ%HEzB;-nb}Q9IH5 zv)(%)8n0|Sdy8`%*Op(lD*@}K_jTSP*4E-u4&PM%ca6$_RUZOMvOo?N^gvuSiOyc2 zWrddEi$zLQ9lhlmFq^s#YSgg$^YD45fK;fDJ5}JG(7f|-_iUkY@8qr`fe<$H zK`82Trwx+I<*yZs>8aOBh@`PBT5D$U0yRuzA^3RYiA+E zZK|rT-Y+`$ZS}%HL`0s#QaiIN{~noytx5fYx7FHySgk*;zkgDsoTwLyd`A^Q%!tW2 zRJjalP3V{ccUB=aI$-U1qe?Rd-6QPCRsZ3^ukNc8Qc!cAFI0L0aSIvR@&2%ejYHbFj*M+s-~#BSo)qL01Dgrv~cmKHKD6TPsv z)1lIDe6~^Te*|{9!#l43pvB*@ViEr3U@z@Iq$@+LR8EW4c{@6CknxyCXT@kM!wI_D zQiXi?n)BaID9pFVT#WBW-DUs5gpoakMWFADg}ltnKG6Gr)z?!YAPR&Rh>7dj;k0bh z>t$fx!z$R0k`^#xfz_9I- zC-Q+Qg0E2ufJ`7YWaKh^@VjbYa!tBFC&mUgfj*l{Mgc_|xo1l_PmE>(~gef$z{8c_&LiK7Z2 z4Pd_MDl@9B^4`}Gzn{t9qnsr@X}fL+d+oivWwzPu<%Zp7_*&%qzP-E9p1m6Gt0VR#QPa_8qyX&c_Iem8RnC6|d&*s$BJ zvSi5J2VA~$+XPj|K!vb_bh^gPR0=6bN0s76)fZa2_o%_*p{$Ziu#LIC%jae5rs2`< zp&216Q|o|k;dO&`XVRPsJNp+6u6L`QfuY72e*zhrm4JT>-gWod+%bM%?l`L{<}s0dp7)UePxs;R6E-uzNRm>0mEGUia&!|#5NoE-2(s7 zrbTx5eTLf-%l-jXY%dO;SWr>1o&JB(s88A$kR^e8~!Sm&lw{?stmM#EifSPQL_T< zA+nd57?F%KpWcj;yT?rE)G^5BFt=oZ4)UBxx%0g#%Td%k3LQ{mfLw13YcVimpFiTK zO^TE)XtRL6u(#UKEE4CkipqePR9`T|rsoBnc<_wT;Cut3@E1%?pY1t`>;)bBl@&#k zKQD1sP3sZVqG;lKaOIa8RMcyQv9_4;&m~q7ZDT!L{-|m`IyWz<)u(O)HeLzbd~C1T zJ3bx)`M}i?LuOZNCoql}OsuqX$iT1qmVo8UzrHC|>1xFYZqT!|yWpBeA+Fin`Qr@5sKzUIO%U+va& zr#PeTxk_$|ek=U8)lDGPLm+h@hRk;E=3Ss`>p0d(wuNxNws|R;6ZW$6?XR- z8@JWsHxQ-12?qGF?Y*!xIsHc7Gr?x8@@?!e#w-1CrN|xvv`ko;1i8+I;jvVxbnkb^_w&nXkvE#C z-5K1se~vN_zaftq9-e7-oD+WxjIi$0wV9L+G)w4LRl0Ce%srj1W=DpxLAZ3(zi^mN!%@ zf_Wu}ykF`19C0GD z_jsI&rJbc`symG8<^BV=`S+jlztHox)?4DXx?>t6$P_O%?$}e#>eb_OFxfBSa5tWe zU_+rimVX9INS@Qdn z0x<~k)p8(ZeUq`)=4lTvQG+$V9pADsz3VHMa@6)w2@Jw~F_P`4d!)!S4Xig~ zoEZoOe{JHN+~*vcc&5>)%Lu*|g))n}g1C@Kwdy5ZCuh5Ul$KdllNjjIDx!ckAjaS) zWkgR?KaP?>84s1t2<<#umkN6QpLN$(2*silP0?P80w27}AcG-IjS5WV;PawkikZjS zTiiw}V_s=Hj>Q-E$TeNs!P_AJj!deso1CV3?|EO=exag0x2*n=HX4l%lj{Uqh2csz z={xy@)*;IB`reNp9OpHl^M07#+QW^c*eg5Xx*I&Qnp|1rxsqcgvkn*$)&vn<3sU1> zcx+ZUWw={1Kxq(Zy~FQHIdhuQypsL%6vRt=j-U3_MTe__AI^LZl>90MTx+I`;_#d* zP^``(!BBv|!Jd2H!<}QWt@@by4Ywkch_Tgj1N`mk_YUQHu zfz3xBsD`{DJ6f>4IR-s< zgM^rvFvS~1xNfnEco#9e55zJ7C z{E@wP*=3yv&wB4NZsra(5Hv#BK@%IKH#*w0VIsJK+xg8@(&XjAvr3f~k;It21172= zV|`bRp+D9+J-{r*%;Z@hUtv|JtgOXk6nuTRyO!tk<*SP?G{Yd0RYKgIAhUVX_~ z!+E$oqW3^r_J+q(@>!hz%ER8g;bl9kY+d``qu-o-P3zg6U%%LsSzQ-NZ6HN_2;|!^ ze68J@aI&75EI8nB^1NhvQ}QIxnfCsn?R3$=i;09 z!mn|tL+{Vr4@~{e(|4Kek}6(v$v$^V6T(J#wfTm6=;Wd4w=nCXFu27v3I~G9HV;eF zg_QB=Xxf38{N{-Y(eMft%s35cu;{DF)EF(D41N_vrn3nYq3#W1bhqXU)-TRF(r%O850AfIL#qsD<0<)QleAu^EpD&$tQiQn zeG1uIA*mq1$bbHVyLn=oRAv4Zbv2N1vINHC!2cIWA~K|Pvcl{&X#}?v&+k+v}V*c3w`@G2U!(c%+9C)&1pJJfri)0t@rJIyEzi z$dyB7B^7RG3acc(M#5YRF}s@c!lJI#24pg|`tub?ab1Q~cK&;c%sQa>=Y`>(P1XF# zoa8Lz-mQp@d?t!#Rj+E6p!XaJKm+%xN;(fsd{ z1AD|Yf${D}-$k(V$Az)*i_oSmzE-T@;?I%`2_*b$BBUn9ISs8NBsA%O&~$t%lYJ|9 zi+ZC_^t#LHUZBb;8!cXn2$K+Rcz9S&*No-YcpG*^%%hOMWQchZuXbX0e8PM4O1WJW zUP8psP&pAHS5c0!HRML`e{h*BzjFy#;@onr{^nIG=k@;AS)l@|!qrfg0G7zd{l%4V z$CcX&S?2|vmT{lpAb8WSEojqD+VTgS0!(D5LO-0(wQ%u{dSz_P(4) ztb>lW&FiORXA7FZpu>2<@Wtr@?)u3EylGwOM3Tm4TxFG$=!HZrb?KZNxiqi%%y!Di zMPB4dNS$#=$L``et@!o*&GUCh#Uvhr5cww7Ki9pj2ESkET#|-cWj{oNAc~d;GbPHZ zF$#v!LO&kvL$Q|Dv~M0~cF8)e>$h98aZeAN=qxu7P^DGc*WFk}(%CnP$5)8tZkBEM z!X}nb3}yMhX~NwDXYc>k0{s8mKeQtUc>z_Wlp>YjzX)4S0bXJEHR9mi;eISt`qy+| z8H$5P@f_W?ooYPv=6e`dL?X}(RKs5PrAyU`=rmeGDz6AK}t`C%B8 zb^JPF2nYv_57m&-_Yp!J4a!lJWtOB-6M=@G7dg=_8J)X6k_EZ#5 zN=UC6FO%O6lhU&e5u(PWSG|@PF-}I2%VO&mjuB@1(_O6ErRe<$XO*T`c_0QsFi(!f z>ia&-z?*d2>76i>d7{$p2l@XneraP~9X)z+?u{f?}C9rAFY#jR^ z&f2e1xbr0PNt=1eR%hporgls*{jWgwJY9}d+!W`uxhw!%_!F0}ewfUcdx=ocS5E{! zY&a4aY~azt7^WD^ktqP2`3o5W$E!J2lqn!eXMUh{Yr zq7^wekneo0u4Rr?Y)FAv*4H~d{}6oBB`Ik9yn4Es7`yP;GYkE(7?LX@`xZVua~w%V zp^)}=RL;Px3JZ@)f>OVfbh=Po4tYN~OV0ftud3_Zu<0EVVP~T=j(eRNqS?`UteO1? zSF~l*9(>_H7Sz&wWjQ%0S9<$@9Iv?tILkV@eaA_oir<%i`$K3NA|sU%iZq*2RGvF> zCKIY@wkT>;U*%-SQ+$t4H5D4w{*P|OGPNUnH;UeHRzSV!)UJ8Wzqen*EZf{yTP<`>*^#e1GSP$UABA$C&s zI>X2Dxplr+_xOC>{0l7OD8xekI8Wyh@7#7}xD~uML&9DnD`2Nc5F9^YWZQ`1JY3@J z<-P4xDdqKJ53%I+`)r;z;Z-Bvd;R>*K)T94$T-hp>6M28Uf=3=RJX&uS%L&s*{Wgq zMdg(|($VE*5AtNKQ<^G>t6q%lS}g?N`tAT^69b=6<;S z$iP(XMy%P>PImYEvPp*qq)ydH4uZM)IVpi|g~_q*|Fwxfh689Yy9>+xu(MrECK}|w zCU_#tI^f@By@7&r%35%xh^Ei=q>kVfRpXaTcxJbUq;@FRLjj1Cd9TM=Ptp^lgyqaMiZ(lKI z*LahWFlN7!zxT6DCX!hRQ4%thyqm6>&YkMnw;GoeEhs2BpYRK)ZS)qKWIvZ<@d(B{kT^| za6~ObpQV)Nq0t;Ku-1J7_N+j zByQ29H=JY)e0|5DZw#h#O))(B@Tu)XZ+o1ncZDY(r48U?`DjKB^@Jg!bRNc@&8u5u z@=cM1#-+N3p`q7VAjeT**Gf;$Lxq^F?hBic5eNYoU0N;#%A#KyY^{EzlN+;_gmxcXw;C;BJAF_gj0dv-dgs`@xTdkwM1b znfE>CWwRS$CRWqZh%49?=Z4ala5qm8*pz^0hiRs)Y6&L?gcX89P_{8(lO}<>wQ|mc zxZCh7XR;Hvo31CX6R+#HqW+%NZA_R+kV|17>pvN%X)8{hTh*9!QaVxlLV#8mRjSL`!b~z=Kwai>O`J8vpZ@3LdbE&>A7+IS{RYH7JpVD zY6JPtoG4t2NqoZAErcq$`Rg$=L0j7mIw;?l7D6y7&C7A%nR=BEjC*E56Th60W@R0a zcVCp_xWCkLF8TS`*e{z=u8t7=q&&Y-_G-EE-ms$-r@DCEqO%9Ry(fOygHTNT;`6!x8ir zviqXe9p=um5%){QAsD7RpRcz#kVNG4Otg+c+}HGK&52>oj-$`g$lVVXBrU(7um z9ei!~rlSz8VTBLx$0Es59OS$4!ivR4$BP1$%(y4tt&QE1eib9-gHylw|NL+Mo2PrjiEYA! zr*v=)yYE9en_m1aROitVdbLNB<|7QzaQ#Q$_?(3-+oEuKogc3{U9BO}K_u1>4=ySB z{SCQ;Js~+6jhmahRKH1mBV}}sBU0JUO#oB1`xex!^!q0fD(+B?y?iY%wS+F6bK-$X z6p2p6Dfu?-3w?qih8~#++msf9SE)TOqL4_U;|zb5Qfz&bu`H%HpdUhn2FxM6)}+Q^ zsw&#PR#epW|3b|G*|*rMWqZ_enSibjF+}EWjOjfJ2q_Z_!3O5UJ=U$pZn6AVUc)W4 zCcGd~l=iPmFOWZxEGU|fuW)bDcA246cnFtF?Aa0a7t$ik%#wjGgLGC{0{Q!dr@W$E z_g=Jgh6KKMO0evnO<-;cJg4j!5JfzQ|9kv5kcaV3gD2-De2e(lAL87a)+8kXPw5lcg8$$2=b@!G6-if+TlEhLnrJ61q zi!_IoIV`f?<6SBwU2OX3aV{3R&u$K7kPWJw`Xg3kq@E2@=`@%N3=IvP_GzDBFuk`b zo864H)VJd%E2tEf{w5q;MK16GL{74_oW?X>S%?aj_e{L`ZaK>OA;`vUklsyhUTE#Z z!2sWu{!I5lbtIZke6y>=nj)p|dM02I+(n;# z&1GYE-R1Q0JieC#!bOZ_gQ=t6DJq-9p}Xw|#=FbvbvVh=3+rJ~oG$B2?2;NRml&5m zW&7{#OIO&+W5aDa(o_m2I}7=sg?wFkd_(;i&)$9&|I$EE7hyK8Iske|cb_j=Qc``d zs1YEviCVvjlcyv$1}s)tZr$JB7Nr{#>q1Sf8ert_V*AUC#GuL0&oo8`|7mrJh&bwi zG+^0L^u^$dm-Y!1>7_f|Yf+Yl25eAGmw43?PaBSAdGx_4h=l(rGm!VrpK&RccLiZ( z`@%j)x;2>M*OgypVejZ3|DsEP3=dzs90)LlG<(*`aU9gr>hZrb3t2SugLvu5FdDJU zxNmDBzS(nOFj~(O8+know2$_cJ{UPH6F)vL#CVaB@zuNoYabt9a*$elDQL4Clv(ib zqt}Kk%RvQNnpcY3uqH%DRsYR&E0)D{3y0-s`enJa@j~f4A3?APBE;ovh`qwtc-_;} z%ld3MNbLF8U2H4k+2!n2s~AK?*Uo#z{e*~I#N`jce6G#j1RKJX9+C7Ve$`ezsB;|K ze`A6x@5}$y;7&)p$3vd~?VsPr*`q!=J_-Lh=CE7-(?I4IqMGR|FGanqP`C~sh zgYH>$b&*7?ZZEu6#m;{94)mj5-+4%Zm!(dG>&#vB{h50lqg_u9kw#UnK9r-2|8>5M z^K5mac%1r^s1cwI130M`SurmP?$X=ktb(|CnTi`1a_K->gS0}xh_sPv(!exPOW=V4 z4zjkFZCkJPkkPJlbFur(OVyKjgE2I(c(qUj0%*Q;zTwh>BDJ-q;})}JxG1)b_Tm5^ zIX8)98-*x_7dgzi;_jMZ!9W@10HkbY;FgX`Y!h2zuA-bH%L@c_`B`;q;Uzv{pl~1aL9Hmc34TJHH~uGvk8^*%Q2)kL{|G`!&7n$T zaj8~Yfxf%SaHm{RTA2FEyxS|HJMJ$%tTof9_28oKi8MvvIdkjAxwFEAI(b zu4X@)ghon=*BT9!UYXDZ3n7SMHEaw;Td)MOiI6V@@3tEsoo(!GCvam1zrX}JMa@ob~o5|`Xvj`Q{=P{eF)g*&UV z)RW{`_nw?1?mD{}G`>AMou57Kha?q5jK>MN4uGGPQ?J`2S-{5c$@3P*U<@++fqjzwbEp2-oD- z+>HFrO;;(Y3>}YdL0gX@e;$y2vz~DJl*+#+$At1EGF9Rpn4awY5pFN)$8G?DjyH80 zJZ$*``?D=o-?hML4tg64Kt<( zj@+gei_O3_>$UAOczGYR-1i!SM|*$u`LWd(^`NxnTC6s*n{=nr|CKfD>olY1}G`q+efMRrKT1U`_u`KF8S_d98%i1%5! zmAbPsr_1M?qftD!WqdyZG9j3+>>#vgtf*nu5rD@UNo^G6x}Vq=7_X27FJ~3w?Eh{& zOpZtSv@~5;l6%41cb?k>J3E%Qy^fO23tp&8!S1=Uydgy@ZX+Mj(kTHcDGVK)ZT%WP zy~6upe{6mji)%V>Ad11L93@E~(02xTXN3+Uum2aZ>QixbQ-Ei%oYCk{+>GLtbM%Cf zd?q00Ey3&cO-4=q7pQ+i^RQD)UP0zBo$Wa5;B{K>7ayIF@s39vkoP5&%CR-Dz0J&o zAE~6hr6RZAdnV>#GsQkt(3kh)7s-#e>(b-`HZy9|EjE`G>`vW6U=#PdzWNupH`jkt z{O{&jKB@dSC)U4}5dWuD%K~Du@{|G@ie4%Nni&MTi%lUs8DiHKTGWuj%wVWzaM(UEwO>a% zZ{#hQqmPPk;6lcWG%CL+KckwPlo3mjMhwLmW_|7x{NpS-B%@G3fSGA_7C#6fM78R- zR6-WE1Oc|bWTD!E@WI?U9c^bct7{5R@Q!BROUuRPJN0XE`c~2Nvl}o0}}ti zTh)nNBbB{F%FBaUtk-Z2-oJ49O7~;A(kFY8sfPURAHCc!2Nw*E-`AH(Z3th}6vG%) z^}f5ZxKVO?2(xXLoXO_A)}kK4JnG$A>ot7w$JwCIu3Gz@U&tIrshWyt3&Hu;otou4 z=b6M)>OgtXZu7j%by*fl

e$ndb7MXvj&!p_TTWu_ z*hzHV0DjdIryLF(Z7B8uIy~+iU zobN(H+LDPMgX+Y@&mc!6oAV^v9D92+;cjUGCbD;|ociJ8Yi$J2zr^VzD+c~*S=BQ3eP7vj7{eR!4V8ceGOTIm{$Qh*0!{3OUM?J_44|`X|I(jJ zuY6kgsV>@;`w?Wey(5um%k@+sdQ4?r_u_v6RwjEJI<5Tn*g?o3-ixw2Ki8rF4{ZZ+ zBu3@SfF{9TMAL?kfD_+VIiv>pV+ovf&QXVG-$%1d;Jpk&`#O8(*%9O2iBdB3pK0KSRXhI6o~yfX(9JB~K0b z6w6VQh;^tVX(Ad>p0=@Af%S%Ga93~>Sbl2ZyX^(<+0!^aC1n)Mp%pJzK3?MMl13Z# zE7aQ?uctP@aqr!c-3iIk8xvhMrIP<}T>p)MKxD90BR^)(p66rsp!OVse<8GH$&P_b zztppWFE8PD5lj}@qFbtVe?tye20Xbnro@x2>G3Mkzv=_NLJ+|o zIl08S*BHbEm!_W#PC zp14FP9!;jGEpS41{j+}K9-FKx=eQx0gDy&Fmzx2K0^^@HiIFI! z81?qG<`|8=3kv08S?Y63UHzhqnjL$}lUIdKNKMLs)71m!g?bYzQZ56IQ;O)DFQ2E`teE4f8`4N#f-=xgnBMZ1 z9|2A%|GL`@uqyTGp8M1VX;f0939kM*o4z! zFs0pg2kSKZ%7*WXfjr1FC_VgJw&@=1McW7No4YRv*t|S$gToJ>XfR|LKFK$h=gvxU zkesC5J-%!ifBf>g!+Ob(hU2#1pUI!M-dFY1_^n!VC#SIgNr&ReA}nZyIjdV+o_&cM z*(l@Lu%-L1F4V{jH($%(&b?)_Bt+*$jYsX?`PFfuG`Kyc1a3F7w$8L(lX5dH*?Sp` z#Ik>Xvt+GO-;%yN-x~NsPZW2l4^75oZ2`QLev&>)xBb`s#N(61ozR^2ZU^@%Y$Z)r zN3$LfTc7Wdx$Zgo6?fd16`c@!+3;KVR*-utyzi><=!v_^#eVW7usiuNEf(hZtiMvQ z=6#Hu#>0x{cB)&=PnGG{MBvtJTFXdNEtk25<*VM6y-G8?&^$gTa{JH$467THM=EJ7 zRhBCLhb`=ts_wVtrU=n17xClfv46_pyj>@bpB^uzNZIOnc_hZ|f^9~nUA7zt{!-D0 zhd5W`q90ms<~D`xbxd21&E0H&J>G6f_FB6TwyeIcN_8AJ3`H1wV<3)HxWR8(xU3qK zGvW~%Kd0r!>{QR~59cTOv3f(NXDc|j$Gdj>flHar3WUm_*CrJR&iH5gXrukP&tr43 zR9}XKIDyJXiYpc#`%W-Ls?&-1rAjn(c)AZG;<~@M(8j7o{z0_ja>Pa7r@Nm}`$uwe zSd;6nsp_-mUadpv?M{ZYS6h5UQ@wfe)>mi8T={p{TrJ*&V`3+*j5*x1J)4^J73KK5 z?&!q?t$I~|<)9+XWijDp$I+uK=^Bs5oMgq}M`k5B%R zLiEcdprj5XWKwoedpFi^XWf5Ed^wr>6q^zF;t{{ygvmI!L=DPWCdYDY+L!7AE8nfclU;DwP&Fv2h}J&GUYaL)q>USOxmxNQd@ z%zz!1OiZio7`r{>4CYvFj|_)$1uUXblV{NZl^;1}&08LcT$jIXQ2I|r0v47bT2QN}t+(|mETiNt6SVKD>049ja$lO{xJDT)=G z7YYL_ffq_p%o$gDT8s)_g}o=MePV)x1>AWZC0;-j9T8lL?=?oFOF%y;A)bK z1#@JY2(v-gHm#@so<3RORf?;*IMev`^P(8uZS!z7+{iMM-@ZBNxb4PtFe3nW6y_&+4^i&Wf8HEZc8~<6~au(lQu1z_(5W%r^YjlGcoN%P|Mn+qB+&a$qgd(5QLKLo=hR(=;ZtH2#9-D@{=jUk z!~ZUxj#BAE&xVTOy?e^|8wd491$##%XMn4_`{PrB(f;0KxWmo)yb$M%2sb>xWO_eW zs%>6jy}EF=JkH2}lR914`613WZTCd7!8g3{rowg2umC1Dt-Nx4F2hRjduG=8Y0YwP zSwm&v_^<30mHVUFGCFYGe_K8~w|BBMV@vsoMxL?y=#%GyXKYdMR zMdk^Hn8}Y{$ctQ_-7H7OJFa)0z};hDVhE##mL|Wp?;l!a8XmRh#{(rguhjzQ&fh79 z#j(sVP2JXy{%xCLqOh+1Zyn_djSvIZvy|Bq%RM5_uS!?{@Uz=V{$yCyR4chw#aWMx(n{T43#( zq8_S*_KZ zpDQni7OLgWu$QE`X#dqMg6f2xsb8I%laq%irhqaQN^=%oq2h#4+9TlrQ}Smgk%9VQ z58*a6oGvHnewxR@%ZHgQ*idz{X8wXi<#sY9UrC%4Tf}{0=^Ay zV>%>S>XO1(fiN_*UqA}?hTl0_jINVJ0lJuCz~4Ae$O_%e(INqr`C)zFAj3TXiWW6{ z9qq39M_3vVTqp6wQ9_g&IiP?fm_?8D+pm3%l8D+GiCUEeSF?l>6^%g+?AqLm^v1>* zCx_zM`STmBUZ!+BKL|Ms!E{7Jn z2fHV>ke&>J&B3Q_sXmEp(8TArwG-E`x`_nS19GvO6^1W!m5-TSh!e0_xt1lN)Dteb zwm8Dwlh_eaoz#xnT$2^?5=Kd{K33ByuR8bB3@s;A2pJk?b+n#=f8n7w3to$h4;};g z_2{_OQ~|MAvFiCO-BO}%FOk2lNn=_qw3OTTRw*59;#j*mg#Zj?)CrG17)b>p=|RCr zU(*6PBb$|lgadf#h0+Eh;{KQ^nU)-}K&+1K&J=l^yQ>)1TmRn~>CWqc7kyw-~xscda9XObiAz+(aP6+ad=T3UC84g{hK2*vE% zS2%4+l;j%3j0VW2E(4DstKR`mq>8=ZC7+UpQcZJ~xrSDox;7PiNApnc7eblkxC|Fg zuU6I;)Zm2`%xlGny=*#f%5~mcAMYN~1wsHA{Wox@6w-swdM$6U*pvNOTS>3OYfloI ze$I4&)~>tJAT5P1zX=DAP8^|R6B5Cewz_0vAGHsb6YtJ#<{}3=txO+wDd0%2B(WI| zC$h52Rk4Os{PtiecTP7y)A^2a|4ff%R5Z5F=$}fAcnxl!*=Su8AMu%wDHl1)?*Nf? zE3LB+7;%;jAo4rxj>R*uUu#-swfoYLO%B(5k!3o;X7%;4HKV7oAK&?oq_bD!ezsJ1 z%rwkz{4lr|Gl$QaMo-&EHynL~FBtlkMGAfwaG1-_$F#RuDjf)agg4l~^zCl5UzZp^ z8C>eDbZ6t#E$?_blQdp9w3fcwEom>`lwS6)+SrbhgkP=Scb8Rk^z+)u?=F#IFVDR$ zVZRW+dzZo0b}dWe2Ni}Njs){F6@U&N;XtXwif7M$dal0u08Mm6BImLMF0sd7I-@y7 ztT`C^`jTEj8jt*@DnuM!50tXIT2e58T-fTKdQ74>2fFKbfWU8dpsR<^TwVtqwJW6h zFemI~(w>7T<>f95NpW{N_+x)K8~LN-g1w$lB|EohU)tX_$$Hf8xaV^>_;rdrdyV`A z*RuX>p^?E|nxU6jaCLPxzw?$1=<&3B$?{m|_xGtBvX=D@l~42h)=N(*`vcuOd&5T0 ziOM2>zm?lXw&YW>p8B!O(T(2MkKN--HB;3d>i*|A`yZ!UV0tN%BzwliP3{^W`?}sa zXa^k!J?!WYj?=UVs)rEjE#RUd^Jx$=)b9D5xqth@XlYf~`N{)`s$TTX2^;GQ!}jyB zi|dsx9s69~hH$WUgeWx)wL=zuCAqR%z(*Vpe|2#spo6Xx>&1f7Pws<~nzTKx zrIaJbxi8p)Hh=|%3%QC4gHq%^1%+>Ep+x`h>3;53Dd(M5ujfLXvxJ+N1i!mU9R zY*rR_U|t5$mr|3#NB;f2N2rLw(4HPYOSRrHpx024MQ?;8swp7g-s^$#55lHy3jG)$ zhh*FsIysz&&lA#*#Em4F*5dLA{Pe4^!Bg?lUZKv)+&JRxC+y>H>r&=f)5MHJRMpuq zovJtD6hBjVyUT&z$a~0!rbnKlMOE2}#UExUzX`GOsE#7OXDZU*LP~;=)dt>k8Quv4%K zdTSNnv|skY_h!%0c42SR`zdnQZP>n{usTOwMG{`S_PP1JB0~xB2iaQ3zO*quG^i#a zJKsFF{*bVl%n#)4P4c-k2f>IqS~kMQ_D$TmFAsRoK8bCc`D{+EFPCvoGFD%_`8e5# z3wW+cz;DI?OHO?Y;or>ZE$ECOF?f(F-uA_vbZSc5cxR9$y0*x*xtwS9s2**_lv2af z2S>@9_U6u(Xxq;J+@hJW$Wk7TDcroLF^%sxD$C=1!$#%^81bgG`)TeH zd5pAo9~m(0nBvuiE`#Go`WF0&g!4w4;yJ|xJTMzS3(N{8J3iH^>&$!HsBKn;BEY>{q4v&^s zm#}8Bh@{Eal{Lf>{o6mqy{diuGLJuBbGw2VxbXHu1Ec4fb*h?9KH{j%NEt~&s5dY+ zSjs~>b)>X~IRV=nXuW2_VZ0GWrHWgH-_*GsxkEv3E$+R^Yk?n8$@_duBfAMFNRgC2 z=cxb4sBD_fo3@7FT5_kQAms)$I^E_N2GG&htXKthzJr8X{^TRQ;Ih`UuvNiR5=@9z zBdDmoi?pEL8WuEup=Z6!=g=6s|I6Q>_l-d4k>W|?YCPR=MdP)>Vwrjl(bvsefs1Dpc1gyR4h)!M>QfJTDe0W;w? z!1Wn5?+@X+?7_ahaB4?U%o~i=Gnz&D&KimnnJ;}4Nu>;o1FUKL{*I(rmut-qQo4FEu35Uat}5Z^;IZP|;uJb9 zXY9xKi;P>1wJ`=Gh2x+}%&}0GReZ><^1zKQ^}F`WI(liDXgIX}3kS{I*N`s2r7?wI zd+;;5ungH4`4#u`yqNcKm8JV_VmNFiGoz)(aLa-AKV7k#B5I|bf7zvd+voa)fJ!`9 zQ=bl`TuA(c3FFOtHsYriKm?}nMO?^rOFE73;#Xah{q9;UuSOnyeDxz>@Yvb8y1g#; z3<0T_vzlqVDT?*g6JUB>Jv{?sCX7- zWMo!I>fdYPP)$A6`M&u+mwv-Jh10;zV_Z@K)H$f|zYV)yZvox=EC*sO{+%D4m!$iA z9XLJuOW@ay(MW!T{Xy^E`@bV)V(Wp#x~ zgOE)_{lS#2;Y1om_how0P8-Xs>g^10^7n&7Bk?bg>!-KRknvx|LkAIEo0YWwkIt^x zicCbh_vf+(oQQfIOYsd;7W>OXrPO$rVw%FEKA@aH2cr`k}e@Z%V)hLjC{i%jl|H0gn(J)>wp7+^qPvY^Ls3UXy!iR+vb-?# zFv^}#X;NIHo~PMYup?Kb{LwQT*RZ9a?UW`vi$#4 zE)A6aM6+&ct13oMRptM=Jp--VUP-_v&)=%xfn3>ww^x&N*)Cw=c7qjI;gp7KSfV0W zM3QA0WdCmy=dn|Aw|inor^3zY7s>%k1mG@qhrbJuW$}b zM1xF%!-S+=yEI0f?afL*j_wNr8v+LRVmsZThL?gO{A<^7fiTVRi~v&$vEE})r1=Gfy)=d4`2xrk00m_qnmYDRojZrY2OgKQstaY)u zC#$&a%@=Ffj;=2pW~AM5_|*Kkxo+Ee#9h?tRb%)#e{sLO1;Ifx>xdLMig-pLHJ30I z46IJB`>PATOd%T3GOM10Vw>S>q0N^;xo(GK1&6910uVq1 zIQ!Vk$~py!YYWfcca7j+y#Y@4TEb5C;%AV8fjbdRal_|lFNGPfSPH8}L^nBE?IPnzXmnPqHNtce$N z^{C+0X6U+yioKl@p4@g1E9a`xGe{9QpiaN7gV&zCWr4{{-cLGcwy@9rr@#6Cf(C)( z+JT?JG2Pj!;_oMuRAeg!@6{eMg(hvyYg2i5TJz&eRD!k#H^7`c$!>X8CTN z*ZUOK;J@XyilQ7CpDU%P7`-$4t3Zb%pXEG5K)Vp9itz6(nvJJZgqG|%w#(L8kWS*; zH;lk;?EIli3mZ4%#$-9I*U1W2HlD3bs=P@4jY41Js5WLcX~RlpiU)MP#I0SwnHrYc ze-zaFX0BOXPs4C=t*+QSo5hGkw?Va%?*wL;BiOT1rC;87L(fzWj6n7{XD#c}DH72E zFe_ol@{*Mmo5un)garWv?u{0+1wX%04GM)rTY}!8q@bJlv@tuPkO#zqy1=LgQ zi(8I2mEE81rR{QiS&>-*zj1KQsVZgl8DV;@=4{1wM*f=24dgr_+oTiZNCcJC@ETH8 zHSzRHtG@O%4#eN%Yv4q4BCiW;dl{{smp>#^cck?Gt?LHz#!$l&)y(?x{1!LhXE9M7 z8VJCLDh|+Oskcht*89M$`J;4lX2LVL1~aEu&_AC=x@=!C`pc!Kc(KBaj-BX~kv_q!A zv$>9VpzD$C`-fO?v0%F<-s)9AhVEV3t9Gj4_hrM3w%8d|bd(m(Ke3J5^Uaew!yCh$ zULnma_^+%98~u$`5Tn{g&OKxlVEQ%@0p*$QP1_Xrb43Fxm%i6xAD-6G=q5VEcKMPb z=R%^=E5Io}DJ6h*s%PO6y+2CpDyfU_+9dMX9wN>nzFM2*cWK;1G9R{k;eKLtJeeI% zTb%j)xJ$SD_wd;H-}j7E!zbg;c4;H{7O~p)wN!On zQ@}k}`#mbG!t8QCJ$sO-n&kB1Fgt&zP*$|vAOEb0uajq|!qKW`Z^WYMuju*4nW$$6 z@4xys+_Fa(+^NWX|xxU)nO=eJ+k# z4_x*?5x@UFB10OHPtd!^QsFe|ys#O(PrXTfn7^^Mk7x1r!+QPqTU|UWUV0z&w6r)C zwDcejgoW=Uo|5F(v(EDSQ9$m6?}{FE?q;Znbk^DvzlY-AO|r14d8$fea|?n9#8cS> z95CHTK>3DBkD|}_T3Ab`#t#-YE>3A8MrHA&6rX^0 zeV{>pDK)y_Jf{)UwYg6vO-6v#4Ky^XPz_RJA|zaQfI7~(CDlsk^z4#O_FL`kceyx* z>~W6j)}{JwJ|F=Q|D+V_Mpo;dXtX!Vd&VHb)ELAL7?$oO{TU+T_qX_KB^+g*(?Uiq!iGwMr@VCDBJN)U^SMr6k_aZZeGfmqiAb?sV92$fG7whpFL!C2dy^je%_XX(ge_qP(!LU1yEFN#bz`>dBcWe1vsmedt7 zX>8}$2Osrq6QzGE?DwDxjf5(?j99nbJa#OCD);q@0p6fV{tukBtMVL zlXuKl)IGN+2|zNp-N!_BeRg0isOkR;TK=!vS@8X*3Owcxr!R9=D4D&wzjhoPub_)* zzIc$<^*oqvsZc0)`KLD_Zgd``X-2H2Q5JBJyr(?k^Q_nCe|_4-s%m6Zfrxe1!NI{{ zpPzig0jnXCvw=jW+QomzgLa!JW5HS%ue$UgpwnP8e_ zf?;#yjM@21Ml<(-hJIaJ*%o)wGnWINkdc>(OL$mVx0r-vgeV74S!W4sG00H^(6Z1L zrk8*HP7HjxBOV$}iTgRgrZL2s?uzJvT&Wj3tSb~-7_*_g?^Eu6@HDxy4w9vC!tbYN z$G-*NYWo2(NCRxCj5I<67*GtHfMlc}NPQF3_Ir+ItsgbsHEN-LqcSMCHxDiw_Q8fW z49UdK3XAZM&GoL9ye-@yMuH_ayXK+_j{8x#VmF)0 zs1tyic0>#yJDLX+$3@yk-m)EcN4=PrxCh6QYridE+T>2RT!WVIO2;1It)*nul^n`I z900-ws?pk&K}Se#ZumvG0dV2WtqZVp20;eBtd;7my*1Opy ztZ@XNq|#w<4fwAGj7EEu4$7wuIN@)vxIRrF%ZpvRIrRDa8T*b8-|X+OKa~RUL{;Yv z{6=@r{WeJdGf6?qv!M3u$Gr5VdD(}I!}|mS6K}h3jzT(bLz`FKYlBUimOfR>aZ6s; zsI=kuSyVOFYK@PK3t5&3z=}scV_8-%PKWJbLE@)6A7W>-(hTYL6RwKLTBx`y>#~(9 zo*=;)zSd<3R_lit<*`LgKJH|@tNcM0yw7Ut_V79C$788(`*xr@=;;u1lL>xMQel(X zWHv&;brXC1B5YLj7SqD=W;WzC`hNZ|hx<}<57__CFa1+76F9`T-2IiG3oz#^@hA;E zuphR+ie28=ZzLvg=YiX|p_L9!hWc2_0M4=z4v!1SzqJ6fQ$yb==fSnOR81WkJ&3w_ zt*WP2!Wbvs1+8S!0+sClNJ8kv8h;W}R$NsP21f^UBZUP(UWNAk93~0CD%W)FdJfcc zl0cS04){TmVVXt2DAcT_8L1nK7sqd0Vz$8_ilsF{^u`!dC(6t95k5K_3GfUn`DESt z@yu;%rPb3eLQ+q0$z^mkQdrWM4w_!=87hY^uk(!#m{8a@$DxF$^mTo^;Z95Le1sFL zfGaJFJiy{^@(L~KO!)W{EVma;5`Ygt+2lg=B>5n3=dgo(PC-KLpbK!kIyYYum3n&_ z608M<39(|*1avlr^YZiPz;Z&-3IS=G&|X)Or@(7**HWutp#?iR&!|9G8K&}>9rolX zJtbiX;H_p~11k#;bY&I^T1aH|LY^2oqJqzBS^_hRs zLI7ik!-l5~(U5Cu>*Ol>J=zYkx19}9HE&E|2{UP<{!k_JNhUcS3`&ns)xD_#GYSZ=9_J)2LN;ohCIbWLx@jKkx_ zq3tO{gLcn9t-*9?VfH#j)l)ugmwN?xVMoW_P50n9WPb=gkKOOv&}^YK&u(aCa&m-L zhu8ktXJfKo7SG%Uxs#0O*7qwF2Z&91E4{_8fB)~#eI+~lX;Fa5377=)F35XVZ2WLY zv~lUb5KLns4ddZtPSKrIGi+>#+oFcer2zXOjx_>w4wS@BYesB($F!33{2HhRGn2*i z42sHUJb)dUNnryQ&;w%L_ohjST_Tri&{puDqHoxk8y5n2p;}aC!f*35zn2P-W4=ef z$xje6$NkJ%lswibK~H1MoWl?aXUwStE&;wEhnU*aQ?E2Q)gZeK#gi6Ge0EezF2&(M zg=+m;C~n*$Wr(bysKjsEnv=a`2%w153Q$Bcfa=JIZ*BE1A*sKOU#Bj1`Wf}x49zAM z8@Hx8BDCi<&U-9+t1q5WB4xZ0<|tXf_pp7KiSBkIDl7V@@G&2AB+y^Exu3^|Ui<>$ zZ>e&acRb~=Upi6xYOq`Y{MD9!z7K4IZ0>|z=xJ2DBOpzj8=ee0a`LRm zw+te_JAdjM-G2v~@JT1l^v^F-&jzh!v2D+i)_h2}QW@D9dfzT$U&RH=7Mh?4UW$O* zDKwC$qUFht%2vga2LDhfm>pi0KI;;M|6!3-WBWb@zo468PSMYy*v^M74VTXib!qNk zhe=ZJM%v2Mg!B-lHpR`)xn{?*MHB|WB_jaATW z4k;%1c{X*G>F!`SoUBTHy`ma|%2e#01P3Nj`Ybzy!UzRnRp1S@el0&&xbOKr7SFd|FgDRKv3}DhwQj* zQiVFmhvFw`n(+i~aAE6L&!)G6(vQKPQdVqE$rHVh)EnP!F3k?7SmP5{5;#Mk0uu2m z`)*56^0Y1|O}3ctnkXrgVVX_nx8I1RH)U^gV2O z_5;ocl45bg--vnLmC1}pTb|$KqjT&f-s}XFK6u2%%yu-<#?C5lby|%@*-%76zrb7X zl752Jb;C`Qm|I{1TL*`%EN>~Bu@+Fw806&cmR{ZZV<$*1jWNz#*wJ0Mj^KBs9%;Zd zf=P&29~ChdB(J%dLo}P93w(p7zmvs zfqq>eER47dK?tptyF*2U2pv{G>^SFJLOWSGVT^-?{U*II(iJL#y!B3g zgHuX$1De>mc{G{);(FfF*hDOXR3Jq_ifg51!Ym7Kp>#1zXp3=@b_1_6Za0vULbyDe z8<94j0NQPJp|Pzo+ItHE#E;WUOZ6nXl@xCa{KTiUbpT`27HEx`jGrecOWc{$cy0tX zKi$J_W*V608~$q|J>10f!6&ajNf5cl<9JkYGY8XHX8P7ED4r8r7tKWDiSd-S9AA{r z&9BCP+utlmjy}O6<2JN2){)jInQQmGE7v+uF511FcF>^5pZN2me{V{$h2^ncBjg}I z34sTKnl@267cS#OlxZb56<2FD=9B;TQP_tPb0y^_wcKl$^q05lmwH;zaoo`p9G6m&pE=>`iD<8N7ab3H;3NlGuJ_=fUna92rtLdH=%{>bkM9?uDUkDR0-eY88SH4)l*yY+` zdP5-pyWZ_nun&+}b0vUMzpnljl>nbvR8;Qo9hXos;v3`~XB=0=NX9wlXhq*o&yE&n z6rlEF?c?ZZ>K7!u;6lZfynxn-Q50e1;x2eJ`Fp8?!A@sV#rOKm^VgSOSPx%Nd4|{$ zX9AN6R9?7+VQFes%LV%`+9)@q0?D|Hgf%wfb`nu$P!~{oQ2xkKGjmxW8AIg*oJSOW zSb#U2(emHq&4L(-&rvwSc&4YjFIT=5R$?g3_0{1FuxBU~vNiSUPa zWo1|Px($Vpj82X5R*gg}b)o|Q$()1Lg&N|+bUglwAyoA^~2DJnybiAeSxJpO(BL+cScGr#ZWB`K>L zY-@oUHoRgF#JV!jvJe6YLE|q92;f!DzBYBhCi>gR`BiO1JMLa+qa4Fa=dG?PtoLCN z()xAC)|pGh0#FPdG~pK;*afc`7$FcyvB+$(bLS-58~ZqI3hFxM&-1t%UO|XT5wGLY zvcsQE!w&f65nyMnR}PSxen*7uk>jz_5kY+D1V;Xv^Tn8X=a2VFT7+p&FSaGSDXla2 zHe;2)lyZO~b{6YO9#V5a&t5R)wnDLZ{UW`H6dx^crC52cP=I9i+l25hAP)wZmAc7k z9T~eTmTh=>n0nzr{R;DS;b8XJ9Q!Fby&6?w^yY_y6PRrRNt+Um$|uEYS=1BJYQQ%@ z`y`)~x&za?ge8tQQUY>*cPG~9j>U*76OEdh-Ty<^TSmndZb`#54J1KBa3>Jl-6g?Y zgS)!~_a+3lpur)yySrO(cXxM}?_};=nfIId)vFh<4!!!3+O?}{#~i13*r!#)-B%*P z7}ADsX$%kXurkh73*$X>1&1|&Cb5V9ysTHkWx(?8O8miZ4@z6I$WZsw4$Z z&`Gl9czFy}a0j_~9;BK&T^jqSWVgzMu6Xw?b%`GFX>jO1QSh~1nfE}ylc}cc54!GY z6f}qUciS_g{G5Z*6)1@){rU-mg@S8C7IcdZrDaKqM>`XJ8PcRG;Te-%B5cCeZuZK+nN63QddvCkUlVe#0do`d>du!Ix#h7lI33;qJLpfp!_l<#bkuh?Vu zWH+Z>fUs-~9LX@<8;)0FF-`4&ShToMd>z_E!RoYg|EfG4PcD<-9P16p#e8%so16qF zU|V1IZj~p>3mmR(r5{4*7fw?~3vla-|M#=n(G<23Ie@N7%B8ruObH=vPmFAVQ0eEx7UY9{0xmN zdU)x5wr7Y?Xeau@k~gOL1So+38^5O0tajanGU<7AR7E~-p452iZlwyi&^2OKa+PO37 z4`XChTmrMO%fA{{&S$dOYk@tp-c*CB!7E@3(n{229uh3EKvA;gX#4M&-$@5{G4VEqisLoy09n*GSu)J_fpq`9?LV)3Vd-@yDj4g(La3 zIkDEFiQWs@&wx}mACStb$`b#_R{7V}@K<RZ%g>5M_F)`w~V1QFM}j^EXJBZQ`NT^kz2QAOTzf|Y;pDA8inS%T_vq4g zeM+w8*2u_?PQpnu827$HQtN);6t3xGgQL4Z-OFz&WepL)Pv$WC%04*1c&7QL>+{wDK~_K9e9`|rW4Ml zolGZM-Gzhji+QFG2dJZ64t#ryNZe)w?1PUe45cb(mMSBk@4qmij*c+D-uU{k>vS8GFews>xqrnXH~YB{KXdhY1D;N&S#2LN5@330 zO&k=>Qn>soI0#G&^6CPwdlEPBGeiQrR2RO8P0la~5-hCE)iOuh3a&SwAubw1wWx9b zcI7rXaY0)RzkmrM&5Tu(un-eFpy-U56}C1g0w@t|;@%A1D@3=h83CrehH=jvMa2LH zBR1$k)UWE;%lR?nKH7o!--1qBA6s-^j~hv!MPrEN^0tf+qPFPHV%%%fxL8O^%+bD5rDI^9TBgmED74e!G_cG zTU6=mk1XY2%&%kkLyV^tWj6(V1U>R`=I31>YRB)8+)QdIt6EKvF{CDF!7v;-r~qJp zd|SQYFhG{;F#elpvZ{i*!f+SZKT+&312VrW&a$XHp96zIE;+zM-1|Kj54Y zS-r=F%Usb(LDK=6V%`bNedg-MvzLq z;P~x~vLDCImDBJ*8xI|0b^9UN?h)>&eC+x#O)H4U_M6Pf^^z?ViruznmZ@*pb7p2g5 z;kF8r62ot0R2X#SCb9An!Xfp{Es3~j*!qu9Q@u;|y{O0U#NoDnz#*p8L(K*Kff-AV zVOqY4W7`kZFb$xW?SSE;u#%GC~Z4&2hp{jjd-S>XR$c0*$3|3=&lscuDWY) zcTj_2KzC55`88bg#c3;PxCHnn?%;e7!iVX1VQ<=d2)Fy#Dbr*vl=XtRVwvjGc0Wia zq;-84QpToZ3J0}AZ9pw@{(-Vefn|kp$HVPs3eWdv37$;aKOizt_?7Ziua)kc+gfIN z(XCU)*4-?6zc+E0Z8AQ>LeVblCcQF!XDBht=lKs;z_EdCTq*v)*0SdTyq0|r#-Qf4 zZ4K+!g8`qHJ0;ywx;1n`-#2Lm6MQJN=&M*eyW18ATc{RRR+G6)MNK(^vnyAbI-YED zXt{)$$+oRInm2n%3$4(3{Lg6HHtLIR9o|B_2Qyh(+4(#y|2sl1zr@&M#_pZKdVSQO zqtwnvRTpyFIhyR|CNl@3#N(C+i_tGV*e zdFkGb8X6jow_Ue|tw3Arf_e{0{fH<+jMEvUzAZANPWw?-g6y2xFD;1A>WwA|+&fVH z)#Wu)U3so@RS)w6uMRBV$Lou0Mr^n-N{+^v4GPo1JRJNUJvyy)sK_8e7@N*GOSeVb zfz9!9!3f{4P;%W5>u}RulUaPVV}Ms+0LmGvBq$i>4jQ-f8eTk9Lmh#G(j9b{h?%5E zsK_Y~q5+6pR<)3h1xrJb9d9^dm^C;~m?I(Kj0Sr*56xzBwsADO_ZpzLpaxJj2pQxc zqQvCa59p&rxIb_O)go5+UtBBNWDEL1gNqroIv`b0yZH!j%ZN3M&M+Z_kt~oTSL9uq zlx90;LwYFk(mc3O7^E=9K-#5IyIKoL4hi!}u9})zUA-ibG{{PUgDIr@D>Q$_>JXSx zm2kD#yR{W_Iao-|xN_kNk;aTE?1;cV1Cah1Kf)zwVp?V)2;$h`+sy(Js!7P(QJ`1! zbYbz_3C-vE2dvSi-(ur+D7);qbIrZI_?m^_edDmq`Kl6r#G|z-l!eF&exeD&EDWR& zVqwXhyWg;ykVCOWnM`&FQfW6$`3lt@aVNi4QxY6-Q?)hB*aC&{<`IrMw|<`|p(@2{ z94J;n?p|?rF1_AYBioh4h2W-s!7G@jFAf zgE4ULxwRi2Pe!}nsLKB7ZJRZKPoA`fllgRHhEXw^9qy5bDj&7n|D={3c2LBdZN&OH zKI*De5gZIz606`V{ZPn`k?p8Yl4>4uz-V>NVJ?0pq#~PUX~k3fh!%OxImnH;Tp%~k4iHS^1ykEu5L*$ z(~T5?h&UdgRv^L)J=-6{-cJ=B0`wur+o=smKu&g*8ffaKjL1GK_+{+!@Pg*@dKu90 z*lS%{g2vwWfM(=#hs)+Oqy=}94wne~+Q!i+>l-xqD`pvMAB`T9Aj3>}-Ud6xhM^gJBsH_#qgMJu1{hGg8*%d_>EcAPq;bM z+i0emlrL{9$1psSVBu6rK|?BNPgjc>Vfi(fjym`kp73;n6}wr;oV3=aoiV8*sw)Zw zTc${XpPKlU*IHcQ)z~pgzL|B@4ugj}*30Sr!#avje$@!S)GY6-SU3^mO#5edQwH40 zVR-5c!j+#IN(x}qJ~&a0mhN!qYy}Rx6-J=(gYvgC1=`QY3W}^?(lOyiHRmE_RrqW> zRtozedlW*EZ{HE+d{Q638-#zndunJJ;CljFLE<;LM>H03XxEB&LX=s!h1nGNtV=}0 z+}F~&va;}=W*h~DQ$`35X`E%0w@R}mvfki7dgyms@K6CII_HfBQ5t;CqlxLBoqR?C znc+2mjeA?SZcdY@k(2rB$Ee3PjxxT1>18tnw=bGKJw4QFO_C0#a`Fxi)r;TtZ+XvZ zZQ34@WRlz=FV4HGP2|x{g^QGDC3zz=NlD*Fyl;paf7$RK4BAYlTmByl-y}l9BXp4nl5v+J^x?^^YLG5EPa;+p{q4HmyEpZ%T3KKF#=^#T~(@WToSebo4a*m36;ai0ch34bOCLeXrz{w>Yp zZCHL$6Q@L&^~nSe!@Y4E!mzCF&@L7``b4ijQ~}`2QkkkwB`Yudfd%b}?{L_te&Ugw z3SV&;(T{(4am$Wn&cyAs_TUQ}efTWCI$U7lP||4}{`T|6$3w+y_CEPnVh8drDtJ?d zgLaXy2m5?#nb;z(c>|}?NKCwJQ35Y7uc~RJ$*_bOchV59_O1f3Ln=DYiTv&=d~kv;AT!>&uEaO6IElje=}E<;#MPnu9ok z$>+dsUyXM}lyCJ46-us6#GoSh89Z(G+_@a))%lF97sdh$2_VHAF{=z&A}COg{$Z@p?iktLSF+Fn&D?4J}_iu@%8T58KOUA_h-7#e5n70$fuI; zY(z|VE_3lzM~~?Q_MV2#^hUU*Rf2X6V|SJs_S(;YRT?oD+ODG}1eo#6>9Y=jefj~$C{^Ml1X{a4g76(U^*H$I)@bV{*yqIMD} zvXeIp9r}oBi2YW|cJ;ne_15aK`jy8ks7C+P0`z2%5K}_PN_Xv{7*i&K#$lK>W@;DO zi3Ca9g#$67*lzI8gO^4#$ai`{#q{$TfMWXK@U&#Y)n7ym+F@M-79ag4UM;evA^F0dJTC z*EIZAPQ}WxIJj_NK;(7;I-$ETxi-2Pq;+b zwKtyvFYzqbr~{g?chUAjA30qF1EFjnHc`sb>MPO+KZFqujCAcDpj+`w#*+HlncSMG zBUQ19`+2X1aRgCx-UypUAlJ6#ZT_ewiOzd@X-z^)n<;oB>pC^0(e9c8yH`s+65H8iz4`kCxLy}{l~OKmE3{t7!&te%BHU*Aq#G&w4u zq{5UI$b7#ZzIGd2oE3A>{VY%q9Ie*>ZTGb{C9+I|EzB+e50 zny=5zUP$bn$3=Bzc^8@fgI7QP3S--;;pp}70Md4Xjf8XRMVbKM2$6`PCqNe;H-6sr z&NwDFNZxNxCX9*4^+5gbgu@3BgHo?AZmNSsNpSY_s1>p@T?-l{kj_yQ1$1poA~4lj z1hoYv1XTr%wL)e0pzUCUVPgZ*+JynRnU#(Kk#BjBE6fZuG1xBCd5z&j%#egRSg3m& z>CF6_SxS$}#+kn}M7v$#3SP}*mP}Ko%zWMXO_HG@?=c9a-{5!@TMD$`NU^Lm~OD3MtfJktHH)`TLxLk1fQTtr~K z&z9~r6dNk5syE5;v!reWY*lHer?>vMQy!>FGoS&u?pRVpb5ML#=;u>l*o%MT8^_IP zg|#H88m+WerKo3p443+}m3XRt(kR3*gPMi>R4i!+2(?zS1Z`|ez0X5+v41#R4s#S4 z3omK4Kn(4e4c?E|Wzvo6Q4wQ7Fa;?{uAu6nOaa_$79`MDy30fY3y{l$SJ(1tpTTVq zOLq^C0``V!{2GWkqy=!dRCm~0dR2>$J8C(wnB@Pe3;ZnHV0|A#RhqayfSJ?ZejF+; zwbb$L=@~;pByRnWyuDS-cli8YWqBRaQ;R<>D*HU#nU#N8u5`VIRdD+eRjX zWn|S*Wv9#xzxQ>f0$N-n&b)PgQBS=$;@$Xy^6fV5U+RB?41WtTr^?IO z$_>P@n+47N>AVy5n-2P(f{trCyCXJRR8|)Wt<$EVWDOSpVpyMmEAM%l9^eMA+bs;{ zwi#uC4C(`WF#fjd9fl3;UMs~*z3_3cO}JSgjZhqg?-#y9HFnmYoEAvaNH7`T(H!TQJ}!X5SE;S9(Zp2=~DD7@gNYt#caJz*V6+K%a_4i6AkuydpOzOxEAT)fYF z8uF&Bb3He>mEHdL(rYKo739Ib$!xZm_ValhC!Bfivz_(TC(`9P@jTepSibx9tHyp) zw1h#eRGo#K22+muwB%$zv)ZUfH1)}^&EjFm>uPRO&WrhcX}KvCx~}Xl&_>(a#dNvO z>-=`XrGII;6h*cCKWgRwplUq%;g7sVf1ykD@?gELgvDG>Hmtt38{lK#+#f}0PE(aj zQOZwhA9vbvqxHSW1pJ}90rzi`4bkkTXOy!%6VnJ6^7?4O->?O(HDi$A1W_a3;tLN$ z42*-}{n43S@;iL3z`>B5psH;8wQ}S)v`{smR&Pw6{d3o0wxJDHCF@+IwfBc>V>3Fc z0yR0BapHMX(H2Y`EHfR6AuHqdu|D;_CWu-scCDS$R?>R)qHv1@sAGP8pj_^DK0=C! zDh$(_EtOE=?ivJQcvo8kvtm9u7?M)!E=Ob&Ck6Vf)gu7HwO#DPBhh9;QiuS$1YrV44oB@mpNGdnTddTUKNsrc78wYaS!6 z*Y@f_hgOKn$>s9FU5V07A$SIQ;8tXDE-Mguz~jH8e0$V$2yu`QsP|dV=xfQT_*Rok z3YP(jui)U!t2nJ<$z6C3qZ`lwKQ>>?C+4|ii0D}Ep}coH-d8Oob}5Nx&~4pq!D)#2 zSCLvC_!r7}o+H4!l0M852rP9?@3}uBBOW%Y5IJs7md)%3Xzt=+*Xl2S8%|*oIk!O! zC>ddxRh4a!m^3}g$xHKoi3#34S)s#lHF!pF2VA77toKF8@QZXVV;IN(-b?@1S@8=1 zmFUgA`KgLC{E-TL_5{^%(A7i4u?e;+x`%Z zPo|-%*ML^N-Os=BDEz6#WMdm`M4$}Kgy;qh9oqeYZXXOUW#fE1_imR`uWUPt7u*D8 zW*6US{0@sAipc;KZNDCt?&kLPtD9$)uTJ}CD6@KhW49{S7wxlsWzh5{bWE)BV}Avv@5qLt5O$f|7xBxO`5=vubXUYP+Q0t9$#y{j8RQ6# zz@nTeEm%HpfT?6(mfT35O0cRR46*^FEd3Ue?3&twF3D(`faXu?*~?1?OEAlf+v3Co zVBgKU?KZsqA8{&v;ca4E3>vy;V9?uj6DU$Zp^X>`8!-dViihk#B|@@h`lQf*%C&f@ z51yk`YjAW+0*_#q;Us$Y^cwa>*s}pF)V>~q3Mp7iQ;<@~#2o2T*BGXmji_1W^h1AD zQrt9;5MRFWdMqZ`YvlS7|hv^-8(ext}S-m0M zup#d4dfnR4v4FS3 zb9TLCOphf)yf=T%&Y{IpO6+(kkB_;JF{Ok1=It%>$o80E1jxOae2#(tbwJ(J@>;W~ z+T=RvHVr$j;RMq!PKkKh zN^A482ad-w4Efd7%KnG(=DlGBlH^JnmnJ|xs;R47A{6oLXEKyhw43HrU`f(Y^nXF{ zznr4@!fqM^O;VVX#d+JL+yvJp|J~}jb3apYV~uE8Tx(88A{V#a9lxyAU&;}W(r(Fc zRn^|h+?3)GDYZy5^1+K^Z>Xl6hq~OL2VVQz09j!q$3fU1?_%2{r8=m>w?rt@l0TxPYBfI=wIMD?|Oc@-Sx;r5#R>7|S`R|*|K9UP~Qt`||(767|I`U$~6M8!}nn_MAO*aF%Z zkn@=n;j}Bo4d8;)?b15q!a#yB_^=7AOq{)fwC$xBO8fKZP6z-dBXsVqMv77I{Eb87?exG9jeLBx7xA#>Q%hkhW*};6=CELw1^IIrxWqKoZ;zk>LRnTxv1x


bBTfpQYB8*FR3DN|eV$N`PHUn#5n1p`*HbSIlm`klpDd#b)@x8k(>Bd@AK^l(f9F zFj2`p%(LN=#N`mN({}Y>qf|#T^}qA$z)tZU)%Eo{xev)4Ff;wg1B+-0n1<%^Lv*=>c8YXe-!j?%eMlZ`8$(c{I05iy#ln87h#9SO_D_N(p+OA<1 zF^L;t)~+w8U^bs(!`5%*Ze~ES2b(R1(!!^{1I^K$ZhcrzWR`UCX;?cvNYQ}FUbJhw zh#KHfw_Tr3=6pd2bsfB_&yH)7>71!K!;MtIfiryq94QNJplY)j63v38Ill zZ^pA>nMTwUNum8#oy;v2^^2z-{+yZg$HZrb;Cu@3-bsqLU{PhoZ-H8{yZgdYz2*a9 zxEDyazfB+QE>^DN+lfe&hJMHXai=!m`^Q5dA4uglH39Ijr97TMzandt-qxE)lOad9NLv5A2)1c4YZH?Im&Y7lK}Bt?8~Op zYDJynVVbr>Qz^96FM14t9|l^E<080>hCdqwK_7<^Kdks!(BJOpCoHtqxmM!H3rsUORijRFlrc|zPE^?)>$UXVtQaH-a=*&@BE zQ)>uP7K8*t49$(Zg=a=@j(D))gP)NbK(4kcQXzx+F=73krt+tDO#66%$n$h;$7-h{T&0#*;=#YdH$m5Xb=>oWppY(%_mhR|1I+X0I zg!*QSK|br%ByFkC`FID@%;Z_$jEpSW@G zD(+sRet={COT4eNuD}IVV4g<`Ybv7I5wcZaR{Vz2t`7k|15U4YF%Z(R97tXt2=YJ$ z&qv$T%*l-)J+|v?LW>Sjm|}1=M$eI7Ulru%@KY-d{t+)OUV-rI?xU)lZl1ytifFyRZag zE9!|M9JJHb=99-*?B7=F?_y+{Lsyo^=5l{e(oYquvs|BYtj>!RIU4^5Ir{(fUCU{x z%THT$6+TtO5OkfWKbHeRwvQeUUWbcvg<`~ps#ER%#r8NV_$JM86P&k8q^b%x1! z!yZCFGq3_!P7qAZTPsaF(^Ygvkhikj%HNo2Hz9-1nEFOGYA!99;v{3*8%zEL(ETk$&47d`1;X;j$`Dxg_ z0*=!?zzbLDD;);pN`_7wAwP5@SptsIxO3dl(-fREt66&nJq(XvDNJHKri6A4LD%F> z&8=&3Kp`IvkI0gbkUEi8ZBS6}>)h@1O-_^B;t~l3QAxz0>cN8xugjW1kdowc*8UGJ z*WUzL^a^Fh5V`Q!^;7&N?TU)x9?wx!H761eQ{Bqe(!IOnfh2WQPvo5-qka9p)n_*s=X&>+LlO0 zz!!K6cHNTRcpo6zZp4`m;@|M@ea4K!Es_^%9JuO0MSL5<2k+*$fWBIs@sy-r17{_` zRizU-dT>!oQcZEaa@OFZsh zciS%!)pj06JJy?f=t<(X4)D||Q*lyar2P<1V>!i@#NrWv*;-{Kmi>?5t^fVt2MX&m zZ^onQ{ne?_o#!*~*YoUw!-LLxm*K95uFTu-`kVpl_&Wi>-Bs>EBR^BEekp}%rgEb^ zJd#-J!LeDmT7m&3*l#u#deXE@D(6 z0rGO7^j$f>xOMFWRS#}FFVL1o?TNqvzH?S#{+r92njrq(SHn}@_N?L=y5?Lt_b*@E zDPX?@$}6KIP^xv5&i$z%=+UY8tti|+*x^p61{Fm@{2e`tgy4(B+kIGZ;ue|o$6{OQ zPw-;A-{IyS8+d;v`n>p@x}4gbT~yAf{E?mF#``o7Oo9xXM6HShj5;OZjpMutrtFgJ zQS`vsKw=s*Bi_JX%}dyFY>KjwjJ2e}|4JfMalkzOp7a7kgcM#o*5^)rWl_llvD1|q~FtRYh7x#$vMgXJb6VclDFlFrg&nQwQ>uA{c{83~lio`ic1VaX3^ z6LoqmxoXv&B@D1EIfSk|=z=xTqXttkIs>S5QbuJD38%OYw`ZR|UI&zlx?xTZQz|j> z6^~n^;zVk3%1J6nuWj(&bB#1{`C7|tk{2XyIi*Z`i*Y%tRiPFmeUU30p<6|%Ddk3e zpbUVu@Y+^K&!r?(EZ=BJoR}V%0%43;pf5;`&&P(9naK5p7}J#7oNGugvVu8sb^XG^ z5D_^YphSo9!*727-m^J?0fub`c{UY$e5wdNG7MKxbQy3En~x}~XpD)=j2pq7XCV(e zHyw2L9NwrT5!{Uw7s?m+@{BaVnQX&N#Z08x<{K&NRCq^}NzOQZU~ zez7mSJpc)h(fi3&&50ec-zkF-dr5NSbpoUxZ6+?8?BTQ z6il4O6lB%2MF!6-UA{4DJmU9FyP99?2aTlk_yZ$rJ)Pq1EUmK>V{d3|w=!*rxwKp6 z&u&NR#F#4CLPGV^*<~7;=mt(Tp#)o+FU21=a`~G%#F0btEM94F^iPx zQ6ec!8Zh-c!t5i)dB!L=+&82>v2%(X4WkO=kKNCP3s_2X^?m4<^?lN-A!C69Ee)nd zxcLb01CUC|*ZbKNiZjP{AwoCAT3FP<4*1Oh%y^^NmSR*%!@$f{gn0Vyke)wGrd^&| zOI~kpwvIl#xAEV(o>06+Mv7vIHIf$0srn#eliVM~E0n^J!$uCIIE9(APbQHTn4niD zX!V)KFs1*w6#o2kR&j$wtTH1(tS=HH{Rw|I&U!c|NmjRn;mN60(Mj@rm~>=6Czn}x zRhE;HF5EPR%Cfm_dHW~V`TP>rjI3fWsn}qwwhVy?e9FarQv#y}KD(*S=b!VW(1pMM zz0&gFKq2}9We;%2enWSACCQ6NnRF^|dYfC()1_}erSL!Y6E87kuA=U0YH5T&rYHH) z@kpMxr-IMcv`s(vxh@#8#$w;h3exMU28xM#MI#QuF@p(e@p@sXIN_Zi z$UaH3cRUa)^BivR2luK;*ce#gkl{<}W7bhDL!6?IuY99vMa_e$(bCsjy&W9FN1%g@Pb;^f&;49{W4tx_0@W zB+_@<(jr;tA~<3Dnp!BkDD^)Lq|qCSx+`=iMvCe28WVX!5JjWHJ-V+L$qkuM!zE17 z!<^Nt6b>kbqCX

s3R|xH$69KoYwThQ=15M9#H7u0DxZrui1h`Xe+}Wxo(Jap0u# z&!|(WD2&CkFzaSUM!fz&^cBsF??r1|1AJ+Q z&BNw|cSau@iHFko@Gj#=`xeNGD!iB7ulB~llP=zVKB;a+Q&Ir|0fUXVYL{ejbjwAS zQYD|Z+qFDUGq2W3-ZE#$v8Bc04@7$47bAR7mztQ;x=v%+s2s$}tM79Vjv6AnjEv#? zebrMxD{L6HRMe?Jw;Mu&H`_nWY#p}xM*8!im1NYT!uvmUSX~>HK|y^Mvd9-(i8*R> z^C=|X$@(@&`F#^7O^6M};GR66B5v#28r%MT;8uTxE_Ttay0HA=@4DH=VPhf0^7yPw zX}Ik8`YRgO`S^^`b-m(p-I)F9*}w=^9@U>Ph>~O_Fdyt^D(rZ#iCW%&i5kP z=NC#sYn#@*Ds}v1CzqQK?z~*?xt{_swoAnFs?!*8ujg(yt0;~io;L^uzj*R8I~%1| zTPhk^E$UAsqLcsQQu^<^>0d8va;SIix1P<-J4pA^3347o z_&0=4;jMu!eF~xax+WtXcj>FS2))lS*Ocs(GsNjB{f+nsPEVqR3#kj0pzRkhrR zCtC*wY4|v@QUq%`kEsXK$?%{SqX;uNs78IKOkQ#jx4DB1|E= zN(K%pJQbGb?6e6iM4Gi$Tu1XkauR}W<~ZM>{mv#1%LMUE+aE_|dJaSYk5ZMegjK)4 z5aU&?)EX8MarAp*UU(_#brK~>t77gg6nK~I2uX=NgF);fCQ?Lw64G-Gc!}7-`ZuwW zl%&Tsr@wTS+zlTv=I_l~y3`ujRj2mwUta#nD%Bw%^UV z_9)gXk5UBnr}E{o2#L7D$i++&8Ce8d5*}XN0RIJVxki*7;bh9 zRA{1yq+6}Pc)J1`V?_dg){r1x5A>CUsUGEOPNC`)1qp`9z!1in6Rew9qy`;H8{lUL zIeu^=5iM^g{UzBb(K;x*&o31o-U0)Hw{Xz6ofj{J)evW3NfzEy6&Oh?J1E*sxk_nM zkco}NeIU5aU73f73nirNo3DBW51=%M3@3At61S6{6#UO?1GP(KNZ2)jf#3DHm%U}L z671x*VuzugMa!m^!1C?5EUwqpXa|LMJ>-=U-bzwz#I_#ea@L#*^FCJXr z1%-BnY&5orBVWK2;+x~wVBhqV&bwZ71nbj?4e@8%&+NP_ct`yY^j6IUeK=Fn)g6rX zS$)43&$hc^H;qOSE2cO>1;aAPD)BNm_t?yigG7bMU(GN!NCMqkZ96Yec8gYJKW^?e zc&{FIX`dNj>x`$QRdoUObMh z&hI}4Rn9)-THAF}QK_J3Q6eaC8aAUDlg;2NYGn>}ZRL~y!jR=ON^^>UGupE1i;iqX zYbg5td)?&`Eg3tsgEU~{Kwq`<I0}&rk67>@^soDi#jE`xpE<4!}@BO-XS5x?U*iCoaBDf<4W3 zC_=()8KyYjf6ekcv^Y^(B$28ofw&S2mhL1ueMYSH257|9pl7@C?GDVk^1UfDrK5o5 z8Pr@JGVg4eP$!!XjvYym&K)-szA}Wyy8W3x-dMwEDf0~_?ac|e2#qFX+OGacoF%W{ zn>oCwyOk*Xg#5>WkVcx!XUifoG|Qb*;rRzeTFpj81T6aQpC5(FjUQF6B;@*dE?0nD zufpt6wo~i05_!dKi`47496uzrsV19iH7kw0q)Vh2y9X1qo5|wxH2Ao2VniIbYCNo9 zNgNfhvw!rXGt3BKE=bAi(TKcJO6k{?t=Dr>A6u);XlW%FB*3UNfwx0P>AL<%a(Pa> zsO20*l^D^xdsOqQ>!7w%?lAm0!ta9HlA4PG{+nl+$>wKX&qu$z``vWZ4<9CWyxZi_ z6#scnqx)`(K@8>&Fj(GWoCMyI*I6?S*|-=iCI30^*gag^H0;i^)egKOOf#Ai>bv67 zJipt6{WkoFR@RB*#dm!+oMmK-L@x7;TD4;6((8m4sfj6&s~jz`h)k z&(3lGU=n$)R#N~%;k$&rIbDt1Xm%1mo1!C-9q)GVUkjURn6~H${g(s!|hNJ(kf9xdDI4zit?1J?LbY795r3*Fo zV);K?030rGVdD!y(-|bBGl*)r@X7MrIv!P?pneW5kSHF=k{9L*%0!8Y$Ht1Y5*JLo zgnV+YV2>n0?V%aeKu@Avly}!J{Ge2#riyK2#!#TxY~n{IWP#e0r1bttst_GE%Q{|K zO*?H=k;Fg)vux3L5zHbzX2CjUiAeHlC(ADX^zMB_@AeLXmN*MpsGi7tpsoWFx+`T+ zg+=s+?D>nL=iSJo+QoKe*Tm6G3*JfnGcqC}FE&Q6#Zd)jkk*v!ZX~THeKV`c53>dR zk);O8VY<#SeXQTQ-?$Oo{mzOUm8Ec%f3Tx-<#64ZUt1hKF@gVJF<4$V1KCC3t^g!7 zREEhUus~{AwyuKKqA3H~zGeC*L|iIWT7rawi7u2%AH7^n2q*V4NUWHawmPm;b(c<& zsD~b2O|(R3VzocJPE{4PtNzy_ZPO=$(kd=>#Y#0_@m#{Fk&hl?zehk6jfvcYRf*j_ zMhq&!l@pa*sKs2s{T;tG%*s3xvq2ow1PmJd`S{IFu2#cY0)xCrj4JXRcg72o=Vl|1 zOMt|3nchmPf^gDwxP4kx$KP7B_P5LFitFVfRXGgjSjYQNR{*v})+8s>;hfF5lP)jG zSctk2QdJQ+sz^2B6md5Yy-A7FTmA&g5aKE=Xy}d=Gf{8yl5y7KATuBKMEULf;jLGK zvWTLfp$wVjrvdv&I=SfG%$` z6i@E>fT`h#ky@|BDkU2JXJ==Icd4Z|IsaaJ)~P_z|MgEEDLFILschr#5;-g>@1b4- zl;K#n|E_~{i@1If7552^j&v0|-Pa#X*kC_*zjyU;J0PbL@;VPs%pL-=?URON6e0r@48~oyP~kMJiB+dw}`sY80g*)9990- z&X{zc2t?t)m&FQ^ER6Y9$zQ;{&k_!{nNe1TG~M&NqXS{3#FP-6V~c+H7H?g6w) zd-pZ$aES?D)DKy+_E)Wz_xPGD_T!NM+cS>Wk3|9=9Z7WI*!NSr(by`{uPll@IbDm3 zL3DrQbeL#sAC=y|MeMyHnD@c_)%XJQX)ORR&&Qc62|qr59wlr)k^}BJiP#yMUP?y& zFE8>xZbjf-M)==7Y9%^Thh23utnx>l%>dam{FP6%Exb%uM(!Vfl7WP($2{IGfd&#l zqHo)f%ubnMhp-r@!wI{S5xUY>beF%W9SlzsY4`iRi z46BTJ4pPEN5YEL4x=2G5wkkWxKcJzNQ2sn`m5$16Hk!f}76fLvcgXDm;hnIIk_v1i z8mQe#NxO7G#o=39`Z|yq3SG?iFtAd6xUNTEXeht9f(v-kbU^zfad*>ep-W z#_C)IgcH7K8d1%_GsA|&g`o%Z`9fQa2ia+c5MrnG!dHTev$~Hb|C!Gbu8>@ z2*dwshnp*%IB~Ib_rq2Cc~tq6^U;}xm@8=?_=6FAc(LW0q|?zAMsd4(_{Boo2A=!Gcpjt$x~_zjWjmH-L4+x^z> z6ND|@G&j3qC+5p1OOpFv@F_H~A|VE`6ja0)yz*Mo%sm~znDdM*#hISjfgfynyqmmv z(r$(tgl!Qlq7rcwB0?(J^b0Rw!ultjr*coK4+a_(7S+F3*{78Mz2Me3-@Crt?^f*e zm5qP=2&1HnXOEv|XJzY_@7OcgrJCOK*1I)LK+K*s&;NYZ^E64HZ|nL2jwa31{9~(j zbJ6sV1WxvY_0M~0m{ji?W2;*eYG8FoN6jQA+%J3`?03VTH3syD4dzI15xc=I$YxHX zLfbVf%US0$3Hm`HoZqx>d5B6nifkGBe$TS!MZ}#Hbs(u;V>X1BwLGs=H?wbxxe?MZ zpVn8T2N}Jg!980lS~cv5mUcU>Q`EYIq3R3wGNj^9t&q^+c6^rJrCZSqudt1H9% z^WxujzdFKovf@B(AJxROU)@aqU0jSvc5gYJqv^w$N^ex^b^ia+^_Ed>sN1^mDup7& z32w!MTXAb4xHW;|uEpK0xO;FbUfkV^I}~?!FYfSVopbhC`+j%dpBWh$`7_@!=X`7? ziE}`D9@_P}^jq z-lODwWj#i`&%rbCrB8+rP%L-&BY&)X46!P&tZAZZ%IZZhRh{39oU^^M%#2=OE{eQ$ zNuCloZ)4pP2mtGC3GpV6fqct47l4$w`Bb$2RrR(Nxmp1~QmqirdrqQX$~ia$8Q@HH z-B=!U?cYHRAz0Q(v0Sdy^uYsPTX~MiWGx>-1t>Fh@jZ<3eE|WwaV5O0v)`OA4+ESR zKW(c33|1Fys!VPa=c~A3>8p`tH_sPKz^P@NxS~3ehx#sory;pR6O@rra)< zMhw3BuZ#+*z-5b5ia@D?2KK>-NrHQoW^+(Z`0wB$hZK%Jhpvgi^az6`ooIq0U%_A! z`Z(N08KVp+?!8=jh5_}sQf>|Mi@S&;SHAnMx*E`_e9cpYcqP8ME@h2w8uV`u_YQ|Z zz?sSWX~TiKFHmnN;3)d_?dv8E5s?)Emvd~Mc3{xm=CibFwj};|79WQEdqdn!O~YUc zT81yHCB7)? zYu%TAfVH?sEO%Fb7+tYg)gdxpr=s^UtE{_`$44HSHZ6L!k*L-5@`u`uk8XK?cm;E8 z(wK+<0;>=o{6=;MH~gPeGhG|(J`!Cy((@LEv5v;Ti*qMJ`NqeMXt0h>)Z|m$eoQJl zZLO8Y!$?)5S6Zv&;=#CB$!%{`hR5Re({x@GvoF1-aHof6VO{gV@vw-f=yy6_4YdCU z>f?$DYq=2^Q-j~uXb~-0T*stz_kpOe2z0V>MqMzlfM%K&8 zc-AvBd0xe8z|lgu$RES?gFaA=HR}EKfXXLtjzBK}F36b|M-IXUAbcob*;z!1wT!@V z3*`VP6~kS7$3=kL!jT~W3pJVn_`+44l^?+>Ml34F?Af8$@vTw*)!0*gz_@%OpJ&-j zQdnD>=r{VwuL@(YN|{FL@MW5@_axcFq}Ak%aw@y2s|@;uW1EwYL42WcM1ghUmv{yj zxfOMbyGv)yZ^cfV2vp)pKQI0z&6s=Kjq>a57z36EFCDGHIoZ2N1#@~gpIHtFdUX?N z9EUjGn`_~_mzJ}thnB2L{n3YRGJ0}y@@2>2(Z=~9=PG@W4=B!P^y-_KKyQtLwm zdzwEN7_h$ychF14r=b$=2{v{3hpe#=*kffkBN)3XLw1>n=Sp{o zkUWtWJqz(7VSHhE&k}jLbrWtcTR{f1dTeB2ACsjtuSL7w2&b4hnFU#}Fe5huCdP^v z9zRVmWs{hPv{-H)_g+gz@}Du3qD8?}qLJ6@UzYRwogHLP9lAZ0Gg49tl2S3O+)Q2% zK5fQnuUfahtepoOhW#uwL3Q_|{O@qKMVfa-+O5g5S1HsyN0a*3#}4uSSxEn#r1%w! z{6x<#=c^3k3ggp$wF-rwFBc;-hi|{)cpcPnVi^hBxAhLngUU|NXg{$Z*9}&5^7LSI zkCVe-d{W9T6eVc7ZP>o}d64}mjETjnP}3f8q(Ltb!<`S$M~N=dE8X7$+JAv#4C?5^ z#|mP@iUocEH&*|87e35jk3ZGstmZ7c2v90a6{n;PO%TBN0K<|Pq`#xYjVndvXm#&> zFBMhyKou6HYM+<-+^6{u!V5kbhx8u__pmYS%12nP^vm528oDf z1feO9upi(h6!#i5%x%y{!${jiJ1Y!<=1${VA>mg=hyu=JDMBH*z3sF~ z2nprp(t|m?eVw=Un$F!c%?X-n7l;VJ)#!9L3>3w5rKmEb^S*BcKay%X`Pl8Et`mfb zSe2WKWA*gva#)?0?8QB|)W0Pn`=qwPE%6xX?Jb@p3z~6cdf%9}3fjQEI4v?Kw^_14 z#NqC5Czum^kSYs! z1GmcT=3e|c`5q)qPwD%GqDSN4%icU=v)$**>eukG+fS2NE^GMZ1z=|(b(k*c?Sk5jW0oGqxgE6)66O}CcPj1JAquFoq8 z9A~+t!6m;17sp>FoQPf2Y#-l}Z~pRqJFi(uWJfxQHM>fFlq7g9NiL+ncE6IWdlM4etT+N4g+!5J+$RmoI^^XJa0X)wiLTt769r zYf2CpZqaNs@$i$3o}4r6#WYLGaF$YC%{^qt(@SI5C9@=$$Y4)|To72iB%6r88Q5{o zo!1E?QWdhaPD292C^R<~r60@IhmtV>8WlY5##HLM&;z+Ael>FHO-KP3B5ma7fHZfP z+z=^fX7X>)eLs3yo*TP-*yX$_V}Dq5(t3vKnsr^ps_-fSy8--Ihc~b*2Pn8;Bri8^ za6+LpnA|E(7!~)WR2TwcN6~^-sO?A{3|Tv^$5)XX^x;oMyIR9cTGpuTPjK+?58bFW z$`%)wbz|;5ggN?7n&8vYPjT!zd9BY;Zy{>~x|fLYCAGgP(xp|Ry#D4ouM3lAnIhCG z<`wYazkLjukPN}>Yb&y!{?YZ7h7xybh8HLVJ~m*c$)~361=m{Ga%X11brF$ntm8gg79Qtsfuh5<*$ROG6*Uz~<3qpNd(U zl1ef1fA&=k$3-4+n*Q)S(y`QR!8PoQ=$yARJfHC+|SlouM! zP@Bf@#d6@y^@A!PkKWM5VGz{tf{4&A2C-KR#XC00mQ5(aU)mhn9fx{uk5N5VgFCz! z7kN%Oa4yKFCmEP4K`qg;L_3pnUr(9*(FE&+mvzV>^P>>!{i<2w0gz{R;e9?NPTC!? z!<(F!WH>Gf6ty+m%T5+>VQF?b^PYTt$;JEmuO0}5>%b-uu}1Y)`-qkS={nz?#}Pxd zu&mx{IuB=a&-Z+#p({J7V!hZZMz7m)g>1Ig(ayE>%zam6r6G<5KGvu%N z6NLy52R`9D&lPgoAo>4Mk<3#yn25cR5av{6VB?FT4kCTn$kfhVw{NO~9hX+Q%>&#l zhT~K5b5!R0RX3SWT2AIR))L){a7mg2SxKgmRdptDZCV=+U2e_V53J^Hdkt?h&}>*0 z10Sl$(p=Q-hP}?h3F<3sxeTx;u?We&JB7o5pW`cvEwDDm@z99SEbq+oB7v`>^GMG& z+F4!d%=G)dY#*aDZf+$m(*HDq`r-tB@6{IvYtuvgysbLQDJ+Uy=c38Nf6oF?JnCEn@pe}8YgfSW`ymC7iJB~Bp2 zLs=MF{x2;+X|Ew=V#BN~HQ5j-VT|GKn-?e~XG+YB0Y-cufSu=KVW@6Mdxq!e9K8v< zU8pn!Fv_cz^v!8$Vj>xMW=CSHqL)VV{>1SO?AGv?$wiYvC^g-zJVYud9W)UvtqDyW zB0>CeQi?M;gz!NP|HCHXR4$N{T_|iOT!)3zWF#|GRmUCSn#-vy>MusJao$%sE!(ZY z{V5t!^hnaW@^`UWKzSHg8EVw`(7StHqb$rVo$(>QQ0MiDxs}I!h@7l!iiQ6z)oC;G zTmCFsGmUf+oYrM)9{#kr{OTIFO0wANWI0X4$Xsx4KZ`|_AkP>kjhQucK2LPw1P}ym z0~*9~trh+e#|lpfma8(i=gMCEipcz(LozTg->ySlNjkf98q89Rx1dzL`H+gph|@$4 zy=_j0P-jFuw)8eDWsW~8F&MhzrQj}x>AMI7VvJ)m(sEky@vi>_C9{AaHM~FohrZ=y zI+|L;i>XohTIj@hbl)8h-Fi5m?q(~Q>DD7xcx?VKK5|vGD$hMhFLQx4yL{x46&?!x z_t*^9@uD$Z>`~y|SKeZAcftLiaW%sziUnm=v$1iM2n~N_bo^O=ML2lcA-N<2AcT`X z##)Bp6h*|PA?azbep}WEAQsgaL)_uAFZ?ap8Mg-&1b!sa|CCGt%KOMci-8iq?IT~P ze+Row@w>z4RYXwo5bmE6iCd#_o`^xj2?Uv`&xc?=P+ zM0>IpJqfSRqLdp^C-dqp401sxjTdF#nHip-5QcdjoLYR{!kz1tKfXNPaOSzkCWHse zm;?{0j`F0{*dj_qr84U3xVR|_-VUs(X>WNFI zEXhV81ao6<9WSdgFa?-m<5Nz#>wOUgB&lh;-*Wlz7JHw4JLa z%_?`VH`rVL?0;%OTJE1sulBK#%Vsa5fl>YQsb<}gx2@s+h!_UCoeZE}7zWLNB;xbB zeeSB2*0}demUi<~K50v}cUi3s4vtbh?=C!<&JA25?u*9bq0LqA5LQj}y~8vb?*AX5 z{kv-_puyGDbaaQ8&0B7;qthb()^muC9(gD&Vuz| zTmY>M&&p`Vw#JYIY~AYm!Tuw-3CEF0=mLfhwFZ3AvL^$mhj2{kNTzsZ4(jei`BRFX z6GBbYkO$$JO*q+onTF#S6XNBFb8D4OigB?*yA&dXt7(wKL;>O-g#G7S*m?%FQs8$= zt`kkg55;IsEX2>vN3zbD@w_<5ojS038vDu*R@n9zFJrxRbYUFk*7p*~WIZqxjG2R4 zx0K3=YyhnW4uiSPf0p-mVYKrAqMIIj7u;IWdkYWZ9u30|B9>+=ZYtHe%fPE*jU zK*NEB>?vVIy1wo{@MdqnYy%TMvZ6o$+c#>L`8RPKI5WJoj%L}Pp%kKVoxFF#I3++z zc5p-%XLo?Dm`AD2GJ}P{XiLMuSLm2p(!ik@ZD8PmPuc6n>PZ86%=5;JQfb^ads&68 zz7?g?PS;iEz-zt<6j|$u3xRPp%R%puB#?#HJn(2ScfLy1TsCQ3BdqRd&fuiEu5l-J ziTyTy;m-O-v`FR2@>=z`+ktpBN;C-~O6u$gY27#cx>#^Rn+ZyjyN$x9 zLbuUyWC+}}r3t*rWV@Kz5tHOcd<`1TpDSi$Aq2Wxk8;AfBYjt_rvge#jUs~KatXPp zlGc!nqW6E4tIcbx$)8@<@2TF7g;J_VF_Q}u*=+p0r-_ZsI!j$fU~Rp`wkDcvzS#D8 zCR5E)`d_BN7svls$(C;C?fb%P%|f7@_s$`X;Ux4CV|FXsbWeY#`ANmWdwuMU>!0$P zJmK?(tuOjV1tlI^MX`IN+*l9i`GECiPa=yNYNH(MTDiZ zdAg?f$j|bB%m}BP&4r=2*Q!@=@hxiPO)$LyZEMY@i=8=Zh3;|Y%98q zeiGUVrJrUELEodI*ELGI(_+P|hU4thiR)dHTNz|*_5K^0j+X~t6gTsUD|vubi&f*x z*efh59`5nIk0{8JAKO5z(qsas|8e4V{uxnMn2_d?8D@BY7C)X} zY%n02{A`*Z!duF3^p(t*EVmChs4SPA1MI%aMU{R)0ZlvIr+$L}6Akk|!vFd^z!4aLaP&4GFUAib(tis~OWm@M7sJrqc4OZ|oE!5kB%z|jyhI;3wf;$m&|9MeMZo3wS9w{-i+;9S z#RKYocv@BysZd-?I7z=Fcd;V44=J{@mWb4|)oUY&EN?xO<=<<$wz&f$+5B5w^F zW!_@Uy!U{nu&+U-vZZ#jLxO|R7N*52Fql=N0Z*9U2J1{sRr+(-8K-DC?hnAgK$IU& z3BlXim#$=Na;1t9qWF-nfJs;Mf#zY>LEUB3Q_`tApqLW}ofskt#M;tqF_cJ^86qDV z$Fav}7)Xf;VcYUF8A|Zo;JdVaBVazh)mm%?I6EI zAvvFo@aP0Xb)$}6q<)0&V-NnBVzbO-IXdk6Tm1D2p}$4Y^(RNrU+FA7H`}DYQqcm{ z>V$Oz*w9f_bF&)%Layp4xV^aMS{sfu^X<2Ln`6X} z(sAmS^O;Q;4Uy>-7t0YC)}RiZD&|X}kL<@;%f}}R&RPzS0zXSjdtSN{kir!tAqF0$ zI<6OC`uIARco$)ZF$vm#6mwL^Ux<;8i-!8ChIK$-EBXljx4YWs$X#CE&ytEh-GFJT z|G0cAP{Nsd3zIn2KP2L6XK|B6-?rRVGAbL)OV^&8(}(@4qO`qUZi&%eXztU4K|z?u zxQ?Y{*{8WkB#EDD2xeJ?;Rm%LwxdpSA=AA>paOv^4vtZ%AHS*p^wR;Cd%(V*V1j>; z)W=35un}uQ9yP5gJ3`pxjPsFoY`B`N)SD7Fz`QJ2k1?*c0w|WZ96qN+u-OK@WOEBO zQvv+CSs11v3^P-3PI@bTgYC%H+kIF)c>Ts*WSaMoI$==qh`9?>oEb#~>Hw^EV)vN5 z1^zgx+8H+WaCeFgU_>v7*iqigy({z_dEO?rT&h2DDSd|~K&~i!4UgJsQj~9mrVkZH zg{{9(0mc}Z{JWI`<&hMZ1F>cnIA~moWdxTRA~!2I%{60aW5UkOI{$s4#xys(Q;CW= z0W(s1i!R%z!&~nw6;5OFL$7IaEp2Rd<0_M8`Jc_U!MfFj4@U-Hsgx!@5=B0ZKpADc zXq<<%UqZM+DB%W=I`b>&vCqlNJ7wqCD$oR=FL;uFofj#oFOsEC`R>3IM6{)@$B^_^ zp$H=%Ah9baU*b4B&<2qwHEIJ4CMSM9`01y96sS;uPN{gV^_8zg|2tWvb@;Ns$0zo1 z?63am*&i&EpE(mNG<~ho8a8}APWzwSF3(}k-u2Ye?ke*mq5zLz6i(PG-Uf7a;&g#N z?=1p%)K^rbw{m{r8Y5Y#zYXLY69JJ^TbRla8}kq82qFTyl9TsJE`nZjkRGp5N~`pGINjZJ_@zTBxB&9I9Phv-k$B8h!wb<;ZgdBN?Jm><|h$QqHlJg$~L?)31K#`m-xg zlc3Y8vS)-VGeb3GNw@<#*S6+8VKz`l8g6D9xk z)ghCdTFu~gImi$d#gc|n0=$bd(GXwDwwjd?EqA!dnWm-ELqrAMD#eM7hQr0F6r72q zpsWRxyq`goh2XF4d0W*T1KzNWLYcY%h%{|&H_vS5^7{rdSVdui^bX*s9L%p9KP6h( zH8Lfem{&2W%nTqWKd;3iOLU3_n?wW+J?qh&W8cyPs_WzE^}-~u(Vij*^3-+P=)Qd*~TPd2nj)RdpQ?=bT& zk>0EI{iRQ;2*50=EDIU?8mix1-V4nfuIG!UyO&aoagC)t`01Ye7 zOLotzsywRy%(wO8>vgJ*LW%9sUi>ZJ_ij`^8|(DBg@1KQgR{;c&B#kFw}@R_3n3s<}@&0Mcm zec1>cJJQ%I9{+@2-uN7CxU1TKD&LE)^GjLgM@SvRDA8F1-^v4giMR;SQ| zTgN=?y`i0r!jbQgCf|jTh);x0qT@6qnV z)Yq}lGN8)BGB;r1#yxI$9eQ0rgp)rTGk!DS9y;Hr3@k7OV>_s4%nMqO>ZGw@MWUhc zI_!TE6nwyfM+_VwN^Td|A3(-mGC6l=o@C@Rfmm(CMFKc!;?E***eUVtul*^5m%Pd6Qckn+^}KeL}i zvaU&-76<`Xz!AjdLH{7nmJk20<2%D3CW3oJlI21q0}&lL=<~TUtEFYVezYcE|CLN+Db8PqSRs z2|}KKu3GHoI!?R1ZdY8iI&No1|5>trSYg3LEH*bEQTNy07)qeoXvRPKFR%$6#aD2z zN8YM#OunD|Gd*y*ezJ4#uysx*2ftKVr)BQ{oN=7^pb}&b;736Dk=W)Wi9V#_l z(5I4Trwc7jCo7zKBdEc~q}=wlsuc4MVtl!%hWR|Zx`9dN+axU>3DGNO$@^zmRa}tylz>X zk@4(zv+hs&0b8{{SMSE}x1vmh4~hPMR&S7DzCeb8lk^!5hYXeANFE=$i!h?FU+0vS z`rYp$h(*vhNOLiX@%=q)Iwa$YHc=-ipV&GF^VmD{Hgu1_QJ00s;nOh42m%7!Qw73N zL7y4>H9pK$Emo+b=6tHFw+p8RUSFS1R0B{108wi9{fELRT%~5qhRiV!Am)!qGl5cv zID6Q|Ho=w_?E|`iL}12=6Eu9kZd`}blaBFK&<#EfPn$!3WCs{=84(`EvGiudo zZILOZ;mNW$p2r*}R2L^&AjacBlrHbw`gq#n`g}d7x%)gMU}(1*^BGuuhPyyFM!-xD zfeD4Em1u|zcD$iA$=~rxEfDe5s0Q-bXXzgFlema+$B3wj3@{6jJ0H(FqV2W>Ux|I@ z_C4$dxsoVm31|}hiPJbhpI~-cW$rMU-l#TMOY<}|SFNG0TXXvaUu3K80e|q88X;2J zT#FT_oP>q0)k()5V>K-&mD&O}SxYmDuCk!35iN+DXooE1)=(zj4J^W_OT(j9wE0$RPJ5S=&V(f0 z(1bJ<{l%6nN){G$4;1^#-fE@HEWHrirZE3WJetq`eIJmG&ie?|ZBp7qdql(B1-s=! zw>*;-c5^SWDWXJ^KMybSwS^cilhX!Q@h4oUH8-VAOW3ct)r;O8d19G{#F{H);%9m^ zasge)pl7%;eyy2%B_nQs!Q3GC!um3rTzlKRABvn1NxmW_9ZmxkdyAH6O&x95J`;GK z*tXu?z3)F-(pgdcNBp_?!8a5~r{`EbYa{&)>G`BmQhg_3F+C|G9H6~jH#2Yo$LHJE z{1gK6i2ac7iT%*yl6&oEnyKlie1b%A_Tz`apCu*TFMjz*Nb-{7)D!DDX#=% zSn3J2|BY_Jjrv>m0XLs13i2pyw1h&<75ddrPS5}a|JAJ>i(gHP8_P=#H${KcFS_r& za|0=NgP1u`opB(bYL`evMY$QK)qD^u+Nn89Qf3kaA*W!*HXeEkp{WBO`X}JM$vueN>nw4COmt#S9pyr8w>uY8Y$Y}j2hwUKij>pHb z60u2OA?SveY~RPH1lh`*Z8^j$i|#3KJF0X((J(SG$r(p@{?b^8$tv$jXzC>RcFp+t z!%^gnq+WE}m)U{TAx{r>eqyEd$wr#kaMT}mVu)?Wh!*nn(O;VmsT)fCDRhi@P|O7x zdg-Pnr!}HJeZNkOFL()2zZAMoe6@mq=eqIaOW%0%AiSSU;yePG zaNZNJov4fdJwG4P=C;-?@RNr>UqWwc()8t<4Bhc#gU}yjmC`Xuoz7JpXEgK8|Exp# zPWk5+hv2SvhnWR2%Uce+dw1{UJD9P*L1XlZQAE5}w`Z+G^cnz~v>z?^4!-*PG#YR6a0{8Ge*6d{JUX)Ha&8lfO2rq{(SAZSF zMe>|(X8toI1&9u|KA*ayoFI6cAwd@^D;JP+)%{p$ALE~+nqMP>ou2$joG{oQjtGH6 zm}(Rn@hPK2N}x0?&sHpjR*RegSsQA}{n5(*vjyfxXk9{NxrFpy4mBt=coI849k!hO zak*PR;wdy7tR}ZT{qvdkwVC42<#~JnJFQ}saBQdw)P97BwTC#z2u&_Hr)S5xrD{Fi z=6rSjbwDc^W+E;3+I&a-Nb>|CT=-zG4l~)IH^^e=14X_zneWpg6PNp2u~=;Jz^jI z$?=lH5NU*Z>>?>@pZ4)X#WDYxEV;@_bH}*G-aKY>8F@KA!%h5rt}v}qZE8am1_;2= zPajHw3Uf-v77}U8cSVXk9zAJbw*n=N)v7@QhbD(G$`Y_BQ`MgsY%BINBefQW=CirOHF#A#;j6(F={>e6y^vxu4Cm%`nq5>QPpjvAg+w!kC65XQ50p38K;{ zM`=nmBD4W$H&}B*V=n=0I_DE)d`d0SeMhjKdxRW_lNKhd=1CaSlb?~i` zJ{Qm+@<-yG2N6h*=K>{DqShE;#?E^fbObY%5ymXrm)=u`v1gZ-q+H(SEr1IQXUsjc zF`H8b1}#icdEdSrCkkOV>`Pzl;47N>U)^ybfv+@9W`D#%*2d;#i~ckfex^Z*h*Q$= zRpnC-3X@t~XoAIMB}_kphQ`fCSZbOimA=YD_Ez!e`yV!ueWy(G3q!u@_vr-g*A|rv zmcTKczp~ba34XI8ulWdFs0kOyuN>)OD0au;dc^4N-=BTp`ac`QzklK-g6pSYxBPqx z5v-|pa@uZC_4Xs^7|2bDZnH-K%I&cMf%(?!;ug4jwfuF{Ud{ucM@9rwFaatrd?2L)3}|+5P%vUG&^ljqH+{>Wru1dc^4A;Fz&uT`8iNZ7w0O`{Gj>{~kAMnn zxx_fB@ncr;kS48{O-3Zj@;zDW)*EP2((trG$G+V1{l2zTsI)|G3wSa$-8xBG+Wnvv zq?Y>u^x0g@@LhfBT116}Pne(JtPxy;upJ`V-P|+peldU|>}!nO^ab5Um|a>Yi~rf{&iOrHAtc?6RGeunlmq8B zw}nr>JRc~zF}6_;8_mx$j3Ro4`#)n{CNCy@3&Twre1q7WHVNX*g;zN!#j5(7M~JO$ z48nfYId&lnzL5mC4FB_=-l5)oa(Se)k6?M66# z?ovx`JULK7j%X^G#wkLSP-)#&VKBi$e}`&^XEv^Sk$nNc`q)#;ktxQp;gL>^0GbVg ztZwO1lJZ@qpOeJ!jCHg9>l4>fj|R7 z3&wllz0c~A7xSMb6OcmEEwZlKL!v_a{P-?k|2(Q{|C>sX4#Rg4C$k$C@*gzJdKyY6 ziO%PSSD-RkfP75vxar48_iM*K`-1~ZtKY-=at*&hXVRQNM&0!YP$3|+&yyezk6~2y)}?9!u5-zY9_Y;6kkx=?1bsS(P-9JhOL?F0{)0+X4uT4MQTX+eY8QoyRL`O6mp_B5(^jItnnv(;- z$x3hb2?DxHeYhE655m$)DiA*PCIJEvMKzsHyl(eFR;QziUhGub&D`roB7*E*u$r?* zGsf-SHCOhv9OfuhyplRWFPxHO_7v35O$I;N1LSfwlhggv;zh{k9zln<@5|L$(nIp4R9^kq@ zrEOecxn~-uQQ8;?LAI1Lg=vEQl4b*7$vH?y#)V5X1|I@hy?xluBiHbsxQ;+Vg9Zw* zBWfZ;RWKqQvK8K)C7}VKlS|>)QS%Hh@%RUd{e>*5cVRKU89px3J<~mTKHo7e^4X-U zz%2)7fZpEV_n-6M2aW?P=Uj4cyzDmCS(2ZN_B!4x_MNX!O`VVWod6lmpSmfy6wu+) zhU>TL12KjT;N-mTZ1<_D5qh&o!j($?g9+^u);ApZyS0p`v+>>YE3@0J!>A-OXKNxJ zDvBrr&!h$t#pn5EiG59)AW{TAr_leN+{U91#AsBv2p}lQ^qHH945MB)~rGVrWSZcP1NUmzc=jGp92suRp($RSt^D|+L z6nvQkqg=9%gj>19p$JCU_RK_jfPD*{dc+J=u8qO&82?3wC^yfP9WBc5Ly6d6s#A;{ z@0J7CZ)vZe)2#eAGVVlEBS2O5oe2N4GK*!n!oJYV-7)6NZ6RPJ82i{j0hcd4XK}>F z#GwBW6^fUT;}iV?v)MLYcDC5Q5c*dd_M`L3wv;YhG_~spY21V&>v)_XV!~v>c9H%^ zi+T&Rm!~GDKm(Hd%GFpodI!Rf5&=hI-mx1Wk*4oEHMf|LC=fM_p*^lQ^nx7fQP{+{ zA2i4*obpPejO^8+!X(Ij1bnae^#*+7rSis+z^OT2VCCN-C>~cIU1A^YzoZ&H?+0f)>HG%X=E)frNKg;- z;mg#T&_GRd>Fp1>eyuAw0)5Zj{T~tIZ)ar7m1f*=p<9wk#4GW(_BSrikJi)8hxzR> zqIkUwC@gXk=7sM+HR$HC$S?sMlaUh5ucUZMpk8VzQlCp|=+%p#cws`;6b5B{$~aU6 zI+;(cIxqc7_|#of=ttJ@M}DB3jcZsWliqCVMn1drP@F=pcu^UuFh8sG1j_FRX$^wC zBvV#cB#2}liONgL$9KxSCE%k{|EZmx*=tRrK5#3IxG0M=hHO3Q_Ezjk_csZ`SRH-BUn)LK_eCL*Uw+fgU;uLQ3P; zfu&M*nMHLE?aIn23rC;>2_|yHfi9p&EmvxF8AHX*ejJzpUd_dgw;~Lv=wbW585))G{S(;ot9!)DxSPt<Rt!~IC{gX~8j;SsO-rqRq;uD{vx0mh8 zju)HN;mPaWa?~7rCXo|8tR!DRYYMxZw4`H__>L;Yy7E zSBd|vUi+p5U#h@}Vj&Ydc{p!i#HSvAIV!(tR?#n zt$@tTy_wn_DstRDw1NyIp``J@+jKGV(&K~3&b56~e40W&|4nLi^i3Ms;LsT#XY~~^${<3s5 z&x)If97IqAFh-#6<&1s4qM$ql=NNbuPVM-SI^UD*4FK3_lh`T3MR9LKJ?1(wgJH2S zY*er?9T<^f(7OYRl-_7-mS_rgrU4y54G^`m2P!@QhjhT+!MI;0DCp)2)*MK4Bh zF!SWyJ%c0{Y>n!o_=NvGssNF}#q!hTylPpZFj5zLYEmjo^UKIjK5d<{Wz$V7{= z2}W+frRo@d$}PbX)*$D*wQh{j3+c1gZ1>b0ALO#A|h^Tg16R9){{* zd5VRB3hjHz^V|kKNFOy)**s=>d=3PQF#dNr4f_=;z8)DmzMlK~2yj{Pq&;mrImWTL zFt4X$@_mBPjWvHmeR_Vba_FY}{czJMKbIaAz1Dsopglz{FW58=bai`#rANJxYZtGI zyg`~?JhVF>A@0n=AT5nMCSARTSMyEH`KMF-+h{Z>wf?iW^6XM|JruX1)`0EtB0AT+ipxGW4*1+te)HfAbDzq3>G`&)l@|{5 zih?(a6H#Oe^s7W;DbX$P96*cgT?&x{CjehMb?lle-u=?J zYw&XD??4$`iu_XfMAF~QTu7X?N$#KmgM($FM(VfkyME59N4Iuq0dVoDOf9&%%hm!) ztx_bJ!@x)aCr?v$6HZAvh6cr@XBC;57S2B(gbRq*2nydNw&QZCXZ#HboZFbH~*yOdFn`$}h!FxPZSX147Ad z1%-x*02RTLx%>TqMgp(AJO{Ay)^)3?O~tF}nb7(r)6vcI<$|I_yd%wu#~BC0XYuWX zvhS9dpKs#K)T^<;>WLI^u%-k0^@an%=xlO@)@sU;#%wB2dTM)N{ME%%>~L83iaGc9 zdE4Ec+2eM5#ba~SkpdR4d*+sWse#c2VOvtN)g?wa`t)}xT`rTfuL&BKe&lqQIh zd-n~swbm)k*GJ{&Z~M*HsBY#q9?1)eSXc5-wzjO~GtT;#tT<2hmhis}&!68fgYpln z(Ns=&DY@t2>*|{DJYI=7El!^EFREzUAQl{veQ7cS$}CnMCs>EpA{VEW0Td0fmOnDZNj=u&u7zz}L7enJ%Q9m#YNuL)I`4b_?+q>V(8rjy(`>km5ZRgcv4C zI>DKqVM-IzSOO( zur2veX(X))#DaL>W%2D&=#$V<0`i_VG%Bhoe95AG_a$S_hiJm1~@;Y;HZx%7Jpkwp6v6N5Y z5Et+?q@#gIudwa(tN5#?6my3LcJ%d2Xb|BHN=@N7Fl86JG*r@}=c zEYV9oz=vea8Got#qcN!eU7A{;oKk|80VV3SJFWQ+=gs~6ywpryQrb5z4q*^jyv(|q zTGkb1>D*bf;6;+w2vT=bP%7cCsM7E}{ao%pG*RY-JYnssux7!j)@wWf^r z1DKou@};e7ClR~%17BEPiFGGOi4w?Nc5jN|eIgM~F^>A>{=98VJAd1B0M)5!*>N<0 z;SiZIe#Ts9EoW0X8!|jsLa~r%E1b9RevhF}xJbtf=1PAB6LC7$n!hJf&az=sHv?Jz zJmk36h&O|XHx?q>=EZfAn}uw1-sM9%79veAxQtjJGcj3>=tayweuTPI7EoSX-`qyr zDj>v{_QfbOsX=g&#TW?H-{MAlmI1$fgW!(qGf7u`u`1BH_gwAayMPnB7<8Y9;+%;}E2zi=#@v7zjWMGrdeeP{~4_4D|t zzO!h2pn*faz}m6vzIv2jlyKwKQ#arhVub&?PFbd*d`o^L-EgxO@96_8`2Q-s`mb;u zjRywLho@%zx6^HMBj+3N!WeK|j1G%CX{seTIifbNm(IP-rzQrQq#^=`m#$BH4-sCm zT{`K7s=CPqq%Hyv4qo*lmQ$F?ZSL(+Zcn8?X-}bNPbyw5SBoDpuGKUC=Y9QC>3=^q z_`i#tXpyLHPE2y%C%_2W*Sz1GOI8KNApiSo0eIm^mrph>!uOrebi*uLv=_DC$Xi zRr!o{yGu;crOa7u*@e_!EbTEj0S4n~p|?DO4VMccd;|LDdRos^ZSwOJTjARb=2%5{ zB}lhyZ%|^(D5i{jI_jQ{%xBWgz!0+&NM)O}K;9=XVn|3}PXLqnhs%$Da#YaBa8yKE#pijn46Jx6$G}Nv##jR@B!R3e6lC(^{Wf z9*Xz(NUD`lP7-sF<;+I?e{8*VRMczNKYT=xmTrj|29WNS5C)hb1sS?Sq>+>s$)N`X z2?2qjhVGJXB$RGM5Tv{79nbUJ=e)o5+<&sx_m5eueO=e5_TE@zqF?4jm;9^m4u2lw zzScDHqY2s|cD5}mM9>!%I@5RDnUp%9( ztr6)i|M?<&AmU57UvG2!C8A`CcWi!%uC-ol88$1tMORi~CHaWm?$e_G$2(==eckOI zD$|>iwncyG|6HuMdO1(?9Mv$BCtuaBik4|DxB8!6 z$vA0hj+SrMthS*{jRL!;YSeb!W_V9_qK;2G$IoA%JHN%do^ovnzq_=83HvvYo?IM; zZ(~b-YN&Pie!lWwu5`nvf2w?DIb*zF^ZOthjC420vX`MGSaGL1)M@_XF6O6pHkN~n zoDKI`75XamjUQ-&vN`Wn%(S36y55EBr-k9RF*51Bkx{UCexIgOZd|&}(>N89-Z-F~ zXc%undif#G9#H}I0KkhK=%RHZn}{QQAcE5F2+8XU5m3l+kvo4h`sRE=4Ozs1S#=5e#Vu zu<~Hd$V*PuR^*_4B0*XeKk|^38!)VS+}{fA0gA_bsK_x3n&btV10M1yPtVx+qfb;` zG`~#ai?0G6Ta24|n%`s7R5F7;DZo~d7h;KoD^kq-(;;i_@kj>B(7XK}G5qn^Z@>^3 z^vgrs@&1%k$mNIZ?ePGe_M9(ohR08aro%M(`tDu7wX}2T9UZCL8zZUHY01;!hw6)V zXSJoyAy<$)reF6AEs=w#zn`BM@@Z9+t{&b>{sUwF^RRqsr&9f42{$)AFt|PZbEQAR zOql)9dOQO)sB`)iu5+A$xZbWZ4y>Rl`S!7bg)BwXIdepO;|aarK?lmjI5&7y#>o4Z zs;it{b}WfEKHUBVvOElo?KHEOqaBm{N(c39Mop?qN}FNNX>3Fit{;ghm;5=DFT_lU zt+KsaAfbe~DZXW$6{Wg_$62y&6a^PplrvVV`e}fCl2CO~!ae6u&`l3!U*j3e zC$52D$^ZU2hp5cfA&MxRN^=}CZzAbG{=vbmEuv0}^p5S=Y zdH~8w2ZT|EpH;goZ%&caI z_8}}=+|WkUXi43MT6BzvPDb#WFp_5IQNM^BE9Hkj}}yMGVWi?EF_AmHGG#u~;OIOI@Tm|5E)N*^8) zA>xs|nFHR{>KtHwMoS&n)--{LKxU-iE&u2$P3*+cPk0AU5m^U_7KzXUP)G5MA}tQ5e{0v@}a$?%9Mi{7o-_*{Gs zKix_%PgVWh^*^u$4ccc!a27nriG)vMZJS&NgCvfA(AUSPUGucLU~q1^rQOti6?Xsq zLhA0D^_Jkxyu`)_DUU7+?7$WKYc9%)^X&Sq#*gdUE7;Cs&%-a~8jKkG-fK&q?_E4JmHrPy_{GDjIN$ zw=3>a&+V?;x-%Tq{vHe8eM;YE^P4;o%-_GI_03(Y^72Y< zgb((veD7eD;U}&jPJr~&l5Un$Z2A;SJt3iUASKVCfg53UqzuU6nDxtmKC&Fa31Pv0 zu^)s5#g~zFk2fP)!fK?aol1yXE==E4=wSt=pvJ$JMpo*ge*pyGTpJiKt0>HzRXS4g z{a}Vk_*I(PfgC6&AmOAkbby89F$H^0#ej$KW|Bc_S@mdqsU9!sc*2B$N+T@^J*w)3 z5(kY<_cV1$x{o}VC!xKcFqbE>mPz}~qnrM;qGYRKJWLAM3{upN^dmBvOeEh(+PR8y zG8SSV0o$n;p0?Y5wUoDM04spda@MRhj0E|e`ph>c8%&+Jw%pzQUbS;{go%6_zgT43 zQfb~paR$1i-W^PI={%SC8O))Y8RV|CHS^=OjHKuzsLc+^rk!ht9>pVxyY7o($NdyP zMIWkXQ2F4FIisiy(c0KAj7D9}-#!@Ib1?@+G=(eIf?7H`#Jr~)vi2W<1i;To`!7C; zOJeqTCK8kEi;Z3mDA+O)^%OlIb;a6u?a{5sI--ir5(L5FC&8 z%a1jdRi=%vcDZTQcs@?IhHFfsCp>*C5A@E6y;>rw|9yM$^FE_}cJvm)%k68~MfLc} zolKKYJwAQX{}AB+r@Y02)YLy$*;XpL(;t~;ty;{m$~+20A36!#g}WvHCg0wNjB`es z$QOZP2kNK1o7Empb6&Lrxadc6D_U^m8;R1BY<-oDtq&^dFV9_4?Z%6>X*nvvPwfsR z$UYJ`5F0@162^eo~n7 zB(qVzHjia(IIM^zIYhyZ<~ur}hqyK+iQ9-mz2!93L>=qtLi-Bs;GA17e$?@$ROe#pNQIyyK>)0% zhl7AT?M8uva&&`tDv}yoW{nRs@4Z=229_%o27`?#tB4$TBkGd@^MA4cl#@sakThu- z#K%&j-=HM)N(n_!&r5CNyEY`Y3Y&dIcGXb!Y@!R3i-VfvQ29MeUBDUq;@opyRWf(r zu#y$ZpAx<;o(MhUKcl&U8e5KjA$pkWznihbmD5p(`#RA7%GqbNQa9b}?{5LENb4a`W@>RL@8KI?wR=i^b>dsw{vXE4CGT!t}?eFrI9T zjuvq%TmV^kP=$GQ0Llb`UcY|33MGta>>Som1cnGedak>-r^uQW8;CgMd6}-vLH7(& z9ZWB<)IY6?hp%GLJyu2kprSXi< z|8%NmEdJ{qx994nst)!Ok7g6^T;=+O3+9ZsTh@j+ z=$}esV}*9e%!KCxQ%9#|~CxCv0QL zRZCD5^*!EJ8|DL-!z+BMXO%$h3wTo;Y_5DLyO7X8J)u;k4t~1Eo=^g*eb3!VMWCpN zJs;rBHf2S}O&?uO6nRp89%e8QJ36Ndu5KDNih{m}=<@wcg}fsO;av(|mb&$oI=Yr& zPf|?-pq;0|4kLQXsfkUIP)Uiw+wD)el1SQ080nW^S=!zzJ2?+$PqN> zsLQvM+0o3;rk|G}Tj`_V<5c+6x)l8%+ckdf1KzXzGA`{VkHs?f1cSlWg1hn5lV?Jq z?5pdNR1H_{*bKs?_Z-Yb%%?s9Jz_ZE0h}G~9p1(Bg%jZDw#sDs9pFk`9NVUedM(-9 z?(QA`2b;TKr1J;OJ4>62F1fZjT^^cCxa`Bz50(9G4atIrC$(ZW3r;S=P9Pk>Rm7X}Bis_nl7TbCY-KqmO6H7j!qu z|M1`cm3sb$F)k4F6SS3GqRbL0^PToqRg|1tCrW%9JVIE1seX$GiQp` zP&#DQ#`gx|OL!H@?25sd-rgCC@9}eh&2E~x4dtPdCUn~Ln4cgu%$+YGwh*|(s2Bj( zpZf^Ieeu@k4O5R^oYQf^e0gk^Vkc~2IJ@9uX{Hpi+&ko*z!Fn z)Wx|h96)hU<=cN4%v1d=_cYgsICZ_H+aYlXVkDPu!K4I;LKKGTjk5~^umI~!m+?-$ zMiBXZwspM(ZT&*kTnqUUj>PYR6N_36@x7gR^KOtfIby>M+ZvQgt9ldJfLYxLT5w5d z2oow_TESEK1w=$@3n%`tkXO?}sq*M3>Yw7D*9n!GNx!a*g?JLC)}o2TGaXV65pP`n zSgA9dB-`gGgEu|o_==9|t&gd?c`(a^5Uq8r4T-X$UqWy~pY?h4J0Fwb!#*09wyxk^ zJLos5Yb~u+>ha|dt^pyP8y>?Q1_i>&8dlHuNNojCv zsnPxCd}FWj%$x0HwS0r*qFRZsE=(4348apZq>YeEAUs;o{NORuDWCz+dKhrf>S}@< ztz?*jf9t>Q@{OG6e}?mVC~9Y#bD`@j8eGphUXt@7=ql8Awv`w}ati^k5Fi)K3L6_nV_WKhmyi%hQ+*0PDYS%sxeh&8iDW0 z?{F-oWSUAg1H>`Qw#dEPf3tAW<-Yfr&5>mLT*1i%lakv2Nv82kvyb84xJ7E;`1Z%3 z8;o=(Cn?n+CMvE9)%q({;s#KR$Av?#XU$lo6rq9xc5DoR^DRn4nyLoB4B@G4$%SMu zl?%We<%k3*w6ttWK>}0)s=zD(gsn?Wn@+xN5z8`auS0;$i8w-8I^G*%Zb4rx5JUT9 zxA@)rWGw~Kanum)q>WCoc)hx@ytR&ZM95@OJFrZwD#DPJUoo@j$fZU!u@qD-pq)I z@+}ks*U3}oNF$z)(OAHIAJcGJpVz)JRQpCtz6s&8AFO@tY0(Ode68mYKdGSgK%bgx z;`a<+aiLWJNF1{v(nVwP)s|!H+t0H4)-^oy`AaLA25I`XMTVfpj&w%JzUXcvG7KmV z9VI=ow$Vd`NRIk?n`Y06G!6c0AoT1p(=&dehwON`4%|TPnl^Y)v7mhom$AJ7lTCOC z+Nhlqi{r@#k`;t0Viy_~7UxSHzhk&xG$kKaO8RPbx+_nV;1hb%N5?q99QVv()I4Lt zEH*BtrkfiqWX0Pp1{Pcr9AQW$9*7tGX>6Ea@(OOdD93^(S6dW&ws0GqHxUk>u!7HV z2cnPT9_1tpQEK*UEkOEm!5_|T^&CD|21#;>$uAY$tw<;9Onq<^S(-?5CE96-t9Bl( z=S&(+F;Wy}#h`sgDJ`k-(ZmIg;wTm=U*_@?{#W8)WpUZy-q^azS}t#PmR4N8xtdYC z;>udUbtl!UWi3ZYnj+DV0D8XoCLv5iOi|a^{oRO+e>pcEsn!f&`8sbYz!^UBZ1wu; zdy=TL=Jt7y#Q)V%{;qME2UJ}m_ku?h5<#Vr?GN1;CP$Z=#?Q1#xu>#-E@PT{B(>i9 zi3P>Un;rh_kyr^Kb034U*^Yb?mpD1fRlAzwk#>^L1K^s0LIDghF)<5F9-7$@dd5@# z2+;^(h(%J70v>11YvQCw860M$L~tD(ftxfC2Z(v>6Ql$6RY>m_lN-R3FzT_$_h@iI zv;Zq5Kso06^BiIhiYcUpf^g*K#A~y4gD_dwc&6m7SzKu>W)`~TRNz-y9iVFh5}P-6 zsd-rdmN$$P!CkrXTv&t%TzEA3)2RhvZHpYT94ZW&Q7$5n@o&GGnkkEHtn)`ec@QR4 zD*{iY6b(FVwpVBtMrDC=W?STw4O!ZPNUjieD`t+zByi$YJx+VYznCvM7@}$I$C`aY znrZ93=4@sqSgE3Guf=&ml4Aq$GmpSmX+mMLSTdyFS$q2CX!ymvrr;Aj48(t>VvD1= zmz_$WT4*qC2P&n&EP@T8lp4}Yv(hxRzFmQR^nIw|CjC0vEXm;#nQEQ10@Pp3`* z>z7(@Qi$vieYE*~xh!pIugsb#u~XQUw3R&hu&u!~(Eoz>Or6O>vj>M0ROTRUlK@PL zLFVa)=3*Fpbe{ay&qUTkoit!Kuc66T#$So(eMc_7 z^xEJUMO01@qz};3qkzg+S+z}Rg z<*iSK|HJAkc8M>3q04kGYpLMc={mFZa59i3(n%82ufP;D=n_47YFk=n>SOB(%cB3+ zH?*~jZ<_YToVRxp+wK&&Hppa-4f__d>kD|lA1+H8Oy91ZX*`Qt{{3I{?mq`3=pJmA z2sa-d@bG!FX&)JyJJ+&2!VyV+#s2r>5Z#_$J1*Q3PSFDl4HZSHGKujn$^%aPO~EG@d!EC2ww5RX-+th5tq7=47=Cn|+;Yh6#53T|8W6rL$rAva4QX&|WxWXP?NxG^ z88qD8pTE&o1J1{bDNZi`JkcV{gorVRay}t2Y+-s&DECsnZa{h;t(l05b1_8B+u)e? zYodRND!JT*9C~;`gfam#7dER{?5esx&icedI=#FHgWr%S@HF;=p#ga(>85$VQ^X5` zgs~YJUtYqbl!!3$q^}ze_YmEiG;;nBuCWF^<^(dhCC#sBDmm)O4Cne$q3qWV4h>C) zDE$^VtR&q4jMn9o;$voxJFQ|^QZ%QbW7MP+0yJZ!xQ6|1w$|ENPJETIHZ|)8YVMKP ztH}&?Jkzhvt600GFagPXN)TaNR~~ zNK6@t2~pgy z8`T!c()Dgg#|Ziihk=~9Re37yi+n-2(RdxRa4eleC4T_gnGvmwb&$5SwJgE*#t*_n zz?-Bo*)bVVxQ$_c0%ZUIo@TK`%g|UG2A-{}Uyat_%qcqH2-a_US*GAdmX!PxjP6tb zVd2xf_HP{yhz0c>BZA`J6*7U*fZLJ~;zSb44a5J=tzc`xliRys5QDZq+=Vca3PpK? z?Dj@bq3x0hD+bJG-Fyix7f(8Hp5wzx>?Sej`k|o8r z#xF~Rv|1!q$Cv5pX1!>9q=Y>qDQ65UvH-oNz{D?=COahZOxo-*_-O3xO17!;7460&qDSnG{TBUR zHwuF^wP{r~O+0nWvvB3a$@ms(qb`Z9YC`3CAM9E2>ixkri%DzUdGY9|IHAM%^9l}F zX|h8x+)vx5^V8Ot_<*u6;|0TWA1g<~R7Gy(X}w{#(IT8vzJX{1=(@G^)Qmu}=Cag{ z9%6mt|EE`b;w*S<6S@C79Y5*w)tK5drLEg_Sn#?ECDp4IDM!zqo?!6Z$u=yP)F$&3 zhsv~FNlIKcHwR{K&&`AfZd^2TvG2Tl`1qTn*Ft?|{iTN?PEbC$n&<6`9k-)?wwtFI z^qO$d4PU>Jcl^K9bDbhaI+!56IbT`n_Vk44(C4ZG8>TtoW^eV|_kWH+5bwM8u{;%z zHBBYE{qe^yCg<_p@44G%EAYVF;HO~fv21FP96I-7nH1l`Ou_nvsfSCMThlSW1DP{s zR_PPYshYNO^}TW>*-k-=qDZS>5EP&pnxd=DlFef`SXb!#w|K@a6?Ia0dgnOM)e$A+ z6Za4=L3riE3{y~=aW8aL3Vs@Z_@`v6sLz@60nEc{ItKorgeOqv2;Y+M?XBwK-A^gl zsnK|9nes3zCFtw+vv)f^etv{BQ69itfL&!N(V~+VpCJ{Ak#&kI-WMCG=}DTq1~$0cwRf2y9LK+SxYyQhioRFTh8WG zWSWm;W9Bcd=sgb9o6f107k8jf?rxjWyiUbo*K7Iu$E!9I(;t1z-!h@Uo8z)dQTeff zJU_EOGKl>UiP>C%M>57CP0=3t|H+SJQ3SOxNXQk>PdTLQ#Urjam6|h;5#!iL-gjjC z_fjVMcgZ7uXJbUh7tOZ?c1EL`_vga_q5lhqf?}8|9A*XReY(vhE{5cVuTN8(j(UrQ zK?3b-TpU;NWeJTR(85!CyTW@a55L8(#T}(bRYVDdxLOb}M2LIVBiT+EJ=Odc-v~qt zD$U<9K<7jzCAHP_lLr(|Q-wVVlL8@@(X=X`4PI4|Sdbl&pt0jCxKU?9zK+!vmp?8E zT)E9UH3_X5zkcfwZ>&K|ZL8YF9PFSLp$pMi7#B6l-a64TB$FdPq6^mM>*lwk_I^}F zTBNlgDXN)QHO@~4cx^HpJhXzKW8kXGs>Ji!y z8;JFUa@lCDAvX}$oNU$7!I=Kqar*kqdupszB5_P_+TL;BKyCFg7MbInuBk6FJYZ-vIk#z)x6ya*Cfq8jY{KqHp!Cl;OB;RIAnWnNy%H2DfS}jkT+-yE%|V*6lGQ0g8hkR%$L{(n)1Uv8pTi1fz-d&q`>gQz$wjb@UBRxzU0V}8;0@NC?|zHN zt@ZWm>&4NDT^T8@K8C5o`vTGFHxmQrzhk^UzOG+vLtO`6AFMa2nobumxm*cSZP!xl z`@Ig^*AUaPaSZG%NSSo@_-}~hU;x)4p}Rs?_e-f@X5*TC@zw6#OW`GSraeF_pnz;9 z45vh+-d4>w@zIBq#W2rZ!`lYTWM0# z8sg9{;jZAiqN;C!e?G2r|8svJMOu=cSrr*64HPyMJX0+)p3}6$QTzn_UhYfIdb|f3 zC2&oKHV!rkDK}Z zTQCl$w(UCX{VFW~_DEV%Wj$AmjGY*Oa5G6Wu~jwGprwI3cx=L0$rEnEDin_Bs_1fP zZB4#txUd-$YL*yQ3@tf7>SQ!RjG(!#AUrzgnV2B|a;uVJZ&;B=gI|~LsQ1xQ{G6f$ zO|S$kp<_^9O0|ERZqFL(U@xGyMX_nt+Z^rC>mfCjY`2l&rE{8KcWr`>`~ByFb)duC zyX#49T0`0TTxrOB^CXk7Yx74Nfof*EO<%5JBu%e(>$A$54(R4Cw{5n|=;FSUVDC2+ zG2X&AmK~R~P;~(ro(r~Aw<~dhciqPqF=%CO+oTOfG#YrbOnFhiuln+y=Uy3S+0W|- zr`!K6@}N>gJ1a@o#Y@eb&BA-Bz2$qVv~Sg`GJ02kK~)?rXGUdfNXiDnXcagUOt~um@bS zMaHg+ws-_CYb=5q;HJgZga#SU*CU-FqVmxwwQ?PStQwSJ;=3IA(lOFEQC0%d@J*N^SV!)hP%1pE)<3 z0huA^_k)s|&Uc&5zsqun_iN^MJ zRQA7~iAlEdRt0^^n>xku5QH9-o}Js`P3|d3+M?$v>Dt>DqaF6WHv50=mwDnK-~7yM zc3su+<3MQ*vc9wVFwZ^1TOh7b`Pbsnnd6gEXMdHC8P(06m%ZLi=ToaE84v5Pfgev9 zv;2RGpKo7&EEcjodhByj$tLnu_$o)5KFGB7-tgA->h@k_V6xe`@L~A^Ps!h7^4Kdz$H9i8=SZJXw6ReA!PU+N69GleE7zQNVlk4a5`XANlggFr!^W z?k^gLtnfIUmpR^Dv2k=>g(HiHYmOoBoR3$D3rkBUpJUS_**_W~H!=fsY?j?ys|M5h zgOLh@+P-zhXsWeE#-Zz9_Z^eV?yxY43qQHgz7V{7iKMMolgoepS?;G?8Zb37t$m~$ zG=@a0XejALGpGT`3-Ij(?|dQtTX#7k3G&@SyC8YaAl@$ieY|bFvnp#2p1{H|X$kd$ zD4VA3rU?$T1p@raGV#HFHr`#~ipus+?puek-{exbiuCwp-fZdzg+Xco%1#n{D<*kO zO{hP}R<-n8K!{k^j27Z1FgqAQoNdx?3KMMhH~rv@;yH7A0{gLQc{pS z#WQZc!I1ZJJ!L6i*OC5ob+y#f&A~5(Lyms?xsk67zwWOUr!;Dsqb)E#c$XPq-r5_TQP`LD_LZAKTKO+QAfMw| zSJUOL>FvA&n>rfY_=K+6fM*Nd{NIxhq@ny{bBoI3@+-OlIbG|I@6O=Td_}J7x8_dA z9oEu#B$aV=@_|Ur^**59PVO>Aqe;DO6sD*Viw;haU(_@%MEzg%mF#GFh9L1T?8;*g=Q|upH%k0*|-}D&P{6w`NDb6pq%= zfK6yn!_@kezJQKLRd2T-QYhgwI+Hs91xWyYxa=pK2o(E1VWhJ?9@gNgi)_unV@*p@ zcuxU*jH|8<$WOXt!YzJYWMoi!DU#UvNZ~5&FR%nPT(5NY6m88cYl^1oTLPaH!62qM z&(RKg>0sIShM9gsEq!adN|-{`G6|w1nKjhK`ZRskgB6K(tSZDIU*#I)w&aqTxno-5 zSrvZLc2Wa%?aPewIxH-Ezf{VCk=6XX38d#$(prPW2gFqk&c>cCO`%`8VoK2Ish^bR zh_Xq|uMJZdFVZ0#bXU|HVPC?Z^jvy94&j{oDvS)~C;qF*z{+Gwd6CtX(gy59?eIfF zY|PZ&joTo_D5n*%WRRp^`j*e>+BgLzqUk)+?B+gvI$hXM5~WjWl=qdVMO&>l#^*Le z)O}}?&F_Urn$QD65kazJ2i`B~{SJJxcfitEFPzONcOKHg!W&i2;)EBK8G$-9WczPT z^(6P1uh(1hOcFm-kMK)2wvX%u9?J%-?aT`1Ed6*L=u3qlfU?P_fiuA+mQKYu!yBsk zf|p!+R$Sq)uI;nR_jC2Q^3ekk^8Y!RIqvTHGeavfOo8Lgffxv@t(fx11Zj9IUy!U3|WF9vcUG$&GW@JCNwwho+ zad{Wpwg#5EKDY7c+x05cMKaTHCaG+eb`um2(ES}UB)Y!*WR(P!iQvn%?AkFv(IQ;p z{o;Es#7&hx0igJYPqRJ_D5*8RB8+j*=VZ}NFA_z|xU7ABPKAk})F?Z!9m~8cZeoKT z8L5^k31KXu(DUeyTZk&e%r7hiYypG0RzhDbcG72Yt53dmaersrRg27g!#hT2`yxUs zN=rqpDQEDFY)u?g#YldRJb{eeeBvRH1#zcfr?1R@iVI88>up5@N`OjEBQZ7e<&uwj zXbb(oDO;2rFm%9>0M7G$Pz>0E4AGh;94UYlYgOlL(IZw!e?IB7Jtw794W3Mq+du9PJPVI|8dkl05#ak`>1Tc zwCh}2H7_sEXC;*C#*6KrYBQr_IoO_8pKSc7I^H~LiZT!WTCa)Mx;vWQepUCSiReBk zR$}XE#%0UloaMdB-|D1jTkGXbbKfzKuU?##_{-o&ao-X(q>JA^yYsd@+HkbM;4aeH zz3t1LNOrpamdJYYgnLfV@4v|C=*Zw0j>8vf9ZBPYXQy36yZfToOCu_h)P4Y>WkoQsO)KVu;~mM6piknDq5t?kcY&)LG^*GVCgWiE7waZ@+k(K%=4XQa9q?qJHzR)1+A+8&g%S-m`5k$N8sZSJ=09E9h zs$T^-)xK@ga@B^Qk{2Wh;qDW(I{B1E?DILLnxsjo;dstYYh44B^nTS`QT4;`P|RsIYr%u}hPw4*FSSY_e7EUD*dnL}}tG{l$1 z|1cwkb%PtxloQtmnT-wtJ0r?MF?(bse(F~cJi=hL^&s-7{lJe|@Rsk@XgwZeU?jRy z%sBUMrM0d+4gJhC?U3xfg4&~BCml^CxLB_bRKU_0WQKShT7pHi^$gl7=Pnm1r<0ri zode{y+v{$ITn?*EFzCHJ!|f_+_Fu|W`8|Ag&du)F_a2^n6AF$P3jN%BT~YZl?puKT9WoMYJ0Kn5vQuA5i@cxv-D1F|mA^ zpg!SOQz+@?-iw&1n2O`n^b&#DO77)X*IQyAKl}IIO>N9Y`|=TM34E;ak8ck<(9JNZ zd)_M_v0X^2mdey9GF_rsX->DrsXw}~CRcm_My@T0g^Leh85m9@-P$~oue4A8P`zgF zJJyxre@z@|DvY+qUGfb7??S_Vm#%~i-!xNqyKo)sFdTQiJ?MSv{+KlxK0{A;y??}= z{H__V+0a#V+){F$xRLpCL?U%Fy}32+9Fgg>rSGvhW}Ult9974Ku|G9DcAoWYUp{Kj zbWEvj{$3=h_hzWRWc+0EUsd#5;+vQ&f!#^U{-VR|TL@4qA^sHv@zW%PiQ}F)HQu+k zH!R&no`V{y-4E3UOcl^^U2>A+7;I_LK+P^ol;wMp_rMA)oz%7_e=OF=77XhO&w#r{ zpcw_hgkvs8f=l?73TAfG5C@riN_q&7RaItoY?BhW)Q`y-YK`tF+d;=;3=HLs^E*PA zw;s&0k<#Z-*yeC+J6%hjdx9rqE&2dAf(KI4%^~46I)P!H1bH>!2iV)oJR7Bkz465x~xl zWFO5bL77I#ho?slXG%GgNl{;3Mrdo>Oy%p^e;*3<`O$Y?WU64wZSqC0z}PMS)o@DQ zq(`yGY#fguf^ZKf^3y)r9u7S={}XFu>11NJ;nX@s;ds@bWBZZ>5kLu^6EBs}4G`)( zD_XS9xo!(H%}sO2OJZ;Pp@ptpOLzB%$)KaX){iOH`;Xt7*$lI8hzs(YHu~v&H`8X$ zl~;|Gmj=75a#+L7<#U5o#q5oza$XWiXj0tzY%*#{)l=N_tQ!8Sm57A3J3Gnf+uXXO zt+xauU7hdN@z-AntN(aO_F7{NCUL<_`>`w)9{Lf4c2u4v<~hRn!y zH|w;WdA~3xr!CXxO5bC9eVHmNd2`+G9uX*Id_1K+ORAF7HCpZGe2#gq39+^h7D0DZpJ{D_MOV%gLzV;lEP4(ldZLzN*dh09ZMi@^yr;B#fmnmsH^DmSE}Ispkx$9+9BXjnebav_T00 z=o$x-+v8$)vNCnVD$9dFAv|j=tzn-Ol&NrGB~jf%Q#vGjwlFxv4vp~>@p|W^2oj3o zV~FSV&bu#ObE|V#+ozHp#?%VL=MXpOpwB15q3=Cz9X3cRK&{QjSK4+XdZs4;QSg@X z+ALF#54APnO16V`q{MSQ5sf4ZKZ8ju z&N9F?d%$htbAD3YZ9+u&TBvr|r-%p)5jR-$9YHJTmL6{`acGZ16RdV45 zOon@W`1VeCSM5*JfgcF*(4*#2w`8S0w7Q~HcSBx@uaGKi*KmGQl?dcPO z?E_8h$PbKv8k7G-tUgO6qW3}g-0l!9>X5Tf94p;@w;qps=*Ib_uCh|ocdxM^;O(h` z&#$77?j77zsf8hH3TjNGWT(+caZL(6S}y(vtOynMqL4fzfH2}m$VIm>jxvY^o!29) zA`ZjwPL)L)EV6|~>bx*?T;P=8bS7RkR5sKsv^`jCN_64t7AHw8)X|iW z&O0pt0tqAxxZgIq)!ri5+$Yn z2zC#7+V>2{66wi*e={Lh`)Xb_?PsH3jIvU95poPI7S*GmYo)@h4x!plo}z;bUg#WP z%o~m@%{PUzw_X0|oNfyKZCl$pQ7nNF4_e;Tc^>g1JY+(Dpx>leYcje2QJhgGc^yXH zvA&A9We|?B5s^kWYeMhL!vTHk71G3J2*1i2DY{LpAWSuJ7hf|5B#PpY3@P&HjdP=; zr8l#fH-ys+t_h@R^Qq@CYU=zIrNT4c$1A8CsypfeXQg}p-ziyIJq5~op z9-;ThirQ7x88Xi25Z2K8S6p zcr#p^GpvbEsr;nPVHgEua|bU_ZI$JvQY4f2`9Nx!ACyVYf1Y!1LC57&cY0gjK8Blr zsYYAS$q9d2AVS2JUM{6y4cYm!Ns|41+qc0&HGBDT5$eyf&#=tqJRG1TBXIif*SQSyQ~3uaw6g*Dc4POqCyoP()6UCvy*0|!uR#R2nQb~Ra}3!AHz8+~?Ma&>YzQ8166N@zMcC^cU?q>hIPn#xom#%e&6}sCwYD^VzrlDC7FNFHPRji% z$!7DC?LPb1In`p*@X&0Cv^L%)J~XT^OizL`c&lG@ez_X6oF0$O0dftj#pA~ZpqQv% zwz)W$_D>Y?EPfV9NGzlv=!KC#ePN9<_?69|%wAgYJ`&5~?DR86vQf`8B7n5flL9M> zoB&hx6&_ZnjvM@2u)BOM;~4p-!5`ZA4INq>(aO^sjdU*!>v?1t$|xLzG$|bvLGN5| zu|TJYPH{gPCXnTjLto=OdnQ8}@$^ab)3QR^su(n*1JyFT*$oC)p(DJd148{9XS$BbW*0;H`F+G1rMep}q2ucSQ!9y*4&Y-0m@GN%X}JEX-Q_-fcN zv?elE7@t9$!3F1PR_~B~fksQ@xM0;LU@1O-9GE9lo`V)Re$wqADMQ*RW{SyirbtTn zr7#^t5fv1#L`pSXsi@U1Hkxcye02GR<#kN-V?kTIfP+o)BS;K$Weivh#X!wtPpsixf}PE>Z}DSWQ165*h2NA94%T|+(EB!-AxXo1?7saVEO3ldbT75k5N^#PKO`soLg0qdAkWyZzj0jI@j zuERY(JMcdDJ8mjlbhHjC(610-KCum$iH;`ZXMdz05&5h)O*NM#2muNclecCXd+ZU` zZ=^ELDJ&w5UgjzSvOYYGgb=CB0e`{mq)|Xt~Cw(qt^l0{nJhX+pLM3;`D_qc^^@Z0`Rk&UIE8 z-hi+S_mNwJ+8>HZ$>a_L>4&w>&oRd~zu;YEWTWY%A@`7PtxJUl#nb>w6^bzUx^;Fg(Q#Oc&xz$xfKOS)S==N`=B2N>g0 zozzpa&;ukEviA1P_~B?GEfEtG_`RwT*@{)@=}4P?gKNx49z|t#bgRhMH6RL)5$RQ0hvHItT(^KfO@gBs? zsZhU=gv0>YwI*zVW|~k)6Ll2@EEz|i9v7xb)&S{GOE0PNj(Q*3OOtBbi_LC~^h%AO z;1QjT7L6C7ePC<}P0R==F>68xXypQL*=RNOt@A=c= z7(R^QV*TcvYp%H_$JrQk(l`K@hx!AMGG#ecLZ_Ci%ah+N6|_%Ui(!Pbf^HX$Av+RL z&G_?}{IIK{7ez^+04MQ!Y~)cSU;!sfJU)g~mPy($k?I0NJqQ0DV&;}EC#j}bgmt0Q zlQMphv%T>NXO}>&QR6}Yw#jQeczyW%`Y=CIFdc0UOPC)+glUsFgspi&%nYtp3b4n~SPhf-;6hh|UrWzC8XqEuq_U}J{%LE|byF*(Wx;A`D9I-9 zx~C;-UO*IXx4TSjBN;Vvf%r{@Pwkk)7;?~{29f;^5EO}Kq{aeXoT<3bf;-1ME_wzR5hVb9W z`yYs5xt{rGKHQ`X+s`-qK^3vA-kkTMkSZ+}fq~+jq zd4Sgf#OHU~v4f{iA+q%p%C9#n)r?Q;FT%hMxy1XNcV3Is0wdX+T-aVCU`gH z*<^&I<)mXAMjP0jO;q*Fbvj&V31?>{PblpypV>k{F&k5?$x3O3ArVuoi@c=jRKFRs z;;%z><DRkIJsyHD90oeO=C(@~V0AJP4nvg8I$If*W#z znwVm(mErSd{dLcDaG3M@Xz{Iv*6z9Kuix>y%$#>;{EwkTl`dnLeeUM9kxSQ;Irptx9Fa}twuez# zyUV!1yN7k>LNI@By6hbyt5WQXyLl_VlPPBTXjh(hTDj%tgT3qjL- zxOsm9s>U#0;N?}ty5AX=rv?a5>(E72i|KtT(WI!lSppHdAz++kmgSY)*2A7W(Aa$f-aglL|xIU4@Hihr+o)idw8nI-5%0P0# zuP`s&%g|N^OeHo!?8ejnhr6PEl%GSff>xqMJZr!jcv#Or|wxzm}tQA6z!_i1~^3hxchha&!6?je{X9 z>$NY(?iJS)^wW*aRtdND_bBOO>ve&okWoyqZ5=JTlfr9Ftr6JBr?Rj682twJ8CuHL z+JGME@Y=Ct(wZ-B#yIWbvyq*}Cc3-GHCujp6 z!bgupr$78hS8ilOxeB3a+Qp*wy>?D2Ym-@VaVek6cDDY_6!&$5xJpP_qZkH!I8{po?b^KQC9wU$ir z;5uNzR&bGy$j^3mbSy-d{h|5254 zGfCxeg%*gc)~0H>s(#|RJq`X@T&j@sk4Av~tpOQx%2HpS)=>~rx94%i*S~%7_zD|6 zuB%-rQ2i(16$9S<5*1D@i^kaz3iQZk{J)ffjU4Y3-hmprLd1Jho_K7Q+LRqe1n3_f z_}yK1ne1L%h?NW`vN&|~oaeysz|?_vaJ|deLB2Xa_X(uOp;N# z-k@T6EEO@e_2JhOSXP^o!n;;NKRM(KK#kMgcK5`$9P!Y|L8V&7<;jCqFcJ%6^$pWI zSaI&)j*?u{hcM}+u=M1`uz2X`1No_psKROs}olds~@}>8|nV=zd!m$*4+H96sD?z9OXs z?9DM{1AtSHNiRM-)Fo7`M+!?n!MM0-6-d}A1A@+=mIJ~AP|#cY5jtnB5AQSl5(jOR zLCB{C+7Akxv?eTFn8yfTg}2gb(tk0+k)Rscs)aIYfT*PNXyw>_2Ns^ul`YH}9i7V9 zIX776$1UkBnG(JM5cwD4NkKXuWu+ROZN82`PW@|E_2D=Kz)`G{YOi1Z_<P4Y~}JRQNF^ zks*(?QWPvJ{H?5$nVdY(iGNPx4Im#wnAJ8OdlPNgTC% z?U*{nrB{%sA_5JT!=B2hZq1`ry+hpJ&k$Z;JNeqq+*`o7DDk$-`?ibv-^=oBGDC2- zqeN8MjkXf~r}9JruJ~%l_&*_Q2jM{F_+fxYO#7b> zZE&ab0kDSZpllRy|7)pmkWv5j1maV<&-K}k)*?Kwy|lj|R&^TwVZJ;eflvHquRdMK zb+y89HL z>p>;At<5NrS@{RlCaWT_{XC)S<_w$p5q2!LHZV=z>-9T}c&)+qzD}02j5^*1uO}|; zUh;h8u|(C$w?&)lk_&646w4P%2V|5frZQ8f1ax_*(mWh^5zxQFRc!O#f0xFE-p5HP zJnMTcec1PO-s;TSLoY$gW^-g-^g;YkxBID0ZP(M;R+9i@Xo0AS_dzo0(V9Cfl|kIh z!hcy)6~Qqe(w(iw{f-BMmv1WvM-mXS--1tS>f%?`Q`p5Bc=a9$z2Yj(C=`O=hifHe z+aAXLI!YbbuI>Q~!qb;~K@|KeilOrZ92=%~o zo5aG=tlF@}^j||STV@gIQUwFXE%M5Q%@M)x@cY2bM(|a(xq)D78UrtUewAC%oM_7Y z6`X_OBxgdwW!G5 zLw^8eTM@KMKTPB7J$(5Wuv(PBET%PcQxp5wKp*zfAT zYlAofH55fDbnqjlT-5gTx3l4p4iO4ZiKEX*GZST{>X{K#$5NZ+^+eTv`rqb9zxipU zzV2kiCA6*;W^I}1g)*wPlA@&F2BQ3U(@-xM3gBBzYD3fhxeE1J? zlaXJ5YdWrDZETO2Y7+6iye8M0?h?^DKJMDt6*axO*HVZ^YW8o>cs#qj3xH(^VA~i4 z;%K)uQw4tBdI?Q7#~>j5n92t!MHKMPFqji1HtH@ZJc`IC*`Q+P-6wegS!cmP>MQxN zFTc}R&y4^4vN#r7H(0^F5a}pu7fFCS-mAMM&x`EVYIMjP5N5w4uK7u&Q1>M=smJnz zLZwwLNCJ*xUPjFR7vwKY4|(;03gek>JUv^`T@=(LDRpQ*lxsW{FM-m z5CKKoiXbySvg*9c-qAG6epKMpd%}?wHiB;Rozl7>(jcjAplm_|^}{gzMdG2wszJ7> zL2rv(f!?}E%<%{ol!=nuvimh}u>;(^Kxkl{hdBtIYvIAzAW}8lb;?s*e0*hoqEk5r z{z1~Ljkd!(Blb2@Rh$;0fvnl-N%lHu-f~%)B(?Y?v$^~|7&m@GIJ<~>GE&e0!@nq(C`KQy)xE@1dVl0WHsptJ6Vtl4PGsRnL^`kby z)9UK$xp7}^hKO4HJY&RIl0CG9ZsU65bW&nTbNpUzPUoTiyRN`N)gaUJ)s>sTV2#l$ zc4_Jh|BVfwAc7fV)XPJ>^N;+lz%5or?gn&Bfbtt9e`27Qu=nMxofWHYZy-UVac3bQ zAdtnd@M(xK3YY4{S`M)Z44uQqHW8Vq_-1$66EIEJPu#XkrK_6%pHKezCHmL*m)KE6 zLA+5~PG}Fiy~9!x0lkmGD%qE9@5;lqP!yMcGP#U6ykFb*p!K&KlXXUMn!VurHj;k4 z@1&sfGY=K3r*nNU(RI91aBWy;snf`Ffoa!&(}Z&neszFeAdNj8L-C}^cciJn&}10QrW@3(>{5YJN4^tfco7<`OKL9@!;d+3ZhP4+;Vu3( zjh@yZc%R|&vf^!FJkY}2G~{cP2&$X7`Z$;&ykk+)I2r@1)UFC1%+P$@4&ewP`Hu?l z%=f;)u!i?U z^K$)&59CF-+$t*AP!cWgVY1F7bIHnCbK4O%5+6 zZTkiNLExrp)7eml>owv7qvxV*GYd?avgT>r3XBvUX-?B8*@IzbJz;4kJzLJF%QEAI}!(d_qp9z{O!7V729ds;#t0!Ps$p! z|FW~L+r|2p;M2St<_`7-@jA;D)3H0&{1D+O%LY9mly8b z^Q#pGS-{!aaugPchuvZ3X5WY18qf1g=O!cnmOuS|`GMKx3rk?PO!<9tU*t%RJF`mW zEg_^S67Sj5;6GjXz0cSS*`}8|}3ee%_U_fnRQbzFMbXZfB*|dm8({PX*xi%hG3#L;Oo-7`3qiuXiSWiIw zlsYwnL0gORj6u5j6%BMXA0)?GI%pgJu@Y5YOg$5k@Op}Prz>5ms8CY*EG4Qqzm}w4 ze1-`~xxvE_Yi8)-jaCFbm#0z`e{v$6*b7#4<%Sj3br(-qtGhAE47slvZjtzt}PZ=C)^Sa{OyV)R^2iTioQv_fikEsU4++9MMgtyibI2x_Z5In0FrU%2IK> z-ZBrK4aX?J39T}W|F!dOSC*`BIe8O?&l)p|nj<=7>X%i0e3#S>!b(uipI+7)k2XCVb|xs_K~&ThDbZic-l2O#B4fjwlIvlrgKmg*N>j z5yf{f2pb>qes(|QyX+>?emtL{ay0hgEH!X~y5?t=*V&{_?N+w0)AW@`UG2-|I!~wW z-woBT8q?f8C9zpl#hn}-)ja?4V*K5{6_+XTX6O-SY+?SvqWR8$S~ex2SK~FY;qfA; zLFSfV{b(mtBj&!};TP(Xc#s-6Bq4#o@a(4i_(wVS%IePm_IJeNb-IEIti_AEEan6n z#b7LW_BPI$Vi_555z6bU9Q*H-Yi(2To=jScf_jAzSP+i&+nFe{*oOsSJ5J#E9#n1H zq7yYh)Tb;Vh9kPCEuCvY zO0{LREWI!C)%McBb-423&Bi;pZ4nAkShzVGkySp}APEF}#e*hGm2U}|Me-5#l~LI+ z8w$KH%!cEbyOETGDS`hrxBLnS7tu6W3BGQQB&oKjo8()vN9}$IyGR+@rAq3ccsI;o z0pC0c$1XLoRAxwQ1Y5_`?~>}Z2&sSlRqw}#Hafh{J!R^)VCJCP#8X?rK7sw1KFJ${ zX{Ef&HU*Wpj^kuqDW7~6emUe)G}J~(zTTy;!2C)1B4zNaVTL(HQT1D^fjb)!lF@!P zg+*uPrdK{Vi-hgr^NQl3CH(1@qlw~7wwN9R7pXAo5E-7i@Z+y*qrKl2tXCI27yBAU z7o$21UrTa{ZArrx+&|AVYA2ltTkKFhX>E{;)`Z5mTPc`R39FkH){t1l66nQClZ*1R z;;NIZ)qm^i6`gv=M;&eFlo=@Nlc=cTo9P$ZO`a2)9Mquhuh<-uT-ejoGh;C-9+#aM z6exbv`%C=pAn>yX+P^V$Qm2Xx-AowT!RNoW46lW5IXw@b|D1|GxJ8wwC(L&3=mxx< zm{{$xp`>Cc^}F}`J~e@24MaAX4`kALH40|F0FZu@Wx_%!in=54e06IyCpvGrMpMqX zW0YxzMV_g%);;_+aHQ=2>&r*V&-UhqMVo3FAm@fK5zr(XQKRfN zvH_x`PW*(?1USF0<43D82#)352hQBVy7GHv@**rkI}AaESn?Em0>Dihb#3!9vL{^H zyl$}w*dc~M=Tpib)TQc^19xhR=Gb%v^}6pBT-nEyV?Ij}_BZq4JH$#mlxXx8Qxu>} zIFOBt7x6j!*XV(`fL{Y!C3jFPQp(UFYm9j-dy^C5TcT7b!u)1`GYgpZDR+_7^v6N1 zVFe5h2Z$RkT+J>lgE}sa-c&caJbRFL^jT=q=g;40@Mpm}wQ}(uQU2DFRByr+UL`dV z>>cZpIwp(9jX5orCOG!JM2|ElN$eC7JbZL9qA!bUIN-6RfXo;$*#xfNBoJ7;=k{vQ zjXq)$LfXUde|K_v#J%cLAEl1) zH?mXMi|HDZ6sF*}8See*+!5W99r%}EwlDTb%P+seQ8E^fY*^`9y*7CXz>rUtpRr`8 zAzZ``i4H-fwd=V=7xzc%@#EI=%I^;^^nyz;CNSJ3d@YA|)E7T-)f=!$US&p4grAUa z*30oG{GbU`d6OfI33nayIvC!P9~JHo_~s${cVTtvvfw#(`Fk2i{N{Qf4a?BNqTK!D zpfhK}W7{oyuj6&pg*LWykHOWtgV@)%(Knt9YYtxw>!O!54!rZ&18Tg5KtlX0$+PF@ zf@^J?MM8AWG(YkgA81Ns{=dovAaiGx)bjjvb+3UkZ4}K$#ez!z_IO}pU%@MnWXr2- zw#=h>y$t1i^O>rnreEYqog#1m``8Aid;k6v8kL(PFzh;`z*Ecs; zf$W`b_v-eyKMz{5v+~Z~4u{!gL)AHFC>-UVYSeZ=D!nf-?OEqU>cdpZ_$f9-Fce_P z$U1MPT7)#IRk7a%Dt?p@8YJUHssZE&XJdP_6)6N+K`;<#R9i!oNz5YLt8p|VLLlS_ z0wSx@x5QEaIj{QEZ3e^x+bF;zwIao>a|#2G8Os^di28@*t7OO{r|YNUrO9>~bZ*K) z%^X0ou=~38btlB*66g2A_ZQ^K9IU zt|L#Z7>GoeH&;30XX;Dut4|N=%OIU$9Baa?*RB$Ew)~=|xT3N?1*!5Y2x+46Mz3mc z4cvHbD_M>j>#I~czgC&3`@$L|!J>$HdP{t*;dX|~K6DhTll0u|ohap6=5{wi{il6k zkr-oQ8zeqmtzIV^7vr5w3T~}9O{VMVHaHU=Wpx;c6f_AW#8feQn{#{a1&wM-|Ebi~m83&0d&_FP9iwA|S{pk)x@fo(K%^Zn;oy%}D0>j}o@aK?p4 zW62@>Z++zdfx)SCN7myvO_!CFcs!34PJ7q#WPpPf((9us9YUH|l!TvPf&jSaY{Vmb z9_G?zFumN9qPp?w%X=C`0B)&H#he$%xXzW;={_WV9z_a0D$yRh!eB; zsO{9pzSMr}kn3eplohUWJ)v+w*SRW}<;v%fGee?iY2~Vf&?1eVWTPig$dMzZ33i{R z?ex9o#IPXpVvC|Er7N6}84UBy#q0NxL|P}ksi+AR&$mGWwuK~KdSrrHyr`-rKT`55 zii0ecVgn1~bQb5fbt@M`qMkbEV4E9v=KINHrxr@40~GvkBGN_)6eL!^>1N|WyKsTE zWqqPgm+@}oiJiKypo55RJV?=GohPNW4~x<&$u2Kt@G#ld01#&kO(MfUmEp7*fqv%330e%ZtF-MX*NV59zK8dU&8LxGGBig;f^LZE>{CZ1K(I9*l zo0RHVrxa2gN|w0978t5v*ZRIS#li#d6Gm)A^kJ!%iallwcGFTSc?_u%TYr`G%PR+5 zUYn3$ZqOn8JYA*VvPrH0BKw@VsS;fi%0ODgUW|mtt+g$usb>wk^)n6UtgaRW1`pO3 zoA=#(J?f`)UY;S0?a>p=4&H+bGxTgU*U9gK)6AzjKWluAjT@FtVSIHuTUhbMCT0}> zP-eCtB&KLYG>{tA|NK+@7|o7s!x){|mDq8%`gK98968TyHu!|DWAs`f<0pWq0~Nh? z{)um=nN6QB<9;%ZQmQtJ>MEA>+qXN7Rx~w0M@6BR-MXcS6+b5%lDwjHYP)!W^?b3p za@=qGI;9bNW_S7L*wh%O`b_)H!ASrtJS5LF&nEJOyjLHZlbu0f3k^#R zsTuWObcMQa!H*;@k18`M4c4?ZMn#fp8yhY|DoVtwyBS1tvZFZr7 zl^|_^=qT3eU}2{QAI*p} z*o+al&+GxhR}vBT)CqiUyVeK3mkqAda<5VDWoK5c{hY95^NKzY9+3~zT+XH|H6(f` zghtpYCO}F+b*x@4WQ&aeO*uHlwGlPBk2&Kgnx~)>vc^~nQ$BeyVzQbR!Cau#p0fi> z_}p_`6%|dKn#JG^$I1uw`p7b;@ZKSR;A_+m5ya zcmyUai8kJzx(9)BkqN}Fz~bvQCRWLtY^FeU6!FQ3+88n@WX&)s103BqYaZ&{&TfGE z*|=O4RY;poy=;w6gE=660n0h9Fz)!p6fd)a{dCxv&yWIBVNh=0M4cDx^+p6$zk3Sh zq>CC4CRzwIx^U_tHz4UY8VXBgt0c~4b@~I16 zz5K17>Ah~3T6+V7V%_}gpzYI>G>DLVI37(^6M88tGUVU-pdr@Bu*o~PNBE%FJY8{Y zDZVvuIq^w7HK_@6!&qU*AXo0kprHU-zc4?<(1L;Hka}w)O-}tdHKJcrOu}Ye-rMED z`(`j*wY5$6ApD=gf*&J_9JN!&27#gL8b6t>8t)!u?S!B+;iC@8h?#l!qh3PQz0KS) zSc#QFlyW@lUt073Te4&psEx*0yH)+@qg?ZjH-R&U6yLtix<^q%KNb9srY6cCR9DA$ zd-AEHI{{a+AAtH#J`5ui3$zQtqEzabziPelu_(d6i5RD7IPDBut%HT>&=o7V*G*T6 zO;lg^(l63*^N}T{r?Np_MxhXw-+^&l)%K7eL8kl(4LUwut6Y-dt~Zv=e4swII&EsV zOg)7+%=rS}pN;oVaBx@fu+!+B*+PMv!r-Au*b=hgOH{Eqwtf!-Uf)j(**E6hq)g1r zI<@x+HmfDiCi0nPm>psZm5x22lJ!rE65`B>B>9rd=_gQfHVC0H4CJG#H_?;PN!#{O zPbbhatYVW=b*Z6)kqxQFEkHz0q?mV|YS*5|+`qj5NNd*BdTlTAbhj$ew7SD&Mk{&rkKLvI{Bi91hqkW*7N}k0E=GuU!d+W`8DHi1} zr@kp9an312M@96gyfc|yD+>lGP?LLF;kMok9;|#--5n~Q8JVD0qEl(-Vgaw^g2+Rgpwh058E$SKErCrtlm|wqv_9g5t!S z=be>m9uLNNrLNRuCZl^24P1UZ;oxdAji`9fl)r+0LyPthhpXCp_Z-9G#B-C@f8k&9 z(!Zz>kM=XvGS{!l@0aJ6I^MQlJ7-Tl*N!Q=A-h5KlX&dvy|vnGlhfCc(?%Q^XpSzz z?tC{#NlS%cIui7$psoyFSaWx=^x!aBwZRePLyi6ZWp~@9mZYi zE)~o|;K86S=0>#g-nnw98IC$nnSB-4Utq|=hzf{^8){SH-{JJpFe~xavMu6=Z)dBQ zitRmbVG8|L72B0>3eMOs1&@OEmX+%!zAXV zgIX13=|{)s>0@N}_}gqFG%S215L#^#0aOFo_0_YaM6hE+*c|Uj8q=Uz>y%TyQe`3G z8~h+XL%V@D){027z$X=S`Fk|@*}DFN)4DeU{+=q5x}U{G{staKV~z%0KN>y(80 zj{dem#MjI0klOD%g`tk6UqnZcJ5qiK}73+zTTdzr;2W zP2-X9a=zk0mlQq%f6L~lr1d*`bbtCoM)z{fWO?vIj+~D*g*IAQ-2PDSTVW8Z(>!Q|@Ip&PCa*Y$Vg=kH-{OJ#idcK+kQ~Sz}#{G6Z;_&OgGR_Vj6+d(UQ*{$8xk1S? zHd&Jo_dh)Z*zVf)EE!*kzWJKjz7X)#gW=yrpt$U-LZ^l>aB3o&UbrU^m{>R#56}DZ zAb^f_gVnp06&d(&!z6Y*(BQRML~Lv1{(E{(n#a=o;_k4sY;w{IC?1#PAhdu=?^9)q z$j+8siGJs$X8gPUWoyb7*CnMF$^niGYzxuCz;tb=I0H?8I_ z_n*m)eDR-pl3}@To1s&cwoJqA5d-_0U(=t&sc4(|VbPWV8YzuWIFV`%K}V`nI^>Td#%CULvX>vpcVAGL@g3$l?ndCM@fj@=a$$O%DIYcG|f3;o{jUg2g$T;Z*coX>p_rct@nP>(v+cs zBRYE{q%>k^eLRZ3kOPEz`Ct;awwv1>AeU<1q`LL5fAo^CQ1FL|GHMLjjkgtb$NB1$ z>tdp1M%2rH_210#>g-*}JdqQ8C7Bs3?7q2t7rXc+$HecM4OIYzlmChn2-HVE z9M5L6k_(c9S50VuODz~J+GZJ7&GW^L30A<*)SU{y%LhgKT~fKr7PgytS0(JBgHP5Y zpUW}JXv<1O)Zz|J44)62ji#@;S8+S`WB z?}E{sD4#f*abv5z?ISaMZX?jtGO4aS*{J`PAN~Vj|EL3-sEztqYd`O`j>Ybc?}_~K z{t8fcd!~|e&%aUn2OE&pqtX~2gAcCu^2Y9%d{$kD=P`K&ZDM&_Y!=A=oW#v^Sw+9} zI#W0F9X%^R=)=;?QHUYT#o};F^I=B9PC%S($^-QRQY(U^7o*?Hx8j*v(%Y1)>4*r8 zO)iQ`dCLY`jY2T3@8epkQzxDYAi%aO2;$er)Gko%ec-T931YZ`jXFf$6t zw5dH&D3dm)n{x%OWf46DJS1(Ha~1`g&G(Z#M&4L@(2duDb8Fe+2nZ8LQcdObB7RVy zUFgx2B!sXcl^M|VLK^OuGoBFSsxX?xi-1*_r3FKCl zZh@2ir`5*;t`LH;ONk*fF@sFTr`s`_(8c_ShB*_asDY>-WL98i_esiK&<94;$rbB`M|}=p?S`j}P)njK@Gz5T!up=2vCZ>AKcWV3Lvk}Fq{acKp~uQS z;#=~@H@vi{%)!nlXx3gVJ!b9$!rC|Np^}FhApeoDO;dxyxgWMtc=WL2Bn2O`CjyFZ zi0)584#~kfj7bt#z zoS7MG!XF>yUM!sOon$9r>+L94IW$fEi;ZaSL#RvwS^wP+uhSW$6RKKk{^7KDj{{!g zm1%1&(>~m?oM#qvM{BI<`40(ev3CV9XG^u&$^q=>Zl$B7vYp$BdsHY=Au7{5#vdkFsht$&tlKVHx)f}Z~G?H=rZ{vMb@y9`A})>K%Wy|22l+s4;@ zenWaB#4!0vq@N^6{9>LEjYA0al@_Ph(K(u>dy<31S#^>o&yWOBtq}Npf+9NJURt#s zB+JVgWe4l33376H%-oDA%V&?#81YTkE*xDKHez11R3;TVAmY@7|LTHnJnfM-SFuPU zsJ0B4>lhdNh4!QpzA%zyR8%)Ku%x!ZI9ZrwkawkFmT~P^Ga?7OZGDxv66pgK=fLO8 ztr(twm^~mr3m~ZZxw1h>s6|qkIu#;egxDsMn7*8M1}ld=zBM&PYk3G#J<0Np=mN@% z*rj+jWUM6qgn|0lPdrZoKM_NW&@zW=-nSVZ+W!5mf;CLNpb#<`^-e$DCf{XqYrVOP zsCcf19R(FvSQu3X~k&Jx9mjm#9{vIZiPMM zoO3nRNqeqjPtGo_K|PouuKMHvodFNXaIV#DbR<7$zj3PUAvfso*mn9i_1P0a^<#Hg zXwX@0yfK#XJbTqL(tHZC$nNaSrG-A}=weZl>}=4vC)h}S1%6mAdo_2_E`Nu9*m{Bf z$AD?*x#02h)VK|}m*Qo!Am6mUPbo*qA+TUpCx|b2aAWXoFrD{Yph{Hz@813I?*fpO zC+t}XnLwCRm=gpj(S4=m(7Ea3pPo+htA&KCU)DDLxqAwey7ya3M$V(rZ>Mq3yBELg z1$U(c%zJ(n=cC==)@JIT$(Mabu{HFTyb%Poult~okeW)+7s8B`ND5A^=zGn96ivvr zxFXL0eNv`ef(F~&>qdkJL0OS20uo3 zT7fm%w+Jk+=a5!yxWlCvsW2FA=K$kmciEuF!;xKQ%}^%eYvy36V;Z`hXL<4*!#?S& zE_T}fH>%`p5QK9E%Yf{UykP<(+U0ABH;sMo3vopz=v6}=jY>aDDGc5ast;iwRdasM zIEEi7;h?7e_1#Kt&B{fy$&m5vi0iYSgcm|hDlN0DqeCFiynz4!{ag0`cF7^>20FSu zt>kf~Y{!eY>Zk({H!cdL_niM2FZ7PfYp+qvnKW=kC!^v(EMO5Pzf2 zX~o!9ATWd72y&C1ZJikw)f$1qE9Xm6WS>i*RVWnc4v45MI*e>!qSe?;V8x?ciR5T0 zI`}ax~L20*Y+T1C3*`i(Qye=~!P9V6PdUlF? zDT`&$a6)MKdU4R!{-6u_iF;}1>_T#rzV&=FJb~!VaATjv>M?x)gqpH$$qE_OT;Xh~=W6y+WLOl` z9pUj494(kyLHd?L>TqCydze?)_nect8eYSGMx=;A3Mtw&72OjMMFJ*+@4Ui}m2k!r zlEX*iW#C4*rn!Flmjirw3~}oEx8}j5dBDDQjNqeuB6dVuw}r!wUYm-DpZn4s#TN(m-ZZO zon_t8RSWq3(eU@}&m^3W_YLO1pS&Tu@F@KMT70y|o4; z_)F2@b>5RwF(+WLQ|WOJymYk&DA0fo`N;Dqck75}kXk#iSX7l7E?^WX|YSKkbtJVV*#-ORKjqWBMGT-nIv?BY7gCsGHR0 zHS%ZB_J|zEfDGp*l#v~e^)suNn~t>I3R6OTeh_^TDot@nPdGFLag0p-J^eHz1p7h(s;d6Y^h?|eRJ2SU z(+E(1y-QW{JqA>BO*~7Fhx+&Cu#C62FjwF&dqb~p&POwKEQQDfu_3WOfOaWiP!e|N zD%sP$9n2<(f5Mt|Y|K1k!P_SaU6+WNQu{FPi4jKhRd*c9Ohm*gQ#_N%J8KZ(J|cn! zB$ahHxvm|J2HtA~e)y;6AH&4cimGGmfqn20=v+{+dLjCTGs_6wQQA~yiANndBICbL z!Et#N&l82W7p6P$2=28-wkZgn{e6z!ZBbkc<5E#Tt8h7{G2%vA*`1dDp`&?(0h2_JT(omPc; z1>epJ?hU?0u*wg`kfqFK4X8Svc+^Ul zzG+`YcD7(SOv89fSQ~X}=x+6MMbr9K+BpOfdy$qLM^tJ~J(jxsEu~B;yLx&r7UVJ8 z258lT&EO*51@@oGOiPS9isqJmApRjejkd&fePl3ao`APN0@bn5$2}=Pxk4kJByKtg zqI4N#C0%V+HBOpn63=AMjS|s#VqNvO*Fd3u(*gMYNQo(BTo7Nh9 zi_#Oe)hg7ZG;h5NQECPfV}WghXY!eetLh1iFWar7>7OuY)2pB6oA#F}6x+d{7Tn5| zMxa|UOEbJvc8LzB7N|JaQA{9pU`Trl7(;AJ1E1hE($A*Rx#2N^vy*`?T2i`5Q0l&} zmvZwJ(z@CX7UDIEVzr}>oYgMQ4DTl1C`GwIy~@1V%4W3(elUa`RZ^i)Ad(RtQW*cT zxMIH9CfMXxSV#ic9#-rve+WyEFF1M};km%<5E$8d!E0 z6w`*SmNMDCvhTa|TnZ1xBwgh`lt2NT5MlKnKl_A**nTr87e~GqtuJ9xEpHrzlH58e{ zwNLL&!aKySCFX{lXY-V{*A-1QP{iA07{V$KOTN5B+mB4@C2KvsoHYoubYC7wdOdv-LD#;Lg#It7kqSqKG>Kn)xjG zVhsV`SXu;!P1%56#e;=@VuVtRW@)%38(C4&i+eU`mwDMFFhPtkCo0mtunCbF@Q9|Z z6xqY7{4ytnZBAWFwgsb29tFQVz6NKIj<*&u+_|U}zlFo{Pa%(@%t?zFG2^CLxkG!* zpvn1UvaCq0@VlwEnUMstsQ=PGG!c;5$YJfMWqq0G+gcaIK22T3tbf+$``6yBQhODDCju$R;CB z`|9gs;&%RE=&3cnoRhy@Pzr+>%Rru~s+=axcdkYuPzUOhceca}!^EdVN9 zKf8B=RnzV^b5bCt#)<9(@cL2)CX<-DQY$i@)abmJNArH;!$J?Mm`7WJG%4v&oJHsC zoEz5HfJ;Yy5oXN)iln$H5_n{mfA?=CPS+$PUSy1dMmtgY>e3E4dk(pp2#AS^d9Y*( zYm$6i4JuMn%45 zT$l_{=S20za@?L=3y{W$gsRW%dY#YOXkpw;9eh7GDslG`&wRs@(1!TwX`ZG0Up-G3 zZ#%~#Rppfrw-9DG8^e8vfnI$is_n`Mv-UXJLqTpx2k%>2mCHv7t?`oU6aTWQ&XA*5 z>{rQUijvH_>WQwMd(Mi}dQ89-vg44a2=dE~2WEaaGNHF5+RkV=Paxhe^%p>r2?tph z(%8&n%*c802uhIzI+@~fA(YHk@TcZwr0lH1y7V)a9|vw>#B0kUupbG9Y}2Tv>6X{J zM!9hHdfi7tV=rD>7N1BFi@m`$bU}9ZJ+B1);Ri$^;7cB1j)k?-@dH@D zZ=7J~M3I?&cdq^cCTwU6-gOUCrfBxT(FrAeL()S|750{#jD&TmiV$JgI;%xiVdAkq zQZK2v>HTDoqV7t~Gh3pDR83|ZSJgOKUJQ*2zmIq%L6LlvR{VXApFJn6 zbQw2pg1y>=?iUFYeP`v5&lrq>fudeB&NR*QaQLsmM79Ahd8*qKlMq1+D~Ye%7f!A0 z8V9QWF4S}HsNDh=-UzNbj&)}@WLpk7WC@V|pdNG!80mV+Twz&w*$;Tg-^H_}sm-so zQGES*;Wv#5@^sHn(wr>sj!u=pj1$*l-jMsm_)BpbqPrmzMuq#}(Gjupx z)7;NeRb4^+w5pQmuZCJ9u4kr-?bc)P%>6aq?fic+oZ3+>oLw*d`}^gi<(XP_-t6Lj z83??iS}NS3QrM zSjHeuE9Bve?dJk-w&`H>{9If91G#+U5qr|@(V+(4*mtBL=~Vvc^l_dX0Tqej43_bi z77qcLUN9q68D}}&?B{i`h6x@(nKEpuDzuv9VOCOWMN62DSLA5O9~O`^DJg5vsOD%! zFlW;h%jt*sqe$0xAD_r3PVJ41frT{@<3Va&pNoZE!nFFF7#Ecv1fx78G&0}u>OJjg zVgzak#(5rWy0lHZzj~Qs8+4zyLzTr(t9pu-I-x4YK#_C9yqFh9LOT&bXYdQ)Gj_fJCV(%VROc^q1XWg! z*7WK<(}tKai*+llxD-v&R7CxZlZ9xbZKX$*!?fD->SSJ3R4jKcIPGf4&~>d= z9fC9S*v4lVXX!iS_GcROit_H*3z61}W3H={VIh|`!p+$KUW+dGn-~KJhUO@$Z_Z*g zXNRG00`bT{OkR%A@+Gab`dhc|6p}5>$v7GRZQw0W8CsfKFY3>1KIp56eoXY_UR&EK z^H(3=^Z_y?XkNd*3ncrzc`CN~NJd-Mj?U0TEg?&i^KQYcZYW#9LxI7x_+U03Su7c1+trz2D-qKY)syX$0SrJ_p#9)I}x z*0)BIS_kmWuk}LCl^cyN{+Fli4}vr#zvs~?y;=XUDCrg~?8?woE2(rp1K z{{(!pTaO-qKlM3g2OE(9jzi86zf{axtPwYt37l+Opy#W(t-O7ogK^(Yk1vxkZ;}Ft z!!0fTW!EK&ZIa;ic)!LUXetGkXjqPcx(lar^-7eRg2vb{3)YtVVmV)wo0155KG1RORin+mt$$h1%#yqt3Q1bMA(zQ!c3%JGTd*H> z(S3MmKkI$D%fI;P-Z9_(|DE3eq`SQTK&Rb}bnbIk+BwlSbpFq7NeQ#J&EpD}Q`&+Z ztj{0j7#UewuWF-ycg^@vE$N4MDt`2OG9-G2lj^ocRun!9ocC|4WBz)gobDBA&YmBt z>df_g%$fn5Aph^6^goUB_uO-S=L53bts;uKpUyH*G%*Xv_B5^1sh;9A7tW_l@waoS zP<8dczq<1di^zbfGc4qG@cJ&>)DcEHIBXoVIeBycqws-5!tuk)ozOYOSve5iWuf%- z>s1O_r4RaPLE5|DKhjMTN=OD# zL-PJmtZ2>qbWmF7`0c;P<&w(xMhtr~nQ)a3!EER^1HukESs2k*4O*GUh2yGpM^LiL z$dH&{^5S_(CE)uE)K@ft%HqG~I-sjBXPn}BF+d|n>~@$XYaiOI^7#$aUd8#>q8q{wk0$-Vskq0H1;>!! zoR#<~zr-G}s9pcw-{DxIQ$Rh!8%`Ig@+$LH=jSSKhi3<28U)8RPq!(y{S+caJ1=DC zA0qu`aT88a`6C3laRaP9Mn;Euz|qeiSk}u_(me#~p11sg@?tM>!nZa}&0OvIzLnC2 zmwynhb5x&q7{dNcMYyilR@+?~y7V^cg>LNRnrDhVl7E8x>eUdT>I@_Gp*L5D)#PE{ zd4jhTEX+V7Yi+Ep9dnJH0meQ$?yz*puqPj7%ZWV2Cm9rejGL2RQ^xbM`Xmt>m!!q! z0mpXB6#wauF68H*@29@xL8DtVRO10_auy?6;-cMK#>2qrS9k7X?)2B=e)3Wvq{w+> zGQ^ZyhUawvBaXg2sUcjoK?DjSPx#jHlSx)dzPs1SG*|;dVJ7b5s|a)3Nm(d2!6)P1M-f&0F{`Tz0UilB%{d$ zuS4@-@*4(`Bw${&jmn+OR~bdOf z`3oF;IaY(MPN!~vaniAF#&yok5POnU;dw$?pQ}V*kiWw*V!n>CxB0s-ZGyfreevvW z2$ya#q9NH=e9E+mr*y_Lel3B{5>~!h>9NvO_*hL2YuZsUPg<++d)7)9&zm}X{g!W+ z{ct6Q2<0t z-YHc&70t$x&j2CEe|Xt|@5vSqk6R~aKcqT4I!n4iDnh+*OecNsoeJGCO}6W-x|!TK z`DbN%-@njp6Ck~!3f9#M>s;ltY<6>Ep#M#L-(pKhS$G{sL-I}MI?>YS%=N|C0>w_w zAJ>$@XQUQ=`l{0t*f71&mefOa^H{gI02VbYA?JMi#ub4Y)g3 za~We6gW@m=8y$7+t{zWv-1;O;3|L>6C;}Vc7@DYt$dtz#%OyxUy?}ctQ7~_>@fBD( z^fH|>dP$y8897QE!0tV$R{F{h^@hP#c@+LjlWijGZG$mQl-+T>7Y(h|H;XpUh;_zb zPJ)mSMh@kcjLA+fH43LlgN~KAKL+SkUPjgMGoqAddmVFnQ_=VH>12w2iV#qKw;q3S zl2Ju382N2~P}0Bb=?8tWHhtW@FuIjmT5)Q!104=n@FBYUdZo7hLnF<{TC0!IZb)O@ zLg%cVPNGUP5AMjF1C?-@_kDvfOK1J|Y1v+%Swe&m4AXrU#kX3$rdJ^SxnU?d{0XBw zXHlU@h0Z93(Kv!K!FG?TTpje@EzLPRkpV~x5LryW$HC42+0GpHSJxqWb!?dIv2ae) zE~AiR++unzA;@w-BrQnx5T;^}`}tmw!_U`U3AG0yMUknJ2fODpshvn-X1zp)(@8_% zWZ8loY9D;=0Kg%%C%I$A|tEi##w$6Q<29uRb3iddJRPmy&$%};SVmlF>Llvnrit~9= z^z@&=ARe}~QlVrSk>uGp(c+A=}UR)Y4F%EstK>)ib5|SLXzodtP(^WDvni^@- z-nQgpcBB|Bk!Br;8mV6UrczyW;ucfHnFBk~TwRe)-hA>36VYRfJez=i0a^>L=eq}y zY?8{Mh$%~FiJ1l((}S1t0|wLT60Us_m+igM_NG``Id6g4Z}b)&csMJ34_vZTs(9Kf z661!HSj>Mi?n|7JoJQNb7ZJ^Nc+-8BAnhLA$hdk?SEZLl61@XE>;B0LRki7<(k)E=OI139==qO@+|Kg-WlrO7^ zQO<5YV#!`WLW!cRpSO|Mo)R;!c7J(Y_?=PMh=V1nd1T*GEAWy!;cFZ?jBx4Mx%=mV zIKX5$E|UJ+@Z~YeO?c;B{{!3+ET`?a~!bIktnK3*A z2^bHdF$(RI1cNJO^$qvq1qj7D`4uM=78{)X9LfJ6t66{*gL<&d-X$;w9yNeN!RgS? zTxcnVDZ&+ebbg5YA9-r|Bp$e8cfQQtmq-e1+8n=wmw>`Z+9jtKA>7BW9+>RUMWkzL zMURcr(B$rI=!gvJn3iCGD7PI>&H;k%FsK}=E>a7aCsoY03g5VkAvdxFd8iaJz`Y6> z8TApvGzHv+xRtM4sU8xNV399oGj`<10Fm*h3wyLrlY*wIMQA zWmPZoerILzMdo(m$Uxzd_qyzTYSljF2&sJLSrvHNt0hcLSl=CEPXexGOp;0^*b8V& zU>9b&%;%r3cI2PGmVeO<|a?|S>P^mnWSFyJC8 zYUrDYBQH9SIc1Hb31|Exe)7m#6D=`f4tS6T(d#<3mu?N0tsb`YHOi5Y&)X%pTijtK z7gHnq%>T<-0AS+Th6g!^N0#j9YDN2|eaotC%ci5{jX?9dV~{)@t^B~2!vXWlFh(`n z5>I6sq^AfCNdPB^73b^m}z$ ztHDF#Y?UZ~dcGb#BYD4UK()u)dDipl`hZW8uv^rJm$%m}3CE%>S(tXVJB4~Rt&Gz7 zeASVE@!R?<`-PN`KRg`|;`#(G`gWb$cJ1|#GrO?ElXUBs4r&%perHnXlxT{^h3nvF zG+0Z3-8h`qJmpig?z{BgU#fOJFn9^XVb83Npk=a@^jr*%WulQX`iQHT7o~yUHf2A27gE%r zc!Uqwz>3sFQ4CR+D;rOW;;!F@T0qCufJ8Eylh3@}Fj!IdwSyY=7X4=5<1VvG8Zc+C zuKd$w>N#b5gHaL$g}~YUGgrs^7(h?kVs)lB`7-tbjD$ze#6Btc2x8Sq0DFkyeOX<;wq&r)@Ucj`7#5pj)(^3Eo97*_l_o;(>Gul z6uH=mi7)Q_$-cLFhFdJ9?L=wPAMblGHN}B-SIc#o-i$lZ*rov!yM6k>udwzl^0p;7gM_a)y|-bnR7-gN-ofxIuONPH>mgc!px zc6v?lBxP4vVVO&?mCx)(RB+a7dn?~eA1}MKP3&}ZrKv3ew~BuAVIMDZc&<_2^xOw_ zjxR6A-X0!|53D?#*M)=j;Qw`#@)5|1>?mc0$mqO16Mv~wbNeyuU3JOdb>AfK-?Q>> zfDi2I9XuT2BYC6vb6HBb)QWI(LX)oL_II=AfW6ki408lZ>Osct2n`Qs>(@;MK>lp6 zoNf@Q);JPkRxf4r3i_0!_6QsTM0^G7#Es6#(&fK$++jQm+J| z+&EuQ1uk&W5g`3HVGXG+I8H}U^hk^7FfFwssDpxLYlu?Njuc%)&#M|LcWoM^_qNyNYF_M(^$dW9lAAjAz zm26J%z{EzP?t{{x48uy7U~fdCLa{2MbZaCK(6n_MHVkQfG1bGSr|0iAEVMF0lJ4&U ze9586Uefkq>J#{fNVCpk4jl6c9EG)l1V-m|xeW3&VjO#-g^ywfj@*UC?G+-Xuh>LM zHb=~BPNxyzPFhX0ITuryfiAF8+`H#XC-5s`A4!KPbB=D%{WJE~^(>&8)7;=Ioz|?+ z?e&F_?|)ff`~w*LKNbX_>-4@no3!98G|a_)DC*s2l2qe8-@%`yck^^A{$u{XoCMqV zQ%k(?!eiJat4m0$hnjJ+nZSl#eL@{KgJQRyo`0sK_%~6vt+Ukq;Dk4AF+K8W7wR&r zi+jqdV3uF$E9K+W;-7QoGID}mbR6W_&|eh2j;PeYmxh@YDf<&i(frye%jG1O;Lm&} z`8XGdi8$fYUURSbf|h$eVLi|Eds2%=6!85|6Fyvh)2r^e0FVZ@la@42oUFnAJw~gN zm1;_;(Qp3S9FUNSX!%n>PGA81s7ICPYrI}3X8WGP?^gCaQ(*N+@RL#Lz~-?0CemI* zJ@;XXNgSP#@)iKg3BMz^xy}nGqu31yAA;-L4O5c8Zt8<62)i}bCtq0l&g_Zj&?;ns zp5}a3#*%Z%Zhc&zRiq3x^oxzY8vxr)pyeVZoV3@1MdEY{%Hp^?C*kFt(nYN2hX~g4 z5tYT$bxwEp%s;OUGay}MMOt%Ky^xs);j4XJk$eRh$HGICea}KhiO&)?ll_2b2^udTd&o0;@(5UQ2CLOx}nPK{)Asb3LpC=wB5txR@I=NYg zEqmXnvS?nAtzDg^231NK0x>HrHGk9+qL>UrTTNs%DfR~?Y;qMxySfvH?hQ$p7?rQ= z?=K}tks1P5e@jV8J^XtaM9MEy6~2GDNB)P#{n!5Yl`n>3p*<6k+BUssvBPQ2H_LhJ zf+P9g+7945S^k$XMd0Z<=BpXy&I^&zzAjN@f4nqL%>QZ^X8cu8F=-$+QJ=_DRs4C!sX9j+A-R$B8fWSQnIEi zU6l;Le@zo@1Nb)d%Q@AbM5cEfaq0uPEy!3PV=Mezzk6OvrI9h*>z5|e^M(FgCh3YU znG=)HkszINMF}pX_w2p(<(n@>`ZC&?@1#bM9%Ni!j2GDI<@ORN*ti4W5lhnV0jXe& zWXf-5`_-Ns#$*_;wDy~YuKQe~eDdE4@OU$LCYgvMh_>Q)I!4GXq`>JPixW0eSV|7O z0Ezh{A8@K?h>J<@c2|nMu&5g_%Y+Z5xt&TrSnIQeX**&ucp#-#Q9!EZk|N3MTl(hW zVRsqlWlxA=QK#;{&x^~wdiMN+f`jVjYdk7Ny6+$VuMt#_h45c0e3z;A+>PQX%OukM zbLOjxbSP3H?DeIU;hAatCXAci^)}KwiSL=cuTp*@Fh}Hw;K4t!U}abz%IH z&mKb}w+{2S!NV&_3+$+pNMSGS6K2h>)3?HPOpK<)LxtCwm0ynoJlQNwzw_gA(z{*M zeAD0{Qt`^wxfZ$B0&`G6&HHt1ARR19CXjBeld8H^>w%>ae;!7`G008tk(F%`DXWnQ z6>a7h5G!aRAT#z7TK{b}Yw{)OczL>(kwg}`e<&NB$u0})Gt<_J!dzc#E6sM0H%yO( zwyqf^HWph(r<7mQ&EElb)lO%XrLsDBrtWJ&4po_b* z<;nS++m49AnSKUe*PJPWvo6az2DsHgLBzYOUGV%*6huueYsR`>p{GY-V)n(OSD)@+ z{m+MY>crj5nk8Z^HFCkoxXQW?RVnHpx|E&}^*PZ?@jG|#KYRDj58Gozs8O0Hf4}Sd zk+8;n-saf7Rfu&v{9_N=>7h=J`8@{bX`cF{Hoke+OdaoY<2jcFFLE*O1{`wSn1#}w z%6Bi7NVBzq_lB#9A9pOp;vDoLBM3*-fxV8`W!VY4Dk&35U!y24Zp85cpJ zcwvLK4uy%a*xg$n@OqJhX6CQW-c#es$2{!S&IJjXFiN9(1lx+_G;=otcP0MO>nxV9?l?2l3v#l^qcWd&y{* z7WYR^`*#nT86RqqQqmI84=T!s^xK{sWz~pGBeK7BcC9gPM#&m(Q}EWVv)nPB=qwaZ zz%DMViwP*Ya8rp{9&q+$Er+Su==-WJk#SizwThg%LGdG$!clN(sJCMGfM2DFWP!t>H4sLb-&WaE?CLG+$~z+Rz39`;kQe4Bjl)A7o1vppZ( zQTjNojPN)XbaZ>pR#tHH_uL?}&@i&K{C*gJKb9AXGomS62urB)cokf?95~~+wfV#1 z=JM!d_yax@ZD!tcvU~qlI2%Z;(+{maHyffN)u*e@)h-KmE@tizbZ0h@XWv9#|DzoL z7UnR^JC2YutiPZ2V0{sF&(9~%cd73kX@5Efx%5#_@DjDco9xltB5919u{BCV$CF>#CXF%~G=31D)D~xFXwQJ8J0yRa zna^2tc>Icak+3*T4>z+4wQ0oFhA|fX)LnyGnkc7guoi zNwkm{qS-uVs_=`dQ%t_@nU(z6~L7tsuK zgZ!pShZ7-U<-KNAnDDLGdK}xaWrn)&svh-S(9JoHhbzkx|JsGg^R<&t7 ziNy`TBjd`_yb>^q`k#jNuL=>uM#tHVyR6+v2yHV@-;W>lY4EmhIpgLO`QbuiXYn6R z>waBOOCriMREBb7&-ziIQ$$h+@3VL5>o}g<9etGzbkzg*bolM6*it>io@Xq3u(eSo z@2n-+plQR!GV0SB)qDI^wX@j~M`rreh%_@_23%!@Aj+bZZaUI@6jBRn+$S!At{e7~ zW8T8lZ0SJDEG&1VNhix>m8sFJ5UX6B<;G0zSD?9F%NU!YtJetM_(gHe%*H7;ZlmxY z8VE_nx&pO{XNT2l_~nZ+0bgjuBZ`gFA={|fSTub2)Pfbys)WQI9zM1F&QYL2jDxKWVFycelOES@X_M@rY?C46<)u-LgZas|APCYCQ>r(f z6Ihi01PT)68WfmHB)OxxP}398Q5b5JC2TG7c4ksz1I=lQ&^1TEuvu_LrcxQY!qg3n z#yrO0uGZ!(P?kL#!3L%;UaWrq4@Kog8L*()5z&He87+at)X@YA8z~<;-Qpr-MSWiWiHW~PWf5T z?s+6L`-CR@&=_`{c9y!XCpgY?+aLu{|5$(Y{^08u+3709I2ZNH&$_k=7@nuVH5|Wm zH-btizvG=#9GCc9%S}y9dHjCkoA=M!`qZM%ZhJ6WaH4!L3T3x^U)qj+aeAUMCBMM)ZLaVFl8-(3meEVzLm&BC;=1_;%}GLqgOnj8FwsB&17DCFNe4a#Fgv zBLij7pb1|%z57MYyC_|6FSTlUyw(S+u2QvCVFR=!`uKK$ zmw#vfJWBt2okFOlR(D^%)zlGM6eX;&1gfNWea_9|{w*Jihb@_h#iTUfzw+jSYn`mM|ArM$DjCl2}o4qEW$-bzdE>ep!%D-|L|`9lsx z+^mH>qeA`IJ%xVo5JYvYf)~xQ7KH+?ua)KOPMcOwD&6kyICG`(I}@L`W-q=*c&U*y zI<)d7A>J3~l`YSa6}2TnB!a__LCo&MZ}zckPvg+V4izq+1EuhtCB@Er6uHkRtNGBxm4}|4APiNaMRJ|48RI+Ek()u-_&f-??r1Ja2GX|VN&I@;6UaQwR6u2f{A9^WOpZLpkxK5E?Rt%2z|@jDj>NiNxk0{T5Wz7c_asb#aU(Ln#g?>j6YF4=pT4|3DL4-b@s^od(R zp=V*v&AQsnP~uh#_0Yb2g{dPF4$aj*hnUXO;G~s&?Wsqg+%p7eZTQ2k-E}M&l%Vg_ z>@Fv+dg$p>m!pC9)Fbcb9ObdGP@aC!Cs-w0!OzvuAZJ#-BA%>(HkJnCRt8)p7=#m7 z74I@j#Pof;2~Y2SelUP;a&DB(t*OzyV<6j;13EL5OETb{u`VHrMd28b#3zyqwThUm zqoAQxdgbEUpACteoZqN@N;LHDb%M~5uq+fU3{hT#>cn6%a_ z^zm(-?%#Zr^4eu&g`s{1yv!p)kKG^!-TndMH)^rmgfQEh>{rrFpA=6&Sc=8F`NVa6aEn-Hcnk(YhNovWR>X~=*?rNq`okxq)REqS6dg^&4VbDrsmaS!V$|)c_zMWDR-r(_E`x zy4t7Urm|2}ow!w2;VUIOuEkWT-b7tsXt7sz5#q91DLSC2Az}mx@Ue!0HE%U0^FSKA z)2wi(@*CyN{6}gvccQW5crUB-bM5LMNSW6BhG-cTcK!@ea!VJdAW!nsE<@UR%cM%I zE3dJuzoJ<@wYdv=s|ic{vFl4&tO9lJSE^R5-;;9c(|&|VcBzOI@tV^rh&DNE#j-j@ zNFTp)3DnYU!d(JONYvn1lRPUghhz2mscBx%q(mglc$JC}^H@8yRz&C0LH-m(6N@Nq zD(4kG_;s`J7!R^>>pOWx3*6~ojE7|7T_WhG0 zU9DUu-K4$zR#^H#AodPPF+6L*dp(X^%qpYGh7k<}!4`b~ko1!5-=^q07lPd1kXmXB ziZot$nezM|%Ifs%f3~j@f>$qq^go`5;5)v1AiYL!YMp}$D&6a3XK#jAr;Cq$Mptf@ z>$l5Jdz);Uubt<-&gOdi`VcT1nQK|n=Rl|zp@GASau!tc4wFVvR<|hIu<_kI)*Ay- zC^9_A;eD~Aq8Mo;$^wRt9nKeo>GiZJkU&x25+FDBtW@`6ipgV&%ww_(f5leHS2%wO zecf#GQ_+sN)v~54@s44sovuouocxj?v(j6oX^gtCcMWltF6MU@nBfTb(;*@m*ohj>!RjiOgO*fHU(d8O9Dhev%>kSb<+xl zoW~%#x3||3aBeZuW^Q`5{u|A3|1|rZzH!7&?XhxWxtnifqnA@(MDy@Q^p008eR1f2 z)X^O*UGc?aQtw=dkm$Ad#dp}-<2YEel~adE{tFZOpJJ1TWwI7>PAlL1qe;>(=&O3< z2>$*x`Nau5o6QNoYRBK{*G^j-%kCn*1J$#I52-z++1XOJ^EqL9Z)B-3)+2tBX!l_( z_0thQFbNbmv?Dare+Hx$g5n^>sMtX0-F&tcKytIhcE@D*8SXWBdb&p2T$zcDaY7jS z=TM8k2lNFmlx&5ns?vet(0JfUkv%3ieyP|v19C?$D8%7)A#12+%r6=9JYi$~aw}g- zoB;8?L<(|VbF+Rub?x3$qopi8#to1?P{Dx#jW}0HF~l+7U+y!W#Y3v$+RcNI-{jkr zn|@YM;yx@zNGmx8YYc>(s^dNM+=dXNy6*J`$vU*M%`|I|VcDO$$xB3gc%Hnu%i=IS ztg$i840qxz=rl&e-j~(p;idQskg_=_*32>0RSB0}3Q$XlF~u;sw= z!-TF^_s&S<%P)<-^OW-{3Vn#q;Ni$`E|4|J6jaL$sFa)YN+RIv5HVrp_)DbmBVrOL zqgJV^zoiBo3Ln;dOD5C!WEIN3P`P`xd{S+`c^T|9Lv1|<1i9>q>%KMVw>@iZvy_Wt z88K}B6E~_lwtC>IRm#c4l!v*6J@^N}x_ke$sAW2Z!f}7J>$o?N&t!Oh zX28zr{~-K7ZCL9~wh7QZjj_XvMv^C&2NZl3^Eqd;Z6guN?q?0_Dmie`^^I=7oGimDN~h zJKyi)7I8L^t7O6zgF!eD3jEVayP|O0t@gU?L*@-QExdz~;%||eu|CV35CaWBwx-D# z)pb7jA}DIxo5!#t3Rg3MUgK$`|GMD9IHp~gfB+fY6;NrZk#13GlTsjVd|8pN0j=!E z(g)w{7CU{%?zPk?kSpLexm%K~2v?e3cBb?g)G_s_Bnd%3AHmYX!gR>jkfU+pjG)zN-9C7B)zC~bo$0!Ru2>sPK_zC z)vv!Nrpk&?Xm?kK3}BfXHYkY6SjW_{{3Ib;QkFG}lyv`6$B~L%P>7c^$6Rm9yCAMr zb()_0B<4Zy>^$o$lh>lS9k3Vu(>7~-*7m-IM2fnYwvoN0l$mM!#LI8-@Atf?OHWgZ z^W)!Cu8QbmI3Cs)4^&r=_+zAEEpU1I^{|s1h@B< z>-94At?d%Wga2ht|2Co0lKaq@;t4M~>M;t61uG}q>*cZIt(~s3iPIXke|z#T$K@&G zJM^&qDVgV|8~5Ye%DOEo$djal;m3#A6*Zl*^hW@_;_GW4QDRac;Uqg-Za#{eXL${cy_ZX=oV;uFR&!L+Abt_X(^| z7MB?E#bPdT;5{wCSZ&4DtQTR$Kr&GJt#r7|V8*QXBMH_i>Edvm=4tF67JeQU2D!Xc zI!x>c1=(LZ1oLYIOA{(mAgWPvP-duAAcsJh7cmyK#qD;1^kDTeGf|K&6vz~s*B?m6 zlCQZYE?@Nq*JY~IIi3WG$dBczT-`Ok%Z)fNn;5ijpw;$}u1|#w1Av<(9n~@ey>%wV zDF<1h8Aen4kiBZw?e2KNR9SS2x@Uq%6|c0)e7fFPQ7vl+pxQcVFwSG3k|~%aONs8X zpB@Q$`DxOCq1_xP2HT}BJuzUT-ypMDI{PMtErExDVJ4v3vha6NS#BJ;A6_vI{5IDc zjwv01kRvV{TCfK#b)jySel8V=w-&7;Z_7M5=Y^&Rs$ZoRnNpE3yd>gj(Qendd_UK9 zi0#GZX=d7Zu~l$#<9FsXkybo$vaXexv_6}k$v~Mmn^;+Q-nNkIdHGTO{SI2w25&u_ z%i$l${4b?WprIODBIe_mHa~NyU%##E)pF)I|7T3d7@y@o4}W*CQrKva6SZzQkZj~XYra_5#IND?NAnKn8{+-WLS*^`OM>xL;c6Cg02>epbIq@%iO0@m znKWABL@=ATPk&@9*3Ao4@_!nVwuhz6D|=-OU(+lCNIwh~ryxzQh_w|xGjQTJ;$|@U z+z`PDvYg$T7KCTB6eJtJXTVJ@D%8#NRVI@?qyu592eG4BN>{%IIhM?AE#$C<&Jd9S zfu<@jjvhZKi8M+C3=)64{G)c=Qp2Myz)3DT_rAi>MkV~xqx?WH zo_!HW?kanFky*`%u`Na4=$Hc_LSxqZ)U_m%flW;@Rve@eWHwpYspOA4W@Ry%fz+#f zPP+^tE_Bjot@rkBXTbPzJ|nO_Wdib_BqSJ{?J|+~grbR~z7x#r@0E3TOBVsnld@GM zG?cQ4#U{t2P*^R`^EM}zr_ccAFv&JZ_@nn-3~n4OyZi(%Y1WO^(-hLYR7Cc5XGMXp5WEG^Fpq*L;v)xqyyH#!mZHD&b_VUH*p0}dI_hJcCi~Wa5 zHt%bD$_!USf7jKLY?R-LpOY$JG+|{aQc2v!_*pr97hFGyD)7!Q4vyQLzucQ(>PiLf zlyq#qx<`AA*`F;QK=5t$za1Js!RRi`-ENfm{By)@bYkIFvyFu7+y-o2H}NWR3cCdr z$KOy=a;~IXd#Y50{U4~6h99^agVc|~n-JU?QFR%if6jCX1}J$zkR!zu*{DtK3q=I&URVwRJUom%)vd>SY^Rghe1HNhIo%oRSgX@ z$;ru&Kdxe(Q(Tji3dly>JUaW+S;so90?P{e6ipx>MV>u+kut5Np4A=rh=-ROBrvYt z8u+PdoRoR|g(bYC?ET|beyjN=@cbVQ`p>`AMwIgEI^DtdX;zLfeH0-PSSl&aI!>WZ zI1l`gPb3++UTk7%h2Cx6x<0|d_DAA?YrC*~Kau-;WBc6&YnYd$YvnROdjfj#q-LmS zCC=+=haFdU%9eWWmhXDri%P$_oZR@kwx~-vJcq~2z#;KVKyl(1?5){tZSErT$^AL+ zSz}SR#@+2Go}Jn`s#_zsv!y5uZ^;PCrg~v0xx)%&UXm)UI7UW8L&TLH^axWtJ+090*4uRbFwWr%N45cGOhmkBp4qfCE;-ae65TGjli0vOBUtofMh* zxp4Z9Q;21<`rQ(4Zo6+=2INE()IXGa+9AZMKRR8TRh~x?r@Y9tV-hHCOA5Hl$4#`g zw|$e50ZBUflNr99?*DXDY{B)Ni;mBiLz4BaL`3ljAZD1A@gdhB`L`v`BgMrnx8{*; z?EMNsH~Fnc+Fa*a1LV$TuECtR|MuYDj#F3BQmxaV)hDLPxl>x0aB)#qL3$`dBPv@x$&_rDqf!zUx!DNr|kI2R!M#^%EXFzPcL~EQF-ZD68qdcBDAt#g$EWXeIG2EShP{NA96-o$s+nKxP~~Ob z&``2XfCB~jPrv~N(~4|NIFHpK4qc+6Vx)@~Og4Ks8Q3X~X|h+@sfi`m>A2Yic(0w) zso9&+VuYzIQhxk*d|@m`lUWks%P;C2B5aZWq-w7D!!`vj&!CX37wsi?3e$Kxu%qk^ zp-O+Rd{2$CP&uvpe$i=>1BP;$as;)O1E3*Z2b4=8uq!_MGx#o`-$rlzleRqc54uJK z4yj(#FQT#Xn(=YS=JfEg{?L>Zw`OkPL$0JGw+&?yvA|p!F|7K^0`!D4@Z6-=^khv( z<;o5r**?`#fG2yGc|+%D_fDtzJ>V19b;xY@991crHD{ zLlt1*C%EFMIA@u+S4-QH-NuVM?@4m)b| zA6Qa;6EN1b{)(Xek8Sa%cW)lE%+^V$H+cJRJMxHHg;?KCmqd?9nwFLN>z{T6d=SIP zMk4i793R5|Hnc|{7JFvboo-QYjI0>M#Jqie4ms}prft{AMkwatKpn1Jm z8ib98E1}0#!c72&^EFkpH|U}wW=&Q%)j&(bT%%7I_j8eXw~IbKF5Xlw?gT>S8Wj4q z2b%w;*0@-E!B4q8^Gk&=ny4jzENkd(8%L+A2$`UWeq%QOfZ4B>4+Tmm^Ouv@qTY0fnM2>Kr_z|c-l+eg56X14$1ZsFRU zxCHKpx%qxPy$Fqx@5=t#kdih1?-fmHxG|9X`4xF~eQfUqgrXqNDE2AGp0}WQfCUez zCo1>#h(8>y1uUXpH`vXOu!i$|Ca;*S?o7!O7)L*|a2$ki1+Kce@zsM1J&cxP^x zCus6#iIU3LVFHTx@#@&e-}w&~!#{N^|H38js)o7^b|Es zQMQrT?V@6SIH1F*eE7f+`(qwghV;7a+j7G^OX9ip;FWyfR=+qrSk~-NxS$@!?hCn@k0~!|*A5DN6(;kTFOw_e$WhwYI zF=F=QoS5<;PwL1MH<;(kej;^wsrIio6McekjFy;B4q9g{v3vlrd*NZ9CNxbw^zS8~ zLSLG`VJK3y1#5)x19x~di>_FtaBXd;ILV;F|3-BD73okhK6BKMGbT(8=2H%$NxEISd3f^4Sm|KnlcAVcy<=mm5}E; z?B9RNvpoUJlmApGI)VA(Bq|}xZ0FH zT9;zQ_Ljlv^IGy@IJ-NU&X@lKQ5%(B?dZi%C7-1If0TW7T+`q8|63FT5e!NYP!Z`; z=~UkqjdXW+H#mI@B4rTLAd;gy2TCajBcx-5^hPrpzIP}(R6aj{|M(cV-PgS*p68tB zId_N!D;B_>PG-NJX)VfYDSzQlgOO#w;^2}Y+skG0ZRCA_i4M>=E6TFWDI6j3?_XI$ zUck0Vj0iJmvQq8RVJiz#^4-$?Gl>s%UfTh>$X@AE*>t2|)bCcQc)BZItE)_6b~2ha z(8RRSfs%7cdTThAspP}?uEQ8wppxqN1@uG;%H#c7UQ69{@42SttaoXGO2PYE(U_BE zCE?I*ZMYFDkmRrBb6mSm)ss+`f*RTWXE;2SZ;G*ftIvUb>guthpX^v1S zuUYmNWQ}y3qw^QI%T4Jb5y*4hdq3R@LM#(r@3(jU198CZ2pVnhC`v28$?nH}26G-?TrNfP_SePm z>Eg0bRdY6D;jqops*LHHTNfyQRh%HHl3bY@lfze&o<~06Z=%~~a2iAvrmND$mX?R^ z8CmI!MQi#g{;t2wv#ZHYDH%>%p{d4c^0(~DW_ZyG{$dpUsfXTYX)JdPW&x>-^kNLS z@o9BP=+^@A9EDdM4_`rkGeydi0%04E$I?7BKq#}w={y%dE?KG>=6=*}Q^(-9C;x+^ zeSCAhoPWt|pf4nB++SE-k$SFNLGuASGrn{p=I!MVD(fX+`ICqJB`M=*ye@Rjw1`bR zOpTthWTdnIFVRqZNY8~t0$!g(cJ@3YEpHC@J>eD++Hbk}*f`rD`&w-$byOX_q1 zZxUqhQbN;Uhh3?U)BS=S6Y@AvvCb*TsO{2}S7DFfihdhgYt3s|H`I)W8R&G^Y=8V? z7yZxstfpLjeGCjhq>e;uEWY*F*p5nf5uXv(pbHdGsWYISbRqvOOPqLs$yMJmemnHPBQe&*wdbe@@ZAx7wDk`Rl80x5rrc)CX|VA zp9>`*^i)H?EHS7h3?h%{8&dl%0yVee3NdP=`i^V#&u|5jyF8Pmuq`8?%JWndCfK3Wt3i`puO-9806 zr1I2k-&@j-@{S>!CugrOHJ|WQs3-~|7{7Mt7fnMlm|qmymN&V~wDuPm3IFQ~x*GO9 z6C*)Xh)gDGNcnHt7U3qD$a}8sE$EWUNRg^)NlLu!4WIW{9TIHNeZKMWSGWP9 z;Zq%4B(5U3a6{cwcuY(I|KyRw;oF1RrO2%uW74VNPvdrIXC-RP0b?VMmz8NpYbb4m z16pjzg5P8E^Sv8c@JALlXA6F5DmF(P!DI4W`gg{2sltDjp{7@{LU?$bywy><^auqb z9x*8~6O^d-58Ht;LL^hj?y@7HCGKj+z+)%2arBo**Wo>iz#Y}hq1|yOuSTcLN(ol< zKS}S)zKem9xwOM4UfAyx{zJEa#geC$Vr!NYDV%I3^997E$d%Ze8Sy0p-zI)l73w zq<>gTm*i#LxF5x{U_>ckFJGSi24(4 zM2w4&uwbX`z==rA9Bo$}&UUQkteHkEfPh3tJkn&22}}EXGB0J;CpL>WoC?*beo=qv ziN5)veix&fHkMvVU$J(Ecv!~u+Q`_?LWfIwt-ILv?-OHU&2b`K@7Yz2>kr?X%^B2h zWBpR|8a_F9S^S$_Ye^je@W9EvK77b#*GqdNb{F+QD-H_fB-nlv**7ZB19%v0_r;&-NLd!t2&1OEF3MZk}4 zj9K^IXU%>t7X@?ag=OnAx|S_|pHrMJ?<%j^7zcRs@^DFKp5BINLhaS*R}AAN4zJAp zdusUvv)lqOmel>}w%t-zmA%MVkYq3Q$^B{caW{LM;)Lm?^;$>F2s>jkec$MZY#EJm zA=iNQ>ML&c6vLvw#wHN^NJ%ic9msPgEq!+qKGa{PHuXzG`HK;Xy@Wx$*ku zn$lgg`=O;51iO0`H7Q)O0vfl;FJ%v`CJuhaUbHzKmrLHF1=J_%7eB*Ty9b=s(&~a< zz8FY{H;n!2O&}bW(_(~DZZFgEE#;2QJtFCeK06vpnpf;*dmjmsNz+>{l7{9_?0@+* z`f=rTXSPZ1*)5K=;HxXtna8A7WtD8h{vi3KqlX@Amk+Vp-o>1T^u*?>KLw{{o2z!z z>e~l~)A!mc&UL6={UwyRE#r`Gu86X9!*cpht^`W8S<}E0sb?KODOTLfz;s4`y4vn5 zBn^a9e~tV#-`jrZIsD#x+};hlnzf4-F-2WbEmetmbEMpL#x|<(jKVMZ#OgyFMc6!3 zdGX{{f5%7Ub&*^zs#N7Ff|v4my1zUH^JDoPt!}jZ`Zlx^nwYI{qGf))m!raTahm2x zl}khEV_VE)%f(}XU9R2n#h8MN<)Sy^iu}w~Epu9gz&N5@+-u~U)$QTNhNRY=2N{@3 zRjeRg&O|K-#=jJwkrDk+xc7>20gsoaU#W zU|wla zWqsjNc?!b9_8bYTtJc~DVtL}}=Ct#CPR-jnjJms*Gk!h>Y!zzi{#UK zOvSSum>&H`ONr2f#_9&f_aPm)TtSu(?_biVBQy`4kfQE~da}giHbjE^AX9T`VXX8W zEz|S63B?bfaDf7gw8gma(tN=v<=Ha64Qpi)zdxYk#pY~~69)Ld`SyPz-Z;5Ci-PG4 z4VJbVcW-%u>Pm}JaMMa+QW#dX{AN!{-wv{L6cSUuZ z8A-=2@!v1F9C7gxNjh3JM#|Fa_52p)OYnDSH}EHD-(5I|5h?I(HGvfqce%0~Y4M)A zU$RT)U&Q>!8Tw$K)I_96c-9c4MzW(J4uL$^^xqhq5|ksAwPj6+0fUIf7Blo*hg$;DAZ_rGXH_V2}trIfg>a zY**||*{^Fgyj34lTAh9bk+q)~JkQ5$>Xn9begE~1?=b+5%a^XxH7^yF^mfXeg&&g^ z+szcouDE%Z;p{#KVsUj&atNoqR6lN@X9)t@K@Pp;?ypBswlQ&A54cM+%}Dq5gIQ9A zG>bZDE!ioI#6mp{_l|F{rbhF%`P418_CmVImaF~i3;yfvrG+VJFg5Q}(J4=k&1T*{ zO8pP#Z&(6cMC0_TTTRyF`E&LNYu7lPEhST+1tOF-i4NiO$NJ${( zG5{DWiW^{!%+&8yEcV}Pv-S%7=Po-sZn>k;AZ7zfA2~pB$R8t!ysJ7kW82%!fc0cS zjlmJ~hGpPW?nU-KnCXx)XKz~l$>O$|*?Fo9za(TBJ%CFvQ3@P>T1tv#{Yb#T0N>vw zIsqybRB_RJD%(}esG?UbR2xMvByU}(Gaaj(>=CwoZrbqSryen{U?z|l*qUm2$xwP0 zD?h7w9u@y&M%LK1-8Fw`{JYX-@$6LC&Bm(eQU`X7YqA#Uq7yKvJkT!){f6MphjG(X zx;z&V6LWg;vN`tchYYQ z8hzJM8;)L$bKfWbs-oflVjHo@VD4_zAL^({HA`+e(XDA(=)V<`suMN0RH%aM=f8j{ z^!YB@J}3AX$p|H>-7mLq?$G6k!z5~BKgrZt(zF{5Kx^uTpzcE`#bvUB*_m^SyU}Js z9|xoz(?0F+$*SRm-GNOzuFn+p?!wKNBsBOH+Z*PFOGiQ}uQ9N0| zs$emx5*23q%0N%j-1eR-v~aR0si_yW7Swg6@dA&;u~R)#ZP%}wYQ-GdSe4tK!}5vk z#q83MLqmQslupG>^}M{1DW89%8Zn-A3CEQPpC7cNF$A5>(#fk$9l;yweYfd(zT0vC z?ZN!Vh4zhQ5qy1SDsHJw7i?d#M&-CZORFNizONJkjY|xXg*rJ)U>Z0cz%L&vQE}f| zCR@AF@a&)T1>fcRMl*MA%@VO1@veOvu;(o@yl;i~9dCRppTAOzS{WYIp6y7*QL_JM zpL5wsKxlgvrvNF{mkDf#UJw?;8sqR%lFD8@f+D)qBRa!#+A&>7IAO<0f{I;3c0;N; z=+H-ZnsE1ci%Y^u0!poZuy$^&6(fZxoLE&{-@0caT z;Vsom+2MVjk+tsvCQisjV(Ag$&N>H@irw&$l|!FazPaM(%}LKelUDpkz!Di;#5q#s zB=vn4RY$lKEIM*f&>IyKy2>9h{OpU)5%a~MIw9u(5Y~F!gjg9B&b8X!0Q8u<>83F% zqrHlrmjKH^T;&Io>6#uI_cvvATzDxUz9Y08eE>$su7K8Q!)(^aWAC#DR$znG-@pKQ z*{ZbyPFSjQ6XZC8)(eQBK1qHGC#<}F;uKE%Db5TVOOLg?PjB6%jM(DTzw)lobqSE} z%K85G=1mWt1vmz~5&~}ym3 zNHRlmoFe#I8T5LV@Sis8&TO^up>%n!K1tQV8qixy&?lKD_KHWU(DRMM3*SU%hkMAB zcC90kFfUCnIK*5t{X^q5Sj%SPU1_=o_`Crv6YAaOjZXL6pPG~bSV`pgGxR~u|Nax%q5y2(N&T5;6dSl36(ysmjnG}(xK((#r|mO zPRpRH?*io|E6&tEpq$)}A}1y8EzRZ?#5(Do9xD|uYiVZYWU6uog2Kqf$ujTN=5!t5 z#6Ut|KJ(@h_e{&jAZ^W0aYe_!f7p&1a;K&t@9h=EV*Tm7M6+^mL)FZF(c7@`OH{6f z$)Xn9Xhj?-MK=1Qr2-^cpMAYV9&+Q~?gzJTBqENZLOF^z{>hg8VesH`{YN&oW)OyU zL3TXTa)l3c4UB->=7Kd+D5FCvG9iGQ~5ihfG@&52X6%_hy5Xmy{+!z2CnqQ%yiILHiLWLrj8ym%Uq~r7JC+kk@%4h8WBEw zdin=vL$WfpC4;fC4Gho916rJmI|uYf)z|Cuwax8}5bsNDc6>3j|5f4eD?j9my}Odf zB1!W2G-Msb7HqEH+#lpez%lI`9#?!)5%s!m!80KmB{cRQSJJ>9uLd`yCHR7Y4hf2M z4u zruU}ANAp12$L}TLw*_sVyK%|g?`lGzyu(7XB+ntS{j|gJizeHt%6qc_yLi)Fj1xtI zpUalkP1+S+7sg9BHGWK^r8r4@Z;*Xr8Atw9dp#Q>d3iJBt^QQDoFRV|bP^u(WUp3zO%ur%Ai~+^esdFmvDi6Gv>IC-875|WC<@g7k zQ;?&bS*==Kfw@U=M~*F1k(Qdq&g#W24gR8!VC&Um>~ahkkd(Ma66nJ@3QM?OR~ z?X83b^WbbQK_VcAsV^*W=6oOn+1`4aOhtzuq)kO|1mwB_(Y6I3!&fEY)BWtTUUO3p ze_Cdiir^cF19qfnJ3WHaack#;(9p>w;bhPS>y6xzoAE7i?A9fZd=s}+bYt09OyO?K zHhHI|Uu}|qh&;znrmFlw><7h!%>^9AQTtEmVDji2|BeR;O8~AQ0>AF_T4F)x%*2aN z9X!{^uc!-c-EtP(U#PoL`|QL$5v81{~MYhIiHXQjZ1~ zlh?d5XUdOzD@`F}{6JYrIj>jw82WrHU>Dv=JgN6Gq1>tlw>kCA{XzbB1GL#OQKt@H zxa^*b4gH=L%5fHbNsLiVr+TC{l1~v!uv9d-2bV(nteS)Q+&`Z%zqK_6nwa7Ped^JL zgP@o(1AAKjRQHlRhAVMJ$M*LI1V$S$5SehR#y)oh^hl{b=pkK3`nvw$vSLe5D(U+^ ze%`2}TA%??3iK`~fiUGF>Qq2XNfLCm?y3_KFio6^w3o#We0K5>kN~T1ud{toDT3t- zQgeL0sMrKc&yLR!CuH>$g^4^tH@tZ#lhREd9n>x#2#4+2CpJQyp5WT8FwmcD<X)_L2W82gblXew2HP>z5W)Tbt*1EowIqYM|vraEW)&!F?ug1>Se za}!3ciT~Q-_?E~)%4sm9@btiDl*Ryi=4gF|AW|iYN2g<;`vmmI1NwIv&Yd*(JJgn{ z8IKokjiS^LV<&18{5y2%`rF4A_j;ZRG1QT7CRH8=fSjnH>E;vkw86t4yiLjTNBQjq zj429RUwVYOJT>~I+j43ek~H7Vimw|)sCwv)R@nD`@U(M!hx{5hGkq5%OXAJtw^{yZ ztrxRaFrx|upjz}?pP)+bExvh7PqICe04D0La~8dwq4Xn&OeA6o|NP>d`_uI&^HOYl zLA*-g=t`b8&`8|6cD2ws6}s&hzg;+Ao+W91Gn?OV>n_bJ@28wGKeExvele<+5onC8 zv-=%yG9M22rKVzd0WUn&7c&;m3YWSMZYEIkQ%;1qqBhD@5sn`Qm=tKJzJxwj_zTk!U_CKp#A%eG?@h z=NY!#O91u%FQ4r7cURTQJYJSFB(dc_e|rXTc*qa5IaL_4AEZkzbZ zW0kAV^q{Qa34mH-qKWh53Dv`{*M8;`$B~C2WjV|1O?@%Rsc|YG8k8)5q_F!qcvz+X z1fb=uo)lf#OBkEGaS$H!_f!;e_>c{Kb`zX@#$P#5O`f)G8#$gv2FsMm+7FZgVRkvQ zjsng3=3724VtI~!MLsnzL!5ugAvLdHQkS0S3uuJdlYJBdqtPm-Z1VM2XNut|QsTEF zs-dEtCO2E^X4Zyc)Ea0Hs+o#H`3$J(-i;SMH~5aeE)gOU zy6MqP?lPI?Zuj_2#N+`6vc7LH6znn3XNAsjg78{(RY1F1X1$^+Kkt!qFz=MP>ewgC^B%pz;NCAqdKgy|etxo>|D zMFiuVQmgYGp%a@vhWWfZ;m+KXfD&?ag?YM#pVTFMK>qb{w>LgtrTn7a575Li3e4Ec zX)yG}KXX0l2M)us90*Ea>pq6*YCkJvBio!WY>oFf{*qCoy~LZay!fM@^`B z-8r~DwA6$F%x~PtlJYvbe11?Uu_npOo#pDcBoDBNX*pvQxU)v8C<0V6ldLgHa;0V4 zV;y-Pjcz}ev{~MWr^&TaM#|Rt{8e98p-u103XIhh@FKP|wh^@}c?l&-%06NBfIU9L zaNBs~!VjqVMG+HWI8o&InCjA*e-SiCiTv+VbzH~gCEl~@N0qEN)Mm=>_(}UI9C(m% z=XTN_OzQT^MRFPzq@5L0tx645j;Q~%RX6$ACs$pc=sTYkLz;#5XKj`*l%>s2=#eRu zwcmCDV*wQohwBTP4mXTXGzHF_qF8Qa7@ypbgN$38(3o$htzt7qT6^s*RE6E&Hp>(eb?0x*x3387hBW4>>^xQ$JzV(S*!M!G; zDg=Bqwy85h=nyVKi{N_L{O3E`RZISp@r7{rf~vKG(AJV`D-sT-x$SJM300l!yDUxr^AJ0;PL5!2fP3@I$HK`&wPA4>Pe;kTg~t#!R2-lwc;JVDr2=PE9I*b9nWA+*gk%qRzvUm_u^jmKbzD9c zGKb+dLS?(*7?Cuhh&_`&wsC?TDSbU4`#eI5jXdz<4I0)f=fd?}!y-%GsE`+L(1$Q4yw>}XvhsB$}MNtg`|QkD8mjH>7a-C=mp=PFH3tsmp<+v0>#c!maqKT)Dzsgm&% zkvyrXn0)qglLBb63G{htp{dBNaOlPB1&CxWsZdRg*tVE*y+Fx|uOB*lA}!nDP3!Q4 z(oK>7BqXilAaV&cNvWD;?Y%|G5^UIFAm7&r! zVBgg{8#m*;X!WsEq#tgyTUkB=-{A1$`~7=E=1<=;aU8W zr?)!kOhXvf46aDhaW!-gd>KsEX{VdN&*(IS8{5u!cEH|hmbX}$yh7CikSu`ELzT;iua3Z=LCO&a7Lmfr3)aY%lbA=hgvmS3LuFBpQ#u<^?$ z$raT!_vhwydoF37#bQw>GM7tj*=&px@W zE;5#apd_cUxMIr_J#%DWig$;4mBRR?Lhy41xm%ZS-KvLibJS}2>0iayMcm1m#n;um z+R(K^dzNrS$%lo5nH+!mis2>2i^rP_UPhSsO9!M)1u1_s?DvZCtMfE zne2PqQIx}d>5`1uo_Mb|XI@rarmRpdONj3$k-G?0jF&_<8$?W$H#LRPAa39s5v5~y z9f*8$-BNOMrL%ZvW4WSYXS7pOr~EF81~-bN)8c}?V&6tfJcoWqUX8tfjeN7qq%ZgI z#3e&khe%w?j^wr*(LEbYXE!ugnktKozoKy*~BA~Ds6{1>5o7gJCS$nn>@$@dN{5_|UKyXR^#JFD`W?7E_x?53jP;T*gk zZ+LlSUm`ccUh6KTrL+`(a-%QxV z&cdj3U?HN!wT1yq4peW;8cO&c%G5ZY>9*$ZIhvc_B(qFZPSbc)yfR^3v^}??L!(#$ z*;in=WKn24U^{(ZOBs(jxi;8Cg19IVzQ*AZxrJa{}?;sKsHh zk}rGJk>;Gcqj(dl{x0jwaL=1hF}2g0{?Af!lXfyME4G-ZrHFQxX^z*_O7PbVpd1_J zA{bK|*YzFx*r%GD21n>fD87p7UMQT@9En|CVX!W{IimTjO{2`pTJ<9=`mq5w%Fftl zYj$fQyJ%wBbdf64y()hgCTK~Y?YS=Az0p!Zl7cLcwRO?_l9Fwb_*|=h%3i1H>a+pl z@x;o|yT3W>u3gICj*Zn)n!QKhe?nFmUXO&K(bh8xbc&}KO0WFzZ)s7;q^-wuYQvqN z6s0^X&iJKSU=Lv@xL7hC%kcHM@6c_N7^k`Q%=Vzp8k#$+`KZf28}o9U`DmCd9wQN9 z9}q!$#_jy-_F?N$RoY`M&!z0TygdElxrBR5IcIfKUl&N;g(yjRF`3#SZkfN>fjRg%&KG^arDq3pP zY9ky`Be@cKAx+Kct;4BagIjNX7gU>tDLZ*qIyK))F8738?0Wmb*4gszz5Rf?r-I}q z99%F(;5_==Ne>x|OoVq0zv)VO*P``28TQI(b@swEKfVZ%pudtAZ-axOW8vA&OxmVe9g5;uMxmq6h~V1f3m)6m8s|()>kg>oM+)sOYOm&sjnyQpq zkFiN6%zb^^6DsUM`H4gRrr4#7B`LlP>tK`oBc%(kI(&YOOW(w}Kuk|h7P3vUKy2Ah zHrcr(Tna}znB7QLW!(qDU+bo_H813l;T>nfNEFQSNcid+S?>Oor-L+xRaS zjoLG13ai!K=C804d(+OUIF>8E=2mn@FbqNOgS5QWqi=BFbVsb<{8eELrcGUk0^^w*h#(H_gk zqqMZ%V7Z~R;%&d;C(F&YwkAqEgmy+|zGRGG$*{M`(YPuX+EJ7o^1)@2zD;v%M`c(h z5t^pP#HHc>q()-W{?Dd#F-r~?56_FGJs6PeKR^~D%JAYuxcfDp#HMg`#iQ=NH-ec) zU1kHDnlzLW6}>9GEH;7Q#`}fwau@kBbo<9Qg5XbK2sTZ6=pc)m0%*}Xi!$wu-ESf) z6Kx-Dl?hF`*7;V2d@)<Ro5kz`)CQNr?oXr6*@qr8h%2Am40Emnp?dw$*rfo$Z>K74qY*pduD-jGB+AH?kdT z{PbVf7(B46Z0&9so-sq3+{1{qhP3^n|GUn!=`lW9{Wx%Ty{9`^j#NBq9X?r-E}2fu2M*9@LuGvG!PctD+sR#lISKvJs|PHzFU1C0eMm%K_+0y#fU{kh@Z<pEnc;LQNQZIsaC_Z$*l6t1zff#;@<@!1P#K zY(69W?_>jEWU=b;C9RH~zny#3l-r1saK_$N@-^`oJVsbpGu@qP%hWI8+NIudMd*yR zGdy>(Tut~dZT7U%Ey#wjhXAV+DjeBfVOl5_nLldHdyk2pOrcEYjaJv$flHxh{!qO9 zLHe;GkWaaZwa%Fu#5Az;l$7Kdly#0M3KT^~ux-#o+$xuXo@*Hs-4&IilahZY_(M3O z4AQAuT?H(KeoU?>yn@G1UE}&of#VU=Gn1i}fViFA90=ZL-6~$D`@^RHuo029lSE*$ zZX!i@q<>cEV}?m+zDo_RYK+P@^v2=8eERXPEYi~K$V3^(8v9xN&jcO=9ZA&|rskn5 zdVFX9PMnXv?IVKER7HRXJ-Ir!!O^0>EZG7g1Sq5Y7c>*j|D}(LT(pEdeyr^rn0f%Z z|L)<;*8$$^-?h~FOFJTBWp`LuHR{YlU1lS~XXJy$zr-kARLL^C&7VQ(?27&nonGL_ z-7cDf(mr0S?bKVT4fS|%hl-fIYWOczo+WTRQfTw7(|X%@ zuBx%TW1~|V9K~Cx&@A(+&>zOV%`x186ggZHL*$y4TeYBNK=_yH!fX(X*EHXxtA1vA z*O0ryeL8)l)qF$V2;UbgDg1+1{fGjU3m2u!bd(xOOshxSw}Wj>apm!QL2fwwWVTN4 z*c8m5v&dm%G4$AV*I$Ksz}ZEfl3*bIu{QBKO!dOwDW)O&kye+Do2|M3kA3~G7a#&y zHB7h;_naxz=dO_VZ5$3qH8uFi0CE0^EFuA~(!vSfsGs|*ZD%dv3PqsrY_6r~>P{gi zWiSlEHoyoFTI!2Wzt2kW^!$APe~Izub|JJR7?8^|?Q(e8NlJtzOgRoSpIQHtSpM_B z_9ktC^H_WIuBp~v`aClQ230(r$KE+jPs?-%qfOccS!bQmIm*S#fB8s}i%A%Y0x~On zS`lV1>k#YFAK)*9a=atjLwp~UXwKh~xq`%4+i;Xv3tH~9#h z7AD?+K=4H=<*r&*V@eBDekGEL6d!to`^(wC+`(Mt%8V~`07iSV#l11Z8igJo|L+X` zV%hKD|Ht3No;@D9ypS-zTJ*jiO7z-RKd&MynZgN+WZJ)sX(H^OuVX>%PaFQ- zYayfJv3-xVg`3tGsK^)P{Gyj+%)0c-yGlX$a~+irxh~Xu>F<^jsX2!s{pKf%40BGJ z7EDcX7{!#@u;#_aUzyz=94cCBoX$NQm0iP;E#=+M82yO&FO5Kp_Z$Xy?hy#FXlzZP zm^-;xxB{Vt{EoaMxs-paUjaz2CXAViVg>xga(#fTFOmWSUm{?klum61Q6pnftm#fT z3jh9{3Ga%G(F;^9hEmT_f7Ie{3rQP;e4nu~JxBU4cl?!(eQxX6aDAagy~9jF?N#f3 z0@ATEr>AR+<8ZiT*R$KlD5+^+YZdWVO1Y*laPx{@(-hh|0J(qFe^xb)=GLkNa_6fI zhkZvLNCuY4vf3YH>qb!V)}6yw)iEH&HnfYwFRkI#`j%?c7{c{fMkk%*gbNSJfd>&O z#`6QzOAn_}=|^5r)l)7k%>(Lv2TE38oZDob`&@g}<=iQ(+*G87_zj4~T{8pjx-*%! zxxQt3y&l=Or_-5c-lk*m0sE~t`7FRu`C+c!D_FlDy)?JW@m8@hUb71f=^swj7!Rtm ztNqCv{%XwMGRWldre~oQZrAypRya#*^Lt}re#s!UoX_6J&4|EU4FbwFr3cE0~x@`3zNu&mlA6Iqj27=8RLa>1s(t7fp?v)j%iP-xUB$j(* z)+8MV4%Wf;Ck|RCFm%b5fa6_()%n-+Gw%p>t7<9ZK?0-OK9wJ8WwNiBh+V+@%6Hf1 zy#*iVB$*@9#eTFuGWfvw8LWX}UlS1Nr?5>s*6)Z7B~9^MbLXs+j9E*W*!f0-gV9w) z8|db#^P~ipBS1dSzoZ3AJW2xFe5+YFVstP7)T?PBgXUW@ZUTOSiA-S(c@#^5TF#_O zUpQW!L~9h@jlz_#Ey)U1qfu4c2bn)4;mX{y6r$EcYLf*}NhF*KsZ@sx_!u0_+Gxg+ zphTQZeB<@gNg$*5w5;pyvvy5_&IJov)iHC_aKz!j_{J;?DHU>}XLVilLXu;MVzt7m zr@Wn4$O^JNHOD?cO5}} zM#elNw8nO0Ai_2uq+d%{RYBX_H}q2rT?mC)yT8ng=~|xS(JB{`?`a;xGW31f zFQoOvaj)PecssW6R{blrpGZC{Bu&Lp0EXbS1a>)T9aM%pzKI~=3Tu~ zM?g()HpskMTbR7}6O=?~iJewT2}fd+0vK}E)qBu>CkuGft0|+t7j?d69(5Ut_mZws zGNnA$|0$Y%Cp?7HpfVT{LsvshC46}gUodPje<3Q&R{61Z!@5OS%ug$T;IUb)MR3SoH@;vgQED zMi@%@a9<7hOi-l#dRZs-xi;|zLlz&Fp^LI)H5@)xTO9-Y6p(8WWibD7*1|VfF->8( zD}~1v({F<(y1zuVm1y{Wo_~En%NXEOY#Hv6s(RI~RV3(#`d-x98b4l%lV-dUEgN{>!rPK?aN8JGwsh8$$s9j*Fdj$ zo3GaKn2bEht%zYq`A%%jUAj}-l`Rp7VVd3@^ejL=UIih^BJU^`KE+-;iJ^eIK>wJi z`$GXsX-#l>6T?Ej#L<}x6`Si~Xj5_{gx)H|b~)_uCVd9C zR($&g+8sHEY$ZTUNLf3LAGT$cXHUC4aMKhkXljL>Tq;>vnXmfH&~1Mst^Hyv$18hi zriz|S$%J2 z8k9OJnWKsv1E*~@Sjj>%Q$4UOQ;q@BRA{NGR{=bS9C*$K#goR_K9*frUVg&0>VBc{ zK?@Cin{QIN(@lJG;Tye{f%%Tl4yi`TC5W4c{6sr!13G@1KB{spQ=O8~ZBx(Tg%{^^ z-N_BX7q-&xvs#r)!+(AVGAcJ17)X7ddYhd!w^UvsgE(}F=XyzI_cC{B|8P^k?igEc zj;65DmisVp()9=rOYsZm-D3o4H`!fC)463XjhVXJh) z5s&ai+rH(Y+hKy1`C|sz8u4h}m5Nby*IGE}Q)}{Dm6wlz$st>Gx%L;zu*|~LQUlDu zO7KFSGB!G3V@mAOF3|`yBX9$q;xyj-&7=856D*eH#VT}Y_PzNP-qNaL%o{#e7l&n9 zd3@-*-dwW-SH?M^HrK;xy;B!xsFt#H_(me84qU4IZRplNqZiQ z2BeFq77}5v#HNPh*O3x>JJO(Hmw? zB-Wt&RLjDzsX!}j{_3aR4&f9Zx$Ci^u{nZL9cfG1@nPwhIE!%~&>KAAi~YWR50W0k zAuU4(7VV7C<&1G~Fn0$ucFR+2eBW+F9*OXtRNGt^9*GX5YHVsX3ijgALu}YIm3-I)<@b0g6>-%< zaBJX!$H6wWLpb_ObIAX+t?RQEbDwXD1}#PhY)FS8Y%C}3tA;%#3q+lUeq;mdM-Zu`r%AkWzV^v=(|B*t=t{kz}) z_}Gh}U-7ue4hyP(CR4x51JHLMpgAmLE$YnuN19tY)oS;o$bOuOaho;$1@_xVnb{2% zl3HLxDx(6vLkH`5?F48Uxqh?nos*9#+ecsUq_ughHNGRoHiD4b5X@jl5nqSW7ob4o68YkyHx zFE_YKx?Xp3$C;LY>?H*yktfPcB&=%@g}A%(FP|RBK{xe9O5= zu0oIss+E{mjJo%tu@Y5mVI4UxX9d)N=kbIY%LXCOS+d~qp8nRdSM^A{0dZMWHr`F_ z+M;mqDk>0=@14O+Dw$6gJ_j>(p+$u6vqW8eS$>Wm`~!J@ac-k-y|(MqNUm6S!DxuJ ze&#l@wsFUScEW6k6C=LHjP_V!>sH^=ui6^1q}bsdXT_}w$&Ik&$Fe8@L&5?c|GI5f z(RDv?&Fj0IF~zC%|A3(){Ut$b)U)0kS8)3&!bvML!e&ODJxx^LEZ2jdwkYC!Vsn0; zW~7R`R^J;@QZqImh-zZVobl)Fns|w zSv84^_8d-L9o*pPhJc8~nbE(!*-B`31Y4#1wa#(qJ$vAheFplf5+X%KIV-Ww!`~ZX zYDT`(H}n|%op$2`BUb7aOmAGd;&T9Iq=yDZNjc4FLhV|JV0p-UZC{BgFF&})ZuY~T zYs)V`$g(_OZ_?X1p=H+Un;TX4a?XJfB5tp(`MAh)q;^4H&&3FkZfTTU;csqHC-Aw= zk5b&`zqYR}3kZsKOT^j23P()`d(Ylg_#@%)So&$ zzuRf~)Np}%M)GHc4lD`(19=F(4|+ZH<@RZ=_0m9{kwl8>$p~u7Mg{e9Io*;s`}Kw; z>K9^z!<{?lSKOA2&l%j# zXvb89t8bS;)6cCSt<`xg>*oG;5v%S9?rL>vfuN^G(zzP={j={Q*_l4a2zz?K^ccNH znG&e6jp88PgZI=c3>L$^>K@#NHxl%Ko~^Zf<{@4>26i%qJRK$P_KpD8l_Hp#q9vFw z{vWGg{TC>}F)$Yi7^Y6TfM*3D6~^e*=1=E6P{BY=5WFjxj(;90n;)1&{mAMGhDmEG)iYB? zdb9VZI24dT&($k@X$9zYeUO0bLWZ6TNHyBx8RfIR{7g zswcVkDLycWyeRu6O@RiCSnQ641}|q>A0(Vuo#P;0MJzWUF@0vhfv@QF-$m)nI+Xsq z6~4?^E1C8f`>YKjgW+ciYtrLqKQ)!v_C{l7nOU9$zuA{yVQ=f=oF``UmHPskhz#VM zH^H+@G37y9!#$@|>Yljv`yDWS2rME?92D~*3>EvBN+ix+rsqIm%;FQXHw%D?6W*?f zhuwwxTl+SG8Dm;4}wkulc$<=h~$UQyI=NwN@iqX-w4 z;g^Vhg?Unor&#aV=ba)6=iUgInjkm2hB%CC3B&RUCp;b^vzrKbS1yq$Oj=~(Vx@M{ zFONvN&Oau*;bG+PAbl$1eBg3%`DK&pdQ@h$o;>@NB!i`Cei@5m=9Z@nbtT*+J~n_2#PSCtX0gJB67n2o$N za2&h=J5{V?Oso6&lIvuv)9~x}-Jc>dOI!rX;pzRA6oSF-z(aiJKPLA5Nd&Ev&3Ze~%fN+!kHD&3eS2N{mfiwBb8L7|vAtfT&(mw+lh zAWH~m-Lx*iT4L%=scW(KBJz~f$*pgYXL?jDce+nMUBmi)N0P#-z3Rn-;6r-t2%w)G z_GER3%c$?tOdl$|o=&d@+kEJ0cIU%wHDCe*tLsrpj`{Y(Z&>?AjdP zjKOSO(rGBt2@rCIhAO2ur=6@aBf1aN1omTrVS(xaFrL@5{zo3W?-N;h7!NEcTEjB5 zefIf_C_rc;^mk@#a$inGGE>}`Iqf*(Akn0(_(m9zo^GAC!_9{{zUGGJfUnCkqF9-= z*M)^nAD9I0b2DI7V)S!cpFhoS+}o)Asw{h*1~aENU+Pf$^@0Su*@>6xe_L7TU)r5i zQg-xDR!+a`(*_16_=ld_4zKN$MN*ofj;4>iFSpPjalKCW%jxzTIhLS;E?y)XYx!S- z!TM;W%~cG8g%As^2ANDKZC5NP0c{ISL$06Q*UuIi!Wl^vf5tg|!&jx0l-3 zGlM0~npfkj!IYq0XmjD>A?xb9$Aafy;bV&zQcuI~-XxWcNyaTbql1)}QX;5{J(V2c z^|^4%91lM_Dv?n@IT@!5{osm~SgLv&hwj&mViL&g`UnJ+pqn;eA16*xN9oIfp?310A zHsoF{!E;-U;>#Ne%M^~!fHPdBd!_Zp&>QLJ#%_pSS=(h`@|bFsE)@yRjp9XmNT=}ya!>TDmL@N#~P{YGg#i0WO$xz2#1^pD3a zsc+DyrYofr#g_zOKOM_WPG6i;1@(s1|1tK}aaCZ*IKY;WN3yq2+k8FQ4Je+`2LUxe#XJGLJSzO`b<;~IRV&%Yg-3;&ku0Tm4{Xnh!zpd@p$7qN`BUta&bnb98 zQv*@k_Q>(+Xnr=M2mQ5fzFla8*T-?L`-hNaDAVGg<2=xJGgV_;o2OT~u*_IoQToso zXl_|LR5J=yN$Lh#v4q^K<}&&g2ejvUMZivP#op5(j1*LpCw13FXvjqh zfE2iLRV@FRW0NyDyoC%OpuY_e#p*O9ptC9A=dJKlHUhTXfVlo#4BBXh{NeBU5Cg%B zjeU0rzWSQ?#}$ATo(jU@{3n??j$^t*EFDcrKdh zl!~2{AZ#N!?E4){EIrbyZ9y|p|Nhk26a;H50HG?4kwxa03-niJpv@?AKu<RinYLs^o=`6>~VId^S znmU8nBnZCXPBG9Zwo;Q)`YF~4qHc3y`W!hnr|sZKLxTvITfW@ep4+u9MP?j0UB6ue z+Y%Esz!g>{aT0?3~PVwT$5D*Iu>+(3xMG&cyBCoRXRP{LmRw1YS9S+kVA=rA+=3 zbZ8N0bp{X!L_MwFg&MX ziLvuF7Je6MC?9>M3gfl;2+(88e+)lN_&o05DmHR6y5e)EJG+&L?Qz~5(m^W!wmCa_W7gzBW~WV!eCP*p)CJrZGpX3wZs71D+r>bXHJ~ z;>)6{;^~6Ip6y0$LODw=#_cyerDT8~Q~Mk&m$0FZ;77CGtF=g=Vx4bgbK9+d*s9~J zfn(#Ja%XCTHNgHkU)b{vXMy_nvqtMxZN+THOkWZSq0iQohuu8z`4tGAz4`eJ)SZP8 z-QZRb_d@CNR-BhoB8Rh!ja(bbdK?!{e4JzZ6GXma_mw9{`p4pNTWegQRb5^sIU9*I zUwMB3s>o6q&O~#C>FrdN2CPC`Gk}cFYh=S4qMNY7t+e@v)9#lQNSP<1aY4ohnq$XHgf!gT}$Q~E1o^FUx<5`mc9|tWz%C0<$-45#47sQ98j5Lu|N<;G*#&*2Tw`dVxqP$CVXDeG)#W2E;69Rg!7#`Oqia za!X}N67wWnAq~$jQ*8i`I?&}9JOI5k)Yz>r>XuQF9A`KM5B^{0I2I(9E4Ln~Q|;ryCZkh1hbc<~W-rHS$!+Ak9K|2E!iC*>@fE z=c;@C9v!z%^rTzTdb-7`{s`MSo27;}o%c1u$vNPWN;0Vm9B`Sq=}m+URo>G;xM}~G zuT?`7AW1UTq$gKk^=!|Nwdz!kj06UVs$7|i{)iy7o96w-P1@~)fXozymaYua*Q;++ zT@oo=HZ^ve+gT1fNA4WsRm5#e5}(KAYW7g$BzE3Iz3gU5B330GD2g!3={JXeS`3(d z;_)y9&nZ!@_gM39F#G4o_=W?pa29lX)yN3-f z$iaT@{KlWf4Lq@hd+D-8LT%&xx;~&4&&i=%o|G&|$U{2vIP2zIRh{-m^v3ZUq=n?< z6Dr4M*C*SBV3ug1zAd-mruu2)qPmVR<*L`JcJilBGL15wWsaw%B`zxZ7KeQxS7^yrkm4xasG{8G~krtMt{H--vgJ^?lZvt-^azh`WJ`X->< zh3WrVW)-|-wmu053YrTO);syx&*%^xWAcDaq2TP}6x$snN_2$%D~!}$JSS1r0wHg4 zZ8=Ig4z5gfAH0)G&&NS(xY*V*TCL4w!)-xm6pWkGObdx;HVq{U{wmMc3$6P{cfZ{@3&PSOE)^R?0}B$cJg3Vz$6j`lK2v`EH0)ObOk+xkwF z^8JmcF)(|&i79{TCIae*e5JjKq;N0GtP$;hhsbYYk-|egIETH@E4CuwOc#swvm89R zfZ{LXW`s@t29AP=vp1Y)M+C?7_Y#`f0hj&G)b@s1g>)u*Z7t4+I;W#%yZK%pv4Xa$ ztYVH4xp6mk2ea-Mv%{e^<+JAZq^+J1*y;{?FD04<`SPs2RcCi|}L^gLT2NyCi z?sblNwOGwo8a9Hppk4#xrx{hX6Tq|q9JtwX!5BiUPi8-wdp7HpcRB=w6tGG_o8Z50 zyzCe6p;}yBZKq_t!?EbCP2NAEc}(#iXi0N*u>-OrmhZAi=CB-iKv_T|ks{wS8v!-A zfeyY(D8*qjW5B~2n{qd+8LQ6q3DL=XT`Bww3YdGH$c{f{Ct~MY= zjf1DE*n)IQ1Y6T+oy!0Y8dUC)84)RoEpSX3zy3A_%x>vFD~aLPc9&PGUjk&_Z}%3% zhe#1}6 ze|YQ0;}EmfvF+Pz^Tmm%N&`&4_OGpwv53Y$=vLqi7C^ZvkdsWF=2C}$#(5!W-NPxc zyi95uGk~OcpW(XFu&C~}N-_`{ANhE#WyLGDl}B1mm;-WlJugx5Sef=o)eHX|3j-fA zdy}lp7fLeipMbh2cwyUl*s=~`Xbxs~82lN`*;g2QWp+N6;EbXJXS90*?o~tNm;!)&ke;C-PWEBX9 zyDlP}@TnJ$k_$a;q~)U`qX2&<1J#f`-HfL&?V4R|dJ4CV%6fF<_nVPs+nBbDIahKE zJ_2YzlfZxxv7v-1EH3XNYJz_DD(<60wdFe4C4R!ejezYSvNOlO19}bg7)xd=z)qg< z+z_l|ogxWxM95_H3P@da16S1miMJ|#54Wic2R(t$)&@buENUnDQ6nhUCs$IFvWl}s z)8cj-Bb9h=R)+h&W516Z;NS22VYT-{MSL2t>XrlDc^MkplSbgCX*;k?TsI|hq`&w3OVrCf6uZw7<48;i%n))|o241wH_=Y~8BwgsWFGK3bqgWqJGDwY_*5wfws z;$yv;DtEyyTs;Js1*5@-Y28idhZUt9z@!VX&37t?2UZ%SB6U?lbmN}2O&%^ep0?;M zcw>l}0*ILmj@ID%h=JHT+x^Vv!4G2!bdI+@^&NG+ng?M98vIE#A5#3{{DnMN#!Pis zr576k%9IRfj0T+-&Hsna(OtMC+8^?;>%h3ie~PZftnc2Ucy@LscdKcFE26}_od^4Z z+Nbhh;1X}+FG}Sf6ax>=|h z(@AFw5;z|r3DG7C?~_I4e(2NP+*1C|D|BU`P0Vq2B#V+clxRz=cEsP<`!MxhC>ap| z=*>BCYV`N!Aq#@TGY4mWVRh1XKH>-x9ClKd&(6#O*@q7om>u&Fd^#P?)}A^+Ysg%5 z_BNu&c82Sw>Sh5YA$O&7=W_kCY~yR21OBDfX7J;?6Kz;)4`vDA7~iT{xNuhnMqVXE`f25ZoS5kY z%1c}~b6g$g*b=0*>or*sCJ+|=!svc_?eaZ-xY;Oh`L=`!=A>EyDa_hQ8c~;7#o@f> z1#sfCfLC}nG_PHN3W$}W&r{PK>-R}CyDL31bDJG2K<4E}=%`O#4NgkChcnqQ^s%YX z@K?^3LzfdeY+Zcz-fQz6oD3eOuE|K?<(%Vr*WlF-YnSGZWZWs$##Zn=&_014Z7r0o zbWMMe0!HZ{L{r$EYjM2`W2Dc|{vr>*-wBjv%`as7+=j-kikcACk@?9%u(x%e{>pZVK!NP=uQB^;M z9yhHWCRFHSo0rHX*%0*DT*QS8WgwZ;XgdRLbGGz_S6YP)mL{*JjqT=ECZ@+TVFH)$ zghUmOtK&|5vSdZW0(KPs=KuLwg3&+!eU3tY!%)Yhlp=?Jl5>OOxpEa95^_OS8(?J! zUC~=lJNNaj#x3kpX&(N(W9iJ$`%GnT<8;hN=qWIHs&sLwV|^maXzg^@`&49Ys^sYI z>N3MnoS#`^akY-fAwz*f!Go9ryU>drf7#kEKo>ONB_kGC4Y4YtR(T-3sMfz6bQEka zbtgfYg(e_OG4Jbla5fw@Awsbv^EMWI%|vQQKcKH(5bv~%akoNc3J+QdsG5Yp@Dv+e zs>zRdsdNDP39Z^W|3k{=I7Q=X zoD2ora=a>>Hff6Llvx|CcLHg0m(NI_a&db&Zu{NP+;;%lDDX5u^l2P;yU`s5L4sbM zvhgQkC)pLe?#BqVG%P~apk-n#HGJ;u2f_@Nun24q<)u9!-yZ-Yg*(zEY>r^ED0SJR z{Xiy)+rJgKN7o%@UDLN!C^jEOH_Q-v%^3fD`|=Eb7-65MpR9rlI$1Q?Ai!z4+yKKD zWXwZMrwG$b+5NTGepUZ&5KNa zaRtAMeP>#WGz~2!w&vLkqEnuf=+d!Bu~>DhaffvO600$;fAVjt<=^BjUu`6{W-pnm z&F0GrCJmHMzB8yQM(3 zV-J&M3T&#Fba{hrZ4x2*UyOw|ChZkxnI?V}m`k z)aQcH;oCcO+pLvEU~bQ{p}#stI1f-n+HFNtvbNOIdg4CBVkGX?)K)3MscHfoZRK*o zLo)0%G}^HXWC+tyIpC8>pq1}zb$xF0)XO#`;Y#Wxfrf_Lz31|w32igO92THFAI-0~ zCGSp0y<*E}oln2TPyt=!+}M6tmVo9k<-Qp_=F^VJzp2V%K$*Ka7?g@Em}4-*P!pCF znL1jG$nV!FiG3vozm5Sb=3W%+57+LRHe~l30EXnsZ~a#F-J0Mu5Zr9mKUI(l!CWrV z+b-#^L}|wLIOV%*7sSRD^kt8%j@3A>uEMph1Q63X9O!{^Ob3tbnrW^+?=o#6Jbz=Q zBfS{qdK@+cln+-_?EHWmGJ$-p!(g*3;8l-2;cXH}cG)h+Y)abU8EnkGF7;ojx;Nn8 z1&BXKyg-t|Hr#<0Ipb#U6>M^0{RFh+%MBGo;}+{-F4^mcbI=X5D(Ox?uo8b+w4VVm z5$EMav!m35%d2X!Fcn2fqa_wZ$Ck}ByrPMAIICZs`k?^R(+xR~dTSURYtILjkE&M$ zl?PbzvMC%4SR{^yS((%h)i_AJS>xXOuw$PzOjvf=s{&?+PCl3JURw!#G={7j1m&fK zW+6fsewk)j+$AbV^Bc(T4NX~9);1u+gs=taX}@?ENxMs2v*e9{KM7^4eyUf~(t1L! z{$48pBRt@7@ux&E-inyUVi(TlU3mj|O49OKK{I~(Q%|2Pey-GQVILcH47Px`0L|Ry zJa;wBuerh-_-qKABqBW$k)GjOJBYLE8dpCP&4rN%Bq{FMiqMfRNcXstvaN2pdM$sl zN@LeWugYp0&(K7N@pG^B4VEXE>%s3gr_5X}I)Jz~p7G-Oa4JD?He`AXbMzOZsgq7dAH?ygXj+Ogj%&tK>kre2&uNnD99UUj7 zX*zN=->!#yC!jJ|IZjIN7U+i+tHZ-`#L-+bT@t``w{}~sTy8HLN^S@{ge@UVU~W|u;np*IgwTYyThm@M7*G&`YT6~hLFwF{xUEX#d=K!YIo}}AGACP zmiCY}+c%O|(lCSk7`78G59DSNqM1sBy{aUXw^g3uE`7^uEk7Ac%SbfqpY zbCu9NMwh|$W1PFFk}b3Nad~R$uWP+g{YlHE{@IuS?SkUV)p&|)Lqz`p({_VuDWEmi zCHLU30d{VomdY~$DN3!Yy=s>R8TZs8JAN}yEj)-%l9UDuVMRh;oE>+sUT`H^kto(Kpu]SlX(+ zz=?yP#=Xi7Xf@3`y}@n1=rI}M>>o@%;dBBY$sRXBs9T=cdSAAsE5(M2^2&<-;#n6J4%#HT|PYH`g~*1V@VzWY$q zCrvi5qDtZwBZ`UA&k*JBs5n+#{|vvhXEEq#KzGqPRF0L}0cruX)DCXFLPCz^@?Gv> zJTY&zL}bnOS>l6f89Tt9GQFwTOM{|~SGBB?0}K#5<_4T06(SWl@;pA9O2LDT@2Aqg zqYL5k5UBD?R_2i_v~xY{L4mt|6HOBoq>{bN=q*HeuPkf$m^2}lF;H*Z9#h1Z*(5B)Y4?C7W8m~l#r z4v~I~EaDzXHHPx`3lh5On{S2W_tPb9eI<9BKQ4H9jIfpR?Z}%%&%fh3z7&E9>^8q! z6S}=MHQ}7A6iUrady6I+q{@&;%&OSG_7Ywpo>J?u{@XOpe%v{Xi1DdrZP4m40S--k z9!1^gQ>uZ|%iB*Cpe&Ac0{r5)nO^!SSY_@T;ai#!8v>X@m7-(0Qq+?Ns!{AV1>ZGh z-FSU!%*#ysV@r+g&me2)M*`zDpqXc5HtSxKBd@My9Z46IF=ZsvK${9Su@6;4@i14X zF`d4ndt96^X>$xEd2ECm86EJ6rZHR#k<5Hi@!2)+Dy_wHjtj13Y@}D})FBupQ#)r% zkhR+REb*`^?%p)Yb~gvn3nz4CHj^>^`LB~k&~VX#2TzYT)z4MjGM9rROWvs&lz6>= z>c&=Ay+2)Z+96_oE1@vzk=GfG=hIV?9K(gz!j#J(LTf9C|9HkU`$qTNewO~+88#AG zV8QdIT4z(My%_r0Fx0AW(#nmckfm=%x<*5CXE00uRf3=-w!;$1ERqeCbvUZZ~aC( zum6FaQ4z8^#H}V`FR0OpIoyucGqN=U^#VJ_%UlX>&LrYnl6R8sl2|tu#Upnf5o5L^ z=L|gFzS3QpO4i3D=z5U{g#%2u0oeIN>M+zZE#h#kvaYaA668g6IiAb#7L#!jO+l03|)zI>M62>UkEKYl@K ziIU;$a}<*TJ8^d}d`<#mTzyxJ7x&%YV0z3LG$JaVU`DVn5U64YR*LSimfsp*Zl^GlANA zwzm7s_xRv7Oh4XXeR9D3n>*9if}H})Q8)VeYoZvzq^bmn2D^5#zkYmfBJof2%m438 z@Bd6e{|%{63Yfoa-!Qv{dj~lK=e^Bc{G?cAQE*5!kH?xsgQ_w}vD+&CncnVMA9v4N zOfgZUFau2XX_6HihlMJXSv#BXrslkG?Rp2529-_n;sL?U)7);xcUcsVthd)opxUzd z#`q6{&42suo#n1QhvbX!!cb*%AJwKOhdfmy2KS&i7G8GHd1 z0%yd;fP^_(8Da$TsQKID4_2t^jO**fQQp-q+7g^i7IGEJq)cNimfT}G_}(k zMc3L1q^21Dc%zX&i3&-%A5A#x6El=sJEK}Wz9@8CyyrK%#-_9J!7NQmkL<@4;TpVg ztIt$f7FH3cMsjF2tLA6W(sDWYtM!$VYbyjM2@3`F`S}mX`bSNF=?@?AOr4OOdWdxY zh0-0E1rN(Lk`_GqE;d&G`phPe8l+rxf0V~&u9+s~)n%f=16weRm^YYlZ;kl=-iyJd zLJ6_$Mn;nLv69mFu}G{<-ehhsB&76oy7MM7+qp2)xy5Du41$=*qPg&$<0`p^pN?}c zviZ#U@O>DlEtPH*a_`+aybL8%8$ACcYjqL%mZOKah=DMrQ*YQ;Qh=!eui)bJ0}z#2 zcR{E@(#A}T_n1iR>V1weCZpbBUdSZI#XpZ zhrpz{boi-bRmtS3>5l@IinBfR!yaeQY*Ct8IDQd@5s^1}{ygB#!|gpV9e!TByBO)f z#TXCyvg5#B?xniZ?D|H$Bx#+KJf~e9lfhzOqK+6`5Ol#qtXSm>ktqw5Z$58^dX{76 zc4Rx4`P94Z#_sosRpP~%D}(@7hwf0;>Bpl!RU=&_ciCBtL=CVER^>7x|MPJCcRczH zX`kkY3iDQw&TaJ4rXUAow!l#au2$&aS(0XnxN=hP$@?2t{v17ht-II_+?Z*v)x0cM z^546e+6j&JzucLz*0?J%isDMlJYEBwfsULc`5nJE;OZXZr~JjLM`CBStUR7MGAJoA zG>ZLfl%iRdleJcN6&4meEun-0dOqRsT{eZF!1e})r}SDQTkHyU$RL}AX6WM|htTWV zk`edToXPELsb2pi?bF7_|zvc97vKiSMb^>yu#|~VNXHB8LGC{^$fg{G-eR7espUh{+(vRJxQ;;V4 z>$?Pbx{2ObsU932Jp)JNv`tpD7h95$AO8pFAwz@G7Az^W4pNbW!B&6V~ z)hWRF_K|sK0$`A~TcnHglapmZlVi$e!}_mdiu7d>$xV0$o-|&YHzcDqL1EZ2f{pBS zs(QSt7Id1QWrB`_-(RySbWmVJMkHs?byklSm+m(*EvL}=z?)L5RK{0|^bSt*7T)Ss zm}8q4`%Pv^3J^|zO|w>^@|nZNT=i`B3iE7mYmnKKEQRI)U_Ad(eq?Esj4-S}#nOI# z44cOtnw8vQCx2kt&v4EP<h*ZIu*M=a_k*Z?b3D|pcJEsghEN~h}7i|&I6P8ma`-G3j&RfuF;#U;KGq~rKrvpFY7lU7-^eQ2xG)c7Gj z(Gx%x`+PKvfgF;W&-HK#7hT^}wM#Zuhc2?Kw9Ii1Tt(^x@H8GCX%jY04vGyRsR~?3YUtFQ6)N0f|3Cg7+Yz_XGJH`GJe}p~JTyY-+ zmx}#{LQJy!Dg0wukXqc>3=Gj39jx4(}^D> zs@khU$>1OWH>uwxJaM&+V-5;*Z(w@*Ofy|72=#r{aZ=5P;LY-zRg+O?ALs2WM+S>T z8aeTL$4mRH4c=i(l|vTHd#};i%q$xq_>R%f)xwg3EXmlirL@pZ=)M!VuM%VbRt-2s*bWp?HwcZtJ|)d#u3vLUvQkt7(eJ$9997E%YP;HO1(zSitb)h-_C;NAi|mc>vtpGC9_|z*Xh1gS@W9hu?mmv&O0UGF z;agn-)Am(8>X0NsC*J4ZGw(EfWIjsRDYwd#q3ew=l9AJUc^KnZ2wt$};NEnA^*L23 zPOS&t)oz+oc{1VR{61x8tnB@^q!RVV5ow*%x=_8|kZqwas)7^fYMSTYv7b4^(qZu3 zoI7+93835~bp_2zcf+kd7I2%16;hZ7BXNW?hDV*U*La!9|otJa*Pv?w;PrKQaHXY5*G9JpC@hflO z73~~avQYfr3#tAKl-(!)k^dXupw8w7E=r0D`QQzo^MUpfptKj=2jiI&l_l1l(CFQrmMf%+Z4j&jB#KQAtid9%>J9sTrEXl=Z{IxYWhR0D~%7~ zJ{|m%2dD$op+Vvn)C6h|eN{h=)&z{#UjI;J=uX;f#0Z2F4}%v5;ht8_ejE=ZVEQqL zFUiXx%w;;_c_^U?G6$x4zEH@~7U%m09CE@yqCkg`5|vr0q=RDZoJ!QH4AxQ8QjO7z zu~Jq1*@$4&3tsvSN}!-{OrWw9HgPLn4nEjrRjB7z^HO`jDV=zdqQaFlMA5(u(- z{Dn!pc9r|Gex8T~AL21va1?z|syLLbWF|CPlkePFZ=s}&5x$`bK4dS;OD_Wun0Vrt z4hJu$HV55BU6U4YFKH4@t()$vv!W`GTu0mI8>b*c-+;{K#S6EqlMF%o!v%(wsXSUF zaXyU)SnqGFKFbA*V>V!FU4Fi*^U!^ux__I?ohpL~&X&1W;8SbVk5^4h`hF(b7eVC} zQi?zR#3f~sn(1a{6zX_A_$B;xSgG7H0)6d{D zEVV)r`O#kF2M*blp(>)+-#G&=+6yLS3f8>X6~$;VSsv)H$=~qT$O~E?r1xyMvP*vF zar|KQhDc2Ec=rr?myqdr3!h>S090M}Ur|?64lA8vgP?|6;njI6d-)$ENui29f zi(&;T@5g5@AW~R#)r=e@`!413u5*s_6N|b+kK?eh4A;z;{>nsHB z{yGD^n08KRB>KpNmyiv^rl+YPT|sJ}0*9+MA`Y9tVCNRkh2qmro7U8#`Lv!XmG@(t z=4Uz9=lEGh&|4yvwk=KW4ZGC9jwAJA@?45Js05^8J}P&zig*`P<5%5MIRadO#Q!ub z@{u52u?jhf<@mMg&|x0GPDO%Qgc2P&??dbPhNE8E^TigijAAqr(eTTx{fL*hin{|a z@w;6YZeMp5VyhC~+4oA)BxSw}VO;8S_+ev+Io_<-?2mnaQaWt7bH^p=SmV>EpOI@+ zi`MOpo=05e@o63Ew|}|A@IOKQ0~5-TM^?mi@eqwxoEP|v6k_w}!C^MP1H}hnKm6~` zDnv6EZo7UjAq5nlkrEF3GVA-L0+O?{-^5-i@_L}5$;Ne2g97GsJUjE>!&|J%_;vGg z9819>K;B)oU(XQr=||N1quR!yc%b1)rHq+~T-*wF&pml4WEFHUa_*GI;`W9e`RivG z2Q_Ek@Sz8^f7?=g@3pAB2)t5i$TM6jI^+0trvj1HXB#uhr^S-TP%zoM$^Fo7?VUhg z%cq@S<6BCQeOxW(M==)x1#i;%>)PRT&?I|PI@M?>BA1THPJdOjdD!d>Yw)afD7mUK zZ5hQ=3fgJbenVrf(vS^Q?<3E(1QcLIjr$Jg#*42qdDBo0Q)#AU-65V3V=T-o&#IFr z=T5hVZlxPq89wIwUGJ+T=6&`fj*4z-riX`0y3(mRQ;YiCg|;+1+*!kg!bcya2O8bh z?mj$Z1;2^E5ng;~&BAMc{W{Y^&v(!*TQs}I=5FK;xad^Z-vEKTHQ)B_)8ha=COTvvRzv!WoQW zqRRE~3TqLXK~Iu|r>%VQftwGujDj+qNdTk~E{e#8ieeu9of=VvSNgRYFm4c}VQwqKN{j(lf4Q0$dFPIhXEhR7oVOkcsuW@tpzj)UYpsUnAM*#nL1^3g;mW&fK4 z^;C%!%Oso9LWXCTMFfln*gk}(Sz41PV->HBX1y$-bR>83Z_JnQ7oU!OA6vk<_d-V4 zqkq9X)))U`Ghm|XaPBemFi}rOY zBcWkc@4FX*cQ7?%XD|F^=dM6+LjgFJ#6FcbSzC3X-OWz;c(MDc&JYt1^ADs9r6r1( z(C@dzy?uU+uIhp&3g?+2I`p~3>tF7q8~S1~{KQPG*twnQ(he$1f{%n)k5k3MAi4WV zJ7c6{(aku+io)(-S1pUR(#N*G)C%A}mS;dkAL%pX)fw=rGhOb>g#W!?F{XP6Ad+U! zN(i8p2uI|S#b%16=QV^Xn$o6BjAC~&usJ24)vD2{TMISL-VYFn&CTf9K9A}>X;!m|-`{AI67BY47^fb%GbBgsAz$rlRJ@~+6nV4o?n$Y0!Wqm%LPsLpoPHwdSlqU3L1t<4aP3-7BGYF(??$3DK4 zuFN=&CPU>D{~v_!pCoWA`WXj74uc)Q7ZHIZ{Tx7to8s}rf4=x$+=ooe`Ix;@F@Iqe z5{G_N z)u=laEkpdXlkSt!_Sg9gV>Sj49iCl3R-RR6`ST)f-)}$*&j(PJWJVCRRsPdGj1*qs@%{>XuE$Z_HGo<>g#4tyO3+cHm5)_$fWeE?4U=iievqEzW*)vQdML@k**_XZ^4 z4-Lfisw!Ko7SaQ(KC5QgW8~lgzRv1LlEg@@J6bQ;T&`XM;6097hCR}Swl$F(Z%kHlS_<#QDgDr|G$s+kK{f?zPqFhXvv#Q$` z16XWu>h%BrQ~h?Q741lmM^Tkjizxu$tHMCD(#K68t5PxMLEG97pMSC7|9o-ZGi-7K zJfR(Jfa3lCet^9s;M}*4vavxfVF3iu%v5eqpr_Ph` zp`Fz$l=Oy$F@0|p8&s^Rvn%j}Yr7l_{je z2OxU^%BXMRll9-Ty$uS2>#c5a>xaVrV8GJ@f3XbrzX6}7%rz6%@$*)Uz(KZ|Z)D(T zv4K~BPDwqKW>j4%Xsp5o{wIC)pC=PWdctkT@k*6ck4dZoFM{a2piYORy$soTMg4D= zhreL-oju)^JWgQH#+wIf+SN()TY2rL2Gu`5z~5h%JmLq+vy!w(1kiP=VLWAm1DxM> z16m;E*=!%u&zqN=0%OkWy+XmT*-phbc@^Dg2wh8jMBLEKFSaTVX?B0eqd1giB|!RG8I5~9{7eJwS04(^ zSD_=P@2FTP-a{&ywc5(6vCY{Qxijh;gXxpMUO5#V0dHj&Se5!wL9wKhe3IpD9jU4P zcK4^y`CZT6(E3bHKut;LszJ4Wdg6ax3jaUf>gOa2tm9{`A2TVN6?@-V^J5yDa30b} z)p13KsNMcpx~t*l=}+;dR+vL7;h8Zj_|rLFt6FmX4r_?BnFZWCUCFPBxli zE!v(6>4M&C`de4JS2pLE;2Eyf|NQBHM#?lqj;uLd7MXV3V4``d+<*2g^w0B%ruJha z#d6HJ?>DsIDXN4qlbGhRp|PTskvkTH6!uKF@g}Ky(|(sX-od&>-@Ou`@NG6dTs1Kl)$TOLAPyY zy>@rHE@gQz)M3m-*YtCpcXu7LN{Qi)trs;rGfzJJeSSox>>xE%7WwsReZ6fzz%R=M z(+r7A9(#hyfAwt0p0vMbSg;q>;_gM4wpDdg`+-~U%QVK+zTa2-iu!BuIsiNRQ|`HB zYc5DfQ5jp@>Vzab`S^hYnGKL{&}e4JMT&;T#mrvPUL9d&YMKKzi+})w6p1NjAP0@2 zf;i{8L{}NX9F%5hu{Vo>ZIBHuu3U}dkP zhmJ^zPD|;=W0vR44q};4A4GJEZBTv16>r8VZW*^RP~ZWWFdR(!7kVE*Nm-`7lt z6$b08f3^}^%{9FrNO?gWhzVR9U4i``>opLkf7g@&)JC0jP2Cg9t0vJOPvtLbaS^FJ zsKPn=#)_{|3&BA_cC@*`{AKc7ZaMEHGc;OD@hqHN>CTMd>iNZ`ISQPIb9Ej{ya6Ym zvQO5(KUvc3i1;s`>;=W%^jhg^aBB<4X%wT=hawN-)a?aDe$TVL^xQ^opK1NkSmiJg z=0PQ%Fj3&Wmi5|*KJ`X%M$2Lm(il6$gxq$OBekM&-|MW%9 zsA++l`WFEo$SN-geN}q6dijEH;f%@xdd3N3Rv))-3~?WfGsXINt{uL(+anI_Ti-1D z_t!g^ZXR#R(1a>Gr%bF0R+Ag;L}qRlH0(`#X^fs?#hHsyO?OuHkJ} z-1K%|j0R7gd&XgT<3kHw;K0>gnUDc!U%ZS-4KY(aD{|K))X0kjGs}{Bo+Zi>L(Eb* zj9h7uv^X@k1Deuxy?Syz%lPC6A)CVRFE{d|Ph`G#3dQ@rWNu~we!~N2=H*wqA3J{j_QNnvNT@;IJi2K7p5NK>9I^ zUa;vE`v)i3jZR-0Pk4wWJ9oP>)ZT`S=#PMECe!zg^?u;>ZHm3~C%HVf@;MiuVu$}6 zh%(9XCl3zexDS7gW54BoP-|zlhE^T*S~xUkSKvlZkH~%=Id-uA9a=m@DQYkKpnT`R zJUSgwAqTNtImA0K7nyO(vSnZI00_MvV;0;5V%)O ztecDUh5PQ4fil!iQYLlLZuTqkX%y^S>uX)Ak8)f#T836=iEmQ5VBmr<4)ZtmisRvk z>H^I;q3D;686Y{N-3J&dwCB-?jfDp6;0NQlYQsA1d1p>P#;`NHR{Jb-p<~4Zj7fdT zoYDMBtgjcmww$C6T~wH1`szQCXdM!J9dweFKlU%fKD!iLF5Vgemthq>L!U$J$(?m6&iG>4C`o9`Ao|1NuFDp24bom zik)us2_4O5KRN?WHgF4XddlkD<0{#($E?}Yl6^!GJn0NG(~Ed(MDR#%#?>=b zODhYtVGQ~W6L(mF@QX%6efYJWXzeAcww@3&Fj(qy{>i6u-a?KF$1RcS=s)=4Tje<4ISYm(+J#qBS z*ghxjoQY*+sd*WK8wQ87Q2csT9l-CC~g7thjY3GTNH(>NmIJu01~G>Nvy zLy||5Gi`o3(*a>gWth|!%$vu3{;Ly84$Q0%?0PDIk05zG>6qUQaVJ!owx~rr7aSxu z>F$e_4%-oLX}eJ~YR#Izv>r_tGM?`ns@S{|tiRoBc?-z9>6!4~H$vxZemuU!?_ zmp}(M746;q2$W+4VA+cR3(EMEtwvYL1x%DeMM zP$`!Kci7~H=S9nPg-iOVq5AA^rV43t1<>Lb3Lvv*0GIaGmyxP0*5Q>&>kDjo5lF5K zXS9gZ!fE@U?4L0Fzjr$DabM$2`RtdipXS1qavcUlnM0@%jGp8(B(0I1D8}@=A>_VB zX2#i6VjI%u$;MglfrR2VAgf_#m2!SKr5y2PQ$M~&^vdc`jn!ol36QRD>GU-ufU`PA zQ5V{z*rJkAOrCvtb^YTpK-QDlZ}m&nyTcO8@vY$+FJ%PHmFr5dclzUKT&fgym;hd~ zO~oi=g*AKVWppAI7i}kH3?L2!mJm|6ZtJ~xNGix4o2{}%I;1k}YIA5Z$WXhp7z>E5 zeM26#A!(PqAM<<@woOla!#%vCF{wL4Erf`^jjG1XFlza;X}(pMEy$5d;MH9Z)8(Nk zWmu<0FkvN&>55wBK!nqSMByxQ0jCF$AAl%&f5lsZ<7z)Sue_$Ts?gcxq}vT%V^s#I zwd3ls-ZcoD=cZ~|!w%pKGCsPH5@#Nq|GtP#Ca|D|ZZZsmz-aRo7Or~YpcB>OYn*BH zqsoC3p=qieQuB$|6#uAo|N3o2GRhI(D#A%}b#K$l!Z`}RpWj&K6*E1L5X}||pyejF zwaZAn+v*+(J#ioUGRf7l>VieWeJ{ZAum$jM4{5&15nxfR$i+Ac&JTQk0np(R*%MS!#0;zZ^$>BKpA z?@{PBM`Iz#*&KU61&H1KsfU-@#-FJGzWocM%3_f7!3w0TIo)o{?(Al(+WBSzApItwzI=;r(nnnyV@Wym zMbM^&%o&iY>AkL#&141)EQPSI`Q?*niysuvDiPu5TMDvW;GZ+fph~KL90qZu;bIi0SzwX>1f!bigS=I= z!)Imr2eUU__5kv8V^`B4)UIvp0hz~=YB1bY4Sk%_GoHS^6bRm2a&jV3fSn$37lR#6 zZv-;YV;j?ZiUhDtkj41XS~Ot!QMrED^nI53^8$E;5N&|V2&6X1S=XMw=4WZPO+`-I zz%QT?-8f;U_0vep{sS6{b8t534sF_rNjWYUUIzgcCYIaI*AfJ)vj9P|-9wlR>K%|R?UF|RP=e2XDz?qr3Jx* z-CfcpAt6dgcZ1S3bhm(Sul20wS-bdj0#G`V zE!S=bg@2-M@_@wPX9bwiDU&PR?Uhn2v33)1T|DXVDS1K)Ax@SxT)LmG7oRg=a_p!d zvBV6hsg#B?DPgA=cORbHO)#X%ed&D=1`fd>vJcEV>8dHUCJ@bd26mC=P(30NKvc-3 zg?Jpr`VO%v7NJH}enMUZUtYE|!-8n)Kt}4=VkL2lPEb021>ZA z;b81OFsaO{S5@ep=xXt+WCh#>^+Li(D@^0hpLMrBXG#lr^_v@@c`i;}E631^EvVem=GZ^NQnQJhaBDm`hW!MSW;LPVwy)3gvUZrJSA7eOU zbD85}nD*X84JB~&-NP6OX*7wZP&bLu6$|0imWaY)7&b7Q2Y1A%h7Vv=(GK6}GBq%t zF8)B<>e5z=UtxxWbu7lJ#jB6Ot5u&zTda6+dw zeIL`Z{$wE0`@x7i94QQ79+-klr?KNs+4oz6Czjhf#!s{EsPAWtpv2!m;&rNu2yK;X zk5#^I%e#K6S~GTNl}r~UXZ&cuz`W>tOqE*tEZjVbp4eP#5Kqib#$gT9U`jADG#g)lPl- z8%t>!hre=()3gC`op`IMuk`^inCFa`&B%XvFu@EPa-rU#&$jcu#<&%s$M} zI48RN8)5P-R&v*jFG}*s-11XZc#@^%XUHbSG^xP~Le%tOkPuVRn=REh z_kDSB)M^7njYXHM&DBC~e7^C`K{6V{Y=Nb@5TJ<aapiz@fcw-qt*%lCgw zq~+Fnbf>Ra!QH)cS@hNV$Y?d9PIGjC>RU;rH&W|QJ5FSM9Y2N5u{?hjhThaK{Hgsg z*{0m3ML(uCnD!jmck)%!~wwF8;SzP!c8{qRnrlkZqQ)&Tf0Kd)ll}yf=KrX(Ii4YuGSC&g&oc)@>>So5v;z^9E_*6uK0P@`Z&4 zVfl5|iYokUN(B0=-gFPE9I{2*S`SP~9s)jX)zPtI;wqtyLRO(_nT@d8d36@HWhPBh zlOc*R|MVvrV&l&S32;a|P#zJWXg1&RW1>)LN|#F77L=tItJj}>DWRcB$ z(d(q_xKt=C9~#eqqnu4*m~_}=7z7+3%NQ24Oje=7PniS?c(iTFZM5MQD}Q5or^%ZL>%L6l7$+|MwU`mPs$=z}uFh91qU?wMk|-P*U(G6~2eP{i>^ z$vD%WH?qbOabhh>Fjx>3{1=9pK3^}@UZ@&&uzS&#bR&i22CUFx?FAX*Bw=tMfe4Y7itTZRYa zDobo!n9fh0@~y{hH)7;BWWUl0(uujN^zQ`)%seJ{U#c-HnlF?)>d6dA@bpDBnVQEO z){-7kUE`?jk|TWl#x^5x`(8^Zi~Fd{0bdb!YRP9ST&%r^FX!Lb7d(5xYb3zE`}@@B z`523AEY*R9+@q}}6W6A++R|er?XC{IGf4K1Y1lx@ld0hn6E51Z8p7*x{tOh<>;g^> zN^x4?%9f*(<(lD}r9rIj%8s&|ZAxL}EYynJ_I#^vH62`(BTgf#WY*XbiZaHJKprBh z{8TWiOxNRK-Zx|Rx9m^c#sMlWb5mEbmWp>Bp$wPuz3Bh|P7psL z`l1?-bh-`bxjG_+_ngfFmRhV5FavtJI)IJ*AosrS%7i?1qcBLlcw10r!{mPcj)?Q> z-sLSabl{=a7m@S_6J@nSmN5=_dA9AZrD_=djI27Zjo+weQb{E6Xg6dO$Yhxw6_HUc zs8-tK-Rjs&c;^1x|C344js8VFx#(UIfz`7Ga?Y+*=763A-WLoFC+q!_f?{ivziGcF z?vnITw5jt3n7WF3*f;|BvL?bdjiQu`h4g2zT0_zLY!!7Rs63NC` zHR@fE)}SfDl7JpOfOS|czx~=F56~T^$|Pf)9uL2z%lzc_7)iQ=H?M)Ky<)y$uf~w% zNt1Jt(#S#M(`WUn(tZFE76QCIqW2$nuq(|oYZF3@?Q$z2bMrLVnT`tuGuI0<0oVE` zF=no0l}DNTO$~OF;d6G#odW}=uCUT=(x&Ns6*l~oLJUcNW&N)I8mImOrcrKQbI!s{ zRnMg6E*KuY_BoHOEJo!T*isvxTv;K+aak+B(+H@L{#ndUP2x(DlE>phM*|MDGBM5c zk5ZclIGq_Jd!~7^2igwS`@;>fEP*dwJd4En4;LWrURlor*Q4zPfm42FUBEc%@kmIF zX~N(=2W+#4Wk$aAVa2C0s&wsGdmGkBomZK-1?Mv&mxF|+(99?r6z9L81eXweL(x#V zYo;W;##SmguJ%nZXSAH+XEsDPfjPn$>7>D0ayW4l@_uag2c)fWls>NMg`hDVm1Ls| z!!Hfo<6-h_H^TW3#@?%M3TqhS%Z!;n18=G&pYr@2HuD|Z-A)@u9bKffqht1-$&~Hw z=`wGn@5WMbYl#G6%WMv_@2W~ZW*Jb5xmwe6vzH2MP?~Pv*Nat9(SS21zD; zW%yS1lSGqwfF1Jz47t8a?&asaFN(LDLj&(6UVX5f=Rp&jMXh+9wbP_SLY0#mjm3o= z7_~vUv!1|q&M@_`a1t!h*8Ak#ESvLg(z1t}Kqv$Jm94oiYnCAV)~58oEo9F)7wqrj z(AHmA*-pK5+IPHQK(t`Gjz!ZG=5jy`%3ln?af;F*ez$vru5&?o}9)iT(9tt87w*3?oC;WDM@JR-wWy2 z?>sEGGd<0e#lyf>Aq^>M_xffjpPQvwG<=vP9I%A*EUV@6(*O>&rmpJxr(UzKx2!%5 zx9Ifug_vN(|Cj=#67I3!;xL_zm9IK`eW2*^?lc?J*{*>v8WtOw;B52Gy4NU^c>9(n^$_cJU;js?Y6)f8rRFFCPigU7q5ik=V)v4?vzPmY)oAu(tszHpp#(xm z0@c-Jxoz7)krS-ObSqy4D zxIW)-G?Zzam({vZMQ^OocQ{m1VL)f6v`w!!q7)~XFvd90Flaygg z1iM`_%V&BAA$ElSdSd_MI^%c3?Knc^KcaxKz??IbrblM~sr^OC02$^3{nGb{P`GE4 zRs#v;{vUkCS~0emB3Lzy)Yy?Tj*s%Yb@oXnH2GB;^WD`wz7nLLrZFLE%sD;y881FY zD`W*C zGJei=iYNo};;kV3?l9p}O!U5!J|^3nEQT}NUxYr@jD)7UyNNV+`XO^Sfi{k2tb!_+ z_O&{)3dbvntaYVd0-9wZ^wgcx?;A6d-|^aja91UK>$m!~ksZ3JoSnIYlai&mX}VEY z`ndO%c-pgXrC!1MfDIV@2I%ZKF_LDCO8(1_frnZp+O? zS!8VY51PXJQ=0mKqR0f&Xt(D}EIT>J%_&qkJoi|iqVtpZhNlJgeI0d&3(S&jfO8Iq;#t2TQ7xM||W%5cJxgTCpxaHFX;#8wGN zrVQ0H{J5f*?-e=(k5`7sOSTP%XfoKXUn2^gO^;98PM-n>H$=Xb7lW)TE!-UkoN5Mn zz4SZda4B5`z-1OqEqdt7TVp%#0n*>1onuufi+dn)0$Fr^mx-0k6+^a_>P$1?pltY= zqqs*~-}i=~Fjyk>eVqC=wMDBlQ=p#c;=t*rP(E{#$X-+WEa@JxD0B1Kp$NM?L!TpW zqBC#LMiSJ?=prW|dME`f_1g8N8O9hyv7yM&ZX|xmlk}KN&ZAdr-t(H;QK%hQEn{s}#O4Ub-2R+8QyU zXJ27LRF{T67f(4x*jwFuy01*%duwE|kSD$KcuU7SwQ&>-ZPC|P;B4{@ujv=jlQwCu zAQj}3xo!avp>T-4T~r#UyvH`C&-Ke#2vAfRn(G;NaVADYreVGZ&~*vDBFu;xsX-{% z6Br7=LNWEMSiO=$!xpj{PctNT1QZuV9y>a0H@UFg$W4~_8o%t%?o3n%+TcoN1=?G7 z9I!Q(b4dLgG$kdM-$yzD!>Xvae)fI2EE{$extAE-buWMhNmnDzH0Z7SFfL<$wV5L=cIckV&V7gy z=2*AJVz&eLb4tr0BnVb&*XL-o7+<`BU#V~%Ilt|Bt3-kvX#T@Ii8Ud{=WZ?vQp`B0 zn4nwTU#DWd&S!0V@-GAU9}d(%XTr|}F}~p~XcqAU*^zFjHb|h#4a3*QG7%5LLq}B% zt}5f5w!Cih=beEloL-=|fhJXDrOkim2sgF*W^ zV2%qR#VD-lQ6cui=nd(oR>N!g5^hE`f`(Z_5W=0`Y75KVPUg~xzPj)ms!AaAdfBQv zKHVK&(%%;z3`E1C4ZDn{^8=0tKuFahs+)ig@ePymNDKSUWwMzLVPjs&*~Tq*8a3$_ zN#Hf9Jbc-r*PHnb4GQX4g{=HiOg{!j+U61IOV1ncjoLsZ2SBgBH^RJZ6@fWXnj$FI z<|>=ip6SuwvB;gJ`Z0PZqlbL>N`lq%YJvC5&0a@uRKGwFR@p6z#QxD`+@tEVIM||3 zLXG#}!yy7;iGWWl2-<#}Mv2oPcIVA{?IyIS>)W;hJ&VXXR-CU$&>fhu{wpJoUjqj+ z*oM0AK^cNakZ4>4iZG2Dd_P*Q93N;pQ_k(T{y0^~v z)Yv8ATL1@W09%PUZGP)6ly1gQGIg^Nd+n`p@wR-Jb1{eDqn+;O2Csi~B^mpbI6@_U z0Nwpi!izic+T6E)aknv6V$eY^&067`GLuH)Q%Y9u7YxL$wyTnsh}% zq($Z*(*Ws=BleBLO0OFY;3Opkg-uvq$)pI8=(>xDjQf_SICU~45>&rqD-wz0fX4K; z_EH&j8cW-S1$b5D!LGG3) znIqZsZcliu7kDJBK}M3YPwm#zxM;a!^=4x!A9~c$41Dj_SzIBRDgJOChLI$p9a=(1?b zH2@wkzA-}=q1llJ!jC31Oeh~^lZvop#j>0ajcc>~%>tb%1u(z6CSqO9=xrUlX*VXv zYZaTdx|7O`hcgekQj8@HWRK6EigQGxL(Gb@v>U|uD05Bx2T7rFmdrYIB&rz;-SkLR zdi&V0m*b@~7Nw)>G7|xAS&hv=8%>%lY^M}+%dhc)b5Gx$AqE-EN~v6InP&K;%^S(=F*01X~d^shDL#D~^U z3N-H(Rwg1jmn(VlG%JM$+t9)Dt26;w6 zL-(+B6LH8&vsUnGKAg99;Qp!(kFlr*2%2tvdyDniNoX2e(q4#a{juT99Y z)lKuu*G7DfnwQWXb&ylcP!Xw@#-hZKvtwKqns^b@o!6l*R%(?U&I8&{$dIIDei$KU zl`b?7Y)b(!^6@x?sIeI%>B4=m=Pr3!>r^(l@7C-q4L2JYsJ%&G^h}3 z{bqzn^!QbqF?&@vZ+DC4CEqb@S# zB_%$i&bFn}#dIg_$mQnSiRHzpLmx!^oWh`dRsrRHK(Z$bGihq$8CM*YFQU%U4n?G( zp5Qq&tjd1xa|tO9`16q{KzU(uIzIZ*xv4OJ_1Xv$+8xn~uB)8CXjh+H2cc!?d5i) zunuXN8b>3o-XVO>OIW;aa0GmGR8K~4Jot&<2ZqA!sd5pUQLoT|QU)xgvQX7b@9Xqr zQ5=+6xqqoXs}BMx_;^ehUINCDgb3FPJk+b*yQUg`ClJU{qmhR>4uHy^#1Z2P?0$kd z_v%WoCAd(fGpyO2ZNbHbX8gS?FiffXZ%tc-Z)2YOC{yvn9ygPj_)b z8RKu&_l_OPq1()rZxjKV=`TX+|5S@s#GwPqjQlXYs&W~q5d5BRMnl0h+l;Zxb{%M9 zDySafg9JP?8AV9ayOWJ?$vSSWq`#bcsjDVgCm{S{c(c3@PWUmQ$HTSdPd*KA@kga4 zYlK%p59EgcN{13xxWYfgaEU^@)O()|5U!u8a1za0g$qYN(vknQD*h|^7iImIR#An* z=w!pMay}_yw!b(>D`)>hs zF;CDkG;}>7+KcU%eFpl}EYF{1XD0UCrG?u=f_~+Al>m8UzGVvA{pXKg{*Nm;-8x_T zjxzn1lXZYEM<_~4mY{zC3V;H3kybmvK-l@YT!PE%ia7^nD*?0sa(J@<5|=hAqCT&( z&Nxa<4!qx@;LYnlRuhw*W?uuLxAOcTe1~R%wb?rdCQE$TLVh{`)ZfVGBWDH7IDDf2|MZwZaun z;D{Sx2VSqu?Nu_$00=8tl9qz+Iuh9>7W6+x&Kb>1m5wSs)MDC|16o; zw4k(6HYmVTu+W__C!0Bwfe%Xk?4D)D!lpHepSV?HAd5_8ACln9@}Z96C|^R>c55Jp z7EBs=Ko&gAZ(wko!iq!i*!1Vt>1^>sF1VrUJG3kF3f_}au;EM-!^B-6ee;8{D} z+v?)Y6b_EjdvVEp1%8AwYDpI2@}Ow#pI`+)9?k=D`V54{9aRqCpw%7n;r-fYR7Uk{ z{r~qC@%ia|)BdypedU!>C%8=7oUK|LT?ltWCuo+o!+SP6_9sLSyI}rI*Ruy~HmgO@ ztqfK90)_97a4!u^Nl;hp&u8#aMBVN!^MtJ1ooaOklbDby_BfbQ>CaljJOylD`08Y# z6M+ylHhfZ#foCrO1jHlZ-v6y>>1DFkQqFUPx4I%R(sIRTWRD-TEwTfm+r=@0ZJiFT z<`)Irz-R{O0-(i~AjqHTaIs*%gCBk^iB&Az%=V;@gF!p`PQlUa`BzIh2|?J#F3be@ zg96ylvCMZ;<3-Y!lV!%K+!1TsV;kNG>+jGF5Yl$U!vt(Vc7dD~APMLP; zR>`>r+98B(hwc8s>pl?DkG$Ica5dwa&YKu}i?VAp?_n18g{c7Z*z%;#>~r2DJG0i< z>TTV&#Z?)Cd7>?q#Rp(&QfD+;abba;(reSK;!wIcgG)S%EY?u>oLvJ)%a*m6t@ddGpJX*fqgBiAQX49t+5f9e`ll_o2GW0QtcoqDwWABt6=)+Y z3bZgw33eS4n_sP!y|Y~N$_r>GzKlBm(mkcab$;IZr`cb;G*J{AxZ*lQ2h%kTvb^;l z1R!S4O_q#9#)nx-f329hd1(Go56MHeSy7;d6mxF-QS&e1)5UEA`>Yoy(N%V`utU8C z!{v?fnFV0U7OaKYmq?N0@;DuIzxYy$u^aTAj3wF=C_-NPPs5JHW!<{sHi%$QDoDLH zi}`(9HXKOL1|_gS<-o780nP2<2@R&jv3{2}|EY%B9*y*e!~( zA%t)HIZp-L>E*MDtLpXt^W#82B>*j^2m}KI_pxB_~7BZgtf>vRy)fXj830L2+NhkQ$`(nGUdC^zPh9- zuY4dZ#_Y2ogxOmg=huL;@wq_uar^t}t_bJw?5j}(u)pSkMj6_Egd%_xPLca+`WI5vT?lOmx%nvN8_52+ve_i9iLl zn8I3>HFo=2CC8Dhdv~_`#5I)uJlJ538{{7@00_x=t`*vyQ`GlMm=A3fV7LSWOqLW6 z&KB1B_|q@wD`$)Y+omoCqk7_P4k++(2&pNlrU8QZ31pgo9{~D6VO0$%a5gwBsZvtD z^A(T8v7#=y#s*qV_`;*YHg55l&bjX;w3_br2dH8Q$;7!-6pbSI7(0iHCY^cN9q2WXqdrwdkxk4)2^u8hiNFQ4(b{;M_bU0+&$f=LTCly zZaELy%A<>)f@$cg%dG=&$vw~jMitK60S%xkC@k{~q%!!Sm4*Vi>BwLn5MU9``sexi{B211NpZ@140Q_PDBe%1M z@_f+f;6;BTB7a%a|MfQ5qb^OePj{(*y`ux57NGJ*lzwIT{kwQPP78}ABh)Jd%aSJa zcgZm4GO(KnT|$pR(iv}$n;2=Rdb2-v3E=YA<2nGT z%4#U9^Kl)QP|7Ra*)|7l6J#t%LmoqvXmcqN*)v)t|I5t6pRND7Md)`u-4=$;?g*98?x8}ErDeha(z{YHfaljh@L4@yQs4h zr!YJS>wo`9v{i?k>(RX=*xg|vHp#z0Vpx_}$iCFzjoP*z7j9X7zp0aG3U+^992ArU zxKWWiK9Y#~)EEET)in*SBz}b4>}1dFyLsUw$*>;}5gmCTx=-gj0#=6FI9#s_Xc$+@tH{GT+)QrpXQS zeq@njs#EPb*|u+uuoFpon@G&PK+Fg3WF8q8_a46U?Ujl$c?SrNL2;QGmRKOzDGgol zg%lT`?qY9%4S7v^jo5=5&6f1}g$Z$cN0G;QV76F3hm$qy(x*`s+9AX6DLBvcl7=?k z)-{Z&x7|I)h!ortU83Yv+v5A07w9FWc+y2NWH*}^+WJyV3B!n(JS1h~3o0fmi~;lF zyyp0JUo?REdiJ%minBBs9%GGBMYy2?ysvN61r=&9^wc!$nA z#i>W$#8Sz~Eu!pY>UT%MhdE^@#oc12N@w4fLuP}x7$ggGP9=j0>^aON+6FJKFPMb` z&e=LR(zPQIXSTfVDx&}rk6o~yq3hay5{sRpWd=i#luj)inpXW|u(-(SUT+&HT3IG- z`YDxXw!TxU*Syr_Zpd59y4jo%u@~bG31pV4$vn>xbl0bY8Fu`f+n`vyI4+OF zSq4c!0lPO-27!({(bu++Ev+Gvy_Nmw}m%LXCkZ~H8P{Dh~k@+45{e7fqt zb1%LbxpEP~HDV*d~JU#c;3+s|6 z*D9{df0Rb->B0is31e0X)OxL5a$*?x(+lz1JU@-d^mEm0ejM3TZo}C1uVpAa^p_bv z?0aR->#5cXKi<~8Q)SfYcY8i3^@3QG#>HCAl+n7B(qpyKQUO_o9n_7A z2>i0R-2{JE>lutitD-PJ?3B$oesMF4-9v7bmKu>|XQ}GWWhfnjD87-F0`Tc{l;;yn z2!UZKnOQJ;m~WD3|1pEsKX~5irI;ux-bFwu>F6)9OQ{ zdi#UK#YOf{=l|#bNz&%63@SaWv8l3m)p~flC6=`B6>{W4Pm*AON?fLPXhU8!J7rt) zFp&y(tn>eD<-h$wlH8n=@TC&%DoMn;3bO#FOiBVUiOq8cz#AiB@VsPu!gv`_3)RIx zIq3HyxSluWfMmCrvl0qm-v9B%|JJWx|2OzEN;};e zm~93|?(?8Xu>7UU@xKNV?UN|Jk0eZ(IYH zhJ^WOMi8q~Zxgtn^swsyf<)hSu~3U4wj(*7oUVGX-{OCQdJN&+=6@vwCO_2G3kD>& z@7q8s_Grdr)eu%zTBmj{4Yasu__QLMgdd_@97@zgzDYZq?C?{iMVc+8Nl}ELx6H7S z7|ip#M!;LoH({R*HPB|{jzxheXiHe*^~I?X!n`I)>;Ydx9F6_=KK?U*&{td}=AgX0 z;qkVyB`|&3%>=SX!dd)&uaG6RBGbM-ggFdQi(E}fGL%K4qfLo2MudAW4$*&XVMzok z?g{~(VV2KaDx1FVb#13JSUkz-+g~jC!X&*Bls>la@6JpmdFr{VrEmx*Fwl}2pgp+E zTE(Md)>?U-yfzQA?+$H|X)fvH9f^I{K-V?Qh;`A4Czf)vFPTVuTtugeZNw-mb8q|ixT1F)byxX@ z>@9NbC;gu*H&>!NHff85!=gZCqt3qrGE6KwJU)olW)0HFrl#nwiA= zLNR1#wBhKN`CYzM{H{$v_H`4>| z@MM)ldMLkLAE}65czF}Be??H3TpC;MwH?Z`JRKK*I+bL!E>w7J_tghrwjLB~DO7VY z&xS$>U|{7-=Ddp1-^DDq}K1CNXza#UBv$7hP`o1B$m52 ziGlpE8aN4#kT&;%VgodIFP%k)@0-S=#3~TM zEY(RVja~2E!~wCXpnJiMw0v{ShbjfBt-dhk=I^d=i2Xd5oK_>nMt8%o%WYL!^^rn> zfqlrzWdQTseEb-%fA6cPskqy@!t+`XR1U=DOOpL=`oz$#Gkyp%gfUfa3bayYPXx>F z+kVB?2hOsN!uPBBJf_z!IhoxK$oaGsPPlTjVXTst!pF0>{;02lz$H3-Z-5uSis}Cr zO6P^On19~l*C57Lzj*?xW0BbR&V&MBVnme&MCYerbw?M!hA#lOM7u!zSu>);ikVVM zk|%Rd!neJH7-mRd-JL)>IEgVXBI@uxI@-Ni)YWA5@^}^uNiBshuf_93E^ge70zUWm zakBse-lqBu)jHVAd0aMaH|gPWYxBJDooy_(>;LzzoL#0Tc?+cw%edb z)RKpIkjp&e#71Xkd)>jAP~fs@gQEn~_Lh5>3P!{cAI1m5(HWKI=i57e+trVgGHds< zzi6sm9HhVI(984M^xM=n6`v298E<4-9!SdG89}R3_aA2?Krgr7v}WO}Q%h4jur}cbq^^;1M5jBI9uvtFO416mXW&8Ll0DI%JgP$a-~%r+RJ={$V6l_n1FUl>xC{_^VPKkO*w3?(n~rC{kw*NW zjOD3i0=D3Gs*O`z*qYVG_ zk*Pyna>r&m-GsANv_F277=s_D_Uv{VxZG)L;2t-v|L_vpvfsAF^f-0p7^*NKc~pj1 z{&;LgAt&~Fz;>nXYK9-psS{JHva*OC#gchdhrV5NZW;^w$)Ql};InMq{jMKO zHOyqJ9Dq$vn#R-)KC4f&W?uCX(WP}M#Z{9`LFtFa8EtBC7Z zi#LOYS;IE3s2Qod^bACdC#3$0B?G(RcZPM(rV={t04L12Xn`b)H$D16IwetN5C}}v z&9nbkEyN|Zv!;Kz002)}xE)(#BiFcgpkk{sh&J{qo~`Cpc<`3E`=)IZH*mL#l!n`8 z?F&;{sj^1eOGeItTe0=y#Fi#t-e4I6XGZV9B!j&)tf{e2r}zdUXC)W7;JsYe!Y6li zZvd{kW|_y@zUp_*a&R^G?r72Jp=?AGWgtrc)vL3xv9se`?4Ss_JsbO~BYU;LeCCPL z5ni^Hf^X{GEwh^l{Q>S2mrOEM8bx| zRsAJH+8;2No;$Ex9ak}_o)olAR|ghmie+<;n!1RSLg-6Vf}CbV+JYI9vQ0P#Oy$M- zAUtXBDW5)kgEa#o(KfmRo({N=ja|7}n<KJ!z zr?dLvv!yiuoFZ#y!&p*RCI6(m)6@nm^fut_;)=9~Cix2f!8hHM z1Jcdnhubx6p2=;QrK3t+9>|E#(THCa6Ak!_9?#}hGRK>eB!yjn#VlUqxEk?!}?d+?VoUazNbox=^G>mNrab+aDaxr{Ac35l~B*$b`%r1(pWM%1o zXZ#g!Ph&rqW96xyode`SzuBpjd_5yY9K4O9Zt3~xQ_<(87?x@5AI#>zR&TW`?caX> zYWbuvSuFgE-mNx&NZ6F}DjBH6BGlBgxl+vi`8WmSDAuUt`%B`86lL@Z?A!aTIA{GP zc+Bmq#K;+%b64l=nQ9W0-;kBd@akK&*V5vJ=42g}Vo5P3wJ@J$hFebLUU;P=tv zrvy2gsF!j0Udz{w-IjhBoQ4Kzoi*w+!Sa+VPGI|C`ZYFlsI6_@MvyaBjS`c6q_K;M z?{^T3+?2Kb!m-?PK3Y_?-(*XVIeI0}Y!)xZOOC-ZWsxN~p@y!(bfAy`Be^9pC+Cjt z&gRZxdQ6&!ZZGg@$ylq>AJK&$G>SRX_7RBsY3(4QF#?UUVEt$&@36eye{BU9ANy1H6MwN^GJ~+Dxyih7*?3X82 z`@1r`t*|Pw1#+2C|lIQ`ocU=1rZ>crs@8B}8!~RwcgX-B!FlyWZxh zl9Qf_P#(ic!&2g$^4rcx!S5W+CYhl58nr2nm6{E$*_I~SQqqgH{V=juc|k-^^{J*o z0rt8Hm~%cJz59cL(!;ibS>$Gd3X>#K!Ua!LO*t-Yf{ai|HXuT(mc$|k2X3GoyAg{J zgM9M6F_8|%%KNs@fn_HcSRXeZEH*znX*}r+MzwaVqtr>#LMiIYCAo$GyGx`j$LQ zHB0Oi?3~q&r;rYC!^VuHaH6-Fnmj|BOIqc=q zEGL!U7azPnasc3U&4O)&f3zIZF*udd=AVY#vZ>;_%8u>7zn!nHvpuvb5rXEU`}nc= z_5j-0S&#IHt#d>+cX`X=a=CehQ!kqf4ta2mYyGAi_WAb%`$~)T@G)m^;-Jv>m(O;b zldG2$Q{7elBnO5bo0;^?2n&j9AMbu6MX=r24q}tmn%)=v_pt1v(5a1;sTD;&o)r)2 z8;q7IRkr!|mga;!OVTvZ3fUPiT|M9TeX{+T0~Dpj=v)^_+ng1PQ^lHtkjxg|;J^mz zW(ZeJ=b(2hSw?{LY$uubq7}oY=nu*o;WsI-J@^~fBc93!c+2tknLNSc`oN@y!MZjU zstj_jM`JOTL?n~5a4`nv{p)eKl`~ZcU=6-#$$ljJjmtUVcuJte165k&YfcZ_5 z_*4JeIYz;Q`vR^UmL=;4o=oI@kqF6ajOZaRdB~^hf8Qg*cLzainEOS|#CeE)i5t43 zXj&q*mVs^RFMJJu51}jyv%iOeQ7u6T6ND#&r4)p)PU^*|xl@k1W@Ir$)V?fN1Md*=xkJS=Laf%xK zaQR}w{qKMX11@#tP@ravbz;;Cz+Q>UQ$4?WvQfnMTBodvF4qrST)*%AsqYBBS$>z- zrUH_crme;G%SDebh9=zHS^UC_(^#Ulaet?k^s8^oT^7YCkkZX}%N#NpRLH)xv6PRH zRL4YZBLvI`@Y8Mwgn8?&n)as=PZCGa1WlmEz^6i6NXnml(W9|Cl+V^F>%o}}wg-!EjD(BRj| zj@|{mbn6Y8LGIqh_>Ikkiw z3FqH=pNM|qIG!ThAy3 zv;BpqW0dq*qZ-9uml7}jq`9D|ULCu){JnS`NMHA}J(i>k+;^ytbx^IW=cj)|xmqH8 zc+ChE8)-A*A)?UKHz&2XCcTY7`)Co8Gk&Y z3XF}o#|cj-33YWo9Y_MUL~&G(ogH~@mVNBfJwD`?Xv*GGfq(dN5y_L4qUiqV!s-j1 z<3rx(XoDcLO8}TE4P@Q{n?ncd$vlk%Z2-BDgMTEVRC}e;Y8lhVKRb98V~=a|M%e5V zVKg%4Mq|~yPstW^@wiqCOVS7x2NCahZi zw;3pFX4_!`GN{b)z$6I2zl-qa6916^%_b*z6v($DT7_mET8y1pUbfRDC<%*A<7N6v~xB+ihts<)mYjDWa z1xK{Wx|scuSx1W>17NMldse5CoI}IHr4ZKb`33(K_4D$MQ|dJPcdx-k^R_>mw!?54QyFybk7J6ET#yCGW{t z(tJ`du26Yed^Gr$h*AYtGK7W6zFzGSNQzQ%mh{hVM$hC@5+&dnfS@bGV9O_~LoqR) z^s^yDY!<}WyQH^Pg|>3+rU@3cv1B>Vcz5RYWZlm@pr64$|g$ke#;fh61Fa za0J{=P#ckZ9zVVHy7Q!QC6WSEMP1u^eMFj;)bI&jFuV;|7*$+JO1|os*~MdLO5#f( z7g)&^U)a!Kw%-v!?pR}C&!s=F-T5hH%dp!zqG?$%GpR~CHD>JWI;(%^goGLRyEw;p z9cf3Cxf**0lde*lfPJmC`Po8@6*8mhvt|56zf~oxPD$2f`a&mC)MKrP&Pfgm2cT!`+ql7&v|& zD*O++TTk`P)I(1Ut;lq4{Jc*9ALTAwB9Ha*!W$XX`X8SW^bvj=eOJC$_sz-ZvjOu$ zpx_;;XL)7VOn`W*2(rsD`Wq%;k&qM>6A&UiTbju+Ev>9Xw_?h879zS*3?PQ)$&Nj= z>O|c6S6p^zqOm0XZ^~xT6z#R*vYZ$`o@Di=l$|yZ*rC-kEsBJ^Sz(q87|`yx(gR^s zHBs6$5(;z1^~p7Kt6)fsK7Gb*H@&P><+nq7uFk%g?pCoZ|0{M7s$8~V?GdEpHvCHF z2mxf;S-=p^iAPS8JTdBxCe1A$UYg4wm^N}YD0OU_t;R78dbG=@&-#1}(k)LZFB>Ig zTsC&Vv?v*Ju42-Ox?IGcKpIm%4AP!d)i}goARPH>JcC-i7X9Dt_iT?lzUTZ4w9z6y zJ9QMzT3&jwoZ%$nV6XQVB8%#O#ak0$UZwEQt&DPrI||z+D+uFc6|;()zVIop8wnGI zH5{z)i_Ivsv+6)N9qOH-^JWkR!8J z+w^Et7WRj*4^A!50?xsfVmAhjiQiJ|`gJ4~v}J42!Q-I24XnZpo5DY|U)?l1i~S}j zLn=<=7Ud)QKHE*g1n`xDwm*H|+UNm-yHd$;=WQqoAF63ZCRPCdn5 zR;=NKi&;X*ot8dfkcp3Ne0uZeKI^&-?uC-#=jWg4jN=Suv(Rb@B@ZDM32j~@{`~o~ z_jVa97H=ud1$@SNW#}2i8JI}{Z**+pWSxlT0ELp zMWql{?UkW#nn4{1qdAzVtlzBf&V3ka6^eJoj`xWU`r}0Y@O33+Ttsq^Z_UB0wHQuu zw$R&zTe^33EWTG7m_4*`a{}S6`|ZH55E?w?MAak`mJHcr%9kjeq5=?B-+>L4xPkTk z1a%p8?U-&rA>zc54EaA?y>(O-`}aS5MHEm#Qt1xq?o_&^8>Abgy99+pN;fER=#MrQ$c+=HBX}f!+ z&H0-9Heq!~^x)2Q+v4B zLe@s{w6wl^bK0@%KQ9c(1P@8G9NNG%*q>y(`@>k9W@gI;P5*dTz`8V5GcLAhaXC4= z558KC!E2H>zAsk-X*vr4eC5COa<0);!DVlXw9>Rc`h0hCmf!=Ozg&i(?#YIC1=-%g zd}EGkp&HbFf3`LO*g`3DveunNtiezGuCRiT&qek%qt094d#CZrx$?Lm_vuQrgiNte z=@=@xZ22_aXtHN=A~;z-jg_*oq(lZNoFzJhHY@K3md73PrK(_so!Wu{I&l;Isc&C@$rlE}j=n1woJViVI z{tl9C}aBiT~qxU9zCR=Xl)nmx{q`x05A1-)U^ zFionj<9UiAR0`?zz+(xwqF{Mls%FaPcJy5~k@=@BSvpOkQjT=@_jdu=!0U!udlFW@ zl=L42{Y%}o;1q$c)t<_be9ttkK>}bP&fsA`nf2YWTO8s z46kW>BsxE%us6iq7+8wDqfA-zM)2*mL%06=sBOD&uZZ}+m6b6gp`c(32??br1f_f) z!bg^fAc(S_uE14@8#N5_Qw!g3X=t5`K&*c8)>RnwI)D1jN(zL_1zsBKPjM1OPjvnm zB|F6d><{_1xflmnh97^s(|u1%1Tkz*ks%tr1C zoYkb7=pvQ;XxSuIF;=qyYeBuuh_Em${l!4<{U1^;y$MVSKLZf(C#S(`b)O6@#`2z<;YM#MEEG#f$M2m5D7VkyMOVbMk;Xg|tzXrD$VL&4KN<#+?LU>8HJZQ-5lz zTMZnTLF|lXgHk3wu@-AMH+IqcQrBX!rI|u18bbT)=JK%DEW?{h-{(4~gF!rfzsIm^ z&x7q_Z#)C5{femj{q^R0Ki4Ar!tJHF=h2ZryZ(soz!#k=JVBYBFxJLn_F*B;|95F3 zlM&s1=N%N>dm*Zcj~zj(S|}P&_BuC?Kq!C+Pj@R{o z9(bF53qn-lK?V&UgaaHZrGYxDOOnj4V`xQA??RhUI=PrdADQf_=OL=0sSwIEwu}Y*BHA9W?dWLm?)3|>JW{!G2 z<6smz7Ha>dGZYZbRm*@XhR=mUU_-;|eqt<@!dX0ie0eY*gHA5~E0xDFtdvQktZm9A z(3An~9O)P+Q@Gl}<{X@MRdyHsG5MY?)p)$c`hHPZ@c`%H0vpTzr6`P_06%QIVTa+- zI2oUUiCzJY0;R=DHc>{*V@T8gisbtw@hDi1jc5flL#vYaks@HcL{}TA9P1Mf=Rd#C z*4p*fJ8p&*r~y479w@5y{Nf-C%CI_z&4K+Bmg66*-7(ZTu7?W_S4Rd$Jk^%t7;+aq zi7Z+D>t6x`e+3cyyzPw_@QH5HZ}ov9%t}Fn)Sp`YE*?flAy;24QVM_1bi*IeRoz?@}!0kNeVJND3wWCq>rAfQI zR{c%K(qE8(cJmBa`P=Myi8rfq3)?NtREUwVfsNIvA@VtHggNccs4nV&7QY-{3 zDmWPN`f|~iQoqG(Wp(vb)D@#6HRChThVbofAI>NBAMWHfI)SgP*T}_EN~mi;o2d9G zf(zu^Pd{$|S)d|Jk2SPU(O7!G^yWPi?y$gShU)9uD=n{>D`>kp(&M11+XY-yR1{P# zFj>cVTC2v|g8#^|c>@o?h#>2gt$Su#gR`0z{kAPpfz!sy ziEc-(%n|Ku`XI7K)syCJ_;C99~y|H8HkHPA%K?ew>8r3}glsPIWb z4jEs-qw1Kw(xlPzvg8T|YdBYFaK$q8QJDuTXCUi0xs{KvEx4`BvcKCkX9aa&E6q$xVn+pj?6bBFE6mVu5EO)B!dJBclqLJseymbAs^uHo!(QJ>Rh#<=Ks z-gS{9x`ThbWrj~1{BR!N&RzWaLSl109WUMfPtQ1N5FUF-*bW4I#*K6Lq(Au~|3r+( z@lNPmyaOFSgg|?8#U|VLTHTOVZR2m6*58c&y8^kDa~aTTrsf$dv}-?V((w_+i<8tDbZSLg2P*a@t%5nFT#D?PjFzXShEr|fPDpbgdP&jLQ|;DGbk34d4d$9!1I z?$=-Om3)1>=>T;f>kLVy`Zo*Eqsk%3UH1G>y+Hd!hQ?vhTj9AsQysqZF^*Oh0{}h= z4Cf%L;?Fr;I1z+=rW8KKI`t!_*sPub9xw~Dgn-E9h(_1Lc&>$Kc{DLE7IgX9+U+L=6CWO592S9eu50Rj?!qS!s>1fu@+-_B%&v8ZP?5VCa zIBrHLy354m)6?0`*VzMK-Bl`7_9SEJV@2vuTI4%yGExx?)p{aZs_A>Z{sx!DFtFc> zg;0I+cE+kyYA{{ku}BSoLxvBnZh`(4Gbnh|m#AL5Iwo!X?B(k-4T9qMi)c))heB4} z{rVTI0OKaY&+z|yDr@`}ZYDgJ;%(lY;wmxQoMDVL6LPKov9Fd29?NE9z(c%+XG=^B z*Fzj0FgO5!I%j7h*k4K@Oz@`6D`uf8w*AY?-b5CoY^UuJM!PrpU6$ue-qJdlKj&;< z;KqfIZT2l{OsaQJ#}uTQhma7?XsWx^#2 zlK~PZ^7->;a5r&Sm zM7t4SApYk(H9h7k6W?r@{kym$m>dqKayj%v#ALbsiyArrW3(6CR#AdxZ8eBK-NBr< z7h7AcXR5k$;@;4y$rh*5EI&mg(mIAf|sXR~-$pg-2mvMwd zS#7-?jl<^4bo+T@O>|kh5a0|d)YvWB%Az}mig`}9&8WxpIpIq+m*`fRNAa-8(^&wd zV9E%jeo!)B(VC7w|Nb;9QjoQ!2o>On(GAYK;$|9!MuS1{GFf6wn%*{m9;cFgk;we? z_wj%Pwv9JVu6JJV7lD(<-9lpfG$^RRW`DoQ+w?dRFbVp%6kd^ky1lX=X5h?JgVCxM z#2$b30A9#cAbQV*at2xl$T#;Fpuj{n0ZlHNLJA|-JI&ecXvu$XzHw60dNj8ksOc7S z#zVk&*QzZ|tc_Nr8+{*I%J*{?DBgbf?x$G4tI3Yhk^Y6(@&6fNBz}GZ{zF3_G+TX| zZ_h>*Dr{ys3vFS{QF@C!1u7;;3e9?l^||M@O=Pgi z_4aM~%DG`d6|$3uKpkbp*x+|Zx!KIQ8}UB>r!WtA0`v0Ge=^3xIv86`6{Q4q4iH41 za68NCDf=i2j7@BX)e$@p_G8f_xkpNEa2Nl~cu#o^IC6kqx6k+unDBHx&_w?iLJmO~ zy+>~n^nKh7iRQ_&9XAI?GR0m>#nHy~b364$W%%A}3SKQeT@62dflVvf=(3+}*ck$4 zfr*~3b;pDoanS4md?oC{Lq3(8l-T#S+&-pVZ8YUsL)zB`ddXDo@_s>&nD;R~XEbhd zv~1PDL6!#UQh0&sK)PS##e4eafCCwm9QG&n*X9dHZJQqNW#J(5dw6Zqw-yEE+?CTy2HqWU3(VyYor$_lca%oT=RQnZ`Y_ z+ceLzd^N@jEbv10%yv6;(ygr&Y+~P~h-;(NmtCtXk=PI^$aiS`DMN0$A9aSDl7Qht zW4SoZh6Hman-^RcuvFPU0T5v)_y`?7#{Gm=TcVY?wt_wJERO*grpV!lW=AFnWxF)EDkx;_y&&aPT`TlZ=Ca}?t1a|@H+z}zjWuiN|$ z48dwVl})4uyHz|MS+_IQR;-p|Z#657LGx@S3Kg#&i|6#Ww^5gX7|m)D5=Jbv5FAuY zfw}dHtoQf8Be0a<;?&c4YGQB=h}wzgU>3XmNrk(4__LV};7m&5b6PV$FOTyw;qh?7 z?8vlD+mc_yGpn_oFDhB5FRhm~+76J>V&JoM&>pj)$xp0s9<6S|j%nI{A6HjQ(_tB^v)c zZ7Ea9D0v?%u8a_abU4%BX8n^=M6dcwiR+V6&5iPx;C{Nt1QgF3kbxf0Gvq&tl5jg3 zGi9*%X+IZdq5XEsK(Tgh{G)7=?s>qI@PU1~2!JZ$i@?p>pDGu5j*RnB{>5k@$NYw! z0PF@femkcp>JraA(r3k}LiJL;mCa4Fvtb5e=UoVJ<#mTELh?vmb25a)E#*orF0h5rMH5-~JfVXp3GtB8f$YE`gz4%q{*l}VZZ z%0{*?y_&o$==m!~ymVk|7AD>|&p5kCS^8}BQ2(Z-{qx`&1lG!py27|}-!N#MK~hGO znRB!yIL(LJ4%EWIEY7`=YQbWKaliH zdSc7*tbks20)Q4=mIMavi77$RRgP-lnc;HbpWVdE-JETYb_Lr^6lp@0XJ*cJF{xy~ zNypLF6ISveXi$9>E*NMa2PMk^4IF46u(v9|cO+GRyl&-2R9hMdUt5h|{VVTy~0k1rsm2y_LR7`^xqmA<%5Hj~D z!u@!!R*SK}R_w4K6&$Meo#4+F5WlDX`tml>mz8D z+L#5p{XuV%!f>#&i=H?-lkJh5jcj_|7Qynn1FVO;;bH>tghK@LZKpG-d@VXzn%{kFu=r5# zV6rN841f{0^*)L4-cgVNAd$rYQkgA8kIE4#Ny{wuF$YO!W$@t-05S{}F3f3OgY=JX zd(J7tM|RHadBw?s+}+>&FVz^91^?I-rjkc}W%eZMU8;7x?-8 zLyjcB$*J1ua+W#Vvj8iLi9kcyC8xo~a6;_5IK8WGs7t>cC;EkyzlxVKD-!yZ%sZsrtw??L|atag(_0 z(gFRXW3Ck7e$de)aBkY|30BPG@Npq&-6SE(4FA#jD-*`kTW(e*Vk-1;1Qv1K9e1(-npZ#o4T`@?WXGZNH8I~apx0jJ{G8XIj~L9aRrg>;=qTFqZ(Ed8PvP&%UKz_a2+JPwe&L@;(aLrQv= zVwSk3YQIYtsO3*#h9Epi0U0o~MDbfVK!euHe-k`^H`*gnLyZupijp)0j1FK(FacP4 zlsv6go5V0Ji5i;AL>~VKk_ewYJImh#^wI7zgO0xOj-ByBGnK=U+$5W7pq&73ifv)J z+f7#Ew?8!G@2FJ*WAsZ;YL?G9=IUmmIjU{m5+cv@M!7Yl57ZrWZzgKmLuq8OF6$7+INIO&qJS^xN?2hJcyS3Rfr| z1uYV)XH{fXdV|FpQ_a|I4baUxeKnMbqDJwtD`+<^P}QknOgR<{ahW*Qx)~Z{fBd zZ2+1y;Lk6z)7$Kh>5?oO$t|+s=!KMhMZw3j+mrBS(_b8#DER0xDop39N#(eWIRwLM z5PVl`x3HVC@$wC0EQ5BBjGT%xLm~54JmcrNSIWor+={V_sKl2t` z4cCCJ7PQ`6yn?R_IL&?Pd=pUFkHDc5mPMSackG&~um>s&v^s)Mu9jx3Kp%JkxYSKu zoV>;$xsOm9xXs}`x&WYN1>8kTT@T%hImf}IpxH8m0L68g(r4#S(pZe3IO7EjrN=tq z^Q%0Y5)&Ma%g=>`li5^?~8V57hQCSKDLWml+4r9Lgw z-tb2OTb!cpaPW-!^-FSf+ss=@Cq;0&WL9LM*>iFu9JyKZL#vNBc~sG-<#vT4sf>_G z{Fm`^G5zezbbvpj5NPLqDvY@ZR>)vhKRR>1D|Z8_z;>#;$Yr-V>@M@M)hP>}G6J=hdBhav%8MvFnamTctJoo*&l8O&4d zp?H>IJE*j@R3%@j^Qws0$Hxa6WJ|a^lp}V!%`FdCAm7;vttnt4f=&I-X4_rvU?G$$g@% zR~LXu`Hoh#V&OoqP{K-;RhfgnnQD|)A3#j@?mo(0k1`)g)cw5k!5q&jOomP+rN(h= zx5sk40CzGy83Oigb+6oB1U1BM047?vF-I>LQjVz+fsN3o6w4Q@g?&nhOwS7yse5nCfk6Yeu!NMyU87yV! zQ8{!5{E0h`B-xuJn0PfiC1|@Ge0=VjOtUQOOS~Io(w=x9G4g5@&xw!xZV3OYR_FT% z?a4f1aOv*lS;z1p)XY6S3IB=ROJKo^;^R6T1?AsE3>ydw>G8+EpA$X&nTG=L5MX@N z#f9F7j{tOWdpIjdHHW!ZUW-PnHi4beW;=jaG>lv>KW)C2Hg{?8k zS!x54hBJF{PS~lJO15fCw-TyGN8u^#!dXQO4r}~ z(wucE>6e@X2DoXgoQ8QV{P|;YNoNB z{;Eny!tjFg6W$v_w4*>jD*0^`#?dao_vzT0@u`t@8p&oV z*7|{@pG;vQJvCxnIGU?~&vkw#p6oMm?My!!L=~O{oRA=kb>_R;d&ZIDTP1L8)q_IO zNXjPwS`*cD2Q*IIVigUKK3yo-k`1dbUi}t5&Kfusu^Ust;pBGfBRU9*}%u}sr*USQ}*^RX# z09@i~oAd9#w$dt=tp$&P?YCS=VFs4TUYRWB?O$wj3@sZbq++O~<{O+d;(M3v6Bu=) z0Y5+)$l(~Aof>zRmEE{z@9deXowh13b8PDr#i>uUe@7Bo0+d>DN}=NWTqJ$4F;nkg z@^`1DwkPEEGyu<3BTf#>=DG$zgE57#g}z+gNQRA^=r{$noJ+%}^@h1-ZxN?PO`uDS zKRFZ%j!mhxmC^XMYRpu8@LfvQCm)VNH~Al_49+%gPT%`m=%g|XL2?D_Ni^T+s-+f~ zR{LS@<+p6~+8q1Nc0dcG@|^c3skkqa^eg>!I(^TV@GytQQ@jMdK4KYYjEl-%z7`0Y-zQqJ9V*kqTn^DJGZ`e z3$co9tZCP6|3E=m+DIZ$w!;0@?o7!%Cen-7Qv2je{bb;IbDB_+RJHBx6f)7wQVa&->s3!TMb=K@=p43{%J}QN#mH>+;~amguiO4YsrOlppQ|Gz zLwD_+6$s z7rL+YYu|z&|ywmAMYCgSPlT~=En2rNUw6=Im^cx@~^#HMh{!z;> zCARYoNtmr?8pYNZ>k0aJ-cGa9cePYr{Bo7D$l8Fl$`T>yUV?g&T%uZ-WT7-QN|ntM zs)|x&m}F~}*&hQk;ME%odZNb!?DIjXTF@KO4D%8)K+>uE^fRx?1U9s9ElUjJkSiI1 zkjPbyP%z2evU*SKzdAQtzrB75U@%1>#=}nSV&O0uXEnKg(f<(Ld}h@N*V{d<+(k(u zr_~)xnidrp%kRwVp2%Ok_A6B$BUh5n#32_moK8Q#$ALl7FB=8%TM;f?wu7zj>Y5HR z=JjcaBp8cqo#DkzS`!1X*QpDn{p=yb`dm`9Mjxvl_n!M*p=3kX=H)MxsNG9Z3~CIi zq`hO7go9v$CMqTVfL}?oWKtMH@)tAM^wBK!lK1S9o8y5c*&t%-z_{y&+vE=}yrL9R zWKkiSqPGvNqx-}7WI-jNYw`>jiN~#z6JSR&(n~Q~GxY9nx5twT^RI{RyD>szd)`Jb z9NNnwlnChU7JrKJdJ_5IIY=2b))KiolE|?vn^KZ*Xd1P<9NC)Azr70KBxEW+Gzz+# zB=TkO^^+uekX-d57Ceb8T5#531k5{-ZF*Gb8^&LNX|O(Xj*syg&yeDH`{5~jw*p<% zw)-drOR=chkN3|W1%W6@Q`k`HC|a=3Dx12&Y1=@RR(m*m=IRxjj z50EJI-LQa=)9JM9Slmq`sA4%YYKR7!1brTfY7SLwAO^;JDbnnO6o=86lna5@%0+Lx z_V1rbviI)znd&c_Hup{zZ*(qv_aC&ZYIpRvW#4@#`GEEo5er@q8IDO3$7SqNA#z`5 z&T8E|D1(@ocgId&_GW$hv+#fa?}8bg(|QUGh%tt1+t%ku7rslSD4wl+nFae1M5L9I z;De7dYp#2%uRZE zu~8|`P_CKN;WS;uJd>_|Lyi%eqP-^R4w<#mMzM@x?h{=y=y>fv0`3+VpV6HNr^t0L z`Rp;#Cx%M4VLRYp8WePq1_~C{Nf-1iPYM2+Z|TRkvFqsjS`to{gu`VlD~Z5{y-iWH z*(wIHLp%*kO*vg67GGV+QVDv{;hEW1#545W8qri%_DrMQc)|Q!?_CO#QKt2%ufZtV zWX$CTx}(mk)I($&9v;p+LjK9S5*MKwjXZ`IJHh_CWUos?aWr>hGS1CTCxX)n$xwG= zW`-_3--ubyy*_Rrl|lyR%_aspgSb7YW$AwCDDU)=a@=9 zekWBgS84-|Sv4EOlV@Cq?k{uB>i(YV$G`aB@!ji0Y!Wt@vM5ip@+@w82zG@o61)G@ zLsr1m`tN|hfGdTE%k1_#FVqjW^EpjNk>iqUe!(2OAgtKLi^%+Lt&P{-TpO!KE!zVa~g+NgWgs?$NY-}D(#;}SknLEv2F)C?Mi zJ8ppYZU7Jj3#zGhFyAG-r{^&{4w))*u%OqDhv<{NJKt6(PV*e^YP&xlu2k?Q;4f;C zCa-gwzu0nYLmzH-^(LtI^$y!gYd7rI#bj|76RoX5FD06T`@E$EF9DIiah91xDnN{> zu~jf+h^neN40bcu6eWxrtqJxajKK-v4*9kFZGmPd{;f^`uLOSuKT`6o{MA_gYiujw z&EUHR3G3M?h+ZM5gp)-Infds54ret(a(tfNoz;v=d%^4*(JCu!`#Ha}u=hAr48}p6 zG!7bhOjZX%+QF8MxD(3(9-#b(63nK7|G>#(hH((?|tt_g{vsl?1!^hyq!NF3!1 zc%2;yCc7@fjAGIN+!U9)qg0F1Mo@n}Rp=f+tur7Rmk##U8UX=f2EOo2J z#f66>=VbME|3 zEDie(meXV-stfpCARzq0X4`ZO)g4iR-J{sKiOe~T%8fS=X;Zm_;**TJF zZe8uca@xu-ItesoUO>#U^@?OHP?547UWh8@zb=x2V-~_hmrC1G&XL?pB-2B;1u5m& zu27PdFjT9A&(DZ`vX2^JdD)5B7K+McgfqlWMDR z*T#@=wnz}QfLBzK2zlI4fp|co5f@#CI-ysmH+<6}TL{J~zlcqtuC55+5a+L7e8StH5-`!n= z-QmpGe0Wm)w_;w9!gD{dXKXlV*j)+4l+VkQdf-vayL9;#!fb7qvCP`?Upf6#uYrGl zv=d%>hSag(cq#-HkpXi?-h_-k2t*LNjV<_z;EMcrL|?#p;=;+q(}QFf>$5Su?s&v# z`+zk{UE}Kdx&kdsNFDNx7fl*92JURuc7)gJ#|o=Lu+27&boVdlXu9&26Tr|xr%|N9 z>lkWCA!HC&b>iv<*hx|;@3P@+x@n|(A zLL2QI-r%1OF!6kvT5F)FW(5yt`|4D%fVzY85vLrq#M@c+gLlOEsZJ6qKH5OC=#=oO zQLUwV-zrUD7LtjdS=T2V$-L<5pH*gOw0R4?`6wc-iKL#%n90^oi(ZFVa;B;)s+t*! z9`{oo!em52H9ARqG8sY=O#5?d9l(> zA%luh`i{?Aqc_w<(AHxKq`~z7nrb>ab~^!e8F|Rp;$R0+N4<>4Tu4<7G}`mCNX?FV@q>y;zxZlN}ig@V_9G z2VV4T^Vx{ZY7bp$5kY84!%jh&*;^BJ_?GLV%atAp-#M>x=fa8Op=Y&NiT|f6{=c)x z_5SfJQZc3yJly?yWptk`cARX`)%757Z`3&aL0bL){MufK-!B$GQE=38nKpT#!<%w6 zpe&dIf@^v?`Cg+b3o4-YmfLkE_1XiO_Oel5ScFDH%MaYlO7W(ay_*Za1R&!ecYM_G zs!QaRfQr~pOu6kOv-JE-a&#w<$I>S3$4!@FPkw4 zfD&R|u>Dq%=q(v*^hi{&`KQUV(;?gK8?oK!y!>(+-8aYG-Vi08lZ3Y_2m2F(E5Ed~ zI>uATvqP|!L%&Nlhb-opU#Ji+4Gf`pEQ|y`5|u8T&m|RMVM$VEMT= znVM|~&OG(XHZ*vG;~1}e@1}#U3!wBj=&Iag93%U+{5ug{-5LfBgBGd#|ixWvBx+k`#d$d$o%I zyOi%fk@kfq&CP2#uD%9_`|Wh5eb%j%#rrIr4}k_Z6Yt+bdFnxoZ=r{Et&hQv!h`OI5WEuKdQ?=ynXYhPLPbaH&Zk7-U~z$Y z&;G5j9zQn2{|FGWQR^IqvIesV$IcA z??=?+iKYCq^(^r3n#@Ho)ImjJOF0a1bi;MQeTbcB%CWTV)Nu4)y@zuv@?^5V~NZSqI07HnKjC zYB;m8QI;O9BQBqrpg?5vnF_4{o6p{j2#55T==6ML$X9@x$OalgGy*LHHD&@^cOi~} zDo5zfVI-(68=o{TgH3kHUG^lSpr*z0r>LGb+%bubROd0@70_+MKD@l|ny3{8RYrLA zRjMTLDB;T%9A5_GsN%ng`fjzaMJ@YLq|7w^uF>5p%6DFw)9%}9xk z)Gi}vOr&}c4PoPXNS+n8l^Pec;)|mZ5Qks^wAPJCr`VjmdBj`G4Tj@uBq^-)-eR){ z?j62KtYXj0qu#B*HT5GkJdxMYPq)d&1yvr6R3F&(aSoF=O@nKx4c<#7Y`6rW+qZr)INq$r zc2-Td?|oHTS5k)EWQp$SWqmXKr{4D!E#5a!Agw@mjMJ!jbFoi%^Yj?cK=XcbkYEJx zAl1BY`_}@uM}hbmtwVhzY)n=9e^3wb%C+?d2%~>(=I2gO`=16h^%VVTywnGq`1+Sb zLHfg4u249DZ(LpxbiO=1(e}AsaBHx)Jq_3-xCLLG)rIQ0iLHYYko}=h=vBX+4<^^# zClOhnqo0XFc6zE@0egjd=LIRF*3ak$ z#1h1B!D*rlm~k>07mHH2;Kkbh@U0=L6^?)yKk0|@cd`?;${1hKhD>qr6vt#K`*L`8z!?`{mowlb+co7w$5%|PeUFlf9 z-aS`1LOx!V2@f(C?Fk`zitr^V_R2b}$Ayh&%dVR`_};wZSjDC0htjKmOZkxl8Og{1 zFl9pkB>D1^n^!{UR>If@+;|$xW^2zEl}k!k!}fH*O*gfT-mNkSt_twMbxp2~QD#m2V5qag{0?K0X`BqglG5xit)^ z@@~%}Xtme`gRS1yk!+IRGV&3rrkc7#nmEwOJt-0Jp4lZ;QrSBYL|`IEaJd8f0qW8Z zBeoLUP)ojqE=Q4BuNFP!rKF~KwuupyblMlJhaSM2yQ_Y;QlnA#gVDn!&uZgNR6jxQ zqIiq*Q!DrP7Apb)UY=HZ{Y5NoPOi>d)s#%Dd9ZnC@zny=IIevlLACO|qYDyM%EJaF^i?upHX%^MiObMR8hJxB*-EKP{FG%m6j2so zGE*4+KvpLfxr;0al$njTgeJuzER!U;BpNJAKanK@5MHdLkYz1EO)U`ZCA&EBoV<{d z1dMogv2UyTWTb`})>W?stgpcoSY$qAL}aMRWpBmSF#M$<^k2&4Zo*Dy@Q2C8N<9FQ zlZXgL1R76p1I{R@*p!QkG^!lK8okHjDbbm2pcK4ZrWZOb=)JfGN10 znl`VO|K;LSr)VU+^(Q@atNIV;`h^3bL>Kjg-X$3Pu}ZT6j2_&ApLVHJmT}mYg0BW} z8^Okm8rbkhvtM4mQBy1tJ3l!D2D_7mGQFzO&MG+tLwVMz;>IH9XnXXTM%#0LV~Pfy^OP-(7k z8G{sP2sA5Bkr+QWE;m!7SSMA6D3lf)ZzpH?nGa>sVp=WhUq!SdeeFOyh$h!qrJU&! z;1*eK3)GL~q}Y6Oxg5{UxKI>1Z7(x>MJ$nid>5k}mzi;e!$?i$%GjEgaP>Oqw=>Tp zYmq9aX>T2Tf_qJpB4b<}$-yzQ|O?z1a!M&2f|C9&Mmv8{93F+G_l;lC5-TsajNH0%H_n51GUwLy^7wIhTW3F zOe~gY)`$Zk2bC}aSIboAgGC5WSETs?6VuAGUFCv~AJyiX$WT$Huugd0KwWr=FetoA zoN%ryD_ZD|C{E|l&D6=GU*J(2nb;p%FA*|Dne&6)A0iw0K5U*p#$6bb9%VOqMltea zse)pU^kWayS=`lIN$5!m4C_4u@q2<5s&lr1(_~Xb{btH>1&Zv49c6?7ei5O7dP#kV zIPyx^G`vXIQrIX=ltNTkG;i%ANiMLJTDWY@b$IaXrz7$rvvD4EADJk*n&GYKC6(yN zt9`bwuMSdM0-jkHY-u_pUGkvf?I?MOpXVvqfB1k@p;ar2=Qv-<|4V>;M6axmi>qYTPoD-J>m?CLQ1z7YI`FHZzO10qe-~$4|;H7oppFe{moh9La z_0E$9KSkJ`*4e=%P4FPB;fB~JM!))W29lK3v`)uY%C5(JPWdjCtaGaaMe2%rgy09U zPQ}}(qdxyoj-=6?cE7xDej}t9KXP0}GnUNL3IEA=yvf|QUxm=HxQ}GJIh@Q7S6PU} zK}~@PUsbHu)kq=10l}NStHM@T;rz~_>~>#<_)@Nd9`S?AB9}}3afz$WoB7$v*f`&Y z5C@6B$7)Xu5sk|WHkuIu!lZ^$3te|h6U2}9?TdAIDT-WgBI$=TZq5^nG@^vG3hjKx z;X2xSqpI)jHuzo`J`WhhhXMw9@vD$ox^l9*^a_gfG=@Cpb8T>0Cwj=KG@~n%to*wy&uY<&_B(E-{V5`r zJSz;H>okoQT-`d@2pcLRrOGQsJ6#+{c&Oam*nNlo%MKcDaY{=V<~_YZ&V!9Tn>JLg>2 z^*pbXKg9QVxmjJsbU#=^sG>wAodtaO)UMu`-qIYzWJ2}3j3+}CS5JNEgTh9N!#m`~M8EeGFRp{QS#jN{{4S$^a1 zA2w398e5493B=1{9+~py&Hg@V-QD375Pg(&_I=4@?FVNXGM_`EV6myN+P5Dy)9C)} z@!>HIUwqM~V9X>*tTj46a(J6d+Ix>~zCb|Sbq?e>Er!H~xp<&|cTY?(kh|J?mB&^d z4EfhS25D6)Y-lFAyB2)%d8X>M&19~E*=1jxYxCQNZIf-ae@aKrgHTsF&zGj))8LGD z`o;5)n6VGdbB~YHunowR_CFu{JAcTB+)0=u4aRgsZ?Dh$8lh{bU5ned)EjMo>se?= z>-iD`wjpUi#Y-Q2k@;NMLKnDYg`N{#qPxYA9wuNtr-mqQ6pu1bo895k-^LcV_n0MH|F8>atQCkg;$hc1Vv?!~z((t9@*PpB$d$7tWyLmT+7nwS;_Tz@rnz%%d>=wKhUX1!c+pGCSkl z4h?CUH8=^;&*Z;V(*Vtx?FL-J#38`mEJ|5R8>^5XDOsygr~30+h@@vb4s_=WjWqF1m>_7eGIC;t z{cIOQ2w{3EAag&MMIVI;v-tyX?UZ-pA^#@1peC3wLE*I;B#9#skpMW%k!*k{oxQ3S zCaQKnv2qMm92b3@lT-lpnEB?fW7hB~c%eo^hb zJH^v9L#_(aQT99oV^%2s*jrpSpFZuAwnr!X-tsdquUA{NpZW`z&1HvwNxuBcU4VDeX1re2dT(JSGke_empN26BgC{fLX>DFV0r#}q-j~AdD zIv`x2`>O3FH%016BykV%5*|20itSnXLRJJf9>4M48W`Ug-ysqc$(kaZ+Bw}G;|W*d zI~dk!r7Huv0>h-IBAy{uh&y#(P^=4yQM%fzTAU<&SD91W=A`Qc7T0Mt7E~e{m0l6I z^njJ@^QFnt$qm+jh7r#m(6-t`)|zfM>j_h%tLV1kB8}kbvFH!1W{gS-#4Aen-AxbI z#1Mo@bVtC|xNt~~BVu<}@`d(2(sN#2MuVqyLEG92!U9Ya`GK8cMZFK5DD2}{&2MWk z@WvN`N9-{UCTYl#=(b3!;MWwx&t%!|Pj+Z-kKRqyb*GoM`E~{`-l%*LR+xp-%dK_J z0l7EQ-XN8?8a}7~9t#cI1(5t)>j=dFmM#?eAO}N5QiNYtzPj5`D3jNL->?d>cZo1{ z37iU}jztRrYkuffxl|KVn&KU zt@y`hKK=|=4z_$K@`U4VDI=4yiBgzS(znX|qHj~RvZzgo8@We|n1XZ}bOldLShuac z)~9SLxH~p;R*6|I91p#X>tG0mDhyfFe7Qg!#<#G@xhbjhn*HA^u~uMcA9JvbOVA2> zrfLQ5yHi|by)pCw8`41VxWB!%BIt?6JxjQ@c+7WkvS(g+!#?U@+Q6F1|B6hSp4MQS zjmTFiaAz^t?c`uWLWNPNjN&bvs=oR-w{L;@QKhzz+;fb6VG zoUm{pIP58QbIoEq_71Cs$0k`~C20OqvguADsA-@s3{4RNWREvQJ3akY2v^)q3WHSN zBP(7t#?)_(V19l*5vCz1?B~BJ}eo$M@y@mc^p^G1N!z;kuQo9 zwSHeGZ zIx&)58&e-r`^l?ZtaXcnyS5UpVi2F}cDvs9;&XyU#yugt-b<;MjYO*DUt(e@zM$j&g`EG{02kl4u~1i7 z`NQ(W)E8^rLjGr!q5O$$xD(4LVcra0L8;@ZGLxF^694Dk#L%ckl(RUg2>QP$9{~>dzC@NCWdbkWq{&A+Ta_U z3fDVG_#2C^h-2wD&qqjisDwYKsywxzLlRXhSyC**(I4JL>oh$3RmIfLU|d^T%$tNx z%gZE$qcg{H$PjPT#W=a|6BW{h*HoM6^XBxvq>neZN4(7Fqkbkt&;Xk4mqo1P$Xh*$ z#mT(`SFLXo(UjI_AryTyBV>Nu!!*uO*z@qDf2B-`nj03Op_of;>;dRW8?m6sW&RRAeUA&h2Mf62jE0a7Q^ z?I!gc)k&A|GNtG2VhqdjW}Khi2E3FS9sT@xBg4CdikoEn&MF3noYCQ_Vt$uDNVC=v zoaNS`@Z|Mkqha+K2w;@3Z&LW}cg?r2NRUzb1A0D3jiwh%$KZ=>T*}?Kg;<_cQg0rG zSLdl)R@nW<{l#FTWzTmXw@4EUzv;llLHEH4DNy*j=zUK5&b z3oZu&Cr>WYvy<&6dtjP!f}Kzw}3! z!#T;_pt{v*ecbTKPu#V+oL6sc{pM=czJ7qL%K7lCowioc{GtEqOQRWn%s43sCGihf zP?I0KTMR%867o9B!YsggZrsCGG-!o_)pU_uWCBgiD8B1LyN$QcmuCDc>%*8VO*JVFL$=EbKU}_p@iR5N(W<*rk-S-qKu9zap>#N4Hc7l&{ zNRj=na_!*BJUcrH6&VB37?C}SUqYbec1gG!kB$4V+u)mpB0UOr;dj5cUVCno4@n#G zs76`pB)o~B^8x-`>^7<}w`PdaZ>QX8Y}bMjvT>4EQcV+ODP6DySvlDybCR*OSl3Po zMj4%pj9&QJCj6wucSL$31H1TKdwv1j zINRo=VtR4Pi^|Cirq-bOQChOvdecc7B(!w3A)$)RguLPrl&AiWdGucm>kToU(oL5J zHWa5D$P|QGooVuNr0y*B>N^-K@!EaU>Sa@ARNWHeHXppQvITZCBBmFS0Wb^msq9Jc zT@Zt49Gd~LIc8GI(?Q|9Inlh&Q{1ax%q7iBuRS{3Ih&4oZ&Fxzqk%HQA@}T5l0mbx6XqN9k%+US=14#PYfS74 zUcTitn?-5b1WiSHLC9+BMd*XoR~4~LsqFU|Dx-&dVfu-ZWnm2r5(M0dKd8J`W+WeI zMsVuO`1o~^FRwg|9QjIKw)kE$yLv@5hdrWOmN4&#_w25wELKth;F5+tzAK(3|6sH> zcz&TrP^(N?Ib4;dfn0N&QxnUGV_OmN7RL!3*p`6Oqa*`}MnY-hXF~=bPi2ixaZ2BP zj@}v?DeQlE$EMQKBE6AomOztvj!kT${;iu1`3jZkSzaN0dQA^JAc@Ypfck+FMzwE= zCM*%*e)y2Vr;i=A7?2i)XIT;)K|aT)!d6`o>LBjd4p`x|pt!hLJwXbqD#zq9de2y; zSe6-9X1kl+01vJGY|m9za{iF^D7RlO2xMPDu`bA^B!jnx|I=Wg_oA%?KM3vRat3f$ z!jl+a-{1A8Uy{5Z3f75>3#tDNe@zp zcLuCllY9h)W3leouU3Ds-WQRvQGxzD83jf!jM9mF)(C2qPOX#et{z@lXZ^Sfd@7=% zhd-Z1pD+VQ8|!oKQ#ASt#3JcjfbBqg_!}w}t0Q5;mL!Ibfx*6dntns7usq z6m!=n5I44vSmDt?)tL*g^awplsFJ<5S32@=#%RN(v2nyoIpG6QbH_B+52J&up--!R zWt!Zv57IPw#&QG0F{=}xAs)QQx;|@BvNgNM+1-Bh z;BqrdWlS!^gG4jL&|Rrt=QBEy$H7xiDX@>KE;cFo44U_vfzn4it(q&Rmlcigwf;1@ z-ZK!DkIA)`Pmtavl@o|;%@;fud=a3yC`oWoB5NZ8uof8sR=zPrHu##+3u+=is7p6K zXn|L34IZ8CJ@-6B{lfG>d5SE0vXzc>3D*hNs3hM!n4ZKRLPO)ZC1byd!h%N9F@8%K zzas4R*w}U{n?vNtF3 zU1I$=wACvutnsj@Y|vjAn5oaA*UOl=yzZzz*v-u$D(t*P-p*x9A6QHDk}#Rh9q0zE z0~$DY0UQwM#>Yq(vXH&o8x_P2X<*eeySwiB)-Zlyg!>W6$ioh(F_#11&9;A|5{WB7F8kO#(NIHIq6d% zS)~WTd!x@~9`t1)^%$q(x=D8k6@C83Qhs>E}bBzB2u zHYTmY>vr#Sz4G~z+`6>7U)9|ifBr)%wP_MZSM%Cf8P_!N2r5)aH*&Z+y_Bu6eXU>C zmu1)6Zb(4T9T=yR{+Y5TC7J2b^DHSgsA)4}Y)38VD` z|E}kq8y0DNmb?sQZ?xM_4hS;b5gahNSHJhrcVF_ffi)<{_m*nH&wIsk8zj0jj%r`o{Wm$z2{ zUS1JwgkLwvHV2ABfL$W~cBgAu5iicV&!$BU9`(iTJ&d&ZMHTI<9xsyphbt!ng34zz z;Pxevi(_9M#?a@im|qbWu_aSD14meXq|wEyW?1BpT*MejkQg>o)ImkBwPVVnHK^G$({pyTlAL*0IPP@q-IdDZb5htr_Z zgMWvauq#<89ySebR!DU{H{E6cylc|n!dP^D>IX$Gn}gN>@{QnoOz8)&(h(VmR7Amj z9U?30?oH^miHttb1^C6|l@c3OPCxONmiNGtLLJj;Fz^H1U1`TU1k%Crk)oW70R~J2 z>H^E*&b}8EheIZ5#7)?k5b_OjSGCY$A(@S1U7tbe3D)8$hG-z}B);mA>rvWy2M9x_ zN=A{-$+r14b{q|0@esBNfc~oTc08RRI}qpl-+Tokc?ROBF8lHEU)2F_hshZ_!c6!O zr1M?AYse_XDD|Sd^R5#}M$Kl6C4^ISO)SBNjSt3jzdGgSPnspnDw}I?^^T%!9zAV_ zp_eOq$eT-dSaB1(xTtb7TSRPK6aLgXdSd%}DH=`JG@Ru3BTPh6)VCSdDP5%B0@2A(#P`iP6JpJ3^3ln_TH}zV zZCNFhIRFjNg+8~c!RKx&kM;AG&!uP0pS?@DtYj`S-*c(sJ%-(l&_?cQt3Vf9cfuK} zQ~W{*5WdT#dl>)-XdqqsE`R!~(hUm+B`X=E#MDLaimR+q!Bhny6z}cEotq<@BZ;&e z7+gQmFK#=jz9kmmSjOr&nIX1;m4GnZf9?z@q@3o)`g{D8*_OxiHnR*KU`65^U z>TS-1@#yL4QCOf+T&Bx6j?bDOD6q7jvV7p56XvF11hd2=^S~=8^gAo8=Zj8(wX$dB z*$>9~&$S5SJsT|t*LcV;&%g+UgmU#O0-xIR1_;L!l$ee(LFs=hc zbv*Nk$7h%;mc2UC-Av46pa#Wq7sFnHZ0zAi^1BG|Y+mF?9pl>hU8`d3Rff+P#EG+7h-~w{?bnaSsyV@ zLwPR!lour*9wf5!Q1Y%KvusXCIoW%xAB1rF-x*6HySnLP;6K(LhxZ4@Au_Y_moi5amk(f{znohKwZ=i{}fs ztaYWDmSuKx+YIxccJTzf^~(rei+mRE8MSPJTLC@MahsCf;C$|;+CpJI#T3uyAZkTt zD)KoWvKE{##n2GsEvohHOyITn-%7p8woO$P3AyyPk+2Xb9 zq;Y>5uU9`*`_4u9Zj2ELdkwG)Z+?K}`&61&bG%Z;G8U`7j*)*IgP`CmG_;F|Q(r#q zD}?39w5y6a`%fGlRtJ`~xl@?-KdYE3Ew(BTr0SiPhh0_t^9{&!2vN6y)J2!C7IxT5 ziY+5<`j-#9l{VD4GzTuIb#s`$bfgcOydA~tL7Cxg+1>+{Rp)@~g!sL-%Y#_nipG43 zNOYInN(k;+Qtp*fmdAl#3VFIhDtW4pAS*mM7%@Z~Puxd5g0-eR5)o@oQ$tk6=%l=h zZj7)>4Si1-ov8OoSVemb9<5C`C99bAsqwR>%2;BZni*EhQACsxcOpI^1`#tYFrw;{ zK_5gRA`h|f%|%``r#Y?DM67^^#H!i$MD`;@>HL+0%=K$LJGWsK8{e&P2yl@omTGAQ zKyl%%miRHCGOmA+O=?otOavo3Wx%cE5SArlzSOUzMchBfA?E%h?{;<~Q(Lo^7vCP= z8Q&G(7T-x{9HcK)#*nK>h>|6s;UsY&cLnpk`-*#z-|%6Cr_h>&Q^gDE2G zmU=_UY@b`z=Q}KqwQu7-7%3*r!7|I_$fdwkA-QPA2?_Y&)zG|YaNVw4WR?0Q@vIES z<34#9=c$9D39{PLMr7l7)Q9XHX;his@rrTR!$4L5`wTlW?D3vuhxS28XAJ;>FyT>M zldMm@&}$#cR`ZhSCat{Q4uObwZBhyRG56Xj@}uGYAvFov#~4{$SU-;ln=2nrtSwPK zcSu^|-wiElv|j97&We`Xu*3-hFj$tWU30%I^y$xw#>InKEiu}g5(>2PZv4F5A|nCF z^}LpuFRxo2-z{?l;^uusx#B=SdhNP}8VMA!4|5w4iW4b$oXFVZewAU2CXZcbd$~z6 zeJ$hC^82*5b_x>llhFa3*vh*lJ$|& z*ED-NCLH$tO?k;*txiJw7#sTZv}CEV?w43BC0ynD-8Bk>UPJBGEa?~4Fi5&tE_@S0 z3odYY+yw!c>)Pw5dt;A4{+5@fStB`ZCj1U*Vu)6$N1LC9QryB@iULc7_q+E^zy~W< zzJPexgF_HF<2dF7-6r28x8DxM@%L@%Sz2tH31V_(OZ{rtr=cX=ZBq*&jcaf)^jFeR zlJjLUFA*T`QrdkC2=jW2k{a!3>9-JQ%vkml%TB>S%S!<$dHz6s)%83nn< zqsT~;FA_x^VntcHM~_>lBb7s)Ec^&p7ufe!VJ&9Htk z<1}Z*7jyCn_Y-@Y5K1S_*=J8)$Gcf$$U|OY{|i6)O?~!066k8$vt5@OBJ7kLTWRbG zcVgUNq&*cKD(Cd2i1_m(uqPx29X(!lGYznZyJ@x*@vnsjr`&kz#qc1f6k1Y+Iqv@q zTKAkPiM%x4Rdqj@B^ztx9`0_{;*0hpU1plT9XYo~|3;=u`>P;8P|MSb3M^8OM$jBo z8FX5@Rt4qkW6<({0g^b|lD%=ASdt2XKj7?xxm*qjbn|vqwR+VLHvV_kUJCE9P@l~+h!J9b@u5CvJ!nQw!Q)V=3^Z6vLzStVsvDjwW)!Jq)g74~x zQynWkIH)i(l~YB2$m#QTQJ0v9pUp-ne;+Mye72II zC4ZKgFDUG5S0JSG>P-KUjP;W#W&*;C;R5NR6U)5~Wj-Eb&Gt76M@<}_Y=kyPlkwIq zqK2F{e4XzOf%U81%|?L-uYdWN=?mjKAPq+_IaZ6I;fHascbY%>x|pn)uWj*0?B%{f zGsrXY>M6|YUSJ$^S55Rq2=Eb0h-o}Y#0{b!F(m`5%Z>Ym=miM<++XQg#Z@4)%H`5W zV00s;oWA5+l)pGu{P;^Qj61S(?&?eCs7BNMbM#6DTavQKQ-+#q!yL3y;NrMK$d)1T z2*Az274G(?z{Rm=&a!N(EgUapn|G}lmyu1leXxlu|HI|tpk7w!vW(;%Xm;MRLia#i z|NJXF!DSO(06*Q2VP^9DZx0b+)!r+rL%%Fx(Clh+=^kxBfy^MGtC^a3I`PE+@d6C4 zG72+;7p+sI+)cW=ujnP9X@24aN77aPJ)w19OjCT$2VUtnxNHZ8tl11s&<$> zgF~#KGi+5%aptKR&vKU5XuCvEs#Q%&&EL<&6kO%wMcVmJ*0;!;95$J6@hwgJelE)P z6RD(AFSYoiC5Pp#NCioH@&wtoww2Tir`xjS3!B5m0%w%$*`_3aj)SW}$@CAM&mJWj zmv&=c-Ny{$1(crmsDhiQ_Z@#3nql6vt5A|34Z{PRSXni3XD09~7kQ6f( zocn%lThOsN`#O4t3d8`bVJfd4P^dI3p&b!(0ntc=%l_DJx-lYfy0bH+DK+(wxLo5< zE#4G1vOWF7-k|Pwu$b3+;1j(1rWg)gZlw$hU%g?+%9;C8y#v&P`7ZORlKZuKYgmg^ z+=Q0A>;*R2{#9*2tCH(3DgOtW!*73Vu+fao;OlJ3kDEt^wHAfwe_qR#FkYMd{#@f; zCvT?f>KBhc_P1wQ2{MQJ?=u@7_g2eam74Kn&LkV+P+3 zB`_i$+j4DyU$U@EuE})UYJS)ZvStsXW~4g1+ zP$h+dV&&+!B|n48$6=Du(A-W_dEge2KixNAXrUKN#hA~vH5UYrGe|V(+71u00Qm&z zfrw2pN7?4{GyNj21v;_`bTxpW{dr+Oqlsq`qe{;Ze-PJ*pNQ*-SHwHI?m{};Yoalt@9_b}07JM6rsZY*u3}@GEbl}L1dr7gd@;ExFk8K5% ziQ4=Y?whN|KQK?;@tOG;g!DUvB?}TC0EA^+v-QWO>kGw-{Pv9v0hx$<6~u=}#k#Lu zG<-XZFJ8dtkUM0mCwB;_mPiNyRiaucPux7{CmJsvhD?0^R;9v-7hP)^$kmfTe1m7Y zq(y);X*HXF(%Mbo%R9N+5%W+zX$ol-2M&dwk6l)#OB}DeMnLW7rSE07oYk&s_s@Be zNgyw^k1Kq9*Fz#Z&@hY3X$&@Az!Vo32c0s8^!l`4E^dt%rb0HgZi{(+uE_E1$^xXK zJQ?U1=RLV3|Fx1jA|PvYLB4?Y_f(1p&o|qQV6MN(^ZUw@;@J&nyey2mI;{+5%nx^- ztL1)szDg683}3iM`EG8~ zsdz;0?`A(n?SBHJe~)`#z(KxzMfq$H{8q3nPxjmqyLYrz$J>7WI4C5E;`wS=gv3Fo z9~!)nIzgowZbMGP?JG*a(!N<6RUTRwb6!^At#0A1k} zI;|8Zsy^agh^*4MWXoHnX@u9G;KInucZ`kDUNgBt$DG@ zOc#olY)P)uP!9r#v3Q%oXA^(XEL35{Re+QOVRLMypB`&;Sm#(Bf>M6-lTN5xslz(zGYbaJ`DW**e7SPMk2JH$k`7uq@d5Pug&}4_t}Y0m=%b~hD2X0yo*h`A znh?Yk3?ASQeufu+JCEq?ytI& zhOecpj%F|$#TEW-kpHb%)E^Q*0EHc9ND)@SguF_iZVBP?Z>52S^2I$T=Xk6 zTft{_&Xx+I{V>An=R@nfXo~A-@|46Z@^s;stSvjwM)i)P?Y20~S>;L)l`r~PvU<%E z__S2iqU=-*m3f|oF(7BEPy4xkV1}v$!i`>ey8MZq*> zLNi7jiOcYLZnZPJpmv*9vC1#ZqYc36(XH)tg+L>>SGq@#&RI&n2ORfN+fHVZ-$P*0 z78{7MrA`35yrMAfV^g}He*KxGj!zsYdpk8b@*R=@40ID7C*r%`17enXkM?}h9p>kt zWXTh$6kHUt!X+l0N7xOvRVx{&Q|m<3#%-oLK#_vu!voY~81=^7xzdaM9bJ9?8EHDp z@0+s#&ckP#N!w)6eGSoG5nd767d-bvgW6rxq$F9EL@bc5t^RTk&OrAuvl$bq;_f9h z1b3zyq~I4V9&QGliJ4H7?)?1q^U#JiMIPA89fP6b^S;)d?>Q?GwioM7bzcB<{(T@N z$zSN4bOw*th^f=2^6hs-a)6!Rt08jy=4p5-f9}9mD%3m2d5E?^o?J_2Y(nWoB*GZrU->_{O7Qdu#AF1xQN+{;?iV<>q5nk=2I6!oP zMUBwAGJY#fT6j=dC!_O^qpg)P^ibyQ3)7pUb06SBvd^veA!siaG?~h8f~uc)i9HOy zy+mKmA0p};4OQpGol##3;!D^%a?VnHkok&}Lx&4zoB zccmY)a|J<*LeF+OZMMY_R>%TmK+Z$L0{1ko@u)L#gC4lHTT{rCHd~f zWT;h|y&4hHru|VsSMaBMT5{B=I|AN=xNv%52Ww7(DR~wv%O98hnKlGXU%VzwH;w&h zCl@`A7z`kP?>BW}$!p1JH6rxr9K!^A^m(C*f7W!ycqVFS7s(HAXr4|7m-tO(^!vWq zG?~5!koD5uc1749vY)#_7~yV-91Rg)X7oGGo}McI`$ z>-c^KW+kS2#R_00WEEq@x5jXUptdiR`1$e1qPqwygxp2Gh}?x7x^OGd@hit!TMlhg zDA!rnz6QNcw-tiSob#=0wDy5#VY)D*a`jF9SXlG#Oh3zjpgv5D-X%5GZHH(BmJ`({00IalZy|+nDtVckM zy)o+z(xfYu0@08?0@n(S04y#0-wnSR($3lBD(a6&I9(k@Hdzl<5U9uD0@Gg%dObHT`NZw_ynZhs5jQtVDwCbVBRx5xg?5ej>5jkeD$|7fj7S^Q`O zw+W$nhZPzA8x~rgVSv3t>i<*xXyZB>imteBb`#C?Uddx|4JxHg8E?0h8>%3NRao-K ze;@?Q*9R|!?Z~X;?&w<^wo`x1qP5D2Kc11Mo)WCkG6d}$c@7n2{dJ*NP z$j3@oby^Mby^MR2dHX;ay-&86-tzOAbAy!SGkWui^EMQXGY}@THNCTbwwP5$5cQrO zHF?8Eg@(*T5dERHxRoHrKOJV?xJ<{JH3@BO?)S;-%KJg>a(cRq8=-k;ZNZG@{$ zp6y_=0>uef*vdewA27t6Vgg2}k7wJB?$oa(Dbm27wA^FZg1VrRB?#KU#`-H+*rj_^ zm^@Ps_&|@1#q|YNbMzOF92hGJM5Xuvj+91LsE}e+9$is0B)LDCL0XHx3Ywv6qY>=q zEMlebtd&oU{@|@fk`m(r7WvWeZyW4xLIpXP1sxbe((CZTIHMVJ#~^+l#DsaS{Bg zCR20_cb;<}o7zb9v%Lr$tx#KFoZ^phbj3I?cv}6?WLi2vOCWy5OChi zJGO<5#a2OXS@~N3Wx}#-c(UU6pj+H!k*d$^8fhjKh)zH6yH~K>W0#*ZOxt7H*hyKF*f{Rr=!BwUbgw;}@F{dsrT+i>x&` zt{${pdTkFTRYaE--L`zQ$)5L)!Rj-o2h(HY1^;|0@8J_tSk4R77tP6!)ZpaaNLUT!gmb6-qs%08a`C7 zw)oXzbNkKXlc_1ov689t_;~7dL2FT%#%g%2e|GQ6P zvTUt&<%_HW^QZg(UdixluZ=^YuM$Y^K*()^D(V^X%LvyUlSAPBgt{*2x8j)zy~^ zpAjA2iHEVrzHj|R1D(C7UMg1&$PB!P&lc~eTBfxo>aD3d#oA0_zHSVnY!Dei_Ed!0 zFti8xGrLza5%ryLs6K-^rgYW4eCyiMaIqGMEGYNcH%hyBPWDCikQP9~xtqa=44^!O znhqXPnqseZE;U|EH}np-U-)?*&IsfLSij{U_CIf4W~8+UfY!R0nS5;ST)rKT{O5sS zy%>CWISoQi$Mv__>c7|eZUVF9cgkcPdkP!=C3pR8?t-a8AGln-k!f;zdn~(#&%}5e zcv0xj=-{*D2e~?yzxCj=sAe-Ld&O7~4;F6wU6~7KCzY0}qv zbv=YGL?}ddD4d1FM3pFiGzx@~D)Llr@+g~^+EQ^)S@}NHwvzE7b<8_?Pn<~nT`!db zR{*!RiSBz1VFY<5OJtvr;+J|LmvVx2hu4!1qg;~W1BmZKmtw?(hDnRwUwf*0&K7aj zMZelUSjAh#Gs?Y-9qAr5H-OvVCBnoI+tw96Hg!#$gQy^GE!v|hBMfS>^NUMhez#-O z;VtxJv{!9l<^VEH_rdRZEY_Xcw*7!S@sKc^&J*}HPIkIaZOPiFde${@FNxXi6 z{!Ok=$x0)Dp@2BbJWz=>JO^Bh=$tm_$&&2#+{!4tM@(%X2kP7#v2;h zc&;(R9fLU0$?S+iRv!e*fZfp>U{+nxNWxZ;=j|1LJ`3zi^+g;9zqI82 zUz_v_n2f8dibnfCY~t5xW;CR77)uU(2Iy!fbO3x9n{c~tJl1^saYJoDGPL!f%bO8r zEj6Rak@aZhpoXHFX%4c1OMQQ{r^0Mh0X(YyUG@PG!8aC;%l2AMx6Xob!Lx!MJnwnN zmnN7NmO!v>oqY@R^MFAn@xx6b%UZ}X?>bA~I2!jA+pF1xx%T;U!^=P7#m+kM%EXUG zzb5oK*7oDDtGYh=Rh{M~Zz>a>yTYJk>>DLVZZ=E179g1&D4wH&3HLEHZ3(34T}_s( z{2A>_c#!b`#&ZS#GU#>PrMkZc6+G8CjLzhe3~eGRb@RGrr3r&37p6JaX?! z*`I`J%HXK#lWO)qQ)Lz%@wfHMpgqmRHHEK{KR*fAiw5_&mQckj=`*qe4nFwizdd~> zz0oOoLbN<8cN4*k3YntYb0d;bDp5@5#jqpdVp&MVC6&$n8_9~899>LrBP3*gIs*b- ziD%K#iqx7OM#~WmZ;A4vd=iYzYmz#;JT^eN$Pb9#rXB@&U#$&diE?*-ZZhf{XQQs* zg1dZNZ>w+JIgtPch(o8q2w^)kqvnqjUC>0ywhWn4rpkWhLyH}6F@E3XU+q!JBRNhg zuyoW2Erz0|_k@lrl`=Fa4CVc_cfz~u*d1D$tQ;19c|qDX*lc8r^w>T;a|mqG8dy{8hAQ6)?m@THCJkpb(?t0 zpvrVRH&B|qnjM;i6%^n5#^xm@rW+y1-`@#$ix!Fy&SXtv6?#xdR}H)a>L$X z>-PN~E1`PE_R*S{L(W==L&_?^_RH%#Q#5P*xW${N;bU2yjq0>Ul!I>)I~8I*M*2VH^?3C3P5|9a zseY*Rcvjbd)qO$NDCpCN__iYs6CjgrFi)yiL7=0ue2vGc(UDv@l`J0kC@)Wg23hplt){GJFUJZy_dSB+;U8+-WIzjt0%K9#|U<7X5FWVgfrdv~NN ztHb9B%(ur>u%Gn3blcKlO+*GtjNtAa;gNT8vkYJNKHlr*NGj-^qZvh@>iiyv6gq6=n^ZJh#$OWau^L}V#*=Ah7AsvOO2{;^h0HumfMfUh);O8EHZPe=3@@L z^GU0SuMX!f%xvs<1Tr?L5%9uWx#lNY&;-Es>G9I}OMzz|yBWWFt6F20Z^nGjhY#&^ z8&IzvTDCToDg-f+xw*Y(#P(VWx_th`Gl6xDc3HW9Jp}hKL}*G5pP}OEQe6Ovz^0$z z14hU1YA$^1lr9C^bYB@ep=C^o6C|_D{JM)C|NJ$n)$^za?aBUkP0>P>1Xh{Hu5}BS ziNu~@MD`xHv2ymHsV6bY@ZGv)?a;5Wgzk@VLknq5Ox&4&e)oraJ__E;d(b;(G-bwE z61dnB?)G+P`rlpv(UlJuF5-9CFqs%iu^Io@631KA0Tk1aqb_~Y>AIkp|lo2s4ikQA3C$1=c0ST=O_x^9* zHK{muYE!-5jc19c(j&>bJ_&2v_H_+#X}k7zeRfaD_C8VDyvu4tt-*4W z0mX>DVUTFxzj8b4CS`z*$xX*wWYdMj*QhSZPgI?-hfVlBK) z+L4Ulq2ilOk5FHVw=5RCL-_eQsemKybFXqV1r0%Bv2~ig$z#JeVOH9Ce4{e-&vzM) zo3b(!2EhmQ6n8a3vP@G@vl=6oslOfOoh!{UDag)$`2QJHPNblUxwrFRX|GYA#CGu> zy1C0p_loMtO_y8SLDu5Zi#i8F5zMt8{rgt3DXyF!C_cO^UVXAw(-)qknhh=RTi)e> z97UuqSv6K2ig#|T>*aaAPVm&53DoVF)MsM4l3`RB5K~O^;_EF3THM?29M+-gnwZ(bF`UQSuD|n!2=kT)>VUJTubi zAc7v>_|N@~38KfCMca`ga)V){)$JrwV4ntIX94@8ehh&QJu8%XzBceO=`j-7-5nyT zS@}Lu2@ap)^O6tJIhE0;yl9~FZ-2~hju25#b1;CTz4&VQH+Ui?KUc>oa>V-V2t5KH zb?Krhd8;8FNnfNaCO?5(njh35~^4_!q&Dj1~`V;b%X?kPnuTUX`nm zFN{*ACS^EkId;q1BxensD>)C0pPiaS^2U_w5ybw+?1{k1c0^8G)Jkw|Q`Ml!Be=##rJ$Xm( z0*QN<^?Ah@d#hCK3Hxf4R~Jz27G+A=ru&<=#$EZ`1DnorA;(?)HaYXPb2MP+p(H8HdC*Z`jP~HOU-2 zW~;|zxeQL>C4}?I2_6eNRYE1YS=t}hIpIkRT!lNA#Qy&F-8{kN=?d@@;Aemdr2sio zcw846yhlUbD*z+?{7C)7e|~kUNFM4vZiDof+6KN=c)lHsA;jcvnM9CdJAz~Yr~}d1z+ll zmX4ZCcTxzj(XaP+=98-A3_t!q!zsA~0myqfTU8onOFWUEduV$|zTD7U_)BM$3W^@Gq|6boh6& zHT9gVN%Ij>{*hKG@W^qc`jrbbNU_1r4D^dhoNr>`Y|oU&V|}vZ1f+Bz!V)@@=k8DV zwi(YIy5WE3dtRu(L}^r_WJ>hISDan2&9)0i#;;j=*I_#}gj z$3AEAa9Vw&J!&h23FqD}w=jRA7$I2M<_~JI^%(CqEZ7k@gY|kfp|TQ1+CzfQHYYE| zKt}}RN2)Ig2$7b%W29vt8C;t2(fK7NBplfB`;SK~olW4%4u6KI`RxLwZJUsA(C;t* zIiZ+PddyOkU3KvGE9@7K;8&!8NAWwv4-jlwDBcV|&#wr^(eB@tjmnL{L;j+CBpJRJW0^e$@trqr>{}nl%UCPgx$cXgNq@N}>K$Wr&kQDX zC%pph)K|!RY2V3Wnp+{<=~MZ!O?AnB);qqHz5f6yVefhjltX@x65q;5{ro}q?kA($ zw96WRPr*3|lel-)LqUh4%v^Ckz++ge;9*_!VAJx(J2W%xU*Q;j5V&bybI}fRz1FHs z#&r?HBP|7zH5$s%IFJv}-+?sh<*2#lvJM|N%$KZD+P`7y!?~8b441Buy<$q{P<^hu z{yjK9bEBKyniASX=3}bnv#-Ljr{GsJ#d3Vta!q@m)m}8XxgbE_n)kA95MB*@Gbs4C zFXSMT(o-QQ5vMC_M8LD@keD)JWPOMz%&Nl?4AlcY`Epo>fxhip=2WR5=z3u8f@9rdN5 zKxL4=<<7KUSshAaRqiNT+Gh>iR*xTCFEk3AJCO3dcX5%tlajmRRJuzeD}^s@{<~O* z?le_!kt}d5^$+hnJGg2CC$!>2sobE;~lAoe-c7hR~(> z!1bdzC71>`RaU`CDKP>L+z!CW0aZB%1%t2%0M8R{_KCOX8LfGh=c-N7LYlsHY_)Os ze@N9m3))e&WfaPKsL$Z6RXDMpqTU?JRaOq3Nqtl*LL{|E9>d_nodO(1?Wly6KDMk66wyC9n{hH{kKacUQT3xXggJdbCNyMyuw%~ouQ z&~I~?MCpzspHG)&{0thDLCkMnonA}!gn#OPva zkq##>WDpKB$+U#+TGgcG0KsP*=XO8R8-mtbH{a!&*!5#GL1lM@hgIC z;Kifgnf?Bqd$9p1P6gqALeT!fz5zq=%%NT}=ZTk2Y#~R}i|m~3zf)UttR6Ih6;F|L zXLYS*+ou0>X+Ki8EqJtC&~e!>pC;mY|NlHrMKO1v0 zqK|Vz;UA-WwSSl*jl5}_lL8XWwR1PXjgdpq6Ukr1@g03=6{S&!4 z^vSXKzJ(oTPQ;2^yf&NfL)o3L+S+ZR8tDcD-2h|c`f9gPi9dla_M>a54sAi=M9zrU z{n|{Hr}3u=39=$n>tC+Qc|)-NgUUFK9npUCIFkRfs5v+Dx6O`|(7y3hEsk;aaJRyL zjU^*YQ~#GeBb0gy*`mF6OExrlBevA^yO9FITsu(!Z7-LS!49?VzKNIMPLt0gq3k_P z%osN+h)!c`FI|~^B!6n$E65aZih8)y-0)pj-&T=2b?+MTwTM@T*I)uh3$x)Zs*AA@ zXz1>1LY{epq!2jVJ#S~|m9`b$en*FLsl^2uUg>0yli(R*4?#ZYmGZ}LqBB_=Gwl~O zOHER*rSEiqVGjo=Z8H>QtFpylgg8?@=DPYes3(k=YFD-l#IR^@w&oh>XOkDkPBU$I z(@ekXJN>>%#(EJV=|4^QJzT^K{iEsdj97yIAa#TAZYtfX@L|8^A%%3INDg98!MoBZ z7?G8dgl9hQisKv}Z*P<-psHT1-xO|dlzJ;X=Tm$y-t|*`tX?Qi=E*K^=vyk1r1gBR zbEc<%?Y)}4nd|7T)ZAGH0~D zRk!{LH;~_cVSrFN>s8X7D*R*mzm>16BcUs)(T2_6(r@F^JK2=wo5$%R4y*ra37Nue zSi%ui=k{$|!_|xD^RM&+0_FF|=+2|(X4vi!cln9k+4v3yu zC;mIL9h5i19|Q$Ga?c*FE; zj7?kpzD;J?6~CN@U#IL1F+R~Y#c-vAi>Wl~Fwxgqb*T1q?^xoO6@=uo;&1&1&`|Ezp zVTpJ$;UaMB*lS*xDs#Ri z-PhT1+9rcXGOAvUf1`djWwvySq&Ta$el%D3Dxr7~MKF8*|DQ7d^L%OIpcHAx#Rbgr z+ti#&YgWq3FCNHk>@b>Jg`WS#w@kN-{F9%mZeU;_e~^uiCuO1XCyb5EO}+wLi8&cV z9IZi48njCR8i)M)JOZhZSf+)7#E0`4b3jf8@jz6tH&=6cCoaJr8fMqMcDg}<_3eN=*Y>`LGHegL&Tuqj z#%Ibu;K0k|DaFL(B7J!M8K#GIa5n_Xf!EWAUj2#j&NmYwl#wrNsR>yn3p&U4#fF`I zVPL0SW0Gq5>>4d6CcSTGKHQG;L0xmnsaP{F^FA1ZD$HI3d3Cfs;zaRh?s=fQYXC$e z5vBJBjDc}b^Btqa#WY41>6D!LcW(JErR-{nkkH4+MrNMWN z3NWAi+q0*N`XAo*CtEJQkh!!>7j|Pb96T7QSA?NB?KYNNS5x=(q_UqdmDxcW!B2mL zKKxdPNG(XPP#oFVBUjpb>fXy*jMg~d4CIC4jJ=;Iie5@cm-OVr{!~c2)N@sGea_rVYLN^YPsrAzn5$0oZ~L2ozaVrfQTP0ljwZ7ThfElz zCI!u7k79S%ZE##2?VEK(1V)J5CB^Hx4g;sfXQoViVz=EC9`!? zwhJNJA)~K&yk`E*)dIE`$r(>t+m!04y~h|m&)ZNGx-ahRxH#V1pJBm- zFHbct%ntaf9lq<(Rbv?9F>22q)IH(~r|yIgZQbTORMyWJzIpW3Ay}C&6s)TY|wX{2x{hVB{sZBq#wL3&RmYfb9Ydx zk}LLmc7^3#eESuy=6@{R!&!xU4lJlg_e6JsU=-W9>Lg-P@z$agk;FH{Hs6ORkTEivI`&8o=Kyd9bY`xqT1SIJA* z)$lKL+nY8)>$BuHFL?#-GgA|~<(UD#g#yL0DvQwG#X``2o>t-wN<`v4CyLyajo^lw z?rH^x#Y+bVzRlxkLK|RvBr*ujZ%3)Q8_{IoQjG)nC(9*`Q{Pg3zNRlqo zydjzI64MO%EuoJ|zwTI0C@Fe+?cfv&Vw%AQOF5tO)jFBo()1kA2yp`Tfx~{^=rFT& zF&tIb+Eny$(HD-YMb}D|+$JH%4`OBhuqGvh!q8OMf+a8Oe=N2y@IIlPV<$<{s7|Z% z>;o@xI4(gJ9B?3nzrhfyHfVA4gsHTTzt`SY<1*jNXV>$Z9 zke2qgf%IPSn0gbXjMAYpWV6(jSkAuU9Y)E_>nQt>$LnD{j=nfGcq7hH54Bu;!Y* z)GFL?(mBChQD971lbDYE)mP@N>?KD=;>qKqad0)$Hwg&}-c&N5vjiK{O5wqMORIW0 zu=try1p`VR6DHN+duv@dVqkN;yy;E15mzC$tYw`r4K6-9eVNzNJcH7rb0E8FCcOR( z4@4_7T zA#*L=$Lyy3Ut`V^otd0Hh#Tv=RnKn%a)z#PV5btrD|Aiw?;R9f&v@xt-an}N*i^`T zsKkz%f2w?KXYVk#4bHJoNf;WA*9^hgcLrt%eg?QuB(V=-tk(7Kpa_5xcmrnBpzPYy z#HF=esnG5iVVHUAx=wzRH`f96Jg}Yp4(gHb#mFl+4Q#*0ROyHX#}1*`jdb#9JY_L#ID4$5QjX4gY-$!f`HfCj&pi zTg%wklY|R%l@47uUlg9UQF^V{w*H_xmPVwB>z~*aF5d-`ng492;M{_t`RAV_pv*;Z zQtUXZO;$jx6Mom=>`8R_f8OOm56G1)yN@w{HBoc=Z>F|qq0x3he@&iZ|4;oip}gP+ zKz+y6y-1W}l%XaE)8+mqf>9YktIj9Tkkq6}2{}tX){-iIzXTywBQ4t~F(ZcX7*|y- zNF((?a&~mC1`M(@u`|D@O9^H$wNzQm?3AR zgsz=tTGWW6+!iKHKyuW1-{jJ>Au=;d$TaEYT9FjMZ6q%wr7f|n>CdWe7Wf@?WOD8L z)OZfuf%3KNH?liBuZ6(loR`aTvk^d*MN_|ANcxJwo}(A)EMyaxZ*!?d_1O@4RHLzpFMkkKpE1g+scx?~1BGh?uLRZ&T@p5Vzo4 zqlxNUcf`q+np!Z9un-sMI^CU<2R6tzNbL|R=5q@uSB3-C1nc;i1`UUnD`kiUi=;n{ z0VHBxGdGV{SCJ+>bG@tf=Ghht`n)ULCWsSW4j*Zg%YR)v7?DZHv0+k%$P+w==WO&z@g9ix>?2K=}>;t zue0y5`cqwNHXNRy1VNV|GyF@Ajuf)3aHP~C=UkzFzb1eD64-*~O zM{1j!o>o?cnpV4Q*_O&Qto2I0`DGAK%a-1368x?+y=W3ww7O`dUIvKV`6lDx%ixbN z#VPGY6_B0~%u8vfa+@FG>)Z750jlVpsjH`K8a|2K{w;ssf}7jeKdkxB3bHvM(cV`N z?)`jQcBY)jBg#Bnuc?od2+1*6+mo_oY28?U3EiLjde6ylv8%ABDIiyApoo|Z<#=iz zEHmVGX05MJzrGr@?;1+90P^>YyLfZ6MU327d50f#8U{wq+NPc*VTPJUV$Zsp)~dS?V$St4l8quRNFb6Q$J#PjuWrD5J8w#%Vl(@Mr>!xaW2}*TYvZFsZP4% z@vTr7W_Fy#3s>XprR39rQacKtKzcF}=27P(wtzjdW3D^M`4R_7eu@6x zm_72E)l>n^)2%&Rw&tFGnXiVgdU5IRmgDdo0uP79Y_KL#$ws_-{{ecHetCtXF=Z@Z z_-+2S>&~!`N8}y3A(;`Nyj`jA?p5yRz?;AS2*RqRSEK$0br`R77aU$K5DfLS$PGT4 z!S`}rh%vCx0B$*2%~_a1|9`u?RyOeP5I);6ZB;we6Ol#t+5{E*Js;U?p%cg*w+S z7qVx^0G?6<%1*-4v!7^Qf!v@@i~FUnBp}GGFMN~UgNv~JaEhaLi>t6MdUOO@+bEsFR4GG_S9nZJ_6MP+vL9dTR zgsFpCTVk_D6fAWbq_;EkMl;<<731jrl`4;!bw?rNz{&)jC6EODPbWM;V{fGsbbVsy zO)C*{8j08UO;S;l;J2S2=eNp@AGg0Ek$=ABYY`UCS_|ZqxQ5V7G+mLzX&IZhPRrx{ zw;6a!u0J)NX(VRjdlK|!Pq|k^v_VJPsIS=-MHZBMq{12*PUvfUHSNV6WgQj0NRb8J z7){8V7dcOZSRa3m7C}gXTCT@hBYkGot9rkyz^_Igo{gRPyho2KM937@)mi4y1&+yC zlvm?xD@H?0gVbJ1p4Jjd+j=_;Fu1(hU)`NXPBG~-gpuRYkoQ+JLAM_}QJSB2)X=+- zA?p6QpZ#|wWg_>0VcAjxA^=;c94RCTw6rd>Nzg|y z(#<=3%1TRCpBG5$lWpiLk5TPXMf;tuucdUtCR6Ym{G3Cr|3v=U|ON;NWb2MdI_P-J#=f^3^-hAvrvOp-VhG~T9zc}E{rm&S&Q+8kyhUjLFXy`^d|v{ z#8^F~LRo}~oJYQ04*U2ukSvhwgOq}(wY0zY;@@5i_Kgl6jo*&rS!YgjzTYgZDd@xl zX0;?!eOUblc9(l@cI<^s$;P}JZiZ*rnn_(5tj49Dkse=C2k{#>EMOIY)giAW0ogfu zC;2^|uMyPpYZCkF9Z%LNpN5Efr1S6J2)rgY!p|9=#9qN6TWxR#zhU3oEb(4v>@#_` z{CMuF9){95G`YXN}XXfqNW|ISv2#tUPAEw!0RKa}FY!*~& zk!s24<0#9J*9Tkz-$YvGCgIluE8x2Ck)-Uc%SoxZHS_)cccp(KiHVnN6}w?l+%Apa z_sx@UgWwCqO2Vf#B1%7(j|w;E1i7SmUr}4jum0uh zeUn{$l`DnijM!xn8YO6RJY-^cIi3{a3p>MdCZ(jL$Q+DFPImrb@)|_#_SGu}pSXRH zxlHp}4XM~QT`BvILU64U<=$M^@6_tspF zgxy9{vq~Z4C?%Fs9q!8veg}v$k4^5mX)5<<5=fJ?uP~rH6$PE;V!vn4i?n@c{UMwA z3Kaf&dq({kz?hQP8>sx8Utr?SJ##<*hl)VEFE(oBiu6rU4**XoU&w0E*=e~(I;x#< zpGha;Hh`G`*VWrRBD8?EL!1Y>0Hr7c(~Gia6DD%0qg$eyh#KbFxUW&n-8a17aZ$xW zDcu2v5yBDoiyLXE6ViSt+2tr=p85GPUSqWcx&XhkCSA~Hp~B9-1{fx4tHnW-ftzr@ z?QEK2iON_sU=BJf<&W|?oSn}&1^ihKJNyQS{H)Gs8hDdFiYx zB6?$#;7s%2JaA0tI`DQ~>Ro`vt42lgdGc^sl@^Hq@w;epa;}IxCz^fosM_XaykCuF zrOZpWD!>yzty2ZOy=?wuVVt@^mW8~QT!YzKGq||!QMei*h*E}42wJ%*qIJxX0_61B zO#QM6V9}ha98vVczdZ}0VT9G2+`v|#pygMHY>5Ex1NZ61tGCD>L_Hu)e-;!NBskE& z;fXt5xw8(b$IEhZrTba*8z9tjKS9U@_Szx8$otS9Xkk$)uCM6SJ+!gD5OGy0EE2!p z;QJ%KnRArI!gkNPX08WR@H#zo?&I!$^XW*Q`c;;axCqOG+Pk1lVtwa~iyc~yiqYpK zzSllBTD-%SJF=js@6>UJ*g+V@*u59netq>_iIGj&g-gn4z&JbmC29>*X*+m zF@UT5Qf-5PZq*|eVl~!$l%5EeWn=XNLA42(0&@+a(iTHmk)*rPnD_zJbVu>Z0CU=V zZpo1YRyYczllSeOkKSL4T^joIn{%7KOYTdF2R)Puenl9-@9>owjZZsAqnFYgrm=Jb zA$IfjTO5+d#9r_D0<^2ExHXzls#{Hw`)7tv_mg;`Yta>LgKuv)$D!94?=jnC`@C`+ z3LgG+>zwfutI}zLj*Vw#LHE-{)AHYOc{pTE%!4^3-rn=LK#^VbMaLSIx3^5XfSxz- zz&>$}uS~)WGAE*GN;bS9_Ki%hZR`RZ5b^3gx+F*-ARCf3AZn_Xq0|CEb#V7@4K^bb zaoPK>(1@eH{e7bE+D1UWWb=EBbz;TshGu)J&?mKe`j6yG6%M-0aHi`CR=lFg8-b{G zPV7-`+n1@K=2~cYfy9V_uRMux# zzd7vy8ms0rw&k6zj{bTN;*ULnd?2!nBRhNRc&lh1EEeKDS~n;d`;E`%fotHsw&m51 z!<|GIk^a^ZDr#IC&7wLq3R(+jU-PTku&fc>jU?Z zr0H@4UdI#jvjrI8hI8%%C{jS0WLpLO3_}mS7 zev%q<+9zm@kCQq1RWw{Kp4Gk`#9} zmPZga%*+>SOa5%lApves;^}U)RZ-~2IJ?P%N&Md%O9{e^bE_YzI8w*VtIYoE^8TNH z;Gw*XTnbTx5hix~{i|l0f~F;Ii2@ z=WF}$G=Qg$_ly{4UVIG0Q0Y9+{IW4z%au6wsJNB>2MCCP4?us(w3W5ZF?q#`MaTNF z>lq@2kuqY+RhdJN2h_0=`VRJ%4|}|L=5}VlVUvE`?Z9gID@xCY-XDVwAu5~}aaS}? z7+)Ue1<_+s)Gqei1n!JRT_=WCliQN~TK-6-!bX#$2`O*3?D(%5XT4N*d5Q10?2Cp{ z7iKTGpp#yl2MbrzJ}MwY*FVD(Y&~|qR&&yUw-Xq}cj^FkhTXw9bCwW7`VCepdpQIv zNiSLt0x>PeI=gxio;;eg~S(&G`oo@E+YYzyzfY9AT zX=KgjiVIz&I=GLqVyUUI>;FbbwdtK}+vksx?^La6P5z|?b8LJ`jngs+S>p(6?jW^! zf*gIbOd1(QBBQCz(q=H~TKyW0N7`yQIpw8AZ5iTCF-=gmkWiK!jjf{U55~jpTToam64G=!4jYS>--iw?O!kb;pPL@%qC4K#O z-02ti{S`H}qx78C)ybWpomN2(@rsGwLIu(#@b1cfl0h3uvN`OGLkBN!ar0@J&!-!2~wx$;i?ImTd6r81{RmZ+g#k_iz zSb=<@{)1QZopjs{I`+7xjX3rq#t>iydsJElmF|uM03JuDWl2)vvbN3!&N9=?cnhG20UC^eq!BDNOMq=1E~5 z-G_uQW!9-ft@hQig6Z!&zlrzvpKEO-jo{X0*oPj-9^}v z4h=pR-#Flrj$k!R3(a&`Y2fD^_b+46+}e1qdHm~3Qu=+;9^cL8*weoTNR3B)E|$`1 z=kVq7H47qD@JU_**av*2EUf((}-H&ld-#DjmzosZFRJX zo!;nF*j>=;9|eiH*nN93_wx&WXS(AqDII(_`eiI--9|xZ$U_an*Gc`;lF;cz!`o-; zC>?BeK?vS$GGg@eCfA)-%=>P3R3-lJ5US_ebYZ#^NWNIf7q`GgZ}c<3%}V1mPj*zWfY4Y z6FD=hCM^6=^(ojd#TC#BJ{0G%Pv=ZhtGqps9t_p`Q|&giD#9Z*L5GhWQ4;|_GsP-D z0`)N1!P8tQjM&91IU?wJiZ?K8ij)De_~--kJ|$~@qY+ZgqhX9JJi zPiZ%4X~-FSijBeth`?_6Yqf{=&rBuVi0q_Lf)Q|<^4RP-g1te8oFDnn=*I@YTPZVd zAxfNRg182Mjr=UmTx(!qey=rExbQihtj=;;VrAB_OeREPIU(R}K{R6k!`dx5cuD;9 zhL#P1tFU2HvRGy!w`)+}(!94y=m))aZ3X+mJHT@Utz`C^`o;TKV6lK_SH`cUur8^n z{F!vwQAdK0S3>?K!t-(A9`?*LY!30i-D7JN0=_X+?h}d!iv3=;eRqDY;6OAy7_NxCL_%=CRAk>~WngrwxSg2~ zW}kCO@tD-!Q*JBu2-J=<_Fs3HUcmZf%Cxw;8nF&Iml!D{ws}REhKEWIdFk}Yv#Nff z3?tMeqxkb>?VZMAhEvv0QtD%C-F)xbiyf!6ky(2y7O-^&Sh#Klp2tbQ<}c;C9jVD6 za|6ec)ueIruBJZIcuPOJS9_65$#d`lJkGT^ydnV-BE>1y!4mpHCs%~|mRT!ug3|be zR}J#!9YvjKgV4d>n!m@^Q|~)Eh5L_QU^5e#tZF~#G0ooh&>_u{S^N33sEC7+Yn=8Z z{Ly!pd|Pg5ZX&RP&4&Rr0)1AhbNkpLEzHN?K8zjWJ z;)W|sS)Z36cCGnl0oOZ;#W27V(>iOBl1Ye_{a`Rws%hF^onYYQS! z^|G68sn-3@HBa5qO`}N(VT-S1bLK~J!BN%z=-_=D0&#>84uyu|7BWlgatykEI8_0L zpo6m|p4-eB3_l4!iC(_)b@?Xc$MvmMCdNxa3Gf?boU9yQ2bMCFSli!C_hVUqjb#CdDF%ilYW{)AB>T+|Z z7~Z;k76j%KJ9Z^x6;#Yum-L*Hd!xe$Ka|1@kUyvY2wb4YaD6f6E%#Fd(JRM5&%?{L zzUcmj5a$tT=RJDOH)!ZxO;c!&;qtyCoDy_iF_ohI$y|clpVa5U!N5vNtpOusMaN76 zmm_l>lbykU3MTTFdScxT@gz#&)&XF~$#jMkbpw4#4VM6(wP$AOL_{tSI2t83d$#^b zSLC!&Nd$X*k)it;!ZRrzu4>^M6+f+%0)o=l0A8cPgTNeA{Fc-;w=5-|rqJH6>~?@x zsaEJ(y{!<{M>Y%2eK)d z99uhjtzX#!JM0V-*~4EylfON(R!8VHAHqXm@AB3sH$dC~4&b0VeYWdtJ~RDSG9@L; zFm0w^;HA*-g=ZmLc{3CS{i(m%xNj((oAWG3E^7O@ad*M?CwU4@WGjQt93EzPS)ydA z8-A|IKIvAzN{)~|5y&L;2XLHIK(g@n2$om&^DR9Ovc0l{{Px^-$v$Quzpb@8-o#Ao zm@ltc9iI1yVsrt(Vi{~03v(`weBxjv|jah`Q^B1uqfW}AyyX>1C=g3uytEXU}q zve2Ns@W(<}%{%iKJah}!Xz`_4I*Hut%%v3>PN~sEoe_`vNcksFzD{6K++?4VH`zH{ z7WdNoYV&pO_;Pc5xn{cV7@d6HL`Irdsa>((Nq)#g(f-1@`BXJ7isPi0+PEf-W-_}t zcCC34e_-Qp<3xVH2D}T_F+@Z0_e8b4dalTkvt^mNnypDWICcT&>lzUa(^}kOa2b|+ zTm`wvusMNVwGJ5Mq_)6dt%TH$LU+XmjR%Ot|7@N-F1yEVWku-A_-?>M0>DBKzS(QWWC7)10TNgQQV*@N0w1u zWjrn^`eV9f6g@2QML?>f1{JdEozFa0Or{H zqnTKf(b5o8s6U?SC=H>sKWxcK^=fO;CxkDQ-!^UfKocyt8`k`nFklj5X8T;;GrX~R z|7QL0?qhWibo%ufH3~*V*9qGbpOHSA?x__`>VM=W3kL_ z%U8MiVN0irjcC~JWgEruPg1|hs$?u)dA&Ep`tWz~zotcdIV%6F1o>a;kn#qyZpX%i zEE7B=KV@?KZ3|dk={(K3?XunYA9?-XgC@4{J_K_=$t6D@FjZllu2}zyY4h!#iSVGi zH5k0c-#zHOR*EHSWqMDKiZX@=A-TaxU03hL!_;WOrocAAC#>J=I;B{YhStL< zP9P0XLw1&4HnUtN!HGNxKsggL@59}fg4WU~el_bPpS&w7H;@vVuM7h_rNB`!%c@x? zRt%ncE-5z+uQRZFRTudB_B`Rc4AicvETc|KKetMo<<-$7SCG9IxoL)UALS6UF9=cZx z()%DOIBVec*1|t-*)N^fXvDSl%k!%QE81(6lx?~)N?;U91X$TIFEksY3&D#j^N`S) zzgH9|bC|OMJwlJ@SwJfs@8)uAbCTnh7@1mZU1K`?Qd&jERJaOdg7K0Uz1Er0AACn1 zPwOj|DIiER>@RO`TD)WahWTVb!@0opMIR$v*VmWvThNFy{7#KX^wD*;=7+Zmy*@)xw@F*}4(%Oo{*Wv}KCv z4Ww!zds}FV>MK?b74g3qB@Gjm= zC_`!fo0ktIPTO~bJ>)Obt4Z#_!^*VN!G$$7d#~CgQj)wQzWBQSs%eh^TO86v%7DJV ziJfE#0`GuwT9L_7+TQ74dwjFZSo>`HsSH@ZO_K<@03`vvfnl+K)@beZR+(x`vnI`fNNcGDER(GLNs`t*yx&%PsJHluy<3 zFtA7wxrAd;IcKStHP#b0<@ghqH6*@g{}P)?h?|znEgu&BWpHNYeaA;w#2|2V44y7^ z=e4xoV5&~EPtPYdjRW>yse4r;c|}SyATZ6xWTlW4z+t zi*I$ZUTkxc*0W0PRw2^wzT^qrI`ojuC!{M4T279a3=`N--%JK9#ybj~?04+Per0v_ z8vEkLgY`c_Z8ja!@b6Y0+tu&V>;jd#@d4;jHcoMU3`0fjbldWm_+cWk+CPOuhI&^@ zNvv}b3wCsz{0FYfd5YI4KF@>+ay0I6Tn%eFKv#fNdU04r_zTu=0Yx$KOQx-p}gQS=4|7YZR$q@d} zIMmceNxGwc^VAE?6w`-Dg!!?z9O?%>cr_=Z1A{dbbJEeg1?B>Pf-(3b)G8=A&o zWndEgF=dg?X_P&sG6-a3T6+vTEIy)NE|1{$0(SgAvc5X1>G%Cx1qnrEAl;1a3DO}j zN=hXq1UBjJ21URP*Z}EPkj~La35<W*c`!uTLT z3M`Rtp!+eJP;Q`=pf#B;-Tf$-t`oC#ih0Nnu61SCO(+)bAqd`k}XIKl(%Q(S`SQH%Q5wU;<374>a{tbW0!zXCrAEX zh0Z0W_w@SnP-~OMhVPggroTSAT`R4!-hcBWkiN`C+F^PGhKT81`r>Iajl`i?A-i|| zL1Z+dHwHnuwT@0BuO_7mSnji!w4R=`!xr4s=}RT51{qgZh$!Zypln+Fc((1aU7yd# z1qQ-;wR(4=X?yiYWEkX&&uat9`7e^UYrFs0*`-)xf-Kn0Jcd3x^4O{?ROGS?Yn=QX z`Q%HaiS`qMv}v1cSX!4_`eeyiEbu*EUAO?T4*Ni=XJCdF7YiDXb0F%sZgy!qh|L^w zux1u%w~r-6ea`LTykMXy(fX*}NC@h^t5&p~5~eCng48t`jI+2hDF2P%oTurl%E&%)rSn_8dypg$Dxa3IV>tLauIqiEdJ1hQh_{u9DIBIRZ z68bixeaTPL&Ymya!tLFqDnzIn^G$!8DzZJz7&Nq|X@7ogCj>1Mq{9JG0TJygJ)MNJ zE*RH^waXc93>LGHlj0CDWa445;p*fh@Kj>yQ{%<$XB(q`y=To-xDH9<)F!|F+M+zH z+-W`MzXS>@UWqi`+_iv_U+)ra_VbjaxcX#nug>nC&~s^!Hg)L0L}2fhxECN~fwVNa zVez!e8mxT@zJSRN!sS;k@ibUh9V;>fL1m>G&Zp_0Fg=17OOFqDP%oK~v}y`Gr^I^M z)9#jir7-b3rc%_xtp<5R2QN&jYXuk=rWIGATQb_N;U9i^%wEb&Ihb?xB}(Bb$L(Oo z6&8+KOvO!(rAwOB;5x*r+_gi46#4>X_llD7Q zhv;}m03~JQB|LD6Kf3^hkeeK)H#}zTkI#rJsNXrJx*y$Z#$UfAZKUU)N$wrE+BE70@$w^G-n-g|tlVJY0P*$AKMc zi}lB7zWUjfD7`e7?cyY^>%tSbBONzscf*+MnjtnEAlCJ!&$iErMp*POaA{Jem2<1- z(0r$RAg&hAqm%CMisb^^p=_)r55@sV;y2&HK#&S!=zbeFc_el}?Pg*-ptj5Wyk_xj zBfdFKOtpQFOK1Bz5f7r}tT(W0sy>x4uuUP+lR`F5_|fhwM!aWDW`ZB;rXw}?rCZg= z1Wu@S$3&J-NAU!9@tIJaz1!1*5I6|nb8J2>u#Weia&Da2{cK3+@MtOR4VOS zqu$fxn+UMA)id-I$pH9Mx2G;_zYk0qZg{+N?EglX>O2jUsJDH{>KYfETt**W>!*4X z@h6<_jMF35bN1>d*Ep%S*3VtR=2fk-RUp@7+$PKC1OTToGOS z{)MFFc26nw8-dwRnsU-}q>(}*@N4$~ZO4w|bgBY5%o;7~LTLtXknf8NQ!roUbs=U_ z5(;_6l2gVV!+|%kGN;_;vLs7FYTpM=lj-OkY_?JNxFyLx?>Y3CCRrh-VR{-}P4EWI z`i@pbwKAAPfrObLIwC-Eoa76Yra0c0Ke^E=dQcI?pG@V^jTbL;!9Sa#LNChZKRNlJ6?KC(EOYKgIj)d7_FCZ$rek5YWJ1Gc5wiJ|k2|r$P8jGm7m8m#pCB=D2JFsXy z4Qafs+v7<+Fto6s#{4lBgIho;SDpFePb!PU9jE^up$2=lR?ee@KG8N_IlyZ}5#D3asT4NoQo zzY2Bgo_-baGBlH}SARG$;&URrH%;MvC7CO#2o#T&q=Bj!@aPZBQcWeRGAB!+TmlS* zpnSsZ2P}4jE3bUH*l2JDNL@jsjRRrl`optiDTaj*@e7D`1m>VmnM6SS<;9Stk5m~- z>_WnoaQ6vf1jNv*Kb;yuhAPVQGjE&@5$`q8r5BRcK`jF+TetD%h;sAZ9&D z*A0?01T#+itWT*0=+z}*?FDmFyH=nWbD(;z9KF46x$JD>QYxQD5;MYQF@8lmNidpK z@^&jrS=!+W!DQDV5Sc%!4kc98SpAYDoO%catrn@qwtl>Q1r>hkULhpaCks{rW9~FG6YDnt5ee~_4$mgldQMaPaB-oR?G6)S|3{4gs7-A{eWZ9qW ztDDsyPekhY3xY-|Bh-hkLBomgW1JZ40Ke5@+6}m>65db)U6mgf?{B+QJG64WOwMY` z{*UI1MXxi|GvxW~kFzmNBVvA;Q-732fU1y0h4a}D{M!d}UB{#UGRio?$5ph%ES#N6 zS)9IM@LzMpPGB3oN@*_S=?|hrm!jkc-%c>p&ui_MEh1HfNxV7&VXRB4F1%t-T1Wf;6pi2!{$rJp z7yLKyYeC4qJiad>&6@UwH0Q~7-&`JH~+v$BQ zB~_E_Q{IoxI<|G`Pw#Y%gp)!b(-)rT2@iXNKP%DoGF3ICo{MR`HL= zE{f}nn$rwSz04Ae6lOpR`^h$F5C`MD$={rBKmTw|9Ce=hr-v2*rV2+09ysY=zRxyu z-97Lo(REkw&lZmr1BL;0TeW_N=5?=vwS?0;cF!XuXRZPBL74*UN8?sf%gr(DfaOEs8>;!l>#p4N1`tX@C);%SCJuDEe$mS+ZJDDM|~iZ#)%o6V&sy0E=) zAmhYtkj&eh(;Ncvq1CAq?ZFCf#1rAbzZpGDf$b81KbbnF=C_`gY)N458Sa+tGB?>Y zTztuTJs}+2(w7~0mt&o4$3?d6m&5D2nidq}+c<@WTy1_eIdi(&XSj9t+tA7gOK99O z|A&>H-F0=@=H5P9xX?*4?NPKFc;xLIN#;4l5Nd+e|IhW>^9}B-_r&F*{hU-_%`rQz zmv+N4y28;@2%+&_;oK3=*SEDyFw#5V>c*_u6+a|D`F}NS|96`^`4Tjog43ZKQ}xV#g$r zaO}B|9IeQ+vxzo!WEa*Hf?U60x0p=R7PEe9!tS9V^35wG&wA=3yF=<0e7{bSw(L7y zxX%=-AyB$nO?dHA!WSxANP21{MEclw%DG!x&>`6hgZ9%Tsup+NRUlP?y$~OYD8%4F z%x{hEV0ZgM`nlE1NqCWce}8+6{Na8~=R?ql1Ll>hG#>RKXgU#@c6bdMv2HIPb&II- zC0TDM1CfPaNZg$#3oP;Pr<0L!#qh*bN6hGX3#I)j_KhvuQwIbXI7t{8y^=XTKo7%7 zu7|wvfxJ~ybhH$9*y0I4w`w<4!wQ(avt$#lOu(JctsjU80a0~JWT{-axk43sz?wzd zb}E@bIf_h%gUocRTn{1-9&(oG;ctCbc6v#9128fKYJB>`^S0i6eNmbC0wI7XpwJ3x z>}u&Yxt+LigsH}44&RuzQF>rb>Sig|i4=456BLWA5ZLk+?TDUZG^Xya{Cxzf-2!<6CXh|WZ75lE9IqmLni zGKr~X1O9hZ?Wj*3-MV6DXU_xQKEy#)TCz=yFzMSoWow`i(Me8LV>up8nq8yR%1R1` zZu+o8%4Z^?CoEd6zUPvWrs)=KCn+yot|Z;?5NxDqZl~0Tq`@g8@)N^uV7lCsbc^fg zg7KuXa(+;0i$o`Ls?-d!pQPCck9+BXkMo%|WDY7AX*vy2Y4m zNDEbYHDV*|rL$%83_XeITiaH{`c?3IpffAS<;uVfBV*~vSw#t9&v>-<9sICm8$Cf{ z@n=Unx{hAfFC5 zkY)PCi1O}4kgmk&6OxQ7NVgkz&Z;=-SD^6Zwg$;P4Ur4zrZ$kUX!J=n^irGM$JYna z1{Or@CcfORbUOJ$*PFO01aT<=czzgGd3>MTu&J>w8s;9P`k2&X3869im!?pY?k~37%ty#LS~dY36SSGe7O(hvU!sVsCqTmKCTUQ;`Sw zWr%$n;q$z%nAmvW%Tw|`R{3!hqM^)OcAdWaP);Y`!RtaRko{&pGM$RsH+NzC_G&=% zx|kshMvnI{5N7%H86qvnmkOt7CQ9o zZ}1s>UOs}A5BQ6*fRii{CQ7TvF$!cZzmHWgl0AcHJ#i*Sy%leAvPIIsCD6{o{Py(y ztrVG0GRd470Lld??*&E>20>L&hHJm$#EccWd&q_r$iLUOhE-Yxk*xbsHt$I5nwf35TUkbG zhn#)1-qYgg(G<{%5DG%5ABaQv53SW!(xYJfiK{L~z-Z$8I{ANkHJrunlc197ILUHh z52`+Y5%{_lqA8Bi9I1LZfe&-OYEkmi_07-J2lmGxpp$HC(NHR2Gn3PS-^7uk_VK3? z@2vR8eEF^Jjfcp;-J6cU#yey) zva9_@1n+c@Y`oQYZfmsy{lRa}h(x#ii_9L=+`|AqY$3f`@MJL_pUBZ{5)PDWjumr{ zbWR5Bp6-0bGW$D~WE46!Su7u{vGmtK6h)uD22y=0&P4)xU@-#oo@nl!x?*ErM*v9>)rFWDve#hY41Npt)ZWYTH;$4g z4!Ktwith|d{!N^C130S!?q%}dxL;kmn@r5?&cx4(-7KG;XcJ#n(HyyYc%9wx$j{Ee zS5pcZk?Sl%2Gstb6a|Ge9=~LVqa5QzQWT?(w86~mH-kHAxwa0>)I!CVB_7+i=0**g z)Tf+E?#?80b$)djukCG}X=tp%nv=8^UbSub&OIk3g?k9#5laac!AVEakEb6L(g zcWao+(T^^8#Eab5X4;6?PfmBAo@(v;Se-w@Ac76E@}zb)g{mG^=4R0qYZEHBb7g+l zK>>9{sa1t}Va6y%ak>n5ls$&TcanI+5ZP17nG*nHl?-pv3JX zaQ%RCTy*j|?r%y*qMVHn+*5{HbA|@zb#^@n6=q@)_}V8jn?!orF4a8{`y73Jqr*UsH; zj%vLUqh)kodXt21qEB8$^b12}ZKZd9S@C&jRB6o#7!4;QF7I4knskBDtw60ql(~a| z&ZGLd@(F#xagB`IkFn^&IC7Tw6Zda2%<(!^^>bk!Z$bew$1f$EuS<9WjKu%I+#laT z6J;P_6!9ORAfl2|_D|K1`jjcTPaaX5>&mI?Jkq}ozcuWc*EqkIET8|>QNs~(q@)cj zM$A2E(R1iKl~^GK^`7#$)n=@%2jd*<(&<5*yDD}D_?YKfwI{_I1t3EoKh(;8A~j@M z-wx7{$fG&`0G45%hJ+|E+h3-E^3}@Bx%e6N*W`~32`a2`>RqP8+Mhn=maZXqgRI*Z zyH5d`W&Up48`QvYJc5`3YKFRG2%wyPvxQSls)iF*Onf+@%6g5vT>I?t=RM!Gi#wCo z`y1sY#TTYu+wb?+_h+*7JPYate;^3@8un=iHLs1#Ki-N#N{dRLulKj(OYhg!-fVC$ z&^g}L*B)H-4oHYlX-XagoO?jnpHPL9<;??LJxqnn;Wx^RG}w>XJ3l0JGaSFD?zBmA zNxb^M7qzQMfY<3WY1&o4O$NuqD^|@$0p8bJPsWxLOz4&9+_hgUXE9t`-Fba>a;5`o ziB$nR;hu!*1P*B3U;soL#QGylU+1X`rMw+WwQeuA0t{BDjV|DI?B7p0Q#DdvV#afY z`@>%j_7@w?Bt2P>gAhA&4usoiNmCTwHT!eiBeTUyTmi|`qRElIEJsdgIuwlS6~tAJ zoS8+Ad4W6#7?i;Bl%@~FXBGn@$p!SnRN>%pjXysf^?!1;KQ8x*ut!^h#4-`?`UF7 z1EA%1LYX2_QRaKVD9p90Mfy+)4ZgRO_@J)3I}pm{2{{k!147qviR4JmKxBf6tEGNT|vf3PCn0oYM$YE%l8|f`8xl^XJt@VAR z<^SP5kIwLaTxp|(cnacT4_7E!LD&BCWZQ#I4U}IB}tL<6aP@2l91pt^Cj;s`>G%APp(W$6*TULZb=$u$uxWB zG8Tkv$E#*E2IP3`GV9RI1nD13xSE<}ZQWDcF&LM9U>X1pqP4wloPMb?)|R@|1Nvq4Q$e zJk~?b?`fcho(6=|-JI2UG!{;}O~YqK^>#b%xGLWj-fw-};U#Kmmz$A))^So8_Rv@O zkm|;4E7*a&%k;;=r?efvd(Mt#pLX?YIm3x}fUv{S+yW=9iBtLj(+{TdYlR!_y1S24 zc}ik|5Z>ywsZ5>y$A{f)`cyUT4?RR7@%?L&be;VM0DPiV&o9k>wp#S~8Al@ZrZ^_M zpa#=C{>Qdl9C^So$3_5nnz4ZNtRVn_GsWMhY zEM^guD=GPp^F*bqpGnh)Q^er{j?Bf_jJ!6han+H}e|_}6Gw_{ea|hNJbUuxq{vc=o9`}dS9G(eqP3sTIW|$Rgs~dja1O;()w7>ZP{8}zfJeF9!hUiK=k&{W*_9=`op-$Cil(isvK7k}5MA3uU;qBYli2CD=v1^RU+sa) zLVggL#4`T@;R5?&f@dNFGf?`wpctDPLB~=5(>iiB)h6gp1HRpI>E!Q7ubT06;Uv^c z7i2H}Ip<$M#*2&t?O6v+a^@<~!lmLz8vU&K*$Pf&T*$3WuP%4sM19pMKQ00QUY^ zZfdRkVauDw)ibh_w&cAxA9$1mS6ZVf>plJ&ajj5gof{6PtWuND+UlGymCU;C5(oaq zDbq5!2>D_Yu%Z}Hs+q7$d3_M=GMw$Hp5BpRwnn!)w6)hH{g+S^_R@9~jW50TdAyv} zv7qSRGAd6a+yDo&ab8lx#TuETpHmT)x2;n_S&n5bbc}QsM`5tFZe=Smz0P8I+$`U8R1sqpb0rnl< zCyX4?9WVp5@C!1g;>g7@^Kwe(b)4$=d9NfdrYpcK1&mZUBp+nRnYJjaVc#9mVjzNd z-_knX1~WV$9>|ljFS{?RI{$zs1LzUmb;q$$F$@+1gr#jJ*mnnW1(8xA|A3PXz_L$) zae#`OYSB!SVA~0?yYN*TCE7YJep<#`cumwFbHJBFrsCsu!Rp^54kozlMm_oM_kwRl zgqMMQVdEG-;tZz5m^V2x;eUwRF>M|nCCsAww<#4XD*|g}7y>^RRY4OzbumY^vp}60 zdWbK#IO=zJ>GwcElA_F+y%Y?BCiw=V-(dZ-QCNko(CHEKxeDTMVC(Qh(ZB7A!IJw4 z3eSF4hde!D3OXl!mw4@m-*>TJ^pN`IuYUNQ{&k$^(;gwN07+VgA&2r$&kA3oA3)iQ z!yp_NUjnlxjw!2s_U)pb?s33$eq~uc_wRBJXivu)bM=8Vb)@IlSDfdauL3l4Er0Fw=&Aaq_(=6d1mPEO+~VwP|wlXj4Es~&Sa@n7V=RY9<| z-CA~YbHn1`wd*^Vg64!+)O|}dB;q-_Q(mFU3)n2 zi8Tx4vVZLiHu1=j$b_2_e!2P(!YCHeR0Wh_l4iz`VBzg(n{2Mc@%Oaql+0{oH3^So zcJ__xZmuz@g{(Gm2l_SEpUzR?Qg>Taw4HDw5}R z1-5rA{Efxo>)7t9fFGml4<0}$f?k{wqbVySZSwf_$~PP>oM&3oBR+d4d_^fCIVc2$ zGwFp<{m~H+C;v0Lo?cc4lCR;%=byS)5S1!fY1j?d#psxF`JEQwrU$l%>iVpapP5o% z2}jxfb)qI5b-{j8@Wfwo0?;^_Y+6ep8E6le7FCKWP5#2TT3^MIM%kj}m66U1S4W(1 zP(s7!nS98RTRP2Ra-vE|j#gi%Zl+vQhmteHiYk(ARXwu_C3S;iS(n+rbao&j2}|wO zDfqQdhV|{z`P;4Q&1ZDROl0Im=B+M%@RGS&{o`%aT%wZxZy}xEH2v3JtBA)Zv-LrR zk^}(RxfKQp?m4`B71^xiBHe+P|Uy4CWT@e0TLy?;_%yw@}!fira*d&;LaQrh%{KSII*W zeG%>ZyS_d40_TNLljpg!$AC*54flwDbw9OnPiSy8ZU^VkmVp<`GmBCmJ7xFxu??F~ zK{xfY+hw&kzcMf}8T->-Tj8^@;MXvL%(!=ignuJo^3u#)%_{oC@U!CMI=SbAhaRULyd(5M=#nS( zL@MAuCY@DnS}3+J+!kctcUb<25beMGjpg~C zNBsM=VG$ijZdhr}H?i(tCh)huO%QEJ&OL5Nlzv$A@Kv=z-n`>Qnb!}wjE7{0=1>3T zUr=BAQ@r02cp4tF=iI#SGb=j3JyYH`bsD0e((gr4wJL?WcRx_NJs_Nb+^=ieSBYmd z5$BXDCWP2mIF2sL%kOFh_wE_P}LxHQ}x zmp02^1@6hbJXoh_hd?nqpBh!Bkzx_FDJ7S*Dt_WJkV`_4H5I#&QK5?%j5!#-c_GDvB7 zo&v4X8WU2eWY8pk{HF}4(NAORSAeLV5|AD+)_p3e#BrB|U~%2yxs-H3>z#6?-_Wb; z><9qC*=N|X+)C^>UM#Cz!bsSRFr-BPa0Q~b}M5^mh=UhxG0D)L~ldFOi*^gKWheG?`aZt4PifJ`~wp%;6y* zfGwSU7K)SF6X_h^OCONI^+waOs0TrdY`hrz>dl!Fx>V-EDVE~>wc>n$Uj|azYa{%d z_(8!dJT3h$SA=FC0lRnDRpQ#f?j^NYAk>zG6=^AP9bK`8t#1`>t~l?ELr2cWS*)0j zx6_|?IG#tLyfpX3_neY6^$*o|N$StjJwqL*YIFNtdbkXS@M;t$o}T|et>@Z(f1!5( zlE!7Pt{u!NcIYEAS%iu-TMGV2ch1eytyw-HoYq!y%|@7R!(yKH%@MX^_izP{XP7Mc za5D5+~?W+}XdnlP!}COvS6`87vxhN%dO1hmC&$*$ns`)nV| z`oT+qBoUG9f_1?Dw}d7kY5xI*{VhuwiJK$MTepmx+oGo>|AoAl;tynM1c-<=o964B z@21@zP?wg)Svq_^gPKyPHdgQ7L~_$+xp`I-A05AyT$4$u6?t+7N`}BKnHeSluW@)Y zoyqNFAbNgp!E40!1I0hl-7$&T`VFchJU=5&UQa%}oxO1ZR+mYv?mTA>L=3Ziwi%EmMIc21& zDjfWSm@yvhuwShF{#~kn>e$9vuDRnv`*UHEOoeFX0d)}leKo7EYibhKH41hqeGddE zHx28Ty`*t#9+C$p&|Q@QN97&>`2pFmw+mAKVjBO;OmswY z`|8$T5#!#Ml>@#d2Db-`LQ<)Q2i`VQxzoB@;Nl44xv2pYsfcm7RKP)>C;{3mLo;q7 z>Z?uuyW2E{8<)2yB}2uB`?vH%97Y;a&)nvI<(|C1oY~YaJ>Kyww$HjJOLV(n6=SPs zS)P!HJtJ_EV-VKYToS$-e9KJ-7%S~vau<&uvQW{wXKozE_XehimXxbww6sSu8WT2! zEk3`VUA2Gx`?Id@P6oi_b&;DFAU=>vSFm{@7Y_0$j(Qj^1}Ex zKYc>82e=YtAwU6PuvL+gF`eJ5QlxfeoJ*bpa#5u4mY8Sy?1>jKfvw0tU5V*90k4bn z+?2~qzDt-eK`K0gjqUgg2F+Szh_`k&sZivYVOe6fl_qDQz~;n^s_MVL0|KnHy4kX_ zP*Zv{lCI>+2>$9n>-SH^`5!z)Q?{jzkiJwg=Nb30?3auI(eg)CJ6k?r z9ya>8Ab7>H8`x;U&iK=n@fD9QMH?42m&<)IP3Mo_7suLvVxlf#h3z5uJ)O=!jPA?{ zRrU+LG>hKT+A4EsxiQr{8>7#_Xz7Xr|5cCWM5F2V&p#12z)%R4?<}`bi_b$e!14-u zsMvb@{xQjb01u_QD5UO!!b8plyTh2nFj=_$BLH%fP-RJA0aBMZ{;f>mN0f{)x8sSY z@sA~Ah+kc;{xB^XQ=)=hb6-u2?u#L+^XF=L!Lp2r9ivCR- zJLxNxr}4O&q+-vw#RCobn=IAOav?loh{b0!r_L2Lg!~!%#Pdo79ZSTA^)z=)sC2Ig z6Gt03=Qd)^+8)eG%{fO~ss{n9+)wR zY#R0H*~n{;N4=gNodej9`1Gt7wYQe+=Lu1xyc<|`pH^XigH?I9sSzQ@Sty@cAU&mh zIH!HpTHbJGX*Ri*Ar`vmWjHM}NR>8nb!gQ{EjWeAWZiJ?chVf@jF&SIJKeeHt3xrJUdMu8hIX~?kww+OY;YdIbxjIhGO>%z-7u=PwqlE10ykH>zu<>0s^>4)75$;0JC z3+7+y1hTDPs}O_`u>YFywVFIt2_C5;^0J|ndkn&fGCY2L(=#c?!aT4?_FZKupB}0DZ)Hk~q)3f2ymi!2nI28! zp8KmAs~`#P$!UA8W-p+x36Z@?`<49iVYINfoy&8jls)!UaJzR!A0}C>WdH+5@Sb_ahb>Cm zRi4oq+K&Uw_qlI6_$M^yS0+$QaYzZcpULLOnX_-FW{VQ{Zc1vrmwek@O<+q#rM?-f zshS7;hmc6$q*{cM?FJQRL7)HbUZ4kw*kmk|P{mDC&G?FUFy}sfM%C!n5)Crloh~|G z17Cb$Un{`ExVI&lGqUd~Nd^8&>wj=flf zEAfVpHJw!LSJyP!zq_S5KTT*5cK8sui4@~A+^ao1f-@uzyYjK?F~9lG+QTyMy&(%V zcIjl@FVJh`O20YE#bRY{_WhQo^vRcD%V_9=*ezUT2;^qSJSv*ZcM!b+mYYrJCxft| zQjBE3pS9s1>^@74TNE72bujLA=**X}wM0^dw>}r`)@fi5aAT>{e@kHnYM92LHrk^< zL3Hb$Nf6eCO=}PpG0J_0qZ-gYC1my865-HI*qjl601KF;Ih;w0f+sB)>srJeAlzhB zLd@RzxVL!Ch<7Ze+XrrI>^OU1Gv2|z)UjaMOzODl#lJwm++9u z!ejkmVamG%toTTE_%^P>2t0A-#q-8E6w4z6sR0Uk1TxW>Dng8RD)WOQx>`}s&gKZ? zRN3Cz6~AVy%twu4%E_4nIJk=_LKKg%PHyPYweS*3Wb_)$CJRsuqEAB%Q0BX#O|#j5 zL0K$DM6f3|o<~Y1BsV>_c42>CD-CD9#LMKq;A#W$;z10Lax&Ptia|g;h!4?9d!hEi z4d!T^d4@p{a4T+>m# zg?vSxB9QC>Qk$@fYhZ#>1sbVm0C81Q^|o~M=YUh^3gJQJSxLEvXr>0w$Q}lP=%={T zK&4Hb=h!#d?A5v#5N3lce!RuutP^AwQcQT({UWK;rqZX>*dYY_>cyW*uFZoJfuW~qfc-4@q&K=r2u5IoTr99s$Bm&*K(Cwm zM|3QlF+E=7i5(a5sZ_w-=_78}Z)N8AC!^fdMlv7n;XJm$ur>o-LW-D&@B8B-o z1`U<1kn!D48e+`w1l$z9_w^4!X$Rf|mexG&_jAvQ04S#GiMmA?+yYyy;o-47*D{WG zZ_3Q7?TcyH8}$%z6wzno6Dr|W`lb^8U!5&Om%?VS8N0l)&I^fnVz?T3Nm}?_PliCR zQE&VBjyG)a!=rtJLs6o`iV3+TD72j|BI8_sgF_?{rPr>WnBCea`ua=hI4(2su+*b; zznaF0mhfgk*#27@vR_4F=^+At27*4IgLf2QO9YBH4iyhIoLH5E8%s>CW`8B}U%?}^ zTMaE2eM3z>rZXb|x4~)s`*jPo;WT3wvMj0g^xoulOVee-72{y_t2w-<%_kX`UhxtA z0crQn($%ZnB*TI7c+3Wd2l{pcX%WiNx0@C#g3{e=qNLJ*TCvw724wvNe{(D~s{A%` zR>voHwklQ#feSpDT&I@ofhb`=yL_k)?a15yO#{j1D|YuVTl&8bEJewbVxKpyUIs@Y zh}9CL0|*1>WN<%YoC4_>&-6(85X-=iLn|ggsI8rJc6ZVffm7#3b)K`e=h%S7LlEWj z8Hye_$FA*a08jkwlCN`@stKv%S-mBCd2E`p!edSbu1PoJgH7%QiI=@ZiY}q{uU2Jb zr0)`au6~&GJ}cb3Jy{4unmE+jf9?IsFDWX$|MOI;XypyH;r|w=1iASiTtpJvl|z}j zg{*+K!`p3DP9*yp1-rL#U?9@5QI8;INqxamEPOnMSf%K6(OnGlye8bF-TFWXrNi~e z+GF7LL)k?!3+*jN#pm@KI|cG6{eG_n{^l5Y_*5f7KRPs6=Rk+9etgxy+lVC5eMz$S zy7YY-bX0zIS5kT}eFe0?(`-=|yM3Q@&+t|yj@(s+ID><)2DVBs9LvH&=~%GS42b@)p8f9Dp=USZU6f58E)l8~Fg!RKfBo?%Z%)k! zL}g65Yr;pu;GJcWjp|FxM%;L|tt6fj8|3>aIS>(_r(1|Bvt_pMR6~c|C=!hrW=>Ah zU#iiC+e1h0b^-6Qb|Wt-%B~MQU0p1th#|bs4U!yC_Fh<+RU{hY8ql>y+Z!4}4Sads zCz2<0;BoTBoSKJfz1s!tYhWN5X9<0QV$~q*i{%(}N*_3CU;5L*^m;MQYdBVMOQM3l z5TAQp0^-y_!mD!&P!)!Jlw4TR_5%M-JkJs{M$`uSvR=4bY?l0VSn^_;d#|8peg1uy zT8zPN@YMLQRzH=i1{P1hNi*N}oy)s`_iHQ# zsmT!Pyky*UtbJfc$K%PR>b0TaY%ciwf7X2e=U1FWm#*LSk#GO|;{Jm!1>nS@*P+j_ zB0CLk*oc!? z8HxgcA5D7jbRc{2nKR-E&de|36R@DNaIg&Oi5XsWw2kG$V;VfPRDfoz7VWKatvqaG zDp`S@>o+MF3%-0`z0IoVC4kg#x0?(sW5l9s@F($(4~A} z94YT>M6TdxUw!sWWoG%qa*wiuh`napv5zv!GelDS;))R#%yWun&bWEIL~>Gxi;+$B zeln;bFTXH4C)FAH0&g|`R+$r`mi)T+-!K1e*aJk0$BA$Io$K4#rEgGPy|yMaxf%W% zTb|RLozH0TZIPQI_HcY*J7iY86kng@VUO2wp~>}snsW*iw^~;|ZQFOvxh1}@7_6q~ z;{V^AYn|dp3OZb^?e^@i3^kqVWgMpa?ojQDT_2s*{2#8qGOo$D@B1&Jbd2uUkWP`& zAV?}9BGNfzD%~J0wb3D6N{Arcog0jtpuj*nManT@L+asv?)$o*>v}%Ni}QSWzBta` z@jJf1Z{Q0Uxvx&q&nR0~65!d>3$V^sxV~ljKQCvVJ{f;iTLzkWK@G^)({OGET83k$T3DQ)L)vWgwOhqpxf6PRnJHX}!S#I(DqFSueU-Lbs5Pr! zB%d_*V62YxmXfwj&p~V_X2x^opOrtE#5fqdw0zEX!t%;z=D#y!S(WMWBB5VVNxWMS1x-t(xxxt#8UL zFUp5rl__&x&%LN96W915+^tKiaZ9W8fhxG11FAo6K=f%o!?j+ z;MHzl@+`4^##KtnDEW=EbCt86F6RfQR+nUXu}Ag3RdjhG#*oibT*y)e{fJT8c^cp|!6J$(GJg@vsaQCw*8>y?a@3e&fag^gL)D6b5; zSF;+FNitrk$?IQITi(a-t2SmHr`ozz^7l{mNV5siWEi_~Rg`iVxs}~saJBTRM^%1Y zOx0UnRe;3dw<_Y)VZ`ZzZonO(V}r%;#lD@*!-{W<`LL~|9McakM&w~u>f#b4631%o z=|o~m@Z#K=NAlXoHos~Xa}_&A!nPU?@9q39UrbJn9gpX;@;WN68&yu+z!O;HvFk$e zD^si%hwZN)I2^q;|6V%SoNrPnqMF|Nlfch>AKd8)-bT%`GiJ|t8*E(`vpl&X4I(gV z*RPvy_InK%k12$bGN;FlSDG_a;tH|Jw)x&oymuaTw~uk>c>pRXc*S3d?(}v3*(|Z} zO?=@YC?TsFCL7B~$2qb$E|VBZ^Y<`BaW2uiE;Evqow}pW|2Z(U>~~G!!IPz-JSCc> z;U{hrJFDVQ{-O7+W3}+^@mrsc-83H`2O+KYr{OkPUV&haT8jeLub#^t2lb9wa;LA$ z5xA8I)^Kb&9JY<>CPgXn|CYHe(vwPofonyc*|mog+-&f~D> z+Vs(5dyK7n;;3R4>HB|MN_>E}zdh{hzAIsP>K|8by*opD)K{^wrPbHpK1b4+GgViM zd2S@C>N#%r_To;kd3zG^&CV~7{{^pLeCOf1dJ&777Qh!|iYX;9302TSN`-7Sx|B_g zi3p$z_W`kaR`Gh#NWs3|+k99<$G8iOmeeM3{y76oXV3P5Q8k!MRq#b9E>N$qvaVxmNK^!WIIEP)B1 zH3B*XI^#>OU?I;DbU^^or5WyeKc4i)*>{qt5WC8_W#1_In@{5zE|X((w_p-8r*MAv zLDP?Jj>omSx(Hrc^>Obk0`xF-f9U=zg}V)bi$&*qOrMOiKvYNE<9kh?wKLrKs{v>m zgqGyRf!piKfTeiB@yj)mbL(^9O=id^aj#}QN_s`!w0MyCw5KS&IZxSMrp)g^2Z0R> zW(V0GXSZP59tHFHZ1r`}jR`TisyAnS8d_l>y6D*dYG0Fd*f901BUPC#b@>mH?=zoW z9l#|?kI5uNB#S6_0T3!Q6rS-)PM>qn#aAEgP{e-O7LE}PjOjIQnIJ*26V7QdCF zPl^7Bcah{FxEipamF7c-xA#rK-h={Bf(uhABs#Yz>5ss}dvCV}!Ot-egQ&nB`pMAC z_-Xu*NtP`Kv?#=n=F7_kjmOOoemS^Yrx4nMm7f^IJ_7pUpR z?sy_Tk|4@VuLUj2C*rS0-~W6~Ib>HRyZv3ZY~xRiNP+G}X=HlI%qJNy-$=*_81d&l zk0@+nYHI&;lguaN>|^(Fe!Dm1^=v0^T`KhwwVLm3o3`G&HLX)3rsaI{+4M(AcUfv0 z*)w2q1N`khrY5RS5WEl1uZjfZ?Tvz6(oP}QlN-2-KjK?oRE_?RbQZ_r1+Mr`f%TS% zNd|VV2d;9y|Kxpcy60(JJq0W4ZZ=aWOLgdV-4LsHExz}uRkpaKnJ!5G3sOS%MR8bF zT8BDZ#@omMbU1IJi)}68@|B@89+NNi>91W4a)-tw}5zZG9F({~Se9 zUpdBe7~80|@%g`(9??Z2H8fO21nAC%-vAWZ(-V)W&Lq{o>UM5-8L8~3)^}Pp7@_Ms zH$=Azj&I>J%L7#z#hbT^%Zr0#>(hccvR0MlD{qong}6mJOqu1?f2}W}>RaV)+l5ut zJ9Hc8S@!z@v`iy7a#3HCOaWBb=DcbM&yI{2bzr&D3%BBue0hnyELW%Ge0>#{tJw** z5!sqHi5;0Zl#f1MUOs8>qA(j)y?rOFJ+isSUGiFaZEin~#2qiq<<@7>XU+8o=PM7D z4wI+v$8=kIA0pioMz}rrMx5SNI%U1~-lq5J20{@fD0h1YJ?C1&D>o>@RpHl+SAV|h zyjXHnqWHu`B>LAv!VkOhJs(JxH?#G(rIo*V*Z9LRmetsC8k$tOJpS6J44k9LRk7i% z>kFl`T@MZapzW~Le{SRd=$We)gZGlT?U*lqvlMEcHTnMTS_fjp4NW(*lH>}~h8u@G z))j-J!p^$8R&e{Q^^?br^3q)dHtrMU2YFnQ;UmX?ksY?fNW2y6#tAlHn@eCw4R=~3YAmwzuj`7WE`WzLX#VAO2gJ|a?6fjq zO+`TUr^^$244>~iFN=T8jQ;x>MozS|a#~FoS+GUeNT0%X_I;m?@2khD{;?(D2zcs) z_d#Y!w5yOwrKBAN|HxYxSm_j;t?gE|xoV*qs*nhL2{Z=8!wjw8r`VFV+*xXmWPZnd z788DtQa#POS(qY#4*nx|#Eh8z{=`xDjyDRTo_3xGEF4CU6%0Oy0-pgQi0u$6IzgMC zs9zu;6*%K=-GLUT^NR!z?fbt(V^H3dg=o5$fK6JDvx}ZaFGk@s+8p!?@0o(J`m`Zl zn@9==mK+NXbJ(J2(xrDnoPz^+leff#64c8*v%l|%`{(0l1tzIvNuTkh=h_=o+bf*i zlJtqfMv3r?l{@ujBVfRJK<^K%NOumUKMkK4mYj~>pi>`CxOHpMj6W5CfSF{BkUnp* zWCzo#0h|wHK=k>uq%lL9etYktl(haTCQWVM>8H%EqOoTKvQMJy{Q9;!MH-&QekPlD zZoHM_I(VxhuBxTQ8*h%1q zf=;-B0Hjm`7`&?YdDw4mFeiM(8(KI^Z!{?ZSgmaCCUC9sC8XdHmL8z{KFSSwJWog@ z(NS2yDYD!3E$`HtdKU=|yDgZ47JG>HUxO;Iy(#z>CN_Um6$_pCM8ti(KkyA7y%83C zluco~c{_N-KT4kjz4Vq7ms{|I@W8TKx+u1r>V8;jQc_tH*?^%-3ikD!h2h>a*wc{h zT#9Rvp37Z4a^ZXqp{;VBA-5%u)>T*Zvk-889r~l?M0@V{kle-U<$w8>>JIA~Y|r6( zFDu&)TBGa@&4L4hH{nM)awb_9pWTR<~xEm$ixHQPegtiG~Kz1$4%%`H_Tw}@U>hm0!D z3uw(KXLoDJYg}l^d#Uvr>!n9YDz~54Wg8|4(%hT9UvyMEdbURP#CuVM>jAf>{JPZ{ zeSczCjMz|GE!}+~+SEu`VScq1HwDD9o~?F?)x+}PP7 z-Ue|4%DKT3@sn{IzmWMA+3HutK{yTZ%#=>p>u*!p4(kVJQ28vYM?Hwpz<0qlKi}sk zm2soa3If;fFsP3NA%A?a{MFy`@3d&A( zgq1N!jCe2Fs*p%HBaf;Z4PIVMDvUrUgvh8EbrW~2mM}r`PR*%DB$jBMe(gS+q$6oB zqn`aE7s;C5G5M{oacrkb2inW7sK z8uyPSG!%Z2u)7>Q4YlVtJ>^`J9{N+ow6x+u(gO*W4Y=AYxX2H=$TOokB>=S1qnD(E z2^0QU6%U@zfAH(1IvlBRtQ7k8GTe65a6Z1=E^pD=lci7tTg*!~ipz(oRC{Hp=lzra%-ddU9}?DXl0TgbgRJ!Q^e*Ik8o2L6IKuiX z>OIf59ns&DdfHC!tOTGiFW8>_zwK>DdU0;3!f4xbvZom8i@M?1^cDusM!qv4AAHO$ z3=sT}mHmKpzx5hY0v&B4{EnXEr(=P~5r=F9Epsy$oKIzgT`f35#;36D*MEKJ!hae> z)qx(U{o?%wfNSuh5CWp(4m899z#dvM-sMyz0JByC? z!29nRqeEKm{4%NSI##7XqO-a)fIs+-mx^;RLM0D2K3&g9Z{8Qv1ih_j{}Wn}L7Nhw zTk2{w68F8u-a-17Q9KVnwR-LV95WOje%J3XvP~-+_}QM=nYi|hSIo7pR3APxxxwu^ zfRTI3Nd+OwaR8BMRZegoyw=+=gU&2Of2Mhz_*?Tmon-xR7vZUt>Bd4`1b1FaIm|JS z`7lvZ7F_=xB5d*n^Z{_ANU~@gWL0N|yBuC6y?;?}vpC$v@q|=wZeHiUMAVJcxuX$@ zu28h_9*p}<*6v*3N>rf)jyc&fRT)F4bb?h}{IKTg^4_hX9x>JWf{tA~u^+zvoquQ# zI(K{ivcCFufj74@IYE*|Mv?Q2J;{Z z>opjG^cQ*9iD-7@1UpOFhS4z2+nU2UurI$$XgjD(PNflp!F3OY1uy%P>#dfp=bK?M z(etXV4LMo$CfAKZoX`aZ#SW69=39=p(JLnLIAdo658bNW&Q+l&$K8a|#IjDe4wdEO zt`Z1#dTD*|`eX}py*fB8?K;@!l#vy*QU`W;9Afz=u_}3xtJOU}?CK1ABYtz9zR1Jc z(Fcw-AH|OycE1^}HTZG#Jz%0=BJV%v{F3vu{}nT}kx_e9eiQR(n0OO$D$o;fQfsW2 z6U95R&fGrZpSdGvR&IM%&}I|4S;a+5qjy01Vy+^9L_F2j zts#1bQIR;vK1MhxD;bVMG$}mYovk7~OnB2nZ1K8~{;bi9!<*rY2n+2BeFs3E)z*gR z?kr<`Ta4KggAM#Kk33UqYCbwB&Vn>$RdkZ+HoYiZnyg~+5f{%;CQ1C#nvN)l`9!|H zbv^C-$4&|6x2WWJ$jbb41~*jan&>s{^(W9gW0)q>LQd;Btt9-&SmjAq+3%N&o*w|X zJkM4KetDu5yGA*4uC1flWraMNus&up**ypSBsZ=-@vQVPmM2yQeM9AT+8EFgKT*T% zthqt$7}Ih%_h`wM%J#aA*V}^j@$~G;9fIAI@1oLHtCy&E8ogT{ssMJzTlgp`iY7(m zQ}eHpz3RxUqP1aD0^$U}a}ptCRID_pymeW#1+933GniH>(hOlGBJ>I!y1M+CnFN8`C>d<58)lgAa?do{j_ECFASRnPywtv{_3{+AX=SK(s z;+IXU_b-5=&X>PY#V3!d%~LXKT3igg%`Q0`E3yBHU&a?suIxX3KytfaB!NWW?4;qW zeXkM3?mN;rTNvc+5Fc2V(ff9CZFm^7r5Mg4>HGe0g7buQWO4Aw1JL8Imu6#gEDz zycZZI1Q_eekzE1WL%uCxyWD$^{hf}H#PadfyKJ z$uzKLU{*d~Bq?wcqRgwZc{=&;0MHEt1c3D|pDXeIbsA4>l;{$M7j&h3tgJ&T9(55= z?6!2tsxIa(3r#|kgydvRw8}8Q*ZUjs=sr|fL*TwzO!%q4gP_KJuYGtt$nD2_>4T5bra^}fHCalDatLG<39m$x#67-SRxTH!i1;;LE1cFT$LFMk zk*YBcYuM>Lacsn=WF8(sHGrP5AYOgn2gaUpR+>(rw`6V!wd8ErxW1PnQ?$kSg_(&G zrst{thYZC$k9?&Tx`n7Mz9AUkaGxf%aK7g`REB(xztlDBZc>_4?--C8;!cC!$&{8S zl6ucXldDbgN0s5%lI=7--lCnzI82;D(({hr{$Y*7NJJ?|y>XEaV<#nkxZhZFIKq85 z*FmaOP!Kd>( zf{0#I^?u)t6RgyQ4Wikef5};tmB`qxuvD{bDM+S0uiyu7t9-+)R5vGztGE;xYx;oP zCwVIDgZIVH@U1R!7;pnl@aZ~#u}0og4Qqwz!2Zb~ja*`Da3#?U7&$}C#7inc>E zyUzAz;coU+l8d4!V0+)-UDtL@^aOX0qj7(HIGTfOix4{@!2VK&1Y#B#nz{vs5|k}T z>$_Ym`tv1z_(*2zv$AVk9ok&9{S+L|a*di7d?4Yx#j4N#&!hG?%XjmIz1Ts)x37A$h~g zWQ_M;xAeD@TbqxG|F!tpiJ%3(FBbpATdu#uq2nWIteFIqj<&Fyz4Bs6>o^WXkb^>f zD~qj?xOi4447q8Apj#KM|L~3t+nuEB@FJRg9sQhET4p%>_?D(t$06*R;Rv>bG~aDg zUJA_IJRg0zI2=z`HqPC*1 zH(~A1yx1}DB6~*)DDOlVf;-$%gW`&gxh&E8(FkY$sk#;Pd#RE$~j&JCA97SI}cyA1sEB7J|Jz`$f-2M}c41;xS?s&a5JDyo*8I`%sN{_>>OKVsM zUw@cC3xwo#O)n5SgHsYcwuik;&QdQbAx6I#DO&#j+V20R9R5BB{r;?sj|-$=Mw(xT zyaZm;T9djXm>jOt_T1v6SAHi;dB1UA^gBPmeuv)hMFLNIhYKu)b)QFW4rcGZ`}4!( zD{A@OAL%5>z0?L$$YujXl{Q8vEUG-|xsG*Iss63rN91huQt@9w8tOy5Ebuy5CkFmN zlLg2Oh(VbnR@0fFMmZodGQC9-^Pts5(L*oC!XVn+QV1|NkL-?o^)JkJI36B|NwixG z^W(Qq|L5@?&nH}+pB?o#191fHJdTPEf1dP|I=kCmbZUnxpb+?TPJl(0aH}S##r;WE*^A5|_n?V#|E>HW&0pt=a19t#>${7=2GT2+nw8}g< z{*$8@TaR$<{4X;dZ;(o)EM1peAtJ=8b$(mdlxghuJ;!EYH}G4u?`+C7p{r=kiX+fL zKh6NM?MJeo$1Xa{*`Bzs>5u71PCBNR$#bJ4 zm^)82I9+h6k=Rs@FV$A;$0zcoOHwH^^6F0Lh{eFHQ{)a6;LzX2NR7ssM~5FK^d7OmxTvTx$={nA&pQI1PP2x-Pqr?0JSHlt8yPo{gIR zuk7L>yl;>qqS~@`Xu9l4NpG*}vj3qb_Q?Hh;G*ANEu_lXkM8eS5n|q<HdC3AOJ@+#>JZ zuNnE6bdWsQKy;F;{*M%e*M4pXP{w;eodv|tfVWsgxBrU^Kpzap!`?A;!7_aR%J6^8 zXtT%{5TM^{FtidXdPbQZr|0vhax1{xZQI5{UtZ+Ki`r<>opSEy=w44;uFt56j@QLH zM|xcER{Hvnc4hhHjB@K1;EtkXMmpTzJ{UQgfHlr^lFB`2h~{_jZ5yMQHi|@OO-xP< zJqR0M3XIF{5v)sPH!HW!mCwz#D73ROGm~w9C@lDf+`B53W8C-H>FVKczF1J**~o2q zFn`t5EjCl0opb>+%d__!>MB*Yv+-$P#qT?*nrGn*+q;tVG)*DcRu0`z7ZooXxlv@o zYvrwg;Acsmzq>?paf(ZkjP<2NLIn$N=0oKp4+rDgF_g@w!VRgQKIyH29}POF?y4+& z8qCAnMu6ynGZADDXlnzO{b9o}jTOMh+IkX~2CdsJYIE`W->1ehef)57!L`)N082dD z=OTI0E}=*e?_@-euy0AXu}a(lU*xKeLjAw#cgTdz-ef85oW%tO9tLxTB3yQLCQ_AD z770=EBah;PQ9;Df``2oX-hRK17a251HAC*kuH8cqX8jhp@hjB(ykQ5T;GS30vrs}8 zrWW6BZ%5@-ixl2UvWbc)6bn?PJcIA>V%bx@AEQM+X4k{!Hveo>C#SycSwVB5ycJ)$ zZQqFlS%=K+I%zwSQG|}lhMZzF14VmcaRKNjMNIye#{!-^l_w+am>lxbmL+=s6;EfS zqjogBzW$RvO>G#E>-)kp7BCr8{r~jSeIVKhS!-{tVE;22MW>#<@0!>NRqf%r6_*Z? zo{%~Jk}w}0gM~}D=MA?(g=kHz-0FW(lm98-Pc`jYm+-J9{}tt$w)IYINpnu=qku{a zF$J@wt{SeRfI-z^vAHnW)4)H4p2M!aaOp`okU~~BkN%j^KPW9?9^e9tupya&&w+aG z+CFU|3aTMAeZvG#O@Idr1iazO`21@ol}gpNh)lWEr$h*&TM$S(DxC9B!|ls=4VUFQ zevoV9t$ujZxqagR!>)yoiMlY*Ej0ikrSY`V#$+nDbwk*Ng{K=Zq+v}g2=kojzELVM zwr#LYbjq<2?Y=ffWD6U?M=^TOhi2CW@0J1`FjH|Ttu|JY`q1|qykIEZ)MebHO{M+B z*e4P?&e!miqJ>PP1F1_MH_F`l2P__w(8On^mcrlAlPRn9oM6GOA?{EpNs>A~w2m@h z=MU$3*1)vO!pw;n@@kgzVzQ6_pg)}bKvu7+Tp#`beJc9d*!&S3Mir^nlh=Zyy_ zXLb?U|{>*HU;hp+#=hTl|iYT{+@ zA#?0uYp;}eyDLv9VGBQ8-MY-Sao447w*awl@`ZiSMVah#-s= zBH?4m4F?OUtn3$|PdUUSLNiHFG>DPoz74;TjrPKy>PF!=B_>UQCvn>>8KvW*lYj5f z#|rXG{ejGIFn#lOYSu&vmelydKuyJn^?`<)7 zJ!o&lkDDfGkpeR%mg%`|H3jF!tv4l)9|zV1!oO{~d&Lx^;F3c3C^8b#1HR=ij&&ii z8gj&r9Yy`OheobYoFNp7$Yu{2Q*Y*@fi{%D7CpjvKXYs(Y!fRfOsAreNObiDig z>$FnG(uEJzH_eH^$J%E_&ak7nVy4hrk;TS2laS+7^@mP973u9I;(4J~3>B<27hX*5 zj=v0+Tco*p-~XY^ZVYN`_1%`x3|0TG&2k1Ajs+{e;H-ICK3_JO?M2QxwkcdlgJua{ z8-1a!SOg_0+IOCi7g+8aTL|R8v?&~<4y4y3z?vl#0vS0+=X2tqLw<47H$R3CC+K&& zEWnykJB^MZ_X~F3`CtnciyqtCMXECR0ObA_9NmIgI76@k&VM25Uq8`~p=bLRECp2J zNWOj?^S;G>6yyX$5$N4Y7f^C^utT}&?>P+}e!e>n!s-To7T=1;imVK{ME#M*KiLj) z-U+FSC^TWIfC}%Pn&C*~A-oCc&{5wIlF_L(WZ_ZpUU2|^tcbISFkrgDZF`X)rCOE# z)NM@J^SstAsW${m;o#Dw`&R#5SkMhUh0hG(MgHIO#pH*?SLKo}t*@V~vkQcss-+Sl zlhT4GHLq#?-OW?)zHxsYzh_IR{sTSx|8Z(TK!6}mUBJjR26_~-UK}r>U&`1pPVqW^ z5wFhng|25Ut#$~C4hZ3B+5g(+KeO;^?=XI@cdJ0keFa1}Rj$rx^x1(uB1TfP4rFXX zr}&1b;^zHl^8=)V!Y$q*lN#W4%12T~M4p>@r6nL0rSHHDxlvW8SH`F2=?t4pl$_8e zM2Fu2z<%m+W|PiZ9AjWsc?^|7raY&4!w-PvsVSAyYie?78d9!j76>JK^83o1S>@{% z+GQ>vuvQU0WH5&Wo-ec=5+B>hSI zV46~)0s0n%zm9Hc!(PhBP_w`PqWx(*jC?Aw%b} zDCK8_S+N|SnToN?c#yC!g-DX61`L$>4GYWAYa5LI2gP<17P>SWm7HBd#Z)9P9$BDI zoU!!#Q6e=V+qx4Ac=;h#Nrg}fgWM@+A((!avU}X0Z z*S=>MpRBFgCY|tE`jY8ltG73ixdAC+?lOr74ZT=;ODUh^;bbH2*hM8V?8%^QXaU7x zdy>e&epO-)+`Lq_*?V=+!5cG=oW&Nul0>~O%fTbX(8hUt^e6hFx?2#AJvWx{`aE~IM$XkYM$Uf?Zur%JCmOEvxp!`53$Z<^XwhBgR{oo#=LOK z*Jv(3b7;?DyY71B!C5z-a1|7584=?7K$};z@pM>xoZS>$wwkaQo4SK|YvEmR%Y}>9 z=I=LOm)4Pu`Nq2!JAa$!C47v-rz%Az;bE$Kx22waL7-0i325&ghVnumtG6#g1b)k) zrGs4g=)4z1apM5?1>(vC*W~jTweZN(A0n=w54-WpG|{!^(=q?4aJjZ64)r_#CFgjg z>4_jSOhy-89|Vj&F-(en;upWui&cG=4@#lKq2Q!-2rB{cQTaTU=W3{-gLWM)sDLJs zgKfK|CvjUqqMdr-J*{*B*dwHG)RlvbRI`~8WzftojuQCgmg}Qq4sQvt zX+nu{Mwgr6di5H|(XZ3zo1YIggYSY)&(lAD(VjAD{2EiBiH*L{7Uzx0sU&wi5oXCmg=OEnx7-`7xqZ8;(M)xVhS;T9 zl)O=VTS!7sAqq!9#E~B%#hA24K}cLgF68tQtUTEgHhq@U<57xs#gC+w2r*}QSyl%% zPU03m3?R`P^}ETT%oosk=lP;+w$%L?d2^AgRRt>zg`~Pb$B-#`3-Q~sDuaew22r|) z2aTGklmPnuO$D!nrpXEMU&rUgIPmp4dbVGtM#d1WGsSCeAa074-y=6{PoVbm(olJN z!yEirowjouLY8cm*!=r?N{yMozH5l z#>@cCtkTMz9gVVz*paQRxnq;7l%$^t`JI79Xpsca2fgUvL00WzNrz^Kr8o!KB3TJ_ zy}({yiEa2WP$#PQd=yK_-NTIG&#GdelL~m} zk@66MpKVD&ZAZ&N8ziz&+{A!Y?NCA84iFp^v6-b&TE&d<##G5*;1FZ8{ z6R*F9&?F=m;0vBt=prKic_ha)gCLb51`(ZSX5?+)xP!efHc3p8Z~-N$ny&TZfJJ+4 zB$-5@_xO*H6^-BXf;@kD|50D8z-R~pS83BoeM>#3SjqbJ#v{X@h+Ue*{$koT>z-Y7 zh3mug5cdW+&ftr4Wh7IvA2h%~0&N1~G0K`)l#Wn$7C5f{9m&N9RL@|E>qBn$-STb_ zyptN6?+Eo|h^?n>Th``3S4^P2LK*U@sG0vdE){vv=#Y0wY)LEv^TEl`n1NKuj%YV3 z==>~H?oM~Za#Q{wrQ(Mo$m~-lXw+Ho4@?~&09kr;{D~jv*|~vkf1Kpkw)_NPc)m`( z^Vr_IS=WA$XxEa1dEkY!yArX)EzUH?Q{?vDv|O_x1<({6?*c2W{QGuj#3{a6i=W=J zotcjHigec}YTIM^VFbMzKvfXzN4g0+BtYwT-+h>2jVn5?-I@R~06M`yj+;;P>uzT@ zncUU+S|1#S!IACh6UX?(2oYsb>AaC+SB2v~ZK97=RUkcwFB_wefFad+qc5-QC~;F2 z6Hd_({gmZGfVcVg^vjb@k-Vj0r%m!eKXbHCu%`A<4W>&t%ArS(^kDJ!(2xkR@9t+K zc4Lrv>2oF7ZTN4n%13s~=LF;VR`rEuo0*#Z_H@2!sHH{WqVb0jU{HdlAT$vJfsEr&q1hIe==VoC z4vizJO&33mZjQxa=%*5UOWfVWM2kY4VY*zEZ7IYUGL|Xk`IR?z zh(yK5Pl;AKjh1HDU7u7VM4*(KHT7Tz4@SE1w4rZG`OhCc{9LU^h4l`|II{-Fkw?ep zy$>q?jbnQ=Vrd1m9ZYsYin_TN%e())^xRt#**M@%ytDWt_e z?e5KrL|KtPL*yR!U8Qmi#x21TcoG zly$;a=QlF;41PJKYYZ5n`r->zd*6PJ<2?h-Z$mzao-dddeQaCz=no_eo6wggF(&=Zvq?-IjVl;bt?oX@k(o6b%WA9$&7!gi)Zn#%)eTbJY$l{$ zjju*kaP~@KqV{6rTi33W&D)U4eRJ%X?WMw*^m4!dJOsMa^~cnIk)7Gr_fglm?=@`+ zXd>2!?gD2_KFHq>%ryRQE=K?{@OSUD)P9ev^E#{T_4!H!ZoFiL!*J;mp8OCtCiI`w z@b{!j41jEDe;cLK4==Gb=unZ=Bb12*LS&jfN6RWg38!uWESbCBPa}+zETz`ZC6++#V(mi0tCSNoJgCiG16j_Y1~ zI2)H{b}-8%yV#LnEsUDuIJEbH9{^J@qk>dg1cF!C1`v&M_oL&r_7CG{NF7G$4A5mD zUDUPcrWj04z|<+DNrlFIfc5ViW0QBIx@$ltM~x+Vg)b&Puk zuD*9y&nr)KyEgEASfUxBH1xjDz0ttDJ1#ISRT7z_BU4DlzGo;GlYj5wvAKkb!;%a5 zq{V41vz_P5H!0Bxh=l9p#Ty8Yv_G@JK`JU>ftU@BfxbPYw!8hI6|{bXm@T=;nQ`O1 ztIsM|#fif`8mObcj-P;^#3lJuwoR~(*jPD-T)J3!YrExj7F~`EyIAxMq*i$}R)k|( zjfx|g9V}nAL;Dmk7&$NdWsKVX;G#6NfDm3o4h~QG7F^UjFxm|MIZnm}4tLoMtp9d5 z@?;YSe*8>ZV))`ggX`|+iEYms@Kx2E*32g8%sf1AXJY4u2|q2LU|2r`9lr&4w_fu* zYS}NRFiAv1?0)}W)-u-qTVK}Sj7u1>nKL#ACkYgDpmvan<8pE;-NcvZ84JJG@8 zH-05SR5Y&1LXjftb;Aej&a+kUGu)0UL+{m-ynl@j|N9wA5@8v7k|$?(J*-hO1q%xt zQ```-y-@GktmaN|?(y>D@ZAJp`)NWY;nj%Fq-{&E?C`7ONA2lm`pY_cj|jY>CJ%VH z#E3=K-`2mG64Da~X)zqpbqNA#Tj3{(LIyt1JIu_l?DXpK*m$o9xRr7K3kG>O=$j`l zBVT}VsRY>)W#A<$<@L+vL8>>kx`gMRXGhVlAh;06b(W0j6nrj-aCUiM+WwhfZsjJ5 zt-a8o)O|P{s!8T0jTHi9uM?kr$Tzrn41-V~ZsEQDQH}pLq037>jwvE{*O#TBcCreoxZeY_F(=l3;og>>-a%kyLm7%eeJr=Q%H7J7dp3W z1ElCro;lthFiX9B<94+LtAjjIpl%4X0$mv2GSFt?Y%gD&QX>1Q#7>+s^d8qYsDQf0 z@E2iwlzIg7y$sRW=uvZum1xzxDzSV*VNei_;d+jY)08qL_3wToRQoDFdQJ9NNE3Py zsjPW8bT@Pux~Vg(Kj$~c(Jgt7D^RF0J!U(8>Fv8x3}QPceCX1f3qac&Ns{apmvF4$ zIp}+I8#moMD$d>d_5_6o=T{w+WW8)#&fM10r8}j29jK}+pzpgiN+eJA%^-gL{od>C z4R^_l2+V4w(4<~-0q1h(j-v)2^el{`_QErGbxT0g5URcCJ6ABZFrVHr-Ji44ICkmQ z9ujC3I5UHt3=8q4q@gj)4GX-%K1$6;y@3CNeFzdSdz|zl@h>jyhV!pQwRKgpCHF&y zyJQL*e$*!mdW?-^{+oj5rcBe(w*5Yh-_XWiEBO`mJSgnmF^1R}8h0Pl7F|@CH?Dse z=H|Sy;nJn>mkrCSp$W$@7c26Z-Un- zijqOeic$svSk>Xfb1t?{gQfX9qyTrNsJ%mDuM9~#Hh4`#Rvpo9Op~-qF_pa;Z3{{s z!h@mC%@cV}_6Sz??4@fXn?FvpJ1_n|Xg=uMO|9X}wSw*^obY70{&jZBHsS=89P zXp01I0XQH**f)w$dQmZnk~E(*sV%mL2cxB0iDP?|pn z>FX_?dx9RNUf)=+E4vHx7)>zF)3D?3Vbp$tEXisx&P!DhC0qizI3I3y7SfPBxqXqO zCOt$*(BZzuhmwU5M3>gf3 zddv?`tT<=2@)>J5y@)!vk+azysz)>6z3HCHPfzpH-LjN%4>!A=r?vg^HV@fW?hI1H z5@zS^W!UnCuhq|G^Ju@}uu#C+2|_&dyNOjjzdVm+-O8k6FPJOS!$XyGi|`Lofg#&B zT(Lr)Ay0QViD6VHx<5aBGK4^^$Z79jJTb)!W}3eH{g0J-QWajBqe|EFdl{8j&zQdw z$!uieO<8^rstw3)d&ME4-Zz+??1M zd2-+0eaUsUe{QiF=MH}PF=y|Loa~d>SZFo%fJpQf*pGODbAQn{!7Ot`SaL{gJ7$T(o<0 zwKOY@|Dj~N5m!H49c7#=n}EqLHLlMGsodkRJ$@Q+Nhp^^+Q)J+K$^AU;1buTa~qJO zt1L6WePai^rO|8!$cwHmknLls4#G`fB_A&RMBX4%7CsDrgh+AVlaI#eg#!ISTt?q{ z#rZh^sw0;O>t*_)INQXvd;Cm6j5me3w#~q1!#^(S+3-iFi1dvkm@>j~C@3E!ChHV5 zZ4`eXU&9yR#qmk5=pag$+<)__Y4zyb*amq&EWqLrD86K?^qC#^s>R4^oS!pdtC?K= zVzO&1&dZ_w{Y^TH{^#@#y)k#+K(}}~Pu(Qxv>C`0&Fb}v1#p2fnP0oo07sdxI}kkpvf;8e%t7sNrTGgv3}a_I5Bn++06(siok~120E3{G5I? zux2sKa8xb0P}NMDNL2nae%zS)0Cy}QpTS|MW{_GgME-VplE+ zHY^+qoujpA=>LmVHVg8zat|$htwhTu;459LeFIwu4dNzb6K>0*Ur!k&T~@GvJmP*= zKO6kLB8Z+`7#taWL}Nw>l@xHM2_obaS!MMu*2}Mp6kY2DpIX-@2pN|n1$s^f<*=*W z>xE89zdA>xNh#2VE30vYwV9Pf*~`6N#Mh^d9lt*QF1r?3cuGEarSZ>L^1qtv3lrLa zv1aJdOT10@#&U9QkFyn_3a#{6tQT*TCi2%5+1P_kTVX9_h`BVGZS8vfZ*%vXna#B@ zk*ax+ch|+S?0(y@P*4HGk=#Y|^%wkwHbnFjB2Ipz)AG4DsuP)f?d~CkZTDi;gWXg>T8(g5MDE=P)|pr7Td!*K>Ne%KRWt z*z3oAaTiT;ZUq4f2ih79DU{A;=>&bLGLUr_zIspZ(KL{A?R`g_jN*rWoqOV`DS-=0 zYR}HQCT`&$tA7%rF0bqQ7Z+e+rRk&n^6Uu3 zYuCtd{kCzBkA0d(|H3jel|DgJTxT^% z)NoBxcNP79-$Iu+J0?$1v9p5N6GnE%(`^S9W9ZblltP=p?xpS22B9RzI9UO_uWBBR z%Q_T1BmQ@^-Se=02a!u%vKdG~~kt5S0)1>RT zwEFCMCUe0FW@DbeX=A6y8+H++9ka0`yTUfi75K_!xl8_&e%|TM-%;^lp??Dh1F}JN zq31&Z(|6D-Qt>ZwGzo^PXOT2;bL-2mI-JGy?a z1_TY=5%8 zfTc#Rcp?^NjEKC!GT^bsrrb+SLyb>kB{lMe3umiMFZf?DI@8@6c}=F}bBk_6gr&%_xy|W@d$1}3 za4Xc|dXj^FESX$!O(dDOCRLTzseSnZaaiMBSdBwvd_4E zqj3hIhgN%p`B}ZD^W+qAKCYz-khduxR~5HtlJCA`txd`IX~o^|vSc0og{iRXKzI<9wrwYI%zs@&QQA>y6vxmR>Ak@^wpR_y@lf< z?2b%0?&WqMsCNDjS#KQ`)uVn74<(>p4&CXFq$}53*qc6xcc*AoF9>pmhgf znj&w_zixRh&TY~qOo&GRKGgEWR?C%!R1bjje0i&ejhs0>XQ{zwi@YbGg4VG*tZ90vVBCKA98f*z(zQZdqwApxN6L{wjIjG4wZsNiL&L#ovDSx)dmH~oF9$Bg7|#52Z0 z4a5JkUjH?^;tj~4M_^?9=+&RsoI%JbX(925JuAEc`qHK0@86x+66N*6#)Gm=AwEk| z!RW0|e$q+XZ+Ucld9jFW2|gcj;y7LO zb)}%D?3El<6*CDPcrmt>nXC7dkF`()bfJ#)vV03nO4^U+5*{JN~ffafBIAoOUrBOwnEn7y^^*8p^4V+fB2M3iq6KJ z9-sjGCbQvkD9scuD_CPGAW9p*dOkkJs*-W{bVk$d?V1?k08@`hOs3$^CjCRQ6^0yHP5i>hHp4X4VRk)Kl~0&{|uLTsx z^s1s7e|U0E!bV|bp1YUJc&I5m6PeFyNr7_aM;x)*{b${E9#Svjqu(QCG;mB7eX`6? z=73>mDc2biYTB1r5m(My!(3@(wN7Q74al$m;xgVegF4&OJws%CPNr`!IjnOd5lCFY zOqVq*%XgdBaZF$&8%ONRLOu+>GI~VX0jgD(Q88mDA1UtMT$fSbV|EzBy}79E4udY@ zF5`F*60`xBH~F(U*UVkIjloPb3$l#m%o?BA59B~{tHFrmJa5se*iHD|api@%q=K)< zM(HWX)f;>3P4AeIUn>=3iek=+?~a9;HN2~vp<-ujk7)HdjG;u6CylD&a8SsTL}Qg5 zZ{@%YIXbm~cJ^U*`8TJR4=T^kH&?q3+gaX=heG{Lb66V|ea(k5WPpgUlcm0;R$S58 z#8~D=&{k{fV>hE6Z-+1+oa*aO%uBWH?RUm8Wl5VmZfrXPeZs5VkX6$NT2sZ7eijxM zSZ;2v+HUNb%d2BIuLqVVRd5yX?#cac?GKv%i?T0EyzjhGO%gTf`2DcMubcb&Z_n7+ zI3`Vc<=VGoup{(Y_R)>ZtVa+!ITGpIA3MEPmgdBaJo_2ydi6tT6>lN3nu5H1DjN1f z#OzW+kY6zA{as;Nwe7ekFi%*>rGtH`QUZ(VrC2?qVT&bI5wJ>r#t@-S#wYtE(b*GH z-1w+9aIiSL1O`qU9*tlk;q_HtE#9--<(>-`&Ex2@e*4N8(dBqnG;K9>k6O?l2u(4E z(XUIAj*eiySpTdJ1Q|CKyt1Gev4k`!o8+$Iv3AQO;*&zlW%hJXt0ABRFrt_hOs+~~NkI+%B_ zsm|^{PUaYGTRt*;UHAMwShc%hjUFp^2=2&!UuDgHM&yzKeGThlQKfc0l%wX;JcA)t zlNH+6*4y&g>m=8VUw-tUoq=z!Gk`9i@c+ualQCqB7%-jDU?2mIMuNm0iWk@`qd{1O zY3s5WZ?qz;Vg0ya&v(U=u&#ag+7UaZx!muxo=ohC|FBA{CFM9mOoTKJNAG4=BEF$8F` zMGZecslXgp<#Hzk54qCmc1^K-N~DwBC_UsITmSP>WL1ed3^<~=no|wEQt$GwX+?A_ zPfj<6`DL2;gqqr4cf|@0PW}k~kLrq%8L=#t4?;TpRp8}ilpSc_CbV~lI!t?4;p+R@ z(9(^CB6KGVf|YYRS4s?9CijV@4+`tze_Nex`QK9VF9GyUAbnJA_$3_o!>7H;6>F|^ zzB0=UU3DSQv9hvKUd<5dBiTfz!88{FTE`_xYo)j0oeyc~5@?L%Wf6^}@b?FN2Aa3% zO?XYg-{Sj9@H^SK^I&8w9`6PDS<~$by->Fg$7o}+%}wC0$m9HUOk)Zi{QWm`^7tb^ zVy@SZ1B7bmnqt&-mU)dh1K|D^3pN}Cu%8bT&o3>?q>~1zqJd-6L^lo4=n2p$X+ry# z=uKr3J~hzYkV)uQkDevNNMl%&8D7A6w1oLKC#uPlyz2Cw4|!;-hp8-YlzbY4!vw`> zKM?cZ$ZM7kkKMxgqNzd(@m7&c+I?a8v{N0tj^~| zt7%_n3$SVK@|6ttDAMH7VtB@ekt$zjWXE^oeq~H?aS?l6qI3X~bcE?k)lmspU5`k4 zT`l@^n=;LBeI^pJtbOk^zMv&wYxSZpn^)R*NngrJuuFbz^R-x{i7E{UQhWM9ba)`_ zii&o3U)960|5}sbIRcu5zU)56PYBJ&iR+(dX1Z8Boij=Qx|WAwNf4_q6S-W=n)Cv|kTbX?b0sr(I7MR`I0h zJ|cG6-Z7yoF_UbyvV<&! z@||$%(S;V>l~m-leC|o1tLu$L%k117H`6uOWwnlD;JyWBZ|54QniY1S*@vaD^G6#qASV=N?Fr{HD;mW0;TvlSlP%Mt>JUBCn-LXt6N<^l^=#@_U*udeg3}}^Pug3(ZjoQzwzG* zM0wrw@q6MtWimD#gBQ(r$--4_QElK}R@cp|E8n$DyF=5~Pw#(C*YW3%=oDSUxe6qS zLuXO+{UeGVRoDKq^FBYQL|UTV51E+x^?_JFg$OV(fEm*aRNYI~(_$T}I z>ykm%(oiZ`66+u26?2OSdasSGj(px1ff6PQ)0w(rUFIgsTq~ZzB?=554R1Ve znJ2yOYFLx-!)>b-+TYggsTcC$Z;>Rs(@#SW3? z=d0OJ>WqsLwTm;{O5aFaQRp8194To*Rf)*rNz!P~N^tFXTbOQt!f=IrGx{RoMa-Ia z%SC(RLD!uXA~4==zSZ51?vHWm)bNf^{Qmq^8%tF}-$alaFI7fF=hF;Zg@k|jU%0ln zE~nlOtfTmi!En+VYSrI=F@+8Z_gqB(XE^@XCO2J+40_OqgdK((vY@9H*{9lGmOR@1 zq-e2{c~W2hYQry=8F@XPmYhi5^uAN~Id4~DOuq~M8ib;F@{rqcNBc~^<5?OahG7`Q`iVfa+cN;v#M;j38y9V3w zG?M?L-Xq7yqVOZop>DbWl)XFfK-Y>pAk2i7$>bt;>j@t_? zX?n>#ted!^u40dsdQ9|rCX#z}HsD`P7v?gFMIb4Zw62Tsk-F*VnzsH&t|c+gbOF61 zKu%gDBG6e4yCfI~d;nz4g(smq3oEgE%-A*&fGPgBnF`b}35V6pRPa>1}J+?8vvnGhYe zc&Q>nOXxu^8cO&wZ2rK=q$a2pd@WCChV2E1na}|R0-K-Nx$aX}4jqD#WWgt|AxYPf zOGRI@?MtQY|4tA1UKWk`9sTXU?I8%?bP9}pV2w5=r2L-z_j6?Zb*zfP1DiV+vwi~C z{A5sOJwRfU|A~|pTvk7F+-B(2J@PTtL9;KtQGZ^Te$(0N*A3i>JFrsp)5qKF(Ce=8 zrzni;ZeMP;2({G%=SVnh5_~C!h(r#T-cz~3SsN~;Dx3d&Ne{T*WqAO7;VNi8Et5b$)uajDc+g{ghcuplQSI_KH2PsY3!JJQbZEEy= z(@2Z957|(bJnEo077F)+BEB}Pr6_qh2i7Riu#;6(cwB?{uNrti8F%y@s&XH+W< z9#*q2_U=`q>cv_3sdBi0f|%$y@<%i$KSy{2kYqTgDqeK0ZTxXV4j3NX z@~mUdR&3_OvB(KKTDorn>e=1`;_oqnLLenF*kB|u;esIoMvc2FGS3Pa|I6aio0JDr zga$z%yxkwEEH6Qd`VM&U#xe(#O@Z%_C{z8&_UCR#T2ku%YFK(=wjxtj%XB>V zb@YgdV)SXhEDt_=)%qqW>-5y@MlNoDPd_pWukYJrmb0xg+bZlV=Rm$_i(ge~S8ZZU zfoJu!4FoD`aVXv&B#xz78n3Nm*gShofij`_diyMXsM+FUf#8)`@#8pDeNVXmGXA|) zhXKQzj<4i?nyH#vTGLPGK+lNPeOY7odKwq$>F4Y&PDgh{Qf2p_WGCUSqxxf&$tL=w0kmH8!6G zir!i%GtA9unwIGIMLSu6b0#=b+;3DJ&1fI@wF>qIac33!VcL#)O01`C&llCn>go$F z)~4tNd_otAw&g8w{mrc#_k~97gHNv!K4Cj{k}vzevdFG~Zai!rT&Y?NeGI)SbJF)s zeJwamtP~Kury}AzmbvG%2K`-B1nIF*OW1chKc22>LNj4TuiiSvJH5yoS1*eCcTiuJ zu)P{aebr`nLNqKKeP0S$?#Mnkh5Y!uil5N6)QhO7&a3g6+hj(8x@3h2?Er-r%Y@E+fdn50-o9F`1$cDI(AaCL3&=$t zeMn+GkU@Zx?@XHt=81GRK5+)F08FAjkqOZ8?2)`Gd#yVw>8-#-`&tf_RWh5WQT67O5N8MfBLtMl_5>FEtUEb~@ZwEekX99NIx=;>+uZQ-s~}+HQx#Dfdfz zQ(4TD;?vi|`0GjPDhUzMNuRT<%48cXlW(sTuwSTHJPtyn&&zSwX)@p3OPK3E^UX%F zD9pgaHpz_iNyxt?cOJG8z`#nK!CHD!tR9;C*}G#l#w#Oip{Z-JC?-vpQE?l!_9}kM z4Wkyxz1EFTOh3`7_WoiRXbxQg`B^Q5$`C@*=;pk1r(lb4W}D-HcJOx2)FOPV1N)uP z8KUTk<}qqJY|9|NA^hfkR2{98Pke7Uh|po~Vtr98-ne?VdK)v+kVEhFq3OMo&^4Cx z6J==AV*O|a=2SNVM2!rPY5U)l{=zv(@SQ{8x&`JpbvRGp-h9TTnI!o*aR;qJZ_o9r zG#@Qytn&JVdFB1mMc{*dPsAPZ^D^9|RR{7iT=gi&u*L`GDe?RUGBKo$MfvGH0clsy z%SwLl2;yHgkCkM+&u{i*l%oXGgv(lyP~B@sWbUS49gKf^zi%01yl0=;w;CEt+5cUL zVe=jZoi6JX7zMx0+#mPyaH!d+{2r>Xz(d!94eaHrmBLbRU4~y8j`hvv&ArdG0B=EY zKy@K8uNY?Hk)>Pjs)mpjPk>zc+)})g2Ugn-t<_bPGs9WR2nvjA8KJGg?x*>Efn7?5xz9$y5k+WCioovNncm?Q1hs^_wtBg0w%5a zeD0HL4?A9_y{VJb%&Ppaf;X4_j*fTy40TNcq$hX%v)0afz%+p!BQxxKPoAggys+cX z(s-{Oy?2+ZDk1bK=?%E)dBe2kCwb`Kzg%@Tcl4~-okV#@qQqdwJ)iL>4}-+D%6>0M zt2*cOjQbNf-IqJ@N|uf_mDd_YetJ-9-@e47dc03x5rU4XboF zvmlKxxFFTl_pbO-MICM&jKYF1k6O}td*ka4jUqa(HNTiz-1H*<&B|2;w;ZJf#|@WuanadD-+?KpfqU+{3A8;s_(FnMvL-us;`gOT8Z#97A&WF z4)3QGoY28RR=0L(?Ght$kpXr_S+Zi@EmtFM^X)3c{)}KQdJ`Bq}aqT05a0n*;%2ICeiSgD}itl2=KbotdqBfhK4?=;>juD z=@V;1&B6j|#kIBQ9~Q2J(5R|pnoh79{uX~0Gof)XQzT0#`3&(^2zQefR`XXmWMKWU z|6ccwl!6|koJz6qf$cNp436P^BBo%#H-P;bYac>yQt!blu0-Z2(!BB&&d<5(P7bYn zM7c*=LF#tu!ZYQiw-+bLOYe=sRp}lrq<*(@C3q1vqHcGH$>kpP?^q*_oVj7t4l15{ z4siPsedF8Yu_f3Tma#Aj`Vk1u={F2ew>bZxr~X4DQq#6JTvg}=9~^)RdT{4u#^UzK zd2p|rKCJlCR-w0h-U3Wi64p)=61j+u{L8akt+JZI{*rr!<}pGU?P%5yrLCIp>!t0T z=9#&wFqjD$uB3$}<_|GT#;6pD2RQI8+8chWR#~o&hSdS0f#M6b%2kZ)4~4(&Z~e%{ zW>NvjLXMuP42~%s*(QVatnTU8i3F`pc#VYop#ysf2tiZ5hqpg}52ofVKBEGRhjO|Y zU_mD_o*nw84t`Pu%icNLx%L|amdf3VyuWO+tPnE4!YV?;E5k&qU3dnHeWMM&crT@I zDnIH8yV$^WZK~2!54Ec?4TUK_lhTQ2V-(5>H!)J&+hqxwhC@)xeT{oGVL8Aww@^ZVPWFcjke8Gt-W1Wzhqh+lm5j6xa9F2EJT{?!(x<+hrC* ze=C8QHU2eY|vfU}H5=_Ro*efxHz622E3kA5Gw54O$WZ z;R38hT)V;O&$^+{R2e!_BtE+lHECt{$!UI3XVR!|Jjp`FmW7|Jx_NrWrHq8wK@UW% zwBDQKjEAk{ygB)y`|42U%oZvvsl#VhJ|YR|h=~}uUeVlMdGp|{)>;^fUy>L^zGR>M zoqMw{mbK^A+i5;oU#Nm6+`2xo8TV;#)d!2*x3h_5ch?;~OgM`{Z2I}|ZX~{~5`MR~ z8DdIN{8`JM523C~mlk7)YrW@P7LX|>8M9eZ`CQ45H@TWa~K45xun)QD6Ztq(~Ftc%}k*cg80I?;fu{i7Cj$a?w#&OVq2U z161oH3dO1L9p)#kfRh6Y%m!LlwKet{DC z`L9qOpdU~4CKQ6!uxvIxgzI-rWS2AipM{|a*Y3Xy?TPXSi^{%GSr$70xWZ{r#=BY^ zM%SLt&XbKk7Xbb8L+j0(eKS(7dJ&1a2B*&?ff-!3AD@*-zlyxlN^2gr3F=WpcQyKp zRm#*4HuFxx?`;o+7ZUZ@_;1NTs&I%L;C_aL64*mk*XlmMH30h=5~oXrx>wVL{ zLaau!Z}m>Gjn#`JJj+G*gdUat9LY9eOA2t|t~s3iUFEPR=&iE#!8=Z4|8^+TFU05r z?zd)$c*cpj)je&g!*Y^@1$HaPaGT5XcOI)^%#L&=9jjMkjccX2ab~=#iTtSprs^8| zYipv-j;*^;7sDubyn{@~N*Xzus{fMML=Kq;C z|CQl8cZ#B>j3|IVGp++6<{FS|>|AhR%U&W=kFS93H z-VIkheP`ACs(_|j)@PA}h?FYsQ2Z7668lGluCX|V5k}rgjOGm>h>Ei5*8@C&1DL-u zCy~gL4QV$5&;(Q}cU~pf6Rh1DDK=48l1eYcv61S(~KU*LBH@-4K9n%)uNMCcH!~*g@6jq zQ35^jzKEJB8xg6_zd=%|1>#n+8&gkCh_1sBT>J(6Wlu2ULS{gA3&vc8trs#t5AW+= z6g*LMF>F31<6$Dp6HwZCYhaN66)(oeq><9I|vj+N}vnwR#&@D&*wrNNv^OQ_7R9b8E zOi=CMT`7{81AWg{TA5Lbp!M4rf?JeXYL7a$xlXo|qR#eP@2f(`NF-lYwZB;4vdvlN zEeq2(>5G_^+x_ve`OQs%X^?vOU8U#1g9pUkP7h-oP_P;Vw|qer&jHj z&P>WHs}l6zbI_+bp2xG)F430WkFMhH{k?>3LftOC^Jut_*)K$bHuMHePlwUgp$(h~!3w8iLF z_bhf0Vz+ENr2F_UU!20I2i6+fCr(E2wT+|$@!ZC$s*>D`@``)Hd_UK1T6qMesM_v^ zKXUsN`EW?zG5TX+fo-4QC{tN6!nWDhXCz!UVk+}PfoM{l|Ix3S>oj_$JMoVp~$_!+a|UpD(3SMgwn3J8l%6 zG%A+LV|DL-zOKjH`%gLEnv3^v?6CR$&cJES_ccU#T4=#Hx8m{syJ1g_1@klLRmS3j z$JJJlERo{F-Or4t)2!t;k- zXM8kfOkMenhN9nPQJIQ8@Bo_T#C49od-aS~ygmWyxn)T+sOx)7UW1ZM`c+z~EZO)_A{AhOe)HtD4&~q~Uxl*ZJ$V74@rrBd< zW2Xv!lGEHf+2Fu%z1q#(L!Y3^5pi7<5ks{Q(%XZ?X=bY(PaiF;OCk7xSP>~K$BF0u zgvz*!A{~=t`Mc_)7xr8ot-GX<_0e#S9dyM-8-D+@>XU!K6=BL&JR44ewmaAELh~|Y zY~fSr^rtt}uu~(2>*KUWw(5Uyn}30kk6tXBeu?r?#jZAn>~*wB={S^lW0tiW@cMn1 zuFBBAvvrd0M_aFU=EPxTRjtY@bfvdn5C#uOMv50QuL&+U2pcYc8Vmyrlk7-u6^}ni z3XOaw#>ztax$MKQB(j&AL5!)9R)xvqzwY4TtO@Mxk1v7M*d|ifSs(A%KJEzRdhao*xe-M%@us!pN!~4Vn$$t@Z5B8ETg&2KsabEaP|lyQ{iGV}J&ekYe5n55 zB}1dWY|cl1_DBrEfZ(Y3$Gk)E-k!AXXy|jVJt`6$ar^k4W%}Qwc?ow(IJD(8EeW10 z_7b|?Av0!NRdTFg6IA+|F|Q|?OL9M`l^evQV!EINn%OYwmvR~fFc1X|WHf_*0W3R( z@6RV?_lrKo$YJjsOez8!0h0pit>PNV&0%$e(dviAa-0oja^-ycMzxS;uuZs^TA)iX=TAv2m^S)l!|9ts6|*y|8`V*rs=C#Hpn7ZcoxH{A&X<9} z7hQ|xoWX;TJUVhZf~Nv0nDL~v1wJnOj6PKttxBE~s9$caaK2wl>n(tntbWN6g*{r} zduw96L0!al-g5e*`qeWsIKZWbuYQK~J=KT@0f(%q2g0*hIE$)nBsZ~WI(^FQSKU*a zDGJ4l>^8Ema_z3l$@9lmTvi4V;&6&)(r*{7Yit+!BAs<-8K#Q1CBUkz@xylcgWA_8?M+)pkvv<6rG|D(mu)T;yVWCE zX}#D@uDChxCV}Vka!Tk*TiTmIimhJly)j_VVPlRs09Ln8slG5Ca!4jmI%ql$wwGPK z=oOfGjJU(wLQKY9QeejFv;S2$EykzNG{i(V<-s~XtCB?8S|&JgiETE5PQHEW(u@1= zoQJM`V2=f6J0XHUGb`(w#c8VLSbFg?wxPF}Q$|1srF5zyhwn?`UZ{9h8T~(9eS|pW z?g;8@RoIo&%AgY-H2=WIjxU)*;qFBoR2X$XJkO8-ZVmT=vviSe4q}IC6mi<7M%N9v z-*O#ve#l_qTa>J9LQXIBq1Zzw1Acyd6Ns`sZ<_Y^Yo{MbomVRj*t&7rfHrs3m*JTX zZG*#LDYzPq5lsPu3G4;UQ<{gUhcLs-hxl9;<1`ncx3R8g+b~cc#ek|?%ws$0(t#bQ zGK!%(4V*giOV6U;Ogirk32lsbHd6eNaooFdt%|tvrMA-jN zMyv+z$L)J4lWo1$S=x}5=oFpj9UmpcQ?(=M=npy!m5oc#50yvXGxsTsPh8S|{V^5` z5Fti~zm0s( z(aiToMq>mtSCrNG>K#(Tl1^^Ny7I6==9xsl)1GOc?8z{uaKv$qcJ6~bTr@m!8O5;X zT(ArGz5^NL*b)zrT1s8z_b}k<5jxrm@W{D+6!I)*TI6=nGV6+ReU)^YLetcAAH|@g zAm>cMEw@N0x^tN`k2> zvMS-nt3Ie%nX((=*x4LQ$Zm_-W`Mj2@4N4WG{?}T53YXO1MQ!bLPT@=wtLyCDx7GS z&PEzmo695;0w})}ekuFk%>4@Jw%nmb5ehW=oc#Y!>C_XQMG1KM%8)$^kaYvX!F8mk z;mUX|_{WW;V|wya8Tnd5*uk!q4KoA9UqYr-!CI#*PMM7b?A&SrHY zz5^o^Xag!h!vuzJN7{zW?JoIpMxlsvSh_YzH}vM40uU6o5I+6yESm0JeVLi|PA6$yP& z{{cmd(!Xwc*u=N0<*YB~6-!+8Le`GWd8yM+jr{zd6rZt}2HaQC?`JVJBX$|84fP*T zR|$ob=lyu*SK{YK{3I()Qb4v`l9k_zUvwHi6}4C@oe9*M#X^U>o0A5@(A|$k)NPO? zI)?Rn6ublfP!=+^f_VT99TVLI5{iF z&cB8beW&xU6F*-_phU~#rr{C5uiVYUTptI+Q#q96D$%t?8d0K(A>DUJb4dw}bs2z) z`aJjv#_+&eq?u&01gONH;eP7n{v$Mb;R_U8l^g_n;a_4-(3W_Q^J9~W(1XO$t$Ev` z0vq=wq7xIv*Utk452{%?scA}gi9D8@)L(^Ywtp*$JX9r(PWw=OeL0v~-X_!Tg{H@> z0sTOD;3=x+?O}fS%=kCQh0v2YqJ$gijA7Cx_HHUAplyMJ0gHj=SVj}@D1)?#{}z9g zeKMJ19>I%vUA)Zu}g2oGd~zt`n)pDJs@aHCkD=Ms}HSMXCP{t%g9l45F_6MVLH8K$b(k(?kzr6K$~ zLI7m!he}tSnKD^pkTkByBe{25|CXeYJ+I|2u|a8^yB^0=AtBayA+CGTw32VV!BC7+ z+Vg7;{ZjvA*;JD;5X0e$(s_;vjW#OC(NL>ygJV=7B**kFdR*hj#icb~*a^Kk;I!f; z$v|k#*9sHzfBq-?_;utHLCEg(qO z0H-w=`b_@;C&fuQo!p`yD-)I~PB&8)hGH$K4f_b(JKOdok<^!y4bgtEv&g$+YE=B{ zUA7`(2PbHmFM$&F3xJdMKfgkj_f)P(vb=4yyY%_nFDU-f^OO8SM=via2cR0hh@w0o zfTYTQVmSILz4i?}1zzAWsJ18+MOs}>6q)1OXax4n3)epDLn5l;B&_LiF?B_z5PFb9 zm$LhfQ=`_!hKa{X`m4BIbpJX0G3{*s?TBg}IKy;mA8(m_dVC?32WRbKYiAiCIgcV1!N)Wa*cKRtK5PcayA z72oI)%$J3)1SVN_Nnoq1!lro6u)rY;Rs}oT$_jNDpX&MV(-Ib|2IU+g7sLKkP`DH(GEdoa)-spthgLQJGm+lxR2Q6x7$rSVoeB)P{#h{n8^!q&#jSRH zi2I#l)h@O1HTTV`+@{l2^N)iIiu#woyX043K+qr7O;kxoa4_LMpdcLJsi)E@nwQBB zcsZ{Eumt497%!I;+=|TVw9eySX3X2sEPV8f{E=E-gkTmRjCT@Y2{0kl8>D^RX|XJQ zpK^<`--xjxOqz@o=IK4payk$7npgUZe&st-?zZ&lq5syT4BL%}IKi9uy?9a%n$^=B zy6#?M#7K7u3I|Vdg)W_tTZ`(d3-Yvy6J>v~i+aC!D#yc|^e%40TruX@d}iV3&*Ow< zdxA(q-%c<98t(ro#KrZNgUbHbCu0^FfBz}{e$fWk6PQunqkOR3(?;l5@{uaPu zvY^lb$6Nf+qYE071*0H-1ZC z$Fx>VZZzq_%qAeXP|)M^9DxJtVA~1roQBDV<;28CHYPe+(kJP3;wpYCT^GHdOi{YO z{v7Rq&zileU*O+V<1!Q^{d!d-uS<0c{H7|a%PPcdgZ5w#6Xb;vN{6qfPy16q{fn!s z#@#iZxo^tK&o{f0AV7_@KKI@*R@=ziK`z~4O`1o)BwDnrAkxUF-4_Ui z-A!#4*c-Z-TEqmOXbF0_iS9FI^am^@=RlTZmJn6Yv;Bh7((Ti;kno3L8`B;mu@y?s zz=r{twZqkk_Yqr^GVcwh{|WwskQdA6%--=;LuY$FlyVncSp~YAY)V(hbZbFzhe60| zB&KaYTu#td0WCGiVy%unn` z5w6@_yBD3_=J{>wz4%PcXL3G@S1FiAK%uvhf-w%&7em?YW7r`1UhKE~; zw=VC;nE&zM%rn4HHleJG*aH>1OiLv34Vy@1>@V@AqkF}4hQO%2e z2&ti`?UNnkHY7Pd4m|HMTs$ab;9Q?iXb6uoyU`krT1)un3qP1@u zCsYfWhJ43fp^ORlxlbxRn0DXHZO(4Ky@!6t;n+%wK`XJ==%%;~~*9#^)L z?=t*FZM6X^7Gt zbI)Jj#Cb01%cT3?!G2$DQ>!tbE-3+@54FnW=1K!YPWL#kNGTAhZp>M-<+0}iv93d? z0m-~;$Ldp!J^`ASc?Q7sPH9 zZfT+bXM-3(J;BTx5i!v_f+0NzI%0$|K$ved-HLaz^h9U*aXi&Lv9%$H#g0VgD;HUl zyT`5Qwmq|7MwV3s#!(1B1W)A;_vU(4Ktv61;78!yezFfA50W@ore#3Rr}F~BoQ5_^ z`0pGvZd(OKGWn(r6ih@lZ6$Qm9lDew>a~TiQ3DQ&JtoOdPUxhk0F^NTPJ>E7TmV}E zwX^RZwx2>NxsjWm#Bi!qV5*v<`h$zG;mCQkJ}D$Xrj&$su7Nl0r$uS6!^(qso-BsO79tsn;kuxo@MA75|g<;%*N4G%faHfUpC>HtSvSsP*0=ga5wYFW zDtBkTJ$=njld;{8*N96w(hFSR72<76_(~dQs{3Y=ET=csUQ_U?i0~itzFS&#E($Ks zMm+mYQurS*+`H#yxHAY9V{C476+FiV@Cx5fce$x|FzW~o;Q>yyp zuFuNGrmY9F|9-#r;kr8X%dfVv6nDDmgs2^N-QEAQ%{n0UaQ^)+ZS^us4fn%O=a`FD zuH(2y4c8PAM+(JWpBdTXYp*%k<>XD3nMrt@3QY!7YPf9?xuy$m8zvEd_p(~Ay{E>}xh6B$H#{A1kB^??N<-jZ;JaV95&b`cCWiIotP69&=#5HEsA~=Uaa&)| z!~EaoJKuKtr<22b5#4`ODuv z;oq21FF=xM@)|~+NG3T}-Fbb>)fnlXyHE37F-_undk^o@zZs+V9fCPFiLlksMdWZJ z6;qCXK>CNC%>*&FWYk(yjp?2~9}Vi*ge{#-#)NM*(Db7&HioB)UHuLe(&Ps+vkdRu z{mnfQKjOUS<32(nu)*_=0U-8h>+#NP1&eOEptoOn;ZlzYnR$`N6U^rJJI@slS39Ad zd$;IP*dB^LhN+acSX2-(VUxi%K*<^wqI<^WpD(a&B7SjUT?ZV5H`Z9 z1E>$%8{wY*{3Z;CA(f40yO%H^8SVbN=W|c{R-lriS=<#Yp5X8bf2pY}Yta{C+cW$9 zK3}88DeZ5LiBTb?Wi>z*S`wwF$xKZ>3kR&H_gd+s;RO}7$Kcx1yX9yN1oSHjv0CV3 zQHi~Pq?9&(O;$Vfrxpjq*w$s#x#;GnH(2EvwJV-S$>bZZ5_grQ>SYRm)5-gH>IdJ^ z^zDZB$^LlfehrWGH_)mBxbKf4BfgwIZvtW#S3Il3eCZC#e4A@R?9i6R-8Gd6AouBxBB5)!* z!D{=Aib-lwJ^e9+-}{`!4~X@M^jM z+Xt;j4tI!&p@a_!8UPW#iN?o5`3#S^d8`m9z!o8Gl6r2$pRsAhh`{-P{oPmC-=z8A zggr^PF7o$?OLVKPj?roe+f&Lj1P-yBArlZ>YYch4c_m6sO6)uc-2%CnvrPc4omPFP!4ei7LH&Jci7x`f!c*4> z7HpUS5I*X_AMo3Savtl!yLxYBd_RCy+GL5!a(jyVAD;N`=JUhq^5~Ib&fg3I^*IAm z5sBrTR&HE~w=O=N;U`87$<(HNCzFbI0J8$`6XT}~1AMvfPbmuo^WSa-t5{@bmGD#N zWTq(aJPIzZYjC>Uk>LdN_upvIdF$S4s8EQUYbWF(N>jO$Xyl^~UKpIt!fX$LC+35m z&3&LC{4y7MLYSO+W@~ry7!mMzfx@2Db}n|YcGLg9VMx^s@j)&=pi+dtZ8EA{$Gx^b zp>jY=S26j>`f9w@`oaD{diYYd_0eRu^~w0<(@joAf0&nD1L{DMe&xUwkw8SHBsHRp z|GXvVi~NSj6;b$|K_@?2Ie0;4GnzR;u989R@RcO=9;Xu93|9sGIOXWTXz4~~RD8ft zRzt$yX?I*Y5>IDW+M-eAxfux^bt&7cD|r$HY@V@0_vC&vIVuY!X$q4&bL5{O2+LZH zb-FaW+`3poh}qS*iZ5+OjA$U5&v&O6vF_k+r+-foIMgR@oL|h7c!z)bs6Y=&=-*HK zJx6Kap2%iAWB`BDXzOq`*!5rh?l^m8e?8~{8p#iU@ABOe)eVSM@(0k-^U3hm9E>s4 zAIzMYT!OIFvQa0_t#@q)$K;d?h|&fL~p;I8;)^Sb8`~Igxq@}w>$`R5b(kYy}dByWRGs(9@YN}k6E8pL@(&;9`QG{+9SG>iTAv0o~h@WBc%M^^Z`6=NPSh zBc10vOGN!-UV^$&;Xuo$z-GC*R@aurmYnDXn?!;E7Gk zTiTe}Qc2F`z+2JouS)SPsc-~rMar)t;V{SFMz6nRKjmUVx4yu6d?Ux**#g|r=z21u zUc8^~mt)D`zSkhk+ORu=YW?VL0Ul8W{H=lJBimc3ok8X3X|E`~ux?xG!tX;nU~W%A zfcj{8%k}tiySN2$@wV>C-o!@^YXPMQOx(-=`X@53W7{l8SEe>`ASO~C4Z(BXY8 zyFi1?{sg?a`O`=J9M>VL6rUL%hqI*t>)jJ+?DY1hOI%6^iLV=z7!Qh@7{3x$>O|ur zDZkI{o_?6(24R5{-v&oVIN@aBRbnq<1^)exJZjp|V*d=1$BOMHu)(Do14P#5?*{*} zB22?Q+8D^Bb7%E^?3{V|QttSI3+_Kc@=t2+#VvW9^KF#+hO@`Wdt;+gb5X^dbVBg__sKFGShd48`kuRxmHchES z_QoPe9DI9%bzze!PcI9a72GSb*aoo*bQYnv$Re4PFX*k&9s(Ml;=JKZW%EFec z6o0(rH$J^=4)${jO{g=f@RE_vfY@~4IB^iGx3H6;iridH9BA)k;D)#sOR@i*$VD+m z88R>WT+_Ber4#T%6hLg+-*y&kqxo}1eZf3;qvs53d+iI@&FSZZ54iwZSptf&mQ|}* z+j%WI5th>a2w`qu{|g#%tn7Yb6_?(+_%v=}{P43@pUs%|z|DD!X)e>?d7ES>L(*M| zI)oK!CtKT1^_gMX;jUM7newI%GQ50|MjPYkcr7Z*(keU?u*$jykBgX7Wy^TMCM}ys zO;)?(;#{xUXsOBMM9;&5tYw zOrw+>mw?wzOlk4qU;0|m8G0ykzd~F*;b)+1k2_JtI!*@OL-l>Ig-o2L5?sPJ8I_0y zBFyQdjqUK1+gD^|<2MDd1W4}9HcKm9*XKe7gs~?!%T#uA6wxV?3YZcmV zI@g%b)tA{S@E&`=(N)>07vI|1&3&(T(?O{AjH>Nu0wLrNbn`BIM3ELn&+ozNR%2d| zzUM$EutcjC^TWA=sG=j|t%)RWj9ZsS%hJ*A2f-FtpL-NCt8<0-l<}S$j<(Qs@FkjT zyQMn7W4vSUm?bv@Tc6~n^{>Bhc1=yASdPfj&;|0$*I(rNdu6vJ{6M^bH6ODdvikJu z4)xYMr^f%H)_#ITX>Xzqhj=KTPzG_Fn2-Y~IO8w0EW+d_nkOlBIgDZ?%#JTs2pstr z_>sy-tC#EDZnFc`^0G?**e2CH3w3(@50h8xz z8KF!uH<(GXh!sq?W<6)w!&S!es+8Au#mbjbzd+Bpg$t8L!&u52dsf^pj=%YtKs-Dv z=&=9>u^c(H=FsAV90W;yTh=Zj!$i!J$C;KIlVoA98Qcq_8_xHER43;5q_2FlO!v2~ zNa#Io;eEDHSsf|jZFgTv4d1L9Fdagx>k!T!auFy7svz7QkF7u=HilBXp0tW^29xlM z{+uW38dZ+rBECfe_{t{&&+@hRllAAqO?vj?>63cFXV~)5CH;NOXu>mf;YGggP$LsX z%fINq#OOd!V5>*f(vOA`P>MXwBYA)8xzp+j)t$2egEq{L8@Pb)dJw(Q9TLTwfzH28 znQ&cX!3=DlT1?S_8M%?^Ce zEb84RZwH%D`SfAA#)`@-A59Yta;zgOV^i`&X(;f;Ifj z?Q+~Sm4laEyT|RKZ@EYDhD|&~UQUisSqUt02bZyYY7Q!2@<{AT^c$83VL60!wQFDr zDb1O*djx04ybtDOXFPa7K_G)e&hvz}bb(5HLxFb3+F#C2{zgSG;4a#v3H&}b9sD+S z;XIgLVL4dJ?#}|?yL$1(*6S&?>l|EQ@9#^@!Ep@#u$7ng)Yb4IOS8+#qMspJ(gzru zUFi~=`xL;7p1}MBDbEeCIHb8bgMWeX5qObQkCre&-iQ52Je=5GlKw&g^*30w0WfEI zBikAkBE#4z9&rjNR)>;1GGiDzg|+m=Yd)-i&lM}{%P{}jC&8?hy7%4esUOU;kywM^ zxLUCrICk2~Sfe3rNg8PU;Gv=(q2*va`-dRh5FSZG(QoQ{ zw3T#6Tn~RdDwdTIERfNpCdO3}plhdHBD+vy#~IzmVxPuRIy2qbOM8GU@Z}Azf0eVt z8_CRVs$@*Xf#uiUT7V2IaRaI=D`PUG(oHXn#XZwuai}jFI)v+5`)5S$X7xftJYGKr zh39`8+Ikf093-JeUw4>59REVd*8qO7JMh~C?@F&X&(=M@%GT*m1-siw5i^6f@pv`W zg+a+<$6KGXobcWb?s32DA84S$wn`Rna^K7FMz_j>2Hek)VncE)0|Nu_rN-jCfGDz& za?5La8L)=VjMpN)d;19B)9((z`=hmnC5XZMkAjIH9(lT9YZ=wFcUuvc=a8W#y+$7rdazMQW}T0{60)-Vx1RJ*UyVr{cmKNN9LeG}N7?3Is?bH= z!wC_Hd3TX|qoP3DW?9-}yc*xAp30LQbAfESJea@~wCH}Yt8nOVpcM}nDIK+ppS1c% z^Cx6H6R+(WC3KFRZfjIXf zO~({-Ns)YkBzkruS-@n&(#o1gu9!$Zz{Xp0nTBgUzvFM*rRe`YP-c zh^9G#?Jy#!r{dAjwl|`l2FY%ksNEl#fT(zF!Bf6`oh;ck`BB<)`TEJp*W=NF*dQ2v z{!66TX0#ws5>D8{_4nXjJIWDIa2dn@=%k_I5i5p%^{~xE$A**!m%}cxw@?aUQQBC0 zE|{Hr<4k&a+D%hD%woFrjhV*ugkxcAp8xuf)ANTt!ic^D+$(WoUrNQ%s0}m12+;*D z0l5zO$?&r1xQi`+_Z@3krg-@ZC4Dd|J|`g&OhhXJF~wK{i}mKPYeXVAL@8~u#*vpi zW%Wf_oCIZ2!bn8_hWm+M#1-qN$R%A$+dlVq+B)jDWt z!Z<9GI&!GYO&u3mfM~*r&&_FrN=9)bh)WArq#07i{37*Ij-1#pL3?GJ^1Qd z9CPREdDS|$r zTjaq#*X~^8rR(xXw%an~?o2giIIgydQ5AM=k{Mx8Y$fb{dXXVt*_t zWQ>ORqP)puiXTDE{`3mrvv&rx5K>QMI){t&`_NS-d>oRPj0 zsS5*K>%;_{Wj~USjE%##oLy;*(9XXr+yHI;rpvo4qysKPMG#+?^FbG=0N@`4@kr2G zxD@zLxP#&+|C&>V#2%-geLU>3xiYdI1K|wr0pQnVG7Z}02lz9|*Exj@O85;ppZi8& z8lXu>ow#4NEm$L1Z-;Q}GOJhR5(2ro)XsZ{RH}|y(}PQ~OmaCg+ptk!Wxb}FA`O+F zMYnOmAouH3?SkCm$axYey9XENd?G$*cfO%-fJmf$w8 zv`TOM?3={S28sD!p9KfBE3&gLBQ5qVX-8h|Fm8C9MSaCRA<)4s;n6KU=PIez9p(R> z*{I=7Px5lFLH&qbTvO^Z%#7+e&+>D-tAvM7zKm0m$i!iM2wl=(XrtX^f zLnpt+&IjGwg7&Js!Fzco7i(c~yJaJ|+hM3llas2`LJh#o+&s^*-WlMq)J`wyY%zYy zM5Ue+@Gdq}ibqfJt#=i5D&m#&jH;v@F+R6kv~n*tvGDQ1EeC+-$H-5^79Kt>?%z$G zf85N?Rivv-2|YW@cZ2F6&!)!JbmomNVQL}{IeRq(rhqnLzzG4zg<%5a2K;L5L zy}H}ywIiX^Z-2`Fcfdljh+rXLS=DvFKmBk#kEU1M$bqAqqW(bs()Q+YxIimw&>iHt zwC5)dO?DFq$K||mD@OW{??X~K#>`)=uP|6f(E#X&_WhL(v656{Ld-n7aK~Jrvildh z|EQ!pI8G_ZfYJ0!lM;vyBqr>d?e3Q4yZr-Rwja*yH3#|3e2^M=+ zX0j<&L5QMt9p;tudYP z2SESu^C8I_F1uPapy-Ybv+9c#gv6|94rZsr`;xCu*|ljZ`P+^8dxHqg(0q`(V79yV zoLisJh*!^o>qYNIx9UbN6CaxbKV?m;->s$V{)y~r1YxnN(dwksYOL5w&DbF1E-H(` z+%i1GV`hOp zGP-H%@2RQ4@p)wVs(^6?R6k&w+V%dndKJb;+ZLMI0=O^se!U$-f2L;Lp>_9PSJ@le z4@*X3t@L6katD9b_)b`;r*h9%7k|Xw8zL(|4#c_MA4P%G`v#=~*G5K~wTIetNR6w@ z|NnykwJUzmI20f(+>Aa-6Zg@=%!O>GmU_snn(_%-?=>l|B4rpwKyZkX!&^oyQUD?Q zp7Il;=MN4DudwH_y0FyPg#yfJ+;HNcPo#UU z(S3Eg@fbLAvjG}`4k42;#=yQp0B{sR3;_0rZvw#nCu{&=vwTqO_T(d`9qX9l4Izkq zP7okPBoI*dae<;!Ee;yJitMuD>Qq!Q*LbTuZXMD=usb>E!2m-x%_Um}Ge>|egZ zz%SwWO4KF~W7U#yz@ydMZ!tQsQu%{9M(^@f4hkn!mMno%@w7w38i{q+hOiY$akd(^5pnHUV~1t;bu z0+@~V;o#Z=tV|^>ynb03ny+yV>XJ_Vz8neIv9GC;=lv5p2)z2{ zE4cOa7;}&+Qov)PSQ~kpm%J&Oob=>xg+f&9-ZpcoCzK~Np+dPMPpj33m@+>uSowWb z0G_6-JG2!lsMVImei1P47K6S)#wze^D`50pX2pc((|LEjPrh{dMxc{ z*-sV7qz=Arid{DRqnvx$kY#qR&{S0p7J6qJgei?lSRQf5a|d(h^`QNf+*Ay4_=mk> zRKDQBYT26$I9by8=5d#d)LZH-utfmNz~_t8)wrmkC^Zq-J8l}^vJiG6b5W&u%&B#Um9^bmMFRqbfDQj&Y8 zG$$5dR%%uIq5gWW0`LEO{kah)%?j$6U0sf1jj`=ZDXPD8zcIw8!0;8Spe_ZEA#Fv& zA^MxjdrM)5TVQ-DkwU!=mb(gXR?ai~+<_!*3>2)h7Lyh;q&{?~| zXh)Yuv7BG$XC^nl#Q+Y&Ur{wa?%@3iNiw;+QYmyp^6D=meHaVNj$szJ=kt>lV_)IM zOJ5*?s*HwAw+e#Ny>OKT!*03UUe7lg-^`KrT&t57{H`d#r5ITLpKv3KFIFp6c7M4zZKZLx~4gyG|R&Qhd?{ znBa9X3|tw9#ap5G!U|eQ!n$~hytZEwKqI5Q?LzZYc0p(b3SmG7#h({A$E4nfszrfcvSZ&_a|wd$`ADf~;e+zRpq}o2uFx z-8n?;E#*q%9*f&KX3|Gi2l-nv^k-d2+$OXXrd`Oz{k+b_=~ztIyqXXZ_rveauEtBp z!EOW;y~xOOJwD;+HyJ@cA%9ks_LQ=P`S~>0Z1gH?TwzayAb2xSw2=b8D|1EGjYsrV z{EgFDN6O|GR%jDtzs5Flw`vV_<){8)i6sokk2pLDR79%(!f#9Po5$NHO)k2R=3 z2!8Pf*GdbkfsH{!LiQ~cJrNlHCk}+tx4##)Mxce0J%E3ROeBXG{ncn!hPaWpGs5k5 z{#?SrBhbU)YLRXd658$=TM|%L9~8Jb{0)A-2^eud*xZ!xeih3Ekn;6%WXojq>K>KI z1n&Io+S2&bCDQV!Bt;}Tq*EQaM47)jteKB7U<@!1EdV}UeBT@nvOz04+i>=Cx4V8+ za6{Z+PyPs-NbxVtX~cd_y}3`HaOFR)EF-LP+RQ~DYflyT#QAl<$lhaX-A7YJgipava0#4wj23RvmT7dyoPZes4mSQ$jX9;afpd z!zqrTTJWDd`?H5ODLPo3T+Gw2-sG>TvRwK0!9TBIO*TVkt$pWAjhoMp683fz2`TYkuTMQ0oJNBrW_7cLJ|M*F z>YUBB{f~|4khsJIemUGW(|pv{w;QJtQxZ6R^JJ4PIDTtJq$MAqxG4*q{k} zoV6svvG{0_O`0HGrSv<=XQ@$nf8SO?YpVAI23qw+hH?f?I|r+C`!1GV7AwqmSJ2EV z5wDA{I!^rRF?`DXeDLS+;DrU@B-Kr$_Aff@{&Y{9Htiq;J-bs zqaL)b8sBaAFcF?_Oo4*Hcps<)LTrWakj0Hyo@4!SxWU5?zSAanmspNE?_mteOeZXM zjrCBHlUC8BKdVVl*3Ql7%(hGUq-S6KGpAAX`9;f(hilB9EfB{wWtD_7x3nVkVFinX z6w+i}BXFmmjaJfh6=`fAaFIE9x!g@D8^mv>H5`#|Mm>=X78t$S0_X;#zES}N`5Qz(~XLAza4lMj~lHk_Y5 zx3>~AUZs=$CNdN*%g!2eJ9?P8dnC5iYnGtC94i&A2V=-UYVQ0JTXeBDB}YY***u8a z{A_Wu{aABN!ViWP27C#viW{H|kez~wzb2aayb&*!G- zia_DLR!6h`GzFm?-_1LzmGH5ZGW%@W7WI8Pj2#wD#~Q@W+7R?c?z*RxUdBd)`Lbvg zG~R(khIi^g!qiT+y~A94oy$;9ZYw3KAdS#}liZoTQ$na<-M9=E~+T{jku)ad+vW_-IJsR0YG){B(Xlv?QTrLfL7R zpZ9b2-^%{m`q6g2{YzlK#TA=O0$%g%>4Cu<$i^Cbc357P|h_0Dnl0+K4Xf4;!K1!{_yS}}x0#mBnltEoi=a^(#z zQ33+TA@ou<-Va%x$@!8q(hkfM6l!gPZS36jKCts*tM{&7;I_;BHpBt2s2a%rbe~D` zC&!|r(Av;=S~yGlo1BHS5PLH*m#TeH@m|5*XEH?MpcPOic95p`Co$*5aFRaFNsb*O z5g{aY%wQcDNVSMEGds=q!3BysId!1s6vn@{FM@g2u4+@_?|Vy!jdA(@U6p*jt5w5} z&A~$II%n-z$6p|R3<&(8bZ%-{P%3#XLD0_3A06P!)}x~iiEvT_s!RTiWaQVSS}6rc zr!RY~X+`7H+;saoZLOO$dV)$#nmL+w=O{9tIYU}zCXq)IJF8nfJHYEAj}Z@KlSy+O z2O~zp*sk3HVx~Hb%WY%G|?0+liL&C+Do} zc2zkCXMK#A#jm^|A;wFS#;->qUtm!{)#dCboW}+o6h3BnD-5vNE&CCkZj)?Zknd`C z)Pknr9|;7pp;g>|7xrb_WZJOeq>^YRl&*o2TlwU!8zZyYL4>Up{fj$E0#sbxhn8H+ zc7kWiw<@t^9=QUGzR9z34eiqqB{Tef+U$k zpr^RnZ&La8`Hjsww0BCKbNN1+`q9_{ahKalzVgC`{u8a``y44wY6XiMDa9LQ*P^sU z{XGqZ2yA~xn+HRy6^9#$m>VB%#tP_G0%q>%A!SRX_iLFqP$sLN9yg;M_B-1=0KYSI zgU3~AngqyKd|V`cZ+^!xR>JnrXL>ILKj0E2w$ftH$^^Rd&~iKS@R;Rc3Q8Cmf zi%yIc(c_FaDWHHOa&FXIUmgiCeP9WxU%OBBEDg#yQXUvoqyMOe3w$SKQrK z?~k?;D=sdg@xl|vIfkaHMw8pRvR9(Uci+2O(aq;=Cg^knWt|?=1fBHY^Ezo9#$JxS zs3%Lu>)N2zKfI*jOjJk1yz_fB`hy=ou3ODaCj6njoZiq*U$|3kVmldQX5Yjry%)g; zF}>L7uGItU?}Il)`M71_;(mf_3gIe;lujzKdBaW>O%@4j)#&zWl*BFn%{N8Q_|H6N zDo?4rpqb!C0^0VRRFGL|tMN`B>!vkT#4pMkl?nDI@*mV}&^&LOKcT|#X+wC8%cv?BfKv}Hm+D_l2oNq=*cMnSVyRPH$$ zW)vsQV?U5m%6rrZuncq|TJ<0Cn~C{#|MItyU!B5{duPi&Wn)Veq$+%@Lia&E-@6pV#)U z^bh@tZ;Y5_Zw}fX|9z8O_J7nNd5Hr|+>W#L=rkz$_Dqo-GbugBSm{RH*xn7l@?kqc zEci!(RhxWRdm%LiPQo9Jb1X^hzgT*~&)zmL+iv;@vzPuf`O3l0AhltYt6GkgheH$M z5{Q+N^e~A6OPif_iRJNwQXzHc&me(VYz+b`oV8b_se86qAJl!k1ErNI8%Q4Ws!M+e zX12jKasDv4#_D$c%N6VAkE_`Wi6bbPt(E!{150Rd#1d~hmI?SX*4w+`kdGrT+XPcY ztXbW2tXV}wtSL!L-XKzH1wgY+S0+t)3X`Q~Gy?;&`TM~gfKN-ooAV|1H6EK(va>Vl z6|iRDSY45W(;OpacZ`kOVaj_yn}V@9O->l31h2>$87;3#qn~4HZ9y)H0eo}*nn*ABrT`U{Qo|rX{ZA9X*Yvo%%sN|v~8ld^mgu3auH%|E| z&nSDsq&q5+>}BvaC{h*e)SFA_e4XXj2hUUbM2yY;T1FA+yrdGWBd-<$k)%)4HkB5k=GPuW1$|hXWq)(DP+Ppt1GZl02`}+5u9>anlBsoy zpV*P?%82xUyY6l~EQ~zrj3kd|#f?NBP;vp=T)9B~-xC4esGd#nxBCuzVo$EdJv3jV zk^sWbTmm&d_rwd!)DrH>U)AWB7OGIN&&$m6o#@p6Xb$6&azuhm{19?=?C<{us>q#* zgs>ZMbr``W*rD=#(l$Z93)>$rzxOJOA2XkUbbC9?(JnNzlPan8qI|?$mLytLWE%T^ z>c2x<(sNheaewPa1`4T{RLX)3$n(Si>ks` zDcYQx&lvr}_g@C`b6mb$e=R}FI>BG42)+ zN`DCex#CByGBLq>0S^zDj+U|v<+YDx>1z!CL3K!(ewqA8Hc?xPko%CV)KWt^30`{Y$K$k|-g zfobk7bE$P>rdCoBvU>TV-O;A5a|Il|i!_Tz#FxD;44FtZr5ETGwj`+jEn9#wKy|yI z?8Qi%mwdD1`@5_~ZDZ4LN*kdyrol3p+B%fGc=nMcBC7Wy|v5M;S#GhL@yQ zhfXilu9Z;xt&A6{I#(}87snzihIn7yjx=%ulGd4&9GQIj?!t zJCc=JWh+@b4PJdSZJE%IX|hzbp&ZxL_rr?H$@Gwi>)h*9*TdQNv{adwT+c6KWn`*; z3!&X*bh67zg^oC7<4PUrLjoXpwl18iKG`iCuoT$RfHc! zHW~q7g-vRcEB{MS+k+a^Quspc?;^&=3TAB0b?~bndbW-q=#@zq-?p8F1(m@!APm!G z9;)j$ev=AYU~}Hj{2A1#GXn10$6k2Z7kU)hnS8g&G>yrn-AXacV?IXyYq$s(32k+F#k}S-oYv z@?Qj@|3pE5W4su}P3`V4B=0`Rd9l(-Xmu0$n4n?%XUU4=;*BSBtL05(C9% z4}}t!63M3J&sQNq!J==b>6^8u$6x@3aM{5 zPT|uN9{D_b%D}$G5IjEGp;IezK!!!wek_wvn=ldF`&WwOt1u@MMQy@(@EF#oAp*4K zTP#xT*UeKQ*-Ee6aOAN4h}qFee=*6uw#KVpK3G2~HJJe#N=i~sC*?wp+ATyi^4Pnu z1SpMyBcAkO2+%d_^Z6gm4jfUJtP z`8BGc+R|xeM0kJ@CEa9iE;utz+gD%LRhRv71Rh|1vW=o8Bt_AV5>&d6^5E-WZ-RONnNfn*(EXMLBwEroN+!hiVftT^5C<3^;*}$)yW=E0&>o6eWcb1q>T&JMs#+gqu&GRS) zoQ$;}qUV@*XO0&8B{i!WOp~Jwi@8+>=L^>Td%IItqtBY zqnqE}&hv_I`d(53b)MhOYXn)=>>JXB`A&7UE6nHno$rmz{ZLm)Wd$_2#G@9<9Z$AK zg|}tUS|AUHc?Q{xI^=rUEN4a?;%LGV1nSH%S*(;{oGjJb-15jRQ!E2OiY0!e z{5)Y({;h+|)nO%ZC$N8^GY@`j#XoHXtE{x=iL(gy*CZ@ZYj3?>#tE-BcqT{;y05g> zH}%#ZD>6_G`c|JL`BCc)fW?r$$V{nV?5S^^3GU?@i!$9IMu`;Dz7SO@d6 zc0P%tXb)sb(e_^1rC$j%+k56UUB3|&6&|=GncjzofP2(mlKpkcpFmArZmBEJo6>?< zl|R2vWmj_*y!EPf>8vddqVCQO16u!+6ocv%A0BQ{*t0x)i=HU6W|lxFZ01p;ojkwWNp1TSML7t#+xNt7joZRtb+zAGH{~LLiI8ClA zzWbMnB)=)ADII%4Pm&+#aVn-}6$&seX0Sb}TvU0Iu^IH z3W4$yW%?DD;{cXKiSR-Q^d!?`=gC6QVkC<;*DYKoOA_OKei8P?*sk;vkRveAl}7j zzDJ)P{rWA1o?uLr@R0G7rVav2s>v}e%ErHjiAQiirUxkBJ*MgRC}-(qkUnG2_lDdd zuw&GhXzk+%hazPw$Ao070t5oz^+D_=d(1j1HoIC#JTUcSILVN!|Bn{lx{*R19owL2 zC|dUFd6HH^8yUmuQv-L-Oh1y|xHuCKd_Jixon6Co73u|c(Vky0J6;%hk6{Q;-&GYG z8JC-#%N{0pRHsz39nIW>a}`Q(O;ZP4$Fk46PyFn<-K+OwNga1U=(Ld$RE=2Ot^;hM zFBQ>x&Grb%8u&>^;UM8VQ-DL3H{z}W{5SOSV(+nKNg0UW`IyBJVg{6kKb^JB{lwwQ zX$hr%XRxAT+%)AC>gT8)aFtVe2KzvBzGZ0qfXYL!-rCP=AY4`^OmZaILyP;>q2qNd zKEIP#&OSlYvFW1UyqP3YmCovsHmyhuruDo>uy_{4Ot~&02=Q7x!xTX)e@g#hQ?H*e z`nL|Yq+cAOKXhR@S8a19fU7g(sC=`6-oGEjwsuEW+E2Ao(A{5w+D;QNmU^){V!QX> z$KJp0{femstk$PG7H-I5Ylgu4kmQx0Vr{n@R2vfUe$%$8UF3lWo%D*XhW=~06*|FR zJTKd|l`6GfDdkPx1h?F$w#bH@pFG*YyPxyB_gehvJa6u2yQqnYZc^cdsDysqjUlPS z(ei?>4Ce=Cu{LKiAnm|v&BP5$UrC*@aflwXe+cdYYADlERV5|_l$^eqZ@O;n_aC~< zeMJ*TmV{;Nx-e9%;IY%P@0YUZGiW|^EZcURmGqowE4D$!j&mTP1G3FY_B@yx$ZnPR zZtF3@bREGln~exO)r-Q-)A}d5>D`iw0uZZlJD}jHGF=A*{aVs+3g)oSnU%Pup-4wX z_Fn%cG*)$7dV!oc2BK=id5iv_KFoPGSh?yYT~FNj!2tXDPr+trV$sY`VMJpWNjSIL zxE_%ErvhaFhZkiyk-Dt5JoJ;wU{k`TXC0Tn$b8oIdKJZ2aw5y=oSLb^9N9DbqbvN( zWBE0OQ5wy-mwam>L-uTp@jnj3;BvB*tJKsZa48yX_vAxV>z0XSnw~o8-n1;^u@NB< z2$ZucDgu7+o=HMuv*D|6Ju^n;im${jpMmd}47qqym;iMfKcsF;t5;)nIxyrNJPe>HK}(42rt-YqkyN>FA_a(wGV?hxz(_kgM--k?3AAtlM5_S8iXf2F zTmyjC_gPoSG80K5BAXCOOd?+cP^Idnaqt%KGvbO)YoM;CtMT~_5oZq zy4mY3s)BVc!j)I0Wqw_c!FQ)`s5;aIdGc6YwunGSTKra8uUoSODvVXXa=xVePV@@z2}X8U>k~m} zm;2ZXmad7R%cb@r4(n3yt_(s33R7F378Mn*CQHs!n){k3$G<2=6hA^zMt<&F$5kc@ zw2St*&_X;1^5v1XGAU}s@^o{}Ec+eOT$cJPDbOn>5~-v;PvclwViL$D7wo6#>jn3D z(LiG+hzhmrxB^+Nr^Ni*k|w?=Y94&kIfp)t+tj?t@L&0o?Yg^o`_ccx;&=`z3S^MSYYafgmDR99*-#6P{}N z|6rB+)6YHjs3Y1$&xwTab`{B6x?W|{=b9e=3?c8Y&nY}awbY(KF2GA+boBo6;As>| z=^)!+LuW#T*|V^A6HEUfh907N1o;f_>a!4v8=|ieN5mi!BeAutOwYur1NX15nf?}!y2?=tyEN^!yIfLo{Ni7^~DI5 zKcz!aJ56)n=X&cGiTvHp^;v3|xQ4Xw9;>B+#T~VsqXzgca9tzozMx3;Im)M;cgNU< z-t)1($gQP>JvB)6bJvy@KCIRO{Y7c+icZehDv){De>45FK9%CC81VR5rh#Zxup3wb z^(^PY&ue+aiO3M#iztwL$_oA)dw;qRGv(8ZYW=}PJ>!3fwQ?pZa z_Sx6Jq>iOG5C@njn6`+IGgZjEbVkHSJV!41D4@Yy%;6N-AFIH6ahmy#Z&!tm1U2 zQkVEk6H$G~?og9zfh!I&wX%WYTn z>Yon=jc@9`?^2F)p8q(Vh*A32Ki}V-()+xHEvCfzGQU{ha?1Yh<;^ya`h)B~kv8Xd zD9ilwE=R>XMYfS6FaL9wLQAF7pZ{7d|N06kPl}7`W<`oN_t|FH=5VUj`H%e8uzmjx z+12cQU*jyd?XAP0w$*Kw49-!sjj+lUE}?t3NcgT#XZnRIi~}|%JQngRjQYJMB$WFF zH>XyjlP#TK9`kf0L`|7fYW_tz=h`ikbku#Mv8(5wLse7^1;(5&RPyTVaNr5y3kInyH5xBJj?;Q@ z(FvKb3%5YgUjUk(9LVhNscAZA0J@a~2mxH{Rn&o6yMVblC4@+0jVmkq6~&hxP2)c^ zHhh3kH>q>%vrl}L$2p?RK~V{j*ai$bg2Fv{Ht(?E+blMshB=!>HXcA+VGo(^cyDw# zEPB%_Bepp=12Rv@o2)cOqs#Q~EWkEAU|hB?L%%C0OvM53)fhltjHTol;UET((eqBZ z?;q^%{(a*lC?ce4?B#U=_EJ~3H&)3Pn~`nKt0>{R@{`FQSzr|?V;Py5WEJ`tx9Q-b zV(e#r0f>8!aTN}_p?`orm+kA&~+oBV1I3EGr5EA9PmHT8nXx!;CA zCEw73e4PP|B_tSuhQg?t1fZx$2R%N9ODWO`2=wvGny4GQfKN}6{R_s9c7Vb=T z(eZ-|A@t1j5F<%)#FazBr*08S%MYbWcVet~D!u$pmRpe9M!dYY=x*@xD}rsBrnvCQ3x&=hG~gEdw2W4Rim z+zah{REy_toy_G5;p1#w^R>!@uVjl%=YmNlrD0_e*>2K$sg>wZT~oyRQFayN?Y9aW z-lys;BsPFf`P0T$x3>~^6Fm0ZBZVMP8+Cbl;WSFDT13yv>$jIOCUhczIa>a?SPn?J zmQYm4ROZ0>o0)hv8q?0fwu3wqbIWLRmllbcS+nF^-KWYAI~Jd$zq_==WAxVzg;g0u z=p%<#M2?uE!51a|(s|SjwcYD(r9G0Kx#T8QJKphMU!?Hk@CBA%^c4lKC_YJj8VUIm zNzlp?6#wZ(^F=H|dFEBsP)h!u6B!jgzrW43Z%aEI^T6jHy0K_ zKF3O~c=PGc+}z}33W6&PGhdaTFZa<<(1QEwXR)E^2oFBhq4ngItTDaVK{dyt*OyZ~ z+I0;A#Gf;!!19^V1PM45j^}U-erpPtn$zhA@#V zggBn-YzFeC>~E=7`0E9_5{RG8+fhA>b|rgQz)7F?@7HG%hj5h1tc@^jF2p?P(_my- zq2Rh3Iqb$WkNtGB#IO4)OWW3WWLea+(C9GKgEq@dB2wZ9w#JU8eVN@vjgWK5Fk*#& z(wTK&)ABe(x6#FEypy0-T`-?C+%CC~viRYe6muQgU=i^IC;(uFv$GNez7NwihIKaC ze9ai#|MN?b;0Z&@yx5-89DN$!ALDwci7rF;55)5;Wp;dl{qJnBZo0isG};+K-jvgy z=lL+*m;rV7zuL`qAlJp!5&1hMi|ef*$n|~`7pvdJH+tDh$rL&|BhTG9^SUmd4S7ku zUk8QnsaN8yJ>T?ukn&|t3Wv5IXTpu8c_$a0iV@W-fM>{s01&GFSwX&jrn>Tq7b2s( z0!1bqp_}1X`7HO4EwJ12avJ3qKi{~oVN{11FE^?t_s~3XAf9N@HcN|Eb+w4BVfC9~ zWHU@qT*7$3FMyJ6wWChlZiUY3nCtLjaQ<+q#VfG$K8QI^Byfn(nx(n;yr}53#tRu& zafcc~_0JUj_o*Tm*S?7kxfsX{6med3HLq}Sh=t-d3u0ySbY33%dNfX%a zd>=f>nI|RHI6vP*Vm);dX!l-%^2k7g z1*}?$t}zfEtK34I81DZF``W(G$0q@8$7laVLroGjNK>2;uW7qcPi6%<0Re%%bvLnB z(6m=YA)LGt-QCvHQP8q}mSY@R+H3UFDSZ{6KZCWOKMvP-Tzhty6OFz(o~)*gNZ7k7 z`l$N7>kd`qnGr=u$K`plewo(o?$WKV1~_i3S(K~Pu%r8bRK0gRoB#hc-j)_`S_x{@ z-qZ}Oy=T>GX)7s;#H>wg)T*5bF>934qG%~%D>V~)RH;o!>>V@q&*yjF-}n9b{&oF( zJ+8;=@w(1A&+|N|5iK()CR6?#$0PGud2(4%z3V&eq^-+{Lw2et*;U7OPL@TSRq*0h zbYm5>@3iMB`Y31C>|n*x_m{-%1y)thH=c8xgY!I5Re9;uLJ|D$5qD<@Z4R7sC-loU zZoEF#hJ5G5_Tp&Nv<2#&ei#2ZVLfMD)4T(oQ@Hg4uy`wsB;dP&!j?9_!;d zn_f@Oc}aExWGdl`J=j7#J$=qq(@@bGH;)$sSMxI^o>v6cy-JcN=JA=~g=om{)3x6y zJ`05AV4d;Ky!>4Bm9(@X7Qc& zGM(OyWW}RTw_;|Dl^I2PMTS;3V*Y;kkp3w<)-dx*x+NH+zOWZ|T!Cv&hfiJ_RW$5Z z2skh>_K1yXXcV5d*%ie7k2f(An}^CBw!aXufEQwbXD{nw&PjbJXFeBtMI?}2v+I(P zjDC-WI_zGUG&9oIcVG$pVmcAuQO(9W$+y7r7CBGpj1iXlg5X8?VKh$dc?8({$NJ{5 zj2ueoFau_%V)Wrab^K!bv+4ZXP!56zp;UC&^G#lG0f9P`wYNt=@GVjr^U!R|k%L}7 z4R#kYu^&nKI8%3dFN%RFAPfn9NmEb;W$`4-)|d{(aRslr_WD&;8!IPn8Xk&*HYZXu5QgQu3HMJxA=E8FQROz9f^nHBtPcV1glr7teNX zle`oMTdQUlfbxQ3^E6!(qz7CyO4_z266Lg&p)exNl#p)HyN&`LNb1D-ht9?0dB{1P z1F*#vGR5huQX$9@^4fP}_LoS3t}k}v;uGiu6HeUWjmI=8H^4k?RP0EvEG%N@=M%^M zrn^1=K$bguOV3LE`bC;$M-Sc#W?_cccrF-vGn(tTeDvgQvf@jU5ZPk+ey&1$l9Mjs zpL=Da;*ddcU&oCNd>o{a%8H)NwzD#w6UE?0%r5kq_s5{|GgEQhvU{d&k`|Pi*2!y_ z5cqZ<2vqCIb+%inf7<_ayIhZz6v$g`Y42CF9oD&N+>gn$y43Xa*iZ{xWk%9&PaZ9j z)}vKFRM-ULge8#3+N{gXi?Wi@tFqYtOCKC=hnAT$`z$vF5DG7s(ojVtTB{3l&+gHW zpbZFX+{-8bi<;+M3swDfN=9t3`T*Kk8oMxjQ}gi31NhG*sruv2VQsVWtatw@A%fmG zM)qv1n0~@=;eD2-8}|;t9K#T-Gr+@4CDVg)&1Vn0E$=EQvP%a-aOpQBXGVxLs>&4$l8sU7)d;dW1a&uPuLYS=kk%4`*lm;g; zT9hx9`{kZW1v^6jNr9nwkOqKviT&8x0gV*u#A|)`J^w;rNa%}@TrC=ypEeukeUq3M z9HoB(Nv#rSy_)nxAl(t}J)cKXL7E!v_c-h}Hce{4NtpL!^?d=h0Sf6%044LuZ`+T8 zuUtFQA9!gK`xv7Vs>By0Z)DyEXmAfqFm1rS_WSQxAz4r#(bf_9+CuGZ4LhQp*c6&) zQzyLQj!7MBL)q)T_ELv2n;GfPQQAVxtnLw4<{~z#kBoPhyk;txg~%Z8L%pXSmFuS) zUzSk&e+}4pvwEKj?~DZ_A@J9H54=9Qnva8K;paR;wnvzl4HTG$1%(k@(U(C#M8+yP zY;4LzA+)c*y=UeFMH|#JKHjHTEu&p3@;@cL!9Y!IzbOmSEFC+jv`i18eujqb{uPuC z6%FO5e;<6`{MPkDYmSedi{p>?GM~h-gW)D+p4D>K3wg5m7^LGH%_{tb2OG3L8XMVX z^+8wwJwT0D(fM?6Ruj;wnHjdtv>>#NA%;7#(Nx>38e>x~rGh247W{23{6J zFQ>4uL}0Zc7vMY!$yw%?5l^(MRjDV{=Hc zQF%bgGk~obW{#N~t(zNh^}Kwh+lFWsZsKC(DGE!jQ#bgojCTtb3dF8;)4F$G1vOr1 zSvYreC#Lj^S_irZ31ybE-PRMbBSe8|N6!{q$$)fpdtb0CIf=h&Hxr7!xg-I$9jRNB z(R98&-@ncrN+FOKag=)+)jD>{yU*wemLmFx-&Fd2s~YiKnWlQMZon~VQi22YVyoCJ z>xq<2ak%?74tf)v=gD~4bHXRhkSPEimI1d3+nvv*5R?gqU;&O)v7TG^(_hEO`byrV zuXI1`Y_idl)Jhk)dLR1wJLqQ_64`gn%Q;y)OnhqX59NG>Ri4Wxey!8ikqk(!GB@CF zuk^Ewb!_}=DpNUswTd&(D_-w@`P#rJ7CW~KuIfW!w}L3}turu?G>EZxm?F=YsMZsF zv@>vyc7OArpyLorx(EWv$pI{XodaDz4beHHYaTFB&~n6<4xq+;+MLh_vCAEcX-!-M za?8`CE&ajxq2tj9X;tz4{H@TC>}CFfJ;m`17>NaaD%bSY^U*Z{9fM5gg55fnyxv;Q z6Riqif)(l7bX2_&+^(-r+nZ%6+i>D{1CPLxH;tIj!{}-x zE_916zx|I?)Pjy{855&9{d0BOJ2X9JKGc=C+^q9k-$S`Zyx#tg_WCb%2#n_5sYWF! zy+n~67e?X5+|NJx;V3SpjO2+Vzs{USMd0hmN0%D|23f!S%mw@{Bji?#5KWB%$>o&j z_&}{2Jip;S3B`71(q44x`s5KsnoIOCT!6&9NKs9%@6nEMYeMYXeiwDr5x5&k@d&cO z22JSYE0Ue&OX zTJz+Fpsh;ajO;Cm*>{hMqNlap=n25*Xger3ESx0ZA<9I|B&sR}u%emIVs>b6d1!)p zGkU}B1wS8VJpM5`>`D*+82DOG_+V*>G%D1hRaJCP7En2S}MR2@>fX~M-9=;sKAC$?d zz6%H-6tKF>*>ZKx8CU9id#(lq&%v|LuS$G4Rf7)W*~5SRu>4p1Y?0QTb7YMA#In`Xuh^?(*%I>KxjX7ebJ|4`{rEjDfoF>h!Nvz|F|Twg(L9oB#?UdBY$Po#g8 zW6nE0)WOaDlnb639WQs%fAa%J7v7$k=j`a6RTboI;jvqgzB$V>mF>83tUIPU>HN(R)(ZcaG|o(}*wm0WIqyVs+$QzZzlqXggj>ejb`drV zDSshjNyHwHc65V7#!zhS^t!-MCo|sw)Q4F4FB#0oeYfie7%q*LmPzB2T}`oQPx{Lk zRviWJ0!ddUeT1F@tGpY~_@{&n-zZ)2&$8RlzHNC>{5NnDTllJc=Fd4Y!62bdWChH# z68yA}iplSaLxp3KPBhf=UGc&P!lwQ%@b}%?`9dl{TwNb40T%wrU^-Z)nR3x+H5(QB z0a16}jqrPo(_+g?k4?{kci^?&NElvyK;?S`q!?QAA!8*yWPfpR z6N-w8%FPQAnp6mY2KffGeao}s?< zY8YQrloXmIR4K?j zB^0sE`5P1T{@LyEpIFR@U*&bIqdKjPH!NA8&xu!A^4b<%CMFk+&L4mW@^@73u5Kh-2s9LKg7kZ<0t7Ga<{$-RyorvSyzY0h!a^cuPG2-xwA zQM~|s$>x}|~76yN481R}e1_ynMLGLZXb zsWeY9)^H_A3#FClovzPX>3MhB_@JB^)v$ZqF^?jWu{X8KFL-_chq`PqGTbKeQco_Y zkM8`bC|17Q%%17+sGL)4$^C@UnY4;fp!9CAruNAe1cYe<(JRtzvm~w;b`~ZzGOP5v zqv`h*+54qDSLzU64>))jf-jhHJl~~sFtU_31ggDc3NIZ&0vXvNaEi-`eNe5WP(sTy zTeGIU)yTOaqMAad;&zIDNa8*mf)vRptW1ibDoNHf%Kcoz)-_R}&HPS{VC88K%E~R*SR?)DNO$uw?mE4*2htGv*=3Vo|ScVZ`hHk~bT4O?r)E40*FPf)YC2 zCZB&SB_0-a;tL|Hyco8^DaP;=R&R`4m?r^aR+sg82hHytzFJD_R}$Nf&gOu2=RMl0 zOlAH9@hT#VV;cX$5swmXj|bH4M)C(E<4pt-Nww@kD@*xLDn6elOCpT3>BVk<-7D7^ zD^k`~^efBda~-~>kb05kdKAyGko;T#gUM1sp?CeCXY;VVZ9o+(ho#Sd!|E|0=kBzL) zkdsqk$)mV~neKZ-6CaCd`Ta;?vdsP5WB<;b!e-;EH8TYY8I0H1lYN>yScqa&u7haush^_3futZHQ;F`}!N^VdPIxIbPE*|~} zqNVCoGPO(E8N*WWbBO6O$AprOF$QNxNy^|xzAc$o8%9wgpxlb;LYI@ry6;iTas`yT z*8c4S@W^Vo_d9`HcRL<8e-|l^Sw)~}GClf1^7dO%BaG>(Al_Scnog6o7PD|M1Jw6M zOR3TabP6ODIs3epQfO$%3$d0wIibk=;lOq476t5d$GYV0ZA?vTX1vY6wj*lwP3 zZP2mC=y^)upVvf(a}Bf&&fTg~7cH4iQU2k-QM`@tWYWJ!PY}qKk)6l`H`v|~#bqbe zH^6_z76&^O`+Qv9Nc}Ybd1P}6x`m_)8Xix!D(_EPo%Gcf)k`UuX%d^vSDtm?os3}G z8AwG%`mO4h#a91a^t%*vSHSztz&0=ICUgEp>}>j!firEA4)?7NXE|fO{#_io)N$r@ z^E=SZt=wFB#if*btN8HifB7t8T54~Esx~i&6Kl*bPl3;8_CGeGwsfR_{H@Ie;?&ri z&!?K%$6lQxv;Y@{xBz3i``qgZ7ARe{6z)p+g9KN`>j~~%^{hK-BGD!bypf4SMyidq zeHC@;)|*6zu!mHp_cHeRYs%Ld>kCvOzB?qGXk+qU;rSX25fT=R>{Z=vxHk;*uLXEN z*tK4#a(|j@3*do1RlWY0d#5*%S|Ku@&u>W8by!x{$x*hASsh-a^_cFb{B9eN_0el` zxv(L(Cm6@p_8a6TfT0q@6H4k$4d%9ipvCnv>R_w!PnGO$jtN3k)S`M>qn{A|?C7{gz9>zUvwL^U2aKuV(+@I0 zY?0Zh&?X)Zw{AhB?leXev>kP^{_kr1Dw_+L-9Xvi3L`=m}5Nu=TzKczMpUEax)=Yxp z0V>u0CBj(=qsmfru?tvk*9wwdNeY>%OdPp`@nSkwO51&g9_=7bk8zQ;QOHIMbw1!3 zVi$IDsS4k$2ucfHQ^mhBKM-LzAL`q;D`680-x>AY=B}Bzd1H1Q?Y!-j**mV7nnW5v z7c6~hn)u|(rhi!Bm13muy4s&F4*hgCS^C(K`G|e2>()dJmM2U-P5ahjg?6sWW^K83 z6Y#+DK@!sqOY*Qu=cn`gZ~aSh7?Tf|iNi9mS5mv|;*X_YFnaCJG!EbKvG!DBmqz+? zck@Kbm9l3wN$peH?z8OZ5NXGewuHuZ-& zp)%*LXx*79qzFTkP3T47rkBG7F3b3FOzw#5 z1v-*de*fbINUeMn`&l<=?UC+zHAhULNouKby=9=himUXo%kG}fLzq5`Z!cD2^i~F1 zd?ICPfw?~EE^=F3C&*7~j5qjc*|-RM+&BY>$a?T}y4RfnMoe~1=Z2d`*EHG&T(ARa ztcGp@GNQ5f0&SqIK}#^Ym%#Bl6P@L7;QFK)bmnXzonwZDR;5X#X@945yxG_H%6rXD z$P0klyBI4~2V7aPaZF_4>$xEwLHmaXx(>eXZ{GMU(AXA>q3asyMD&p$MOn@tz1|>I z>AM8_WRN_FVv(yv<(mT_`)wUui`oV=2Ye9~Di@?5!UkTC|9W^K7hESH zQ?`vHbN)4in_@+}UOmR>9bC2$iL*L%A>C}s<9+{7w0ju@ASP@&qnTvsh~qon*qSrx z4cm`&o$yG^G#(<;V&pNLdHjXdRFPXNgp?gUKW`_I_NRb&8=DR z^t{YXTpU*fvHIdJAC>qVc3dDb#z)f;i8ZT!9@_>=4`t{Hro$jb!mL4GpF!se$$%|A z3$a+g%J(}nhYg91JWkKbf`3DFUkyRvTTK^N9*Ef4&{oH7me}lz*72%R+0n@cnC)l9 zf)|RgBU59HlS38@J%tX;(@p9M@;{Cp5Y_FRgx)U;a^g9RH^j`6(WB+0fy1UfIq->z zRX*m^i=1~s(|gCxdA`;`Z*G^wXNP_nFSpTjnU!NJbYn$SHzk5Mr8Z%}{rgg^;76Y`wkH4zn@t*gTmB2y7$47y9C;AD4|{(`{vL zR^PDW_?DJ#TH@N&{X}fZ3XwGdVOwuP_6MGHE9Fq$=;cQ-$g=KzDKK<2!wY@PpvDet z#C|qq`qXZ7rt#b={8y7^>H^nxd*%s|l;3iPS%~Pn$%aeFVqh`nML+JWpS16w zLf_6R+euOCZ_IPH>63D^h%%K@f8$<_=-dif8z_P~iT0az$~>hO4*(BP3`;!eQbFG8 z+NyxvYjtdWFI1S|)uXpC2Nv-8t3R#Pr{x&ws0HBN0lX7$1KCP?4M8=zKLOu-n;pn{ z+qGpq_?=T2Uc%Rbu4MH`7`&*x;5z(^fb+$utMLkccphQ0rejavTL*tmnFr{?Z;=;dXU|jTX=PQNR{o7G`4K>Hm~sB24;|N6 z0x#m_ADt9~bSAWMPmH~dt)xUSmwe)ShpBSc6T1eb=zZ<-m)AmR(a4)jFvr%&9qc%> zuYn-jhrAyiJfb|gJRiMm$)BbL(~qtk%}7!9*#J!g zh3zev-0=h~)!)sr#3ODh8~FH^#LgpWC*o1G<^3{SQpIP@uIL92vP(QPDPKQfQvnN%*ON#d;??D1n!XT}pA z`dRIRRbPbdVqbO>3$Mg7nr0DJKbL>zI*FYhVBWetQZv)!2{JPe&i$KMIVTd612vd( z6sT|**|f^UEHOC=(Lk@&bnJ47rNq&5_ZVhmyO}IiH$E z?FpxQ%2b6UY__qkh>Z3_ei0VW?!ML`(zKZl47cL=!2YOn<>DL!^5Gh_zk|_i=ztzw zput%R%p%ehggNz)4w$DC=-r8J-dbGfZ1&3P7HZ<}p`(*?eAB?F0g%jT+kdq|O? zzZGnINPTp99kV|2%7fMn=tb_Wf*X(P>m6O4k*I+!$L%%L>{jW@_Ue@jJ=XD!j&p#+ zn>TMdYFbf_&Q+bH$GRoeHJv}VbgF6|<_{Y*|@|`iYG6PoEGsLzb3viyH*r zy$i@IE|i^Ycn5R*EPLzZ9qdP*VCoBVSbM<_&$EuVXjfawr6~$ny|?7g(=jZI`7Of! zk8r&f*$EkDW3k(O4ey3(Txd&^zRc)kdPi0Ce+=0`!)qFO?R~8b_=R}bmSTNQ$dBajk*IIbih^4@+^2uWwei?_}CD98zoI!TDUgJd4RJeC}s}2Mq z5uF!?-lv&a3oCb(w%M={>-*NqD5#^{eV`c^1JDaD$(LjKrAv{Vt&QUwJYRE~ zdzi`x;3V~kd#9>(aqlmEI2SjdxM{9@4!SQIjhSV5daMxwe#d|Wl@=oEmFUkNuqYJH8QMpA0Y zo;(T+W8;5p%JC;v&Irem*>yuQNQjz|Tq-B%KD7n>(?6q<{NRdlb<8tzwMjR0M;+vm zZcN z(&8GjNbRl}uR#8%znOF^{(e%10^y|g`RhFKSOW;sP0#8^cfHnvMl zM~|7Q_P+lrdQk4o_qLm-;F57$R4UZ!5-xG@R59n3*8AZOi?kDJVmz~~kvQy~nKx7Y z;mHf3?MlVHZA9UCdhgkONuK6--YNO3CJ-Z_j|E8~_@g)1z^@#%Sw%g?6D#u_mnF7| z1|xRNR8J4HA|JBM^sw3Z`nU`~xUZ>b+2rr!>uZ&L%BYpHp8kS5Q`>PRz=0xAfzHR0 z!z%rRqhc8;yC}1oBW1nwlPQPIABFR=q6$oF-tL0&UK04PBIxDz zx(HXcpUsj3v;Tkf;6FmDqxyfCh3m{uv4Q5fHj>2UdHc|)V?HUuy=!?P7UY`a7%&Jy9GP9T=}b9ZxHS=JC%! zLluAdNlQfx`5Ivl!Or$j{16DMlRz;nJ2sD-#4aD5{4lz3L_Ea=2U_7lp2-ea`Lk!B zd%zf%M*d>3{Fcct=tF#(ms46(tGRTcwnKoqsID`ex_`~DAN=p`U6B(3MrS=g1pQL#mD4Qt&zF6iS}IgM9ay3A~$!n{53Q*!@7PF0R5p%UH?*{ zvdDSwWEPGR-SxWMlECG}6E`+vM8tmyEls_H6?~PgDcwdayKWoerR$J_@LO@x7j4)j zm0Ib+!aW&#;Pkv_Ge~?8e<${vJi1!Y`yW4Ana9tl+LJN{oAud@HuzO4SYm&~NMM_@ z9i;JoZ9;o9+KxKo{Jg1tFJfKA;l%#0OfLNvq53m;;WML{#Y_m+MPY;yboXhx%3NF@ z1v9)1;~(*Ac9_xbBZW5eaiGQzomok~4pZIk0!wlWs9t05Qd3sF@tMfptXYSbc_7Tf zAmWx#|c>M>6#yc^T}vQT}xz#o%r3llu>yMlCa zsq3SbNaCLAPVUOe79z9sa${&0_taJQzeWO=s+7-czz-Au)sgVjDpE(^;7F@+X;Ou-})=Xv7)a$pVEtUMz)2>1ccD7`tMdAd<#P=TIl5uPkjb^&ur0{=D(qE z{{27p)P_BFv=>ngO*ro2F$+uv>uxSxY-}WPSU2At`1M$}Bt;!V=I!^5OlL!ieYsp5 ziM8(3smgF|)p;R8tr#3thIW1spQn{&o?i#Eswq5}nK-QKzVQqqs!2{?*ve$%3hd-b znCTbyiLr1fESJ38NBpLITIy2Qn)S(nOYwhud>+X`(9X+^}Z4PZK4(8Q1k6UaDQI_ zJebWX1)Ua*zSR?0A6>O3Y(@U`Zp;^j>xY%BtUntBXPW`#S|#Z>PzYhG`=c# z17|(25L_>E*uK|~ZnvANpk2mO;~HgifAMpMc3TNp1F4IWC7d*kyWhBIh6e-diN4i? z1vDCTa)1H2`LO+MXxRnZ;D?f_K;t8eK;j$Gv&XYSUsOE96tJJ|G?5Neer}V=kx%gC zpnqaX*g(H?&jk*vG=Slu1A#kghvsR_Z6KZp>sH7Nu;B9Yr&_EwU)UC7AanDtrq)bEMf*C5GkZhz3Y=E6wSc@~Bxs}t zU~Jg6P|e&c(hF)XXAnG+=;WnHgLwt>+g+|Xna6GZ!dN)#jeMwwS2GZ9zpds|J?~x} z1;2Dggbs`{uQ|oto{@^J#*RaIeFlKp)tyeP_dwHA@Ws?a(ym{?zK<+a(>TCoBaP~Z z@>ZrJ2Gx4#=R3dkKgrmb3H13|G8Q0x zOJc&uu|1Q>v-T{c`zNZCwA=KRw8$B(UScK7oO7{{3u(u#oIwBUnjXA!P2T_rKV_)VQdRFL^HO#b#4{XH%d_-I|AK^Y>w8 zz$4g#y~4Xne)`iLO+K8jWO5CqrQ$pg!DvER2p^rhY3f?7$%N1YM1Y@_)&PHvgGy-O zdUb1QM}Wge288Qo)FP66O+!r7Y!RLwi8mjc$5?l3y!U}TQCs6Zul~h$9yao~%qxXA zNoG^SeM_L`vl^g4Vp7dR>xq3Qni#>pnBZW0*MqwlSfI4|1drHIcud4eh_!n#iGYqLxM>ok}^sg0vs;W+B0P z=c|Sf~-tN(Qh-xb>B~2mG6wY znC{4O>^w+i#P!h=vR$D3X>sGmojE93=?r;+3SJ2gwDIAxJhNk-JhX}DaN_1hzhMog z;|yJHmuPs-m>Qdmz0*9*VJ80(gOBh{Je};wM&J`jjE^7V;xdmnc#3$Q!5UC!zpd=j zd)Fj=vTI4V0tn6n?Ni=M;)=v<`G3p_PUtvxJ`lmrt&(Wp4EINhG{Jg8d%f8+CoNh` zWv9kC6$zG%zM>-#zym>1jUrQfnyXGmGU{Xhpkw^(8I4Qx_8Ge;kv|P%6}%FzdwzLy zFhBHkxdY#G)Vv1g`7XJU!SxdNgf8d@Jtu$xGDq zW^mw#ehEUz-Z^3unX{t8Y4j;jvWX)n%e_Nl=@PhG)W9Ze6!E;mQ~tGyK~XGrku8tJ zjvECYOwJ$8E;hVsI)9?n67pAIdq?Crzo$kRgF7<`TD)|kZM}P)B@{tQ%rPS8<9%pl z6>wZOS#q0PTXHde%A-xN#wN!2{_Fuw^Nc6a&J<`9-)D2SQ_&h3((AiOwwH0dp3Ov< zk^czO3A#)D+M%aKF_S>9TekOi-hj`vV&Oh32cC`9Lgruz3=YB8R?x62q9e!2bWUzv zg(zRj81?LNpfiGdt86v@5pR_%bg^;n9{zpH@4Mv>+LJaaypLMS77Cd7jW|0UdCI@PB&@yS0;9sNsm z=l47N(r!P&n_gX1REjpTcEjw%FTECkc>0`HGZ%AAN^pF%5UbUAzP`)rX{~4_g7Mv(+>0=GOtd=7{wq>SQVGSf*ORq(lSdUWy4S{!}5c8@w?kdr@m-(y^8}> zY4d&Nay5I+Myz4FRmVUbf|yb^%lFuJufN~1UBH($(_hND<@5` zw{!}LqZ8_ez@25CsN{57EqTZcc2w&%I+u(f^o7%WP%^toB8SnuSex=h5epHnlpAJB~-(u@eH=|ySJ&#;SchU;`(O>9z9W%=mnB>so|yGf`y)BE1aFL zjBxMLg}(0er-PN)wcbu*$%s?qH&GXV8O!xbFCsu!z$Fn&>5o}y#TqERPCf#JN;z>C z*Ou(eC?;4%D@I%g(TL%?fJxP?zSdYh^2Eu zbDD+Y^}3%G1TzCz?zey4r1a-Q$C|H=N%+yDfHzthGMuw0i>my`T$)t%wCYkLUrt`7 zVLY@!S+Syx# z5yDtMrw)jEQp=Ty`jpkvCPFR1_(X};hXhfoNS{-NRyPf}G@q)9w-u}eJrGzN|IH`vf=~DHGG3P99h6WO9cE9=R8ho7d;AWV zbib|-Sz>OCQ$2lti-%qQ6^dN_XYb=%X2_VOMs3Z#e!upP+O{wXFJ(Jt$E_9#ym654 zSC{Li{-7IflmR}AxTR7ojSqAqmg;Hl$*U11ds7xhcDL~lxNu8_KM!{C5dj-Qc4{l# zu8%w6`wQ-ft8SqN{@@Y88}iI7&uX5!xc8?1@SIpo>$Gaz{ulzh?ri= zq{0j%VfFT{%a%J|NVIB?*;YuO6k;5dOfMnRy+*Y#7#rW!}EbcgWDqF zEu_2c5#40uB5C3bmdRrxv(+x;yN90dVd8&5*Fao67}QCqO3W2O7LmSf z`KP*Dpxnn^c~&yNQblq)$0CNRx&tH^hue5(%=?ZGu$B1NOgQrrt{Mqq)#-_dKor6g zNZ%^ps^%1Pgwd8Ecgm9?7EXK^fB(LB8>`x5%=-Lerzc&D6TN!6jQ8gNAkG5P$VM#L!Y4@B7hDT6B+MsV{(}= z8SlI3kAD9IqinNY4Q!4}rxBzMoh(Lpmr`a7rUh%-t^`0Ry4k`g%t@zR{i`blddq%9>zMW}326a-33vL|`v|H}6Pwp6E z&ZIvv!4n#ErQ^dgcTiFmORYZwc0p-OE?^Y3c%x*E%Pd3A8AcElvwdFq7anr(WehX$ zP5E10_Tg3?@h@jUO-$+H|Fb$~hP8y$&;KBr(Voo=+gSxqQ{#PKoh+3>%i+~R?EKJ~GYeic!?#9rpax2_{f+|4^q{xN+2{a}`1hI~^5Wz~yRp|3^m_OF z|Hlh3g9NaD8q8;x0zQp>Qbi3}%Hx^dRpJ5o$24lUaL*>jXg%zz@DjaVfm7xa4P&-h z@xMV&UQhuTkC$_E2h|R4r#KV}criVN>uKlnlKvR=uLkB&>I)RTVY}+_)#{)x07L_P z0jZFL->;BNYvI@bjJDkZCCYqY$Jq7llK~Na&9>f6>%RuK`;heHqK~Z86vV>1?kqBE zxC-;hN{u&D;d>I<;RdApg=~voew?IITDSeIX=Dzg)EP;g`GwK#GSl*%@HAqGEIM=# z66DbsWi^cuk{ZTQKFJu^7_ejNDQCX6KDa&b7SI8qQBPQF25AU5$L9=t()F_sceE-# zvOEm!dy(p!Sk@I%;}F`eZ0pUF5>P4h-QtmN%|G$mlZn_cJ@N-1J@4moTwxM2De97? zNcM%FO}uZ#vcQdKQx=qm4z&H|g#H=k4&c-dP3>92(S3cBT>OSOlCk5C&6S#`EjpD! zo8x6rghi#qxpT+!Hw^o1(|fgM1hw7cka_|XOtmCVF3DvDbX25wYeaeh&ad{z!zUPm z{A;THU0~f%yOMcrKPu<^W_?^W=N&P_Q2N$v_Q9oGBD%%?3^CPbcWEzJF2%fc?A9`K z10};xbkOg(%g89N@DZ{&VmKYWAv-4Kn7?7;T5q^PC9}kpDVi2}?P&hvlF=U6%nq_) zZ7LZa9{E0L^O_OX$i{hNAA8ekk;UO~zUcx2=1O@Mf9ewd8JNvz*YozgRH>jTQqsqD zx=Q%f;jS4bpzLDL{h;vN{AG?ohD6iS2hcCMy*Ix?c7M6YExRf#n@^%%LjIfJv4w_) zw)$a@&ehJMi!UBzH-D|q%N33Sh5$}?LP@{R-a$clHmFcDL2;@vN#=TYO#}C-eS{6> z1vzV=aFdzBQp4U89UEOKx(#?CsS7Ho(%`3MF^^jWyI(kTKUnv_P__DFM|Lgb*%?oxuTK4dRqzN?hc$kv1EoOgPb^?LYrkN|{f%h&Zb@$8#oO+KMJNP%1U|Q27qXJ? zDZgIq;_=7F^G(bkg><2{bXt0kpT(b8?eS=4>RV7@NU8-Mnd!THF|lBx6@);hE2jLg z2tZmVBt$2~mbtgbjhh9b92q2771QCY<0W3!V5!jJ_VhZHqi2UiiPEOBr0L4fY`cEzccUTESeiEz*W0rg6vP zX@b2$a^M6JPZYJlnhLkGPh}}o5p_BH1OsC#s&uoK=`Jf+4>7k!TnEb0bjB4DXhDPV zh?6RP`3~||S{`z&a;(NU4j7OA0~=cQ;#uTb| z&Olqid46Q*F(Py-4mqhZ6~zg|KEZro^1&w!IZUjw?(wy+_G*nC)cgOCXSo55tO;_-bU;hGwOY$3+7e6n>N<(&+3UlO~NmX@Ar>O=FX1ia>jmyB!0s@1wexS!t!1e&TJ9gnhp$RFRTB{S>HHu$ zb#Nw~i38x*W9G{fm{|q|gn| z*y+KQdhmBUF&yRan`5GG|4TwC@;(TQa zG>16R1V~@4K54&T?X56n6@JYf^`6K8VgZ5YBi~hPu(y@vhQ5EPS4ttM zToDo!5$ZxFAmun=b5^A+LdAFxQ2M1ySY8R#MUSO}eZT`+ zIJxCO&(M~}|6YQ5P=QhUz1FHOa>EVWu@xOAtaKirGK z1Z}!Ga>(kltWD;9-AFu4?%?G}r8QW5)4{A;Y8+~#`$&}wss6> zGAB_Mi8yTWyU}sdg#$k1=TT=)*dA-0Jym(wY&uQAp#TfK!00+Qifv_;FNT!lyjnI; zPS1Os<|SWVT_{~WlAw)C1&p4s9zJ_hb^SxEQX!3sP{=3aQW~Q61PyPhw?UmkPX|j= zDeoDjl?x>oNr;H7i}rwnyQ8kZrK9ohT*^th4GD3%K!-lEB8BrOi#I>*qiOaMg>}EO zl(BDpK7|EkOW+kZ=PP%gf9NfH8-J}sZYSfwRH?l%O3?EkAj{d`_4=^usyM&azkU-f z>Led4>1;aQRV4Edc)}l0Fsd&0?9RsV*5oQq#?ilX9N|=@dnV>xdjY5DiMqFmQ_h5e z(44U;f?JG8IfZALDY{_n9VN}*`6`P$&GQ2Gf30{#SmQAQF7coII_#xjkH_J;?0VN5xiSnR`gcUO zzFCQibm;5))@U_)^l~@Q7Y6w_47}_ZnB&i;YiNm5ZZ{50KUwPer= zdS(L-?Ls)r>9sqZrm{WM!5*x3w~9!AukM^ZEk;3Rqq{v#J~FvJsULp^ToW68s$!vL z@LD!kaK2Ii!L}UAKLU1SOayePEIj%O=8M~o>0Hf&x^XT{v`w__n%l~JhdQ^?iP^jFB* zadvf12bft;+j{{Yl?LtC#+9vHpktg&6|)Z7{6R zChsjWSTZI0?X)jv4R5D@?Y1XWOlL!-xD2C}v%#WQlp>GXZsZMKM6vRzEwBxz#|rVO zg|Ke(0a;fp)FCC0k(}^HIMfPpHcj7FnaOEjEAG?1QQAo05Yv>6(-S+x9BTTQDKh_k z3LiEApq!eFEMZhFcyu))(D!#1Q>l8eeO2?9lwf6dbsgm*AHXDF;4ZW}xSVtg>PTzU zM_cj)$Z^0bN-Br{fl(_I6GefYUQ-mw{J==oObFQ&$GJVU?B04sQtCIiRQ(vQHWGjH zvkERd#}6vb`BFD^4O&(|%VFCvK1@G7!U9iyKF*IHuW@CkwwZ$S^9qWNWlwnqvkQ%r=st{{6f5OHlCMsDtzVf}~tq`hcqsm|@m4P>Gy2ar1I5pfJH_f@ymm z0-Zi!Qf>+mVr}J-8cW>T3piM3RaJHtx6OILd)Dv65B|gwx+_90WV15=YHeVE z`BX)YpX}p6m?K(dNULYTBU8k~^xb#P$uWHS7iH2VobjAnz`rL}bFo!|m#)2|HITih zPJAR}?@X(Noiqn=`jj?sjJ;-qHe3)7e?Nb>6*OegH|6TT@mr+q@;7XfF5r%GF%fby z2u~TbU_q67Obf&_AF5tTB~9fU${kyq^VP8DS&YYnsq?3uWU~!^e`0N~iR}Y#SNRJ- zUfK7u z@{5Skh{ta8dD6<=wGoB3d8n$sH_PoFZWeTgMCLd5me`jyFQP!-cPHGp z9UEL`g+}N7wCCKVKDWogl*+O`> zC0Hm=HkHstY)BXxvTop!c|%73g%sCe*ikiN@T+E-Q(vJV%eZhgN_V9RP8{no3eUN* z#M8A?3_-G9Y6L1ve>woSd_jfFB^XfXHIBC*7;~Tq%0#> zq6O^(fR59;F1_M8@!SnpUlPi}@eHS@_0@EOS!Z>xk5FZ3K+-5T!zOa&vY5%vVuk2- z@Z+oQ19)3#3*dmqc$X*hY^k3(7I!Y+E#inWpxzoACW`K3OIj2w2Ut1e2eqQ?}l=kn;4eTrDr^SHlCo}=$nvOU)ZmDHFqomY{6c_H~p zTT&@kINklec_1;scWN>VA$fOD;9dgfw4xQo``x;Vss8x z)hL4b0icNwN1EssPbg;{S?;LsbX+i->e{BFJ7_PF0+B15wIiy_G};{X#IRiU^M{z! zQ3Ua&y#>5hJs6Kygu1v28nIUaI%ll@&R#x8tCwHUi`0*dP)#Ub>aA?6rjE9tHcF3u z%K2l8>+C&Lk>mX5o=m(6p+o#jhb%D>X{MHXwzR2T{HWbY9BqIcJqTsq!A)0+YK9W* z{^3|4No?3|9LqL|P#onIci7k&J!p5j-vf+B{1tEiM(qvI{;2)xx#E(Ji=rIFt(P#0 z&})wm($$!`Z8}22Y99K4)}hYH=P?Zi@!-Jp@SECJ-$=W%$KW@`sAni~DI1!>MPT%b z`8~+aAHJb{T3uAx2em6v&cUHY9X0+W#`59 z?AMD<$T&!ie0E}7G|rW^oxlqX*~n%#)A#Ov-z<`H7v1}b)y7RA~? z@2yrIbuV&}1AhT-4@EB`u;vWnP!jzXzqsVlB7^P;JS4pxxT`>`iWOaIu)agiFcLGa z_R~nV!|zX~44{8K=_}u_HG|{o0fY4iTgTg&lzJt=+NyBViwHriR`-6`!kaDuOm9DDLR5(!yWj!d-m^LZ$)kL6UBp@kSyesNUjzL7Mw; z?IC37D1RV2QTvmWdXaGztnV*x8_h7E2(x9b(M_?!l_s{L-l;ES%N zX)M_iZ%f~d$PexRWJB|LRALgImqE0yyb^{o7oEf}hjsL$IwKPb5MpvoLyNr^ztl!8 zI+3}Q{2tfje_`LOD9j~(^{l7_#wl-oBrWeqBIC&~nfcC8-*JsU>U+FI|e zJT?X(Yj%cBNyb#{D_GX;Ch48>hQ{x2T{4q*e7yML%W<=mF&Vp^@9h}4S$p#*`(ma1 zPGaU1S26tu`LUu$7&sMSYut5fct@M#3x!>N8#xMP!S)|Kv2k|#2Z;F}^m39FUhtVy z2$)3YD{}tNn~od)16@3sK2kuGJ^L=32#+$I9erDr5ErvT*XU*>o^m}KAz&=V5>Hqp zIh!aadQoW@qz?}pcD3gYeNd807&vcPy+S2CknfZS z?ekvxAEpdbaKEuO(&bszN&gicOEp{*=%Je(*oAWy1_gH4x|WIq9(#U2XqpuEx%^|w z&aa4I4Ea1Utbt-x{doYxYuT1E2bPi5$mCQ-(EK3F$#&m;$AuRj;xcg@;acoE2#$cN4BJ1drgNQYGaHc zG1n?apt{%@vNfN0^Qvz&e!zjw+GGLb7t2$heDi7HB!{7z;MSqD4y9d)ZON{y>bD&V zDUFiGrbTNP`7+)-p`mpx;1~1b6L&s8S4%ousk9eR0;Aqt|a)pcOJ7}kd)7w-tcKEmB{^?AE+G9 zamm?FZy~t6C~fC0IjQ26>cX1Yq_L9t`9WHjs%zRsDdTy<>{?%i`MHB41Hjs+xIgW1 zCzXFrU|cJt{jUnc)c!?=baG;(FaJH(j-L;rfsD$ne+f1a@m*tL`jbQ|~Gt0Q!B9l2Krd&L@z zUb%r{mltZD`QK7};{Qj8{%bOFr^VUZ+dKLaa_)7M+0wi#UC$USr#o4hvZrfc_UASUu-hldsv)Wu0n;d>H(ajGmA z=qKwkFZ3hfLxR|@0eE?CkyEy|)v(OQo9xH%*?6=gOT^R5`=FfkRKH4lz1;X#n6GS- ze!`2SMjGols>bMpqSmm_31UV0!|K=)iy&&}Um>H1&AG{E_R;fd+5kv1Ik`(64C@pUyw%iINudK z5;bo3cEA(6U(_W>^x{X&=x^;&pgJH|!jC+eE}}7wV^lfG5z2)XExS(z+jRhmB3G=f@PuJ)sU$#L z?4j#J_;h@NTF;%i0Cs8U(@de6kszn81{5u2^?1Dgv*x?!%YtK46tSDrnH}}h&qGo- zGj|~gL&pGPzymfK{->poUz`o^AA3|*|5309>7OptK-=|BNrMU9?F1vZ0clr0ZNM=2 zk#i-WoOtVouAluSTYm1>b3RtT%omzh9r2Wr{D{Xt$Tg}+j3qtwSz_E02!PbzUAV-F zGyGFFL~MFVZFz8Cvb`Vk;2%JrjbS1N(80uT47!*;)MCV`Ul zTY~8f)~i#uzDgj(Fbp(%({6iD!Gyl{^;&cDO1rp4^&2P@3P38wE}_`QN1y&d?C*fE zFh?cbf>AQU=`nkG~(1CF~i;Eh$UQAmQ9K8mvqwb{1No4EW~z$otX_OLjyp9d~VJqEMPuu!T&3 z{@izkkj#22$EnC%HwkSl6xUwfukAextSZ%Zsz3i--c`8*%orf_d0ni=^xEkh8l0JU z6(srWr=Q6?kO=SG!fJ$Hi+e_rBO8x1GfU<3`C?LPTN}5oG7yyD_`3u;^4t>5Emddo z!3{dlGSZ@um#+Km6?{S>4+Q;T($gFWy1Kkv-ws(zJj%SiG*??F?{5CDf93A!X3wnh z`|4_btJ|m$mfD--TmGnkg(7NWvcD7xherc+TkGBA$*3ni(OySCF+VtzL|5Wi2Ff>i zSZ zugAXc1ezRBC~=Pk2rj0M3DO~mG8@CKwXuV@TRX3_z@I@(q;drt4C`?Ad%q_Tkde3t z6kQTU#sQl7FO%jsmEyvY53zp1a@IwYuNw#hFP3hqNe(1=D3X*V*0qJHg|krlA()NP zzs$C|!M{J4^j!tI2!p=IwXz6Yg7O+oatKwe?@YZ9FtM}9*Xtk`0X4t4l?1L(66?k8 zL{Q)Wp0bq4pFWjwIpLx)04eI}hvypKp28O@gR|q$F>9mY<;R%wV4q&m*z?ut#a|_l zkF@5nTQHa7{D5^e#rNe80=y(;-zA&eza#RjlOQs+Z6aa@RkU-JH7a4@j{rG7Sj3KW?@jJ-Jq=g zGo$sqc9vgce^Q3_TvzViUx9_AM4|Fd^W85{`)TlGJV2(LnK2ASTZqmLa3?>Hz4o|= z43OXjv!SQ&Y_R>#Q{{!jLG3nvVgf~}@MoUyt^*h#f}pI=1IR^D|~Ovqe2g}YQdk7Z9r==h1UI!??m z>xYMgc!X(6AHrDqpOE-5y--kAc>$oG_IahY>+`GG+`N;&xtdjnznPUxUO_=mPXQ0k z#+D6FiPb)bIbX+nt#4VqpztLB6H=Ix7Iao)cKWko!pu6Tse0u>y&JyS> zLg9uD1HWqVF=htl0J38`cq;x38{+V@+jSPY+2_x9y4a@tm~UKr_gIDeO%@rhWKIOP z6g*R>l{}K8cvQe%A~ji_pe<(e)CwXmT@fc%zHpDV2e_C6mL^>9_@W!Y17$l(K}ou1 zqo!@d?-SO~gxh!c`;Z+I=*D-;aJMS{`ob*u;8g^_?=s7V1|s*3#=M4|2tpB!eht|x zTYYc`npBRX7u5eTNa#tQ6W^oi3gk%)C4AV0C#0-Bn7++LMN}bT=;}yY8@yWO zVlw|&Ll1togYN&vnhWUKMJTMZ@tnZ&9xm^s)L)1R4%%$IE4bW-z&JQ|T`kGNBsV<% zp!$a_Ac)gX`e(m&it~JNfEf?SuF$&X!|uvLa%*GI2q&wF-h<;m3fFV3tI6uHFun+x zTNQzAZ{A@WJaItU8wX~SN**Vy%E>{y^SG7k|rod-_`E<=i?;ptee_^x9V=uPtvA$B*ItEhGyUInQZa=3haw+Sa1c zrc@1Z+z+HUda@5Gj3?|Pr6byefpad|zlQLsek`h*89frB_FBJ2rzN6SN86RKO}FWV zO%U95rvek_?vbMa27NFaR3O_Jb!58(zs=_A$}~1V9{6k8noB`D|Kx34QAqC`YP?t& zu`r4LiiV$;p~lYVYte)Fl z_};oZcq@HMM^LTv=-T0c+kD#ZMMqXf#6YO>T~?uRwTT{DsIpLpHUqxcBZ(ZK;xw0V{e zZ1#T9YZBu^XodQndr_sH-~|r%f8KWRm9>e1(J% z!MM2j7McaRFz>=`uUg&}T{nZh&tBY)arh$^vE+SbX99s&#;(li^r*UTcsKv4yrHA@ zd4_$-%YVm1xq7UZE+JQIZ|ps5665+(;_R1sjomn!opdx?3KpNwTd5Jy4R*Drb#dI^ z^Y#)<&bnUTn9!?014b-iFI$9X_Rn*D2etXtF-^Tk?x|8!d0?{IOOA8JM(rLW5B@Gb763RIaVDO@zkNGsrya?*Gmm zi|(YXKBu}cYjaktGVX@p-Zpeqos3vgos1X7QqGaIQxcLtbzI)|?K)URW>st5*zXrM zJD@g4Dz&y!X9|6ev`Gw(NhJ}I?~IvMMb29UObn7%0xFLqxb{sPt%3|KwetG!RsebZ ze9glDX?{a2IDgIGT3kSdY*ATBSminIKAmK_h=mx2e|1KArT71?R4AIz!eg6sjHAU` zZ;+J9ps;&mC7o$V7BQKOiJ;JV5{^&Ib1rCVByjo1_ze{^mo?m`W`Z?F{ws(a?i$0t z`AnbgzS_HRRy8QO9c!^c#Fp>yYh|E*4hHXTS=G??Zdl0 znnQ67w3`x%Fed;^uZGmFO&US4`WfXItou3bttwwX(t;II;O9hhc$u=88eEU#L2r;`zpgzqCw_F zxqno@H=F;)YrqtnRErT1P9A(DdSVaJ5F^-`dA2RJJD$j~ zfe7sl-n*z7;brfPmO;lQe@d|FcOOiDwE)@s^nPe%F0++3P4ZMSj~tzF>vd_yZD%ze zo|sU;Ma=KibzOD5fAaPB$*tfkeDHrh-Tx}kLljWRZ7$67qF^@tNNFhZx_s9%>hUhl z)X+?Vx4(Itrvsgcy*gD?=kML~%oV}8lEF82Dv}wDN?2ZIDlNbkg_d7(hvF`$T+WYy z?BL9_&o%6W&+N_KmdgkiORK8zc~tu~8|4_y!Cn)--4v^d<&q`eiRB%D+I7)u`G)b= z#%gU*8fJ@d+ZihYuG{tXn9~v6qt@%+nbe|RXr1yO6`~MUru%O?YwV~4=B#V0b}Hny z*>EI_X$=b5TxoVL^Ii;IS&DOoT>oa#GHu`_N%yl126b`l!hK_wm>g3#M(7#^%fsM- zQ^lNq3`LVt?^%PXlF5x6R4nYW&9>S?kROrUBpTB@EA9Qpo{A^0^4Fa&%&PtO-VMF) zL9NUKHr&L3!C)U@nY9#?*~Q=1I;OR$78J8oZ>A(pD$a@)8Gbg~j&efM&ZkGeE&VKr zkmjcSaqc;5P?M-6#@vQuJz6omn?*64b@yA6$pwxJI@U$^(iiGAT$is>bkUR~{Uer! ziZr)l7i)Yhk%s6->!=(nbp1pFfQw&zd@u?! zjIF>{j*xOx!mU4wWC$J(@_njWbQ08~OW2(-_9gStRg%Q3H<*m0R?bX*p7HH9>8{-q z^!#O7z*YFRCrT%nfM!LoYtjb7ckHwX7ZbQmzipr}9<0^JzA8W)mZAGE&zQDNTLWF@ zyvp}RYXbJHyZ&wo%KZ&$1au$IYRx{UZML$3CjPJ1ge3GZ2+EX?ckIkZ`!9L@sM&fn zDRXOE?Kf?#VHI?q9ItQRS;YA`Ai=5Gd-lH?RbFXTSl;G)+`v}Kqa=Q3sb}uV8tv(V zvgaGg3X>t0G(#*QfpkLl_NHC-9v3~`K_64Qh7BXw^)#qv{>IOyxHH=k*|X{q=_$v( zB225VFzy7}yQlaTE=tSigJj_$8RJ$=B}@k@Upb1)j{$b1bLz@bi%Nx@IdPx3b`@Ry zEgb~y5otYy5O$C)Vc$wRqlDOSC#59Y5}=UK%;onZh2(oGCiB|z@*r6ND%iNvJdt~g zCM02MzaooG`DBz#Vy;78`?4yLoZf8#Q~vkj=)lj=`)0CyH*R z!*ZcS8^KzP4U3#lq>a_&$mFW=ke@Zwl};Q{=!1HNJ3?kCRtLz;dli@?FQ7XP`Udze zo9sRreT}}S=K>)d+#TjMvavP5`~KWL8!5M#AXeLo0Q8Vvd^w#EH&nDCxS!|U|KdQr z2yB9Nsd2$KB|WSQuF&O+dx$5in?j&f+7_H(836XkA8*F*xJwF~Lr2BE9fa_K^{Vt% z9@PkicArL=v=j@6nChy48CV1RvHotd?sdU|(I#@c^<~iM*QC^4lj8*wN)m7SSGuII z1;!1SIYxS3K+%Ep37#lJAUbWBGSie;p!WEwucdA19}2L8RmaY%=hwCa9;c$yv+n)) zFF{}ak9eIR3H^QR@zV5*h$hJd%D?+KdD3rEm1X0{N3F46-#?6fE-$cJzU}hOx~Rm@ zU|C^66!U0a#EirUAVW#B_ zM>-qj>UhKn#~5$9@Px;{9{3gv2K&T4AE+{X`m{csVAIqYC|40}fb1|=CIL-;3M&v8 zqWLhUhU}c@l&6@gpWHcS(M21~Px6eQk1{XV(nCK=131^ML-HQAMS~f$Q_3%(GSFro zPtmrtzI;!tO%LFUqs%!y(M}8)#HE|te zh?7eoi1F)Arg=uLfh`$hb;PcNTV%8AhM@@IV;V0jFIcsNZdo#_GOLmf=njw%tm<~(W z;7(chwO_uIw+Ue_HACqddOg!HTP-GAY7K?8(m8q z?^C7Gd`Ma(taB4{@-9~F&y_;bwzqQ;N~_R88}^F?A4A*aibbb>sx%s7pg!SdIcYgx zx3W>E9F&dzoNBG!%Pjz`RpXF8xv4_lxDy~SWH+0+b8PC;_HQPA*}vM){J@Y1mv@Dr z`OVD>>!&D2|Av!rTVMR30bib9Uy7{OTsdWc1f@L+(6ZN6r0Lh?`%PV6UhVx)yOme6 z=>#3Rbz?j)ki4zLYt3DzAB;!wLP{MV2vP5` zJzpOH@#^H>{X3wInW7o6`z~`TMO}_GH0ms+P~9?&?ZD%i84IB}4lz6MNA9~g+6QcL z(kfrK4FSXb(%u%e=jP0K9HCP|V@j0ux0|mF7);wn15$onu*SfX!1!cH?)OSM3=HHF zvF5aMFKhxhKDRr|#keF8nYvN{dDYom0XsshH3$S8$Xm*XW7s_yCge+QWGOO>z_ zn659-%~kPiuI?~+L-9-AWT3Sx9;;$(-l_vGj)oRr_Bt&@9tUIv*aE*KE7RdWAwr5- zkkt^H--7YIpweI*%#U5y{_++KnNCyv!YFH6Y??I8tmsfZ1Wh_uSUz>Zjh*QBU|YBl zX7R`^xMgiJxEF=7?f~*Q^fKXd6Hc=L#gF948M=?qpRG+$hw@$9_@M^K%deFxRSXO) z^I|Ker-{~ct?nWnm#BG^w!Ccr7`88d56`zkSYklh&xWv#@Yc1EC68tpTC}0G`#1O0 zJ}t7=KQR$4QcEV>W%hfg%hljbf84H@ck+(QiDuj1EOq zhB-pstW#MPkPeAHAoE%k#V+q)M>z39 zgsi|O3{WvrY;hs@K-mGiG~f6e57(=fIL{8+g04#IxFI((USzs{EvgdQM)Y)j`WUuITW7?maMess6!wrrgF_x9>v61dKk z_0TY6+{4#LR zd-WZe{Tt&64Q=gKmFd)IM#6)E2s>GXbSNPlUioFf*l_oIY~$aJ>vao2<;>q0XkYNf-kye88mHjMVM4AjNE1Nb|c-@j!j1>G4 zi>)llZNQcE6uOA-FuWRLTr@Qu&AbC1Ri90AZ;{%~6UiLaO1u={GvW|Ap61=iQe)o! z7TszXtn%uEr_gu!WKV7ZG&)xDj_aVb&n1@=}d+Mf8_TLRp1gE zNn3XZDcBAIdl0y#vJ1FspNGFtE1FM#G~8=rPx9vD+5r4R>oeI}hjc9%(=v>M9iASp zsqDr>dU8McU-FY3t91u{!2VkHR*5~;y!g0Q1a-^`NQIf~_FS!E7&m~+{v49se^I^!p)knwuC3MYsH>-hk-xGF{ld*;|dr00ybazL!G`H$F0B_|? z20C6~yU(G@ZX~w`Qpe6*neEh*6-so{HZO86Qfp_s7pDGEuU&CHy9DU;bL*>E&yD=N z(S3>{i?53ZoArC2YC4XJXs%VtwbVS68ZqI|hbPwc^-q;0#60_(K4 zu@XN?OUPcUvFg{}vjCKG^wH48@2X&7$)hjTRW`-o8l6UUpbLPPPW2m_&{(7c7rA8R z1G=K;50U&~q{SAIZcIgy`4i48cX>{yrX>`#tRa?=FqE3K5wL3^MV@*7-Me_=$D4m9 z@J#WZevDRk(Cu9IFtM?!1=CVDI~x?ip5q-;5xs#DuH!cUsgTPcGekU^;WiO28pIQ& z?PvL&NUQdC=8Y!DGO2DJ@4QL`gGBFsH(omdGgzu)C4eZO@H}M@w#OYZJn_UC&&ORYq9J<4 zk8B@3Y|$U_e78jpVu3UjVlx@#v7Vt_32jMCSaer#G`9vcV>@~~>yg`qPLplzNPE^KGh+XiRJ_8Y`sANQ*_-uAAw z&4?(q!CMjLQONUbeIlGmnw}C-hB7T=rRLNejcZ&Mlw&I$##ONM1u_Q3Hz3`V^_RJ* zr<*0Fi|Gv0k$&rLZTV-LhU?OHpyWwOd$#k@QImCd7h{j1cVuS2)m)4Fr~tJ0jpDK! zH#%jNR)K;J)>ck#7It16y(0F`Y)al|4J~I`r##q+y);b!*p^#`# zcFFL`xG|aa7qBOJo2^3AnJ~5_HtKLWw!}BzU_uY0>=rwI=my&dUlYrnWDw+x*DC3Y zO`0-EevnoPBnH8x__maxaH&@-CdY@GR>h{g7Fj)p+66yHZTea^N$c*Sy4EBb%R*os znr}Qki$JQ!!EzLgu_I{#t-D{zD43q{4|36bHl8IV)ZX;Hgj@GmvkVpxG;Z>HlE{*{ zxqOV746GwiwK^BqOPk%2?9OMnpwAa!$ygW>_BSTf6^Lvd@%LoqSJByRY_7_vs(Ik# za{S0-Ol1z=?K(h)^xy~*{CbfGal(tqb?Xz$Cj0a`;xXw-h0G0yT4weUg)Cn;f_iNt zxoIyY(}Iq4?FH(6=vo@m5%#3l3TLu=HlB}6qx*8AXeNyWMLpNWluI8=@Qar<$N^VsVU;Nz=fy&@i6 z*S@+$FsypxpDO;BcxJ!}ji!hSI%s_~n#qu}7*dLmJ%CN}n(HhzkLLwgw_*BfjqV6r zEzO|HhI&$9Q{f>a<))31J1}85P9``S3k(~1qdMGEWm3w&$!V8>;wJJbWfp#LOsr8< zZhr@EZ1u;%gtC5xS1K#SC?UB-p6T*}j^K?k@@F8N6EoGI&8B-9r8_z$e?Ax;no(Sn zivSe3&ujS^9u3C7QoF2RO*fwJy+^m>Wf;>89@Z-%-{iPYOb*~qlD7ErEaHu+jP{lB zB*}dea|(k^`-j7Y%g!L&kvLk_DqtCrQ_AN{6?J;v63X5Y0ruMNwJ=mPgs{ywdrS!WBs7neuDaW#HJr7{Ho&@d)U4~io~E*bt1ZiZ%#JE zZXA?)P-N&~7x1B_^O(~QUzew^C(DQyG4xW^a(NtG6ytK;jlwtt#@@MJttX}o&NFyy zCC^Fr=Hw4yTql*+mHm$0N|$+Z z*rcML&hayYwAB=O@-S~w=(YBzY=%cON#6KQvu?*;4D?`C7uQcQ_>Xjr(!&+3nx5M9 zyz{)_lC{(cy4FbkYuKT28$9rbYOCi~;!Bl9!=GXgi?`$58C*$oK55LxqFw*3;fJB| zZk?t1zNcz4uWwQ}x?XaU7Bv=s34FQtHAl1@+Op)cwRv|-i|)S6uRl*$Al)*c$Mjml zjTxK0bqAP$tipBKg1q2kfmWPO+Ux^E)~cpGPC+`8W^BbeX2! zx=|Q|a4{yEOv8$Ux!cnS=^TCfZ1pz09aMCeb6YJV{JGV%j=!119uP8mfVE=ey46p_ z%szUiH;xN%uHa;!NuQ)Iw@{YWCQqi=u5kdA48Aa1{c@YtA_E7378o7Z3rwFP39qi30gHAK2$AZ2AdY9#U?t{ zwfXJ2d4dTZ!w*hYlVC+KT}CwPS(@M)&ZgI3kLm@eH(}I>0za#s>bsTk2oEV_BzhI! z>&&m4(dZ|KhZOvUk+5T>k1eZl3I%yIU6z`PaI{PeO+$%b!uV^WYcM_pe&z6hUoyYw z;&azUSX%}`|M!Dq|0y$>{hL?Gf}{PL6v{>sQF!{YMHf$`Yjda|DLXx}?}TgTH??$g z$Sz`z>f=}LHW&)lH@}SYj!XUhK3Q|O>kwLFVO&4{He5J{=bL1-o6{(-q(x`ehx0yV ziJ1&ojkP|?ZrO2+X4-9xlCA^Ur6rS(=7e~;X&-}UWyl*wLhCIViCNMQPQ%5BRJpM!n;I6c5~dw80SVd_j=({a3tg(*n#TeI0s4ePw-v9P-|;1zBvbd8Aq1cs8cHt$@7o* zCeA}oo%R^J&y9>UgnIwi3$XPGRAeoCk`ogAa%E)i`TxC`1>!L`3GK#7g}hvTJGW8| zISOGu{at^8;c~(1J$>}g9jc7=vDA7DXf&;`QK@aGaBgco zzRT=LUYkM`z{~bSdibe5H*hjm9gppJ(m8@F#;UwY?d_~D>*VoMaS_s3wAdzV*yGq3 zS|tJCuL5XIxg!n1_vp>>sR2T;a)r;aKVXw3b?Qon@R>b~>UlNMIDy ztmk+^74Ho5EnuG39fGxR#G2DJhFQqzCaMWG+|~GcpKuuZ<%s``wsOdM=8e(oIt>Hy zQ|iGlW5jrnjb!i+HvcDRJkopHUKWbYTS2U#E`e-Nq@MtxfSltE9jssj-ya@Cu11ypKQrvaaH_;uHV^$v=#+Ap6&i ze-K1~?-a;yT2^~f`z?K3D8q^Tx&vYGCAwNLLW z9EhgJ3qn(L&8M8ll(Sec!1%9-+>kS#@;FaUKt;p6*v%TGZG>bi&THzbEw4+OWT#!y z%Bt3_cUsjpi-I*z#gb*Y2oBpiIIVU`Ps~)>EA6Tksa@~f3fB#hlfxR)rW_=s_qkAh zMTm6~8+Ns|G(WQF=&De&pjIioel<0cr1KLxX#%NnhV~=Y-A3^E2MhJ(g9?KSm37wS zO!GX0b@A*m!M`f%pK+*XBZq!|P?Nqz zd5#9ing$8(UGLo1{xJK;p>?;$Rbo55+Y%Trd0R@J{%Dv*Y*ea+lo;b`1Rwn2L?c((pmSNqriO;B}eaf~~=Y4xs{G#(Xfi>aR6 zHtLhg4O=InV9bk{mX56V1VmND<$MhlSu1S%CvQ{@iyPagT3H);HKZietv4msC1S;u zc@zQMIkQ@<2Pr|^nu_C~_R~;zWghhB*AZ+YqzbX)FMkrw#l@&%=^x#v(w{RSD;rkt z6IBM=Q7QaB?a;*4`|21G&_yE3UU3tcnT_{7sVCx*9l2GE7V@ppb5N2}1W+TWu#QtV z5A@73e#rG~E?eOVMF<^ND3xN4CEDh0bGJ=P(>HCgDMm7^eE?}OXgqz{%*$fX@mD_O zH#(^rj7K)9(=iXNV}m5@zKwfUOEtcug-McBQm-5=n5VAcm_h&`dT`(NI#Qr zy>0R#YaKjL@Vin<84kJVoM85H2=DQmdlZsK5||g#cOKWiZkFf-T@qC^tRII<76|j> zc`_GyALkXx1XUguNjJG_&){~ywcCb zIM@qvBjXKmbG6Xg98F(zAFc$ijcqsCe)u)yW%q%-*8WsRfwKAZQ(*=1d{xH1e5mik zW!0fY{h2CL^D^B%>zmUPYo1!!qX@N2p5@Yzke#rVEE=m0SHs3+Mjuznzy)0K-yUKc z|C|@~8dDNok1{-eR}YL^N24S{qY6#|HEm$%L_8kLjKMrk5$A zXmR{$gYZHZD{~#D`o^lwu{U$+9JL5HuuwO}nfU&c%13rzlDBW4MqRR&fb0QEV+J;? zER-~3+$S%_nBq0toHcY+EMSS*49nc|fUN#_Kce74ff^d|_%T~{HEOOgy&dmZyS@E4 z%4cLNlBL2wGcq9`WKR6{cIy@bM@K5Z?Q{(r6FH7|%E7Kbb|?kchFsKIBv+#<GCl z^J`yQTd|&>WGi)xyB(f0H%pPFp4jb55bRY1R{zL0xgKo?ZL>)~m4k|Lq5F51Yl&f{ z&Vp+NCXQQTcbr?HatsM9Y-QxpW_GaC&DPhD+;jiLP7KjHzl6h>uK}n0+dhXQ+nf2GPirYe z%|Zghk~bJP%L5-odkx44C!>{WKFdkwDjC6k;Ts8!{xS7b-vEC7QH1N`2{ox7lknh1 zN4#i22l0k)2;bnAMF`e$lkyNR0gugVF9NrSjLt16Ds=6%SH#eAuqbmhLFPgt-`06e ziv^YJd!~aaS@SuSPh1C2gS~czD7Dpg+AGamnZ`ISHrJ-?3IaHFa$gpD|BW9TlD#>K zj>u#9b1PcC^nWJ(8B(0PLs+x>MTzIHENhdQnQ!`bA|)0ceUTqSx^=#E1@FGD{^ywX zKW;F4Jm$j1?)TdJ8^#*UJ}BF*kpStY#h`7LQ7PHeCV!r{EVHMlq@LfnEx4)xtK6Av z)Cy&iuy{YUzW{!=2*5m^Sp_azJiuOkm1T)x^V0;LGR)}yiJ8oA>C$w|LHsqe6HsVV zeEt7p>%8OHaND+Dd(j9L}c-n0}k zY9`dE5S!4~{XF;cd*1u~y#HtXbA8V1I?v;K9>;j;H5;E7{qki#=@~}25c=TXg6rjz z{M|Lo>BTp=SrMVnJQ8vbbgDa5r)~JiXtL8_Mot10+ITHlF-3mxa+HKl0x;_0?X)3F z#m{MrzC{p861T7sgj)b8CoVe!d2lud(H-YHjlZWOb6=>+6Wc-YEiGMWKviW&Yx*cGpXAaox9pZ`$Bm}WY0dt6h-=zFIbAiy9+->|S_Nz9;@@UYoPR+hSm9Q3_EZJPY~l2Yz}7{gvlal zF%JeNdV)uU3u?<>XX4BRr$2^?K9KdUGMDyJeN(n{I8rsg>#NZ``}Gr?PM-3jWopg7 zvszunVhMYApB&O`)u&d$XhzR8F>CWh#z)2*Hg>n*2{Wmv6Ij zsnj8DeejbTb0WHFYJu6FdR??!$Q z^6emA?ie;l$qDl`z)sdDT4WPq<}6;j1ORMRkK6y&p;v_ZJh6W@Juy2GElWqx`5u&A zS!OCAz+MqDM+SoQRUZCxq#?!B2UqAhKK!_a@TK)g%o{ebf!nTIuosV0L_es&?ZyNR z3aB-Qm{Ut)1;`}{WfcU8MV5&~T(_ySPEF~&9$LFZsEWNk-lAt->*g#|{u&9#AH2eS z2H$=W#5>|>6u?*RNgEj@fRujk9y6UUWeu$omQ3sjA%x3-Y8)XPdiunenPr)&2FQ9a z5Ej;QE+JGV>&*`e7RnO6rs=m)R&1eDn-heB_aC=aYILZ9#{QNbE7b^a{hf$3E(-DO-I?6QRRRXDy{wETJ>8WGG- zH=ytA1?+b9^5nk~+b*uHS2)ZmeQTB4R0YEd|ewB4**st_>)M47c)d8}n0* zs}*H2cJ}7BN=iM8sp%l2Bw~o7f-3KkU)BSI=(eu)E!AngIU#}nSwg0Uy!}1T6mak$#twhN7?&- zRhUA}&xW4RF5*Pm#;`$EzbiPK2muhsz6f6<_Eef>)&YmS2u>mSwK}M2r}AYkn&L;{ z-Ww6H&H^ggQ`lIdukH6ooP+9Kjp4yx`;qN`j-m1;Q_#=OyWffXV{Mjg;aftkCpWqV z^#fHJ(2jiqfCxlAv;6<9Z()Y7IxXy_K!>VJZxZ1k?D$UO<<2pVo%hmOs1{+PTrV?4 z^mXhxD|03|=0qz1_-mh*tO2;qghV{;wxM<2tPj0d$r4_sEPfK9^*Fro;uGKX z__t}fM!g{iQQg{HK$$>JZj^wu`zWoAY3LyME|iLCMv+B{ zFmrNeG{G62Cul4~fZYl|ZaHVD^pbE-W~EhwOuyitRX1SNuep%LAnu?dz67uE|JK}D zQN5zaw%AJf{oX!5ywA_5&NzP4?Jz`HB$=wamrQ2PHdlXDJ&Qnwy|YaOM1f6SjVvII zOT1f+o;`*n@V#KJLRg((Y^!OO{bOZ1d4Hr(R|VbK_{>!rCW1QjoQP4|tr6S3$%WZt z&E1#ttnHfTCVP_OJEII77ci z>%@kRShl*YQYyaX7LH9o1hwVIDk)XobQxFWsaJpg!jCbW*ca+J=-_F4Q_3MatkvAb zHfI|6$XpK@8wkx-0U#VYnJ;&mZD0IL-DWJ&rh@y1nON! zRm7Bc^|`rvGr(VH4=*{3aG_@n3^XIQ$P5eW7sumDUG|GH%_JN9Z33R*xs1_9o(}GJ zvR!eaCOTPCw!03vkA1x7x(+@02YBzi2ph#qZj_BX-8%1O6|^5T@&9?DHm{DzFWMf> zdAAdK<=gAgtDf#z*%wsP$cye&XaBug1>Fk4wY@sDChU$mt89Ex&zkeSJ=5fwKCO9S zFJYN|tD5J%rcj*~+M*m0EXlRzL}G`W&&s_b{#~CSVQm1pG(oneO2JS!@9E|G1*FE(~<|;S~R#~Sz;nhZtk`Z?q;OfIj+enO_>K*qqqypWl zEa9?2nNe!wBEi%cp+J6OvIj5aGn{&HsB9+3T8g$Y&CG0d#s}`xAdE z7xmg!8ATyPkfDMKsygyqL6x*vQ)@lDu|1W+@B zgN)I|ekEFLJmfoN#JxoYvLh=c2B{ZAJYDH((;hE0U0@1SLA%$%gNwc21*UXDsppZ;~UAm_F#bYI)h?qc}%4oq8i53rX;w zJg8+|9uDWzGS{_0-7Fhn$S0?E)Z)vyi}YY-z9}1>%SSTt7C)yhi6Yts_5GV?$zc+e>#LezD|j7Y|9e) zkm)Gj7Gj7ne6{1jc$qt$!WTB8M!>vq5J^wYc6iZ+?%)lERP;M`emF4MUkqe=T?px6CO0bQtR1v zAMI~swJI)KfI#KO$Ek8l(mHF6=1>91X4UqWnr>siJ9A5)vB7~O6^A`kCp7J~{Lyss z#zgCnb$c-%u4Jvas0Ij-Z_HC{*M(c4UTmm>FDOe)ju+2O}lq{}E{g}Da@DvniQ z7N2(=?{FnHggNX|u%n@MG{WScw)rtbn_>N7;Ayk;wJhCCDV8%_cB9$LuVPaTa#2|M zV-NrmWX%YvjdI!Eebv_xb0bIEr8i6JV*M3PTT1zB>Lst^MXvuodNG?LZ2xfUUclut zUJ?$e`+K(Wu73O<3TA{Zs!fcpWur8IP@U?QsZsF6P25M3BKx&UE?YlQ-~1p`0RNOw z$Y7Tip*Sy42OZ$ULAEZ3>*imv+LL+$$CwTa*|Vw*=yW3vt9u9g-Ayl;QHd%&dCvRi z7B43o&a`dsxM#WdXLc__=}8NQ6?-mL?n&oc-a}?>SX6102uWsfH-+1|3SA&MwRek1 z)ANqC=r*gF<~YTZZukw+Cq?PL!X)2uHj^$d(6Q$akS|gPV`NmaG!pQ$CKDG(^53eW1UE6?7rkdQe3ZULxvstcMsPj;C9lNvMw zV?O@)iFyYrmU?1QsQ1%FHLSNo^eBY-E2bQ3Y5oM5wJd(NDh_2{{6Soz$A+)*?Q`z0KY+u(Q`xWmB8CzR4WW;U!aDn(UvKQlL60^*?G6~J z*nQEQrTpNM-@>sdI8w9n;GPU2IKrbstyV`tmro?e^e`p0BVKJ;7b^#F;fu`Z1ISda z9~O-zp59}mGK?SVNRi4_Qs_!;f1$ZJ*=XJuvQl?)-Q}+8d_n`(v^;j;#R$B7Vm9D8 zwHlv8tlZyM$$Px^JT^5w3tVtYXH7;Hd)d6@TtUbcZH=8ux%-Cg^O#l>6SfsQ650806h6Ms`$6Gcb$l4EYZMDuF>KLdM>L^l$>QM>5AOk?@ek7= zy2gUHp0e#dIw%%nl`;NHt+B#FE;ydSMDYa9qXh*eXLH^Hd1^7137feGu6b zE+{ca+*UzoKjULz`)tIs;=fus&6`4>-60J(&bD|srP)kp)(>$KzV@=ybaq>>yooirmZPW6C4U>FbJ94q;+*JOT z%gGPqP>92d;gUP5U1J9Wc*0lJVo7JwZiRd%G|0iUbUY`SKI6TFPH1W=xO{KcM07>T;P*CKxo`xeuG z$7U_$uNZKXSJ&-0Ee(|0uMHDtI0x}Gm)LS1@M|e9)HI~f^-xY>|J6;C)#Ia|N$K>u z;hxr8Ru}3$a`~y3K}>sBU@YwW*_WB68j>~Z{$DM~C$+VO^o)MABH$tiT((*jqDJ(^ zon1{ZXS%mNy3g$uymD>+%|85XtQ)!itgQEJ4QOK2W1_W&#w9t`w*K9};8fe)NmR~i ziXyZtBG0=U5H5?KBCL29qEjgTo+KS--L%0sGFN)o{cn?m2ky2mIy_kj=n0*cu9m{4 z$S(xBC~jAG4ZbKVvN}?^9C7VW>oDuiNX>oyTiZagkbv0e9xEqf2F6F>ZmtC3SzY2O z>>_l&OSxql53={fIV)2MV5OZkPSa0}vz<nq*X`-6%)zWXF0~!KY zZJ&@QF{6#|-g1VJh=v}DG_t{2MB{0C7RmKiG_D|L_(P1Sdxk?bd<4qO*n*hBazfHs z`@52InAYEW)DHpUgj8LSO-~p!c{HD6>#Qa#XhR=r55G`8yOB60e$4ZDqpC1u_g1b*{xDdh?e->^;H9OkUKmtJdB2{h zeZrveJ16Y4wT&8fRVmr~2{yr>Y-2_s8OF8nYoo;A5l#$0Z`uS?rW1)} z2JU^I_?i_Oo`t2dmGINoV;j>7U%CPbV){pJ3+{!=hxflzb?RI=q0lA_ZdEv*jZj!o zwVvEF7XwM)g|%ve&2IQ9yZXnP`-o0qu!g^AvyBS%gw)xSTZxrx3VxexiUg`lGMBc^ zbQ?DuxXl{%)z)M%wnN$hB5S;6$N;%iAqW)f$%*GOD?l#ox?rtC1FJk zXrC72Ny3rz``gx!P8FTl0Rx!f_?j(;LW`cXro`}cGIu#Jtn1J9)v(@Y3`uYQ1doV5 z0Tf>A6Tq+ig=M!^XMQ-7FB+69T2cQq>EULF3jnPjbDukI%0hjb(S1B!jO#9{%4>0- z40aHS8LU&~bNihPxq#{m3}JJ+wGDPchTm%W8{_f%ANq93H~JfD{g<^@fuG5Y%Sz^u z7i-{UM9Np1F2Dr(Nx}cH03r-O;%5H2?5`^B(hp$uGu$}zdrpcdc&hll-pq^nBb@ly z-*uhyz2u{|)}vV@&tAcLmIIM6jmzh7u>8a4rLiMmh@^i0IL(&YwFF3@{{dIlP7)wz zM)W^Me((TDX2zhg0DQ^(l3JHk zw!2u*-RcjbntUVfosL-TbsB`=!%Kls=HKNKe`K4>YFSx0np2aC7VP*lN_e5OoP=^! zlu}31uomV0KRZ_Nq(9{apLGxNgQM7aoL)WF(gO1BpWVmI7(4&~XVZ(dZeMazIdjDi zg%=^a&zAU{oJu^oZy9x*HBK`Rg6s${cS`s_D!&(yrEw{+Zn)|D`^#^OLs6ihhMcDv z|3q%CpOyq&^38O5eZS|c9WJ(OOf}ZVag6cDv%f7T?JjaO6iZNJEJS`w8VDjI4O#U% zS6XQI2MUD9OB#zy9=VxYJy|ak4qC5DZ2oikjbejNjZ}q{x9xddT+yxodFx&mO)2b^ zF>re%>h$tKE65{UvNWnZFmV&dvM>iOD5zKHe<~?zesmn}(I1c2HG|n4pSF8~5v;3!Bc3s&) zxvGIKVM5VKq$9((re0^cPdfXhsdc&wpmOXVa6MXj1k%0dw4qoP zX!HV=Gj%+V9^X+ET&-8EG`nj6?uZL3zh84jh$;_&H<$BHr9nsT6%3lvcSC22S*kHb zmJb2^sA&8=gFrBAdirz{qn8QI$FHi6V#YG?Udg~CE|`Z`MF^qkTfgRSf1HXmB@hrX zOhR`cCH2}Hd-%@TclEW!xCApFSAH%arMma#r>|~wr?zt9(79F-?VY#m@vS;-&IQ|* zW|d#b1h;Wphr3zxzUr7VwbR@J3Y}|#mvB zBz+v-Q0l|cZN9cRTYE{I8=G|%_zR+1D|)N-lwgedoZ*#nLY+@Dj9m=wXAp*3d)D%L zr^A;k99-_Yon|Q;{bg8r(RClCxSH`ayyX+y%UqZwGNvpD{LaJwmwFL8F5?d29vH)Q zH_&H9Ec7gfKOCV_E&I26t>{WZliP{stuwT*@?I4&h)IRrP=y)=SMNQO3*5SS1ejb! zF9xO@+t@HjhSUzesgHJP-fQD53&c1Clkxb+DPZWR)055IeWi~mvjxf!C=?htm{ZhA|N&0Oxn zuPhh3K=aC9UjL)6{)?@G)Kc5}Py6GP8tu%HvA62G>S&|eQEFE}i@V~1Vqex=#C{@S zM#{mI2K4NvFGV`p6LP|h8FS;iff|Cb?~ybQ{U^)PdJ(~~^HU$94MqkvL`l`fzS@(Y zrtWHgXAR?pW%rQRg)HPk{arih-j%`s(|EQ*dhy~;-i z2811YR|NaV?{#*ERy8T9GTP+pQA1X^{&a{Tvuh}vM$3lFMiMsN1y;kV{i1KiSKQ%N z0{CG|T9SFWDT6BoNqNl6sj5xp0H{5wSh;!TK58!wiT$ebNJY2MLeBL*kl3ai&xbB~ zWspqTk}B%y1Mm0z&X|X>H8zZov;@%0o+^AZ%ohvbn4YiLmR@jX$7g?TG2(pb^(P#_ zIXsL3MD7)91X-4ctaVXC_ERE{6;-K1oyD+9bj(Xt#d!*XpbRtzK+AsZ8ztG5oiSyR ztP!_3EV=!limsvW70GqaI1O*o{=K1B{LK-{frsHf7D``&eNyx<8JmqdlB_OO%(W5;Q7F57Du zOj6gHk@>_#?_Z*`xuVyi=iqeP=_2m;x-t^=7qx_{#asA!i%OkNaZkNi%^VAHP;}f> zjWBEZ)AdgehACifS{dcd*7s^hCvo2|RgQqWPseC;pEn=Pf`|4CkI{tQiADR-p#9IT zztcM89%hU&x%7{84+5miPo7qY2p=NYx0W-^m?PHNm#(xZQI!>yz4F}A^?1|G>{YwN z4dpEUUKYPWR@1L$FCG;>dZu+C5YC?I>dNcso-KZrdX;N;wZ|&J1RQ4(SSPs#GSQ|2jf3oz3bSP6@O{8a>^%NRsLS~u}u>R(Exv49aZ2_ z_5@Q;yx;QUz27UB!*<=DS0H;Ii)Mu61tfuvtYvi{?dvg8Vw-y2)TZ5&T2G*Ip8XL! zz8?z{^e%uRBF-6P1FV~7gXw6&)~JzW1do9wljZ$J4^%9G_c_13RrY<^ zz0qw>7!PaQZZ@))?BoSkwMjrl{FWFC;#*JX9frHSwwGcWr6hZt#1)W_hp9%g=eJ*< zE|Z-douJ#2+5_uF@vc`BI9%Y`J(S5L;0HVJ>zKjw(*(t3FjU76S6BU|&_{08FNpGC zbypdd|Ndz`tuxWa2D+}M{CIGeYVBT=A}=J_9ZM`v4@on)ye59!`}#VDb_=|g)Q*}Y#r0R0otU-|+^GV6yU zs`6PEmBg%Uc=JT8&x6PV%$+_U!5pztKVe1BAzB!1w(^L!5&N){!U3e`#jskX(iSL~ zpK1?ARjr+po7#q}?}o#MWj%g=BD62;PC?g{{#LCtG%Hg%>_*o<*FF|<&}-h-{%h9D z_@^H^;+p2k^Y7DIZNgIt`xgLMqV>f2>vEnNaS7 zdsij0J3^(SrK#*GQwBXhzFXue{SQPgQX}uZx)^IkH9k)9hk4=DBqxJaZ;oh6KbXjCFOA1xIjS3Khy}sye)K#0R!JsYhygFlcWY!l)33>DN(N%{hIcp z1vIDJ6-lV|jlyUZ*UiNEXqR?g(e^Yi0=VTnIhH?kW%8aHeq zcQ|$L<8Ar?aw~CtrWIm$X?&k>0z7Ol@C+V6F(4m zu?1_pK}LKsJrX_p>euuLgYs!nvXtkn!o*e3k0l=TI4K)t$@)5WM3cPbm^pIhY-)*h*xSx(iXVe)m4$AI9Hskx za?_6$Vq`93byK*;*Q*p{-Q9EcnabcShfv`eQmQQ}6vv^HkZfi*-Wc@woN%Y6BFF*O zAHEWvokSQ^lrGQBH-uu?uE(d(6im-=i6d{v$E);;%lm!Py?oQ`!#+J6A7r{UZFo6|hcCS4oylz=Lyx_Dbt z;v0AlR>W#UVwG6IaOVaH&Jg^(=voplmK_dp3QSn_+JIUrNCa0StI^t+Zh5RSDI_?f z;8kmEs57*weCMO*s)fohTH(1SoAwvKzT$qe(=4>XVmFvYC#b7Dp?`-_ZM>8?5wvA{ zhq~=sD0MB7`$`VxWL99AXEqohag;EAZE>H;MfGqwjnN_Pc!~T(wgSg>S!Jsgc;~}$ zSCTHx)K#{i&j@TX=&7<$yPVhR>crt@@2Cjwju~WKY)aj!2v%+%rPxq5K939Rb9c&_ zmf=#PtE4$WvaLD3)eI-kCB{;VqqOR~XLKI-s%}l6gI!y8#B{gV7@8=G_Rsn|ZaI9> zcC-_ZWc4~s-Sj3(`iX=KOSyc2jV$&CjBJ0?-@z$;TMY}Il(?jxTI*IgWhvM+OR?#m zt(n4(sdiDGq7_HG+?(EXOP*3}-Ddprr`_yJdMdutTJg<^FAVd_dqre>%>|apIKYhi zwT%fjz({)y_d_=~yruAJ__z5Ze@%8QUs@=h6oD6wmPMLj~k@d67gji=aEh#YX1Z(nSB6m^37{B@sBc9bSuV6#Inw65kyg`^O}x8 zG85aVT~wK)&QTh={NR(p>lLWy~Fb$++5(%w#ePKkUGBP$*M)uOrdu*1B2Bw$?82>06dpAAGywTC3h`B7mLg zXpj)$p4hmFoS4P;o5)20Qzy+6GFCx>Fszkw{?X-Qz4#wG$d27@&kb#Q?!hK2q}jx zaN2D=?|Ky>cnM3qol-q8yNrbGy8F584A<2s&x1JHt(my*O|d{mZnh}HGK_cSn^<7A zG?WORpnWUPU~l`rjJC~lQnzYB<@%_#^H`Gl@lLXj^DPqF-zm?D!zg5G_P0Ao#_|JP zD17%vV2t9LREvMU+IAE#9reyrg~0%B;ScaE=x!D#H_TIk6MhJ0?F-CKR$b&>i+8wk zsKac3E?ddz2?Q(x?QIpdjtKK%fntlqosT$#I}dv1?_b<4i?(*y@e%J&UqJ210rX1V zn%(Z3r^Ng-?HZwv60d41<_Vnl#eHckG_&77o3?P`eA3#aV=D;A$ozHsp!>6PH9E!a zBVf;qwwUJz@Bwol%VR7*4V4IDm&P0Mr8dOdUR|=36&c(fWKtlt@H&Ut4lxivi4}9! zXwGS}A{qr!_eA62eBXQwYK^hnrkTqJf^Fzlbv7hry+}mj!n>Uh z%e&0djXy5M*@>1wRo+@ouU1DlnW2Yo>;;-X8*e0^k#(SUdnV+B>_S(mgT%dQX-+yOT`b<4cNOshxrWD_kS5LM5 z2}?X5d8L|UWpHQebs+XVQ>Rk&t)K+FO7HE!^t$*DBex(UG~DiYc9wyJH|G@)dL{Tr z0%?hgDB)|4#2J3>(p(BK;>5#W|9m4Y$~IGp0NX8skt=}$mk%?8;HEoSgO=7 z$A4A zL4V*mKb)?R1+ZI~+P^UV=SDvhBQ@llvT!e*nf&Ke{#WI!?qI?=!EX(U+n<(0|M;s( zUNMNpA?)NVY@%^Iny-au-iW+Sw~3Xi(tRKd)JTW-hiM36?~qV-P}R~gC(&s=0Di7d z)zTWD0^`1VxR9&%yJ+3dxY};p7T~;MC#h8?!GbYvFY_UEl*DDY*?fQOiR`1zbt zBp%KKg_l!IwQsBW8c-jk{Xh)Q3^|8y`A2qX#=1zR*B>Tye&jFLELo$0Ity?sAQ^ z{#=hw`fYTDYMe^spQ@?n$t|mE)fH7Dusog zXD+>5j*K?7wYS=<@*TjdfuMo3iOb5=kYD|s-*O!%KEwQ8gnN?mPt@xKy~s>_JJ~m- zWhS-7Vst3zFY0=R-G!s4e)wn4{sa^_Rz=604sHchFkbEif}~Fx<=%FxH_a|R7~X$j zQ3u@H4`JA6G+C7`orjpJM|)P8E%yOd1yx_QsC~Bd{7O+%++LKZMth zmREI6mN<7DZz!l{(^wS{bzDu+ey3%-7JNE-EG0Fjdhm_@=+;6GS79SW-KyEmHBT8W zt}~sJ1aA1h8lznVwQb18M_grqE|Kjmk#c&URtU2cLfDpSH|f z8H@ou`|XNkL<#1>-NrkK!TWxdO+tN^-|bY??)7#9PW5^Qq9iS3Q&Na3uY7`kli3s0 z!}1)QZ;?tV@+-y9+D`6B=j^UA&hGbHQR9>J{bk_Z*lida+%d(mQw008D*Ile94{yH zN!<*%xA;!ms;p=Q^6KX{n#b)KI)phtWekh>ve{=getV+=H8}mWWudYlGPYy_yT$?J zSmCw0b*IN}E$#0ZzC2;5rnOH2%MTlA$KAVHpn`xTJr@-kvnYl%DgCcZpzTS72b;GwLkni#IHg{H}jm% z>eX1m^NB#)*0zRo1{ns-lP@FYL?2`(6*_bD!W`{^XW%?A%8e z`0ZS+H@O$?Ar|}c2f5$eg_z`hc60xC%{+LxRG(8|Rh55H2e%K|eBF{A5i!~axKW~p zbjC#E5(jaC_9hSMxvUs+8;oz>ub#X0{N#Vd*nf{cY{n-g8aVSKk~^qKMi0eq_nU#2KsYx1{- z62{8X$3z2kk-HQuz$z#ERR zZItdlhQ+1++Z04$E0X3J(a=4Ng&xWP_p`%dRt7M#Bu4^XArE+{JZyB7udb8 z_qvnmS*-scWjj1R8G)9eHn*~h8aof)4eL0rWWDtKGs{+;_gdr5k@eQ>%M9LTZ%EbF zmq%BwmLtSjYIRo&wx-)7OSyxO~GkO-B4Q}x^&n^18KRg4 z8|AH0CE<8)1h}`W2;}rFgW>t#_r61r-I`~fR=g|NyZ`KC1y^RE^vC(cclz@pi+rE~ zT6?JBX?7P4^nvu3lk}6}_8vIoMnvKt8uJ4?apypbAMqE;-C~4WHFfQFBO(Cyzy#JX zqa=Npn=J$VXPG~({TeybC*0tM2QPNWNKrZH`*-yQHosLCQ0*?AMLg|sG(-3 z?X;(=uuf|cT^t7>7wnlRN{%=T6Ro5$|GqHDBDWj-142y8Wd9Jsi3XU7(RR|me zVM2;9-JF(idES4?{?COFKmLaWxa!om_;$-WtIIr_Lr>@ZRL`n!t9UqJ2IY{0{2V+s zuPc(0UMyA?T3_P4RWa|puL!LF;9C!9$Qu?ywxGmE-eU3&5&rCPhxlpy`vha%`-1X6 z$U2z@?2VsPiQzixKPD{zb(^g7kOJ#W5yk*skv8T=qqr82t{5JzTA{qSli{uVOiQ}5 zl&!|yr?MCFeKr5@Fuu_`mYHG6mL_=Rc?>88E7t>XrCqVZu`?xk?gJ&^~_3X_b_ z$O(&i^ZQ?Hd#FECT~29dE~9o@ov5N`U__5lICI=sNVILVigB#}k#V*1^^8Ipuj`Vg62| z^XpkG-}Q83toE~Y+3wg_7XT^9~^COKf?)7ojlVF%*e<@_{>yXJ( zdD2YelKWJwZx9L;k540|ea@Lc1e^@f#dbYu6SWfMr&VNJY?yKh0!I6(_mos+>ZzA&DPi|gUn<&ClwvD-6 zgh0^zE6Y778Vow;o1FaZc$U+I;3zez(w61d;=~-4j zqK`+Fi92C{hw{qqe;tv+!K z`ELmkm_eK(%(ToL%#ZD-slln77R0Ue%%RX^8y>N$9J00gXaY1CQSk8Zu1jju)Ja{! z>xM&pM?r>BOo7UF8sldfoNU$TFqJvEGT|0#J&Fs@e)OghZDhhAYRom>p4Do`wIim& z`umelrIf# zo543tIw}EUK$hO#2XyZ_&T_#!ynd*W$mdW4AdYh08qFxnBXjYse=l8o^9D2#O9#7Q zG^Lqv6KBHkbk8POq$u5Cs3kt_#0Svb;{SxY#kQxPW4Vt34EISX`b`#5e3da_aJerS;P!tP1|t9SZky$ZQ!-ppH* zix)WQBDLSn{P5=b*6^D_4;b`U$glE*9WgB9ZCuX2K!lrqLN|$bi-oMU^QNbJXgS&U)R8*gMeen9vYWdrQ+8|HnV}WmP9CE@;eNE`Ra<;<*@ zO%cH)xS(OgLdAbOK0D1$EP;QK$q7*>F_#*oeP4i!vG9iAZ34GC0;0(!AVm|(l+&+b z7Qj@}&3X9jxR!6MT=#I7qXGem_{Rlw)9r?o4O3gZ=db=~Sy*WgZ5jCr z53CE8sWQQ+byn{JK>XXv{idsT!v*;|SriS)i&r=^*sKt@4;2{+1&^r!X0SR1T}YX3 zI-c4_@U~O@#6rJI@r``a!}7sXC&qJ=$k*8e82u7=TcdNJQhM28>_HlzlxHbcP6*+* zA2-}6?F1mqrd_Sg{sr;&JH>w9o9X5!s;6*^6K#{17sVv<;32ox%5zNwVfJ{E2&`X^ z7i6rSbyjDWo7b0#pPN_n`&7bXqdiql&fg;OuHg@;;U!a4w$$*Yr`q6OYmt`_*tbzP zN>a6fFuZ`6z7tb1hhpfYN=@+cOZft(kzT!PG&$&L?Cg;b(OnE^Q}>WWh_9 z%jE$M&&^NIwEKG)@>xL+!w&66y78YHesoJ-@VCTYROq;ji0fRHx$R1o2s9jj)4OoW zOb(4MP|Z+5KH257s-#CkDo0E~wKLYyACh(U8AQ0FLD~#E zpaO{U8AFVK(!Sn=_XzquPuTA^+#s)=Ln*$_o&8rs**_f0zv`#M!zJ#;lZU}0k5G5q z3;ewlPfPxq#WCJ`y5A5Yw^;s^A(v&ZU8g|kp??rRqglTVwIY@Vsw#~>u~oK04f|y; z6PVs2a6Qf4x59OTj$(g2iF$OUsk3o!7omvk>veN3bY~g*{We&J-kt9$0R%l=%inWgLhy=^ zB9*WG+Wj?nkuhI=G)|hhXQK_$!%ghmfIcfD44mo>q<3I287ZoWh9?3!Q;5qZE9)%T)#o63Fql zpEwNbcf~2ru9xk;cHfuAbf&Ao^Z{7^qZM)DC|dD*&lnGAyscn_SYuXB;-E~ijl1iU zIkDbHHeRquE_~S=}uSsp>3>rkNV3L5W8d>iGmHHktf53q@=7RB3IF`Zn7O4 zmZVI0ZNW_)ULymO^ljN@_<`mL&W!v#KtuLh2z_&fGwbV4_9mRsar0{F>ps4k@G~hUJQf;PcN1n#O48A~FPHTAfGJWj_(hGD=|CIgi!Pi1F8`27N9sI6yv*!_L4Mbv@ zN2>?LRhKotxhf;<*e98W`mc;qQ};S&-4KR+m!0b;vBAD9^DdVMea16Uf)9mRld@m@MarYbKx(eCiI{7JX-9T-dv{h;VKhMJdA169K~FpsNu!bB{ugUDc#C{F(~Rg@@BpgU>m-5}}dL7PV(r9B=jJ>%^% zc1&ADoR4s@FuD&7IbA+flRDpS*55F$nJ)Z~6Bx!Bl_>f3QvqyH6gM1LXkmX|&WgO7 z^mzSD?O}ycKk%4UDPgkb15{iw1NIP7ko~TwAy$=eO%cv1kNkS}7N%JsDm=6`)t$W} zdYT3QjiUFA)(4MS1{fA)$u)an5(%=RLpo|E#@M_PW>X>zNpqdEQDWhCuh*#QH25H`RPTBZaoOq3wuDY=?5-&I!gq%5MGwDNBA4P?LAcVvAs zwoASHT1<$Kz-F6lp<+?B`~Jzw4(-J6?K2HXmD5;aq_&`ZmtnGqbt%ISvc7^`W7%98 zxgWy-cHQIMp^R_BsyV{{`R-mRE&*xz5N@% z_Q>K3&ER9pmAYLNo7N!Dmm~G4!Ti>5DR-LUk1-aY{MgDhjj3$h_eYf+v0oB}a5-~3 zng!qQzV{FL;%fd?!pBd6l4HOXaCu`bEuF-XY9u?4eqpBFo2s`+SDM@k5kd@YSY~-_ zYh8`D-*>}VZ_}>_@C4tzUW;vKI{hA)&W(4xf=!k#f5=Z2S|K{E!wN5|8UFK>vjuwp z^+)H>9WQ2BD&#{*bQZd-I^4L?`;qWo~T9~LI-;}y6F zx%ysk6_atce@$_vF!51*2h~&FhWMY4_8BQrHGC}*pJBz&Gj%g)&NW+_jTI7TwiEZ~ z!p?go-5tdI2-h|K{5D}mlkk22^pjBq6(_n>T?a3_)Mrj)7r*aT#v3N@)|PDfm-V^~ z8-F+X$Bg#3AOnLsjbJ1vowBY2yXuEqlH|W{t5X1ZqJXKyk}z!ZbUmK$@|4;HY?Xd# zVO-Tp=s?w<%$``GlwALuFSwqh;ADjUg9dm^T*yr%wJ~oYdUoXK2*yJ3P3{Y?{Fpm- zecf<`u;BR??;8tCiU`y7+AloHTE1GL(Zz;WOTQqp^w@LlBU>txZ2+vw1q1S@c|mng zfb+DOPzwY%pb@I4djEv`k`_y@0A`DzdzScx`-ci~yOWRbeNMf!q%sa*DBzu@36diM zjZOXKm-Rk5m-2S3vbx8VpzT2O=kQ`@wg(^P<-O`bZbv;;-fGYDWV!s(xJUs}nq3u6 z>v0w)%A{s%$}#kdoW@C$8>TaZ0ZEgxz7S9LH~);zVpmnndd8TSB8Z>-SGJZ4*#2T* zRmhoa@VjK%RXX_;zquu&_L9B-&J$ldVX_yL@`rJ(kN_8%ax*xGA5^bp_HX`|jCE@Ql%LIQw%?wosRM#(8ksfpBf``~O8Uf1Fc;eW69i6Ss@-;q0FrifTo zCPjYSSW)z?GK`$8E2Wf|dZJ35>M8@miofH~u+iX|e5%jhxVdrpE&9{?@K^w{E}ESZ zBnp0Nw-|9-0r1ODoV(nXL`{{`x1WD!X=7vOaoAqulZ(@5dm7FuN{kNkWc;8JBQOHD zf9H#o#kThsVyJz$Xn);%{-p0`y+iv!r}>oF^u@m^CO^-geaXrqHemS~Dq7{xsOWIB zQO)u>)0?H3U?X%l==5shC$f?<5m|3)%^6QC^I{PB%~&WcX%sz`jsrpU1nj6q<_7@cT6CbBQ!v6rPO{H zai$; zS8tu&v6*IckK zB#^Lo@s^~KeOKnE&S4q($blaEL-B11sN^6o9~Xbf3qqAyd)2ALDCKH_me_Lv3xh{% zKC?C{-UmtdXL-k@*&kHbCL9s`N9hfRA2NgZ!epHB0!-B1^JUV)IkqqY^2vbb#i(a} zdbS^Ca$POi?uDq|(1yWT8AwjT?MbLyu5+t%VcJ1gCdU#nTI-MpJ0Uv1Em5_zNnx&7 z{L9-2EENhbyy%nPU@OZnC+*KYjc|7J!o%A!Px0?%yB2HH`_@-{z0!*h+}pSCpuvt- z?sau}@j7ov6|oK+)@nKl%5~M>GhB3?93txrDwN%h)EPpwqWaudQ{a+0;*!Q7>mPzU zC!mdQii`TE(6hay}oSHQ~%p2VAG>!^LOYgrtv1>F}qr? zaL}VmdzcV*HX2HU%$2Yo!u5xJyV&n%$_cyd3&dp6lNxnr-Xel0-uJ&B)nWKeb&q}x z4b1y`kcI*a6SMi1a%BRn3spjA3@cWcy6@M^vt$?jqMHfuTBS>B)~?=< zA|!EmZ{2M0jY{eUqmbT31nUzcSS{?P2#F;IsR1?V_j+wk!UYzUPlNfHOeEIur})_L z*M971tp1qx{6&pM)YM%MmZRM$btu;r0Q>AMeIM!{3_~z9bTq7%Ye1J!WL8`LcuaB^G!+A74J)+)}Pc;1b^ z!!Oy7*QvXbf5(=SkP!bUXRjx`Mmv!`$rpZY!u&xAFi|%N+>)$P;7h;k8%~*VoG14q zKK8Rz2kqvc{3vddFX~bK=#Ojx95ANT2}Yju&jWa7RH*0f|H6p{v>bN%w{q{Vl^4te zk@mRD?3FRSUC~DEO&B_^LKZl%P3^*=z@6P(qt8iUe9L3a9v?X%8gws#V@KMwue*98 zD2P6JG8apS(A0FXPOr+t;)4vlyfEY9rsK&GmWM8#f0_xQEmao}9gP@7iF6k04LnMuhiBy7#y=VRiNxR}DtWVifZ6wi=@ zcD#g0=4TZe7Qm_zdyw4rZB376Pd z8QktQywyVA&27h2?s=h@e<{Q_IsT&ewD$;4ELT_y7_v~3!P_$r5B4^<+-e#AnmD}S zqk^JeuGLBuyP6io!G;V%`K!~&ese!&QXkudyZ85n;PpZt)LXo&cuCdYKhhRx)6ti*h18_NS_P~*t3%QD8=JtrMssk z;=r0dOlZ8bFN*Atn+)H4?z#Z?wx$NDMQ=OW2C-)edfM^V7W-3s_^bxOpcXSNzNd8Z((*RHMYA8?1Ju%15&i(862AlYOfzZwlOpGjr{cMQO+QQC;&?%j)18DPfl#HO_ zX&@Sfz*2{9vCTW1jTl$*wLChT4=}O*>UA(|JPPwC<-=>po+XP{RqT*Ku>YJGgu1*4 z5V@?h)P6|TXWdqhtgc!MX*KuJW%zruzgg6J$6B%_cv+|titr7chg~-(UPlzni-+Hpi0ON|Tp=ADp!VA7 z3HKNNm51IskD@j$xZAgqb2u}{WmM%-^3}TM#^b&Cn+EL-1SCxb5*nvj74(emv9cfv6Dotj}A4Gf#WXb<-wa_Ds zZSQGC@H+4#Xe$QZGCzndR^6#m_YyUsYstMsNxII!=fy+B#r|CNet2R?I8 z=}3Gw=cWN=De)telia^@coCe9&1Fe=!boS+>flJ;Ak3aews^bU`PBQ&njuJpGVQzn z2kY86oqDP0_??;$kFkRRp2B*}Dew)Z1rpS$s10|;mZ*>K58dDt)6|b9@Ye|Vb ztPyr?eQYrjTjd-K&C?f6)2}~w*Ft$%p?WSveP`B-O+(Zztaeqgu%@FsCS2U zTb1pv$Nby%udX<*KC|LdV2{Yy&x|p(Sv@Wme8zNS-&)i~xs&zdgoIY(qmlV`FK}YD zNdY&8Eg2wPdH>P9cxEFvV|zXZ?;J>h;FWKjV(%gT>wGHLNqWy;oh;Gr;MyX?hec_E zkN)C0j^hM+zm%!cdkio%0AnU})}xNlXQJ7|^G2XN7CUkeG`~zb>b3sM($R{SyeKaA zS=(UpcgV&wu4CXnkXVo61$8=Mr2zm?IulNjVloFcDo9(s)*tINs+IYye>Wc4P)N^B zf8oFiW4PgkVv{UDDNFbB^T|$z>n(il1$<=ju3ZF>*4}g4p{>q0_ilkL+a^=QpOP&O zXxsbv1tu+?TgdyE`L6id^JL@X1H-+)&-1{1;|4LHcReq4&}t*SFORz-?)8F)7u4~ zj&g@S{{ciPN?f}g$;-i7!5)H2Ck6h<%l)WWi%bqjUMc&LQT=tKBS`9G^^T7iNEnuJ zXRyEiCRJEWX6!*u>r7BF?Ec3*{o}wexBJg=mPWsh+Xpuqw=Es$IV9N$fM7kU7%6WK zU5*Z(9pBoCg7+J&Y%Ui^CVd`KIsW0-fHgRihmR4w;{24~`k?)<&VzN5|KkPF=?Lyt zSfw3dvPP9T1ZR;yNnt$_?nqnQRtt?y*bkZq&kDc{1V-E14^9&=G6%HJ1r(ygDygOn z15U=~)}kr7`7r)9E3m=?(6H9FQyH)glj#{;-imF*hK9FeU@#9F5HExbOsa@-87 zbK3m*86#ya3%BqYkH$z{yS|^Xz361vxww=J22P^Lms(wuy6-ScudH^ewzs!7&hgLwgfrU9SscMTz)~Z^yNTm89 zFla`l_@7V--$Bec9~VQ_jz2I%-%oXx?r+|mFQD2K?~Q0=TR-5RubG$MNC~cmw(f-|xpVog< z+h5FrPkUm-%%GAvXW^eoh(mJ84ia8S`-N`(5r?@&zhm$3LXA-VnpvzV?=SZ2|7YK~ zTc|@S24M)~?tIADt#t}G`wq?y4gW`Deq&sY@dfS0?4(T4%jWI_sN|! zVIihBcV(EVbLOS3{`i}cPe!27wKNQUKfAG?{N^XeoHso#!H+yDvg%2X*(e^3rIW=k zLv{4r#FPeCkD%6zMOllD8 zX7s&Z)USvsuz3DCd#Yi?+AkkcT(hjvRk5O+&`xl+golw*hJE)`OzeHmxbK*rJ}34y z9v^x+hE@zvaDV;ukCw$3C8c2sWQm=Lw|jg9@)+dodpCcCKB%56Q`Wpt(61>^kGG{uYB&MmOX!qCcv z8hH@>(ycJZ*-#)RcAjJGO#J0>k7m_!dTh6b2Zd1U9o97ganAeogTszh4ZJX15TPhA zDuK1@U@vEJpA4R8p%SXjio9N9T~|rwz8+_Bfm=uFf5=|x zs5j=Eou;Do&U(~M_|)i4Nz$6ux}MUyZt`xZ+=I{<>%f@H*&3B$)*YqF8|!xc;0Quz zGY++UJ&j7(AiP;|sHzGR?*j|&5UbFq`uj-+C2$xS9@=JqN_y-l>bAGmy^i{(Vz>j4@hv2` z_Jsvv`0?Hck6?}oa(KBB_rC4+WWhxY+aKqQ{kFowLZ7WSB{@n#8;B{^emLmD-+wy7 zI+GF${~~PG)N)~M&SrA_@yGU=c!hM#|3EAH7VT+DY?xsaOY`Wp_m}^|;;!mYy{o`J z=jk^)EB=MLd?}k_Nc62+?rQ&@kx^;qrYS)_2sUN~nb)GHMc_!ub3D3|;X_fKVMx(r#nTY#8E z^=#nnG|vGoV%Bty2T-pYsBJlllWkOEHZ9@Uo$-E=8KHc9{+xQY@l5kDni=dw7wV8z zudwxM5&61Vggkw$>ha;s2ln5f5nWrijSs z9>}?owYMw45=i?#EU6dd>qIH&F?J;qV`SEu#`d3B`JJ=cR$H$6Bu00{eLi%*eG6CU zOQwT#y^C3j1M|O*Vo|xV)4fSfogg>M?HuX8|jHV**fVf23px~6y_rpMXz4p9y!H_fHs0Qvi+|Kh@ndVt2#Htq?4l;_DqQCW;DL= z`6-7rJqY{LdHc>VL)cZDq@Sk$x91&K)-@0QZ-u=Qh)BnOXnn-lAKiH-={EJ>q4jub#XoX@9pBvdGKau_{VoN2uNr7pS}nd_GnU3=Rm%iz2ET{Vj)JIbrPp?=}u3La4P^b zJ6G@}XF~>ck1|w6R7=d6qLS=D-k*l1Ry=DPwA{pCSwd91cF!d$EsR9_q*u8l)3r`N zDX8ofTkb+x414JyKi0UV*$ImIYeIe8-xyMUz}m`a2N!=)_Y2pl%g@AKpif=ZSE{&j z;XZ@bTi>dF@t@Lhl!$A;*t0qrH0)gteA^1cz}88RP5(B>|C*vR%;U$&AeNnz-QEH% z(#eK;TzGjQ0@NvJ4nH4?8#?t>=yyvwcOxn8Uulsz-i{3a_sL?0DmwkZ0m}voc|s!0 z7P$BwA_#f_tJS$8_Favrl{-QR(rx+B&TANHO;d*%!R7744xTlJ^)C9@lsp z6Z}&acRT1Uq;9Bkx!WoDgT!AZrQ7^}ljh0&yS|x?yPM4S(CA%|iv{1c&eK+TtP$kn3^C?3b|9ABM^4x&cQjf$pX`p8w+)dDc{*e-3RfEaR|gD)Zd04>Xm*%tZU2_XbFKq<=92JS9GC^7$vu*2Xu0 zAJG|cx~DlK8Ijr`<4^ozJhqBvKXs`sNjSh4!+oUBpcml7%dK(RJD8Vq?;n5SmdHl# zy}UF}solVZnbwjEl-`R{>ZW~@)G+@hn6@eqNKNsEcE+?zAcYdx@Vt%*=pj=c z=BhLItbt3p-g@n6+N(b#h^Zpd^v1nR_WR)N7Td4$<7vZ42-G~QBDKyCS^pGl_^#_K z{qM~lXL4)f_?{6dsuA8_pYHWN=TS#GE=P$E7r5%kuV*TgNhAg|ntZvpB7mwD8`Mpp zBR7y^?e7n=fs3YOV?zXrILOsMJ`d>> zy`L;zlwSE-X|o0Rz{)^dEOwMQ{~0W=Bsf;pqD7|F=z zX-^94H&;GI09Gu+y!gtvG_}$`!YDG9(qv67xIQ$He?EK2;UyP3d2WAOIK}$OH?uZ3 zWrOhpQKxrAzOK~sD6GDCY0<+)36D@uV9a9ugQmW8NMT(s^QkF=E$G1{)_{IOdgYHo zAW9fi`lzq(2UOx47Ha6w>K~p8V7wUQXpd--*(g)q)KV&=dA(>yj3`M=#1>SDc2Z+o z+8bTFR3@cDx8(^Zxm#R>-}# z2?AHgpx~`x=S+L*>tXzae3)+2AG-<30I%k|r$y(ByLtE8m&476$ina`+w-TDGGU)v zeO9PZ7hZ_se-ASYC()%Lv)_voff4vJtzzx@#O zR=!auG@3z=Duutrx-&dQ=a|`pWvq>H)}|HgWKC?++gVh9Vm~g_VN} zQTO&>(z*MVhPI|xTz~hr$7UeS_zq?hhM#(71Y;8T- z)C!#`y@4+d?O&#c?YD6K#9tiNe=0vy`$FdmRHbO!5%#mL+=& zCSi*1ERk6-DVMUMjzb1RFjO(s7tB|k_uGFy?t2662P%!0jWjkWQlW^8#1ZNNF6%fd z4zZ6(vRvHJn5w(;Iqoo;tq!2_COAs=8EyTbF9@>G{qVD;yBY27jvO!4?aL#sNl|<0 z*O8mO9)`?TAbCc;<4+H7GQa?rXEM?We1_tUTu`rWktm_%40XC=%wAxWa1qO%roFt& zD8TM1)8o{x9aNct=8TBO5!)ykf@f>@$COw&t0W9flb7-nqc11{Oa#>UZJINC?@-Q- zB0`hKyVGkY?VXH{cRx%u1&wAj8RY)T?#-JQsfNwpL|+CV5+796ltmqV;B2=2dT%0) zq12<0iTHYD@Aaz$D#jq%8SyCoWjdnStSD(~32I-*{s4BFbcl?RZKmZvXU0#$s-;o=#s)L1H_#zqU3;s`NS0ZM4pzDT8@s%8 zPU5$2jZu@X*a3e#DjkEYoFj{}unO1?>~s6(rB$}l{^1H?OuTQ0Dd^z(ViA)qA8OS! zV`uiDj-9f{X$%g(Kxs`WKE=;@%6)IO>-G~d`u`o2|4rX6y`kN#?ykwu0l|Z}CSam4 z(ACWwx}*_}jG-!*Bi9XMPjOz2Lu*w%x&qu}R(zKf$>wPp(7uPi*-xm=9%Ws5WEcWH zZ?wG=d8(z(7C{-7uz`$Su@2K?w)2f+elhas8)Nx8VE3#!4cQleKOahu5x{ew)M|x3 z+G9GwIAs>FOMDu#wR4lG4A8a6WB7<{l70qw^CsoB=F3N-d}n~>_Zsa*)^?021lqwZ z`IiF|5HP>iKkKVB=T?Vq9L633IqoBZjFN>#vk?Or7lvvE39%IyTy?P!#sePSi^e3` zy~Z_P1gDja_HdOPRxq2J@9ByN$dCsbjk&)NZwB%Uoz-cxbNTxXq9|}{wMZ`kJGzsE zNkuYW<~$u3T*pF`y_#^a^je>KyS{>%pDEIiy=~J9^7IE;d(HigZSw^Sdjfwq)6A0! z89}b$@->qH@<6IIJ0p^@0#%SEZ7xI7pZv+fQx6Zp$UOLJtdA%&&Ja!~KVu*yDMqRL zv2~g^XQ23LW4YZ8hsuodE&QH8{r(K;QaB-vSc+~=jSXTCo^x7x%Z zvZSF7FEIia{4%|Rm-E$Zf%+cMA8YNMe~RAd@%EI3&-jcNLfV}cwyUr zwgyLQU3c<(;J{bym61q}FCu60=Fn@EGW3wCUzy7=mzgLDhxVzzPI)wfSoIP5q=dP3fl?+~!w`$S`Ox@IKGL4DG7M!#{ z>G`N&r>ZMaVfnv)^IwzcHWQKYg1;pJF`Q!M{A%OS*B1TjtJd&;84|qtL)t9fFP{v> zm1v8}C#KMW$$h_Y+j;dTsqL@T-NBEMsC+2@5}B%=P2bO{N%3Boj+4!hT-AvCW7=oG z9hBTLx(02tTO&R36w0(qEqq4GcR0a40cjlj- zo4S;neqcv;`TDc3VV!>pQ>iyDlPCpCI@Yzso}8S$97`qLC6N8OL~4UvzW zh}~p$8?NKs7ttBfcMy%X2k{g@tFl~CDyp{oK}E3uea88 z6=%v3`Ob)-B(0$75eoeE2kmpKXLcOSTz?=`$$?CB#DZo^a&oke1T zPEG%%_(YY9bwU|1&^`+^L5U-2@Zl9DR$P}o|EPgPOYj9mH5 zeEx$zd(QW3mW^I{$8h`eq$0Ki?K51}Msl!U7gBcqj?5yYJ<^YP(Ld3R-4WS8n&n@Z zQcC5NZ1~8xYk{cLdq=7fg=$S$cbYos&;teih76DT&s#Qy4*r&Wt9jC0VSRlxIc_1d z@eMDN!wMf8Xg|mf6BC2&*B$*wXKcV8`Ju5b`WgQxgJk)uQ=f~tYa{B=IauZcntSEm z3s)0%2On}5`e4y^Kf3@oF56ypJI+8g4>#JBc!I^s>l_muixNS%zTy?a5ASa>K2*j= zZ?Yrf=zCXucqG1|^ETC~G%R?kX>$@9F?Wa`2FBG=Bq3{7i~|!|+B~G00Yo%8xvwh9 zX#A$_SNo&>L_PDd_AWWi`y(yFtYy?Q!VOoQLIKOZ?=D~ghn3vJ1z$tf^?>8!9$vT!!C%I?0F2CHR2 zh0CYj=`;{^p{{?Qi|bN75+MMCWLVhXDZ^NsGP+#UG7ppP8%mj_Kb%{52n#+4l_+Hp8ixNuNLF$hA(hU>huV1&@WGYXV}=PCVtp_l6S0QgLCZtXI8@X#}`FtEz7NPdAVXGMM}nEoF;WOW=?d!UFF zWIaM9wP^+SD+Wh*iV$wMw2+Uw@!?s+ziZpKv&_4W)bwzCxt>Yfgub#5AoKyR4wDI2 zGePx042yGtId#yv`FVTktj_-e%tKe=!bb6tN68(_TA1{pYEk-_6d`O-FJg$L8C`8n zQ}w^dsQ(^V_s_Za-*(s3FCI_U?e>{pUL{?o6`HgLc;`KSqenPj?J)DWz{z1;onMOO zCsWum`_SWJ_f^v!|AslRh6B85is(PDtI~31#5JT-X&7;hv#PxE52mJ!U{ryiBY)Pr z(#>cpM@RWp3SgAD21Z*`ho(pG{mQ>3Fc|nnN;17O%4S5Do{^Wlcjv;0P{OW#)3^;m zau7X`h#iq;x1%A3;b?zy{!EL3&pm+0%c@IrU2G*!7jn*tfI07+>}eXWaq5k$e&|q) zycI35^476=TTX}%@I7%W&T@e~h^G$6c>u_Vt|~n3<+`gX&m^+*>ev&tBP~#)`{r(5 z+yHo%OIKuVbECE-Lb!=GoJ!;UTw_9j#>bD`Tr3A~SfM8FT+T_(<+Unw+-A*eEcWFP zQ!1!moO5DVQLOp{O6dVh!^|y!q?+m@B$TMwlJ*+Y6XH0tPeviP+X;Pu)4Y&cmw(thp*=jBk9imkwPLgWhD9!UZ6=5 zBE?P){B5Ow23<0naS0Tlc?Yqi1>=>9l$r5L;3krX%=-!N4f@ME3m?(E{2R1RljgQe z>KD49itfn@nR`m=ZP4nOto_Vqfe1=jc%d0qBPql9{50NQ&i}=M`xhDWouUoTn)T~4 z!LMs|y#=SBXB<`7 z?TlLSb!fK2-UJs_B6>-V63XZi+Wd%-weC6C&iQtt`}(Y?&%x?S5MygAM_k8o)hBvN z8}WtU7d9&kKTKMlt}obq@Yg^vK2bWF5z7|4-tHeBZT@4}WQK~imD+$K&l_Xkv3Wdd=TI|Q;(d7UV(7vA^db0>jnlG53yMarhX6ImLlY8%~y(XN#Z`m zH?D{%ZKS36C=>LIi0CrnrFu(!#8w(%fb_SJpMb>|>;UhMq}x8#4cgSond$uoLqZr$ z`xp(;^!}r`14AyZd0oP+#-qT0Oy&aCS{q#^paa&(6ny;0JN{Xp4b>u2Wb4?E+9i>S zE5W&}L3jf%;8ce8sIQ#=E1pTPUjJB zac>el-N`QcW|6vpRUm|W!zz)+^&l;)Z|!HHa{?h-$Caaf{qD;`8Kq#g&^Tw#3n})4 zj7jup^ZYcQcmbuta^{M3C_f}psr9A}DJRyx=cB}uN#b^vq2>Sa0+=V0)5`|(lXK3X zstSxlpWTY1Pfeh+!09qH-TZO$cBEg+tjUwQxm4t|#ZgGWqp~BMV$*xi(`I-k2gd0U z!|}-X!0!5ek-!@G%jFVha`Ms7{=jmT9)|WPm%g5pqe?|PRo2vG{HE?AzjPwbQkF$0 zUbhY5CC*2v4P3Y}jFm;%gDq#H6E;Q-6^(pUpx68A7i7`_v94Fd8y|1m)>yy$4+j|GSF)> zL~0l!dcE?6?NEz4^gVYRf^Ldr~EL3`5DuzIqiD!83NKBSxKB&}66JMuOr9F{836zX>KCZV2a$b~JL06sV;Fq?H-@A)I?fj=N^t$UWV; zKM|Nz7ek=f3Oh%BQB^q--M^5%o7}X=FA+%VyD2I-Ia_M)bbIg!%SHLVhnMh6j9rTQ zhxZr7tFC<{-g{P*B2ngn7LUwF$yjM8vJCd3!q-QL61=&iL}+s-Dunws2#vU#j)& zB|Qqhn5$>t+(oh=P&Q-_9@RQi+&Q{2VQ2>u>%{-HS+ShAe{P~q6+j3HkBxrXQICF= zlKPjz`Xu>{mLVynm*)HS8^tW0@RH^E(q_x#Uanz+I6=|*^B9UTSJ(uv&t%<{YO|L_ zLdsv@r7E|MwjZv5EtodVyFGs(-JpM18GEg0C4b(BUmgb4jtz_jZx1@2i3B`O&>sB@Lq8v2Xm>O zmMz8y_JYBXS=#A@Cz!|;Q9|*&x`H;+wkP&{dweCOfBjbNKdd7mQRhdwCzAl|8yFiN z97bPGcoCXu_`0{y&IQ+SkyNujNzcu3P(Pob9Dh3Ol-!C8PEjx&iujs_Sd&;6r&X(J z5^z#ptj)sH5Yh@X76lRqwV(RD@NO(n2bF6RNOp{>1syjAC9IfUH1a|?O}K*5gh6}+{LcOX&@oOoFKs}tSIMa@4i#nHHx>oR5E?MF~EqRD_wbA!o9 z*zpE(=J5@uiNP9$SgF8D-0#uncb=Q7rcT9`pn0&?D z5{EBES2I|?LA9v&9vPztSC2MQ6m&u>6fbV=Jy%*E{Yuk9*SP#y?^Qo4PJJ7Y8A+s; zPeyo%P`pX=Z1W$%&P2sZRv)!Yq~ZQ_zFgF%QDgwQPq6G*p4~Ls{qg_(;r5-O6tT9l z#97ymqm&KUUSAN-+hRw{j}F-{U$9@s$HgS{>n>-!9-SaG#SDq>Csm}tFC{2Y&LGM{1w^glbBe*Tux>xbpf z(3E|dYrmi6r0Zpc1w0@zKOgVFeuJ}rarxFdP|r&2Ag9n)>p z;we#W0SOP~9r4IOBQ`0|i!3GdAJ=JVh4hA)EOipZAK&Cg&)WW#EZh$Wi6}NXXo7!t zY#nlHcV!ohG}jEwqF6G*nNJ#rcbX)jR6oi&l)!c96fW%-lc9b(qJF@WHvMM`D4r>^ zhgiAv{Of=PRaN#Z7nOwE45f!b>=-+%R@Vh@(6;5iJff5km!OoldjHjA8BxLt^TPy{ zBTd+{gfV%*s`QE5h~*4pURkM!;|MRe^G5rl5C7emk#KzEv#z?i%>K955q@`&u_A5Q7@YuzKR4&na}J>oqi3_ zF}HIiv@l=B1lA75=+rFsda^o;(F}qTpIJ-mcTKmtSTDNqijOF$wDTS3UP6rRxMAxZ8`?jo3htx5WvPlZhCl`H8;O{GCjqHLA z_oobfGPJsl&rQF^2MDKlW_qqz?sNNutVU4?AARC_+RrxRpU5_~@WdAzie(f&jrSYP zzh{N7y00{-#aoHA#yjP{pWgP)i##i9!FcB%wdETOvG(WE!S5yBQ;_z6qbq+ga^z?Y zwzaz6SYkWx_H&c1#!78yh@wtL8d=fvbY*$;aM|m}q5&8Up51M&F%ubEk(3Q+?b>^< zBhm8_|ENG4G7o+kW*3xy!3itV@(Po*uVL*Ly0mo9u7i~$yM;Gw36rZ=)FmglNn>i+ z#GzDU@s^NS*IRyEX76eIubg!Qr@}-X0c+E!fE6A3n6?_<-|zo3g9}S*((a-jxciqZ z=c~}FLiBFGyZ+ckhS-U`{IvAzs|x}KBNi4&nBM?dkI8N$FgsWsv1X-T`V@x5kAbO_ z<1tVO7q>GY+;8&-Z5**;BYv`!bA~p1=$e~%cSt>y`zkF1%;A?xZ^Egxi+%@0>~d+$ z&Q>NRz6Cmq!PtmCUVbA1I6K#0HAHWMUvOh-{r&v8?Be2}`n0))-jB)j=xv*W-!;U( z^Ac!=3ZlHh^z9;w|{aL;K2s zo30wqFF-tPmkzn(GO>!Ag=V0<)@9-juLIXx;F3yIc_@i%$m&@ zb<%#{SuP?UV9`w9%{(_?$E7BpJSya!9XgVrUi_Y_51$J;IS?q4whzBkgtp+?OIzBB z1)SR?&o_&I)=AK0jGXu6Z@!}4gjz;{U?YFp`a1db9~lc(XXVQKy8A!=HH#gUxJWzh z8>+U^sBm)os}uYS-KwMc8olM&xz(vdBIpoM89F8MN_Ogwk>~-9Qs}5oeS8iH2Lo}# zS8d;0Fom-od6oG-of#Bgf^9I%pvPxo0*#J*lVxA^Q`QTc5}ku21DMv@ByZ0#}rUXFss3!yza*Fk3sI|uJ?E!GP8u!KQ3 zN!kOsF;GgyeJs5o+}dr&Io}gHjOM(`AdBm&A8N=o4g&M<&?%Kk^K!hpt+@d7<70jv zt~pAP69pCVeFjgmc*ZKi-jJs{XPReP2qbeFre&coj6X+KfJN-=SDE+|#EuLPhzRp& z<^*Pa4{iw0Q@ad5jK3QrVyU$DZ z7JT-ea(pAb8#`kzTA&PULdf?2N7j2rHNkD$-_k*9K$>(yuL9DfcchAR=>!F(g94#< zLhntQ3W@^KrAUVWp^FLxq>}`sC!yDW&bjY-?z!U~`%AthV`Ps#)|zXs`9r7M&3NN; zhMR1hX5!$CU1xZGsft8tes=Nzt_ z1p69C@wF&5NIW9TeOsewh>P(F{dngWKN5}e$SDM7_jfIM+F`6P4jT*ZSA(2im##hz zuS%`a6j|YxaW2X?mYv+|ld}$}Q%Q z3AJ6W^u&n~hoqt6M1Dh@3HkYr{*`2CqqR4zbT93kMTNz^Um2jZ zD8+^s9Q@&+iZG@k_p16}$a>#a)q*p7cwm`$NP5^;3{tLb4*e6b;kGgu9u~w{eUO^i z?pk?3SH$7_un$V*qOzHgRYQ1 z@iC&)tA86`JHgd+xk{D$KMy>;i2t)F7N6QHN_|svwfFpgml8~u&k7qiV)K?l z_6`@5DQUDKP8yBAPRY^K22Rs>kiLXU)B3o13kq9k+bC=3Ro{bJC@42Yr?;>=o&Lr= zJt>^E6ik%ceTLX?$%@q-Z(jG z!qiov?1UmkG?)8-g3GN^>fx&e)Gk$E%`_m$UsmqvtlZJq3&KVsLd`(-%KUx>+lL|J zT+s{MTI?LJiqi}q@IhP9^WYS#Z;lm|JTiXpenQsyESEMdb{E;F)_+j<1U>j`>1mS{ zA)%m$7P)sb<{9wMcvActG;SH{6?M$w91{Q@q~8Ndn39Pu)Db}U^Ad2NIE7asW3oMJ zSZM(r;>nrmR1;Rv_j83bI9Y};X$ard^UQ9^x4YSUItTOhlku z=}j(hi9K@Ichq_7PP2l=zQ)iSYp^Y`)i*K^2%KI zm?3_Dzvqx@+1sciiDuaqG+O22;a4UhcQdevk@t5`%RFZQnFRy2v0dslFMa!1Y0_UD z6C{%|7Q$n-_r($&1d&JC3MH z$m6>?&Z0M8Nq3?psKrh%OJPZ23=Z%t^7v&t%ZvFrmGdaS3F;|9Dc7ZE_L6V>m?c8P z7~-!Z(w{2-$A_(Q%Lw;y|3@n$PwHj#QvP;zSgJp!tudT)x_@?pnfD#CEmWR>zjlhsmIl_GJ}wiG+uka3YOm9&Wf3ewV1 zCp~Vu{~8tM!7Gv_P7@4=z7st!m{6}G7%7DQ6x+!CMH@^L3jxj59sxJ+HH{%FNHCH2 zC>xgG^X7wgV+8zdpFO@|V>wb=Pc>{DevNPYCUQW zPqml$xaCuA4HiYjGY6W?*|YKQgYI48g1s^wwL3gUJD+NSDBs+uaQv!{jd_xQX*af``h4@(MZ5o7-1esx9I&hOY`3hi9>I!AF}KPWg%j-a+>J zG5ilKlq=b8@KyFMfT)BXeH@$&OyPk*Vp!#?3I{QXf253X#tdo^}1&<#qLXy1!&_kQcLu{Xk!G^2rJI5%9eTWzQW$rV|qUF6m$Y2xk8? zLF?yw5OT8HIAc1~CgLVdY_R{>pCifD@(``;Bd++A=PZf;nlmIu^Cf`3O)B^M;1*Pij7+BjsB9 z=55)kr(L_aRvha=yLiFNFj_82Q$vb&kXLW`Gm^xrNgA9dU~r40$_W?Ic zWFe1IuG~5uB+%_nV}pvEvvqw+N4* zLB@W&0&{!%y>F4xp;{uq_khp)YQMREe@nb~Oroq56a6{iOVyL`7Fho*m`yN^Cy-gZ zu_%lI-x2u}mxq&?Te9jqQM}KTxi%fKB+>O?!I+!LqTZJRX393d6G-Z?E`;^Oiz*nu zLaSkma(7a&H-jcbW5u-Zz$B}E2Rjla)u8<|x~pdI2A=e$2gK3(ZT&_pvAO}fI~-1w zjQ-nQ^*;R(fQfLKctx>z&%;Ri6t=lcg`!l`qBMCfzl{yC*mfdf8F}>qWY0Q@9A4%i5L=ifR+xw)qB{6mvU+Iz9(W}xgaBxIOjda@U^@NlHIA^R zd$hgaz^>cS-wNHE2&>Qj;LXmRE2q6UReI!E#)hhYpVpr%P^w3pBi%P_xkHW%DgMv)$LA0R}LZ2iq(1PSVE! zq9A=sbxP=*n;1YlCuI&qP4JdtclP9z4ZHdu?RGOEREk zoK#7d7A8q?AF#-!W;q`9+e%Sij+)eVDw5y?6q{hMnWuPtxiHx~C}Di_&sni9BR zg4qYtQN5`-9`Zx~;%Z9CC!nU|O3mwigs(4(6zaAfB+)XJ*zd9XBM*)1_T^&@QR#Mm zT`4U_}sS54?R zb=XkA`CY|%XR%JYGXPfHl~X3V{ItR%4Ob4O#uKqy4~nKkT?lN6=?sk^=Yw-hDj}Wa z3y0qAg~?NMK>K{cfFUY^mW%lzmV-pwZ0c2y@!ZoaafC@3szm7`=W--wqV>vBS!7BN z&0BVK^Ogi$dEzuIPO83C8KKj%y%LCT|8mdJe%aTbod1BbTX2P7DrC5;wI`_J;IsLP zlwfC0_UO{8n-ueSSYS|~lVRJS_k=WS^9WT?aNU~j+1n3d^7czV5W3T3Y!OXDq4ZQ9 zaVjdjz13GE+d&*~lk-@eG7%CF=?}KPdz8<6y6k_c+|r$iTOF^iCyc6Xc7~Mj_ndu? z5WMvIei`xp+llT!RqTx%>D4L6wO#w0_L4#{@}A4x3A4o!}g{0f4UsvEx#H`Fq)8lW!CO;VU47#G!Xw|xMgQbRLy?5Mw&w3ke!z?AmImjSizY| zhW|6JKx6m3gEqTdJu*&JrDp4oO^d$^kB3)_pPf%}Q%?$Ki8L{-)8Q*GzzahzD!Vr%*_cx}kLYEooS zKF&$2-u9LR>a8?1?OUdQS!Kn{FOjif!YWOm+=v;Cf=+k<+pWF+ji1JVf)YSTYl#Bg%cRWEI6;SfaDzMluWY zI7lH9z;1N;DiY%{NU&i_)0?Ked_C)b?S~BG%VUPI%W45)*336fMBklVFIpjE z=upPAatJY&270w)zO#(IFy+h31kO4*G3_e*paICC_ErnlTaQ1o`Q;~9x-0pvmtX#Q zZ7HJ|iSTvU!7k@0*&gd|%<-*x%K~_%@k3w`{RxcARv!O)8nZAKgPeupe zH%$r6dcB(B1bch5+_aKRv72S6*i;Qm7JFL3V$Wc`v++4(@yX(@o4UNX8g&$P2w4&| zrae*hYEM@kXLfeI5>mMr*ch|t{4AfzQcMSS)DdUGJfZ}ZSl7pA2MZ{|c`fo*wk<_E z0*-AxN6DZ!7`{E2??m#Vt{1mOzQ)Lu`NjupuKkhGG0i8=uiLY)o`qYc&#*9_7cwy~ zmomDKnIPJCv#NiWQ=9wj2r;n`aAm?*LK_Wl;`og(Y5(H|5a#5JrdA;9@RPDyDsJFj z_h}c5%DO>#nIkp}Mv*u?Bb_fP@cKLcA?JRy8L+l zVv(oci=wxy0TUPD6;z#Up3aY+M+1Xjgft4ts9*lWOO$ zq#~Yql2g`d`U-7#&z>u%uZ&co{hs9q>g~s}Ja9z~6o)K_IEQ<_!gO!Yp7BbQb^f>< zdvVTbQdle@oY416YCkGL(TrCKJ2t${H#EF{867bYQ&Nwf#Hct+C`PqRWMBQ{>+PyM z2~(mY#yG5SbsyMEN?viCJjjo@4}AY6HEoE1j%68MrGnGelnzufS#RS8sDKQ)f*acT z)wM5h`5eD zO)}>;O)UgeQMlAeD!WdDu(CK*hkT4A2Dr~X@Vi*!{pcYnq$#QEKWw?pf=+_+Z~y34 zftk6my{AP}zt^@W)P+RQe{EdIUTIj_gu!bJ;@*K&o@NL!2FkGB1un+;+*7GD}eV%oHz z+}?KXu@9^D=3TST>@4nR7y!32s}5y}6=Ie^CIfO#u>vx(;bp_`3V=K!z8MnSU&(?* zPB@-@_!s>O$;)iUyuO@s`j&dDkPnl_x#O6z&B#2-KK zwU#`U#XS7cHUVwa>>kp@Gk8ZMV#(^^b>0zz1Qz7pFNWnjgm|6w7GOP$|a1Tc4~;b?$IeZJufnHdy#3V!T=C?QVVqqc!No`=RInzzc&&ZyBGYXr%t+%+YQG5GtX(H|Tirf0SP zsUPm+M?54Gye9D^p# z)o&|b7sZE`7QJcw*)p ziQ)%;@AG;ADrvnSVc1bUkh2*JIc{Qhc7IbGhin$AFEpNq_LeGDYNmL2fOFbAvvh~r z968f-R<q96m|Jm=Jg!CT-3(7QfVn|5&8SMx5b2E#mto$!`i)U6B zsb!}iMe{Gcp!2b>W^p7Gv^MO<>NyTo*093$a!pL zL2>E>jIG5HlJ3f^dyTpO;ojVSWNxf z->93)`wBy}H^|5l>+C(*-Z>*gJT&`C1f8Y%DbTJoo;Z6!*Z)Za9txxT~7> z)ebLl3#K)`*4FVSnZUvoq!Zty^i56~#_MQFDrhdn6dZ@} z)G5;xLNx={xaj~LyIP;Vn@y^x(MEAj97n;;$SA(xTnsN}fjZyIk&uj#$8pgD196Fu&zx-_gTkF(LA?0=h@7)Qk@Lka&K~uPEvo`15$a9 zK0*oG^ebTr?oaFeW|y ze%V3zVrZmQ5i4a*WkHw*@oecMV6GMQ2dTv{{Rn+Uf)|!tMMfA`UTzmr1Po8hY1zWB z+!m&eZ=1$95_`r}?OO!GP8h?-7?dU3{)`-S1^<}5iE4m3;thua+b8^KQQ&5>m3sL5 zvU^|W$tZPl8AJlMrlJ#DGS(p8Abz)IfsA2qM1$bI^owMi0MRrb4JewBa^klc_q14% zN_*Dj?%2sOWS`Cs7J6{ZzEJ1|Ao{Z30qt5iHNpzZTox-aJjTG7yLIltP87wU9a9YC zPeY@_h7u8hf0KJY29d{y_I949Nd#U=SNDPW7*Co94w^=}LPB*K1sU;E1k))R+SWtX z>y}Tu{m{Jmxnp(TTMSAR->0y*-;fVn{Ec`sQS*<~h09jv#pk$$503^Ksg#GJ-B-lK z!AN^#?l0}%XWb}k><7OF+wo6y>vZ6EXGXTd%HN{YY=vsyq)*T}E1gHdz2*|Rl16~j zNaOYPx74YLG6+Ry%wmOxqnfR+sb!ol64eRKksYV(fM$SmI$g0$dI1o_!6;m(t$hM9 zUdk?_hu5eV*cx_c%s`Zc^TzMCUVH{^r^&<;pbN$hpisa2{Us^%sdHubz$1)^7wf(( ziO_k~nqi#)trw}3Vt$qZ$#a8Mf|1rCrlb_e)NgwJ`Ij`)zm+{43ph?-^L_-Ass0)j z1AJvo5T*#oV*C;lw*UsU8F?4=lqGzaF@#019ppsp}!_*)6ypJnCze-x#%` zj)y=(pH|zr;N*ZJjQ6~8)3IOY$U7yRpK;Loh$5-e#{RuSXnf~OP0QnjE41OMS>H;d z8^r;vYcQRE8bx{4+vQWuavQH{E`0*?J!Hfvp5kTzJf|2jG+DbFJJ}bN0$T6yi2PFY zP*L5#$x|3v21PemqRPi#qOibJp3vYXeraG9jn0oP*JW>sCoh?UcZ ze6*Z0G$52ntuWAnMdcw;Z&O)lX}9GP!~dS(=W% zDIsL}kXGM+yzqsK&yNeQu7FJw%OXpzmJZ@OPKX8CHh>tM>Z<6XDW`ScMayXh0f{sJ zKrEs~Tyl8M{ZrY7ET=}Wiw+viY>}1=ub)XURadjyhBdOmu7T8I%Kp|-5X(4>Pqe<+ zPn2a{w6E2_No6j>-9z?Qr2ezp3;WFSW5^&9-4sW}^M!3p_l;GNLq!c(q86>OuB%$c z<(fL(#6STVf_sU0jO&>MY@()%{vHJUd^M%W3rN@H>y|o&1j-dE1RQEP3)0V^6 z13#}`JbwuKP1PadgSI~7tRO=jeO<9Mf^?se`n~loAlZ=B4uU_fGYE3ZRo#S&VI?aAC8su1MsJw0m14)Z2&PSz1;b6ye4a^Lr z@NK1s$|`d}Ha6@dflx_d!9#s~vEg?JlgeYaVt)0jgvCuMpVnly%>5O2%Ygbeq8PMX?o6FYp>8-n0BOp2P3*u!JH((dh@Fva0((r9tyrZ5yaFX6~%+&n$xz5+NZ=AcF zA^_Kh#^3k-?0&o)c((#VUo9x z&}35E+1nqQasGaFS;e&{V{D`f`9zT5c{h_zl879Oa5yv0WI?Zr7*ho1mtEp8CCN zM_exf@-OmmF_C*7QVi%;g18$XKdjj-bnA-;Hwu2jO<$BrS!v3b@@)CQ{^8TzZsa> z2pjIem|q8_T`wD+ZRo?36wu3GhP21?!`yqk7=+NJeMTyWr(Umq5sv;r69owzu&2GZ z$lVt*z}l2;4ynx4k})oAUg8fC1|1?nS0f!?zkfsH?4u$#>o-KtJ0|$@n47%BL-sM4 zW7O??J_;M}PmPon|JI#6o{(M*YH>Q}X2Tr(K5C_3ygWx=pC9-MEDe@rx5$i_+2z-U^5H18HcV{1rQ&Q znHZ!sPV30oKxUZnQP*#ZOHTAI%_l@$ES~`|-ULnJyW>npTa-cYH;G~#NC*gTC%3#Un>})AVWqBb??9SO?x8 z0Ush+t4qK47USf<gu!bNP(UU<_|XEl4(Ffyp=>+2I%bh0`H8NJrslI@{R|v3 z=;Q%PxDu*nz>UwT7^vwQA#qaFbFO#YaUoGNxgL7lE>F=DMDFUGXq6D?>JX84w9GXw zia^{*mTE(adjAW3)Av+~p(^TjEw6>2Bq^+>LI=5*iO1%zvgY~-W`~A!5HwfO#%m0I zP2~IUEWGyp0?$<~yoOlnM_h*vIb>MA2q{X+RIYLPr6IV6IH`a2_*TLUSulUz6X-L~ zc=k#L1kq4om;*-U5$=AhGUxMv)BQ}~E0O@|d@%RbD13kRmh9I7)PR>?MpGnnIW;9Z5IG8zA_FzeO04$Fk& z_axqIVsd2_hm)KtSB|eS^VSY_B(NQ-j&~_rp2NBxPnKth|NOUb`i_I!XH2v;=d|bc z8tHwz4?>PhO$u-*fP=wH3^Brjo9f|QWSI@tOLxhVuheU}0@&;#ar~PF!(;(oEA<<| zIt>bu83s|(L7cP5qvUx?+1^9U`hifz%*<^&h$T7Y8(CNWcYd8fHR2BswG0B@1HDBb za<(RxG-lmv$hpi+(4ExV5>36?Q`i1UyG<_7B3Q6Gv72@L{MHm3Tfxwrdb&)N(S39MV z9+wUprZig*TuKG7qiEM&UM&Ej>Yuoa6T_OVwS1Q{84st3=qjW_05$tlNxl%F5qu{B)vl;r?Z&o9pp5-u3z^? zI6WnU2qkxk9ieS~WAdZ)iB%O3X@{Zb)BUyXo=m_M-nMmxWj1mt-IoPtN+PK`m&@|x z>^G>Xx&XqdcUFq3Mwg3Cq5Z{&VaZP*5ej3+dyR64C0@UyG!F@(fCQ{kz_Zub+WQ^o zUg`AX2h__^!DeojCZddcKV7kI_dduMG?KM@vobh}G|RtDU?NZ3l_en!J|HuI*K)_6 z4kNEOBgDw*uAUX4NWD;6A0@*{G_Fw+iVSR~y_UlFYe@kgfiJ6#MW~z@Bj6!=@Es*n z>;AJqCJtp(bi-X21{%^W%x8;m`}EAczjUj8^YFCm)v`Q?+hIFo0;9t-nZh<-W`*y< z2eZ_-;%@)DYw!+N5=8crsGRj-t`EvAyRl0Lxk~m;`e4U%$o-gP!@)Dn`|GkZiIOCo zcK}j!mN<_|ogb-0`B_GgftM~EIK=;!vp+*W=?iof1CY;R)$hQ)s{DZDwkL|hb6bZg&=8zjCMzLal$n{79r4A12Br%?4! zQSo0bcblBmPUc0p_oo)M#B|U2WVx0z84>7Q%)R_>q(l!`gb=tOQM+=}<6C}$#I-X4 zy}Z@x1G8`^*Yf^PK<+g94qCfD9E_+7gUi@`%T*R2;$kV!Lfp=kSdgG?R7xhyQiV9( zH3I0Pu04R!PU+~RhQS?~8>SemQh|w3Pw7Xy7?Fq!8yBQKynq@U*N&nK9gM%*!dw|K zR_89=woj^}&Z@jxY8W2~zWo8yM*uN4%0lAL6Q+;>K?Jvx#hG6{vTj-URX8y*9}QoI z7I%59ZU}L(=v$cJM$)=BlRAF3XA}X7+e&|hM91Eo)dQK%;mW_b9gzHf4)R4e2;|U2 zzEd&%S*L($RI78Ma>&N55bUxzfaYSX%u3Eg8Q4)zTUdm%9F0%SCi z-GF}F{ZTZOvSTOok&u~m_l$(Y)$h}!#ng#~jMh;tb0yd8Vu$5j=4%?CJ_`=zU(~mT z=<;raf9PUpFb9VX!^r@BYc|UX+(kK+rOf2go&lGsd>n#pS<;Rg>5W2*ori_DE`=Q| zVp>XM1e?6Ns&_A{_Hgg%>;K<-x|~cU9ys0;GEs2L*3uMx*`6zF*s z^Uor!s)i$h`f77oiQVM+IknzF?=q%#Z^hy!v?J#7c*}L-t-12m8g>3@=k1~2bh~Sg zafE-cwUUnyy(^%G^KqhFhHXH|g?#lh`2~XWWLu3NlMzC?mM)!ByCOQ1ds5OcT}yT@ z2yFb7g)+bMG$Z#fXM8k;-x~;sMFGI*OzoQh)ez&(&CCu+44F+cR~J2O_3}-@S0%RgsWCgSD)~+UD5$h$EXQc`QiOx%U z=?eDP+*5GQ+>d<@3yuXol^fB3ejvh|8Olf`eB7>^$t}TC2~uQbRx60F&{n@>Q8TE> z`M`6snRyptty3@eHae1`)Q306x9~nf@aNAUCnxrlF|pVFlYITP!OgJxrvZgDNkc~1RVZx@F}4Bm0=LE`(DG6ZINs;L%nK2)0FeQVv$HU zg2W=7z*jLPy8eX9DznR}SUs@wOF`2;0S7khUwJ0ZVWr^!mwI0`{YllUJZI@{FMB_o z<^~+kNMD^0%9x2|@P$KQr<1)FgLu(Ax8XBT&c<(p{23V3lNFzq&o~yUseGT;b7ey) zEJD=48Uh<*1rvk4hvf~<%VFmH917&!bPr3AsC zCnD00DKJNTmtPlOelAxy{5^85tpu+@&XLL={ewF?`P#?N+YY*w7A6sX!bJUZ$tu8{ zxn6deEew3?kEZDJS{{#aJ*%|42voe+VnZ`J)&c4xpJdok+_{d*4(wGZoS`>kekiWY z@6zN5t(zcsSYz3JV5F|8!;6+b-I_ZENNj|xpl2~-A>npnXKRDcF|jz!YVMXrk~`CZI!=8Cqgd=asd z{?PftFVI82FSnqTZiD7H`2gxkNb6iv0}-+R?h)W2nL(XIX6I}Orjf`i@R=Zv=jT@D z)i(KSeIsB|48j@*n(;JHq9L}Xwj!VCr^dvg+0H)KZN|&mt6Y4!n@EW@A&!tV$k242 z^Xu#1z;#cr``DiO4n`l9>TRPd1+LTL?CcPAu}J(;LqZcmA``$Pt8YRA^l=sn-@ZMP zDw(t@V|Ks(bHaQJayPF5TB)@sI+Er4kg#yVl%hE~iOK!++jw|v)%OcGo8~(FXcPXb zMj?3S53q<4`GbS7Q~Qvw-y&SU9^CAI>zGgz1`^+k!Qm@Ex&S*utx7YY@1Bvl+aVII zB^F#4ep7e3EPi2oWX3xhPul);iSQ>pUPbIbUI24htVl`l@^p|NzOM{^>ZKp#J6QYM z%9qSv5ZA$vxJ5GV{-nh|EXJQl8S|XiPLlh1rg3O>M0;N603S1y1zgxLN`@3E?3e@5 zNF{7Jd-60W3fX&1GD4U91VJuR?S&^>Hl<=Jd9JXJiyHgubaJoPeHxTF>bc^n5dPJ3 znhHl;uD{Ya~4)wRb zO8dr#iC)C5!Or(;-|J5N%p-m%#m%&G*f|Ag#(Xvk_+)w!IId)K$WJI7d{PQle*vZ| z)-2n98FRgLpUg0=xGmQAi#;+7JE$-Ox!0m2tL-`MuSDEjedXa{T$}RB($B;EmlX8jz`S>AT5Yf<<*rA(p@&f75K(JVs{rWbIUVE#!JKNzT1DDpuvZSyH(GTdn$5` zHP3cZ9=B}gKWa3dz|lqRP1V%Z&Unkz?*py;1^a) z*5r_;KLCjlq6~ru1UY*bMl>8uWKfcLq(qvKHJ(_Xt?DzL`*(blM!kJ*`_=YEbb|30 z@$8*kbzNbCcl^une51YwB;oJa-I3SPzeB(#nmMfH1`Mnx(7?9!@l;!rJ{i2rNfz2H z=Qzjzf;IyRiSsYSnE`B)k1|v zv>%3v{7y%ehpJKV&-k%^(jUud&p;pi^Gj-bUEWFf0lJt7Iu<6X?`Fp_O?_4$G``a? z^v*E1IPz1kL)f#FJBL53l|_8+jPAYCuCLOmKN?i}PH<-9R{sF`^Y)m0U^u1Sg3XF? z3jftN@^>x0cXo-k@vlcnb%~!TSp0~NA|eVPy7?rAcNxCy>fB6j&?09hjK`@=xnCDd zjNlip&p*gc3==W1LOjqJ=h!g#v2gWSp|mx*1ZEvK<{wJ`p8Rj-ByL{SQL(eX%f;0b zckgx!E`=iO&y@!S23X8|h>i>!0j|4k6x25@VX zJ3EOz43-J>*qmlRLUf<6DO6`kB*c4-m~4){y8(&2n|H0DOP)7Gi>6F94Jkc;ZN{xl6i1!Sg+;Ral`MOn@Kt`k7XB}T@k zZ-$aW(wQ-aQXIeYtQ?HQZ?t}7x^rbeFV&&;;9;a`O)gIz2$LM;N*NAuex=M)isBEA zRGHE1DM|f1=P$$crFn>COS6=36BN;cEL!*8pgH(+RqlBnV{5q28(z6Geu+SZ>XZtG zSKe0q%}5v@dK`WW6CdU$zg34}%rdX@tajqMHF6IP2N$1_&2itb zel}Ynucq|#GHkXuka+Z4s)>zl5YI2Z+!oIW9``~ zL(vO8!kbe)9$_GkC2S0`=`vy)%)-&^WygSbGp7)t>K^zsx>0oLxnnKu=2gGIKfoNZvrIZ90?6#^}+JC+V5PuB!^ zp9f0c`5ng;^*idFQ=s%ARpb}R0=uc+QReb;KU!zN9e@=?z@%?l4G)f25ak6E>XlY7 zi24<&&hym)KRh81Gy8H{+=oi_^HVxbvGf3f3%qf>kOdM0f>jvVYJfTS_*NRvHvyMf zc1K2e@?J6+(FNXgR6oL|USyxE15Yv)@Y!|Fl~#RMK!+CpkQY*G4DzY?L{4+_wi|Az z&m1l*v&xy3Wq0zLC={2Lt)jX!#oF*Qs&nXZ;ISKI|FcpB`@2WI_g6{XwC-p;BxrUY zmf(qea!1rUGhW1^W<~lBjuc>m*SoL$qgbpCEa2g8>p{#!e1B&JzC}p-=%pr2oXAPg zGS#zyZvq7GzUrtS4LL`}B{i$uDeI0p>-Bzg)J{aMs*KN&}pZ&wz5 zg7!z@RXI#H+o-OSHIc#PoH%L6&z^Hoc-sN<9umNNQ8Ro-k)%g+F~)WY4(07aPAe$4 zZh<8F&d%rcVmrGthOM?{gU+7PwuuxR3ZCMjkGzcBhKrja+JXDOuu91w^knD@4RTTs zmp<5sWH6LOq=t7s#Ut`|aB7e{WfZ^Nodc47_4pId+n>Y52_L33Tu=UFE23D+#()BU zQ*5tf10h(ghw{OA=A3E7GuRxp#PQ0DyYF@tk|Bj=n`|2m6 z)?8!zi}}>=T_@$6xus4^Ua5wnPv%y9huJK}I=4PxuA5x*A1fT#X{YRe;og%1WhE2w1arwF7mbZ`fcfWB_QN?7*AA=+KILrf znYMb}{9ZX6+<-6lgnNG1GMTKD>UfQm4`n{du==bgCQ6kHT`sdXxm-`{DsO zYmwF3@P>~+Yo#qkR@ObUFy%^{qShNKa8e7t8HL}$c@_@raOq<7$Fg+ohoyoi3IBQ@?~c-ie^Sh=OuQYG#^5+{E6wi;$@i96GzG2G{?sb?Nyy0EpTxo@>E?7 zl-4kzQ)f#!r43f4TZaU-NH^9$btN`@K4XgRRGjj+UNWE>&Hp=kwq=vX!-%Sb`1^1$ z_UPi%7iBpt+x!WBG$eF7)@c_}RbQCiKCMsx8f#XDu?F!f;J!8h#o}k6DYHU}s_0x% zI$)*?YXJ1Lhdf5i;g$=P#jfAL5_)y17gj4nA-h8Nvotzx`ed^VU@K>($|<*5MF*k> z%Mo*u2b1T|522R%VSIrKDKfuKugB*1NG7ji{8q9^W@W)k!(syE@oAy*9d4e||1OOG zRUCKL+;8*k`-(KKyBfnRZX-ViS{ciuSHeE-N;u7J?rp@;4eZNxgzn`pN$>bf zu~M7-*hx|c(>(uUb z@)ucb-85RFpI}Kt$3)yq9F8v%<#|Wbg>&^o8D3a#gQE7NNtCMRs*43DeiGh9lxKiw z$P|$-@k9K0Q5haV;s<1}bzt*L&I2E)ME3VctfGSNXcNBU5##c?Bedh29fs$zJY%km zKMoW?dbtwbr|;XnPqe>Dq^r5Fnj!xg_z4elr?7W`@RTiCE&LsS{fT)O9*^rs{>T^m zVnhgh2fU(Q(><=^&%ilZ?$`SKcb+`rZUa$g7T)=gc34i`LvS@uXif5i3{KR0zo;x~ z4rcxuPm{OObtTgd>Os%wU1RgjarSgQpR_iQMvPn%5ksp zix!}4W+h~R`fTUwBi?Udyi6);H{XU(0{?b=V0ql`F8v8or8n|X@Ejr%T7+gs7 zkX$Nsn){j9YqXY&@ip2U3zfQx;;`{qWjt~TpH2su%Aqnr0>>L6 z#J1j@M|#vluXbZklvcw){AEP2nqu@9>h7)@JG967v`UF7Un+;qQ2O5J!L>?HVe2?a zT3O)J!mtDSkKRGv=UrXOX3HI8Yc?p=x4#Vu{&R{{3G%PTiZLs-HykX-4=-V+qvH~G zw2fpgLEU0$@~8s8zaR5+BOcv;z{JlTn6q2Wn{IG6w8A|P#6HnlazhX=ASuF`-=R*V zoYs9~AaC|(d`xDE!E`iis_j88|wT%FaS_kGK@oz}H{8?B~7NFO>I zNHogXDswrEPjLIOVUl_P)(Dk#Y5LBLFtb-#J8({J`+I+0*@zgH*3|OUWlz1dS+uSe zP-1B>zT3M#rYLkxnaw@>JHZw=#bG!R!zBQH6_?L%f$m_`d@HRAQ>?=Zm5~n+>d)TO z5i)~$xoOzWbQm6GNWo*(Z~k^=mcO*@7GkI^%9$N(Lz2pL{fOCY);9uS(pCmfh748w zB<1zl2BJA%WJ;y`xUlSvs@Y*2!G()yp+iU@D0m~M-sUT}?B{!$9M>ZQhIH^WVOlN#(0n2N+hW$+uIO41Bwb>S%mzw2rZVZ}BzS5VAyrD;~ zEX9wnJr4am?g5yBgFkSoxA~#2!4(ZN;PKcep*?0{{QS_AQn(}<0Ll*e$*5kcHwf`u z04abOdiZy)jZZBdVwgFr3-w*{i+(b)iQCbeH=LC(YAYLwJ$e{;?r@CF{eN72WmuCB zzyHQaX^;{aqa`GDFiEAQMCoRfQo?8?1|lKdATbma3F!u5N{t2)=^iCLa)9vXIp;jj z?|;s9zqw!BFYoIcpZe+rX){1w?RovA-v#D`p#9FO4z3R0EGcypDt$RDo~cz+IKosc zfv?s**Fs?;3(B*0GVLu^RVlmV8uCSVSQnsFZ3&ZU3n1^Yxn{J-S$V&CD!DUj=#9JA z(KT_o2Ls=>)iJygj5V=;tByX!sPi9n=5?zbiw-w<6m*U7dA&}5no7R=tyQ*eISV%8-~pNMDj;J1GTDA$rg_vv9)I+9~#^kkJJbDan9*1l|M;XPjUx*W+dFE z@}ZW_3)*0ECsWq8W-lgsvB8c_DhpPLm;FiCn2{C)Xhtgn7QT-uSxOWOrvgME^orCN z&@6Y_1_^-jOl!X#oHR+h97~c(egsM;_}EJwmHV6aYc2T^5fWqw3`48fJy7I+mYF++ zyf7aCfd5cOla1tHB_Vf_le-ta+yp!%I*tp9_B-4?kgovMIFgqG9`y4>KR}W9+?cuL z)~mvfo+V5N3M2PAd`K-!T&($#Tfi9-X|qzhIMT$iPt^I|bW5?LZXsy7AmH)T2y^Wl zLVFt$JyP{-wfh8d_vk8#_9vKcGONepuLyUW&r*hCS(pbH(FnBs&3(q5kHjDOlSp89 z6U>U!_SmSUxfJ~%P#M!%F(^6vrFf{dwO4#Lhtt@Po0WbdPFEB4rHrG!FYGbg zUOgmu23F7!e!|kCPHOS~T*{*~`G92-m~ZV%+9E>}X4)9{l3L&wJf}>u#f73L?u90i zXbd~qw%N8d{nckKV3xU^y`vfiC(|hp-7h=Y?1+D*&{E_o@u%nUE%v5YK%_`-Qp@_W zjj#wROGwM)ulG|md9PV*U)i#oScWeeX+O@s;uReQdy;_Py_BZzJt@YbPnrN2-|_%y z7Z>2u_HK)4bBwR;ien6<%~x36bmOD*V%tHf>hEhD9=CtS`RUB_JEX|GE1=QroWUr*cH&jIC(C&2ul74PX&*#8CoKrru-P8T{`Uj$fsyfz9~q>3#bu zB&=w+W@wJcJ(k~XnC-qij5%ZS?^ie|Ycz=uGfp1Q>MaZSHCg@#TCG8+HeVeSD=tNE z&uiU7w5InC!Ruc*t3mYhC+b>n@|m8LHa?%L148ieCNeP#7a*CG5-CiSIOuxQWPSW{EXs~3^? zED#)f{nrr>=@91F4BSS5om2FnUEttl@)#z8Mrn0tnzJZ4Zf;HT;ZF`3d>+RCm1KOs zEDxwX?4S`LN!u>vcoY-v2p(&ICHgCTt7^aec^c2wAcVCLT1gr+PcNwcaG6oQL1&VP zDpoX>YUdoe7k`Z>YE?Ijdg0*qI~Ja&>~}G&?O;)7Wj=(y_-RevM?V&$_a!bNi=`LZgW-#l*K;8c-%zHuJr# zWZwOI7SAFmcAu_kbGdC5{-;L&_gc7^_8UD&?j{s+#@Z7~arDk6!z$Px|Hr7^H2&h- zf@o2mPXK=G)sSF|7F!!wS~&o4f7;+yV{O4W5nKIhI%Z<8AzNh{Wq_~udcz+XpIILn z8=wooa?ydv%z*X|6H@dUMLv~ro{R%+4zhb*sT1(42{{6g4cd_ukJ2KOZ~~oC7Lv#Z z{JtR7S5%E*M4O<$<$ggLtc>~aR+rrpqw&+^+bi}WiY1ceegj|!hNE$1rl~UVw1t1- ze~li*iUW8^cNzB~RFxob@NcY|Jx;)@R_RdT4-k!vV{d&M;U$82$)rV_f`vtb_~v6<`$-&5Jr z7o+SKBiGqQgv{E$XpiBIhOng@U?00;)`Ya9?e1DTud`ml=*TCjJ^m>P+nhGOm-(W@ z9CLFRxBs$A?2WQY10#vgpBTrp8?(iu`Xw`@*9lhv5tYmbg8{ChE~5MU#O~4I>{q34#I?q3?C^s`-M|wJsIT&aQh#sJReti1#E$ykTlkVZbFW`7?F06H zef7q;n*V$H)dq=bfIw-?KEL$T(u685Jz#suLjCfu+v+@|4}OL@eE*6bOTuz5kMp!(EIMnYgkv+!RvkR@G_SZtm0TX5 zl&GVp}j6xmwlWjcbv=6@lBLuIitjAOQ+>BCMU`k%B;=KQoR+!zA6O$ zv(FBzo=wQxe6w>j=o84A{*it7oK2v(PeI!K22US2aR)S2hD607B${q>BnvfRhJ5kS zc#9xA6>JZJKOjs1V}gfe-{AbMLL5B&L4Eyrx{y?Ayv0>Kk~hTb`!j30N?tz-md)-n zY~&GIVRfOqbA9Z3sulcqik_8r)hzE5`GP1E?{~dho?HhT=9o&#sk|Gmj&}vW)R4!$ zR-J!wg}2g)(O3KYK4n_H{^5C{ltiVZRk$SN#gDrKtWB~X3-H}wyQ6PP-KYgoL3tXZjPH?+zhX$!#M`KAtLd~ zg!2T4z-punTEd-Nj9Ae#6#!vLyhYJp^6bc>lvj?8hq1F{Hg{X{G}J-SPci#6G!U(z zD2SvHE2ai;Nl*f)XyWb?ZF_DL<}+covo6vJ&u;mFx`A6jUqwB@2XdM+ZQJK33ch|^ z6Xu8RfU*)43q6whMYEIltdyHUq_FU0ms<}^aYPPMY*9X~%?@nZ$tPhXV7jL&ZAj!! zex~A3^%{IYSb1x)_5~n{=wS+jyW2oFiTN>wB3NAm1?Z8j?viu;Nr}w70_Gj5a-4IK zxQ`hhX=Esxq9ub;nB3pp4&PRCkVosFjbkW9aJ-~DzKddbWI>ebQ6w^4Oi5vTli~#bbARq>)T3={ARymG-i|>8Dn4I!JD(k04W&su zBXhTS9oY4Q`0oL4+aB!UqbHhA!HvTx1L`j^OmjIB(7h_w7C_73sOe_Dj65A@e5{L; zN5o&s+MzVJ59K1ay@SkT4=5DW5osz-%`5&-t_foMUdMaZ0x+WHQLlWK4ik4ztvYWpoY_>BcJT8B0QnYLsDTtu1<4X8z5*~gU*q&?c zv2iVFzy6B)9QyBvsWde73B~K{iv_E-fu@oi@6jBI9fOwiuB`wkSFE`UF+p^0+vAJrS zfc!v-iJ;h2Am>8qcuHQ(?30BkYXs-sdeyE|*0Ue8L6% zSr7yR5$YxH%wM*KRh`DB4axDZL)vpx*vw1s%TNVt#G>5dY7G5%OWLcFS}9&?=fuv2 zb-q#L8Rksrv!+&HZ+d2^$eqnLB>ol?;I+L_&~IB1ZT_T8q|Jd9k2F_p4=gZ*u`=wu zX0(ah!DMIWZ;bh2J&ojUH}P;NEsl!FIlkTF$v+?;K3`a)ZX#x#u6$do;v3kj@E1*X z24b(Qk;f(?jG#&U=m(2j2$1Vbv*14xs(9tE?^}iKl0Cl=@Smnk%%8oW$*xuNX_owa zWVJJO#1)dpSB1K#G z4>pkh(t6Q(k%+z{_YR4xhAl(Fp>{FOr?jEP^7Br4nl?)?i0)t5Lf^-(L&Ft z^J$;PX%Q?E3KERappn`0pvT zQmGTNvDS3O%Kk|XMkdN1QY@wqptT9vch1=T$e*e_0n*5r0Q`1gd)dIHigMu)kHPC% z^-1!ChjjxRbJpH|{mf5Ns{gY;S*N_P&Zp~`znDKwFRf^6Hh1rutqzU9lQk~mFGU?vl%jTA^he`cAFD`aoYk(S@xq@CyQ%+4bnJaD%kOhv)jzgs zV%C7yMD5;*%7UE))!yV6E(fOPYY~F1f|zg`?gqt@q%F>8-+Wv)etzadjlI2qKY!R_ z0)F=bDo!eklWb15?H6(i{;PcS_I4VpAr_3|?JVNyEH2y$j+gRWlKq*-h7$tcLklCZcgE$d!`qR_mPk*x@yjGW$@WA(wMr4%ob zJ*WeWNg@aJ_tk87a$3Pz#0jQ^@*zAVI1?XJ(o=z=X$p13@=On}2-Izz3V|sIKK$u* z5vbrxsA3hp7E1`^g;BE=xfb&p5$jUkU8&=1i z^x=B@W&7HWvyv(-8E-Dt>B5xOj-lX&nEio8N6ruCcz3j-hK^N4@aA86CYkJ{n99Pb zH*4ImN_Vz!lAejz@1>3&yPZhwO*I_E_+M2M{a;lx7OSa%zmQlD-4eWe-gCib_Am4m$ze@j`JX@Ye>VHBmy79d z6@;#@lCPUbHTl^O#;X^8eX}xG%HH496lp4C3%NX4#U!v91$#Nrbg0I$=>grwbC89v z-roU0M`%4rAn$&`8~6ZJODYDH!Ufc5P%v-~5D$PYHb9XLCS7VA>W^4=ZWQu5LO|+g4{ZvZ33%tRkvvHwfivy6ek*~`1o!=jE;nyv@xhp6_D{)YIYf+$%_^h} zzX5gASPmCJCy^j1$zr;4WQA1WZ)Lmq%ZbMT_B$=m#UhN3-J{yae7`DG2*wuyHC}eY zfR_&e%wwqj8dieCC=HC_Wf+HZ2zKN}Wc%2Ir&-(EuR`DL04D-NT{pAYXGw(DJyO;P zXma-sQM02~34itLT>WA@J~F^I?+X#^Q`$X5w;dGenxK~&7{kwGt%!9}#&W8SSHLX7 z^)HNMF8i1D>(v+$qqKNDJqk;{8PiQTxduA#!{?9_US`Gv7D+!@DyNt9Wcl21HVksM zoZpQH#bYGaZo^WH?eoU_oMzry^g4{9eMzpxGG;wpw7}XOmfijJ-Mc}-!>=~;hGUYz$2Dom$2H(DhmnX?+? zc7B@w+7p)$?}+7tD~e}}H+B}ljqnwI##B7>vUaM0A|f}AprZb0*#yXEjsq)jOO*cG z);IULEtR8aC;ByOix*6ToQy-_izsbN($Wo8RKyVPhPzI^9N#3hj$b#8s$;0bwuA(3v{q@YeEX46w>?{Y zV}>qg%6B`g;LT{NwamT@xkwsj(_GF#t?J&`K16*TLzp-`DEN~ha`y5)sMY7wo-EwU zkd_}h7$MQHB4(L(1CN;4wKfv=(>}hVr{bwLpTN(Bdd5yLJIf~LYQos-V1CE1pP?cM z>*fMA=<1=#@g4j~3qt4QBmZH1d-KMv53vh}8V0SFe)n4P-s1lDXVRtPJl82)%Yp1v&b}R?}2j{DU)T zgFyNq(Ra*H#h#H)r~k9l`>{Nz{6yE$h97*D-XVWhh3JJjrj89iED|=6`Isz=98F+BWyxx;YlwScPLzr_$q8}iZM3u^81nA6 z8l$yXa`arC^Fyv@$*q7OMQt?hS013Ww?zo>xA+B#ag-L};%~;eM1z}rGexc{a`WSl zWiLKkD2hCz08C2*zbS6W63~-wNmE;wJ8lv;YB5ELp?yw;=@RE2lP_x;uHc%8sE}p# zljt;tLBuTjNH%~_af<*me~j%`Qz1}be_Q3_irhkaEP8?~A~Wr5(3618c=AHg7&({T zd9SrE~7SGL+oc!kw*Y6=#Y61Wb4yukB;ql-bPQ?E@M5-_cP{d z6M}6<3;mZXsO~M36?>8x<4f{HD(SVD?GIs=hS2^MrO*+i7xc5{U*;A(A;xOXfOjQD zLxLxvzIR1V0`}uMO3^QEF*ch@@PoTW;yTUHWyN_Y5oiVL8*gSq?wLi2Z#X@iRKWqp z?hyidf==pR{_VL0oE|HYoEusQ^*Yr3oXo65!O%rJYhVYx4yse}1F#vZ z08jS8?-lLl6(!n>z~F4#cL)-E<_IrpM8T{SV6BsFs}5HTjv@9U!3_8L-X!SjK7(Ah zmv3cP>^~qkovs7)>Q1F!O{LE#Y9-AG>J59y&W&bwe?)}&JC{X$&@eq_Z{FMT5pCJV zy+{1GK97_ruPD;W6Wg`FjFGH-|2}AMb(P%n+K2mt$koWEy{WD*_$QjKL1XM67HaB& z*wbj6NRD8?rrqYPK6|4D{gX+12bQTZvr@Teh1F1#Vg_3Kp$=N9Z?B7@KA9tAszeCh zN{b75M^n=ZcfN>XP4f!tti2DPi1l5405`M~#Y%{$G1Fxcnh=Rwxe2r>f2`tEk6-fS z;rtuJO5~3a_COfcR|_aH@Wa9dt(TRm;BJQ12VECY`pesR@sOo%C!1A6Pv|W;O#^m)zsjo<`e9$!b(pe`$$RsXqhAG}; zhV>X@;`0kkpBeIeelFg0fgr-uB2s6c#P0d}g_ca(m5x`^QoiO|_$i;2=#GWvt@=V) z4wzj1BZ9CR@{TCkHOscR?IOxHF5jU+=ksLWn1wiYy_mMvjtbfhC;P9v61xF}%kQ44 zQc%6ti)l3&;?q^uO6lkuL#$9;U|!E2<^*Hu)H z_wB}u99;qrqz``^;5dS1#|e5c%ML5)JqXyWk2Vy}Hs zTNcQWlF2I21OL0B%|QNqG$DNt<)ex}e3kpWFOhb2kQHDm_=HoQ^DQU55rCTTP0Ix! zy!j9NzLc*xqS+R2a}pUxvDxtpgfS-4M3HuutGSnv!AX!h<063jVl4Tj)-{vXOk(a* zqSi2$d0AehZN}-n#{hUrDlsWv``j=iHCz9>C$fb7_fioK$}+yJHS^Y4{)4>po2i64E4w>#itM=-07xO z3tF$4$kc2Scv4++5=$EzA4C%)OMagy{(Qh7VSc+Lz=Z9?8*?5&-xx>Jjdz#I9eH!> zxC(tO>-6mPIWQ1ZcdSxR)K7pV;xV&(`nErb2J?iGa-%;iVjb9Zq>9?63M7%8`4o3l z6X<%h6SU|9=B_!MOiUAn+-*v@+pVxA&gJv+^oZl{i`XbzQir1~wa3XyGHc|O@2{Hx zvl<(4M;_txVWRhChMz;o!HOY^P!rlT%o7sD{a@_Jg&XSWF~(&ZyShc99n;0ztX7Xm z2&!9}E2A+Mx*jbpahnt8BDDYnwu8n8Pi1}5wU2CRsr`l%lIZYZK1oeyu$gj&AuoGj zf_<_D7DiSC@L7wAoK_l1@Y;s%L%3uoH0C*$uzQRHwN~V9)L7ur9nN8|B6~PGE9P)* z^n;Uby>s8295TJn-W@E`z7@HX1|rKii&8|RR_j*j==)$Nc{JjgnmGbjp%c-zqM2r4uD4@jEreeR_wwJrRO1padN&2Gn(VUYT_3L%$yu1ov(pZq>Bp zx=ykBnKtbCCjDfR6xgfxS`4Um%IV^-%hvuOx0gF|R9=Fy#c8au^F&b9@mTWoh*x2; zCUEc&cT3(W=UgfnMji4ieO5xs-QGa7lhZb3YrI64oexq0k<3bbgH4%UHrs{_^Cjd! zG+yE!`-B(y{qFKjTC(Pc_VZLFg^W@DEq${8s9ni+eXko67tIETf(bkD+B0?Pp|Y+8&Zc?(?OFeYT*?g&S%u zSyP^be5q#lP^~%Lvnty>I*)Fp>Se#&B;DM1>7(52?~_pp6WsS?o-xgE3*MoA?VK@i z)Hl>^pO;0Ag*r4QLI+vvOId$67x1nouYHKQY_mOUgb}=6G|H>{PTAej?z0^OOByFx zjoaK3yN}?{N}{|GSO368Cj?dww5;S+Z^e)GVQA+v`qnOOf1Uqh^O}r!;C`{$o zp<+GKfFHQKfI?Bi+xZ_>$mXp{8s>_fZ$g?(AUqO`0H(@V0I`<}Qsc+lb)*YGN6~fn zHxVD7z`gI!TW09PwLfP4QI4k^VXAz(a2)kc52)p&;QJZ`O0of@GK!ib?N>(Jz}y>| zs+}}wPO%5yp9Vp`LfQfJf4QaDHzM0;-p+yu*7dj*T@|^XPG$;jT)422ko_v8jsXI! z5g=}7qUxP6;Uc+V(94}NRRAcEpw;3Af445Rl?$!4`=WM687&SpsspmsS%Wh9Vsg8- zZIS?_6cGMW$BmBN>sI7%uOZ#oe)u~TrgKo|v`w}Qik&k>nRn5}kf=b$R`N<#u#zse zIrq00ajioS&)nu17b#c%I?Y>iWPo)g`&Fr755cpqU+VedZ*0Eee@)K5v|wZa(|%J! zVbr-!s9`{G++Ghg@!2-1ighiDcBobHTF@7!T15TG)nsF$#cOE7=|Oc~rVO?S)V6~w zdkZ)r{>=T57dU*@>YSG;dYO@P)8WQ!=#g?Pf48R|PNYYMRLSAlI+A22lfKLLSWc4^ z9>zS`H)lIp2zq>EU!}P!I=rXAi%Ae!AYv3BkUX3pg)kCf>?!cF3K0HhZ0OmlLVv=z zwtHBEu&KqfUGcpsgK;2MSl-3O<%bcTJDH6R^_FnOcD;GzOe?V5;_rx!A*ZBoZOkvS z{i5q>QTm6|g)#(n;3YW!#ru63a+33da>rPu77fLVHx1vKx7)9;R$pCRw+jWy74)TQ zu-EuNuJz8O`h2b~`}>$G{8~*zQ`LwQnhK8F@ z2ma2_P=vRLuALj)%kLWhsH{&j8%n|XDte-G7Y;utJ2TDUqkiV^JHL`NJmsFKd>8iq zOkb97{<8-~KY>lM#F@;4Vqdcas#3A-yOjX_y8x6;onz#jwX zDME!WBX>5R=_nemd>H1rbHK{_4pVV6Ajm|mbnOO)TdYoFKlmabGffyY2kfz2J;EK+ zpRiG#y#G5DH(j;l+%1%_w0`Q{$tka2T2UI@DjbLuZko~x?yx%A@jMK*`eQb~1cOnv z92hhuu+0o3FtbMvIo+Zhr3~}w-UjhTk%Jo~NyT)9PZAlHq!7NaXLG+AM7#uimr1&N z(vMuZvxPK*1g)#o3{(64i;~mDU%n};yp4TIC|1~bkX!p!iIPp03)0uzZ-S&+dl z8=0ihFm_I0T;wa`)=78S&%d5wCebXd>lgMv_95sWvegfpVb>}B!$MY91EZ@&4c8xA z10r|&za+7ndDes+wtE40P4Bngq^(p}dv%Si%C)qXwtAmuTLu(-efw{E^mC}uQ&3H? zzX!e)73dm7y%0FDkov~44e$TjrL)p#gy!q!KcD{V?VbThA?PR`F@LGqKe=SvcSEBa z@WuV<15%CvE&P_=u7=a=+}(ry$&}cNbWGjL^Dtz2P*OzT01&lix9;EVE+Zh+nx*jr z!AmkhVlsXK*CKA{B?D>_MORLsU(_Ta76h1nSz>_%ThogZ-Mtm1d~{Ibi);i0F5bh% zz9q4KFv3JihW53K@WtH)LJEC$9@m@6hyvE@$O)L`YK5?>pG|?z`p9%7uB?%0q|BgP zzv#|_?wy*MhdmT%Udd$AXK5=`VB)9*N}A^=jmO1>rMnvxXyN@a9Vdw32wfAQb=-d4 ze$(VQC6e$ltE4q6T3u?lI7}IZei<$Vxl5235~Xbi${`pAj-I=7~b;Mz;Y*scMOvV>zHIbs0tmOewWY+vZd}0x5{H5qiig$!?~Fxq4rIm@C@X@maegPMb z)=hZs+1Aw>hxe#nXa_x z77{!8e4?H^vm|?W-`donN8U^+<9X~r0n{f~2R5R6BG1O2|HhTLMqwMoN= zqAR0J*-2xwTtz4M%Fje3sBsnn4U-SxFNC%BlVsyl%NT)F)6O7@Pp$vf0`wq8zP}Q( zy4pqGVdEOunpS0(=dXyy*@J4hIc|%#w~`|K%@=nPG7x*uKWz*8Zjv%t z){j0GzNb1UI0hdr`^Z~=b1=*-$?}hCLiwFB%N6bjgH0A26?2jL)JU#r%qUhNiv76p zs65PgPXE9~zbO3`#+SyVb108i)bQs}&7(Vgf6SMSs-ur(9bJ|mRlkNNG}4c~Q|JmK zeRWKFoR-uc#ZYHUADW}4u&m+=@$BWriXy;OZKugk-$LM88utqn3~K)zq}y_fs%CP< zOj>{!^Vt5B^K+vT7xd|#8BuDs3FxX->%Dw(?O*m`y=&~q7W77(KU!n{JKxyqZ_O~j zj2^-2;uD(b#H89K3w#!(>@<^14RBU5uVt^(PgS-Y_g?k}t}7(5<2T5wwHer6ZM)EjQ*24M%(?L-19Uyc~#TVeL#LxBY$oY#t-rsqs!phA{r z8i2IJc*=m9^>))&kBi`%UK)+Dw*x*iwo6usU%v$KHY~eUk>qW*k`p;GSH+iesNk}j zp?DWp!ZMRFT2K#$PbRHj+2F^MFD7QT_&H?SW5LsDrwiL5Q||%)9woFv*G0rvD`{4D zCuIFP&Z*_k-uq^>2X2J~TN*ro8z1KX?~;5|lr2F~HvD;haM;E-4grNc?*N$ZZv}aoTHnxkXOb(^tT3r0WXc|U9LUZ%2Fhgwm! z_`$&Y|J(ASzUWY_JLlX#!W_gd$~ zXwaLf$;K)D2gtIsx3Ts)Ug&g2+uEhW+;f8Mx~H8+R5^D7IAwx3%{W($U%*Ar^>?Ck z0?}`0yH(=i=BBb3?wE=(P$u3ML#eApIa;tv=UmNEu z{#m|}kP9{8gA7BJmir5&@d~dii}5z`E&7yN%h?M%Cx&0+1J~%;e`X8b+P2%xT4CfI z2nuTYNqh+y(LHINoEXfOoqxNRDJgOoJ~t^Xnnt@Za;jsfj3r;YgTH6`>z%!`txcrG z#@-jHp}Udn!G8EltE-#(CRgpE;BQU;)~b)AwuyS)_^Klix*$wowGC@dq+H9Ego<7AwhS8%jFXvb*c5WKCf)R9NcxIXixQoL|-~&bq2an+ee> z$FHjM)zu&Av0jw`Q{A&XRL3$zIdluCCHIe_X7#A*we08XY)J6LuvKnss$*}_BpFas z{{G%5#EkQ8v1(WMvGjNT0!kh*o(6YEA({K9y_@1ey!3qIY97W2$5S6p@+&7$TOh$Z zU@ZRN(7p+E(C>@s+_R`8XbLL?F9}P9kCMx(Q0Y=#iJdlY3J3CJJK}1D6Y2lvHiS7ygWX zR)UxRNf>?@@T_CLL4ZF&?%QtCS^U$utn%c`PeBiHL6FF_3rAk`XvfD_%J;6cn7Yvm zlSsK^fjwM%lXFV4|M8!yq%9cE0Bn+=J0~K>#4x(MCHOn#t!UQRQ8~M3lul5_$V^;9 zgoW$n2l@;=KU3NT?m4We9$Suh^w7qU@IDNNQcgayDEbL)H%!xN3;3(zn67Yjin=Q` z>ti(K9a;RzQQrvhS`!aC2uV7OwvXv=8G0B{pxYk2kvxmiU(FZ%Ke#UXcUh>d zLrC-Nai{16wO*Z=K}X)6Q)lJZDf;Qj|AX_=QV!(FwdCyQh6s~fsaz?T2&7R22+kV?6TV`ZEqpJC%kH(r-`By3#jNd1@`PbX7XWkCbxdyb3SS!@_r=A(IQ?1paXLEoDhBrW_~|j zo#;;!i5!a3LTcc+Ds1?Z&#~WFv`=wpPb4Z3HZb zdmfY&z3rl(V6@|tb|G9^#`0R^jJfm{;3%B18wKp2=H|9iZN0zNpu4A_6TUsK$<9)- ze(xwTbl8+xjJSFD38>p~-t@}{Nd{bPha02S85>QGcD1RI$Zt-*pLOz^w-eo}tUGSe z1!h)kQa4ij@wXE_jFAp}ckfask~LYKR%NpdtWhm-G!%g;z5K_!N9}0Nt@C&E3*#}a#HI2(G3vz3hH9{Tho88h=@m9DQ zkY!7d|LN;_qqcn}tGnOKVB#+0)8ng)lJi#S6_$Fg2Nj_LGZ@qabl{(UfA1OSziu(P zDqNT}In2x1FBe9C^3{43N9NfoVtU{&Cc#lJ9{*>hAi`#lrpcc@!>M7^o~t4c)Nt5iBV0&P$=HpKhg;U z52_!C0lTW}<(h^G<*6+n#`~YY8yNoNnE9 z#ADa31?kBjvT3LqPIIOB?KZYsU|adEF=B=Du>|?mQm?&3rx1fpeY?C_UAn^c z?iAHyRx>-Yt2!NOH#B!3>XW z-}T@<)Rex%fS9CT+{vQAKEVQOQLc|E9?S7puj#7DH_brqd0)1J3wvj!mBR5;e6FW_ z+vq~8C5W%ZT@_B%Avms?0)2n+DGH#o!_~UcQEp=GK3Ck_YDJZgvM54_>;U6|)pkea zL{thOwou%2Rgx--FR|Ni%HT@`BThiVCBkTuD5o;CQN}Rx@cgrA=lwlXb3l4B=q`mH zaXkT7%{gNtBPL;h1oHq&2!)7RY>?b_J(c?lT8sl>Zf$$Za^c9`ANURuyuPPg2~3r|b61;WcP!T^3~|FMVgUMoNqFv%Sb@(`w1O0{hM_3YvhZyhGetHFf!GKdG z9LCZ&*(&wqQ=?go@6Mis+h4j>Hrc8U@YYLFPqBpd5lwzp81`52ZDFNx<@wm`;P+`YG1yrcFKsH_I>FS4?uT?=!S4P?BMZ_lus-H4y zoeeyi6Y+BWlIjpYN-a_B%i$;3)*d@ov)gp!>M`gWMkIBJzFd4AxUkOH6U*=0Zw8QH z++iv3PpP-%E|gyICDGlwK9mUliN%?a4s-9^VL{*R1^EMp_tdzMNPbVhwCiJ4fnyyCP^&4bc{XJ_V?0zULT#eO_j^jz;A zx#rOx#%TUk+Mv1M%7d6uvfs{D!^R*)t0b~I&v3WI>n2CLIq)%!`lynuXq(j>DDPC6 zvVt8=LrbE)c@z(##$HG>OIi>kpf2WBI@kQjSsB}mqdj;qmsn+3o}K`)h@<-E|J(Ci zc>u1|e2{fZ8|UOY)A~r%g@4F!ywot#@GFJM=hxJuI@yTY*{7*#&7Sl`>=@dq%;42H zyE6a1zI_&iGlxLbH#~E;lakJWls*!!lwFEV*(ZBAz@|cFlR^eZwPvw-p|7SBGqy5N z@5ZK}hmeEz$vlNS&%vU7)MxLsEzeUsiciW!VI*NRf4{uXWew4nwsqzy`&DW#E!q?( z-cL@Q2fl*t9Y7j4b$3fF&ZS5Ur=H%I6$^h~;WJ)?Mdq>BSqLZuab3>KE{#du6JE_K zU(T2vYg{!)+%1${fvUyL$SODE2Il986{@+Nd*2SK_%~lq^{euRm&$(rB|X^)ZfX?7 z1bgjzcEbF>d5p&?3W1ocbsv_DcjS?=S0waPi_!&IM^VxK9Wb(_#1zJ|BsCC$94Uhvmc?9+(sei8F4K4I8)RtFGSj#V6 z%gxQ*WMk~wvoXPXOqsuIJ<|BR7qs_!bqsZ-l_j$`RK0T4YrmZNb>&Of4gF=x9R@A` z?Pf$|*@ErCyV=!yzY$lln)Uk(f)7LWecyWOiF z{U=i9zbyqW;&-I4FAw{B`BCQbeptO#6345`z=KZDKHE}NeaNJU5fhSP6X;GpN%9z^ z!k!IW1Q`<~14EH65Q{m3Z-S&c7$!v+z+5i4la^+f$S+}JxkPQ>TPBb80gbge@@Y7) zGB^knVKEKZCP==?eS|P0*9puo$_(#s#SheIjwgkoatTXgRFzi1wBw(JKt?t}!yBlp$o>}u+ z4rcZXd%xjT3#^aDwahGlb_s%K{Q($=yQ};tDGGG>026YAA+F{OLP}(_c z<}xLa9qjuCZscb}c8-|idsY%Rco79l7tF`vL5GfzXCpO93yCk*71%i{BN1L|5wMeC zyZaET<6B`Nj#TS-sY*;S^rlYG>34)+5I1M|Da_)!)ixW&?!=wJ8uFi}Id$Kq3oSgO{+L-gwUX~lM2j(e zmuIlj6kiFaE^koGCD7|vCD3-?jw62Q2wKoeEn_{9jrtN2P%S3zTF&nY zjvRQs#)wKi7&NG7CP~1n=eu)ZRyKv#^O=|+z)leIuH%C>5A5k4RO~V4_zXY-$ zhn2hax;OOPGr+y&ebF%pcL1DUD&S(~Er@bZX$&aZBW$%~-HckP) z_X^_LNx(H}&qqNS&g*y~a_0HdwszGau)Fo(ASIBZ*52%I>)!7&jfRQu0qgSVy$yXRe!KYH6TnZIeX;{wvN4f z*Vn@sh02aEHQ?6w@^Q=VC~cacwYLk#)6w9U1Exi0FbLgM8>m^$+2$xAYE%>5J{DN= zhpesL0MvUtY9CUJS=+cRpZDJx9g3UeNE48XrE4s_t#I-DXP4FG^3jF574q?Y&0O*? z>8}1T3emq^m;sqpWm})!hl(DH-VLNyRfxR%&vokGPyb&&_2muT{HZt{_1Z$rLw}1w zDjzE#z=aV!ISPLc|6BG}wdG(7@C8^|dJf(~W)O-gu6%=UQPsc`x=FiUOD(!;Ns>L+ z^TEG}4AhI13VYX$MgAMlDnbP4CanX=BxgK1v@DDjRWS0_XTE28(c|i)U19Yrg;t@ zv;lf!cLS3FFd`y=A($iE3A z@YDOv7@}k@E!GAo)a#KApTrx>$pW~7?@eV&&NV;ZX)rt9yGD(N=nIa4pzCDPcF}xX4r^A}AnZ?>4BjJsu#bK3 zh&!sqpJi16a&9X5iDa)>$d+WZSMCKQe9UmJvvAm=;cw3)+863cMFO@jp$A0=Z&O`P zzx}Di3KJ-RY{oz?Idg#p$NUI9hx53A*Ng-XIe&?cnMt&n&C;9rtSyP6nOwF4YA;A@ zA`}(Qs`@H;h{hO?Vmh1q5OJ8lRD3Vi<7t{aImPef*t~(8TimpKiI6o0)B6~@2^bZ&uj~Du?GtH=n&e602Q-6oL(sY=^2=GZDu8du_eYp)|l?mZZ|{MXr*zeLfvUx&|?P4qVj>Zom`h6 z1-${&{f8!}uZh zC*cJ_J_8KgZF?%zJ${gN*g3dmacSDJH6`KXhMb%@}1{&gP zpFF#-p{Bv!>yB$EA^Vh!RRvwkhv~KkPqC=p4BKjTCHhED&Nu8Lq72~zM0f;@_Z=b= zoT8c3@|f)M!E&@i5m{b_Sos&w`RV@6zs%V>(@T8rffflG*53#Dw2y(~% zVY>G-R&L>rei95+;=!WB&pZn8{nL0$f!yZ1^*J*A#VL3MBr>ESPl%4mcA-(OB|)fn zmTtG~?iRzMnR*=F1`ZttLf(^ zHDAsGdvCYo;5VkGul=Hf*CiyzndoQOxNFC~^j{2p;5!~od=dCwVTCO_oiop>C9f2X18GuDFTS+h&p`JigDPxhkP)|w^ zW~-PB3saGaqxV!S(+{Cjv3zEy1~oNeCOPlqlln#-hw!LtAS<6FH82&O^A~KD!Zfb4 zPhORgpT5ts^2Pbo3Vi*l`?Ob4@ix-2?(=ga3e)aBG^=m2Fe0ND|Cbi@z7 zyTq#TWP#*F%!>cfH;;=2I`YQu0W@bPOjGhYn!T{xl<)c5*1T_j&yizj3y1@3N9)-gb>G?-ua)9UtW1EVph zq|DzKA1xF*KsQeWb)J)!d>;{8)t-?xwWSvyEaf2rLg!yK!wgReo<(Y%>RHvTcn2SK(KzrQTME++eB9(f+lc&f?&v+l4-r zyW0*}gMC+2W`-UVc%t{9rc3?Rd*P{>ac%xx#I1xA|GWM2?>3=&&uMwyYm|2hdRkw* z^cTc6ofBd#em-wxd(v+yc27QmTLOmIOo97wedw(4}GB&m}J{-R65>L|H4BbV`Ec3}K!DM&L?fbquW4 zE(4bFOtHihSKxKM%Shl2ure_y!MQ){4*Nyu;>oM{%f45$9a!J3CQB_re zCXgUkS5Pi&8Yb=Zw&`No%<_dqnMexln^gCEf_5eLa}%3qc!2s3vXzZMZ55xA4dp1xF(v||ie&;WEj|c4o^SNDKg_?@s4i}sC|GWe489>O1I5D4c z4ZU0RdP*s8mzgY^Kajtdm#z^&X@S;BZw|-VE^BBhwWU0ZB-Veh$Sr(n=b#xS&)~r` zBF@#24$XcwO;h`4((F_KvIc^c ziD(gqCtFcO@$q7fNh}y8954K^(A~548?6gq7W%PILo*!E`b_hfj?zmF))FQa-*<{w z)d=h}92TVIxvCMuVglVWIM=R8l&2V{&t$5$c|&enMpLZgZf*pvE~*8+uH6LP+Cn^M z`~Ne||BQ#%j7R=6_;Sc1wQWBrkB2MB_OL(a5w=9F=`QEgFzarjQSC%svo?kwK}8kC z(DR{R#S^P0fIV!$nvqqM&+7SQ9MT||)qPO4e2u_cfWykzEk|a4EY6UuhU-`*GY$2U zK-!b_C|@M8%cXuiZiIWqNj$vSLL$zQEz>ulzB`J3Gzxp|Ny`AhD7t+mq?TnRK}Um? z`P5B+dhi}P3|;AqxexyK!A^Z(!}?XzL)gsD*5;_CbiOL{;i^Z;Z~1d8Yk`uxnU`5A zxmLyj;f#IF-Gh)c>=LYXrl6rO=zdx8$lJ9^H0A22>#>i1=XA9493FygkpXK#yFHa? z4uL9?M=i?l%F*Jk{Q~{+ImQcb{Wl-SBTve&ZC;XpvL9h<5RMv-(=k9{?@vjr050^}4iZ16+aV z&P-05{3H4fD8?ld>e##sSn&B0_Jj7iRUR2I)5KmZ|`BblC zVX3_T-QUzjzb4Gh`m?}h-Nn8>z9Wv zbu8YJh7Yy~Ju)JALgv!2Di&`KDB$xbSZD?G0=J~) z&w=$_{>%K9pmCz=2RQhaSWpW61Xw#h+!rWx>_EZBC(T?-o5y5H_zAlbODNf9Egc_F zHzegsAI7@RMflRE+O6g%3jpw9Ko{VN#*zdU17s}Oo>6y|fbyQ?QD638z576f5|8GV zerqW#O&`!J;Z3NdpzRU!faO)iu#KoMzC0|)6>tH6iz5c+#Y)7*x|zA$Hh-52*tnM% zR2=23hf!I(V#Br`80;Iv=fD-1CMfW`+nct*#P9IyE;IP^Jc&@lXgq*D^%(ryeK5Ur zAb`6%S1kZjv@xKg>@xR(8NLs{Yh4XdLcYJePJk%SW&3{;1ByBqlrt%;pRXM4I*-v zos}KmHSB)9CPC)qmL3-Qr^nyh^A&?lTCaevph{Gvv3<(FpifhO!7jCtC`047 zIgBOCN1#XE*|yQfNm#P}4ie-C+>x@c8Sqo4q`tJQ$ZO(3n2?Vl#|#5G4ZF~0YuCN7 z-huPjkD~?wc=&%OSqhy|-^SPCq1Qd=fz`ODQmh|SGA17hxJcj0xcvCfsdcd;k!%Tc zY}pRoQ8}p2L8orH^W2l-=esE}xeI%Zb8fb`n9H@IHqeu=u1utl#7s2w#j#E7ylyeyD?|Cn*cmGMxLl4{0m#ZBOKQee0L3fg$!8|!s+$C_~p zV;GMP3-gGWAp=_AsPJsy>4uD9N#C}3PEgqDZwP}GEIKRnN%(TO;%%t_T z`8oc@E0~o`VPX)ncH66d-f#De^u1*3Bw1jj`vsqJNIvw13>zy{>N6Qe4S$YfvTUU0uRn;B%%_n+zNzn-d^@fJ^iejTD3 z#g%hB8Pl@eR~+RH!xxWuV`(1o+CIxeK^%P#`dq8-yxlLabs3A8m}GKRbdo;PBkS{^ z>MEcAK$Osi2?dBPiL>_N@4hSt;9-%3Cf<{%A4>C8kA8RsT*h7R2vAAz0;G3I00ga) z7Aj~SY$wJ!U-^B2fsiD>?-L9NLPw-utY4ZH%p?^3mVjup9)j7sjR_MrdTgX_scHRD0DjPpoe_IK1K zS-O%zmkAs)!I1H|39jL4{P0`fF0Y9Z&Ek1AAvv%D7l4)p9sW-~5- z`Pl)_f%$MuFq2cau=L3V@onXT0M&#k;1268R+rRARGMHNEA|jv`v%);D;hD3`&1b~ zxEaM(bRhqzH2#}&P8jogk@|a%Re1;Pibzw6s2B@CaY8qs`_>Uepr-#08{nDppdVo~ z%m7`$E+A4!pv|LsqnU|}>15p_EsJmgT!s}{x+Oxrfdfw`^Zrwjd!b(r?naA{a{ zI@&MiP!=tx9y6}Sd$a4F@}s;0Vylo$14 z2-rr!QvqVq=x$1-4-^gQ%xt=m$M0`uv`{|S6W)i=W>j&88@?G4Ddl2C9DV^kd~19`5UYly=$xQF2}+ zyn(Gr<-{?6{u~M`sLZGJ9&Ybn5>ri)^CCa2>#PtE}y^|w!@fhI~@Nu(as93tGJ1VQnxd}mDfAnjZbt>z*r*A!qj|*hg z-(Q5hs2|b*!X9inoyLiWcK3wK+58QwzC)I|ICq16lZQ5Tt>l9uMRq%7i>&5q)-H_t zO+!LNp$8y_EX@_!ZE0C+o!ajgnh{TT4MaH6q;1494{E}4OG$z$CDPQ-^HnU=J$u*) z=@9mJEot#Ta#u5}uV>!6*q>J)AeSWHqUg_+Y5w}Dd|Iw*3H&vh{A5l1ekp;4^^ChS z!fc37(U?`}c%td-LRg9a9FejSmfmB3|DkZ^XOfX(jwSE%*U=cYBiBopb*CH*V0HN; zxC0z`B+M3aNEI6ya(6q=6LM_3TK8w>rZ7L#1HI8;5TR?+pTj3odz8q~snCW|@_eed z5+jqTq`m8dMoAo=W86sD2YPD4pJCq;OvLT{t;vwKUsxc*K4g^2w-3~6-Een)_e5dp z8OdASI6>6UYbmCY=4a=ThJ_P?nM?i`EI#VBpcSJ64v5;g)K1hze_yrR)w;EzP_B{t zEmeR~NUJ>l5HDURqW$cN&EOQYiNbQLPKw_8|YA{BKk~HQ}m*HiZv1U zW|956_G-C!(`)jxW_A*?$Tqi5_niohP)_Tx6M!q(H6~m<@m+j%B0TM$*NAvpT8OY%M;Ne$b4;vp6)Lyj_D^ zi3&?hq3xok_ru4d^LHmhlPl$QzoObe!Gf)RTMs)VrfaF7XQFp^E&wV!1Zd8*vk(7~ zxcg4B)etq}0_xoSw)I~}RRt>rhl>!yud;li$QQE|+iL4U2AzA8i-c7yK(zPZmXLU^+$GAtCkRZAs&zPCja%d|2pz2SfGzM3Yu?u5dp{X(6LkMxm<=FACv1< zx?hUh$Gr^hF*}uQe7*}lP4f4Q&(h45o~={D-!D_K%pY@=NaGkP;>a4xJOcIt147>b zUga4-esgJ7_%s8da)x~fERuc+eq_lQx*EM8gxpe@`DE>xX>wvLdjY5h>QYE07y>>@ zJEO>#pS-Ek<-o$hMkfA&`vqe$0}uD9nqLtTkA1VE^(0InUEXlO$#Vrx#S%*I2Hd2o z=_)b+pwrvUY!Q}>d`6wt&engRUE}Eqq42c`>0XQ4s@Ql*$ttpQpjYTfmlwRi#UsyN zZZg25=cRoQKVQdlNYkaS$8t@W^|78rp*_43t`kZE<{qPNR?~pn?6D3SL62on6vIkJ zd)Z!NGH2Y>bZk-Qp;i9- znW%B2OUAvqoK3YwHwD{p$NmM2NnN`++yl@E&=fb8T~<1LpCv^$jO&lxkE>1|oj@Ff z*N?Y9VF9QGJh%kw0_z8e4~gbEk14@444>^wLsJ^;s+OOc}qG@srBnv z+6N`&tW$e|D?AKJ9B56k)~9IP58>W9Pwhwr>|;^yv-7{OYoCg_mrOgHUAH#7#WQ&9 zvxgD|*Vl8riB)*v;3sLdKR4{Gs9Tb1YG#k82JGXGst-2J=s7cHm#TixR^tV?mQ<$wy3sN{wgvL_;ePx2uOf8(Sd~2}ftU!u2GulglhCheddD*@X1B#PpU8Qlp2j>jcL?>}>~&JoeOKNjTD*vo*;&81nlY zc2s;anyY;i>DsP8;%*g^_H}9IuM#+dn@=zO!p&vGGq7DnHG-3X?C0u34lS!qX|NF0UdsQq8^UXxqUB;j&bU@ zk%t6!YPXm$8EvAdPEsy;>*E>|$K*6T5r15G2ij(!c|gTG{S&s-s;2uLL#AHkRP;~1 zPL(6P2-(@~3#J&=^cTp!@*3vASJ;?p82%KJexS$^?s!v$j3$T(Q@ zS^J+-|L>Z;tn)NTrBh}6xw89N~OIgB%uWI+42y_)bGk&Ow|iwa5UEgU?6aoiwc+!dV-k7 zXNkQ|a5hgDgL0^6QgQpbF_j66D4(~ByK0%<72~f&Ld~h>g4W8$k%fx&#?OVA{jb&x zn=NIYJCAdnA=jM88&uQeErm2@a=A!S2IZB6={fL{)6)Xy1TlhWz0OfR^ik zhJrNJvuZrJa~^vDP_iN!0x0j&>+%ivos6MpQ3sbV`vuyKwwF{W1rRDa{UuN zBjEJ=o4?omd%C7P*XNCH%v2oevCgBQhxp8a4&`-gafGI)S$UL)4--_1;6ba8xtFVs z2v{zd9f-+`!@R>|hBd+8#dQ6tsI+Fv0B!5GvBRRFtqp2!==`}g0<}CoN`?fG40%Az z;+AS^bH}n!UbDwMtZzgBl^&KfkB>nuBVoB=*5mmckvNV_wtTFXiIJK6j$bCi@)~gF|OBcN4XA-PGA4|H*pd2 zq)}cRJD>L?p68y0wvf!7PS-2KJ3hTpNuN z#d9*6yBn>cDXb^D7!Uq@#m8ocoa8$*Y9?pD&b-C9I}$vQzNRnFxR)Z-Q%Xhu#1Sj{ zYdtlPrC^AWibVFTTS1SlFZg#Q*cv|ZtX{Ny$avV}Zke1mC|@{84<)GyTl#L`U+s%B zDd9uG8uJ9U!kBX6OmfXtF&VVuwT}B?>fBp!-s}j^S3cbiJljJi-j?D~3oCNk9~z%D@S0YkIkjYIYF;)Bb= zoN0cL%_{SZ-%1)AsB<;x^rHaX&{R+@XozfsJK=TB-6idt2fi;XRDCRO{g0SVzFV+B zA!^FuR!eCGjPkq#;Mt8;Rs9uf=Xi_d+?K1w=EUIo68D{U&o&-1L^JH7^om#h`8`hO zsyp{+)c(V65A7G7zyb~4>u#excuQ@l?D* zZ!!K#M$Efp)=es5V{>pv$FuEzb}0K;z9?!=c*!Iev!`3wo|Ihi=*)_ad#V5KTv@%&fpc!|g5KZm9GZ_y4xtT_M_7pbR?SDeJV}Kch>{%?D9*XSt@~r4|3~>i=oayJ}fO?U!JW z5jSMr)kIBFJ{frOw}&60-3K9e*M{zyW~+$T20c|(3^YODjW|F?0yn0=68Ce;PNGK! zBaRvlCDvnLJ-|U)=#UtRNB6QFfWg8~d`j+RTWCaytnsm=CiuxS zDxgbU4n2-AXBY1?QKrWe9)w1}=5a(43ITDod!b*Ytp!;&_(tseDEdgE=G^-UVN zSj*VGiPZok7Cw%e#`*@<#7-`c$TuKD+JTJ&Ttfuc1Odjm{4<(}t@p5Ow&9xmqBtY81krjl&lH!NA>?ehyztf0ML#db07H&&*Oo~*@&>+YeOh^1A|>d9C0 zuJ4TfS%|XW;-K#ja!qz*0d>r{{d_ZjP)YBY-zf?1?|4?ro1h*?n^pI=5 ziajPWt7A?qxp|xpkmi3cR_pn@M2aVG*#W#t^E}V5*L`m*Z6g+UvvMy^`*>` zlo&^H@0oFxHL>{dFw$vfFTb)f;AC$hXy%e^2P&DA#?kSpZ3&ayQ&Bnp#eKeci2v?q zhwjLKHS%kUSVLR_E-8BYk)lh1LJEiz<9eq#NKX0$2SqL7H!O1ZlD^+~cQENmHy?N3 zMT^d#Jnhg(vleizx_Mj^w}@Ts$OgZ1%s4ZHdJ--y4f^g?N-0ouq;Y$asxG^V1OZ&) zW>@{atBVJL@~}G{ikjGA(ZbU1-~~S_QJJ;sGwm)T^0%d-hV+7B3<*d0BU(|*L z{jwJlk*8PY>gTwDZPcXKwQN=C)}4vZr9gN51~jk!t~!L>3{0&{Y?9UBY^kk0Kxe`F zkv(aDSyl614;=>}ZwhPEg*~Cy)XL!pB~rlzXd=*sP;3Bm@2^oAhh&Ey{=@>5Y)(>o zXxB@Hz;o13wf|Qo3AtVX{%2^?;7`E`H$`e?FB9OeCb_lP#Z(_3+h4y)g^w79@I>E2Z~Rk1RIY zq4vqB-dv!$^-(gYI=E@R$s>~=)ZcTEcOFOviLFVC@;ym}+Nw`@d?qlXoGn_zp|)n$ zE7SP+N>9^%&bBj(-#n?~!otR`@~MZTMot^oQZ$X7g$C$8vRf6G_wC(gvl@&1;&Xn% zM!&?n^2BI9(gvy96$7~L{F&XA2Cn`Yp4bXA}FvstjHgCe_=J@d9aq3@}aWw z{}$Yw#Co^B$Z`&B>^WE}U-NVy7}_b?f6n^xU1`{RP1xLt4Iz`WbZs-XX3X zkk{55Yd7JE?nABu#$|9dg&3ZiE0Ig3Z2e0_W)-0b3tD0J}DW2=*576eW2Em$Nq#UIOw7bmGDcD@KOJFq^BZi*u=r$F~Pg z%N}Wqbk5~%GFY;q?QqNY-0-?Cz>i1Ej86v)$!+0_C?E#Ex`_3ZgFmX6xt-e$vnD=X z>6$5a^y$06SC0mqhi!m7xP}*AI?IB34n!i@Yca3c{=SZpFuiy#a*6)+)G{BGCoB%M z#eEDL{l{Ymk=A9xL{a^aoN1%d@mhW+>dwyj)4F&?{jtDx?a z54=g3^2`R>hh8(IQ&M`$5s!?#%t z4~HxKI*SZa74ar0(NSoBV6#R?eGnx(EC(rUS|mCn3n0XzOY<1BcP1DUC3Pk0qO0>M z(3u(xeh5F5IAnIz1&pL`8kZ=2c_%+WLz}+&DmR{tH|^dKr^M?ureJbLl@H4Q?3d8c z7);k8+oSlY0N7 znYedQk0K78)ZAtvvrW#)@#Pljd*Cx36P1SF+ARS+XB7OJgN>kC!h9-NqH7=L5#zN| z!_zaiT7tF;Qx`LwC%4jem5Mc5cJZhDG0wIv{=^o7X3J@)eYR_FBb zBA5ER$`Jatc?#67`WgG21#F+UfX%nn>DB%QzABvuui26EHGxo$-rrfnnOn@t1mp+9 zTmxfO#D#TCpjD$yiQurvwCEC1B(BlR+}_yVYxF_am8OCCqcs^bs4L%+m~}7eAgP}R z%d5!@A*P<>;>JQ}yqDE}M2=B+?mSa5BW^q&Fe^gTrS*=BN#YkcHu8Au=5f?KY>yC3 zR-o(bs;~&VK+MBinG&U8`xJ+-?>^b0+!h4>XhdbhvMS0C zd1(5fYTX^-_((2O65`o-rWAsUKhAe=+?d$7uhaqS9T-Va3ctZV|BK$f#9;%1*fY!N ztBBaQHfB#E6(j6Ua^1hWLh=M=B+d$h07Hk_qkpBQeq*-s&U6}%a0B=sQRO~J{c1*w z^+gySe;9cYQjP75V)nexM39tNsS#pMNcZ9YtRu(HLnl<)G55}jPYk{_1z`UmeB96zAL-)DhvLPB;9o<|F7Qo zEM8IB_nSND{GbKpFmN{jF17#9+58{*JC%tr5UG_k^tR{OpCA8Xs3JXzvsat`C4HE_ z;L+dyEeI@+5btLKXaS7Gue$7|UoX>zl92f3ALk-CnpqRUb9)uo@Y4r-bb`>YSK6|Md5B3;OlEB5^UH8t|@5Cl}}sEL3_T zJ*FKn#F$VzK|$^w7a4SR=h%KYOy$VK;Br=oylZ}3<5b0`%pq-P$p)u9eBco5y0S~> zdqio4bS%!M!NwydVEY{DC76z|DlH^zqj)=ONHhG?crZ9CR>g0P^!}XkBV0%*VkfPGPe6&AlNk6 zDI=poCtu+Qb&SUX{5wEd!&3N%0#4^-N=Zvl=Gj;GUj4YD)10rxXE%W|MXij1 zUc$~(JbZ0e;Yh1hlKWQKt)-IgtWB%w{a3a$#QxGw@8+22r8x82(pCJ|)|USW9~e38Ot@Z9G!L?S*X@S2#-C4b&}kU$bvZ9KleVjm5H$gn#D&O0*kyWeP%3Vy zeqT}iJq9Q&Wu81+@~b+et){L=kA7XW#MI8TFsino)YDW#+*uKtbLw}5Pd+sa9OxCh z6q!o27$6f8g%H7(?5EiDhD*zCq@Z{8i@WFYcuv`oA-&yXUNs}^u%q00>k8yupv|9h zy|Bsnh8kvX8FWC1T;2v?uab}|${8f@}js6f)16Uqj< z<<1Qayqqm9eEjNiu``L-fa?eS*U@_Gk^Uva%UY#Ze27=2jemIJBh3$+%40qJr9&jcD>K8c$H|6+|5z*M*?^bp)sNXNr6I2qQ<02tv=Oc?jKV19+7`GJj^JKmH!G zgi&b_qy}Dk;(k4Z=dIF+av7h_1jk~xO_;Ub*Sc`F-Njdx{>nLS#3qU_zP zsWH3S#-Z(0#;*7>b(OV4uw!YE{U}1M9(I)XbES2sG8(#cH=RD0A5^~3CWqcDEBnvc z)1@?QWIs%deC^kHD~-V**t;;P+<^kW=B^5CVZMJh|5M8Ur%d0v5(XOfRNH3L`QA%% zebujjT76{lQ|Yc=GKKQweEuyMYBg6`Esp~b05i!(y4dBFex(6a3O)r|!TFZy$0m+Q zg43i36L9H>umDTs5`Ycqz^(um_)EMEcu&`xjCR~|{8sVL6#;b-yfFK&U$$zqxHc@A zE$~7JKDa1mgNB|lZ3{D1|FR@%;&6vQlE%lUW_xz$W#(C|zRF~|Vc8T3NzDPF zob_mx8}q?Pm8PZ0tFiXbw6*jfy6i5mIX1ynfG7996$MMqLuw^8ye^~fc*i%g=W2NY z=L>$T%W|ZV9~EK@c~DH}7aEw&gs=IU);s<(BHQ^9ZY1>b>KR)^c76P#j~<2~1Pq9G zrmHLhUzhD!4}K~U*iW%v-73zxg8#a@RaDGjE~{u8w`#%O1*U)Hw5_J?ca$1pe}e7Z z;08Ac%A}PYo_~4iE?pyj6}WwpakTR#Y;`fSQcbGby3KNUlnH=`MBRYUt)0j}Q(oLvx8gx^S>7x~q`!vzC+q@7*I%e+Eh zUZ$Sfm2^{MW8@OM)pE~$w<*amdl~*WABwGef3wSry=eG(P8wCUclp!7WkC|R9*2do zQ>pW+apdZOKP^Fm8Lz(`@fjW5^l*fkLifpc>g!=7a1_gX-Rdre$s>sP#rk0ndgphC z!LHZ5c+Ezds74obhOiv4HNfnkQME_0s;u|WNio(K8cLXpJ*fjOn*teihzsN2r$5GY zGBVt|1}qux(SXsWW@ph2axB>CY1_8zd_<un#Ab7VQn!eVMd2wk(3O`<9BiO#ewY84N?zs9=4bixY4M?1)03UtMjW8&6?MWxIvt8U z)7t$lMkb2)&z6eRGkaSM7HH<&F!!4do|h06bgPzVAAP*(NvPl0VTW7P8Lx9p4_Tnj zjn=l5ZKnkaGv2@8HMAoBf4pRbBdg~laP z{ERX)CN_>dbo0A{{l?J^QoWx8BP9Z!i@g~ldmY01xq5Y`G(v%ks)o=W3=|%1q+wX- zsgxttW*YDdd~U-WOvGR`x2xwX+!hx!kn=qF417HzrNrf;iptR58<6U);uU#YB4ShC z|0eG3v}kU)x*4CRAT4!PVBezm2@Aav!C#4ElS}Mam#x-aipYPPM?T@ju zRS3VZl{ITYZehUwz?s913r+9-C9d2IFJ;Qds;zQlTkTs8v{6v za1xbe>2H>yhfD(xLscx40w@bNaimtJSy{$GUeb-ST@$yx3&)ZJNMr?j$VA{k$}aig zg`7}^IqSywc4)g$ z|6tH;rp9;Lm*sQ92Ljh&rhA-7!o*S|0JQtq$leJZIwXW~5hoBFF2W*u5C_ss;w~I zH~){Tw~ULbZ@a&T0i>m*yA`Fo29Rz=I+c{}W=K&wr6dLkk?w{8rMslNK?a5)2N>Yt z{QR%`KCk=v%-cQh_TI;Duk~H)VCeB*nKgS-tV2-p-+%ZAqgoGU4kcvyY+60~qQ(yr zch50;Uj@2tTf5_ShF67Vi|)W2lQdO z+cJRx2ID6aL2QS zs?*fkDsfpMT6?%IaXV@9iB9v9@@eqjgZL(Z-e+O`(i!eB3Sg4ZK(D2k5l!A z_Dwn%b$ZwiwQg}Gw5F}z{j`!3A~`j}VahLPIzi#*2hF43G^vXj@p(Ime$eV#bYSR& zOv(7Pb{O5#vOa3v>v)5SL5V50yJNX@QinhKV-Zz-DdVxR67Xv^$?Lfd20uDb=Rx{r zp6p&P=gLyC7@%-;!D#;7tPDGJeTJe{G4|Wn&;uRfGQAyD+ags1@!3KJ_S8x1Gjiog z=i483TP4!wH2SE&r<4NhDF{7NhYrz;Y&?r@p_^@0fHGK!k?x~u7`Bz>_+14L1@P;Z z5e6rQAO`QUrBleov4`|Zqb+8ssvfk(=w+*|hUqcpJRW|OGhh|%=(0?R7^9l!0CTfg zZQ=*U8iv9YUz*U0yulfLe%UHceDw^sA!SycLP@DiQ@hr{Qu~pdC9A}tjIAnp$2goJ zWzCMpFnrNXD!w68@TI;p(Z@6Vm1mC`Gg86Avumk&!62VQh-F8EG%45LG#88c29__q ziAp^8UAeyRyQ)9VS(JF>gHGd1oXh`9I_$(q)3umaeOd8rt3M&3KNl?aL(qYt%-bOa z`z`F1H(@~PN?IgCvW0yQ{iSIM|ES(Ov2QDV(12QRbqQ^$;E9M&VK5%FFAs0I8^2*- z2s@Yj{wsk&;7vKDsp9xNsPK~5M~6c0T-L&ZA&uo^z5qoJeFAAj=10C%7IJ(GB7~$9 zmJN|-5pDFCAb*mmu^xX^>V$nr{cei-;4KJAS&P8mxtbzxGw*$Y!5c-E{8Q)rHSe@Y zXVlR+{f-Z!siB`(@w3B)gG zn8upYL9`7NAj1M9erO0>51^t6(@MY0aH@%=C2F1&^o<%2iJ1C$sr#N4i6U%omBw?$ z!ow1}l-SLM#oBTc!sX>afqvq@KnyPtMZ4jrp(e+&t0{k`s&>aGF+cGH35lr&GRrw= zb_}3{Wb~0?vjVzJ$-ewN!=wJ}js*&{x;F;cq31cBA064QW5yBp<*`^3hW;9r=g*QR zuLj^&i+{wQg{*1l6}d|=3}uh3_!pPjxPB2{=;wyImU1@o-u}3Z6l%zw9bKGuIoq;D zU|sw&7X-m6u1>D^`AlVCr($9R3@Nv7#j0sL4*U*}sXp;;DP*v+ur`ZZ?q^(}>xInk z=GfAo<7B3;>2nq#hKXf95TEd6P?!u*clRJyXaD$qpa^)_5219Mt8lvl6DnTCALTpj z8D;+7dFX7n|NJlcw@%6xnxKwYFfy_61X-r>CerD5wu17*J z4;@~=!SR}mBoeO$-xbRh9RM6ZPwA?!q}tb5XsiG@@cXoS?@5xtO+O^XNmdHnsIA!TEQI=&L=S*q$Jfh@UB z&qE*B-Dd4Ldfq*}L4y@M&yO}Ot7>pAuio9W?1jGUGm`+bv5VMc5!tVcF&eOQQ=w~M zx{@I5WS{ubbz4-J@>{BT^YKncY}-l=I!%?0_lPMS)nx?MPbVbAx&&S+)yOvO;wUSe z*Ky}&N?qqPpZB0|MfKCG963TqFWoj;U-3M(5 zNZh4Qk;$xxLxeUus={8`;KLJ=32Tsr)PJ`Rl}T$Lqs&JK@&I3j*ofQ49gI!8XvC|H zi%H%4PJ1yZoIiMKt&_WU-&~sVHC|7pTg2(!76E{Xi?jf^CnOLs2C(*p8UDQwxk?=5Xv8hVlr$;=fJ}mY;_tUNg$`_GL^FvreB%47IZ4;bh?S9i%`5 zloDC!cyynhzj(vkw&HP)JE;yizQ|!TDRt(P?nK8xD<|t9FMKqZPGfyCyR?!Rati0# z%9mM>Tdtt{byJ*g=N?&-KgD{uM-S57 z)#kiF>*{6j-Rw~JRJqrhlhnIp|BWZHXzbdZ92>C*| z#t4@D@msqVA{QjhA}@DP6knD!#C6L#bNzQ3>JSN&W-f1LrTsZJ+PG77YP?Vg3-VC- z_NYpy+%L4CC}vz1PId+qPInJ$+pfK%i1a1&_~<%UU!^P{=O2wszvLXT)>swDZm8tt zc~7M7;*M9H-t2(5Q9!M%qiX-)p~G&W==OT}COnvqUIKh5;kKJ+X{ni#7DFnHWbEtL z=M@g>^vXAe`Q1~U5@mk1l%JjqF7+54F67^u()Zt@`5zWwjugJ_mPnjTe|_>We{sy@ zvQF`!HlJ4u~crfS&tx9;noY5rk|bWD3s!jA;#nV*<*Dtse=Y`8qQ`ThBnlJ05MesyD9gft#a z4SbZ1E=OE|v~r*yg?F7a0?Yb}(wTNMAk3VKD?+dxo}@ROeq$8%r#KnjXRT%KEPMa# zGW!~Vc|>|Dz%I{sXi4xvEQs0AzW>pbe031z7x;s3O9MOE!7JX^!9M8AN&jGav?~PD5O!qlfTQ+AFk)Wj>32)He8f#xXDhnB%(tf$9+LP&(|i|&fv4S)hV zO8_nLRQ06zfM(z-AUjtMN+biI1hU(X#bxmGSQI!@S-nc%}!d-q3w)Wtlr2#7F-pUy3_VePIm&k4_@3C@)m_WFVt9j~gu->SO+;H8Q<; zmoJM0@OHLJ-A{)7J^h>bPr$^W0!3f6KP-)}z*MBKqhLm%!~ixTdX?Qc1iU}Bn2sbk zVE;a$P~c@%jh&q6GZHgj ziUJFZNVgAy02PgiVA{^fV$(E%uB^(hfP^k=-X&zn>TG<_@E>RTn9Z~`Gs@1E{qltR zr*v%>(Q(47tc{D0SgUQ0*AySbWu#Qgl9%3tXnT_Iu8Cg8TQ<^t8;^u!CI6vRvk3oe zL2TkJ5Pvo?2**1E&yeCh&BBEB%HV*HwvQpR~oLPNB?}L?3I`1~v3L_CiiP2YhkAkJ3LYB!Rh`GZ|3xgwPF=luU^;g-eM! zn@OI+_A_p7>L#7z7d=1$6UtcSbh*3?2)+*mhFjj6FX%TwK3!5o8Ow% zJJBLac{LiB9jCT~^$T!HVpS;NY34dY+n%mk9hz;m?x6MlH_Bv}<^2aPOkjJk$+_EV zdqj;P#K!GVipAn0RWGu&b$3{V4|bikInvL4-4#T|x4!#vI=?UaPFbR)^}jwu1N~Wf zQ58y?c>(daU7sG>ZyP2%K9rmqGK7ojnYi`(!aJ@uGm{DmEG@tIdi%?rmJwAZcALPI zykGprZi}oK;!ZaB9cCDR%T8NMb5Ro)WAb@2ljyL6eHB zJe%ARE8okmN0n7E+GlP2h%m8{csb`l)E?8@k@|fa(T{#oV&@h=vH zH0MZ@^4WQ~d2}K3XWd2Z|5gS6VF6FHNalBMq%3}`H|(JObN@%b3+KoDAP0?5@TJGiIo58SPvjzZ#Ch&N6sG^>GA zCz3BxIBI#55-&9ADb>DQW0HnR{5@khxdufqQf1n5XryJb34CTyc9ksfeAOgC&$QFWhX|RUeT_&sqc^b3}6&M0#iT8)z#>!}&sVSKX+vKM) zhTsRF5j$)e;N?}0hcx!(FfroM2ZnZCh(&PZVt+$H2n zRt<^gwM#COJ6Ky}NuuI8&G4$Z?{WfE3MuLp8nbmT_&1veBK!F-==))p-I{8tv1i5_c4P+IX=uZ?Cy!g7hpjc@RmH){AFjmK8kZB$^}`y zkO7!9?d~Y!x5^YBk+QzNed4MCxg&VSp$5q;xO>jaGEqdpTA?#Kgy4=7JNXc_Ez>kO zbc0@WB!z}MzN97-fCkb2p3uHrme5jX(=)PASK!k2gRjHyO9rS@<(nFC-FVMSp;e7) z4JaX1$6W-wP^q&#Ut@^kIKGi>n+`Op?_G>$`fP^PRip9O;a9uMa-~QedW_SKuLM`vDjZ_Ek zF$wHNVZHW2J}rY0(8|i*uIlbrN$GuYCemk^V0sfO6z~ylod3P@BDg7{6#g$2&{eDr6xbb&)u>vv zLoDn6t$vNaw4=|^_Dav-LqvwCn}y`XG9F)pU;oFIiA0!}6{ixDxOlQt)fDe7QOTFl zULOmOI*x^-csIFLZM0~o-P7xE%UVd^)yqL?Y*9{|8bdk}!`fP}laIj=O)%oZFMRe&cXHkjTf|XX z*iS6_X^UJhGmeI%Gqlw0cKMFZ*qUZa3R?tQ7G?!X=1YudNsPn5336p_cr~=eN^@^0 zZd7%hy!9{uKeD@~1VKeC()gHY$c&AQi&Pt1YUe64g^8_nlBbl!`c|YIO$RjxX-bmAwWKzg_^Gvif){QTOdz15Th;xkrhwq83-y4Nf$n^ zIZBnAi`&%Mv7=7R`_zYf7*0Ql6&CF4wmGNWQS<9awG(-lchvkS?TD|3B!g*iK5_<7 z;Q>k3!V<=OL@2C;*ABaVP$oCOC}e8|Kn}X4#)zD9uIog!N3sx7m>y47lzv=O8AuYu z2;OQl^eB8G<}+^X`~2dUQcYzE=k=d*0g%$}ODn#c5iL3O*MgiXFHqEnPV}=>gE*68 z+1eJGqwtp*IGLGkcO{D}0d;lD12Y|c#XPqYzWbkT57^WrV$Z+hN?cPl34KK>C0wfq za(FZbq150w;+sBaVGN0M=7WoBQ*T!Y&-0F^s#?gWIIb5NBGY%--oi7f5B`|(Y0gJ9 zoV9zga1=@%Dta&Oo)wpdacXOgoi!;A*q;wcs?CUjL{>KTlJ&()>wb_XPo}Z=C1u{( zK@z^v*4W>+v-c@;z~ubx)mLBk9e~$YTnFDu$KD>d@f2X?h=5<#~PbMC3atBkeZuYFU|k#_aCnRO4NPaycIw1d|TB&qi;$^VIuTu zHFJp{?V~b-j6)tf5g|6NB9pnRvZ2*fgaQ!kq>Ekv0wr|l}bKue0ld&y?&Pp)vtaERhM2hlS>T*gk< zjo;1Ni^iL%cL`Ao0=7L*%;$M8QM2?llZrG7(|S&u^>~$$OThwyaTnFyPh*at9`AvF z(JCW_*|8llWxff>2wJxZ4+9=onYtQu=AwNDI-#`y<}nIql?4IjGRIg%ugibb@reJ&mmS0?~j%4G&nq|>qlXyDFDG0?`6{W9q&L0*< zEFmmdy``o`#eifyQM~;p)Og7K;Kx%lqPX8Ys_ntoL-L`C`0;I;`Ko@^|4;!AE$dOu za%7-!to~5G*r8#>&}yH}&7ZadvK?FY-9MOo3{eFL+U8mwk2j0!2yX~%LZ%51|A;}g5ec^s?1TyfnSq8IdK*Zee5c0i4viI zXYY>t75l7<8R)9wP_EhrcF#iL6D$c)+%(6uljRDJ2}-O4TDuq3ETT4q(_EocH^+3$ zuF6gO--L)6zn6u851D^jFyL|Gk{EHosbz&~J=9~R~I84mQg=E3*2rgJou(RbnQ<2fJ&AM^O}5FFi$wDcV0a@VYv(hdWLR+|qIf^-H?@}S}b%@&tTR_?}k|dA@ z%DaG|7z_)1H?wjn_I)^GZ#?5!dXDEC$@BG-{m!FHw}B`*i_QE-yWHeJRYf2@7>|mh+Q7PwGyiESKA?1>ULtQz5NJCV z5mHDO^wd1LvZ#R1VOtPXbct*^qu4Isk~TJ$R2=}`$xu~|; z5q)>~1j4HYV!6)Xp%Zwr#ix0cHuTO@fu`inh|P+>UUBhzchH=o*zRhO+}Hf!J`4Jw z->gV}5@Q{QI_}F{Tm$T|8w0~NA^se{qylh(MyqPjzj(Bcj{@9t!{tDBk5OTCsolElRJY&17LVWCg}dInYL|1&n0dUzmhk>!s z4+N}^+y&Z2sH=OX7I1&CqhPr2@I9|$v6zS4lL&kh?4jdKYF>HzXNax?XG zx+B~HD+sts1vrb4f@Cs7{R*IvKq^@Fp z;6FvmkLUN`=%c0wBh>Ct*=AbSmtMSSBlbMHE=*q!w%=p0Ky|=6iK{_;96BzLAxR=+ zywn?QPUnJ?Y6S3Mp}iIynjYfT#k5ZRF>2!U_cn?S@GKFF72`aOg#Z^jL1!08t(B9K zPzSi7dbv({@+1~(OrjP@>0I7ru}~JW;68%hb@}U%CmL^@DtVFi^pM8#3zsl<2vjDt z25<)m>C$6_+(Z0q%}j!R8M@7RrT2ZNaiX<_csP$ZPYYO&t_7`iBMwstqg6;(P0J0+ z${Wm3u&*8kYE`Kuq6F=NA~GB&@17jnwprz!R@lYl_tw|&75imztf|jk!3joVY12`t0m5e8a91HNsVy&~g zQn+cp?-DQM(-?R77IGW~@3H2fqfC&xQ9d`cOQrPRV4JL8vM&**0Z8e(z20`njIy!H z|3*X9d=R$4XK~*1(`D`j_0k^>#x(pPw(9VC*1SI-W|!QK$kKZWM3#vJY(|jjS@jxi zPiwB92K0Tu4U)b&-%l%TwL?$r(A$e#yT5F5Lm~Q=ijO-sf7Wp)xH#WuVyLg3&JVlo zyuj*l;E6L@_MW5f*c_N1OSsQ+OynPD2nK7bXM$edT*BxpjD$66NqBwt7xcIGu#PA! z&8W!Cm&=1q0yic;Iy$QN$NhX_8%LMG4EW%rZF8M%LZ-=x_S_Njbqi#x<;U~+sT2== z+tp*k)GI6JGE(YNn)5F;^|UzdGr)-257Cnx80x$uFB6g8@sef*B$M~7UGyw@ ztrEM!@NVr2iEcBC9SwD)XV&$j^IJXf9SxtBrS8urfK!M7gLkyt(l@Y1BT5H0ASZ8-O&1I+barQ`LL;x~I#2~pB)gNoMGfl#J3ZxWim}B9iQ7dCmy{NR&u_{3q5Rvht zdHcyi5-JDfXGm|PvxEA7k^G_m!-g5BGgI2S5@dVz$V{hLA=6O_^Yeyn0kNIcIMi zzC|gco(Z2A%tYE+OMG*Q!{7cnXk{@Mk1WK}YUg|LnHKy;@^0V+`TNJ+*2KHdec~N7 zDG9Qm2vPk=A*+4{i>$NoVd8UTIg|_NGpB8oqmJ>r=J1AO-dzDux)8HvbNB@!_Ii@b z-yRkj?m5=V(m$ynFLqXpe(b}uWKQFmJgzvl-D9qS(UsY-C3koRKabEn4IM`045%&^ z;VDOYB6Fy}mk|A3e^pRyC8ZR^sk^Yj6-Cs@c$#j}!yd3CBAL{V00*{xNRq zW4G2je-C0hd+VSSer(_om_nm zYHr+M^PEFfU`eNfD75o~5<%AvD2ub&&sI^a(aXxku>>{4l>0S}Y_R<`ThFQ6!o-oE zh4)1L`*hb+QipI4c_BEKC^lH9VdDOUzKUd_esv7lqO~9MHr2F^)agz0dx6W6;LCWQ z9Jl%DzDh0wtS~y-;Z=PqILF$9cl+sxCE|AJIJ(hkvFC4x1i1D-97$0?C*Twqc=XvN zczsErQIfsU*lu{oB4~#7e<;xR*I&DwyMvxpsRw}(+l@zU3fV0)ZVciJk8>mNuZ&RH z|9@_%0`<+oUdxYN<~6;IOZ^O$E&M@ex5gHK{*dDcq65*X(L%aZWq9A5E?f!79KBWr zVgT;|HZp!P2223}#s|IOPr9kNcDD4lu2<=EqTJQ4012;nr=J|~#~^+6M^sT*`d|4lygGBR z;6I(&f|XSd>($5&DAtcWd_yFb43;AElO!QV?Ij?(jB^h~Xj1R{fU;L2T|YxGsnCb4 z8OJlS!U^ywX07Jg(XT|LPjqOT) zy9_L;q5u~y^JjCbt`4Zbu?5MR%{Lc^6afU3L{gwm({{vI52Y9?&G$r0r1$G!=6Pd( z7y4G&W75@VR!9w=+UOOtIigk>xt8lOWkD6_moBwsEDaJ}^!ZEvveAVEJ|69R*6{*y z8s5|cuWV&D3qG3hgzG<^h+w`G>jv|+U|i0UH%j!Jc)kz5!IMgGHZ%gm?aNvp_0n33 z>pS+74YPp$dykTQ#-AI8aCA8FFOtwF0jdE&- z_T#Ql7gYM4?KizXvcBTcze&06J#P`Ph;i_Vi-M^vBgBViQw`b8fo+OEI5EyOPs2C$nkMxLnY7Q36!xZ?py-N_l=DeM;$ z{UP7QpwJh)Cq#QPxh5)7sr%#g(+!rI!|S*mq{0;w>|}7HLg(`i1x=Z1)1vEWwwS=! z?amD1{H$P;W(}zr_~GutVl!-Z@M?PrImo^vqGn`Rbw=`#7K^NYJVM=5WI_em@(VC> zE*H`*&(i-I9{9Ez_2#<=GP%dIzK~~;Cm)o7>8RlLjU8WQHhgHJSgY32;Z#~+*-+6t z^~fSSMIk4*dqC`Rht4_3q`qGGE=y{(4Jo^3Gy^O>>cgS)l=SDPbkyKBA$F=WL`tsb zsK+d~Hf4u}1Iu$JNwUYjcrEsb#6IY5fbZvr?&6IqV;869`VW=oxP#@1SIc|Nejxsp z^>=OiU%ftDv7Af_9RA*Weq>AoP2GM0%5J&Ia_Oon3Rjj51U{}n=<-QcH#si4?Hj}L zVLB2c`D1cK?5=*etvrjlpmiQtGO$zZcV-O3qG&1nYjvE^ei@kB89(fl=^=*8ughrs z73_K#@2W`NXBz1=nzi$ZLEO%Sn~ALFaRGeL6Qv;9TI75+Y} z&WSIABa3_xPlL5>CFkAfiDJ0Uf~ms6tl!E2I~%3kHucs2umC0g^PV_V?nh&O((`M9 zeje&Qd}KT1yH`oxgHvEDxB$QFQTweK;!lcJZ}rjx?FtP|zHQS^LH=ykyZ)Ydksuze zTJN03-lUqlA>-iny1xnkj*#kCDtXMGxzx(u#ufd0XaA=;C)gDD*bAbILX5RpR*XWa zyT6!H^*@}Z?Js3SeE@WFtPTPwy2^=)5})5+YCZvo92pLi$Kw|Q>(LhY9ZhAF7QV^| zt&7V%BgVl&Z^j8h&qpIfTMGH0M9XZ6hCxbnV^->LuuYz1r*OU29#TbEUmd`@l zw`^?I4ZRp;7+n33UVHr!dpS8bZ|xi-$Zq?1o-mMIt(ReHvb3{GXlqD82&vgca{4F7U<0N+)RmgRi4t zg+r!{QJ!!feH8vr7t~`PGKTmec4S%&en_KtB}VJmNJyzy@`8N@?ZdvrSt^y*=gP7N zNdXuph`ld;Gtrh%~t7+BKq(sGX4jwTe>;BcQxH&@SI zm?{3|`h(lU-PJ?NF}!|S6LAD4jEcH=srZE)uiy}ccw7P4)DLlK=I@KAN;y`_6JI|e zwODh3lY12SF{7>c-Hw)oWvPYauZWw+m+{cjUaflWd^xT<2J1!RaYI@4jKQPN0KAQ2 zLhD(vgMZ$>NYD0tgUikveKViI2RZ=*b^ z`!zW~{{mB=h&Oaf#x^|<0JvMRJKIdq&nBC@yO|P&eVX1XUVG3}&st)or-y{|!=>Ck zXnlOs20s+z$IS>|yDxhVt~Z~3CQKiU2J1(goA|4gx88h13`k@Oe&j)$gxoB#xUJ%R z>66$xr7rIrB* zCyVhxUI+{R8u*gn8jl$phOGyL9}$Mq=sp|J`rO81-(i~z`P!ddN-+xv_J{40z_~q) zn#kwt;%5!le-VoUS-8bLhViDiXdIdnIzjhV^$u%HMzb>ton-b|$8tjOl!uKr0gj$K z7trGa-P%VE7QWxs`uR=vU-%IDOqG$i`-f&+aV`~=sf18pmIqBTLBuni0j{3kKddPv z*h${TNcBK09cy!lvyhA^;eMi1eWDhmZ>f5n`L!Gh*b~rL3qqO|wU*(kVw(kWT;{;% zodY!)93Ok^sBt*xN<`Tc!cD&@Z@Ra4Z1pV!^>ybe$@qELv+FV$B1}>54%CzbTX|rtzJRSdg5}olOrW}Zo0>^s^MsB@I73HUy%sc+l@#p% z`N%O4W*$_FTOYssvXC~lGcZ2m9j5~mBU9Z;5z-KPmQuyd_vJ1cCier|(drAJr+AwF zlxV3zNBq>VB;>Pe_$MnflTXv$lWk+O7n{SDQ4ycMfyZbT=*3g%^E_YF z#zxIf{8}`rrX=5Etw1V@Z~PQ(kk+o4mQ0xR4H0LWWscP#*<*fYN9;?XrGpnw@d) z^VUu6IQ0n040Q8uFbe0!9-q?@p^$h~E=5HnU_sIeOu{a~|IS0)wQD8as*@T80dEi!^keuRvoPD$CR~8mnI4C3Dke;bpIH})_RfTq`CT%7ysxRo}>zy&n+Yt#sZZFhrR5I z8FI@kHSUyrk>IsOZx|f6)`}QhSG>eFT)3^KIz88Pg}u7t<33a)SN?o61syUy_A=x+ zgh_3I3+%HIsaD)GD+A*SaFp71jnReZZC`6Lgtfw`(yG+r9|SISaToWRyZKo@eNLn8 z@a@N?NBv>WEKt}PdNe*c-{^Jz*NnIu6!GxLYyU5fWi1bEdrCuDr5R+2_;_zg*8P8tno%uHEJq94f3+EHYF>op*noZ(eA8!|#o4PT; zQl4TxYvgSR^U3sD5im0^bVv_ioktHK8F=y@SiN-#PZM&Wh>H2ENYVm3(=v>ZAtMpH!2t2;HL!b|M$-|`mFhT^nil{3HS5IRMOqOdY4h2M9DAn(8T_tOX*k{W1gVwzxW z1Fyi9LxwFQ9kghcD?>@t+qj~b`P4KMx(rTpJ!ZL^A8_2z#)|RkZTy4SU92rkULSxvzz>+Z`pZw8S}Ovjn+C6*05x@ zmSFjGg=bgLLHRw;Np?KimN8d06@|H*lZl&MCGTvhms~dJd}`iqiA$R;!Wyev#?}`1+yRidhg3JvW zn?qps6UV9rdu>{OSN6{pHM`#sTPfV}mr^%u7DOZ|H8_-sLK7xrm^Uf46SjMdy-rus zB%Pwy6TVf7KW|pM82Zz%mO1obt1r+tX2aFZgO3rSCvASCrqUADA5rH^62)8E7*ZHo ziD(CbOwaDY%P`TidRe~BS%=NCB^L(Ur&J_xF2^jHfc2}6?#if_pRF=!eMd?VLsR?* z6HJ<7*W3HGzwO<&la%@n3u@K1XCHn@6f-K6ke@8hN4Z^OD)o>OuI3ys?7lRQ>3B-@ z%*#oFLuT!!kZ}=q?RMjr-XoNroqD|Fmu|XM|4vIq9u(SWYv#*VNnLNw+$kiueQ}6b z;7UF&G2#F)i`tA!OL7k@F!sY@0IgxsK zjiv=y%qNRzTp0g5U>-RdmDCW+o??wGdM(gdpy%-)N}iFA%2A@&irBAFGTz*fSc2Y5 zZKl``U6N>I0?c)r>K=mu?L`b-Y;5SCe2pWf@amHJ!NuofCTthV_8&SCZu6l~%YtiK zrf7)afPLSFpVdpH-HH{yC5Pl#Nw^ON$$f$Fg$t_BDi-@WOstVV6O_b!KBx-0+ zH~vk{e^OXF)~ty0!+E9CENMX6G2&`1(9SB`3)!_T&EN_6KH%Rzd8_#GCx#r^vs4sN(Ci?YE%mCR|A7?(;pVAx|7AG1>EhH`18Fg zR3%?2nJcirFL!*+hH)KD2?!n6iIB#m@xWu7vXzW>S&3Jle)OV@L{@YL(l&KESS%zWpU) zv0TQ}N6@rP>_ly(06#Vbl|1MMzF*eut=_SqDpUE-xOm4A`aote|BuTLUrws4F~ur> z2&Y6YNJ)GBu3$I$*KYiO%3C!|1;7V;-259i?s${hyw~^A@`S8O{;ZWeYJ!P|V&F65 zj?a5fG!;e;KQrnD{A1@2|+JZq|PndzZpISgcq-gaW zeTB#_Q8WbFCA_{GhDrPguE;!lj?;tgj=nua%vfvCKhvilZ;TO}_G%w1*H0*3!n4yC zeEt*J*A>3?r{HP)&8`MHsrq^Z_VX}w&L?Qk-d&!+7Tl&4!Z&x<%+Iu9qMv!+92EB} z(l|Y<(ljI5%MCDFzR5b926I5%G#yVrQ=}9v1>bM@Rbx+Pc9Zc!^+ZJvE|u_xiybW1pqtK(riqA(PO$5_-IA5tEboMYH$P+Z%(9Bxm|G@g$)c~$b>61j?`%Lv#@pIcR{ZQ%aw<9i# z%#RfqO8aHk9g?U%(env83PSK*oJb6*mbA$1@sdzd@^Y~TzZZ^qu(PWmrnZ-Sw3F^r=C0zFqVhpu2^>Da#`NAx%676 zo06B3rX8-c#K(nS(Pi8at!GHyAdqfO3_q8f)>QVC;LbTDUED9TptE?dX2V!t5Un@o zDTpa=-c|b^H*`JCgIYP_Q9lFoWZs3`Z&=m_m4OUal_CQFO0n#-bbT0~ekaa3VCk}d zmU$&GpmlYz0UG}pkV>9X;IXHPSUxMrw=)I*nGsWUzkY1y(8ARP{|C7Ff0{$!ChJ6< z?YPxmS)@>t^_QPzF3Oig#?kQp%MV$pTbqfk^we2Lwf7zAiMmLMtB#yOrmQOy?S+_% z2<$Lqp{hqqqF!Pjk{f1(!Hz)$#bl<;$A#d_Dga5A2%@5bf33MPn4>K~?jq+mj288_ zQ%+Lm&jNKkWQ8|;sCj5;`4pENeFuRk6A-ZlLFaU!uBUg!+bgr|;IYJJ1Yzex`eAz? zwL{NX0E`ZDH^t3Y<(DP@b0eUJVc~n=6L%qY96^{mm{E09PTL_x#TA8nPspIPnH+7i z)2!*CK>2#}1IJl6Ydzz}KGudxmK7ZCF3Cvc;Bd!nsJT-MI%W$#9Fg9@qBu?UCjN$m zM`{OV4_cbX3B)h+tWrvGvhjk!kS)v2u$w=X(dv<+FduLJtV~k^+vhVSu?ci>ALX7L zMD}59Y(sT@nept7>HVtGu`_}Dk#Gjel>YUf-R`u{S86n8v7Pf>0*1t= zMb7ftiiXH?ic=n&`;AHmnU1LNqzAQv+QhnEA#Vo2yZ{6AwVdqp12b{)g@$;#z z%feoAbnGbYK7mxeR?wH438mX4XO>N-!j^uM^DU3U*GDvu8_rWTKT_DFTzZtTVesA@ zg3)dn8E!+J8ADoPQ=r$&ZT%((1z>BQNsc2!4)LdW1#Q@0X9bgPsQE$f!LicP|LH%~8?7GKE#Z%{ncc06#jO==8>V>rQPG!bDvi=XQOQ%S7vTKFZOzlmz=YewPfx^ z9=v^MuODiz=+_O&jF%qhrbroCKT+F%%-4}E#m16P$cqFDKf{!brj349@?G^UF$vKd zA~M;UJVAvXMYzJ714gb;8Eh`J*RSs%)2VsX5 zk1Co#r(yn>Qf2w8m09(&od4ha1lZ}aJ^{2MGkTw)w@qWt%VyV%Q2$-mNI2A_Bn zD>aD*vIX>RhUSAM?e?UC^=dy~9Qx_D&jf5^tY~+(5Wgimqq7}cX1v_IcBJK#PMmp9 zsDfvRn>4gGk0viP_XDCa^YdPKI(xQ7P5tToa=E2r7?eZEIWeZ0l zcS@4%CmZ-~PZ!MjIMu4!g=OEd8`d!D&MkT$RxQPR%G4l|*VmyAZzj}lHDe$x?mYuR zzdwM##J`QZrGLju8f>~Nco{ZYWNT%2Ah9Lr^!Jd{sI^_35K`VsW~l+ewlt@cmQ4x5 zOhM~bEOYFzQH8GC@(-uhn;tDTymNQ2{VO?P^r)1tgOfqxmR;3 z!PPB0y#9{heDTpuZq|q_O z=#uqBr=w>}u4KPYzZhiojx97>uwcHX&+2|En-E9h_zdPtJHzRl{-LhDznLQLaK3Om zXHQtzKn+{O)G{Se70VHXX(m||cztSjce#Q~_*5s61OGN1*3&jG*Y&@@^()!DH{V~Y zcDl-{&E8vm`rwm#j_C_6z$CWZcqh()?e-*?2$^9y7pTO}oY*zDB@k#y5_7V1qKoK_ zyp5zPRa~+nwouptJ1S8{}+xl?JISmsswBBQ03lr!k@ z@I}YXF^M0U|2V^>{c?+RPoC`q5}Q0bJO%oF?F-#;3t z4@ru7C+V1%85Hd*V{}W~6rMq}bklT_@}E(!Ltf!`<}^`R5cE*OWdQ$5lHxy_Yr+BW zl$$3&Y6h3Q7o^(+CvFrJt~DBKka`Rf&14V=3|xEtZPX5u-~$yyPd=r4wJri5c(A~k zCurYC{&+~s=;6=jTS2@0P_gzfiS zmRZzu#W1QBzMH&X!a%uJN5l9?Pw!dMxDVa&9g{2_(fOd>nZBx6^ zr0rCz!|Z3+&9?#KyHbIxhVgL)LR%KSJWeR^pm_m71u5Ww#dZ0op#Hl}$q~>olMgGn z$71{?S@Y;v-lq+t3FAr@2hUc+de>4bCE~Amoo$93YE5~!AJ3d?h-xUI`B8>HqVIve zi!mxNe>7Y)@E~dV*{9?8gRD-Wbr6H({ZFAP%XykW^!6uzfX_=kc+;O;6Zal*EJ#~X z;5_JZ2i0-2J8!ZXRd1J-3BCPN7eewY>vAQgTF4Rqg~a@?3eCm}^X--+D7(S;15yQv~E(^=g5q3)bQzWALBIZcY=_Yxf1eWzya`Kz<$6Ol`N?RxKepX zY{?0;bOR$BE+kF!4~Qu%0oq=pePZTX$A<_*iC3G@JL0;~dy<^!oe<+1r;u!8i6$(~>Uz75IW5C3Rp#6NE zgrk*@#&ZTpsZM~P*zAp~2OK=$ZZzJ()Wq_~dY5YriRq5?Mb9H!h`;MXlT{}(?%t1H zfA5{OXqwr9WQH^Cqaj}VNaxyqt#Oox9 z`qCMfN(B@)n2l-|Yvd9ewWVAY8U3bl|4nsm0aaQReqa0D!zdJQKIs;x)P(uBGeBCe zZWjsZQ-s~Z!rfi!F9C=03L@QV*LXzRSyq_p4DX7ElCku>vue%t&pYyKJ4uImw20s* zS7Qk%0x^8WQ2Kgmh5FE8i&4^4JzGG?V<-yoO-D?q0sCVaZU428-flI20=b}aUeI0X z<5BBNTVO2X(kWuhlKYtLM|H0D7jmVN!BSoLA{f;jX4z9)jeq2@|{cSt4tQe~np;4-69 z%=eHMc+{kLy0*>asay$a9ZZQ;nss0{C(yFMC6IIXe8VP({H ziAs3U-RCVGss;Z;vIz>3=z_D&VW;U5EiBfc)*1mp!RkS@^D4|<=Q1s`U<&H0mO}aj zj>(MR*|>#?!L>j2*!4~k>V)$_vjA(cgj1`yat7s~fgtFh#YSSn*VNrBKc)3LBsibX zT(!ucpX*_noR?(j=QXIbjocS+W&7_-5gY9TuPxM1$GH1zY;$$e=8?00IajI3->|U@ zOBc4qS_HcgERRzo|4#{#BLjLlO`1xo=044(RVznEEyh~hMBnHsPROq-B@wIB6}bjI zB^HApLhMmx@Q5pb{j{)tDcShYdF;-3#Tk4+5BNX@N19y~CuZdxj*8UjZcN4A z9n=CIEPs$XP~-VTpj&#XI!9F(hA+1aUK{=bObl; zYs@BaJQTa8x^$YzxrQZ*G01yn6^N7hQ@F|?pD0K$@JH|k;o4V16u0v4aTvbnd4wny_#>s~_ovq)e%yS+dR53y zl`K#j(~M(2(odcuuJnopQjo6@6v!MEOP4ojDw!ziCf1q>9LY$CQ18`%kas1)K>>lT zWrh<7y?G!dYTB~$>vhp}L+=QQm^b3lFJ{>ifFe5vVgxgc_W+tPzovkUWnk{X35s*$ z6M_@Phl|J!pepLT+GrM!mZbNhPsaUYwQN6+l{V$e?8DHrVH9CnuCx_)+M5>8Z2434 zj#W^KeJHdbcaH^21`H1;Z}Np=U5h>2+so^(5&FLWHf@< zv++xm`mfD5-hk<%YHI#V3lMi1U%?j?0bRwUjweQ#i|I_bz30;ph( zY!IFWMhs>*o*TBqF2qru8u*;#Z~c4giYoh+3{FiPB=RQ}treXbZobbTfg6~f_8>nt zkuXc<=&W5=m6X-uz5Y~jv&S}TaPyubSka929`F(RJw!h8i!~0Vi|gG>+^k!(&#Obd+{??QPLKVxL7@TD#C7QVhM^muna-C;#~xKcM|ebq=sR28*JkLwW6 zjTR>GX5)+E^>HbOQ-}UG=lFhQvESRSl@;JZQe)Br3)^xFgU08H1m@`uGTWvWg5%C_y|b%RfZYl1H>BO1~3BH z!1YFWyt)jQ6uYt>OJAQ_dOy}LWA!4SadT7&+1cu^wjvzW07unm9`XRCTty?xpxv{X zEWx(c4;qYRDwjrCyl!orXo@A{Au@|6X~c1pdrzCx67zxeSfmg^LEPl=`8lfQ??R^J zFqiFdt;?*2=|K6gSQ1wA0Ut2cA3MHC_H~9*Qhw{5_kj}QdhyvJc9k&QDrZ5BFy!)z z2X|)UypfCo{Gtxn(2Ns#sKL<=@}2pnWV=9l9Q5E%DYb-Oh76A45zR{} z;A}^?KZm&ld#*_>dxnTg%$btbJ|v84e+p^tK`g*Co{qo?@f7AAf4o=CXM#%F4YQHb zr}%9~XgLgha8n(@--QKPWHzIPq};;`*H?TgQaV`s0&_GI8FwchyHI4ge(q}1A6 z5Qp!OxqG&18)oL>Z(^J4cRAy4-NuQowD(o~N&=3aHi$l6OA$CiIzux*-No!{SB->f z5gfSL#W8s0A&9cTZ8d7K59T!Y20Pbay1msl%Cv5cOQ^kS`l?RXG2W2$tn=YJSDSGc z+1gvB8TVkpID_MWypc!U*3_9FMsyX6PjU3&Rd2XoD0r;D(z_=Zk3Wsyf3}tX*;=O4 zSMTkh2i6=@Y~oC=jm(W68J`XZJKhyrgB${fZWYE*YPQ;}0F^*)oxhqsf|bjL<9 zXK9ye<8*%2PlvHsHM$`VI^WSqEr|%;KqMeMK$W#T(Heqrd9ny#6vOnXerY4>R)Aup z8BCAP+Ji@2lHHO{Uwy96Ts*zm#D4@4g=-1^3u%g#2Yd^D1O>rO;jsYwE|A$gmrbXr zS7T3gaqGqJ)NxO~anF|&&=UK^ht`5b_zboqD=&m1EuoosltG|oWX-Wf<;~mZwFK4W%K^Uzi7_O=D5GCOnL2G3mz(miU9=6n##*Gff8AEA{Np8lla!o7V?G$7F zB6$`)|60uEQxn#}37vV!8*T~Jv*E@-debdYeU8ja>5)#)DaA{d<1#Y6_OIU(RNp6u zp{d0?!-{Qe9fwcZZ8iadPD8q^R%6w~@>&q-W+^YM#PIjPzXlteQG)%lQGZs>U4pjn zG-tThB~CVTLzPoK4_Lbnr8uYx@AN{{aZp^qVW@m3y<>*n^JFV5&Tyc;1=>&`VE6rmOX}}>(~3GT(?wfcpd1LTGt$R4(0EyBMh&in{8Gi#4|*&!wmDv&>>e|`2eTJ8<5ceJVY}B?dhY4; z^pY;W?~qNWN>a$6MUD;^mKP6uiJ+yA=T?%vG3+KorOSk6Lygx+cQk%aS!*kqfGkWLAl6+Z%TKs&`sW zY&ze{j!M!;`jQ4*v3-vywM_=f@ybauRE9k$+M~p1${k#Jz?k?-<0B_<);$z{P+@0t z0~?c00Z}7ve*RaEvl+{aHA~L!5mAx*YyC$1N6~qDwnt0i8P z!q}YW0Ui;Uk7Q!D^;zN*YAc756{Wog$%*xCw`XPJ13tQKKcRF9g9Xtgkq?^9Nfp1C zH78i6Sl$FbJ-imOiTZu6+r|p8mP7r+m;K(3YyU8U$LQqgv&RY&W}Qx{qC{N`((bU2 zMvlhR${pVCET%lz2*>8-)|Ww*ILORZg)x7dlha3K&8c1v2H8lNfW>X>@%jvS}PD3A+1T0Qg>OKB2zuW^?rHW>J!`l)8Qvy=Aj09IPgFCXxG>r;8#lHXKHgob7dF*BCEI$SWLrS1nFMQSFAcZN zM_ZA_Hru;A7TC?}LZ7Vk=Q-1k=l@zg*1eNMh*Nx+=exE&N7kYe9ADfrN*$!J79xWw zsaiaUsmn4BwV*L9tMk`(FBq5;LK8&iNS<8P@RzAyyrKAS&0LFEa9Yt5uDSmArsLVH zDKF?YY;VNTi#RUDH+Hu!diidt=I#6MA-tSsvv;F^bZA9YntOWd|5X!by_ZQ7#?c}= zrL@EfV2)tC(S#_T6hhQb-kmm|{5nm8NC92x+}HTlc~I|fbO27uu3alXYw_p_A~bL8 zOv3SR(|^q3_tNx_%bD~BLT-UblRJbpST$ebD1fM-XJFhJ<(*0`(mEbOmdQ}VOYzP7f-;5ZAV47)64WM}k1^n6qXh-OBYnO-Xt_3PjMN?o6$NtbGv_=M@&Q>Mz_ zW<#0|v5#e)#_pcb7-OS)=dzBa);IL}P2Gw2XY3C;sB$-R@tC2QWFL^oEbud0uyh#J zf#+d)aSWi9)z&jHm!|RXL`x=|snSLx!Dm0d0==)ZJDDs!OoHl-g-ouuIS^CXR-6>Hao_aCEwLfT;0a9kd#2aDiN-&?&o3`C$=jsA}UB1KeXf@Ua$OpPnE9F{RnW*NKq(pxT zWkY7#nr7;tV`M-eQLGb7+BsMASazC7T6`({qLG)uW%&tJPdxQfIi@quY_SAG$|=@U?qyxa>-i`85%l27xxlC?3W%XVR(HgzqMH zjnK#l_CcGKB0d0`^5%_jUBAL#cZ6McE6h9%x2s5b8_@*Z#PrC8>4c3yPm88l#=Ns7?RCAs?K}uRyt*_4cT4=FQ9({rdu{$ zJ-Ot!y_C7f=i8y8gh4KgL-3_sSD8yYkZpv(GsyzjturpeZdJ?PTkxs4fET1!j#i4v zgAs};gSm#i7G;l>g2zktff|`)eIhw1=|m$WY9jugmNncYye-_oB;9(@LixRZD2^=1 z4Ih=xS|~7bCwf&dZ7i(dV=>1mfE+;Qe`KA4z@z$}He7zQ)y=Y4CS79?X_q_m6nI~M zJ>VvHBkMR@X=-?xEsVtb2m2gsoI85L_sEaTk18tJJ(PHE zI`;*WD|;I!c!Oa{x45Wu`SZ!N0!NmpNnVhB;-$ZrYui!a_hxcZYY{j{1Vc6unB$-N z;c{)~XtCNaQ{~H>(o*f>H%g&ri@u8~Wx8iJPGdPDdvjHJ&1PlW82hD-hq|nZedzSW zKd8hPfUdG416s;%yuq1#-!v~-pKxnFL6yJz%{yc#kDaChi(9Xc_;eeC3|b#x3DJ?! zWdRLhx`$lXWt$S7L{xjl3`)?Qn;4?NR^MNxUV26HAl)~*Itjc-jX0B@qco(3`gyS_@%yJ6EAhiQ2#jJERC zoMs*V`zF83ouUS(xvW#I(Xv?y{M}l!YGkgQ>2)s2IiiY_UWKbEjvmj)bgu^*F=d%kmrQ{`GE!#l)fs8Hcw0H0= zylgZ|V);0)Iot?zWymM`>2I&`}Zs$QgQKMR^{REyaX+Q3c zihmB#xV{SwMPk(z-zs|STz&bL9*gl|(ms-r7&U&3@4)?o- z;`fG?mi4<&0y_7VK~Y*9_LosKI>NzUt_q_UhP07pX=FpfOR$n9c~ErSfRv#AHGMi+ zdJ+cHe|GW|a5}(O;3(~tOn^dp%&~l-MI{rp+f07Wo7nLi!kk`&*Gy%WIwucbLJ1O-b_n>$epBOiRaY{~)8}QE3#8M)_+nb&CiE<{Kj8u}YgCVU92w5d1 zAf@|8kM2cW2;`;Hqt}prpVH*<(-dqMcye!4KkL!H@tKJh&Nz&E|8eqRM#}Li9&@q& z%;@1m#nneYw-eXRw<8y^6R({FWC(H?Rjt6i}V-2eHBxqVk z&7%i^W?eZXMRlt(So9aL*hSEf8|^8Cv^TNxX#x@Hi0i&Q#4%Hcg3mvwI|iR+luP5m z+&^J9912nQFR-P#Me+354&U&Kz$Pn&m~G%Mw+OMozGKDjy$@ClaC-RFMdbFR84HlN z5o8fuqzPCD5+wUXeB!p7$J$WPK?uNqkC3i-rmd`^R@=P3iu(jK=I);-?4j<6Yi}ta zk+jlSRRq4B)IR_~ktkU5M;Lpo7w_Gv8sTK!RLKl;AbkQQ^Wgb64`>?@*#V+Y8?FS_ zIl}myXa{6`mTZWj8#Q|DvHP(yD-84lqL!~1J1a&jab{O ztQfz82|gKY=oF(!ReJVI^pNv#L8^d>$wUL*%}}h+)ri2R4a!?e8R~0msInge;^!%O z4U3m18n0x(X;*BsEvLz*w07Zfd9E4M&1Tt$)Pe<`YCbeB9)2m;hD8ETr|jH?7FbJG z)2%CioBZWzwKTxpG1YH%FF{X2WF-#s`Pky} z=>MPKR_RV?3Sm+80k}_~0Y5&jYH>T@ZV;6_fECE*ipUE9rV%jt#AHV0? zq2L;#=VR^yEU?IN7Y+xc(lG}GfH|BDlrmHPD$C?ngWj*@nNcYinf{4J@ZnCP z!{1WiS(~1V%+U>nv_-DAGQ31k8zO*-lpth>9hifg=78gXh-A2lVgXXO(jVXTA6^HG z|KWIdnnP?ZUiP9hNZwT(o?d;t)JZ4(;?`#-7W`y*`nZ_=;(HNtF0ZlbXI{~GX1w(7#?xAD59pITz|T)+bg z16qR2z^IpS-|<_%(!IH|RxfZhaW%7APC4>S_M3?nP4Z0ri{Y)~%ex&JQNN3lQcDsk zhgx0+D_m;e3>bZa<|!&8Vn^xUX5y>C^hoT5cL>2ADuDJDGJW=K2+-35w;A7}WnaE! zmebEHZ#<{uMTh*XCp_xuCKtWm-Jd5o&Tvoe@rFFWlp(5b_uSW`Y8e|zxB2YXTW(=E z@U9q2Gue%zC%kDi_Sbj1Skpzo<+4eS2A|uibw)}{!vBh&zI?uRbLP`OYXu^xKm^x0 z$~#qN0iO&j4!q;{FBI=`mZ`qQi7MMwQt$-mFdVg+IE~bM&VLiby_Oq^(Rmj8nZ4t z&*H5&mlOI6a8~~EGSx4w(CzQ=+bU)GlF2Xt`T4@{4*yoJE&bX3{Ne;y`Xj%zVX7y8 zWTK+3F+C9^(csx@l*XxV`mS^HS`zeuf{MyVgiyNS65g9BiQNb z52oL}XB?A~_KVvhOLll#KwjLZQp!2Te;M}(KrZ-xo{UdPA<9JT_g4nj3_Iot=>6vksI;QeABkyh*1 zQc`5k_Lc98CD#63vmxp!_)+E=t%nL$5F#orjId# z7DD?s*#QUn8B^+Y4GA*2xA_ZsLdZtQm4{13xj?JY@)Cjxr`9w-R75vL?!6D7K>~CL zpR%s=rkI}WH|3S_#*L5gl^`N$RL%%wgF2LKXymEHvwgk@r;h92!8sVmXyF!Mh#n;L z^l%4Xa)ZmRQnzZW74oqJz0Z5+8pF&*r_-*2yWC-T)-OLeM@2r8tQ#WceDn~Bb7*L!HQ`4KlK8z3wKZ*G?OXsJqMVjdO)9!Yq>k-d&(O2VLC zfC9}fMQ1VHG(8@?Uui;K?hT@j4C65@x=A80L52)_MaV?n)HnvJ_*}y88D`K;YG)O# z^Su6afsJE;u8+*L&@`s0&?1KR>!qa`%cDU5BMUfvQg*p;(gC#g~VaTH$+K9mHfLHVhscSe3g(7{L=DJ@FyhyqI$HG{oDvKG+nt)MQfYa;VzJCo@V`DOe`e2D-R=dsrYI?`IgFsY{CgQ z8fI~t{VU+^Vt1;+c}a9>;d}ne1+r2FY*OW?(7PuHmEwlwSK7kl$OLH=OX4tU-V}EI z0Y{I2mfx8+Mw4mYzBHzUWFHc6kt;)mBl#nV!YQK)8p&Q+$jn3L_DqSb zjoi(#RBDBS8T+J?HloDkm{ccUhL2Ap!d{B@`*0(pkUTf)_VT~axYU9sWu$@M`}6E8 z^5xcv2rS3N$*HA2y0qI0MQ)Admbs_FDAc+W!8*!na6Z7VAQ4YPK9+<@CBBLz93Gu^ zgnAm+U$bHT@@cNQn8G`J>L1YYMqR(6JWwqyRK{9PPcq`IHG70e=HUzai=WECuf1R5 z2}s(FPrya1{oD*y#}H(ub*;gFq7+Rj(T$Uu{Dr;sMr3#A8OyEr-gu`*qdkqSrTS(6 z>ys%2{`X->EAZ})JFwy3q88ipK@P zv?O-?VYm}lH)j3=*43w@B!#h-g?7(e#s15wA?fzl6`WuhyAEPE!@Mq}D#1lMKH25e-HVj$kPSb?v;9kyYdLz53Y|BL04k>Wb zarXI+`sDw4bOu9@FW0ZRmbe3;DgTrQSL!y0(=`_s7L02B$~10XO!#3Ih~NTH*&59n zHsLlf6+}wg*mJE&8#WK|3H3>A!jtJJ+Y6_Orin@lA8#fNVnKerF1!wmkkpYwT$dT| z80oS-*js9?D+chgNdMG?oX1T5O?H7uDC>M50`ibQQ3r1M+P}bSt=w3DS2b}LFtbCw9H##B1?E(W!OfK*f$e*4uzf*@pcBIFSQSQ@xla~17dD4Gr0XU2eEav4j z8|T>M?%#5APuyggP^`LCZEn{UYuMl2Xc=)IYkLHi{(6_{{{86D`kCB2DkJfw* zYD|Pr>x}$>5lQm6A-^+*JO3rr!bz(=@&9q5aggm1Cf>=^>3+<+ zCiHHKAAAp=4>C`aR}qgj98EY6!LS8TaflEP>jt6`$b1$ED+%RrgJ)Uk$;%%|yORZ5 zt*j1FCSSbA5;xu=(x56~Ct@-K1*ARrt(_^!P1 zG-|6jKy*ut_&nin4RB#6;@TAy?{x`F#=GM!BIAvcsS?^!X$^|HQ}Q)zXYce zO~5MNxp`3o3sqOjk+-^ikW@n<^T8X3c`|WyOYv%T>w!|Y<{JE zw|gW*>Kqk1Cw>S%Jw#%EoDH#85Pt>3t+N zX-n3?O*ZpT>%e~x{#|mb-ZHB~*u8)gz=a9Je)IuNmG6IJ-Ty$lFS@~I;0*)z%hl7m ze952{tlkt(qxIJWU(nrfWz@D9tXU$c|Gh1EZ7p0tw)v7Lg5mx;jFcCb;I%t$Pb$I= z=)w=N=)iyLXP57^u$UB+lnLwvLV>@4p}?mAXb4UUkt`7%dZ63{QZn|M5;KQ9-9OHM zLZ|`CR|@T7Pm9S3owmL@tgL!lf|1)CC9%ZL+Tnj(v?f1newGx@#K#>dB#@>akL z6%OHIY;VM60~OVEth>py6CfR_$#|H2;GOw^Ct>t(IR^^;8&k7+FW z84Hx=c=Hb-<~ANE>nXQCI+M;W$aAQQtn=h@UL%VQq_mp!Bal2aS7`fhDcxVMy=HvF z7*J}Go)+}ESn$)L_0xfvkAeU7f!<*4uTsB0W1Tt#73^bc=c`TPIt?oijRkisTPjWvr?I+adb*>n*`?CWdoUyVD!L!tl-Uec zr1wnsRDWWwG}D94lZNEcOo$gx#awL(BSx77MTNcS52txX6OW5Km!}Ny8v}G=c9GDr zS(4xswCkj}5o?!9l1>kwdzd|Kh4(L218j52aP=8r@ytFZUy}#Mg8=p532t zw+w1WIQ*`5S!RAHU~dAjrm`5FHo)_=DpuMd35hmNv-`RF82bYqxm)*?YYSE*{JK@T zb6^7-Yn$C(A(owlIl>F&xo*GJn5&lkmQl zxz%f)lDs{B`*PN6Nto&a(&Eiyde+2q7Vzpx@Z;r($2c2@QpQl~yF;;eN!RG8l7Z_U zU|_acwm*BDgyHu{r=9T?TzD(SHt^9TcU3{9~Z zwa9LZt9Cg;HdQNYCZ>y4<(m!M`M+Z42uwUa!c5b!w}@DHZ8;mv@cHKju^1a&F> zP$4_T?jQ=IK&82H16ZCkKsF&-zy+Wj$*=?4FabUR191FQ+&i9H@~fCp(tPB$_U@pL z%$06(pJs8MP9>thSd^rPXK$S?L4rqtb&SF#`ed zjU*4pOzVzV59t$P+oaw3XN$NE+6Vk!$Aw7kt>kSbXPeNrpH=b1S~E}o_yeyH_8bp8 z66d*RX=P43CHh23QnLW_t~9cESktP~fr3eBo`zJ+hI8WB^!T5~y>NV~**(wwG#}T_ zA-xjVpJQ-AG_`a7#Yqn{XJI1bvWqyBFi7;26j`cT+~YKsGgsrcrayief2DQII#s3;FVWH?I{sT^@&|FkF`Y5NF*Iv$e3;z;Zp`$I zcN-Dr@zG83BE_BaY(M0lMo%;0BJ+ULx3UbD4C@(?5h9MKfaEPsqaPAdp9Eq|;SCAY z_Ju|b`#b+OX$kw^H!Qhvm8BMpu$Nl!#Nm&Y3qW7ve)-L5qIbG_F6z2h>#n5mR+PPK zWE>y6*y-;MMH#`<;(pot$&@`YuUJPt&ftc1a^hb*LSf7Yc~8CGAyPbiwc(=kVBp&D4zTvK_y~ z+yXXC=oxEh0>hL}h`;d3svku7q&JMWMqS#$ATwpf@!(+f96{~;?ob$+@y^PHRIE3} z|Jta9J~JYB8j@XIE4}*)WzW~l(!AHa8g2dc|BgS$Azd_DWV1!;6jYJ{2G>%jIUNty zMMdL=-%%Vw6(OiGiQk89uo;+Tm5~O~M8K%}kQOX6F-25*d|r}Tny^fCEp+m91(MJ3 zhMz!MZIHe6Ke;!uKv`G0mNT^@{Ctd<;0gUvjP=y})Cx?Vem+`4I@-aV$b+pQh%_xP zC{FrB_V?jJhr+QYndN}hz+A?M%?7F4@|3H?2|^AUok#zyot;8%IoettBnvzTKq$V* zAhY5Slj@nQwCuOk8XUUuWD@JvD2#<;=_px7IpHu+V8}>>bR_LRmw}rKO3n22Iwt7b zx0~_M==2%l+fog>I23C!RHkgUc=C8&K0X2a3!gylz~52^zRg1d(|5aGtY&4&56EF) zy-zKHlJg7`7Lv68$Z3LWYY%Ku{)sio-L&jkP}0>h^erM&Fo5ebZZANMz>d{ETWsPn z%FOZY3u1!LKdXi)7uw7R9&hn1MFi=)=5(Q!V?KDYf=|*2(I4r@((|%oQ)XM4>PX5~ z-s~}hF#OsX%4-ZevekhC1W>sRDN=%y~aPxIG8f34Ffmhf#((^+!9`(dH zOXVBk76|MMYf0=a7?TzJXB2zG&I7kK$()f?MAHsK!^g7t1cj>y1cWw(W5dFXL$-VXd3E;bA`dTz4-?UzlS#6eCW8#(i_kn&Ou@bhwo6Yps$f5J$E#N3GUHa5=rcmOrXvJ5O^U5N}{^t0~7 z!8=ltw1L}iMAJ)N-jPj?brOOM`?J@}RYjcNbpe1br)>S6MivwEwukH+sGI&=C3U zNWdgv_+Oh}L7{3%kC_c6q;N=H#n}5`D!Zz^V3e)%cE*O_n^#c?UyiyM#;CvQlAWqH)%9x_lSopmstb_^%A8{BZdU*OY6Io!;MGxVO47w4A7qI z<*Oxe&tvB@ZS^b>{p*=BXF|(|@`MwY$_5`>r{m?oEwM8FifQO42ssahq*Tp&MZLzNPDvS>Hj(atD(Ch)6-c7K3RKyOO9$HutoYrB z9LeZwN49`W-l%euXydz7=2D#{3^g2ilXn5~5B8`r9Y0w!JtEZL7U^{y{W6rA0mFZj zGX!n=Qc;gjMttKTNc7E2lQbqai}{ z|Lb*np*_#;s85idYN3^YDIL$2vLKZ9^CLCS;K0x!1&ml6t+@^fOEf~ANjlYxEht6A z-|#M$Y~tTvu_PWSeu$evm=*?an1{th)$S&}O;F@l8;Mk_Wy)(pr5m{5)IgUl<%svH z!YRafHL7{wLQXcvwdNO+nl0T}p;AkpndD3k+N7wNQvW`JOa^LB)?Ngl?iej$rAZO1c-gAyius57K%W#MuK zQ(btqAOg@D_I&MITv$a?d=ax!sLlT~KSyV$b)d8E{<0#I6E4<6 zgX(KN7RJTM3g`UCWn~S$p`LrlaqN=-?tsH+zoKv*4d#%JIaEbY^v`x-5`6PrGeV$k z&Er^Ed7w=K$!aE1V**8cQ+@;I%pJC#V~P7@Zhi|1)(&{tsm(7NLhX{5bm%et@87EW z@u6=~5~SmzT(wqn)YdgCEkM))TX(eEc@8-WbA*dpf}54bB`0NxS#>Az?PS$#`Gu`s ze%ZM6*#|z}Ut-F9(0FjK%0YsI^Z$_Ts(Tb^TNl0{dsp@$fa{?s`>9X*qb{EoF$*&^ z1qXpeHH~U%m0&T&j#mz&*Lb-N`^g>jlp7-K?6X)A!rATtc@3jH`~ZIS&2kBU0Z(g} z$A5oD)*5fI5GA_|pDy0l6{!r4Im`vQew}rBG{jC1_~|*E&bm3DFmt4+k?jOy;1(JQ zCB*xE-6N?*n$h&rs#@tT`s0+;0fv9KS4k0KE0y7Fft}VrCqZs2G??KIMM@h)-)CDb zrbT%SJQ~lk%DD{4rZO2`v{>#Mpkf;w*Ku9-pHIIJ=x&kltJX7QDk@^Tgu9`kp+A*I zTJSZFYV{QTay~(x{dFrV^Yq30#%yywno{4pI=oNb-qJ8S9tq|aYSdh z=NNv?f`qX`mWM?{2?9I`y5Rs}c$CgDDw#2#)4CWGGQJ?bCx(vJxceJwx89a2QpcgBO4}A1 z-|~i|V}jy3ec6%uQ;&}f8U?JGWv=ztJMYwKrp#7?9@Cot?K-1ejMN>biOsLT*~Bp> zv6}eC2%78CI_whsu8%5yKFcvV9Hj|~b|U)w%bs#QN7_MxAPOFgNLjwiW&gU%qk@{} zq=WUlEH?VYMK78XSVC6W`y*Ngfb4svzmz+6kGr~Nqf`5GEpe=WPp9n4{(aI_*X1V| z>iU+ECGxjr8zLEatR7f*k{Wy`{waCDjA<}N zGUCc8Ped42FKZ@o1la0LvE)9hrJ@x(ip={nm<9kyL?U~zlezI#~v8oe9MVonVx|d!jAs^%8FUt?SNw6pd{GwXYna zn(GNaX;yu0N#$m3KWK7g2oD)fGy;RNn&l~HB?ADbT*rWQw{@#0<_;D~)zRu0e`wh% zwMI#dbW%nx*;nDDhB!dlHlYx`|34=KNsEpKN9l)mLXIzoG1}RwVxs=wr(0< zW_?J6by&#*2Pg0W!pb5+MJ*)OBLC>u z+2LZq_!k!#gUOHNwFF^Q3%ml3@z9ZI%FQN8K{1%3aY~{(va$)UGU#11mi*snTma<6 zN+)|AfXMO6F&S?kpp0shH?fMa%GaaqLq`*)#n})>uCz%F#RVwq!qxubhovOoL1)ZS zka$Vx(?-z;)KT960&|oTB{?M6ZLC!quonEKE5ldF*MgAP7agj5;kj zGhoj|7lqqbki%_lS~I$P1}=%b5%6e)X(QBR^B!!#EtFJKWR%sJOC$Mn(i?%;deyHh z3c{6T6Lh4VbO8U8-jgjlQ$rXrEv9stH{3QIQh4>R#1k94Ut4*EjaUoP(uUU99E9vS z2Wz6%y_HoEtCl|Lt*dr|sn=w7jf4HTods(${0AJtxyQV7BYeW46b4q~BNSJWtBDB= z-~pZFbDLSd;-sm0bf;Kc?h|C>0}$_P_eF5i&B-5G1xemq4@1jL9DBj&d2_3rq_GjC z#)yifccVq929|SxCE?e}{tP~r+R?agXUXZs?mTwdh&@d;55l8Mb6giH8J6++ zAIuh{-#LvpCOqG%YJcdB!kuyJdc$;2%4^x-?h8hUBwP+hQJ&*HJ>=tqo6P&$P^w)J zQ8!7!=l(ER^G?c*&_Ju7ZFRr|3l{LJX2g9&LtmY5@u{gfN?bEK7s82k^Om*U?LYW& zT`5@-cpEd@ywdR4qoeLMNugO&2}*P-5s`9VHT|;^*(0dqA7<|ppzh!0tiV3 zqBs8l!tuf=oq~y%5~rOfb*G)D*Ee{WIPf=c+?(l}v7743-<)oYPo&p8mOtZWkJnu+ z$@D$5V%2ZL#c4VdgVwBCg)vq{xMWG!lXskEOhNfT&Go7c!gX%~O;?Ey;X%rq0M5`? zQptAf#bNk0ET>(2Oy~ST)fG9OW-pgACd4#u-J>&9?BN`Mu_msJ4A#yLtG#!#hD~14 z%y>sIxY-pv$ab{J- zdyOFQmn$?S_28I7$f=Nr3s-+Hjhm2xU>r0TaNCDG>Q|Wedn!QY{Qo2CEu-2Bylr17 z6ez{rwLmGw-GaLocMDPo7Tl${Ln&6YXp!RX5`t@s7ERFN?(lN%z5jFWd+$>+vd11H zANJmB&$Z_I&6iq55s7u(IocpI@@LD6uj`o3pCLiOp`Pl9-{t}gMI)&!Z2CV82pKo? z8LQunD=$P&tuGWS5qchv*XWPmHz{PqC+Id@2kQJdHYX>#n6j zv*i0S*7u*YgTQeyLKR+4NEe1rZ5eNmkq3kDl33wpm)ez2&CCaqoKl&NV4aZ< z-XGYwRLeLFBoLIg6Z_fL8D$j}?O*b0bH2Twx07PI1hPFiv?+JheqY{l3z)G|6(Jze zx@T@_SfvmzJ}!C9G+$Ozmu~2%AI%h0zqBUq9j+kS4kis>f*#Kly3UT#muvg=0%RJm z&x`Fpn6*{cv8L`dxWxH2x;WjtuLF;+Hr$_x$p4jH<*WT}&2W;ab{Pb!AXp`=?Np}o zs^g$yCCkCb&YG+L z+EkY>T(8O=W;U>SOTjJnMvj?vWU8892nnF@5xNZFFnKLLF9^b2iMHEE3A8zyaq)h~ z!u{cd$jThrI6nl(8yXO8L-Uqm;&J?PLxiwb`wCKB>b~({;DS_L#_jlU!Bp>&yd_O0 z9)=;`%BozGg|hio-E#0F`s8jQVXin9<5L{YJGlyjmu3^7p9Z1t)pB^$ke{DF=&le( zJ}tN3051M#(7*J*BuDlyxLNT3+ea;i`pk>*m=a-WQ!yu~pcK^Y8k%T_O7R05mEj%P zkb~r~l&W;5%!X898yt<^6n|cFW%bjvUP0k6QRf($Y8hFSzA13nK`Q$QZeNrTR$cl? zI8_7qhYH8V7T8JG+{T{A0V=?7BE^F!`RLNN>3Wh^&7`6Eo z8{}iaZsMaC@2fM)r_ft#V5tAJpuWvG^#$?>Ru*oXQUqPJuK@CGwQwo-sx7oV0hdLU zH!U|n;fDSmnWkQmo)cfA4bIz#QHMwQnr~QtSfx5_rHs}B(>L}uzQtiGuomDiW2+J+ChG4Fpikl1+=@Oy`wF zD64@HPn8lE9SOo`Ia75vv2>2(zlr>KbCWU4dq@?URo+Wt@mj=j`P32OG)_o~h~@el z#p~6_U%gBT+@Yw*pP~D%M*Qm|DA*BJD?BLFcW>Q3vGZErn@ToRlWo}QIg9f+srBvn zKB+XnBNj5{ja}6^DbOhGbH0jK17krQ6Ds(aO#41w98o2v3<#s==oW7Bn{T;q#Il78 zUc~-VC-pssPl&P-afMR5;WLM`3Gz3gsX0?pxRO2C`eets*~#`3?JXg*KuQ zB343<iBe4EEYS7U{9DhbcmTT+lH@pK;4vIic4+} z%1rS}q=JHu&KhUYXTwO=CO)BQjJNMQHtNoI{^(zAL3Nub>KNF*`7^ZMjc?Y?vpzpi zxL>pAmYZx=aDC+BlC*h-^w+jD2NuL++pe7EA4HasvT;S7$X(^%xh!;4{&$nMmzE?n z+mMWe%sRr7Rk-k*s9mP8^ejJt$!Su>c1QX*sj7>oPi)sPpQZ!0ZLK%aw|M5{v@xxy z61cSAP>}-oAH|PDUu;m{16J{fgX~R`XrtEU<43Pd;*ug?)Ul)<2R?1So8IVfWAEk# z2s~F-9?Ipw!k-qBK< zW@b8althcU9Mmpha1K6s7q?A4CUFvfA>i?$U!*(*#n1i<)41;7UhgIkeXdu6E3mpG3wjt!CV; z7i9)+X9|wSVa}fk2?}hqU;0|P8sI%?5&_lI$5gPWHYs2&dRV6`2A%)8py02~V32vj z*0)HM?D}XrIsWH7sU~K)brVIyTlaTap8hJ#GBTJ>e%1Z4v$Tt<>;#Yx$`f{-wn%HM z=_+?M74B(t+6}_qpOf?VKGH;hKCU!(rHon}%Wb>;fD+Y1SNnjXKaVN%(C%ob7`aWL zfgMB*fhl%Cq_BP$_ivW&@8{>TY|iWKsHk)K8mXwoc>PM_c#|N)fV9d5Q1ns-v{I!| za^BPbP*g)Z|bM_cRJEkiXZvTdld{l(ptxNXBVy39U+HfI9^&kH}B@ZcOP z(Q`WsL)@396XhZ?I?axbsN~G#t3R2<(AWO3+B|$5H>{7KSJkg(SWn)52xzMa!x-;P zGQbtvF!=oLbsH-G{1*@efe?bU9N&Ig^WRv$3jO!N=w}GCMwUaO7rQpY4()vSP3V8$ zPzb}3e!xmtkc?5}JtF&RWP1C(LVfPjAvh63V-I&o z<~#g-AbBfQrF1_1m!&Pb>|FTkY8P|bX6cGZIrg&{uGf9ouf)QYlW#Z1p|7@nRLaY3 zvwcXGl9qT6mi&KFaUmN z^FI<;S-WZlXzl%32 z@3pfqJ1mZCJ?BXmxyvreSNh&k%Ds!6j(Z3Z&2%@v4`&CK;ms#+KGMV+pg88VF>3Df zX6xY{i>2O4D-Jf4zk+_3`5e8PU10~Xd?#czK$Q*qz|TdyAroBZy^|r#G)Y(6oZL%@BVfm=$F;v ze6xzn^22@C5SHspzrjB*o*t;K82$e5hdAzYn^-(Z09TfFhOZUQQ;o0dwA=CL5)z z*hN`-3M+;HQ&fP?V!wG2J!El^I~IQd_VLliiu#d9e=dV8Wa=kLWOTgHTkf|2`ezy? z6e_9R#7`_ZgXYkMZ2&~=9pQ$cs3lntQ(DC7gK3(fmG)`DW|;QOVK(PZxxY6XR;6Cc z548Bag7XN*@rF~jGu;?|yqQ*m(4eoMBTjNXtvi;RKxN-jN7_rY_!EMh3STh*6O#C(($jnt#x%DPehF`Kem>3bBK7 zvfdg{?kBPSOndmtv?ZwG-U6L?oV*}&BkulowVXmCsI!fOPt3$cJ+~r&_?V~e;~5e7 z?u$18pYw`P8msxIDeUZG0w!g$e6r9fjgD)OM-Rtx3utK0j{ds6!^XI2e_Ad`YSY$n zoVPAc_@B7Asri(@`NewH&jvg7Y-J-jv%0QiR>!wamk#Djr?Rar>(%x8CXwqH?dn=Q zM$~sSt_q{s%H8{Re>ya1f8EbxcHtc~9g(xV6yOE&ic0Y^C-5#phFIPUF!$I_<`uPu zJ~{VV@8qRim-z>qa~xGoxWLZnDUxRtYi&GT@7Xs z6hb=8;~y1$?fiN&V%MFT>J?R-3e>HCt_F8$S1`J+6FI@|3@}hC3`mDw=p|#Jl@Z%N zAmK`Wp*i7Rz`cKagCqcXkSJT;9RT;bgqXrbTG;9(@dq_>idF9_r5)pAc)ND~uSV4A z16}R@qSul7Y8gdD#ZR3)f|o`@1it4ci}s}aKXb+Z{VB-*N(~UC6|jcUdeG9{l@xV>jo9`Rb@$Q`Q=lj?9+Euk}|F`Uu0@iSYtn<5K#AH!Egw0VdQSf zkT_EBNY<`=o7a{Y$|g)q-6%0=$cfRfUy&AKY2jMYNMrx`N7O8h7451h ziUCkms*bRh4}bmXOlE|-=@x*5H&%9%AS0hymyKIkxt0ByH9+~xzsg2X2ju|`pJO#{QLVzHS$`aeAZ8)W4eQG zL$Pie(WcQB6#0zPR&aFxAGD6lQb8R+g<8S9H{H>BwJ6@dMB7u_26ymm&aebPpB=YC zh{+g7t%7{eo~*>ysq4az#Rm~1OEkw@Ni!hJBLBs3BrzOKaQ+pxCF6zUoG5fK1%D%Y z7_+J`!)_)R;QdN?*fJx_L}YduFQLL}1Cv~%1f}H@#I6ecu*(*i%^BY2xMNXP#j5Bc zK$?kC+sm;7#1Q#};TM z&P^I!l1aOR=Jps{vy1{tfkJVBMYK9zt_c85r-Y_2xAFd#AdKHX4btUp8ZYF=+ogELv4&mczVii2u^9-3B0t#`h2D^6BW*x!nF{r4 ztu7KhQE(6ln^Ll#a-z(kWhVFDWreMgdz(Yrzy_rx{%#pITr(XXqr(0#C_1HE`8V%J z_WuH=i+d``n$PwJF;724n)1q@nE%hEy+EJ*e-{3)QVH}mTo6aiGs*;xqcfV3uHO<@`8~iQ^5Y!X*ro0*S zRlC0mS8>Ht<=fSEbk81PHywa$VFOqrVf&;)06x`@F~+ah6eW;hpeQ0Bcw)(;dzShW zS<@bLr-glFIjE6<}_LEIA$BXI&3)P&W^LfFYga(D%VV}uKx7;*r3XNKOvAfLQEbJtbqL? zY%f)vBfp&pdcX5J5)ltTFTzBH+0U^or&6H~f6(pH@+I#0Rf;LU%Y6n5bvkJD(EBo9V+^W} zi=V7XWGpM6q}Ekki9ZUwKa$5jv>1B0IXc!my4<=5{8M0^8MNGHoGaovzlq|n+Xl_0 zxODq6i*oTj^YvPo&`?#F2kYgioO|QmSB+m>hq=P;o^7t4zygdRgEGi`6&NO+ku1A1 zw2Wkzp%@t*>rZ&$tkir)PTV`ro!9NK_6XSi(#3L;tZ80|=zYblZxR^bV$>t@@8Z~1 zX;`%Y|gTBLOac+nw?8E3+_ft%+w zsz+uGOux3tJi{ld;2WH-FFCv;aYcPdd%l1~Nt7MVd=Xdi*qIgPXP;B_CMiFw6gUXn`|pb6+CX=Dqg2g%qM=z5 zupQjwkElhqS^PD$|8v9s*Ed1@R}#4^C3pVaS~wCC;-){+Ftvt93@(;`p{S2LwM;0K#2sE$RM}|OZj2S7 zD_-RD0cdwKvw+vpeRv7_6D`_!9;HIJqMA|w<+N0hO ziTjN(4mS=xCW)hnqyU4nRS{|*_EY$ZwMl&1R3FY4q8|hUw!gzCaH2m!Lx=Ym3|s4m z!q3TXokceZcTktr(0A~-DTV0ytQuHSfvmr)G||TwsbEI3GCJ{vHObwMRa_*{(VX+P zN-LWR|LxkWLzAfCeV^}x;$xRvcxqU)CH{k`0DC4U1yF8! z(0yqSfe7gf2q9(o;Fu%~ym(EC?t-ecbMaBsJUVm_+~3Ve|u+*zC50adgV$_$Yof z02R|{Br&K;Pbv=mw%x%s?ZW7x;FoEKp69>$xx!Uaop-#Se&}F55F&KX(R(EXn^)~N zzk7k{|F}#-D=~7$glewi{6P!lfw4FVvoba(+HeBzaz~xR7v67rG=?=(H-SYfeZq59 zm*Va0?JF-0b}tR+^jI>j7ptS5AGGLd+#;hW^5bRSSdmunbwnmR_cXwySq=E$ zr8QbtR9K<+a=Y{)2&4-iI2QJj*EaiClV)yQH{;?o^BTx!^{B&Nt~~-Fd8d7A-uBbJ z24`V*s)}p4smwgU&|Bj6r&54at(@wcYF2db&u%9AM}Ir?nN-qsS~5z1sHxG|GJw3gACTehR zr`y)&nSu)nQ3iGQ-RI!LRrJ>M!6v|?+)4CoUnE1pqGk~pKa>O%4&lE50>C z54Vi4Ik1|YU1j&n3=8a3Jm{WN&9UeA6mSS7G1fl8sFcikx%dox{6+y%bhAR!m0=FJ z25k24&ADe;_rMfEUjks?cNJ6-sEMC&&J8Oa z6~+E}LnMVF!n_r%<6njzOV{*7k<{5WZ<2URya1>1*>X6mm4d^ zwrVTs5r@V;QV!VpVWdD8Px#2QKkTS_ElX9ONe9r!L13D*)!Bq(v$X4(i^|eFB0*PtVOdioW>=bC3@lV0l3F~U z+nus3t}nN*Rv3G{Lj3I+`#r-F+;>>Akud3Sd+n%tC9Nqe@(53v&~pHzo(UQW<7M_E zxIR~eT-d4#RxwaP1pbnPCfjr;3;w7M~3^j_5qtI0ilq$D~ZBhp@+wLNACRp6US`eFq1-8^K*K&3 zo7Sh6WXVd}{EvYav_utx5j*_b|g-<)=5 zPy_fnIotnYtHQvkfd#~$ds&@QGkQhpnB<)D)JZy;IqV`90=~AL$Yw*5@Nba%2@vJZ zA2txcCwiyJ^4ydw;Gg5_lEceU%TF1;qa=VKTc!%g};^V^y zIzM8LT)lW60Pl6NOg<-7s8l9`cQszlPwtW`9h&~xTpr!J({H~Z5_|iD zw?xnP114$N(Zgl@Jtph*o@JLitF0-fel8oFqfieUT+YVf7ZA zgeCqc`dsOQWf?CqhQ2j+c4JM*Q1pD4X2tZJM`mGkB>DA3yv*h3>!)NZb|p+|Q`af7osubB^W+oL4-1FCL>Y zXhuz;9@}H?BW)6RHCO)clbtz5&;1B9Yd5)YkP%hzxjiBqJ_G6is-Z=hqM~ABulpPe z8l-Wu3!n%~5`Ui;@b1QQSSbv6LF=5#6)L;okji@!3%bBFH}!loIMV$hv? zxWyk9KrV{wwDrc!kxsQ&Q?U3{jp(cd<6^QQs#0NEUh(JiG8Ndrw;E%9=FWGmTd=o9 zzGXIAXm0O%jX5PapWVRBkrSqP>)-k830ykQpgjQ#E?4|k3yhQTG-DqL5!u1IIWHYW z+PQ&=v{VxJGXku(-vxZFO#F7h;DhyQm360%p}v_4xr^2_jol%LQE7{>+G2b5i_oOV ze&!w`HlH?iAmveMKl50d z;I^6AnT{z;?!BCbBB?O6nFC`t*Uy*58dmU1@7pg4c^xxv>iWJOjF0`PociDO<-dwY zuk?>l_L_D6$OKwp<8<2Vm3Qh!C(*v6diVn*v80XC(eIvoWpCG{H*<_JkR-X0B}Ad3zy^zFZ5Qr~+6y7_U$FjU~32%hYh_ew;0bpVk1! zsu+<91f0a^5|Hvz@{xYVpz^Z26w)ctU(rq5vzaOwb}*zm-lM29%)W=-OxHf%eK+MX za7fI1d2c7^Hdhc7Iv}ZWj$)Ofmux(aUr20-RNSkv!DcaMi`n(+H}Z6Mk>D1!z-jlP zX#)>_wMm&G^H$A6lr0YyjQR;F)G3oprY({{6SH+r;?5@9sL_`hvOmVpRqsMRGX@=AjG}~3z+8@DA#+FOYM(q$cfn?^yx2VIlfSE1pg|b!MYJiqc3@MZia?Cvv zF)a~l^Rj{e$$5=K9tTM7-HQ?T0;L`eeOD}N1R2&iemCS)OtH2#zMQx=5}aIsX8Hq* z{(4PZlzwZ{^!PW5+1@}u;Ec3YUvDT14S)P>=2Uf;-F*cNn`qtJ4*iieZPQ)F?WI%} z0`_}HE4*0fTcWWg*;DorIMHz2cmQeU-}ep?%_4eN>!D^-soJca+-w5>RBg-OnDAF50%LF-|Tkz-!&nsOr1Q#ikRD9o?q;s{biCABiY_ z#*yiTgZ?&pI<_4`_m!)NMXwFtTR#WW%l>V4DpJdC248d~DKs=60rh^9jFick!35K> zgdPK*-v_6xLxQD;32x|2PIK}2Z({?5x*sv)cJgs*qN8rL9yKF^2Q!on0~sDb0e~&C zDbcE42{m*ATN??z&Y>hYizwCC>WKKmjIT<8Pw#nh&!h%(ut8_aZC_V;aV(;DA%N|B za1fxLfc87B2D;*h`>mTe1xUMGFlT+LJc>dY)+5aI5TOON?+dSz>%}ZrJw2R6k>3Ft2;JdyVnv6bparH8Jj(SmE zKLPKZ)jcN#ldop0#Y&h5%7_JAq@7(;)=UWCPu;9rG%Wg+by-DhKR}|Du(cf99gnzX z|IC~Wy5Iol*5d1<`~Tww2)HWY%$z&heFQWwIW)-Tu`X5ZZzUwL43*g7#?v=dqE89g zxgOT83N+-4BT@)qNu)W{DjY2Vh`;f+NFm8)HsE`W-P!{mhxk6?1@}x9>)~o747jS+ zqSP%Iy#9FBvcL0d>fGdaLhIv|9c_XP4&Xh2{OMCwt zxNb$PgFofkIbO^5;DMtXh|@waclL69;KSfrk2ss2;Sal5?&^*!TJYlY-STu`q6pKy zOOt!-Dik}A|N42ZoBQ&~yXa;V1hKcnO#5ZQb?}LK-3NCME%CHi*nJLo5Pje^^+-n_;07QSV%Wg{Qe z>RhCw6(j6P7s9(!HHqHa?oB4sq1qLf0)Q6$!j*b$AiulAXh%p&#nIb`tpi5`GNawp zcC52*)H8(`C6YFptPeVOns6yY=zSzcJlNUjOc)2_^S7=}O!s(C7z2ArsKm6;OVMOB zJAqyXE)lnr4waDdvfLEdUo-La+y489(&w|jR?E68?2bUGN9_fP4+7@411|rPKeVy^ zFA1b+zwr`+_FsA@RH-`B;Qy_5e)4fCppcrlN_9TpAIw$SGWoFh)6u(jc{X$|X{r}8%HB z#Wk}6u7m}+2Ct=2G?CNl8Ao8@258f=G$;-Xg7g4-USuSH`mM&{jiPu%N#$aEx*v9q z>3eU<2S*GkF+9qh?&tFlFvQTqQNJmKEJ+bB!PWgiQ3G+1O4?3!6{oJmkW-(1Rjey^iDF z%!Tk`F^((@yuSFT=MdPk)d>$BSw5m1B+RId{MmIEu%+4|m1;0)0v<;OB=1i9OvLaz z=Rgm-U`QZKME=_kl$>2=3^7i%Ti&EPSClVL6_wQ#4TY8_H!az~ zy{c>Oa;dn*`k@?4;h!4?s6CYs>+bE;5x#KO(AK^wg4EMrw-Z)nu&9_%$^F(b1U;vO zcUF&r&$R1l>yhLA3Lm?hGi7N5+yHhl_IRSVL))iG0OIaKAr!;c$O)VyEE&x5y(~4NAX@#)`e+h+M7^`vsf+GH35)VO)x=}P^h2P|)r z6yP#Rs8gQouUE?xJRXRfP?|tF(Os`e(#Soqo+L-18eih~k+MeJfz;GkQ1OiPK{2Za z^iB~XA1+ngq2;x*Tf6w2@gRS4ouIu!&q35uJ0h`uB}>)e-R$XuS;F zo&Ppqc{Lrml=wKs;pSwwTJ*rb2@&p81YPvppXiw(iHO%0I4_2tr1m<`pmg zG%Fo9P@UHAK-BIDqT;wmj{QNb)P-PAhbgJT*D?FU3A)hQ! z+^90P30E|w>#guN9A$aVGfJMERx&iC>={yNHmbf*HvQPi=#`#KsFQpu z(N903`b+Sw%QlZjN(gy0VY`X7p5ta}GH*yd1Et30&|48#|I+SY0KD0z^j_I|(HRh-)ZdsYEfm?YE0=q@ zOQc78(zY?X<-HY#!h{3-A-n$QAV>AjQIGd%nJ9}1#>fBwk63Cq(w%^4qYKtBuevD; zbyG>MM*_SN%Y=e<`VTZ_D!0H(E>snm$1eGF{D92J7iQqrqO)Z%m&~%yw@`x8nm}80YsMl z{rc(qLL)1WuR4?o_-QevIeEYlI*qMWsA{o|nb}yU&G;4(*+;%gcN!?dpISV7#fW{8 zQ!$V?T)gNi2}8!osMOjUffAoC+hM2(v?yP*pZ`6jC+#l~ZYtks_&S#mlw3V*ryaw7 zuS&UGr~yJRz_~^5Hr5WZbAM*0TuPa497JnOdN*A9ZAji)6y@+QnM{F}F+O%cBZJd!ncOANQanRwHmSjP-wtT%C9$^FiO2ejau2i(CZcqFGQ zU8UDQO5=|mpB(GPBWK#}kDl*d1Fj}2rc2eb4T@I_!3SMQ&|=%8BBcwG{qJ69ajkvG z1kXQOqdB9u`dVON>>ZyWyV~`*>D3bE9+ROc@31_nundCFstBK1f^%Ln1O8pR;~)(i zY}FzMCu?xvZ1{_!(l>ADUo_#5Y1x)g>{sAHM~P2kIvG^7jy@~%tevO z2Qa{S*V8#CUbJsdIfHTnm6sABhFg+IGtZagOJ%Zp*#H|Ws*4U@cqH2knZ%0c`l9oK zc+teSB&*p)ZtzP(&7k{~I4y1WwMhUUEY6zi$-~?sYteZs3>e4W62JXdP+i1rZx7CW zCjw=m@uh3$m|>jk+9=GNwY)2~bNek9gT9Ay#$@Wf@b17Qr*Dc0go`e)=F8!==DWMJ zRo?c?R3@NODxOA=+qv!E%~{6!?xEI%adWH`sTo1GORf5BMt61h zWoK(edf-90#0s8Db*=p9+L-#@ZD;^2!Ggi?s9_3FH*(!Eq`+&;vO0z~m`I^c zO$%QOVt)3y%ZHz#pJcJm*Wd{A1f5@W5oD>Fa6N7-!2cBC#3o5pzXn_w+ODtr{9Zg> zu#=A(BvFEhyT3aYzN@-`eZAPls}@+iML$F2ASA?K8x5fZQ;`Xpin0I~Ink-evyWQ! zJwU&O@KY>k@{`Dkho}H_dBOkA44iVY;d|O>a%I1rzD`R*1+U&?$^?m(9u>X_-M|MgnW2X%-i*28wB&oE;MRa)z$d<)((8l$|4&_!mic%4$keSn?WK>xYX6MPP9vtUGwwt zZtY=c>PD1rx#csTXr7Vv=&+DQZ{OJ;!lc1^wrZLl(St_=|GQ(>=D9qEbRtSd*FGOA zXU5c8Y)kxRDRtl%{b5)2oB7HC6DaFWp>}2xcU;1f4t)%RQ>>Jw2u@<1OH@rK@AI8K zq>)_MO96)sy+v6743cq-SyUQYuj%q1=I{!{1vlzW@*SDNRwX$gpSbA{Wyjf}gebAJ zOO;osC-vQpDlKc`Ym`;8QYbTIhN-@|@Y$Y%bPEi!ouCsJT9M*+t)79NH{`lpc? zmxTzrop-$f9%y|?)xBba96xzCzAV2svlp2?^JB$oe{rY=OFrqJ~^L%(Kivp16lO9qo9z*^1CZ z)u3Wr5#5EI@K--Qa#^e}3kbNBgD)ef(5&Sdq(5pUS0GIbfI|w0xp&^;$E}4l4$CA^ zZu?0Zmbv0Djb{s&s^n(@{iG>U_Z_;94b4l2=TWibFg#YTGPzWV~UR~92n7ya8= z%eL-6CS4V|XTD)_B&c%D6-rHqM$kwDoAK(w0!BJOwz?q-)MoW_+*6tMpL`qg&|zz2 zTYs9{j~99QNG`Gx?rdXe{C039Q;CF;v{WQ7&k0(?knws5@+xt&+|bTUXFVf?+1-vh zWk?=1Vi)zEjKPqe?2-ZM>Fzh2s) z=D=ejf7$0${na%ns=AA`^I)_b3|9}4SZx|E=4Balva01iAw&IyDggvdbGZa$X}CY# z7&|BAJKn%skFH{7JpZB3jO%_~|4O*&-e~-!_di!H)U|Ay`a} zJY(6@SGi16n^p?lOMV+ohpmU47`Hf6$8pR9oT<(gJ@)?q(haKQ&OZ&RThTmw$7ox_ ziAhhn?;HZ?WS_sbwWY)h9n}XzH3%in?Wx~?Sl~Ywq}JNR9RsjKe>3MBWd~`X3xBum z$&*;AOV1^>Oi;}uPAv~R+`Os#eg1rV=u#Twll z^%UnSBd+5&@SgJn7WF)m0fmIb5g;I5o}2fsHDDVpbqGr7(n+Hsaj)6=xRQGH{pxtN zW5~JZ(Z*x%CH3=+*UX~DSruCZ=hNiRy0eE+^r0f$m2AMnpe4&tv*;ngs*#|gteCq+ zRkXE7!thW}+G+wWJBcI}uQT9icp*Pg#``ZvQxn__UA|J!3C5X$l^1wbIQ4LKKsu2v zn3Q4e%MVTZRbrnQoqyDSh#DY1`J?VxsVYwp|H#Q+Mq#w)q&{ys5Ps&&HRoh z$5$&0rYXY`<9G&-VK-dO6zW#)H3Y0@uKo0leUYF5@I}s5&wfl>=9uLO>VC1Tn6$pB!7f)ZIYf~LMoCjOiDZ~vTxFeb(%1hv~?7bK?IVlc^+Dnl!2FR0hx#MZ3y z=xk|H`JJTp1M_bfM0+aspr%!*sbv8i1|RzCoVv3tMO^na^RLv0y5BH0W=PBsEn)!V z1-v}`%c(AQ@n}#zL@+XWrOSl{J};7Sj*Zh8htysPEb|5No?em(yU!4@aICqi=J?NN zoh|e{^9S}EttmjJZkAc}45~iW(>JT5D}DlbO}2gk4ATSH&q}#}#?djY5RUb~gJ>*+ zhlh5p#K8Orw%q4{wYT*}{$)PQHi9+Og#`I=*$E@JSGyL5BN*7;q3G}DWrVHKX@9uX zQE63plbH1S|DX!_!a^TJVJ@7xmCN9D9aM1hO{vR1(TTXeTZDP2WzE{oofVN+J~*HsyG%u799twB<>{6IXK^_=d9zF^j4}Y^MeY>k|KGAhRJ+5js)x zmq|VV;Lwa^%y|<=)_VNH16%~-=93Hd2wQsPX4D$_J6qmrh9#N zb4gu#p1dxN1Fu@||AF9{>+3{>wgT#s1|u+(+jR9FPq=Vdhxl7Xg@0eO%J6yvI8yOX zsrPntSh%ojao;KINkR8^MB=l^4P@%yv)HO!Gxt)yigVOQlK%Xo8B^)?49Xt1BjSqpp_1k^?fiV{Lzt=!?9CJMocY@ZU0ZW;Fx z$_md+zz-<~AU)q}CQ)?@Mk(?Qf0R^_WR;#P8sLpKs)jc1ODQ16LMwEgK8cCR&LK@f zB55ETN1XB#>vmz3+wZ(nNT%WzK_;H|GSV-KQh6w78hKe7*UJXT)emOexRSb0$Yvw= zh#64T1b#kB5B>w5-(E%@e*NC6Jlv|>6wG-$}CJe=H%37xl(7HQ?kDlfX@0 zcXnf{4Kk?|@$Zb+10zRB|79FX`&LyUiUiN(?eRrnuTqe+7~lx+{nvlb%jXU zaAc$8IB!)3T4Nd12e z_~b2wDc{9Sh-n~~`@K;Un@iAadN~v>HHA=mhtA|HqW#5{tHWdzssMbmR|fZaGPuA(SvISRA(GiT>3BF?w6| zp!Sn4Tl)bA;RE!iiJ@6tRyar(W;*YpwO!A_)u{%=E4&6;NjB{LL7vzV=U91$Qy2Hhse@2b}^pwl_9JpX07<8MOYt?Y|FqBC?k@_;4FApKay)&+AltoBINN)oSDq;6!`o9JT zE*b!~dD9X*3f}eXmw2&VE~2}^_^nb6r|2`t+kfWnQ@^=S^|Q#Dr$S`lr(xG|5++lsz3oS`Vr_NPhALKDk!115>GQ5(HM$mFn8a)C1@fiCcnBN49(p=h@)t zY?DcK`4jZj6RSQ^iMg;_sSMegZiJ&pZrIBE@rqv1jF|NCcu(ia&Yud8^3YGQ(P>R+ z@axT*yLXPq<&U}*OtvBCD4cj~z5NuAvR+mQ*Wt#|E^SPo!f_f;jcLG0$xOuw^VvM8 z1|rw9>h2}qntLO`)BJR2Hd6(LH_AiAVN`X@Pg#uMP6LI%`x{zgAIt7c9HE&)7k^T< zY3*{s4xPNe0`FHgnHP}``ybO69WE=AO5<&411~>4UKdhYEv3yXUTfCt_27&pTRyC2 zz_!9JbTgGtbm!v%PxG<3>prYz!JFkvOIzvYHVI^WKCY^cO+H4rmtkA1L0`l-IQyBj z4p;bS(?dn01An;)e7s2aoMKKGGm`$wYYP&i&iQ(Fn5s%a{LrN}Ahm(MMt`WcZq<-yjcY&|bH-`$A8q$>G1J&Doza3#PZy;2 zcXzOd<9yL5S#xiOsqT;eG?Jfz6t_Iws#gCGS#KTGX1GQVCP0zmR@|*v@!(dp#R{~z zw79!NkmBxEw532>Ah>G_1oz_F0Kp|laM;}W?cKXO`)}sU%$J!r^Sno%bNFz&;2-wE znOlzvNl7YE(jx8n^KTxn^md*GFb%y;{&$)C?=UI0`*^zX8*$uz0{!)%7hh4``bx9y z!c`!^VbhD5l(L%98NdPb>#6aY?Tv^L9k6jDj)}%V|Nd+eZIXzSNF+2!uG@n*x@ZZ_ zh{Y6ekRm1(Ua76~#IgtYoAQH5AT(B0Q%0c>xK&oE?Fn45dUnm?oI-xR*x)WRg)fKl zG^5!szDx%bsjxFI2NjCa*%TQ)vC5+NphS@jfOuG7&qu*Ue#VOKuq-(n%QX9{&@ia= zy=(B70gk|QBw0WS!_f;8qK~VXI3GK$gr_0+l;2sm^0QTJQ$9%N&c}^{%u>GXj-4;@ zl&65BD$&$Gy!Ckr;0#^;5CC}JhF-kyx_@yW*c(MG?KrO;FunljkuycgmxDf!5)#ek z1Hu<${A~ya#XwA`ltA;GtQ{;jW5_2A^?DYGX9**q$Ow!UB{!C6pN9Ah>qpW>NYhsg zE2X#7GCG7rSp@kJWq|;x;_Nj*`=0Xa?=|pTFDrVJg6A#DNDIE<5|%UeOuYB|nNH?% zAM^MCL4x-4&{P4ma%c6aRK(qQ{T5TZw}QS?bk(i2>5(AF*6CnLaQ+kbe#+`~9Jn4I z&=C-sV*j|ndP*mjSYumQNJlQv=Cf)Uh@r0UIcZ%YKA-fXJcrLybQlXI1f~ZOWh6gY`d8;uTEw`uCd7!o%(km=dh+4?9+Em zt??=z&#V4B72cw+Q{o3n_&cFMP;93JeC*lqYV~lVmN7>s+-yI+X_E+x)&*L82$MI$SidQPm^M}qIcGc=&G3mf5# z)hRyCjYaqi7NS=G<@Bp2u#Ds?$PA3dfUQ4nI!re{U9TjGpCyp zhJgt}33ffBI&hq&$+`V2+HnD7Mr^ZoR#AvC%tGdA{Uk&pX@!Nf7n9b*j#l`iT!(Og zUdP$6?B?9aM7+vLp2C_#y=wbH&I zCw$m!GN@E2r@Xk6RW7&Id+Q!APChVm`Q3hI^DD)AA_aX2|8d~PZ@-<=^6AU8x7jYM zmaXJ>{ZV<&bllZV$_@7OGGk$*V_OuPF=Gy~Q9?I^;Lv=yt+l!X%YQ+!-hA11&4+sFz}xVww* zgi0)2J%X*U3CTcPIP}TBN@VytEIbAF8_6r=o>ArJ8@o3mFM5roE`J!eYXknH+o9iK zKFCoRagamfaYq2Ru4UwPt&gTD9<1XC^tb6OfG z;Z@9s;D0FnudZ=T=5=Ld$eA9!!QUGjT)o&nJov51~GpbxY7x47Wn04cFf(O~HR@(E7X#ly3EjQglr zNm%g#f#Rj{r|1AID7qi;D%7Ev_T9=QbI0}IBgCc>)OJgIwLv`&HB$pKg3u{W`vh7-`( zQuKIv7C;RC?(D9(3=yb=04^=A4$}+T$IDXS7c8W}$tAx2s4jWm^NlM-3}>Q$0gOJI&l!D0&(34?H0txW`=oL!MK%?7g_3lF2w0nu@$`$8 zZ85I<(@KljjD&e_BL?mLdA5zneQceX`z{YM0#BP|5}w*u>!mrNal0Iw>sReNS4z`U zDmQeNPVj}O&_wL@o6)wWH_UmatyxOlYb@BVb1af&95gY93$(fQ9*HrCx_A_=!#*zI z)l4ZG9HfM2{NstDGNR&trxtgvr{H9*NY#Q6eBJk%TcwYyKrg1Ty_!Ccr}Gh26IrA| zPjdx6wQF!$;+orgEU;Vr?n7N{)_EVu)#$V+DB*id()_p?cKzKw+U_rk>@qYJ87JiZ z{z^s&4Lp?7i^YYd(Ps%mB_G&2EE?bV-dhA0UB@%@5BSr6_v2hoh~QzpPIt;zht_TV1h(uWI*sL~aWeZB)YSt*tm0ZzF9HCp3YKj$Mfka@FYZCZqA?8bAx%rdCJq=eU~|(|WdreiQVgQ2{;pD2_qYPb=~J~2koJK^4%*bE#o!YK%koaF z?_z@@@#*Cgar4T-^bA@#^!U^uRB29AY!=4#(;F)*m1AxF4j0H!5iDh5J3HJchJ= zseNHwXYBLOA43VW?;5~fFIL;+J}#vAY*6i|zsYj({Ku$2gzVSrBqRgjaZfYcA(Dv0<8_DF zH6tnP!q+}AWdS=%`Z{hksn&>2mTbW+_A+9^PXzHFDdK|XOoD$dxYbv|B1)1I4C`%z zD`G#{20i6m%O_vjE^A(@{cpL%U_rQM`?4KcgJ7|ZzuYu4?sGq&71RXfv{{M z{!NU!d}og0b(%37(*6I!k?ULG8kEVaA8RwJ6f;lQiI(uhLs!`GeY@wz!2#US@h4Gl z+m#X9aqAJZWzSVqxt?9TF~d>*dq*~ifwF=T-V#N$5mTcp=dT!}h_p`ydKR(#dl`(j zn(}7Y`!gFl*+0~l0P(AUghqEAwY#V%|PO8~5xj;;w(_8ZzyhMaqQqU3;8&PLz4jU6~v zhFHTXC$BDz=7fuwu&JUoo^6yllI~Hw%+rKuCi___V%m)arKNX;{S$l#987#eS3Wrg z2I`IhNeslj6A$|_hy5;rp&*;kUt=tuc&tiG7KB?EXCpdIPVIQl>m^ygdbimWa4x;f z1rmkthOg$>`n+L)&vZ~Lw6aGWFVM@)MUkK8gZF9dH2L7Ow$KuW9=>JyZx-30)=|>a zZlcgZMU`y_n)5g7PS{M-Hq**#Tgb&Xt@}{gsdR5`5Hum%wB2mLU^kQwQ1UQd=6w1? z_DX~a;KwQ=Awn4H%-Ghr>3_6HblQBVfAOKtBz3(d6n@bYJe*nVq=}TI5rn^mV;$A7 zh_#VUL*+ni$glqI2X6TmCwH~;)(H1AD&AclHHZfyb6ZP{1!aY$nr9qSod`>%q`9h9 z@^BB=pw!EPX2=*uTNZ$Us|iSULEsM2ieGuggYwYmudggG)Ip0VGY3BV84kK)*A~_e zeM;KNvfqv92vZJ@T>TmHq@iExXbnwfV5si6G!s^%>g}S_j|_5t0)D{%@c-hdaxiJp zsLzhW5y@BdG5?B^e`R0PMOQ8P_ZxJ9Cw6NGb!yey*(|5vi|*Ht=1uVvWn1mN`Uf34 z_wMnY`?K)wdL5Ji`pq*NBCxfFW%2f$0D;mE_(QyD zmclQF^fy>KNx z1d)t)F`_9peE=9vEq80z4Ch_-y|4fggVAWez6u$P^z5$RJ(%MBwEw2-UTX7o924PF zn)(>^xO&$bF2h6u4!)5}a{rg_lq%rIpDnK|Ek*^!IBrbCL}dno??c>cuN6ZC=~J<8 zloC3GEwaVD)!7SAQz>#m60an-e^3fq4LS+Q!3;wV=r$=NooM2{4>Ru1%kXWW%O@Q) zC1!21$6cFEeme!eT^~WRYn#O_h`QfA#cDJps;2vDtdJ7Y3do|xC>Y7IQDTe}y7XFfI@N%MCRF)tv z7u`8t_kyF0oa55eOWDMKY7r3~|H%EqyiSGIV@YYMbl@yjku^$Br3kLt@rtIdg$Ovb z!Ue-%Wn7%^GiTE+L`-4@a&F0A_G=Q%G1bQ6_HnufOK`h%-N3Im_f*ElW6E5rQ4|vT z)uK?_g_*RGuye+K7wG=nZ?m)36t0)dA~qkb;%R4 zr2D^MsT<3Ao~%8gh+K5d-+U!_TM6-qq69^5t7&K+ z-R|txZI2AP91j-fP2y@7t6E<-kYLq4LvlwUWmI!J96Zegf3vLl%ZhD9@>>Uwb&JFn z?{O@SmHMKY?hn{nNFM+SnVXQB{Fo>BO`C3WIYvHC2X8qS;+>-QZs*HxI&}p<)N2dW z1@||((fZ-QDtzN6`XB0sS@hxx$XWFf?o8>mDkoT!lspPN5L1u1yZ*WTI`ZiIO3M?7 z=`9~Ijccnjp4isu#iK#(d^3yX!T{+&AN&0MA?``eZ<->q1HP%J^&3njQ9Yr~0+N8gtZ@)z9L(zMjUgQFpziW0(@z{pH90zyD&A z|3ew~{P_X=X2UY!`mU4dn|Uhm%+(>B zEJ#8L{4lLBx|T2i5RGhYTV+hDunK@c1kOk2w+HLYq>V%=Dck^yI{C~oK&Wgn!A3kb zIvG~kq6wg<4T}E~TM@GhZSSof4}eLI$_>BcnE^VQ^{URiO=!3CYsLb`QpOBMZl+{0 z)93G1b~*Ls9cK2lkGKGTg*E3%gvYE185z)0H89U8HYiVTcL#YalR;F%&GvwdQrY5C z4SdG-U|@`#J>YxoGIpvqUd=E16e?AmAPu?ugeCG!U7@|_3z{Gr-V0tD8n+G;Zk&W? zbxRp?WN0;L+Ith%qxk&uD*%qLql@B@GY6Wm1p2TE96N}$>RGF8SYwa&S=mgtNDVnL z!O#F4ApU@ljR_c;%Ywiib7OtjmMH^kQxzw`l2$s5ljMHJgPw50mMUo)QZE848~ux) zTF5QeI!aw;X3%&5Gl%hXwg$B)jKhuLW-PyKtiZ^IbBh&R>w0UMyyU^W2v=w|Qx0_M z&W~uu5vlVz;u5DNX!04ISven9CZl;3(X1V|(of(_V1OQJ_a1T}_Y%D+TLarC%=%!lnZEpXa=z7cwl0|u8RGXGK=y5pHAZm(PUrYX#$Ezc}pF1t1H zad!=x)oNimhrL|;>aqm?U;s1CooSBzb*cYXnjTrxg8`Fz;89yzmQ3X*iKb(xzcrDH z5E@aA^N2AT&^uN8HI>_@tl`E|)v{896S*MAw|Y1dALmi7t$y}FtAdIH@Xka3<6=!B zt7Ri7A;W%YcSpX2+9)WXl__hy?J7uCPWw2trN(+DSY(FM#Nr2NOO zH4v^)6ob%p;2?!h{X!CX%^kMwqbUVl)f2)}KWUZn^mu1s;#+Jdji4G9Pop=Z%bj#L z;VeZr2Aw0rm(%|q7^J8b)&lvJHGY)dR4EK@FY{4A`V3sA=)DOnhZ9f+0Gj4<8a{T- zy!CsVhllT1SyMl^P1N`N8-k7;oBK+73*!*yQ$+~Kl=ZfoU^_ToX@_M!qvf%28CLsm zqHlq7^K*x;t-6|Q`E0Oefq=-v*du`n_)4+vSA}}609z7xcht{nS6ASZ5$`i?x=gy$ zwUEZu$9|iIBU#j2Jt9z}b8_<5nmDgLUQfdaiUc>sjhMF~ai!P0H!r6k%GAcisgHSF zj8WcuOCl~*XCH%>zJo80Cz;oN_T$_yrEz9;Z(ijJo&P57;wXCG(a!+mKy;6g2ik7}vlo#7SLTNT3Fvl6;sV!6RLzk*OPFHDYSxc$F%&%Uxh zmj02Q#j>DWPcz?pM{0q)u0z{jM1f1KG86;lplFWe9i}t^Ct+{iwx_bFKzqW_H=CAG z+K{1qHHt99Ts|i0mff4YxYxRp5e{xW2_;)+qRSi|gR_{f8pPKR64DUK=5QdSbNBQ| z6$uN;eSeH}zgjF;gFEywZ*pTLq#zam7TMS2i(00hpH1FFB18w4Hk0E^`WvjY`|{Y9 zPbC#p`im{G`nV@#=<^=z?!6d+$})E_J$m)t5tWke8JNeO4;N3rzw-8kjbxz`qisg zZQU`51->A zbp2b$SusmyC?`Ex{B)-uPT1RJi0)s}c2TW4$mQkgQsa*~JPS(c`0PrBx;!;cUNfc9 zY4(*rf#FBor_U`7|11^eIENNYKDBS|3^LPOci-Ap$AiXl!mq*%Qg~~BUhWKUd?2`} zv6T>cbxB%Vr=4WjN!nqX(z)>KDi%@edyw6Ey-L|}zJOoA^n-KTbXP9>vO&4}xb{KI zH)i!plC^9ihd7?E@#4_&)sqTl9g%dygGS&$UQw5%@i!IUR{yVqpIeE3{vav+uhjBF z5WnLZQ6X@>r?y$8wVo)_j*Q=&zwsX4lB(8mwOCm5rKi_Q@(cE%!5!Hvid4VK6#K6O z?7yOC2j&{x-6yBO&0}-Qfj@;Z5BZ+sv7dUQ`p>v861!I~uEg&D(3I?aOC*sqig~l` z#rcjHfHnD=Kt2XI4SZ|ri`9b;7w5%&cQ7px?ii|EY{V1@ym4X$Py#~)m0Aga1~{Q! z`{b%vUg~mQN5iVlz@VXLa(}S^6fJmmD*5sa+8oyFzfvavf!GYU>3cExaRPv=AyoFKvIbibgCxx`1jGc$0KDHK zabBze)HqgKmFZ+d)bu!uIZsJ;_ZYy7p{g6#7ub22!OcKmzDlJ$8ak4BT8!A4z}XDI zPh1&V450f|KQr>_F8h;9

z;ih)Wn4i1;eoglHkcb2hLe-<8m|oshMLYLuG`NXpaJ5A_K`7d8)`20>31sx$0Q=bTrpGe8 z+@$E!YK=4~tfv%m^GOX5Z+Y&H#wmSZEISzA{=l5upurD5YWj9#6+AK6XCGp@_<}Ab z6s2CWhP_4=;o3eY8H}U5A`V}iu67%-MzgQa9$UV;!$~RndliaIHahH2Vj7Xj^zl5}wx;Lq`<6TX zn{T?>j!T+2hAa&BzA<=U1m=g@6! zL0`;E1h)&@9<^)#=^Xqu9E1L&Z+?=1&ML?x=AU)4SjJn6{;HQ=46r_`a$Rg*=Y#22 z9P8L#`rllfJ1*Y>nCCw%ti$JLSJ$(PBrU2QEXv87s_LZ=oL4KFexA5d%zWw1PLN0g{{cn#uL`mLBVk`K?y{t9FX?{e8Ql9Qk;E=IuVN8}g&tul_*9`R|tbT6V}XvTk?kSoVO=%EF+z1&O>XG2Tg< z0#CtXPyZCb4^G2Ve6JxvgDO$mj$2mqoQpaA2Ap@EN2hUqD(bqBiXB-5i<*s@Oq0aY zj%d8(jpMzsRi=%qjx$TtTS%1KjNqLeTNW!88g)o=GE~-QUyWj}LrDpC6AUmEuDZ z<4W8!!c(^ss>cV&H>cyBT3`%C2ONoa=j!Yw9G+pQz4xWREr+*~u()`v{+O%o9DFA; z=q^|98dyJ8WN!IoFk+@^v!HoBsUW1y^jF&eFdFI}O{f|ytdn|U((E|LfjT%=<;D?w z=O-NI54u)AsSSCoO=z+QmaBXyRqtRVb@BZPN>XSF2JLD|lBjHYF9}Yuh?`P$iT5fz zm8MuqLC5^+%t9K&5~5GAwRlLYkftn5-`<3yC_wqJZH7QR{IZ3XBSyUcx=_@2i5n5w zQj#*Z5M!W9*QEBC!3)+q+AxWx9hlUQZNA`q6vDLRbswIoCQK9>m*FUEIfx4ABhX$c8yE;x8 zhvFVV`hvCPcn(F|3Km|UWcEyXlzj`yZDVWqX0#mj=r+luA_;3lC04A9~;=kOZ`Js zK%J3?@s;)EEAD>lyr-R+*CEF2->6mohbI4n2tR(B3LQmTesoUei}Ad@3ZcnEUO)a} zhIJ33#5mglRFm~L-=gi!6VY`N3Uhx2sR#EGjGWfjb!5dN{BE-ZRHJ&K$%4ATQK0+Y z_pQJAN$d75p}E`?#EGHE=^gZY;xs^asNzR@{&!$TsYz`bY>MqAsbYpx!gssp9$+>S z{FG|7_?VNwnmNoJ3BL+nb8r_=mVF+3#-S!#l`1#<#!GIsQ$c7C)ouM9qY#aq_`Q=` zikfVwjU0cEOlqY=G5a?|rUS+)z~C$s_oOjHk@}D%PGCRq zaob47nQ<-!M;muH4*NaC9HV$Cf3m#wnG8+*Ep)lda2yTm9WP3~aTp^$GaI6mGxvHH zB%%fXV=HH6C0Q)_kfCl0761F;1!=wXu-Qk*(DP7sZhjL?(M7BaSC^q*5DkJpevkbD zTGqTmk}!I0Rex2-TRGagu->EuVqompG^w$mj}_bPWOsMi&=!UTOL)~B(>KS16~aKl zSGQi<7&XSG=cXW;i=TYw2mTx#d*hfilCO0HT??`F+NV>%7iK)w;ywz>mR3d9t6#A4 zJeJT5(66d^X&kf?MyU=*6UP9^OhG#(2<~JVy7xsc1o&$Y+A=)*h2$i$%GqSG53MU( z_fpQwaSa+;iREO-5MyvS?Dsr2(TwQ%;!l6wT@0qw4!8jg8!n?UAJuI_ZUTH_RvtSW z>eM-&LmZYq{}ptlYHH{#rR$y&Sy9uit3?GbOLyu~M=vv=dADMd$F~CyH z8K|$iZ|oarpHK^ne|L>F@B#z2aAPBMhCAGnePse=ecF#U0*K{Pz?jZn7L~KkjS^2! z8MzM|fk{QKODVWoj`m~lGj(vub@xa4EJrzl7YROmL;WgRk|{{_5|H0 z-vdyoZfPeO1LL?<;C*Ar%KrUL+P}x!eN>*w=F^9DIPCi+K{5mKUcTURBH#?xa#nP? zEH^v&IYyy7MH_c&mxHfN4305 z-fn}va`!>%K(O2O-rPw0BmAV*R)b|8S z9&$^t>u)A2j{#mAbdiR{NZzzza~E>DlQJZ)$DDq9Wu99d)${dqp}*SN7->UW~(Zb~0ERmgvHCIuOGjOjBGEj7STV%n5P#xA>6Fk6)O{$*I9R1z! zGkp^#gazfDHzil&Z4ROZLnEiECj>b$-$_{(CdRJD&i66L8B8~p!1}$%jA!m!TNb;? z%t4hy{JaAmPBDk|mM5`>!A;ZimG~fr_0V@fkylG9R4c#{p5%A#QeutmPW04xY~+|V6Jhp1()IY+(F@d zZueqNPNS74H`dld=?#gaA)gzbyYvGk4PC7eR^3}n$=cG#Aw3IA(3nh+%8M;t#J8P= zq*gwvhS6u@i%H@NdNXsRCGZ7xre9OtlvP&ANIa48y6Wn&+FNDfLdCzE{Nk4^VE<{0Ivm?M1e1PWstw#n(r- zC})3wO^;37ViL5HwEh>g{@3pJF_=0>-v^lI1X_MErxWvOXO4;s1@u(v6} z*kWQ9ufl0TZv*}Tm;v5ku*|JMy2noq!yI~Fnd%O=O z06z1>-cUgU)&ZS>Q=!6)JSnsr2V2~3w6)K3b|la^5`lR=3YSEIfXPtl?)JF|+7aF~ z9P3c;Jm3-{m$Y=y5X6}hV0D}No5z|tFK6hjW(t~4*zPS?d3vJ86Sl$yAV({rf}N@c z6IPaBUsXo{EPUi#5=lbK&rW#Pg$YYrFMBSHX14b|Wf71yXsY^VP_V}j%yJ2+nK$pq zvaa&kExWuIq$T}feD%8f31pPEgx5B2L{G zk(`DvkUF4sC*>TPCUsG-;iTzV4vl)3(0?G~QNFWpw{!fGEXe|2dOeo%)NkcB>SYEM zclI16heRy0xn-7=rDP?NfBy{VQ}2hPi8o?lHw*koy8LPv-&v#5)`as3(xByXFxjXW zW7ZRJlw;hK3HoOP*T6V85iD2?`pR;`v+41i-v6xKbjOJ#z_ukIUA=P|HJ>e;>}Hs( zdw!UHP-F*1tcXFf`u|Wj{IvC)F{$D9EQBmLr)}5ED|I)U`hUs?!%`7LwnhCYu^+X$ zzD?B&SE9ZV#Q9f2BHv`>vnh5H*!}aod%}`lO4pH7(czqU*OMQ}E9cVb&LwGa3hKMI`uCAw^ram(Q z$5$L_n)njro{mf$1&sii!i`ZM?Is!Tq}=SDjJ9l7F8hu-+gjmTeO%d7KzKCJBuz$m8f9W5S5w?-E@% z!3)LfE8o^XtGx-i*M8I&_xr5^54ojX?4ms*c8#g%%YtEi=XxYJk0azrg0;ut5b;iv zyQjY4*dI1|faM%=GY5U=fyQsOWOUq5k&S3fbd`4x4J9igC$qy9Ed(QzE2L#W9@q>M zCoy!`e1q?TU^)$kkV^AU5N`f{H|V=Ml6cf~hj5droYpRjOxzL$W+s?ek)BL)cZ<=b z*r#~+QM|$;ryZXr?9P;Z)%2}AEi)&-i$X1yg{bbj!vYseb@wF6b}be+d6{o5_+fUz zyC~eU#FQ|JsvZ^f!`8*8|HL#wCQeka8__lNwj7>fV#V+3hT$0zp;%<`DmSe!X^+w1 zNaD3SVRzxE1+hRy>oi0lo@O+$yV20;TVLUR%+KqSt=G>3{>_TQK3gIazn*lFOFrCZ z*Y26A4E#0Jm?6Iyd{dYiMu5Xf~*i zh2tNox|57ZhXAPP0waxxvZeOGN=CRV4V|}$HR~HxCXTOwfU9-Sw@j^PSNIJgp(s6B3qIIZ*4*7m-lHGst>m%)?;IW4t zPLf7%|5g*zH_uBcpq>r zLkYe%Ci?k%1!q&@wu?U9@*ql^-bTF^eAVu^bNz2T5UP!ijLj7)Q&~6jHb1}5eA4|% z|Nkt9{73qGbp8(%JRH$~BZ0WR)6jZq#?ce`|M}QYi>7)+1uPc~Z41atloR8Qr33n< zeOHMG%z{iS7aO(F1W8|>u$CWiNm!*NPXJrk3S@LL(D*TyfB;|_Hc9ARS`z~!=1X); zw8+$tfa*cUNa4>IXsYQ$&nKh4qi@Y7fq;{R=yPbVfqekIZdnmQQWKN;& z&cOSj=T?|79{~L@gx98UZEf}#cF(s&pyAAJ zuUKg35^Hl}=xZK@CN3Hlxe+vK^h4rzyHsv(l_kDm6|+2`%t5Iioj?mtHwMa;hE%Gh zA>drX?%Z2b6W@tE?B|^l2q#YrqF)Tpu<>b| z|AndQgM3q>c3Z77g+x)nlM_5ss`26|jjl$$=$2dGijjTjIa^?;I6^8dXB2?i0f>&; zc5mIU%g@2YTTYmS;HRfKS313(63BZ$oyoB2IL|fb!h?Q{9={hM6WY(IW^f)eBqYQ* z*5%{_Ty~}huEZybGbI*VA73gxLGkaK=tDQ1;$?;ig66bZU1kgx-&T|nJI=*?SOQgJ z8{A&u-4)w?pbMhs#XVaVq`Hn`1+9p%;c= zbC9SL*AJEIizCzDdd?VP_{Y8gNvg$C_tdc!reDC-#kZ|CjSC%(Pw<5xqkNa4pUG*R z#S3W~{DLnBKgAd>d2S~ntJn;C{-&nNOM=*Tg@{$l;oiN--89p>WDoBjH?@2Anw^0u zeNG#>d;yI(%D!w0OeD@jf-3B+ow8$0?{V}(5@8;&>ildaE6cl88!Md(L)^omYT)@CRwj(j_ zXx=Wa>3?{C8%M!W8EEHJzhdJ(m;LbO#gE$;tgo&9v<>TbO1Mlaqi^1+K}>A}RU-x? zE_qdL25r1Ev1Eg!FoT|1%zVDs`2}5deYy-eFM8aQDHQO3CBu_cU#EN zUvJdr@H@kT4yxw-OH+tlwl%r`8cukZa7YFD^>{mz}MwZo%o9d^hq+s%v> zcl79XmJ1Uik_iI2OfQY~-Mvq#P4zStTadi)Htst$!WOg3+j*Dxfhbv0A)7I5{VvdD z^{4a;p@-EL`v!*<<{^&FrO(eja&EkNZB0wV5I#nqx)!-d>g!tk3A^qQj<}-#w=gQuP$3nKYIe*n3s64 zmuyoMq{l`V@g9?2omO1?1UW=JkB+#``-~7mlPO6kkLqF7?u zm#3WxAA{a0`S1q6d`dRgBWQ}j>9?9l7_KGy7HyDvzg>(bn<+aquw9b=;SOdXQ_*$v ztCSCX>YggwHzo*XGjBIUb`yW?dv*V|>nEj_6h~RH?Bh!vLXwmP%&_<(PE0wy^V}UG zy*{=_L}%hplahgI(N`0hJh}vtG2BGXv|cHDYU*;zTR)Uh>^H6!B~h~Mqn}fE?}SCT zv{nps%;FpP^gG|IVWd{Qbi+&{K_QI{@(r_dun0G z)QRQLiBne0XRkk+{kZS}zuoi|n6v;WNX|)vezCgmckn#LG|BQCtYjOwLH9=th@bGh zlj7adsctQOLlwSay`T#Mva{DO6PZ;kOl0D4P$PIB^yCt=q;RF9T*kH_$aH(SP(PGDtLkJiKO=!v%70yH2 zWTJU*R_<)ZUU^!)FRG>R(Zw!}EpAgB_)n5j|6|}0aU#uV3^}*O!so|!NLTg$%UB$V zxvznDcgEQX)>{=p?p>WnS`cLt{SUwW-%GjXMVMW&eKkT8QbNiJw_;y>kEr;hy=+Z9 zkG!YqqO8zxtliPXf}7Pakz^dQVe^SBv$b|K!x?6B)k&rU8MW%Avv= z41)x2Uj3}^2wD>CFp6gjHP8TTB)V@9gnkMJKuWaruxONR9l(%6VF-=YbVf&prhxE< zGbx~_7eDZRpj8f;3u2+L+~u}|L};;lR)QVCID)Os{o5>DkqK@`k@Gx=2bKPvET{dk z2{Baw3L6O3-h8bizz&|K%H12h+CormOiO*|v4B+CrG_lo)qau>QPl)#UEnl4dppDQ zfUe^_2LPw%H_q(cK7*u{MqRANqggp=p&Vkwi(|mdf?7tsPJup>MZm)Bx zl0>>3k6bG4-zALiEgGF_x}ljeK!;@((hylZelpG411>3T9RqPPm8pVHOE0(oeG>P~ z(EvD#Tt2*6Bb$|JKNqr2zGj8NW%KE?@g+po=n-!ct~Zvo@X~Lv5RS)Z+X6QJ23Bpb1vu&ZIC$lvi!KJr>2;arQzVTo>6{ssZc3GN>kWjVKXKt z`@JfguDZ8t6#jq#gMH112 zTKQiR)#`S*=mM4YGiCpYwu3cEo+QDKB%mXkUpQnriPep)Wz)@vl3%B7>@Y8$f4x4u zcYCCI8b85iv5@NeZZHnS%r#4W+vgvo-A7#eoWWG8-*(fM84*)(?HI%>Bk*L1v=sP~ zQ>;u$PHJz&?(XR?4HG#7Pd)QEe)~sRuicizM<*(7yjOp_c3AXhpoq*nK_z zJKY1H$(%x5iJiH&T)=JY=7uevk&b$co9m5?x$5^_Z_-sm6J^U zyY&{UINhRZvlumOO;vM?XO{dY78n8?4D|kZuR?{(LXL!gr8?=@ zh%FYdTl-6w^VYUj9Z?iPbkyEzR`NlW*DPuF>qyV{0fZ06DsvETRb@)mRxa%o zD7=x0orh|i!K=r~gI(c|)-I4rC>4`##Xb*#=fSLXqh99gxJ0{qQkzOe%87L`J)21C z$)oDCr5tcL#m_$B0o0?Fyp)YULRa9K^i%6T3qd8xJTRkfZ5 z9A62@o(u!&?^6m4-#K|S3FTgqIsOi-VW^&FB9O3?Ytt08LCvN>eJWJ)K#1)n_Fp^oI$#ZO$<J)1#EU>*E3H5`brjR|- zVHxeChvM*Kz?d@`7Xc-}ADr!a&gcL}J9P9GS3E$V9IG55kqHEc6XiZ%l=ayF{)5k@>u-aR+m?bjct%Nmh2Ya))5J68HK6M1k28d|xjag{b zN#akU8KNMPP{JBzBFCZuJIHjD#u1m+xn7TRD8DqCpEF9xTwIW=MCAME83&*ab- zhMY@Y?tRlf<~Aial5B*Se+&?JcPSZo==w((z29TRt|Bh zu9N1g`m~LBP!Jb;^n-~$B>#Tm{LuC&u=-)b=&I{#$#8M(`ggAsheLe|Fs~A7Q;Vs& z^q0fnT)%6itM0V1?3O)`r>RFv_J%WWwU_Y2RlS`R&-Bh2CEbJQW6-QSkF~zv-+pG5 z`LjUWmt7&(X^~K7H*cPI9B$jjYp(g%Kd*?}G9wF)DT#62W|Z}S-y`#TZIxH7wM$6x z{`5$-?JC#~NKW|a2O;2W0yZ~vQ}fF-cgL*<=}*blSpF8q5uX+_pER+jmxY)K0!UtG zp2&Ksxt~=s>OSfz*+g&&c51w<3%`CRRL?X?WQTo-jV&cn!vkr5YFENjCIht~%5gu{ z%TBC6v?4yQ7Ttw>$Xqsy{M6amiAX@TJ&bf;&-z(i|6K@N8l;^2FhQ}8{mV;fCx3K;4t!x& zwao_lnmn!$bLr!e(MjY18h+EC|&eBM;q`H=K*q#;|>=o`uu+~YlgYQvoKqhX# zpSh0;3}h@UvSVfY?sX%`C*o5tInKLuR$J=vCno3kJkDEPIvTKnxx{-$Eg{H(d|>#vFoEbdL~LJo@G z>xurvxIQ0BZt{JudG0&HwQ}R3i()7wyM^vyDYi?#}q ze^K?_@oYY9_pMRX47F+}Mr*6qs8w5QRqfilHc_jHQX_~2t(uj#s6AqkD$MQahdCK)xG)S z^u`f}m8yT+`cGjc`3mwku%b``%-EtNtLAMvK?R`e6YL`iFCYC)1JK3aQ(W3f=t^dZ z#%H43w@wtoFi1O|=eopb)a=Y<+1{nNNk$)2LQXa>P8V_i<+qdneVFh-^SuBQs_=U6 zTXAdV`p`v*&cn%?eons5ySz4P?NF`VXACYW%Np0pnb%sHlzC&qM$`GAdV*q?DRL9v zLa0%%ge_y~W&Cxw{{)*a7kz%RjTPR$Eoj?J{v7^s@ zD0>#a35QfL-xs*M6*g&Mp(L95iMK*Y+g$1gyC7~%U#zudfcV+5=hF>l0rAGQs6lhV z;%F9g0l$tc6{r{bwgz{%x4<=ZyaFpuXxBcP=}Wnh^(}r#UD_%Sg^J$1@(Gi$D(3Uk zj16=0ACj??nASb^f|D=86!O5SajPQKgam)L$?3zQEW2Zs#^D=vyl>fpm^yF2_`x0* zw5{O|`p6AI>-p^FphkIm`jbk1WdLTO?R<2OmTaN-zjF&i18FVhHvIdS-xdd}e{qA= zVRJE{ibl8eYlmzA=x=zAIllR;TmAsNlvcJjpgTsIrfkzXnmbF+fPy^pig+DS1w2RG zv7xmIe^Yv1_EEd?Ic_vr44Z@BWjyi(iBX2xUpTtPB++jUtv)vYQ@4YSl{c_s6DQV& zZj6V`953V_QHAv1oUQ(zi{Ub+<=#1vq)lLp81+s8EIC~r+&gy{xq}=djRrxZTGnN_ zH&>?FMn|KA#x;`l^FmPbRaGZs5w>nu!J22hccjGGS}jl4nY!*F^|RgW{^u4z0!ENX z;eo@R-z^O!EUs`;bZKA1gs(SkbPOE9@%*&8Y^gBqZSkWhT!jBL>VWvMe*C_enJekU z7lA%W+=iNfPF=RQl^AC)M3KL;2a%N=a;{34`&0iZUCo;@@%nfeUcB>z8Kr3>!Na^& zpWhvp!zMMe+Nyrz@CTf*P!R9bw$wI+U@LjloXSs zwXcuti-o6(<;j{=Z19*EZ1`Rb_O#S@gt{tD?6AJX39f@$Hkj_e^RA?%42S@kh*Uf8x@{AW*jhb zJ`z1sq@o+W%cmjE^<}<&VSA#hfz3mvC4CN^r>iJT4Aooi zpOmzDsF^KA;^}I5n3w5-n)h?`r}22Z<-POcU?W|AqYnI0T#z8VI^r^k|@gAzMrPlDcI4 z5_Z(u=CLz==`W?PA7@RLrk(pp&~jbI6?=x3sDfO!q>q|U_ha;o?n$9PL@ZR;;coX# zSDS|^{GkB&4oCuccHit=OW!9Co@y3 zJuo6G0{U^8_8IoeRakWQpEfWu&SVBQ-ja43f!nRtj45A})iwyYvlO85c|!&Xjg*^n z+Lm<&VKu@8KCMs$L7@DhtphEH=L>^#)sNm4Lne zo83N@v*SjP>s02Y`%0&-woZ-$!|k^Qa+yr3Drjk}ofxdQ>{tKTZPuo_q?2_Qv>kMG zaXX>Pn9rc0om*kXf{iIP%){Nb5o}Y$oM?xj=mUA6@VP7Z2>fj6q@J*fU$dG{ojii^ z<<%#%W9P}(mBzT#xJ+9v4Gpq0JL>M|2G(hc2Io~Nfe-6fTkPQCtUdjQ!EN-A;U5ld zr(6U}%g(dFt`2PT#A(g|uYbLO+CVBu2L@F+T&SS#JrOoYedRvon!Fqvpie5k&J?I` z!3`YdPh;mR6BaZA746n@7>Wx^zGjC`4ijR;yh+)a@6kW824wG^D0-WYt)a`Dm4Qso zQUw01*)96En|sQlcKNp?+1l6%rdhgx*Ga9uw+McDqEIjB7>;V!2o>D_diMcx&7Hfo zw#E9?+3nc0tbCrQnSrnMt@0yyP_JeqS$4VllCD|iVAE*_R&p%fv` zkHQ~VfMeg$-v-m?aiUjG{JEJyGUY^vw&FW;M2UfBZ-iAJ<_RU?Ox}-Z5{YY2OO3$W za+rQHN(oXs{FdE%)J^Ge#KE{q@3899zHej1-z5JD3pu(u0IqbgT%mE_$p~`0w+t3s zaYTO)zNa&7#4B4Qwg=Oo# z%Y?9#fovI<7ekE)+HgICPmIptidU~@kbsC=W1_us;+)apDwu%ZvN5Lcvh#I97NkjF zNa56aNgT1lcru`KY*rTA@uBHA?}c!HV9zQ!*i7|0qszASR(Jw_s2P`E{iM|(_}78? z%qK?hZMhYHDE&by-?FYx`5k%l(Tr73F?kh&eCGrt#Jg>#zIwf2H-F(qQMo)afS}U) z=BSAJ+o`O){=#U~vEs!$wZipZT7@KGv5!J{e&ju>W9|xNaUjEIch!=Hyy#=q1^)L&qzz=y~wIn46F_5o}oweY-t zgtRAnwIKg>7t5PthRYDr+vivI$U}2(NS(a1L~|_>r@ys%MvcywnA4pqp0{}+~JE+xa2CFXuEfK_Be>{$E4hztM8Sm#>=3ZphO@BB8EL ze}FsjAl1^o(~i%jxO{APZRAqd_-@tP(w@~LKj>lQ(%tqncRfjyj%a)^a<<E3P?{|OZ7WfPR*m732Ha!z)Z}}q_I{B z1SHC1GZ2CnTVb^Yq=mbZ+c2e4+r>$dw&-*VZ1VZP-aebO2rVk^qrvMu?U{;bN0yFc zTSI01L`4N2FB-dQi@U&P$)|7J{cV}tMWm0-QrQ#|m6h9U%vRSbyntu(FYR(0!1DU& za9}_Jpr)!KWS5JUiA}HJ?^&E)zr)4MAA9FYu&rmPE&nDHuKx>J+z|`)i)m8zT+F*~ z)|rxla_38KK1p>APCjPO>t%Bg{8fN2t+nK8s#ifF*}7~zX@3TNQ#>LcIxvk#Qu?vo z7hibB$Qu_M-Yx>1#~;5@>ra_M434xlWSReg#m93+Nsn(E27U^6RSmyJ7-J`<5mxe~ zwa0C^Us68lG#lfxn->g;rQ$lk#4?P|esCZ;WUABBhk$!&1ZwC%isBuSfpUp;WVXEb z$`K?B)~haNa6@bBK1vgsgS2!Ng#H$@o75)cHaAZ&~bb$jSy}un{BN&&=&cz{{AAGkr z>fJ|EHbxcOxmjCJjpiXf`=AQG)D62A-`9@}xD^GePdbeK_adULyS z4$1dGCH*HWApOQ7Av?%}=O0f3c=1Lg!D}Ia2T7~wL~v4jC&VE&$^7|cu#>YDYn1E& z%X|{D?-QE)wT|{a!{749zEC16*~rD4?sjL8vQkW{@|Pg2LQ|5O@121C0)dBnT7CY;YPtww>R6(1?8rakuGXZx07yQmWP80)Y2 zQq+By;b`a~dI)_#(cmdN{`54oPY9`8^ZdZPMn%Z}#V(Tl!NIo(vtgn4rkFe-k zfmfKJwS5)J$LtP~p801@rjPg-?(en+uFv8TXCB74&fY{1y3AJFMa8OJP0x0K{RX5iYF7;sct&o1V@U4& z%i#@3Cbzc_E7vYpxbe`|{Z#MuExGL-^NGK&Nk&VaOUqZNTW~2P%X44S869Z#iag}m z`AwVF%=XUFjZ&gFMp(|50Gb$?faO3|jc`AX7d2b1s|6_{%*Kv=B*Vv*0_nF8n$L*^ zkCv|R^*~x{t|!zwA&yuw2)bD^(xDw(M!P1Ex}&1pA8nC-+hN<`Z9YRL1F1-+n#kVY zgj`ItHQjuR%# zdBdY1+`ZDa_0FfUd=`hUlRpY;NXevL_x&3g+={=$)F=wx<%Gky>dxjFr^@xq>D?xI zfHbb9!&-x3>|n++8+gYrQ858xTA-eeps+L3ws9| zPWun}mn0PWSzwXL1g78Sayp=*K%!)3C9>6&- zVaDe0)P!AjrZfVi$LV2D{jm0dH8V5# zq{q;E)Y|ALSUt6rHfjYl1gk~JCnBf?UG8466?$*X{_t8LIWSIHnRW_K2Nr*IfD73l z_$iL^$Q_hAccA*AOT7?08(%V_p1F$nxbl{( zKQXA=xV5;mujKo7m5R@nBRXi9Yjs=+4^xZ$8-e}mQecVoIhNp_S>_}}^?%vD75=uJ z$~bMZV>YDuj}^#k9PNRtA!*x-$+H%+R30~nq_UpwzgEE>j?%O{7`^u=C5`Q}O!m}0 zc}=`n#GefiHyGPX9M9@r+XJHaElYI#F@qT%%=dX zhyd}k(u%`kWNmGC(qiOL0yFzUS7#~q1J+CtSl7HudxG^)9rGs^C=V&^$0&?j<#E+w zslW{8pBl8U=ok$6uViOd?hnoMLRD1NZV~LQgYK_xsVb_%zqpGj@~Y|}eV?p)uRHt2 znJnfi7(gD4CPXYB#bvCgx7%pTJ6G(718ae$e<}_|M6S9Vm&hb+1T+3T8bjJ6=a#k0_LhMXC?I z*TTViEjv;n1ewX}W1NvAu9M?!W6+(h^ADes9y0jD+lZaEPx+SJK{=tnn>&Y!k6%t) z+Js$(;P}5dZNpM_9bkXWH(a)KrRQ-@BKGHhtXlS~FQ-Yn(_t}Z1N<+CpV5X@@BZ7S zNj-qDm55yFO?HN8@7n(h#xH?;nGS!v6G&t%nG$m{ z5q6p=2@f}|AfxC$M;=+$rPNX$=b#0!v@1zh4AkkdG7k-LT)T~F@gZ$~r62iYvo)Zp zHF3Ad?uK3i`9>8eS!{(^cqV_PUP);P5--?L8DT5B^MUz}@u{agHuI|7mK0bkANu0wh0MoCOUy9=@EKHT5Vn?+q&)>@Mm4RWS{v~^rTlq z<75hSV?jJgNoga4riT#@l8;)bWRm%XVq==s^d22?%a<_Em&XVw%)Vl3Y|#jC9Z>ve zigemgJUY$eIeE>_yyQ&r0r^_M(UFd+EPx*-(=Qpzm2&rl*3!jU{&NUm%-S<4wLB!8 zmlta4Qgv~n{{}rm{gvquvM%MB)yE#f>D^=%pur8oHoikkU;J?B#B#dcjhNk73<*A^ zYxN5pnCKrN%Ye*CjCUPKg=*Ni0;^-sesw;g2JIys!D6EE_fT{3VN-Jbxd^wuD@{Fd zNJ4nZEw=K}#3ukBD;^LnsBOl4Gi=N-b7rHh)}%}apaFo-ir>F0@G2HEA4vjD&*Y~fmDpM8>TCdlA?7Pk zQ^bTIs4mqvad6>&hQ;{{FJIK^L+8uC}p_&m0&p>ynRl${nB& z=fiAFAgYr%rXAv=`};Ir#wQ(howE`S#JadI&R-=K`afh%*piQncS3e<(Gtf0s@Bd< z3#TsJt|oOD`v!I%nqE>S|7`f~QZ&g@jJK|k6g;|D5$fmG!m8f=F@fk!kAd|10-jUD z*$Ab-V^ZVXJ+-Z;n_S4#>1f0^CBxLVYdUYk3LXnpyiBS>!<;QqA7}LFZZ(146I$EV ztJghHO<|WDUf_^{L~hD$=0;<_5um8dG)N2ks>m~PazDoP?Sk%+9qnzgdhnMDBCGk(m` z2}}SghFR*L)GKQjfQ&@o-$NBEMW2DM5Fi$@Z*`&G9X86_K_Sdo)~hMk7Z<-h*OIlK z)Z11M)2bAlvJjXNrVCFWdn}1>7SKb&a_Daaz%m)p?+|q8LC>~+oJsE^wZ5}BkJ^dI zytId%k~L2h$2NR^IviWCCu2P)6V_Cn1F<({I;?ovtkYpc12-^AE^j5xd~wFxz-RpB zte@zo*;`Gh^{?2-sH1Hu+kF)AGSboHgh&;Al0}%CK64Ylj5h#y%?=7Xyp|_80kzEs z_cgb#6=vun%H&*&Ww~be87;Ju!haSA+85unHBLQqDh6{)YF2xa7Q~F-7%z2wUVlhs zP<~t%IjgdJy;JjwTjin)WXME+t=4GJy!^Ru=||Av@LGev(a_3_wOkLZ9P&q1)lJp) z;9m4!8w)t-Nd~(+Yj99+gwuN-ynJ*!7v_q8{wsngX$YN6`{Aj@)+@?3$4}8MoGxqj ztHO!<{*d^;(nrUQs-=}~bfdIQ1h*hvCDM;jDtk@8XZD`+M_1ZmYEEpVNcJ7wpm_XE z7Z+a=4Te|%*@=o(hD07ju~K2jl<(g#@>y=~r(2Coa0)Be)tT*Z^rMS`X0z&Ym?;CTJ*UA8+)e`zKA->s z9`Rm9dAgu+e!4Q>;c1(5+6VT6{IQZ^8UkBs`FfElG?G!5M9+bT`5UHeRTmZw#Mh(_ zw~|mxZT$#%m)K-0Z`qk{NF5KrE+o;v6v!L(9C^sp9YU^F4+;gO2dHP%aV2fn)jD16 zai;l>;oyJ1N3G*3*nT#z@e)-}bQ;~<)@EYwHWOKhxwqTNy|O`#@Z0G0XejhY-(!nN z%iEchi=F&I7 zRRYe6ZqW-5`kb$ZG2xVugNw)1`;|JDOTF#dMamuUajSL6$}_mrZfLrDw*MmOBr zNibNV{C6JpnpEpTvCi7qL`nu1ZvZ^%#MRc3PIjwqER4AjaQ9}S@^G()fvUHY2Ifgi zpQP^#qdb-uAdBjnb3D=X+!1zs&8EI5Moyf9lO1^1-3O7Lxm@>~kC? zrHiWp;P51YB*HK`P`9H{jJ?J}+*?#;&frfmu5fj?mEgw(mTkLL;IDVOq<;{1rK{M= zW0bCk_Ta_8aJbB5PposFMmjuu?T@-g8Fa$Ha<(3{QE(t1cz(PwU@k9}JelH$IPYAV z@vrevK5*DI{>CM7jWqWU|1#{85;nUe1vN#yI5XWpJk0$s&QK1gXwv48i=L{->N(fW zPQX<}7#1%EnssVQN<TeJDpLm@kNwFnc7Q z;_P+}SyOR7al%WhVB{gX8+;Y@N#8)v2gG>eM=}9@cxki2puyrhxMv$DvwI!&$tvrL z*S9}6+3!zHcwj98rPR~I?DBsh7SgP=Yzxfe)_BU{Ja^Uzt)+i@oh{Co^Spk1Vu@up zFYIgDRY#R5f79Wb30D(H8RK*IB-GFR>~MCIbG6@)J$|ih*hv}cf|Jc=?jF3Vyz1}5 z51HDy#7^|saGATKxCbXfommsZ^60S>@vezs@AGvLu-(?ML;FRxwT-gL{LVDn>Dqeh zkZ^@#n=U+hx=J3Mcz!r3Q~Sca{b2NH;Eg7v!_ifIE#c%hPb3WUti*A0&8Xk%{Fd=D zmt?2d#2P!8FG}Bptt<2Iu9`A5#OyDaKn~PxZC4dxo112ct_2MBe;Cbkx-78lF|GBt zM|;70*Uv>m%igSEd;}ic;cIYu#rh#f&Jo)IR*u@w2^Cg*@IKodKDM~PG+=q${%13C zC|mVY`5uni9KFMKa;@-&A9FE^XIv{Fj0$3$KV&&;UEW(&ad9Yq5mynOW!`-ZJ@%~B z31%e($gQ`wn=O?f!N$kg3%=c;15WEB@Do)AP1Wve(KD|0 zZo$Mm6LMyG2SVYQH^^?uc+w!h9VS}L&TAEO5PPnV9)!^Ua4 zcq^!;`gkL@tt-ax%hQWu+bQhP>$rgf?5GQd`SNmz$kXmIM*2^^at!}N8b0P-oNE4W z1^;^=eL))|JFWn_l=-n-(hP`;_QScBeQXN$lWxRyfnUFrKhm;;Ij+K=X+qtCg>WDK z+#fU_pyeM-4~XMA=P#rYNy~`0!o!0#Er6$hMCg6jV&qo4_7w9uKXquMti?g`KzSHN z4iwio@&?*h4^_eDD1*sX67Oma3V_YYMceYtOY4@uZsBx30c|^I39XIPv@3=UaqXH4 zKo0w#M3QCkGUGG){I&T+=KCZv=GC+s7 zmoohk%*}E0q!H9C&Y>XsEu9PW2Y3Z+V}4shY2fp+p4{MB1RsNpvfU$M6qgn%qC@lhCf6Z-p)&JacS{XUK zDmANB)Yp|tYnzJFriA!(CozVVtkO97Y}BrUSfk%%dt$#n1Y%WdVR^ppW|CSvL7FH`UhsDs zRwy&rS^BZWk!1^h70yt31Tg`K;dbW-Kn_JZne;H*(VFC}?8j?1it%Aq?LzLa2WW_*_o{D8B5_QZsTGynTl@0iF74(4DP7ikp_;x)rTv9VrA_^v!Bf$LCR##51!$|NPXJvy6qGmiXUio zHt$&Yq)DwPyk$y1_!$VQ92Q+|eMnvM;O8Lb*n>AZd$Jzq!6o-o<}MNkDv0Wj6Xm^| z5Gk~0uDRVwPO$gG`2;L@gCDoR%D^`2%Fzu#ECHQ%UAG^_-# zlAT*Z0qZQ;xi>cj$7|%Xo-)k48IV?~E{wTD_JdqjPl5vnArTBo7cSdRA^z>S`kEKE z4!P1kdUU>jwf;5CaeSv%KEh&>bg4EY%ce(;j`;|0LFZVSQ&N#=!XokOSl}K=E!kr% zn>|Q`{#{UEVuO6c_`Uxj75~A{VK@1A#zQ-0r>gC^UVk!3^{zQ{w|y}bA2?rE(BkhV zgi8B>zB?%G%1I#4m}Sr_;{QnJ3HzlX3WTToQ!6`*xe8@)DMG0=bD0QT-SC;+gastJEV<(wNvGtNerwjXBq z@q?g<1e?{D09SHlZix(BE$RmYkUfyz7}p}|-p~927AD6){bEZb@VW>xg0Fp3+Cv`2 z7>UT~a0>-1!UNuCe1f~(O(=+A?UJ$B99|rQ4EW73Gj~sLu$q_~Hx4Q6U0r3+jgqz4 z`6)uid-R*uiBE&a`mZyxNqn4tGAW+B*IE6y8oN1miHssY`SJG3T+_sgDca(%SZj6F zopG_hDn1g?Cl!bsv9;34PA}QE{rO1g=;84oo!}JJH4gRx4WqKKQ=Rz8 z)fOGH(i=9O{jzMKL~UM>3nWi%5OVlO>NIj3@Azdx+~66qi+@T&cn0+@lY6FfDo|uZ zbOoua4jfOlvyfUY+4=c4gvW_IktJklSLm-&!n^f`h~v1C$lGlPZHwD%5)C8nop>uo zT2m4{N_w%q^ynonU_(a125~WsuW^YWsp8KYI|{~#(3R;e>~vn zFWI}Le`(`iaC}0x8xF7)nZ-Ekg#77By@$2VihLPn$mJXn*wSJRQ7;uV ze$B|#TvV#h1=fze*ZN7>rXagVp0zlsZ$=R5To}6UP92`xK4;a9q+jxEPqIg^Er}t% z@(~mkQX36jh!dFLG3dGL)aeehJjV9_>A^ zP{N@fyYK?l!*vgP&ak_#D82K|Zk#7;i($s@6-1Q_Y zelkS*@Y!?p8b_=e`&E|qgD#))o2|vMb@?&=t;7=K@i$+DMSAv8cU;YG$qnJ5#x<86 zIU`Bc-ic&mM45tMmj?9i6G`Rj^=^_b2A3OdTP`EhPZ6d-zBi)u8WF?8bzI!EmOf{# zdF4K8oXR)1@Z4AYyU5Du^l^z{z^+C(5+(e$hp`1oG@8G}-}z_5^kzxwvkQ}!U8d9q zzK*hz@IOD*qF%aLTu(&W=1Y~?k4qgOZiyq}1#i8YwrBBzdn)gh>TT^D0B_hf7vF3P z*ZB2Yv0Yt}A=tE!QLU$jn5?K-`AZd2rPistW7YaiI{s7t!acA3U&M-fRc5Ku6YO0olx8? z+q8_Z{O@AzKY(JH2B7COvx73luH&PWmV(DA2|EvrXIt|J8Ua7}DboE0m4RI7`x=Uf zr+c!yDG%aWuIHo*2G8D0x~uIvZ&c|Fq=^EHAyZdH zjY+bX@iY@4-U9^3IF_Ogsp2Eh1dNN3Jr)1RuMEiUucBTNo?4vO3qljI1Am<1+BAY? z=YTeWAAr@{{ky8JB{CD&y^4WWB4ir4KNY7*Gs{(Xvaj0*NcZn(763`dX`wg*2W0A6 zom%K=FZUsv4irMnItMK^c0;T{VOQy*Aw7^377~N!NTP(s8sVO_XlCQg-4AfJh?(KU zv~IT4Wvxv#LlLQSk-!@ethR96dE_5umeRSWlHxMxYyOuyi)oTg8K!uF1-Y$&L?!j2 zqwf0|bs%58~`GQIr;b(tL}({!AyeO|_1;V_cnR2V#7;(C$^^8G%PN_59{ z;nyxI!=R%cmp90hBP64)PhPWdJduc>)~@X1#c;ne;8vNLrJ>mrdq_m1Vx+ zvWu*`MOwy)V(#P7-;3DigjNNUZ2>$B%cs)hG{Jb?a%7p0m@xa_6xK6RRbOLIX4vCx ztr<|lbA+`4)&7;E4ft=7Z2N!`HKqn7>G zRz{tL^fKkjR(=BGBBOydB=RY+j^gX{3SNonAcPD5+N0w8^R-^DHhdX||2XY{5k%{J zF_A|mmb{r(a*^~uIhHt*@O#u~-}SH1}?dzvlRiO4QaIDF6G&U)PM)P@}qG0Yt&c&koqB|GvE9lQp@V%x;|Q^ zLeaNbv)gQ0*2^OZZpXT1!;S6h&R_}`$qA5qL)n1R8f&F5O69%E>Tehpr!yv4x2s`+(* zZ|3+{E;PL(I5L#e#y7p5E&bQ8T+H8+jUAcD-VTZ=A~_zk{JP>eYDM$@H{PxcZ)~(# zlE{*?zQxWIqbe4&+qy8?H*hebES1O6Ci;7OV(j@k?ZunsU8i$$svu6h^Q$)@=DM#c zQlGbmGm1FDIYW;>2Ht7*?E&t8m+wqxy?Pw`$D?5OM8OQhDatpOpXs6o{#mN9wuu-> zL57;qVWcnlvQWt`dHWL<*4|50dU~POW&Ll3M!_~UcQhdh_1y8;ox{F!A_Xg<+kQyn zG`pVcBoa+HKrMIk`S{_`tx~XN-s8_DN>f!A|J~^RTlX=4l?)#?pyV77ApN4>AUTgc zQskVt$c`rEsN{uO0fFWOb=NUW@#U1K(X-^ zovshC81P0<+g0)j#|Ol7ZC4;e$E#b{TmP#10>p~>$2!6*`O}lGtD^aRwC@7_0qv4K zzz|PMuEB>C{C92y!mns?*HbF$ach{p`N%=>iISd{85)Ha1aiuhKVetD$;>B^q!ph8 z;a4(e)et|)w-T=46Yx7LD5VQIi7h&iCnTK$Dwg`}DQ>BcG{|HYHEP~e^fUPaOp2$b zxW%nfa<*X3NWSIfcGqP?<4Hud#lgVH<#|B>+Dnc?&?(JZJ)@Pm}wg-{xJU&xYQBzVBlCdgMDfgEA>A=(S8S~Cp z_?*2Zvr7-%+K*{4Ka6oG(1Yt`XL@JNlm&HSs^x}krF9?QQA#(hnIux!Mczil;T*Pg z(R)IwP7GfPVH*j5OnqYS*|f8V!$*ysvXAnlTB)`9&C5rueXQ)FnBDtXlHSGYMF~Iu z>EG5Q0p9V4n4?|ct~pQH>A7i=IXqI{9ZM34`DaT*iS@f#q1h~vO9Vx9Ae*u{kbh@! z;H@H?y_whiWA?b2w4j?t#mVyt_s7>cd-9E~(qwgs+b~qH%olSuF1~U(z`k`{KsP-b zbvRb76RXtS!pV2Y^u7n9!N=F|c*Tx17|MBS##j3nQ@=B!Z5WiG_VjD)Jn8pkDspku zIo))=l4^4bH`}^c^z+{v73a8#)p^Tv8{6<+JJfb}{I_`};34KO=X`fFME1k~X{QNa zSU_n#wd4%>>{(HVd#JygzX@MHpEF;iIGKM-j~-m}2}zrtd7kDhg?c+<#4Fgv9F)A# zw+&(Q7@{)!oz4Y4T7x+oVc|fdo0Vh@l|(IS&G%AM8OY;>ekxS^7?ZOip;-ZwKo*i* zV*0-Dvk7mI-j(%GRTgrVDyUOmvm6kr(l@-c!W@07xF?IxI&F2Rdl)I$^|O;+$N6EP ztWA*AJKivje zh&0_P@R4(ulLPd-o@cl6w(nVKEA*H`s(fR)qW1vD4nv7+lrCO$$jLta%(d-o{UgBk zQ2g2k+SEsIj!=Ji%yzDRUgh7P{x~gamyy`5=YZSZy%ROX4*9E!>VgbO;V#`w7hDCK z(?f@7ZI`4jz{Hi!2$;IO?M!^pTZpF4P1 zUi65ADRHoQOeiP=v8U!cJO=YDyI(aoJ9k3Y_0_0szrA7Ih1A;~uWnH+dx%Dc(+RW#wvJQxvOeI!%`ao8|fy=*U!TjV#W4sF+e$5U`Tg5n+4+W4dqz0#n{|FP|un zIpWEjoM^DoN-_z2CAMj9l&?|^zA_hlAuF7k95k+?2G5QTtK_ueO5E(4P9x%fCB-@6 zRk!_DFc0}78i4R+Mtmqg<=mNr;@&iD|TFVPP3-}L`Y)Br6 zB5J*ZT1`uCcM5;1V$2%VZWM0Q@lVcS*O!NYUR%R@AlcN z9#z+Qha0ep3!DHtaLWpuYGCM$BBt)3;o67Bk`;?Z7wqQot`(XCkYtZRw1{p;a*Q$<_{aCLaSV? z=!*ifqjxmFd-rnRHQGG%pV-a0ar3Q-~NB#R*}I4BHd&f=eTXy$%ZF)&4}H zd{=;V9KXA(2QQDeDr6((MI_Vw7)wYw_?gc#PD%Z=ws}y-`+1aqGIP?LD)^5#_H#ui zwQQlCbsoLS4?~KjZy-ft|aWj;sBt-{$AJ;+(P|>&YClo-f30 zCmqmu=hG)qVPMOZ*3gt4dvW1&X1?-RAq&fcS(#9|ROqRx7U&bRQi@%(>aO9YZkTgn zit?DyfWQM5k7SlL3ha}>`hT=;GOY-!oLj@Eq`YSmVysE{4pVUvxuaIAH`3yWFX97x z!Ff*TXh}lX#F``axnk83G^THGV7z*(%(3{9RT*&JTrp$5?9p9mt3DAd9?0-luB=v@ zL70kpU|41?YF8?-K2qOi_iD&z9Kd<2*e>&)`5WrhNZ~2g(_tQ*CRjYM`jNGULtr_F zg+txbTxG3loISfwDok ze})b^9ZRXdNgkD+WNhhv$}13!dYDiH&|B*VsoqAsOjU5WzV_u@6rVMWz{&N^Jv zmP;EVsMIj7Wq%`>E0o%~P++Pm9`<4n*A7%fjed(kUJ{3O#Eu=V&k-{q1Rh(8Q)RqL zGwR@O8ch!_2MmuxiETu*yvu*UZ;@Nkb8!kG7j_49m~4%1M<0(BoBtSd6>*2L+k zNvtu3?~;6M_n{Ny-h(Le7HD!=-y2^bEK=$>?a>@ATLhTQfumP6gw4CU3z-JIdh-+V z0uQ6i&?VlYpCA`?QM&!w>~=R!`Sv$I2+`Su7`N{SMH5>tWb&jpJ=q>KZ2$Wtmxn24 zRZ>;vt*^PvCOe3(jbx0~)o-TmHJUm26*duMJb!h?Q&|50?ns|elR~K%>Trid(w0N= znzv=Y|5jj6NOT-=9&>(ZRSz+(#PjeSEu3`JMG)5ARN~EaR6nQ1=!sJxCz$dEWn3l6 zI0D~I!qR@}spA$ikEZNCmXiyJ0NS9oII-`Np+2DfhSUd|JwS#nXCngV6Tqw0-rT)bpn38ltBI+!UrVi>G5xv}?Nv7JG;GLuJx1Z_ zK7SpGJZmf@4U{bLk>A^t!-E7XL+wf8n{JuHYd6t4)E2Y~*0)nG9L+k&5BrspTxjLB zwHnGYs!z5Vm1xH6>T)k74S~Kf0@~Vxv&z748dM*rB4Ayrb+5Omams!aZ^IW-QIblL zmS$Z7hp%$t({7yCrd%AWC=JU_q*UEW%8b2WieC?eMon)dW*_NZ zqz^?h3ryIbiMH(~>cT=?g*Pun*WD7;JCr@bdxBywj;%2rKe+2SJk+lf#-bavH_hOJ z)|TvEX@4YDdz$OOx##>C2|9ww8P1eVnCM&f^7VADkM(=nz6fU6q3Z~TM1xqLz9|Sp7xo7C44sssj+Iu3Cb^j zJ%Wha8_48XSt^TCrE%5G?*;rgYWGQCULE=NsQ3fxJ$H7?l#Mlc>&(wktc6)%E{6?C z%$-%r+ti4kPXP8RGxA#?!P&9N^9LWQJ^QJoCAh2eBs96&=R7v2^B2-qBT@>_9x-CN zwwR;Yl1MMaAiVs0Q>1@ai4c1IRXb9`I!2#cqFFMp5jXzo9$)VFHc7wJ6~;pU@0Bw_ zhi@{vP>Ea4k&1T73+O+hlp{j6V8QH^33K(=9=%8mfyS30=9$L5tHfwwQb+)DGq2Y7 zh5fP1w|PK}HwW^kUU_e~N<-~1yfZH`+e)^3tw9T9_&lUTdl?d9MH3{n$!Du`8b`809Tk0J7@Er&*;+i@P& zQMBv=_%}5@?~J)vIX*QDVExSh-wX}%* zE_*v~H*_*VoZIvs9>kG!9gk)M9KII^F`SY2eWzfG?yLBn!(CJ7tN$sgJw$I;{WEi4 zBvtx<^d8Z`&#<#LZf>Y~8wf=hVCW zrZ1wTDUhVKp#NK56^UmU71{J^oGkA+nITV&shenYiCF^KSB>3jm85H%6=u zEoEg7o7vFkr7HyW)qapX6P*1m;=Mf62&VU3HK4BmKWgs@p`sBuPRuFujML$o?YXP z^8t-9y>@lf?1s42NYR7o-6%0X4QI?KuT7bg3U7LLeA?;A#+%iI7kaqQ5V(XlkjLHZ z^gnDUUWC2==K>^4$DZ;M*5MAkWOHqK6F8P}%C*clmdwWY`OkrPP4nZb?_CuCWNeU2 z{H7*`85~wmM4-Y$vIW*lZ{s%k(E6dA-){j8&HksMPdAh>l82OCBf&HUb{Qrkl>+BuHppaN%#n2pzah?2;}j;&ep ztp5&?-!uXd02wO=ASYYS0E*IwNE)+ScgRmaOqzsFe;k=OXC!Xx1a#~jltOHIaQ&&xL|w+9#AttU*vm>*L&s2bi| zMeYoQ?mc>L`$M<;{>W#GU40el=IruW5?PO1L1#x_R_z=4~?nCXx%1=LCsKW*4o7Gcr;HSzSt$>}J}S2G7`= zNHyb7^*%qv6xz3Nz0k?L`dx+5TKWyFWD&(TdWW3wG@8Z6jwX(vjE(4STm_fN;bLM6 z-m0RPo^_uRcHcf+B-|Z5`D;ZHruvAHamjD7E`M55kF1m+EyDdJucEDXzWk(Ch?5%F zO57&xc2ZMUnPQ{J@S8PZ?UJ+_%y^Ewz9reqE5hk7_7!#^AT$$^Gn@12RZd(t4wPvnSe@@v9LL9zC*+yz_8gIl;KwUNsPqZ>n-}+J>TSLi zcfx*)8V8ru#Y_aofpZi%@xIjG3i|4r15ZLntsj13_YeN`fviXeDuUV5x_`Sr7QnX% zYs^TxefQwf)hUFMa5~S!iF0sQu5?9mDC--02?&^#n+YMqxN03c=@MMi|0j=@<$x+KGI_^`pfl>X*V; zInd-Xm?ybkFd}h4$zLTd^}eRs6HO}84|yNm(ykrUkzP23oA@E~U=3j|mm-3?fxaPa z$s0rR1;nmQ8jUKsp}IaD!O~2BV+AIwEH<1k?}x9 zk3ONKO@)BAhO&98Q_4v~rhHiPLcY-8Ve|Xo+?gc#2NG1`U!o(nu57ocwrkjtw~>kf ztG<}`1WeCFSOro(U&S~i*Y&HDCv*QU`IMC4%M>W`C~I?0g&}2pi61n`iK#v3-WB-< zR&J?m-xaIqOT{Anp?u|eMSF6}C^-*NYoG8m9h5u{Xjdw2GLm=($y=$ZDiR4AEV$0r z#r+7{d0jif>5Wt{m#mR7N{*mNsOXI$gwGofx&|Yk#rpe(}XS_f9A@jY0X!rbp;fKW4_^SsU-_pBd|4QC0 zO7u^6yccc=Z+%K7x*Y)%UzE5LT{q4F154ef|B_6i+83r}Dj-%K50@s7}1zg(i zyKAZb#prp$OHqe7AK&XE2Midx-=3tW@y3)Dx3lh-2`e9V1%cve#RPHsCfYaa1^k_) zRJAK#P7oWA%0(w^QTSsNb!e({xn-FDC}eeOJe7OK1|_br3TH+70Gn6NK58xQtbMgO+X*^`u8071ZQ_JYh)5F#S}Cl+LOkh-v}-#l@C6n zS^r@ks5PwFk37?)jF}#&vhwsDvFyL_;u5F_x5Fgj$#UlQ{1F($N#hdv*Y5IM%&nCe z+#Ja{!!?&vAg>Rt42S)fPh#u(@2;#5F8Rk903bo)GdbHrlA*79|3ppp9g z&WT{PQCXstqb0?6Mjc5Y1`<~{kqAk@dxBU>UP;Z9fx4a z*w6~xHyL%>^m0Hd#7^Hdz~a;4QV+1wS$0j|Z14Go6rz9KD7|oyf6-Tx2!r4qE!KOco`<}Ee&ZzI zk|xhd?RYQ0J=aR>Vg9(q{jD2xaE0M|h6&s3;Qjw@r6th(YFhZrklASr*nLLOPPQQL z=8a}!2Mvj%hFvOYNqy*U%Uu&3YQ%7>xLEIH$g~>c5#3DxK~F^u>SHq()IN~n9&Mv& zN1v@+8~Rrs$l`>nK=gT(4j0md$2(FDd)FvWcs3T;5TeV4kGnK6E-5TW)B2kH=f3>! zt;9{qa)N9p3eH|ah>`DIb!8mZkUEUfg}5GPC?`WVlx(jWWYbJHg##?v>N1UZRZ`g% z5Sgq*6YUU6UBV#Wj?;h3MXd2_eF(2TE#Rj|4RmvvWtvgmE-Do`!dM1G%hg3H46;PxVxr zPUbXt#5Kl}t6sSwCRtMDi@H zW%w9r5)5&$l;n}F{pwP*q&rp$K!M$!|l>c;Y8oFQn>2qgHI=o%PrZkYTE zQ2G(dcorxv`Ax>EWW&-xpTS6&=(OjHI3W7>m@&S?e27R@u*0XerWeZ)A;Q(}n1Nd}wIkKfTKKce!!F>*Oy+6YBQ%@Zqw)p{o3ecTR)lWaJ~ z^V|?o*U2b-SssTk9Y{PUzx{HaEt~#hw5U`GH7K$laBHml5*jHUP}(dF<>UT%LIDq& zsN^xf98jxUh=jb*8gLN zC%|6`uCLvmH4@r>g$OQYrkJL@+2zF|nIbui>%;ZXuH}pLjo+xv4|vnkF=X2pBFT)& z&B+v35&eoFOIPICrq=noglA2bD5i3_s3IMPy_HOBE~Tl zt(1>QDx!T%t<=P-OcYEsPb|@+eWRiMKhN-l%RMA*ZOCw9I0n9idwUgWJNhY%Yi@p7 zU#oMp*K>_~Klq(S{#Dax&1RXE%asf0&$n4aWVg+9n;{~sX5iZn=%ri7=^)2N;?Cn0 z*Sc$IKDC-~Joi;yLalNEZqjC2q6;5c2FEmQXcnN73!DANsk^5jY6@*!p2u&B)@V^P zdXDeHP5i0&ePy~F%ev>{5UDN{0{+*$gY+D$e)CtYo+F%dm>Z4gr;zJhdJ1#h2+JDK z9rk*EW@m{DUdqY{U;n08ieyF_9WaV;#3!2U{6-Z4k$eI|q{UaT;3TAgX=o5Ro>Owr z#nPm8)J?W?`xya7T5kB^@u=#iaQ@I*!w!`{-dNY8M?VN7+}c^m*}t}+J~pG^($tKL zP=J0rF+p(9w0o71MY?ZdoUCJT#*c{ojHzkJa_ePw`>AKalL(|!9$!-)WFdJ%aJwO$ z1H1`dob2@CvmW6X`JV4~o+1WodO^C*y=gK?Hh7r3sK=gWPj1qlo4-OC2)BsK{Y;b! z%c7Xy%;bIeR!7l72XGETs81XOuKjX*NSB<9%-3tAJI}4EO}q0i5KAYU1cFzSH-B!2 zi_M7?>1Rd8K~idD+P-f;9EM=ujgdYK)PNXTZz2+0fZzjbZ%<<3RKx_U;N{)&^71E` zl6h<~;UY_bFu`C4=sG%|iTPQ(?eNhlVxjxR=-=x2mHCZu(SQj{&C^GVBcK2D+gnUe zWxO^Mc%|q0M3NOTKBH-;qxi>q5bU4PnDOu3%0E+`L2NkDi2fjBb9?%`j86~83pMmy+rGm2*D_l zPRdubW8RRA;|Kg^`Arnp!pBO5N_dK?-K3jDZ4hG@&XGzWr|~CD*}IkEbl1NdP)!`l z*pYHKbfA4|uey{T*VBNXQHv=T`%&oybL6NN>wP-T+n)Ujd`E|`=vu8woI0jH%&-NX z_}PY=WV9D0ti8lyu_zNxD!0{~8TcvjCl_W#tnoq+ReCu`RM~F=j~bR*^i*X@${ws` zT|L1(iGuuCzK6`6Yxx*0_9?ZTN_z}-`8dOYx;RsM5{OPdOdyWFV!4yfeCSky8uPK4 z8B_^;E`KF%MJgO^38Uf)&G!0Jk~fQ<{w9K_cOh%(!ox3jH%s+>-{>qcf9qd@lS(Z6 zN}RyMczvx=UR%&#?4nmCG6f&I1t7IHAw5bCZ)*och?j=UZ6rEYEg&OkpFM5b@vJ;{ zlB&IcmVjdp$P?tNuFv@juBZhZW3aYiitZ+t$edQyabXeE#$}}7<)&?25&dks*6-$A z4*y~D&3y>GkpZjS6ONjL_T@ldB{m_Vl9d3!d%#aZk_lSJtBA|%;CVB|V+ zfLY?;e3st(4>Ag@FWpdR>%#42v^W}pg3o?@c^E`m0snd4ta*Fiau+2s20WF7*}{rX>*GEg#re+Git9x0kL|BXel0LZSY`I*tVx824=vu|57 z^J&_T8b)izkUj@915cbVt7SQCXhdevcbq3R_d=lHgnR_ zxUfyLb$x-_S>+CPd!qW7dmMhj(sPr+Br6%uE=tYn&9<{;YHWI$(!p_FW?Bf#*97}5 zPAj+8Buaf=W?#~cyG}!Gb#C|b=G=_h(LoH?%-NQTr}#V*KzCA2l8*vnq|{MGXj|ON zB1CRq<2MT4bUf4X|03!y@7_x{$j!d zdSeoX#~!0o1kB{>^}Tho)Kz>^?)ld&M0}@OR zZh@5j$A;f?Ekcj-3R((c)VMv${7m~YBC7mids{$^P^<8ixO$(PgLTxZvE4!G=GMu8(M$QbyE+D2+oeU%91sT61fFgS&&!>oFr z&O*g?vu>`s%+5e-AVx(Sf=EWtp%(6JDtYOMW=}m4i5=ZiLkQjaC<8?_en$AM0=&*7 z1D^Cg?GJyX_oBqAR?ZY3(EYNuwMxAdBP;kPN=@d2+nLo) zoj>t1sTjJWe&(KbdhT_Dc&-+#{~C&jQesamu>=U>-lv1kn<@Tl7kIMrkAlpv$D;d$ z>FO=S?DhRWZi{C;7{^AQ;Evtb;FA^&S2$UpHf59NC-9>0==kYv{UaNeFacM)6mH64 zi4v;@l_?i^E9F`A8ym4AKEJQb47j|}D!}jiFGvUlasjxEMBSGbY#}K@IGQlq#xnW- z#G2`W4jQIBCs67PAtx1jIJzNvxJT*?wYA1rI4JPR_CO0Pw&DC z^(We3>`zX8xen$u@8*i@Qk-xUjJ-;DIX)!n}R{G}&Yjy72Pck7fc!9msR%YfY zEw$`!az)G&xB(ZL<0tYTNKKgZiJ>?qpdrujMwnE^I|<7*z@KoF=3f>+LmnBUiI)fG zw!|>p#jtGjm&)23S8-FECNZmT_x$`#N}G@ZLF53UtJ{hd5e;aL`Zh3wcOpeZ7 z_^BZ1A~;Uc7P3zBy2}kxrR3nq)2kIy9xmoYr3}y zsuv`p33)m`mj@Len4GpET(k;x`D@<`{NjlxN+wVoTY6=sB4W>t7BF*7EMrlzQd*e& z{`Y#Ze?@HA=qE$PI_1K0MZEPfiJLvb-^-LvQ@tTd;xf(v85|Wv4km$j@MHVR9ruGF z#>n-DXJY5zf*04^9YWQu4|ksMJQ-d<__M88ONQ39(3>61f=`Q&V3Ay8`q#?>;K93p z&wN24I4(84wGeA)Mlma_^JGdOaOR@L-ycl;Cb~6-xnB>1m6NrUU;dEQjibYZ)g~t8 ziCm#r$#Kk@k&GU#)>z#8$J3bZfM?LxC699m0IP&lEUKBXy=A3k`jyNPkZEW*ruK2e zJ-uV_$H+9@-w7-$DzUuhyl2D$O`npZZA`%Z{k$5P1ugxT<#(HdD4s=GA2d{Z*qhmC zN!4P@1`5vFDz!@|7YEc*3IGx83*d6AkcbD>eE#vm8D|7pQkBL;isD&5aP;c>1^ zHPr;4oYUH$qW!YWC1bxl579hp#;{aD=nO{9-A_PWBOM}Uc^5m{vC=^wuVExrJyCBrE?j<%CEApyS+ zV0DHm9WO_aI>Y%GSjq%b5qU^NmLZ|V)LvhHfus_GZI!MAPo*R_IbBi?hA=njy-1*G z`>;|O1mtGuiSv6Gc;3FuP;GVO%bBtNvu+L-!MC?=51;WY=|qZTjGMWd({!ke z#lF7N7p3*ibv^uP{A0|PepKQT20Y;=7`WSf2Yf5hMG@cGy7AieMhd*qu~JDqe^66uC$ARMuFV>(g!KbXjN)a_ z{AJ`R*P?&bd*20-m141MzpEzexrq3Mqg5ewKSjSzhMR;`3};SHDVhT4$;Ad`43Ge5 zJ}SQXo%Njjy@f3#Ocv0ts1W@Npby~wV0yQ9op|2915q71U|GP~wx}V*(Z6}2rSnG# zg_Yx!1TF1e**}y*Cexa3@h|QVi+GC&we^tNOT;DNw0%l`zun+j#q}O61tB1@ppqJrE+jt0)c3pJGz2H&f==I~abvDKfubXMB|LIo@!}vY0=I}412S4f zB1jI2SGUhmVgIGfFywf`Fbf&pBpPSOH;2%4l0^Iskx7%T4@_x zVm0zq;BE912>yx$!b?nW3K9eSE)z-+FGDG^@e_=jJjQXJ!bbw#YsX|mD~rO~C$NQ) zr2>tly87<7qwQC%)MF%%p4pcQ-(+-sN|YfMr((c&IGzG@86d$%rbI(5?lbN`tmS8g zQ3=uxLW7GPk?QZa1-r_D{@4X!?b3ZHd&hUEiPAg8F21x?fn#FfAYv=xs>{EvaJq78 z!$NVFfJ@Lu4c~T;_%u8FOa$hN#Iia0{LEh^mQNMG?GK+s6PiSm2v;#?KP$5L^Xc#> zLO(a2O}Yd=HO}LB`d=*OY9o`Ud$?wPR*OM*M_XA1IYBoYXb&OYe&Dl5$RVRl7W>ns!| z)osn&Px+(j^iL*UuhTXyB* ztU6ulFNWUlGjCo5as91Ktbj?pmi9YEY@KTrL;JZNPlP-VW56#qpozSvdzsY;{an96 z8mr0s>&!s*ciH5nUGQSaP7roxhw?GY-_*1omE$3O0CsFmLYySP?bzNw^tpm?%I9Ks zz@NoP$H8}F&$-rlWdh&Q@;wzch)O&h_5Pw-!eA!h-C+vLkWNE3Gp9AF&54Y6Qre8J}dO)4EO;Yk8Um^JU>2{=lrgp z%e7cF8yEH&N05qw(jlAsL^1Q4J?|*I6Mm<*pL>zGi7_HjexKf+B61eBNZZ^M-L!^o?uqwe=~Vh-q8v(LdrKqMpb21!L{=o&Tqr zOQ4`h6!9Ncxr3bJsf9SPL|kGQD0t)Xr9I8cT#C`iQPY?5jH>XcqW&l{vb>MsBJ#sg zL8G>zD$2aU6-&ZUpuEj}k7cP$8~#xdZ+pV)+UVtp2pX+pWF_kbQ>}6@5vrfPUoJKi zPUs|B=zV(7TN~0ZjOa1xL@7fuHq0UTXBYEIjqjRBmx&5n2!9@MVr+j`&0^NNq(gPE zMBUq`GZIP&ehVh5Cg(7@tudc}i}n3IK}c+g5^edQT?m?(BP!b57kLR`=G>H;XoYp^ zaDL0grj&E?579Bn)6TRZ{9jWu$hkXMlD1e6nXJ5+qK*Qu1obd;S(KT*PaN1wl>O6$hoSaY*UIp5E!5=gg|T`tzM!a5x}v-7 z-<#dG!cA{!3@&+5va=g%ZHXj&h(jtAlqG{C??Pg%RZ7K)aatPzxuCy^8WLh=?X@p? zBrY%0Wj=VU9?W$K1UHJM0xG}MtE~4Wh{h)M(eLGhXI&F-=$1ONm-gWt{S^>wTf=m-_AuJ6Cs4ZK6w{pLO%ACal*by>d5}j6`E3Kdh} zjPU`6_q$hNCc2dwP)rhp=&cD*Wr)e_LRtVKsgTP-K;cZn{jDXEQ5Bg3*hl0^sy*?Y zQ`%$68ev%eA>A=hNqd&a+2e!jY2ShDY{FQ3DQrT4<_^_ooS831ofM8a=+jGW$zJ+D zqrET%uYQKE5}!tw4OAZdtx19fofUij#D;O2sl2%QTbfVIQE;)YZM(aFSKg!IhAf7g zk=FQ+J6lbc2TUwK-h_2WlRob9Z4^58snIhgO__s8+(#MKsx_4=w|~Gaeb7^$>$|X~ z5_84ft?__~7ic6zhaxPYzBwHITWs#1@slb;OU3}+))CjXdSb%Eog5dgv0|M`1Gjpk z>p3gkQV-|1n4b6P=FtOwkDqevH(r(Il7Js}z-C_hh&_S*ma=>W8^GUs`(4|z?MeEezglT434&4)datmVZ&%z}E#Fid3BMO3 z1&J_>d0R92LBIYC<2&OyN6k>I?u#N!@_xL(&1xRqe2O<)!=?PkkD+gB zE=bVAb>)?nvsu$@9=c)6aE+ePPLD@U#{6?hf4glEY|i$mQFG?D8vfyKC55u-@!<}z z(BxX|UuL^r_18Ss{9*k}SKyi9vuJc?v{@A35L=I^EM+YL1UDJi#v2}}BGuz*A;73V z$jeACibu;$l^y)CrzDW*Ey_%fT=0`^E;JDZ{XMzzjs%F@g8Bw~5&ao6ra#t@<5&>( zmo90pB(()u{SEA0fBkO3Ow?;xagI zKn+!tb{cU#K#%4^3Dw0ad_&>I`kIl;D&};Tu#iBPRbrKek%|#-7sG*?!iuPeeD%Q0 zM!e^n7>Xk%5t6H)1*OK*5%z_Okc#Q^FzsLRY&>Zc&C7Q|!5TJP=K{RWSkL$X_SE=R z2?)xxQQF{NgSH8kj^%&e@SyjE@_rM1kxZU~Q(KXz*SBk<7X2o4GSWoOHI7)e7Cj zmcv~_MtSQnzSA_XhF*_bCP&)nRnS^ID_j4wSm{1rWRGIwT>QL8#GfXto38$4 z;JkhL@AOge(N9?O=mk}2vI$SDPps)gkA~~RvX6`Qe{nqdOE@=BYH3QX-xKd5xuJ?r z;{i0Nv~Pw&_ISyn<0?!T1J`8ps#N5)*pz1ij`_?mCEbP<42N@G;flvpfZ*2g5KU`P z)ok11U4k*0h$|{$c>W7cQNUHejFN42z{3F6V%2vq(uKw#duH=fZ1kZ3_9g1bLzwNlcXP=@cnF~ z^z5!13I4ETtWuaN%NC-FmX0BPKyuSS(kJeFNa_5Xnl{tS$GUR1-dX*_uVgOv#^ELs z<5FFatqf!s`%kpcOuRdLStMVSu6g2#^&Nx{o2R{`h_C%{`E;%nv3TY`F!%fTGB>;= zB<~!Kgvh^pZzIt^d?xGH(uGm4y zCr)~ol@wA8vE)0y){fZxR_{9Gx3SVnTMx~c?h-o>yHNttZ1{r3Q|rYR z&RjH0a{S9Zrh&B9*_XE~>(OCX38#&!7Aw*xKSb96cZyHe@D4GFG^gK?^l{=P3XMc- zLK^B~K$3>_?5g(y6cw6BEY<$e@X&t$$t6W-?LzW#C?`p2@OHbMrM0#%Atk9FdP)_F zANaSEgkyHr=Aer#W1crkpVH(|M8o6{^hWha5t|1$TH0%kjg8lw&8@<0NJBn_qW{wa2pu5r%Z$ z-vU8^Il_;IN|G4-L9eq_8rCyeESc3NZEt@TY^nXy3QB~WKn`hKIUY?(bfDCz+GiT= zk^u4S=vX1KlcghTT%ij&L1LrHDG_@+Fm&kpogbbyI!GIj;9JZYW5bvSMHYO zw9^_K@(@W^)VtYX*Qgv@{x5F~~ zi?!e7<~Hr-t?)%#Hp`sYa8I@BG$dj|-ae8Qe;X^_FK2!KU(a`%3}uJj5=JaJBi~F>4Leb$ScPwCz>KvB~$VY#S0Dj-M(k}URE@F z1MQjM)aWT`kB|lPFH+f9S@ag44jNhVmgmV+87Pta?|Y8Kc(1RpTH{d?Qyh0C2aY^QpO9#K|(l;U|9YwJ9<;;hM>5OSZifzVT`cu zOc4i;=0yS$?|l`67xC;%00;#XGKOO&YZ*}Nj!GA>TWYV%M?_hdfnyqMeT0)S3HDBn zFiQ-1V;?YI;ky_i91p!#))njJ;L&5MI*B4$)xdMJyn9Yl}6;jUG3%5|0&~ zT=Hxc-BoQRj_}VYOAF-~CeYyBdyUm^8dz&M_1Lhkm zSB$SSd-)+CuQ&R4b6p;DnK-^>zYTeQX_wPibN|vSfcpWz`RMEwnQ$tPImF(Wz$JzM zQuy9@b=+=mw(K^8V{CWg-w~Gx8B`>uB1`Y1jD>Xn^Ijju*-ji;BZY*8- z^pkaW@amg%0UBJV#OHJmEt<5;uKFGrqy+BX0t>WFp&($6HcyN@^gHt4&xc;v;vrlm z(c-ToHq|#)-4n#DlgryHzV^JMk*=M%w%KUps~EgPm8Ryns=@8ghCOCJ@l225uH2|0 zt}wqf^x8&*Ijl1e+FQ*B#W{l~J2v!XZ2O%+lD%hJ=dFv+Fz5D3ScwK_M}VXc6kfPA zUl@7|m|4hvJz28fUDf*U{#_i`tPAt3vkq*|qcM2c>~Gor0?b|C>AqT;b$u+h9&kG% z4Z-qHq>FRt%M9}QptA@X7;1SK8U1}v=m>#_YKYp&e+3{a^FIbe%Se(semW~}3S zlgphFNz10(^`Jlb18!$aP)T0LesBn6YddGK?Vy^5PM?zU^*lEP-NH0SrR<{%@SMf|3VizQ4X;)V z>~m_4Qx?XO)xp#&ujXovi;dU*AFMU$_x#|e&4V8Q49K*D=p6u zAGRM59N$Lx^Co2;)p|3+E4?I3TUT+J-kiaa++IY{=a7Ii(2ntaBAa|+vG(BZR?6>y z)OwUm_;wb0rX|7MU&~Ptz{&nDh%2$#!&sGO&&Y*bOU+craOxC=kVb zNW7;`ano^xk)Md+2JT%*yZQ$c2TNGtz-Ac@4c{Uz8r35R4hfwP@Cm>=L~;ReQIIL+ z!F947B#bCn=s)!G(K^Ud@nm7dDYEY@O3E#R&18k%|C+_*Bl3AVh^>V39fB5$$%%oc z>RYpc55msHuxTTLCAW8CzFeU%V#iUU+K^qa)!~#@)=q$jd;c= zMU7|$D_hU37@{7a*g4~4Xl#~ch`qEj1-VPnJ-1pK4x>e>NBPKDAM2IxDK>M)mnK;I zyq~PlW6!t;4U*VlI@6y5x)otJ7@0NWL~n`s!A^dP(sub`Qs&xeYUd%F?GEM|E z5+tdQ+@oG4K-qp2<|(ot=7&Y|{#4sIZS6_CcdHJ4oiAi3haS*6(6j(u^eY_z5hf&x zn9*ZTlG0h*d?J zY3gHo0iR;oe$%X>S9oI@E$brNRIx8P!~w+iC11$o>#dQOw`zyn-F!YYgw?)AFd)DC z3f1A&NzrI9MAYh%kf}4E#wSD&g`uolfmy6ho8v91(&$Y~5n zQ15hdlsPK6^M;v$n&;<|G7+7yK^wpFNaI7Jg7a^)eKC}}5|L&MHrDEgdJjb1JtlP1 zP?&0r=;fULrhR4!tu(bfeu2CMuoR*xLv2qFvQP&(t5(i}WlaK3BPOe^Rfp->G;!%{ zw0Q+vH|JOS`832tK@9`s#{I+gc@$~nJ{nEUr<4WKcu&;+Y|fRYp{9C7GCobdODwG4 zd>w405*5P^ zq0CD&|JxYC=`;5uknEw)FU!fME?a6YK@ypvtYM*HZ%YmC)XxL(t@HMq<%^y#XPtXI zMw9kW5i)%#egSJNWxbE-1;M+vc}vzybB{Kb57I1L0YAHCd(WC1i_>^#u|PX3=Z;5& zq61lb;{xD`%3WOlKL*KK-$gDTk@s{Nz{^+&$(d~kom3-h4t0UPdz)Xtvk4Yi+yBN5zNbh0qSkq1^?u`!TUI;({9p-3w6 z&#u`6g_IW=Nyh2fJ&ET<)nRuj-c;izUl27d^e*gBD)Y;a(Oakda?oj@ls#VtE6=B} z`z@&wt5%TZ_^QMVj%WQ%*q8969ukWu8@Rh89Ruaba8y0n%#ai8=B-TS5g>XIMyNV3{3%;IyznDqBL)*t7U zo+d$qD%okbe-45Fs@|(BhG-Hibq4Wy4{yK7RghnL!kgVw)6S=F53WR4x(0S9u0 zeN0?K`GLxT|HC8^h+bWu{O9>_rSBW;o@LD74lwW-5RCdO3I&}JV;jwsSP{khDX77a zykto9Gx^72-0Zh6S=_p^yoE1L@Pe_AQ7y)C-&eb@peNX7Fk6TPpjZxE<6gMrg=k%) zm0l)<7r9zk4YvuqZJ=nsL_sQ{CR;i!MOF|(QzA880UD8R7| z-X$l_xg2p0A;NaiROBsb`_Mh_Z}-8hB2|dz*U3r$vsuEulm$Ktujksd{L4F`a<}M< zsn`~oCRH_;Xin&NAyvmLGN?>#tc+UGp7VUDT<2g5`57`fl)~3@WgU$cmh5b(;f=PH zn(v11@i>h%Wjj{UQ9hikQR%^)Q2C#*_#!A9p*(}iX1C{3M3Qt2S}YG#?e-`GADQ-K z6J7$g6KlU(qkIfZ;oV#DOgQ#_7TYv5asM%*Yn}o}O`1is&ACfy`KreoZUg$x6)H_< zytSb-lmi@x2~f_ndn*b;uantYnc(TME;9{8cvao42Q-YDNth=?y|z_jIbG?+B1E&h zgcf-ZECIN|4r(ahXaiFdwH@=gd?vMy44u7er6UaO$LT2xWLE4DlJuFNoWvrRZ1k*U z9W?yyU63VTa=l-HuW5wts~aZtl@*1IQB+Nv+K;)va!sVdf=0qAk{k4)plf`{kJF`3 zH)~NFbD4vKy-MQ{{U@w}&P}(4P{}`}i+{e_lVN2G4IOJ2;ALW*ggImi&vSG_=FtXA z=b(|OZ-&0Z&EylJak5P<>65+O!6wZK!^r7{3rM)GgqY$iUJ;WO&(~hX>;#clV=v)+ zo=^yKArX~Nd7tT8aHt=nKa)`No^!wM zw7uE*g`YI?FD2;O^|Tj!|8!~ZVa`K+gR|m!e7XS*rLp^6#BSq$p`q(s)3Ck4k|8r0 zL!<`f^~T0_f6HI9#Ob>l+Pq9N&OLOxEKz4I6GX+r#+QO;adU8uBzmd9fi;diQU&2f z{uHa@mirk>pQoUz-^8II=mZP0q|rX8>ij%rtBspX#PrEc<+11Q_#h*?TRZDo@U@Ij z{LE~DK_y3pNJbnrrj>x_7__(*H;=M7g0`LEWyJ4mLNDuj4r#5il{Q=sM z@!ZiAK{5`p`kUHMuEvJT~+6Zd?Lngu$vbB>6dfywf|Xn zTKC@Oi>09Nkm8jF8Folm2YiIjaS>2^YFvB(^_2wPzJliee(o*XAeiXrowHHKQ4s&M z)nzgZeCU=wF`cx3x=eoErx7=eMHu7L{+I23Juro?a&C zolHCU-j;=Z%xInTw`+{CvRB!<7`Rq?L(5j?Z0DxtHu;zJJ*lst)Lod;cc6tRPQi05 z3rz~J&fN)h0aGwlb1V5ulKH6pRcGv#2fr)h6U=2VZpTE~IccugyME;Z2@~QTc|&L5 zMhxo|WhYlMWskf(AicaSNQkxU_D2wUUe=2Yj3Mf+p+O4+s0YAD()-8C{f>W$gPgd) zEDX1R(?rp|HSa0c(Iz-~_xxV!?(FxBhp(@b<&}^oYQcVqHHf+&?5(WYV@XvVJRSafdP_L?yhmY`zLvap$A6XDi#(Yu zn1CMxC&QYSNHjP?R#KMjjAZq>MRZnZC7Q`fgFU?rqsa_M4+($#A2x@==dS2JQxM|U zuVe6j_CtU}PJ=q-nz%2r;_OkNp+stpMyX%%Sh0A&kOtS$x}v?u_>QilM#f@|DqgNX zU2NJPTrGA-_i8xekhR_rh1ph)Z)lV3jM2ETT-fFh+EBt==TF_R||DE*Ks|Bb2)es3D`of-_+q2~^QXf_8Gx z<~j!r=Gg$jji*#xJ#-#UlFAN(RgElDRHAB{7uK$NF{JTd&1WcIR&>i-UC?&QR;z}W z&J%yV#UN=n=sqq^y9h<@Wfv>%Vt9Qm7Tt>x;=y1Qx2x=N+?2uiL9)oC5a6KB8PR%T z?&9_@FTjJK*r-uc11LS(ZhKCAG_s3YW{!~(p>BTr61s^}aKzz^5>L*`ct_Gv>voK7 zIBJIVr9BzX_HB-ge4)AzjL8kxA-D)rXDIc-*_fzTTw?j-;n;_*P%8h9kME7qJdepx z3XN@444$sXZgN=YD}x64ikAZzo!GQDfBP4-{`RDq@?Q9;L-d|;a(>bWy8W^0=vBz` zxusCP17Gu0Q$Bth&|acF=3R&1ZX6zpjhuVRr0O*O(fp{5{P9QF@?{W7N8#PfN??sH z*{?*D@4@o8v0wTWNWFts<2#!Y9Gv2@8GyBKpBcY!{(oG3^+S~Xn)lEkNUC&~bV@UW zf*>JCNjHL$(!vA-(j8I~10o>J&m-8_3J^QG68qGSlh|1$DNZDff z9k1NROpW74l#Me*lt4w37^-fQYIm+aPAEW#{!xpT9vLI?pF#r-hdGSc^w^Gj{imNw zJ7`a`rjZM`ojOA~$BvKXCd6D2Dj=3TkHoSFH~pomLxP{>tZ06SV;0eUN?-0NRb08=T$Wxr0#{jzeH%&dJHu8xPbLu;p*?3hP75J8E2O{Ogj(lLYuyLsdd^aZ}OU@!EnFF)+KDI5KDc`a@?RwotUcuP#%{yx<<)T80;SiSP$R>DHx!4UmRkKq}|o|i_JOdlubM1?Q6 zbiO<<%E<^h?(6bcM-ufOH#iTMt5nw!_Uabha!FZv^{l?1zi1#4EA7!6bDW7&cR%Ny z-1q|$EQa|`+l2QRwSy#W9$b^QfAW5Lbv-jo!D_3vCt;@e}<(M$P)&kaEY<;v;clg6Ol-2MU z2EHoC4AjKOqGsv@Q}1jhE>Br0L3A+K@%EHRd7^)(xZB-;fJaYpcyH;5;z{C?M9Xed z;7)6A5Hh!&{m=bVMj4`+n95AiFw>;0c5BA=WV#nidIgwCe~JVFkj|I;pak+R=|K|? ztKwgRiK8{AG}*b8IoZXReybx~0%Kq~9Fe?@$$P3#&lECCDyP=&ZJiP!9_rG(Bb{8k z`LUlby~wyod#e5&pK{_}Mv8WT5nan!gjiRJHQxb1hJ1mGb-zuo-#j?+EAQE13z4@g zRRahUaO`SKNBT%O>WKl_RSacUeG_adeOAU5>9$a}?Zek+`H$<*@;HCcf;&jG`|zjF zkHYX?qt_SLMC1(|VNg>eB!kg^p3#4uVfbJQq*wb|K+UgZ+5$59G;ucc9GViom7J@f2u@X~0pJu1^^79UE z$N8kB=_!;lQ)@(Q0C3o)vn$p%ERjhpxM#fn5=KxfY035VjD_@__A1fp?~Y|a!u-Ct z={9Ag{oSPf+qO-B=h*Ck!^)%F2gUs_m0sgBEEl1vaaKFcJdwg!B=&L2m$D)|8UiDT zs;W2f^nJ-E(n>WKxQ7H#CPmv_QXDEe%{ahYoCI3tg&ARxQQXRL>oRFBEt`u1%K176 zZ}2nvd?w?q1NkwHaVW8BSXSscM`9yBFeb=c|`*YAmX7|pppkI)x{ z)~R_e!t25jHd&VhVdFl|cIK<>bIdqMgO*=8$iy@@YWQ5h<>2)IRUFFA6~17PlOW9# z$SL@X`zcv~77!QzvYICj#Lmmbi=8ckj)-6PLHYs!URMBOD}Yx@&yJYujMt=&A&DA) zGvGL0=jT$UzAWxT>x$-&H*d9%BZf&B5}M8;*uv^4Bk)#eIUMCadt0g~4+zriGgoto zxK2kGXne%nTV(f1iMqGwIynS>3K&~s{`mH7c|iYV1#|S4|D`5*NeO*86mOmv51p&r z7iGWS_RPJ0F<|>G^6k_4fHNrOG_&%#*U^s=NwFOxk!vY!e=Z}R_dc#uvU@YTsQBwZ zT_3xDR_8&#ruE@!KXS$)^Ld)vK=<=BE1HvRa8GOVYraT0b8KG=N&y180CVnR|?gWL<-RH~Gz6oLi3Bdrh_p(dEOA8iw{} zZ{{*xc`w2ghlK4K%3Hnb(XlDnD3PbrHfW5AhL2bXWxeoR=KXLkl;4DEaqa-?>Qyx~ zS#esNW<{@uU26MyHZhFU>qmG9QT>9N$Lmcwb(@P~_^$c?mBZl^D)K?LOp8KfbY!W{r&(PQ+o|DCht( z@a~<(9&e7aGC#@;^m+?Ct$u@gu&K=6bg|$VdX6GOvmV5jZ3kmUy5r*+Sw<92&hHxg z85kH=&e8Gll{>XwF`08x7jLNFaAmwh%pX79^A4lvc>5>#ga6N+w+j{QulLLmdx=#O z0b{K)=-&*^_*5jW79>Y~#=!>Ge7OgOHW(Fcw&ld_}1#h&< zxs|z>%(zcyhCF)iH}s@njUi*b#QDnhqXc?Xtrit0XOEA@T*u}xeHIO~b{YcgtFk70!xi(8Gom#w|}KF#Zb;M+%5Q&+(| zn;jY(r(wS5A*=Uz53)m;&eB$eocF-cnJb9e{v()`?9XJ@*Zkkd!LI6i8o<4nYvEk8 zf|4{@dL4E@4VG$<1w`Qt+%df^+zg=LZ?78Jbw7`7KOZ}$^ZhEGp*To;+8(?;s=v>0 z)mBj<%mVg!*8Rg@cdGUA<>@Ys#oXPM5g8c0fI*^P?pIR!PQLE4&1}!Si3e9)e)-3a z@QZqS^>1bOPN8gcI3_#DD!NPR{0|X%DYhH@Dm6T@`Vai|-zz(XCP0i#CPh4gH!ePT zxP=R+0uJsbW^22r%s23ezRZj82C$9`h@(t~v0`u|2VFW=jW=pfkLKNo*d&|iX-~(Axu=u!C=bXgzjRkio zy!&{PsgKIPlrpU>9>Xbv8>RShp6A7?<<(Bx6^`zHovC4P(i7Ksx_G6~D*|@-97%fr-30TnY?8RNTr}*ee=tta;U5Q3k}K^^b0&u$rNtWR_0M0%qE&za_rOZyuzW= z+1|dzbTRreh~^5x^47{n$qvamc=FfhpOA4dcI2sc6;_AB`10sqq`|D8v1@_!M{~TuV`g01#yB z@r@-mc?a(#N>bg`PkWaBo{A{FV}fQ{(#S^D5kh)O!ZuOq#61}prwJU zthb;Nr~e_q{Hr9-&$)7Kji)Lsuz+k_QY+7Et740DC>4XTptP-@~0R;k<9IQg(k%el{rW9LzyKu8N(Bxz?%|LU=tigw2Ymf3*oj zX3i`YJfm3AR5w*h)q9f0yg#k(%RZMC_=E6Gjq5z;9CYVZH~*~?yZhU@{T*2@Zm+fQ zDuSVmw&AoVtWq^jGwo^V!8<)mHWW1^7nLr*S2tdeJ7v?jVk2;t8!qA~9CKXMVdKy< z5akBbOGB?NX79`E{(9ARf&Rx3dFL*eY5=CKDV5*VUN>%B8O1(Q*e}u> zPY!&HYCXRW)Gw=qToHLJQ=COL?Y5{b{2;)bo*SXh8kVR#ZcconOI=QOCIqzQPkwK< z3_rpQ&iTCC$#$LA^wDjO);5e34M^-MU@vefxV6hH6^=r#`8Px9nhGM8b zLa5aIk|Zn`j*ijDxhX&O5%;sYeUv3gPMGlQZ8C)0Yt_ye4~WlfmwCjOQ<>;-{;<@? zEzWsAKvGzCcQgGQRa#tb*%r{F%INywhNy!1rN!$wV76(Gnb#xiADbe6%F>@*YVPvL z2>-`sLd-#0wg25sa{Y9WMUP6s2WpBnMa~C}*F&sfcD*sibeul;>R#SC{ zRYUd3Q z;nFD`Vip_`$Zs>mGT%Ct)b{pnToFvs|HQCAKC92MojR{I+S*;D8ksuXD_F{J!Cx&i=cd7!Typ5V*Z^VZ1>>3fQrddUxDjLMZSbxEQ2~%V^bRH~7xU ze16_<>fDs68HU9n9QzxbivH70{tI1R*5?VL(UxKVoS8|(cC~&Ui5ap1nPo+q^FLu< z19SjP_$iw-e3hagT7HlQ(rh+@(7rKJPn}z^8{37 zAOEWF9c5$g?Ikc~0Q3`QX6yUltxY9B!s`X=CZ@*66V+u1v9J01PHO2|>B*q+oDEXG zKI4Slgqy{z?6n{|l}DX{Y^7pmSI-P+-Xei;Ah@rQR{2&K8L^$YW~A(GvU0e zZB1+7ID;=m!Ne$gM8X+QrYnnArdf}UTO)7tAWZ0y(6tLqSD)ibS-;0p;~4V#m!e&= z<#yoD+lJCG{eR9e*uy9mGER<5Vrm@@@YoWmh`WV?pKni=KT2kwegzSMWooYATt$F- z?rhX*!l|Sw3(whiIQxnFUppc8ZSs)?GiYv1M4)7`7_UGTh6+60H1gX;i;ME1f7I^H z`6rjOnhVV@!D7f8?pFth1hMI);xE;leavms+*hP7C<8^!BrWCBVkY%sh9ieI@h#%9 z0;ZnFi4m2y?Jm!E-RC9dCf4-wjMm=4Xz#wCQ`SsZ*!NDZ-(gN-La!702lJSMUPuLk zH}_R$cZ9AIu z?&QNxwI+{wN~vG0-H&M45R8$pl#zF9y$=38-{&O~lj+vN$#ON$ytTgwHHvBrgqTWVGley^feJj@ zbgaAB1whTw;^B6AgC&R07zt4GP~8c?pvjIkzA{iK-fNuMFP^F^yoVp3Zbof2-&o)l z$N!+ROrkB_LOu*rPOI7*!OHsi(tEdUgu?dj<}}uqxdla&eB|YQBoZ&QH2_u1@w9|o zZOa#^2m#w+%M7BydJBynd-IKd=V{P;nU#^{^>aXSdYG!5gTx<(@<%8iS_HF^WzrkZ z13p@ma$qYb%bi!MdL>Yx=e9TJQTg_xo~>S17Jc5>cmt%%Z$l(%`Gi{i{m=OwtKsxh z-}(2G@#w^>L+rf}ViSJ8XTz&nyPx{v)xmw(+V2_CmG6uqQ3E3&frSRNwpDCmQ4W*) zpz{mhIpYYBp=bvoP<8TmPJ~?X*fYlw2?7tM7ooDtt9^qQJiyZJ8L=%eiEXe!O28QPxJ2Ogq(BlzJzc4*Hu=p z^~yASS#*%&Xyi(KGJD6IdF*%#>1{%Z`p8H#8jL9ajTGL4VX}=2{R3)a){TAEMu^2+ zE*X(WLg2RjHcwP)Z;!8l8>W4v1oUqJIyb4aNFA5)=5S!F(Ry!%9qJxi*&9E3_nn9w z!)Zj8DS1`icu}y_Q#x)He?NdM&b{n(O=mo-6!~vX(top>vD{B0&E;+yotS^wN`F~z z{^0ea`+WES!EH?*Nsx#8f>=du^0CP`rh%Eq`_E(zN7b-j#xuQG_AYdR)aEO#O!h-KmK zY=v+<%5ggC;y1U{*0j0tzX`sng(Xgqr%Qp997~uC@OlOk;j{S0I&OncNdoam^n2=5 zyCaw&N>PV2eC14`MXoqRx!fjf(isw+dY#=%!T3rVPypW$sSN>L3G)q!Wn)?lykhNK zjf-If=f%KSa63^H?)xE&QJjo^hJ<2pVyedb?;D-g+x!x=O7|2d9RE6Q3DUwF>uOoN zahBh;;qwf>?6BXH<>JRl_e^oJn-wywrObp^>~TlyVfx#M6=$EQ25~&a3!>j%M~L;q z{oG~sRLo$~v^aT(EglTCopQ_)vvPQy{59+pxE`@}5Qm%S7>F8eVx&fD4Ol<)<19vs z-z7srmUA$J7QVp!UYU1O0ZN^VX@gGW0c{t*a6hcsk;a$h68z4ABXQ|$>AiG`ha$)_ z=Z|7D zIB|v~(kNEvtlGGt?5wsa_>%VSX|<7yRx;~4m+y{vN`AeG18n$1lk(~g8XQ~W%Rv5g z`A{{t)zxh758P}UUN}Lpx?B#E^rC!@p$V$Wf?v4RtP6Q&aZzI0`<>xDtL?ipXGv$9 zNkQpFY$Q!=T%TL~;O#f<{XChf;RUn39|M~Oa=;gLZ%wO2CvVA&$gU`E-D^Jw{O7!M zKKLRRi4>Fb*~^Nsp}oHTyV(Y*e7jU=$YJ{;f^Xt8rO>p}4hN7SQ^e5SDJ2<~&~Lz( zsU;)3yT}?$i-0Shb)N6&up1!>W{S_^MtoUqiNC~aK4j^RH4th9-^Nsa53?V^ygTQb zl`edSS|NIH^}EgGyZ4|~xoxdI2R=WHzk@pRG`Df%d;PIu$uQd<2K5|jVwZY-B}nm%y4A@aXwq1A#q+#5JE>J z2U2IAY$wr3F_{%d`3~Lk(Ap&$d|y&ZdYZb@b&zr{y4L6=^>+@9>JB2>L6q1vH49A% zw0oTwV}^DcBKGe4M0P%ln1K7fl`)&+~t|Ufq}Ht-m-F?!Qa<-Q_Mt(apq_ z=ZFYUh+E*L>8ih*-NOv!b=ekFxF(moK_X;}seR|lB(4R43{8g*S)gt%S)Rx7D=Cgg z$k-*&X5aa|^l9YNfjaHO115zZKI1Q?d-B3rnm?RxyVkyokvroRD;=utXI;rR=Is5D z6pDF?cp|;miY33Ug*n@nvzv9#Y~;|!mdh1kQ;9>p(5>S-F>`L$))`D6=KH2?2H26_ zH$P-f%Dm9kq%~S$Iq$WvtfpNla3n&z`HWbr^{;F`-#*XK1vxuOa)y;RLTa5(=)cjurs}$#yQ;kWp9LLw zLwydmoj#kIe?o2|!s~c_bCMWo!>b5!n?JT4CVYRhL+aR_!157v^Xr?c@jqv@e>H`J zjI>U5-s}f2U%o_I>sn}iR*;R8-Cj|N!(C3>akLi2jZ^~sdM-an;() zGvKc@7k@N0nW#<>KJ+i6ERjEfn0kujS0UPG6ymQ+4t@*cg}@y=*&KtY;rY4uC?C<0 zwn~EVABE6ArSkHe;t*2bZ;W5)yVkIo0AS_5)v-$o}mK-RSgQFzBHtztlECeiyx z#P_mbHUZ=x`X~uUe||lop;E2m!Fhm4d}7h$4k0IG|MO`O=KN%Rfo#QT?wYD#P;<24 zi zgL?Eoqh-R)O%8=6R`v-qgU5LsgVWG%$F3qcd*#y0S=zXHb;^$O`?ytUBR{F+jt3d; zT_(s=F0^hUp~{bDzsv=@oz~>0w%LJ_i_v~RQ%-kVWQhx{E;p(POK!%bJ=vVQMK6QM zA_pCIW>rUPQYRM_C%-e1Qb}&z4qj^my5}5)!Jp%%S^I+R-9bx7sytt1o%F8k|F(PL z>-F#PBDk;SDyd2R{zQHw$Jw&AG*=DK7$qc%+ut27BTP_CoE@n=`Ik=UuF~ zlp`I70rv_GyRnh&fyEQ}|JZ*!>hRZxvl*G?ePetk%|OEK*MHL|>-_|sbP+pQSko_I zDKF@6$)xX#_Mv~jF3FNYJRO9hf|3=93&o9Xl1vX{eXr-QduX; zF}?)9TUzPIaw+oT%vTptESMlP135Py@-Krh*>iF|x-IL@{`5go;EDox*gn<3x29cSA? z26WiUIxv&QOyCn?`u4!q^JhT4gK)L@m|fpRq1oCp&5rIPVhLPwN*~4CpzFljW6~w(jyi=Dj&z$oA`nf%?Q}cEiJa z`s~7Z^r-Kk^O^3b5p5Zn+wJ~d?4c#4ZpuVNTjr+qt!cC0vCo6;yCYq-ScZp=i0t_K zdCYc8Zw4<#wCtFaVTb9m@o-_p-tHmrSyC-|+}nc8Rr5X@NQcT`>43d1iMe-(jy-7f zq4P^ih#Hr`t@PcCH!inK9RoS+n(9De>jPSQ74)*&54v*~%_(Y18zthB1Fm*~Bo>6B zkJ}ZsrILGFX&G{VFx%Y$p~)lg5cgtu(Tcmcza@GwacnbrRpC4eY)uFOdr2Byl_$K8 zjT9Lf+3-t^y1F*s?j@2M_AFbq;t`HwS2RPR-G}4qYl^tA;`@hb@skJ~+w?Dwt=iUZ zf{rB`0LF`6QzICCjhQ@)wdtxqER#17KLC=ck?Y9l$_N*KB zrS1P&EB0(a1AyKuzLC`#;iBurj;5o4(YQX`2>fN7MLr;|T2F-JO=S zqEp72ZvcQ|DL@6T5=z^5O@?mwUJk%!E7bahTs`vj!~l{CWtU~|D0Jhx$0yLB++8}( z`Fb~rM6G&ZiwG-%2);hqswMB*OiKNs?Cdrsq^7P)SzI z&SMQ$SF#sBc423jl?aV_F}3+1gM)|tKD)*}vbO_S*D4>LIZ#J@5t#gODLH;|AuD6= zo{+C$RYHBdm5$?0TeTo_^4u-hX+7fc8y(#IL`hPdq4~|KlUGgFrgr4OEw!p>b1JI- ziP@IHrK4LDN3U8V)JWW0gUC|ZZQ@r<@Arren#)9)3fqZeVbT6>cAgi`QWTj^GxJArIdV#XMJX`O|N?|U)1ct1Ew-Otcu zJL@DS<`=RuF22l=rncgEEM4Q|9+YwJBj66j^wtv*ZMtw0Ku+oMi*vhb0LC+Z(=N#s zfc*{Me%N4sC?*(P*!;ihP^SrheJGQbSv%DwyBhB-GLmKIqW&L)2Y#|8?p38 zLYcuMYKaEA!u4PF^-kvZG?VnExAP4)wq&n&gV44(zbFwJ{)N{xhQ&Lkz^1PG^BaEI>fTEABV_*^0eca)J%+fK;6|8 zZdOV?Fb6m2lQapjouAw8QBSwa()!#{+B~SA!&4Mj&F2g59ZzIcnPeq%{IUEbD_13^ zCx<_b^S~Q2e|m{}vDRm2z+K?_Z!fzmX1}Py=RVN_%Al)X>2$EoTMR0lc110m<&o8r z^V>s=IX7R3j5ROlF`d~{#kgFOiWi4@&d0do2(8q^;TxUaRN78h`o4a@_A_n#}U}lxe;@# zZq|qOCZs{yT9Q`nKzOb^N<&0P7HnYdrORWM4c?kS&IV+1`wwNGXfwTE{*IX%!~X7V zcoB?BDtKWaqYV~sa@_% zwfH~8!tHbjM~`2>26yrgDgNL<%wY7OdvQVD?^us2H|6g{sN}G7LQxe7_;=2tLuib} z0Trn>zO<;NS2*X4a}}Gq?6rBbt4^VlQ&PI=6o2Lv#J-(pzIRrmN-ulV>)LPIfuf5u zVM#&2BvyFTb^qJ52fr(w?5;dVHBPdx1D2orU_mCdSV%V_ypo=@4CSTCE{EM(UVg&9`Eg0kdQ5n52>L7zY`2vWK^fvx&2QOW2;qDUW64)34t@ z9)Gk9)QnjP=36Q=YH z3E->~%6vH8sG1f*;w4^1ob_qUG+1O^ZIM{p{tx(jvcaD+UzLapfNUZ%!B^vi`|zPX zpPJC7nf$C0iiS&+kgc>ns7>i*##+R)f}be}V(~Z>0K!4+<8JI}ZjV!svlihC_sTfF ze43zX()r|2yZ^EvHJF<}vB`csDgT0ljYAa2D0VI5oxfsPx!{{ihavc{$sCt*8riF1 zXs0oP)SN`vnDvl@!p>8~0uOFR8nEK7!fUS(QsNmBvq50Kd9P|Vk(b}e1k5IOLE)*O z+7hv`*pDUklq4u^+@l{*P_%=g)KibC$094(xKG}DZ_aDMt5x?9OIf9TGvI=#RHayd zy39J=o>Hdx$MR<2(_|zG<--*lc4KzXJJMoGI=2eAw{xzJr+UByaHMNLA`R}V@`|m& zr>Kbg72ERJX)DB>IGZM-N;vM#SEI?$oD|L%JNdkeKYLx}+6{7%_IJ($Nb%XKu$(&g zs6Eo1QKMBg^jXu*4!w#HEqxzHLqi*)Z+y+-3)J=7W?1J&HDW8--vk5=pzV8K#JY&n z7l_M^`>69;Z)jAW`a-Kyztj4ld0XvDSaGGA(Ji|99e>!9o>{z0!#mdhB{;)6EYwk_ zg92fal9Js4jAW6dB3EyI`8v%Kh9 zd~!bR_Q@l8s5H6U%BHcy*6F*OK@n!Y%i%eXKL>f3)lDM1OcCf4*!$o8Vhzugt84z? zUlW|RBLyMOT3M&)8+0hGWyF(k7pm|qZ_DHD8CmYo1lJPOqw$qjDHANM(!NVqaD&h? zi_%oF%M3A(F-!*Bw~sx%TRQOl3k8XC;qtD+CxKy03%2XsSZ#wCCXML!I0)>y0gaDr zJDriA+?f>T%^4a=$Lsj$V%fIwS?1le*wzeQoD7hB-fy4lYzn0lM;b;EdlvwS)B-jf z`JvU+u)(t@E{NHu-TBU>4sFaJd7HNir+puhN5fXJSY?~+=f8|!0=sq^4{FgX>zVG_ z;KTIs;aIni^_piLo+CaUT_;nh5Dc0&9$Z`?-*akp;RNxRYWwnLV^OTA(2Jif9^4>1 zEPFQJc(Jijc;&a~b2jZ%X){)&Irnw^g+AnIz(^oJjA@AsJHP)-Oopg9YwTM~t^V-` zmV<{7m6`mBe#4Q$!mf$z%negJKC6Q5k8Zw>@YxhUN6D6nSuGMQ!N(7h^+Qk3uy=7y z&);E~55rg=iZo~;E(5Do*D3viM{&TOSNDY8jftTQ^t(hY-^?In2dUDWm2#u9ALi*T z=x;KD4Ov@krJ?sSP35B}|EnM(CsiBkf0Vg$A%@li3zStsywT@(nO1g%9gkY(t4FRJ zbPdU_q^*8Co&T5a=bR#;lhDYO^@vtVC}%6jdH0d>)WSBN<85Mm(){79h3#dlAFXut zHk=u~d0)VGIuH&t)Gzy|J;W^@_xrg4zaGPpTYiVZOnUk9!%!LP?ES!!g7-i9id5|E z>~IGQ+ZBb{LDxU<-*Ses|7A198KZf{L~k#!%#vg*tBphQ%|2c38Rc{&U{Zgg@Og$x z-m`YWx3r>EY{X>X56=k8Pe{F0%K)G85^%bde1mY6xJU1AZu*_EHOL&kIuTdOLX!~S z|MW=O!x2r*CrQ-$r5ohsl?#Y4;fLbf0a{Ub3EuOOr#KUQqGF(r*-B6V=+{Gl*<9!c zPG#?vGV>>qS;srs)3 zn(~YHw?03|G&6vPiP%m{q!K&6qwl9M0`sMnb{?@w`(-VnqF=xHF z><8&$eq0iOqB3i7vDdq}&x3Mt1=e?Px#BZ&ri^^0S7PDuR|}=C_JZGOmft5jmKdx> zbdk$`(-+=t5}`VA>NPwcPRyP4g%spc9zJBF&FG(%dxZOf?Az5Vs`PRb{AZO( z&=+qmUTTXuGKPV_MKs)xmB=GZg0)a(6rjYA1Vow6PhYo;sV4a7x=_^{SEg9wxNOSD z`GI@-#Uti1tP$F0*Y_nGSU00(KSy8qzfRD;Tg`X9ac*Hks*m*5Fg4f(X2$y$d#Y`a zPFK3-%CIRiN6#c&)rAi>G0_M#+U{B$(~=AZS71A7;_WsfW-G=I5S*uklhA4qCqeXG zOhpJW1|CUb%@#6b-$8b0_g{@UwtJcApsV)>OA{_P^L@l%XLFq1Bk64$$98SCju!R> zq?`UAVn9L=^4@1QnMZB8jMZq19Gac#;Xbco)1KyS)drS<-lw3Om&X3adKH4t{2D^&>TS&5&ln=t`3KZW zFE6nI0CV$_K&+K6h2Kb{i;?RXxIb|P@&vm%M1tT7sKRUo`MHo68rMX=&L!3JLPkMr zBkZ56`e(lOnOyVi)_kO@I?s0zu@{$OY8h&rPIU2AAzP)CVp&q=NY=zEWuGOjlE8j! zMrM5b5#}Jm@KFrOJ=DbH*ek5UG$wtgAs&ojL!>y3?sU_~b(9*W3H5FzQnh5i+@=@D zWQ)~U&2*MB<}gQhw4?8_&fcPi z#yUToR0b-Z0uQ_CK$XxWszBl(%#d_%Z(=VKtqv$j-R2|V{W#@#MRvE#lS=d?V}%An zmfQ=09*GS4D6Ivf1jWQ`QGwR~$WyJ6YoEb9dMi=wYS~P#b5FW!MA{hgTR>N(v;m>IWHzoIC{_ zC0F*GN$}p%#`LjZ;zk?VG#hq7k#bdd0q*YK1I|lk)lPqj+@;)>T#{{w@_-jGdDLCz z*RnUxUBGq6BIxN}(mnL0G|W@g`xuBcvKBgRX?r?F)nP3KF^~LcSEN?9mp+o(B=^Kb zbA`Vb9dO3xb@=^67xH_Bs7op)oYmx7Ww-VnRpd?sWU9bc)lR=v+}FI;MHgFme;<~c zO=u)QzqsE8mK`C-mm;#={R7#sPxHo3ygaAk-_0Yi4S%xZFnX-^?e~?qQ`7BCkI`l@ z%(|B~gRZ`(&gx~*cTcESr#1$CpW=LKr0{Rv|J_lR?NXGyB*VYL&t_qP^Cw}OledZ+ z=8!VZ%Y$KU#gpIZieTRoj+0aQadd*d@C*COAd6JEd8d?`4DL$Mw}N2WgV&+V_z&PB zom$-NY|@=ab@UlbAyv4)@$fkY06UZ~0q;5kb2B$+tbx)WCzW~(A{`wFVK|k+_d@Y) z9Z&|uE(K9Zf0f_?UsF9lsqy{UHwFUO;FP)iY(eRvzmp?G>i(MaS;C}2X#kw6*>re( zr!Snflg2u38t*NB6z(%-o7|UPM3lG`%*qX-srKJE`WhQ3!}JWlJ+G61OqazTk3Vb-wr}4JO|&%v@pE>f154Cja-W3$;hd;~ty_sU*n zq<`^zOQ6amGgxbOG^aCSL^I{_jmxaWlDmRETXcpN)uXNO)3W4_T>;O!+u1|;1x`-q zw=ZLQ{BUV;9ivICQL|EbQ`|3}JO2F8AEym|RP~aVnTQ`yWTp1GFyGZ-eSg=`IoNyQtX`HC+KeIKzvR*OICcw zTleui?1SSl%C3Bqk#ZsZX7}dLm1o&E>(C}AH8%J#BhioCj-l8b;^nWLc80R01hSh& zCu&l)6jo)1<;teD2=hzbmqW8`?Wv^w6X1ayUDqGaI|$@ApR%ivGbqT&otX2%V7o8J zBu`?~<=tUqB@s5Pw+KBSwSQpN6p5W!CO5Kw!pcNpE=BGnGSjbphb9}UudiS0JS9BI zSgmXRVa5>a2(y;|5(=$O9;aH5_MBj;FDRW(z88$_m{xN!tQXEqXWpI=EcEMSz)VDvSlH2m!yjoM%wnnfJ zc%fQs>bjv|dCDn|P#m1}r6&qhU2`~<1vj6_+pX{x#YK!!EOZ!4&q_;ncb-VamUo;N z7=znl(F+7Vn7vQZ=<xaPt6F{UHWvFS>V(Jm`Y#kBlvbsi2K%9t^ShLt%+Tg zd_e7il;8p%xx)4I`S6rq3<>tfXLT>JG_PIuvx82&BWoMTt#$A3htuMY)hkAZ6}X*F zv_(g=omQq1tsm(8LzYLUaCEQK@wY#i9`_xph1n_Yr7s2(^(@!zh@8Nu=H7esTenAn z9(HB5lL@Owja(%MhUJXY^4?y3P9L-d3HXuMGDhBU5puB@ax_W^m!8# zcr$S<$T8U`F%r2pH7%Oz_L(7^+232?c*DH-zU+>`)&1y~z_W|#S|f`?f~}fuzcUaE z@3rU%G+L-W;zl)#_Gr#KPF+NSMQyK1g$E=9`LJ_cuJ}bcv-zt&AD>3uwrS|Pm1V$F zbLi95eu9ohvG&@DgvLAfN)$3~0djFc*SHtv@ryp+b^*39u6WAP5ySc|8>>%KoXxtC zx@G7vTicL|UPmE><;5ymq-eUBhWvl_N!b4ULC#lP5kr*I1>!fni=il{+{@)){=x(4 zT7*lmnQw*bI6!xuuXGHB5m$_EKh&O&{%((kVUGU1IF+=TQzT$4sZ8X$nD6hk`gAgB zxkfQdn*_6_Kh0Il7eb@KP6Iu(C*)#0)xY8$EmO)Kn8eq<3k*oZfG$3Y;=sOYY_2Mk zFZ%c2S$w*=eMW~4Y^GgYk=;+HbxygbiTmJsPzJ#wt=O(m<)t9k&S%;oFKk-(E!yz% zG-|T^?k3VE*+C~#WWMog&rDAK`5GnFt*6Y+Vrh$FO%%Q+OUaA3 z&%4i2Fs@p7((8e#-MOgHLgJWmINAby@l}loZf7U(%fPJEg7J6NY3cVeoh* zFo27iT9ka$Qe1~QFhYq_G`A$J6BhtvF4e_br_wi9Qc8)0m&Z*dv%9t0!^x7Xzi%I2 zQw80d>79>_ChPCQ1XuS`4fb&`_l%`~#GQRgi2b?&fX{$O#43(=9ZP6BhbTJ$H%rCy zX#}2d>6Z}e5d4p#%Iy(yu(KF2{8RfBZSJGQ9+`eKv%Yt;5~^vPL9*#)KaDHHU+FHwKXRQF!w@CVzJiJ*brQJ#im{U#~0rH*O}JXsSJ)B!1=Ha}J*c7_M^f z-uuD@XjBcBFhZwhYmQK>?=L7=ojqVPKHxmu>Y|vL zwta414$YL#5XVGrD22Dq#QJBi=aOtKPpY&-m){D(FW^4l=<7iW_MgT(AZJ{BqVCdl zCGyiYU#7H8uZKOT5o{c#50sobA-pqW*_3@Rk(6!G@)<*2M_(rk;FJ@Ua?d&EsRmwa zW{ZECoe2ST%#`J66DGN#6KgnEulFu!$B>4L^X%)HZgd&#jr@k}I7W?k1L~q+uhvW1 z*$Ubb+6ST8)C|cKq6fq9H5@lTc0OZQ`SqvL4e47}`?JJj!`&^07InQr*~P^9D?blh z>uxCDaD+Grbe>T8N0SlMSZ?>oM=yg|?%Io?zto?TJ`#+mcb!8KDoaI?3b%-_`|Z$_ zij0e2+=uW>`IO)b1$|A8`Sa}sEuxTXm94N!HnBUYTv2+i=eB9OJzl3@{lSZKmqUY- zM@>$a^&7`UP6;Y`E1b~m*Y{2-;ayh5pOMf9k#_}hC3#BuC&%);Ngjq%Ucn?JDYjf+*MNo6wJL_K_M&UeZZ zV6byou)7lK_csYLs|^(nf~EsU z+>2m=kU#Sg8L}CBO`62mS5hr`TzpldR za+^nwNpH`mNc7mO)bPK#0Qn>Qcq`Kq!ZB|GDnC&_Yp#D6cO=}zAuMwfLXq;T1dp)$ zEKcT0^Qjqc;)AVT=gM}h9?(p$_2uxcmdgMmQ{b&&g~Ij@wvRMuZv|QOpM3^`sb~UYogPcrUi+IYR36wiv~zZiDQ5_mOHl zX3Z_{7v~$72Wimp4feLvKW{F3s5nKUUQX^IAZu5PgFxxPsQCS0qXRG(FhhhjRa-7@ zT%rp1D%7ewzJ7mG0J`45tMJyXdsBU8NhH$C8wGv_I;AfAkzP08w{~awwC3+r^}XGgXnlNq zkQ#^)La~_PZ*+y8#!W1@r>-eF=XvhAf5ZOmiF3}y{l4p{q32zG;ODR^^Dc3Z@!_=R z%B8dZXMxgH@mgeaJD;=d)*<1>8{2buevw_$(`U(9juU?Wd7uBS+U`)ob#Iji`nGP} zsHw%xAEuxGh%&n&4Y=BnjHHwDS|3c8?T}p`%6J%#xE#kkVt7v^sph6WQ9|k9 zWEifn&03{{dIG;6iKq0qi)K2!HO!pAo1l|31V9rMf{Jko#>bymnZ`ZH1Atlg!7O(Mg!w-7F9NEj1_^OZm@jXEy!#v7}ge?QMXWASip1+xubP3xy zk2R`PtbzsF@#65#5R5FmJQ zZE+`9u_7e|C=LaJQzW-ebyhbA+H9T zxRtuUlco-Px*Mx<33NT}(nHBnF#aoN(s*t@O)!9ufqpaO%VsEXe87+}$09kbVub=o z2Z28x{7^31=?1f@4b?{NEt`*%NtU`uydeoBvvEyLs1w3TVa_Ln5< ze#Rxc>!PsWmTOZQ+WL&&6N}TReH6WJAly%aM+uEPgK~G>s z^VXUuHIbj0_V&}K_je1y>R&&9Q1;%fWX_lWonx8S`G9#ST$7-+QSQ(S1=!$p#TIRG z0hq=|SsufWrI?Ei=X5gG7LWaGW4EgszxTwA=GQNAp63IJoxc_E>$|#d&n#>oCd^Tm zDgNBVYuF12<4*f^3OC7E(O5#M`F`eFkA1uu{3G-^sjNg*J;x&=*}Mc)5( zWmc7(lMXpQ;V(E74PNct7EBIZZ{GL3y&Tq7ob~<6t^W(Ddm%TSb6D%lGujrZ^!euZ zxm_|0roZq8-RFT0Quk%dN_jQnYF_{wO!yeRKcKc|QcBqCYBTQ;Pu`z)l;I04z!U^M z@#SWu-~Kw95tmu1FJr~a;dQi(0o;&&d3;9{`Z=^-BYv-~7H@Vji3?eHWf}UUgo_|; zM^#<0=$Ni2t)_H2N#uB`yg!KjT)y*bXm{F*)Q+yjdc?}_c-sm;w@eB{(~I5avzZxQ zj_F78t)8>+uPNtTvwi*?`CpawDOF}DKe?W(UWVRY%yRC? zdh3SVoLNee1lnX_sNn*1Lb`EQOV%9CQ}^yQ9$a z78Z2#hjoG3;#Nl5#z;w?p&@J4W33QOWijTmG!fml>q+xVCr7rIOm2_j&5YK&R(>)m`P8 zf3%@NN8|LqLvLa#q62(y1r=H4_JfT`OkJkF*+}|KB&`WaEqYuaH)}t@Tt}N8NX|0V z?Uy5%vtCZ?gy%#WZk-oDW&i)=5e1+QJ7?exAxUa}a(CGjc< z#6&~B7#!Fdx+eHDW=&UCaL#WhRfMkf)x~z1!f(IlK@GfH#6vv#=1$b(-)-Mzf12xW zzMT`$dhs(xsFO#MRaE*?=5)yjGqO?o?gHJ3(Mbwj!MYLO)fhd?I!Y)yQJjjizx-4r zD-VT)%#V6AJex51=ZB6A=AqOrQU<-`5SrU8oAVvsJe&t!r=1%5_;U$JW0`5vv=nci z4~4}$En`AkVcJne@vmE@W%0(OywGgquvu4S(O3!$CYfV-06Hj+(W;cbo%W&Q)=iFig-CGOqA zXNBbb1=qj-|BW1>vABp4dOEq~n>(+5-Q{B><|f+Y&Pn!$w?Wo(y+2*lMQtd3o=K2y zC{9ag$e2oqO}vXdT|e$Kjw{w=f;Aw3kP-ld(|#dk%hW1GLM&)@rrSJFp@$cYCNs^IOoKl!EVV#_Gysmc#YVm-hUpIsm634xUc-$k-%W9k`*IUIj;~ud5hA%pg7p7y8|z-9|p)e{Ib#B4Rf#43d(j>}T;ZGF`q8=H-*jX{o2f<>y z$4$YCQB*^slqOJnFx@r3Z_+aB|n7#jO`p@bY!khtA8Ljq#t>RnV!< z%FX+he=lQbUp|BgI5(qtqUf7S-{qw*{T01bqr#_9qPS-6HHbr{g2OGj!@vrIC>!e3 zM<&kZcaKbRU50p-e?PS$%0ufSllRIzxwsh3f8$+i>WlhT#Z>j*`DQC%KUq%vbvXui z#;L$Y&Q8M21l&8(~I*2Bu_`1>dpgaY=$o0b8 zVd^pY?b%oV%M9LCSYIxL;T@tEX=om;Pe1}qF)$Xqs`(Xi%GCU(a`C5$Ky+(^V!wOP zkEHd297WPs=&s~Zgev(0YrNvkYx#$+qxTOi=)nT8vO;QA@8Sp1pElxslKP%+K$Tlu z-+x&D2mRZncD&(n*YWI+lTBs~&a)iDZbNOebRupkA(WArwxBr!Hw9KsH7LX_1UN{;O)$k(^;7hb~awc z9sk_Kw4&piYd;Jf#bcUHqSq)2Q3^s;lo%K9gR$ebI{Sr#)-O%`^K1Elk%7aDj=-8< z=W~a~yKS9L`zO{{gDwOV{=_QB!{R*Idn;zqS_q|FO0| zL&Py!tl~;OMG3mp;%v;nX$Gz(^P4EN`ojcf7hX*EdEtZd|qBx1tWsZ>O4%Vr!O! zuIopyd;G5%??II;Pb^kp*}7trur!YBFQa8R5$I8J#_LhW zB=M|c;b%4IJXRi6awasOF0V=E)Tgjo35~6K=K*Vc+Ek)@zO}fn@VZ>CrUsTB$c^o2 zV(MJgvMl>@$D3Uw`nD2Cb6{p=4ipPg6Mfs^*G|{ZJ^d5WTQ8F5DZg8Kb?`K$Np5d2 zP^;2SNR#^lNU8M8Cm_3V3v9G3MK84s6Zix=g?}J8RDjo-9r0H9%!-fwR~wiDvq(zlSs^>*MY+o(Hu)PA~@&jbwGXF~(1 zu_C*SaYgrSY3oRd*q*HtQs^7VS<;sB;=Jz^9c&~e{Dtn&l*EpBB5ZjRL9jzfEcwEw zJCG&6%3>6t;llMXnMwJ@3tlj%H2qT4 zN!Q2HWh4QZUU4bi;zY&1v#rEF;INCW$>J78-r~mX?vC$j${Jo*55vIxgR}=y6*Mm*XJe9x$4H>`2Pht@wSclGylM)4k!Ki40&8 zUBI9nS@49^ysEP3y$ulGvSl-*n5w&pPcEMkY})_jmZse&?-j#wmQe!$PMvQguK`NGi<%#fx9|$nSn> zJ_yBzD%L~EEd9MN`?9X$@ps?*US7Xsy2bSMe%Cd69O~b_jDUvO!dy<21>|oMmUou( z&1Ny6P*3Ba^}f70jW4XX2b~DQXlKJo<^NPy&BvARkPjBpyA#sxo_(*8c(M;!Q6{J7 z=d@NxZq|D}=iE=00-1{@{iZiL!M*smQ!}edCncBuHMC&)cm%` z@h_M>is=RUMJnVY*tm1oDmc52{tY~hpk9vZo-7fZivBqrJs0GAp`|yGXY|+@(cJ40 zWOKE)Yd=9@HpZSekL)+(TaT*-zKGiHo2HMB-;)WEUN)7_oQk?^y|G`Hsne?E5MK08 ztr0?%zbKWxr?P~awH&q21@DN1lQb4wpp{l-I(kHNvP_3XV>%*APn^2`2 z{)&J9XDL$Badd;cDCO}hu2`UWeL1weOh6?`*X?H-uUErkZ^L27 zBPMILeM}USC9k4)52}6nQmNj-UVWm-<1Kp)b&VTVGHW9b`9KCwP=NH` zC|qzI^d0~j<+c84}|{)?4AES5n+XxPp8?R_I1oYT;v9_ zok!`Ll`lJNvT+TJ)3k*#r`XiP^p#GXaw(di`U2{#R$e&}!C=?eOxD}q+Hku)iy%Z( zd=?F`V3%%Md70|h3Oy>%#iYksUpuO_*exwUD9X%C z>0AO3b0$cAyT}i<8*kZNY;x}Z?*25G_CtncrNM#mS*$qW;pmw8)LxW}0&ID&1?X1( z{AYzj{(s8SZ@R08CnD!AUKm1f-R8X>Iv5=={5!4JDNfPPkHsXp>OX(|zYnd4RXLd|Rko%eUh&-Bwu6g44(1dopJ-BqIjtF09I z;1Bh@YE1KC(+8JV(I2R&!SrmEKj_`Z@J>fLr=2NEU+BdN?A5(Z{A>!Av&?V`@`GXl zOj#k^0EI%vQS3yiGQuf+4eZz0hk!-E+}mEKQoB?f`rDAj@_&v708IefkN0Kff0;ws z+N7ema9iSmiUFTHTj~^v8^m4H0>kq9MIaz`JxR%9X#z{ZqsJdez8|0n_$(c*x#RQ2g;4;a z5qouUzW zs{y}v!RbouwW)AJQUPuCxYyak9F}dN{gxZ*y@`u3=se$SO!fAISzPP-4y)Hihiz~? zOvY0ica@CoiMmN#I79h4JI)*;E|&B5txP~;R$o4bsf+Yx3cqXC2+72}IUXemRr8se zrP^yE`t7@o1A8Xyb=A1hXaz3dMUq%r;NgS9N^S5V1V=da1H?BM4+CPd2>!Pc>XY~7 z3qG;~(T;QVQ8ux4&p=lghv4MpR!>+WQ`?Z!8s2%ui_O`gYF}ZMbPrBRl^v`VNoc|> zl462!mEroicD>}a3xq_EVVk9Fuz5I(l<>r|;OR1h_XDI?M<>s4#@cl+!*ES9&-)w0 z0bzIm+>S+KFk~w-$CWq6wZdt+EtciDpRJFpCEnG=fUV<`(s<;c+@M`%w5@Kof_&ay zxT5n;MxH9Ug1C-RkX8GhOCB@>XV7XFb!X&{`TURIyl(jk&{;TZOftJT?EltsD}IM( z-^}VOi_lG-+dVRPEhVQKd^K4&iac~L*#rI=$65dt@kfo3FY3{UK9A)9v-%%b+Hs~s zg|r=17O~5yryhkuaEcK2P<`lT-WN6x5*3Q&Ea8Cp)=a=^eNTzLlI~DA{Z#m4(N=_R z(sN8aq52g_`(Hh0Ae*0!Kp{CWf&Qg@_o$cfJrz+@ypyw)8Jfs5lV0swV?8nbsQ%gs zkE264PgmZdef3!fKWqA-3p7agOVjB_Z)A}3ZOj|^*M}Hynp3XxNmqmmp=iJVI;9(% z;AJEr917ySvAh#!W(-Yo+KMJWxbGJv6j)!kK8YQ09inol@Y!N!AOH?-1OUHBJCqDn z)wL${JYpy*`NL;`Zbwg)r6&lPu5x*NQ&h0uTO~y+h-O7=Lrko=FrQ(N8aVH2C)Zo{ z^99)P9R}W~NOgZtr$|j*d_X-KcyO||w<)h+$9k0B954*o*RO*AMsVb^69m9hYznMl zN-a>D4A>PoAMve+e%;46bg+R)2lrPwSt4EkI`DtP)~QivIi<P7EVS&EcaBARRPJa(E{Gpsdd-+GF-pHDe07mgryRp9mRUdGTr2Ii{aN z#!r56sx>^|!p}Mzs>1*K4K5B_hT^kG0{2Ec(bbsaeM6VSv%}o8@BTN?o)EFO4F;L` z|8My+lI{(_Yllsm)b3YM{(UbG$y2-mhF#K@nZ(Kjg}C|UwKx=btvH!s)m^a4B)o-W z!R$Ufz!Lb2y0WrT7NAQFka-?9CYl=N_qB4$Fp5h94#34`7b9)~U+nTf$0;KaAv!uS zmcjNc#r{gj4DQ+3KzC#@uEOjofMb^& z9TV56->(%;(|q=s@?MQV9P-8<&Q`YAEA1VOc{I~y6cXb9lRC|#y!12 zKDXJ&&GGveWH^0w&9PB;VY}WLecJ1&@L1ei?B;frUXrXtOdS=M(d(`OcHZGuX@t@~c7xyiyv-k)sGa*ceTM!Z}79COd3R%uMj zD0S914idLQx}FfU5l#GO0IZFXIC>4Q70x{ykhb(Rv~r>wn3WB3st`9I;NT*ot{8z(c#<`CtoIDjQm- zdKdhY^CJYWmrtmp!6>Qb&;7_Bo12FK-QyJ9J;G~3K8QXQo}P#P#-I9CEnF@%4{KKE z@ICEy6#wNn2zS4n@gh>1E61ky2b8&2zi94_ZVKMOiyQc8T0Upo>t`C*H)gjdl)X7O zPI>l0s`lz`K{_6!%xrWH6uiVR(%CQB5ZfRVIA0xF#>|QiZLWcO6Q;qD{Ah%E{L#ZI zny;8z__(6iBFOW8D{6VDZ>kyw3BwGmzPU}JbI{rg8`}t6vt^vKruP2K#EWR8(2;&EU4~h6D z>ho)QzKTC(u$6Jgc$CP@W)oX?N3zYWua6*9mu#0xiorey=4i#LQR9EwkZ|8b7~S>H=& zW$Uo^M@zZId7}h0Nl@c97CqkQIlbBs*5$FJl(kI4%~h^!>D0>Q=tLr{A^+{&z>3y2 zUY@_CtW$$LKCkrCc9G_X7x^MUM zT`C`6C{M=8lyG{&Vv^2chos9tw|3wpIfc6<@bdq#Z3KWNv%V9b+w}Yvo5rh45b$(i zjF&kTa{&j_cannNSx z+@IP}LtVF)E?V#h6Dt=zBqcSGiKN6Q1J$Q4I?inAN_7ujx&U7R3Ypm-GVU<5{YhZf z$gtW;FHe1D-Y_1cbU7~9<&f+JiD&kXZyW^u@DXApUWzG?o;Bh~zI+L7U_rieHU0Hq zfLn#X%VWyBosUNdYCQq&{kzw9^phkN|F4pl6=zE{Rk@6tIZ!5f2i$`v=hCxYVv1k^ zdEo^m_Ak)rOY0!r5VqwMazUPNkHKHK4^Cu4&osO$lr~nKqJ1b7^ z-X@V?5(&+$_=qHeTwyVai9wh)o3VK0I`ExSFV72-yKLzkJ``%kOA*E1R`= zK<_mTC@s)ym#{W9lb8AZw6@R#yc@7N&+K%QI5 z#plHnC7QD~{q*W}h+!wktQ!YhE{|t*j5!RE&7VoU`^fF7Q3*i^OZipC!q&>Sn~H@> z7;KqX!3xn1%ntv>1c1G?o5UKRoX{Pd0 z*COe9D4Q{o#n)ecQ>K$TQczKhEKfqwpt7cQhL>UURjEJGwasDg9oH?i;**_)&7@K= zHziCjV@Yqbf1!@jIyrsac$aIwUUK#uthHSX*(lR!P{}Pj`X@j=KnTc!y*e(&X;59` zRH>K0^w!6QWV$WjY06aMsG8whd#g8AaJQOrj|xoea6L1uvuo>jN>W zPS17TU`_duM^?;lN%-nKXS6C9Eh`Y2oq>z;it>qT@-Yj&J%hRb`;A!@42RvLihvJ* zh^0MxvEm21(7SL~ssDaI#Yy+9NadZakV2{TKFj}U6aGslCUmgW<%%%#9)IaEs&E01 z2&)>WHd%{by6V_ZX-$x(U@vid|foieSfli)_gMh$Zts? zW>LFTg@u~s0DMd&g+5={nL$32`j!fl zY9&@QPGy+4vL8qyNvrc<3g4aDofPuowhwR(bs8+oqo{&K8KLfN@1Gi(kKO+R!Xh z?xd(L`5Zg}{+K1KuHdcX=l!iOXN=l2DZs0`od5f%$E(;EY!N6{!FgsDWVgbZ3m8# z&1E(EB!OSw@-_qth1k@sEjeMx*Kk*e~0B_<|W@0{`-BoR|-JZ_w&@t87(%b^UD zp_+mWgM{HCKK^)RuG>ew?``y^W zvW?XDe$xqpRN^XLuy~ZDL!f?Dj64icX$d(Pn2?QJaI^z7F%(*<62Csgd9#H@sT+vM z?5LJZaNW|DcNuaAgh= z6ZMBOY03sT4baX>MO(TFYG^@0k?vT)Dtbcn(5DYs-iSDEI3(=MI(PPIpg6(mo2CzOy~!Hc zbu2^S){keyjbcW6f90Z$VHjaZg5y~X|>Ccbm-R`hvzupN??ZfU9yFR2E$$U}h$@|U! zX;H~RII;BS?hStr9G-mqU*-SU!E(Rr%6~#hKD31Let2@3x^G0*@#oaqkP zKjZj$*NDf4OPGY^zb!+TU>2G&yC0w*L!k!#az$X{$oe$;FNgI49=%`|M*&|cu??;x zPI2OEz!soa<;FvNt^dIPOISG$K-B#k3HY@Q(>|ci#p)xDh?7vin*dSA{8K>41bf0F zJ-D&!t>~r0Bu-eBv!!!6n5T9zxXU@^_k!xh98csqR<639kSJrxb=Xmy;q&9~C!Q7- zcm^jQwQR&YljC*H4q1*9ClN`*3>VG>+JU=j&|!8L7|}l4Y5+@@397JjL^$}HHD_Dw z<0is>kkE0!=M#X@iGEiw7hlR?@iY)7=u(H5C4@w%R=_DX zQ+Gk^gn&gCk%Z%Mcc&?!!33?m^&gB)R_}Uwvg~6o>CDa~AM^(UT1j`a`#CGRtNaR+ zL^OUyPKM!0c$dwqOx@$T%KGQuK%uo#D{ZlqC$8aOoqAd3Tdp^;+K{NL^OjhOEEA3V z`b6wn!^A;)N*J=?^3U4K?P!HMtfp|x7GDYu7HSdAkLXg|8h&D5zc+7}6Pszf>zG2c zt9sskDQeF6X5;BB>Dl6opI0xE>Sv1-7#Z)}g6AGM7Q{5HP%Mpj9WzN9uM>U^hrO-{ z=wNmLE4N17PbsV2*NyC1SbKlo2cn}0dRKXs`0qC5l$eqw4{qVL@we-B&Hrcbw(Yj4 zYaY_;di}G8X!<{2{@MzO2cGJ3+>F^-Y7V^l_~rfM$vz+BCvECoOG`^eL8}8E1AW4= zOAG{kUDK4kohU7hyMJ28y-8dgir-#@f9V-jk$--k=>D5rwF@NT!G3j;LQ$=E^e+E9#ME_6v_J4T{(n+pkj2;VnghhwU=QP2RHZarN2`wcMxyts#fyy zVUT+v)iDH1XYn7dE*kRXafi2zW03RN?PXTENepY!-nyR)gtfnicavC$-pqET!tN_@ z&3sy4ejcbs;nXa(CUPe<+e>9d9?bspXrLG03UDX1{GN#;@#_I*)cc#h7iA>|c4KhI z|2CDLWEQmd(!g5p&HK7!q$<>s`PQV`%ilYX<8rdxAMM>sCwB`gnHX*Y1bH}>#H@;{r6H75v z*L|?Cjld^}=A59%Oda?vXk8oVm(LB0?koW_;nBcW&;e;SY65TgrDGS0Sb&jmsG zfO?^^ZnF|Ofz$pJ*+ajOTF$&I6QMG1JxzLvMGfej9K#oC31Px!rIp-5KM_gvk?xWH zwjHxcNbRAIF0Fl-0X|wTM!7_PkR2?OK4$+712H1R^L{7RW> zo=vhg*MGuA9jy7=x(78V-yH}wZm)LxG|tLV*i_LrKyBe22&jQVKcD;8nZtQodQ8E&_Vma7OI^Q1Ysp{~wig{|V+iniX!gYXDD13C7J* zw~^*Wj_GnnNEH0PhwH~D7#h;{Rem=JYjtZ!kfQBSVe?gIsHEDd_g>24YYPn$lNqJQ z)@pGOuO&<_wkGxy{Sz!E?717EcP3w%@_D=H)6c^L`HgWeagQ?TKI2pA%bdFy;N1iK zm37zS<>$t4`xyWdT{cvK;H-Xm@V@+`d?qPa(dUu1PyB2y;n=SUUW~4Z0zTVdGoi*k z<3yTW^;6cM0W{(SIvnm;II%4WI#*7p=EJZMfFeUR;P>HzSsn<9W%Wn8k?3_fWOjw# z__>vmZQ^xMt=#JCHt$V_tfyW6jKp1PxB^qf6j0MseC5Bi;H+u|-5F&aOF>K8ZM?2@ z&~`=|*RQc~@On7eZO+@7#9I}$t-sgJ`N@3P(> zBQ^0#d=|ec|J?AqKzun21vo+2 zC~nW$*7xGapeOTU=}#P9B_}Fm@SlI{D>tf;RFz*N{rD;a=iKI%O!;`k(ua5a5LX%Lz2kYvq$R$5h3EHB2^*$;H=e>jFG_foXT#M5-9YO#{f-i)y`fRk0O zc6umnbT;`FLl&;{ZREw@VOrzUD+$`*xopvpLvb#Ul_EXj*rjWmV8z>7$2xu=TP3-O119!(c=4^~m>5OkCW zx=)b-XOb*#%|8BV2a`p1O|Shs8QB5zAO|#)Qe4f!YG|;F@fo*YW%-{?FD0eunjyoD zdXDy^rUd}|_h40uf$B#A}?~X5f zse&{;Sn@JhhepqX%MyNdT>U`&4n^ffi&0v`X{_*WW9}2)-7EuRSH%?_(bfa?Er^_T zn#kj{v&5;gt(k?RykHRi35VjiqSfQNM9G`H(Hh;90{F*Vnzn8nOkdHb!w&srL|jmz ztTab9X1?C)QJqF+KJf(u=jZrM_^;KC%2NSX?ayxw3@2FIpEL2W@Nmv1Wa)KHq&D@w zvT{c2vHW}LYGv=NzVKXVU1pt^1_`C1gqUrC1hh-;ghM3At+cGqGW@kWGn`dAo#|Y= z%;6gv@4xu1!wLhu%g?&*`g;y~jSY zQiJv1j!9G8{kye$7@xP?DlQ3fWAZp! zdXT3O*RFBGOXoGP5AN3T)_2Kk>n$<9m&^4$|I3&YS{T-ObxyEaFLfWfk(#>|#XoZC zt<8ErrXd?kKkZ!h|F=rb%UApnaq<URF-}(2q;qFoA?wH0#$E@+Z$J7L2vH=r`SpJWYct_X^6xBg))*SKON0)CwY~Fpd z?1t>4fTYInW~2S;_^oqX?(I0210~oDT}onKYzc5?>mM;FQ%J|tTP^gfB5?n{1Y;Xq zk(3fz;tOCq#Zp5w@|52w+q;?q_`>3q9Y0~ez0wHna`$>(a=Hdlv~-klbzc<;c!_9# z^$4U6P5my=<7?*9V~T7S2{}RW=6Bd&lk1BZ+)KJ9n1id8oj|4jIw)AQCt^saf#`*l zE`rEL(iI?JhGT(+Kn?n1bq1W0WWfehdCQ3tXvQ@0y$DQSc6nq+4)Tzgps69bUw*5M zY*%~|=|d5@w^i|4jbI*KJ>gwZloC6A<1O9l%G3<#>kwu*gGAiYh)XI4f8%@?7#S}< z@UnVNZ=gK)?S9{ev2{LgFcSX5Eel88q|3FdEl<(}yzOn@;Zj-a2M`A@UffxSI8XZ{ z%hO5r16Cw+^=jmY058u(nt#;^93?X{1KR$Q(SX!GJec+JLxSlMgW3IP z@oWq!r&l5Q@_3@eKf=^&y-<1!sU7D7HiM1vnun$$3kTfEY18OdZMLK;$p|=$(?^fg zj#NH#VW7+5*kTZqYZ!?QJcrBXAsmFXrdlNQJBw6svgT^$zQ1D0yH3-`s?5q;vXE-E zN#)&6GF4C8l?2HnjhvSbZ;KCeO{rdGG0$7FG#lR*DaLxAexO6K|Z7*)>}^263S9EJ{O{^ zQl{dm2aj0I$`7~(!gZf2s(e{7IcBccqz+|lA-c3!NPs_5RLG-h;jMUz-oOMYQg1rM zbRr18v3Vb7@36Llj$@E(rE%h)yHJWA2}V>hwtd!zmk2@=4ZXKf0{qWT#(S-A92I>o zZ#$k?&~^r@+-j4kkZVY*2&ulOwz!OoAHIJ<`_J##@G>gMx#MT3mDvj!7xMA#!X3A0 zW=u-%uYgx)f|u(z3-YdF@m8Dj$3@$}n=zX~?j7QyR0`336bbM~M*JOQqhR-Qr6SKd z4<8Su-wEhz*Rb?r&L)j76m*Nfz9UBZMNnUSAQG3Tpetx^LkS;^31!9D;F@fEzMdYV zekW*!I=n4jvF@$ZJQYC{5dQp1jp@ah=(1J);nKUlD&gQwSibj1Q|=Fyq0OuHFbA#B zJ(ay}MKAvIIZ-{IGC>bqhF*(@&>tCouXY$u1eo8!S(!w!93Y>UmHM^R!Tuk>&Ik$`;&fGCK)mmb4=Dk^**iV$&%d zv({yZ_A11Wj079f=x$1$*yo`LQ@+%f-1FQcA99j=FHmOl2(6NgW>mm#4%Euqw_4aq zU0~C1SM%m8m}gvL;;oEt;Z?|sD-$$5T z)P+WQaJCIqo86^V5&gI8cTD`K;)(wsr5x%Dmrs`0boaaP8N_U)!Y;f16y(G3=l{{m z{_n4If714cLpR2DFtv9j_4^jHjI2=W)^C+)EN`4Oy+thXKmIz$6tAg>NGwU7zQ6#a zv2$(fu`MVy0GR;$j9&n2OHNC&T7qnRTqk0-w3H}7KHzOv7Uzwr^8VY!Qcf7aA~_Y|8m>~3y&$c~Mr1xheRM#w8{N&WHB3ZAzk0Zcnf5(t<)z&n_2 z09bMMV%>trY?5*`S+elUxgDs#|Iy9jS_itaSsC;nGlR$RzP*Tm5n+$v9biAl8qH|b zVqxS^4tCi#2|abozBOwUD5L`%HS#+)^5p}6Ip&dpSHM2Tvk$)Hip|(r{Lh!8ui|k_ z2O#Y@TaxC0itAV`Wi6=#yt%=MX`TSFdDid49vPC(&d2?!OK8t_ocwvzfJQz4Ry4hh zb)Onh?TnfVOQ(jLdXOXs(s1DFkk8xJR>0RX4!T(6$y7)Fi$N(6n{QBdWKAmetF!aS zCxCc8(Inj0*)wGm8tCmZkBrr4JpCt@WgQ|+^S5DKU+<(1miT5vj*-;cAvZ?hVp^uL zEaF@9A*OY})7=kR?BUq+1Sh?|&vQu4@V0A{Fletw*9&`H(yp*W<+OfVq=2f<`4lGB zs>)(>jT*@W`YN|bdZXXo*76lThm zvnRdkP1A_v_NZL19F_(RMptS&A6RR`_A9mn$hp(jEsy+r((W@HLJ87OE%53aZN6az z4%-d?xGj%6VLmyd@fn_AzTEB$)XhSP5`98t+|E4)MoOymJBNSQ)7h1jwW#wq&qnWg zt-f+=dy1&EVA+*A@BQ6F=Uih`+joz~6k(YLY&N1x4DUD2b?sjvg*&c(cP`II%pxZL zM}wGgviw{6#^Z)4h8XC)zkUg{x6)-VWQ#b0!Jh{CDwd{Gc7MKy#}5@8V5}cjVikO% z=x&TwP?0>}>l=N(7xCrjeELMU-ow8J2-bdSp^kiMVEiUEU8w>0CGI!~j}MlU{_%q! zlR1?UCi7rZI8cpI2eCl3Pbv)Ki|@BGU*l3@TzBpxJ4j6v^1>M&E7 zEz|o|Az;)w=I<(lhHTLLlfH}dN$K9))t9$NXR*EMy=>}oR#dG%@zVVl#`=8mPq~uQ z)l3+q5`ni?G_Bi5oukVhgqOAc5B zjA2HSa$lKd8$kjqoP2;l9fO!Zj#en%3YnPjVBHz-Zy@GqYBzt&bn!1n+~-No+-h>) zdj#bBmMV!Pe~_ZpYYNCf(>5Yrt|0?)6n1fN@mwG)%3{G<@dM*@`sJu2GU+=sS#eAK zh6i=7U3MT5(9GB1IB5LOB>M&aXa+BuI7$*?XpR60C6Cep*^I@f@CncUoW{6GQZt1?Co4=V7EIJjD;1P=N51oKE$5oqBGJC zPA||s_8kfj;f?6P+vOq2uK!jb6bx}d7FU0f26w+_cK6)FIsV%VFhy+fq%-t1fLtd3 zK>_yKY|&Wy&-?pdXSBo0?O|xBfLW{f^r>6yz(Xp`;9VZ^BWZ$DoJ{-1XDa~)Xe~`2^e~^o0^G%Er3lzJts> z%K-2vP)L)spE@h1rPMc|;W9L(1S738hh5FM=s_SMe?@lxTYw?p85=eIqgsg&0Q(rN z^!B~7-wMBRKj9XC{$1%@Q|zNr0AAQ=uGlp0Bg%4{g9%{{(%M8tC>}-GVoDa@wz{v7 z3>Xu)H_5X?ze4n}0k|f|P%heX@l6Fx0epEKGn^sY-xF9FP%Oy)(gG7l%_Yv45G|S_p=lj~GSf$ktcVPh^(aeMZ=A5BDiNlGXK4**eHztbc658?($LZOhO2zrhCjr7ba zpLfwN&CB+PUfSD{RAiVV7NG&e-ne(Tm7AB@pC|skM@_8k;S*8Ed0XlU9!izWS4!tr zI+Zx^LD972otr>9_Vw9ss-jxhKUzS(_0?N*Pil$QayDdwD@3-AL$nrQ^#!OyR(r*Z zUUYnD@bd-V&FC#wCTI`2jEI`0%)!^0t}$i#!#oR0Nj%dUi_>!H!~Xh<--%7^68|wK z>@7Y)CelB^ULT^H2|ii4R7%xg;{i(VcY%{5TkjBf?WZ}|`W=yOR~U-!bL zk$rawQ4+GFl*4HI*wM5%@DHdg2)Z8S__GfH9~|Sau22>+#OyVf+H8i<6eyLNQMiGNJ4y&fn0g1n8qU)R-Qr zV|Ekj`yo#BIqLd?%jp(w8ehS+DWV@Ugz&>zb=(Koj|tm=_o6VE8Ov&;$ow8PtuKC#;E0<(e%%r z{e8li#XoBI($~pkPuHG%+tDjW4#>&OP_PN#n6u(M;I6?)$76;#&0~k<>v3eg^a=;B zRFuDTk0oQ?FxuFFLO_|EdFdVg0M&D&Y^ng5xWH5zVTXgW`~w%vZo z{(F1=w?5&@O!^>#3d*(DdNgc~qim8H8AO(B~@H4{!8I z062LVOcG7Iz9rM6?AL<@4gGB2R7(*oYcAr67EJxU8X-f0Bc@p925 zm#auNaYo0{7f`{3>~VU>FN|9xTmIrt7@LR>N-0!;?`34!ik1cK>6Z;cU=tSX%X&n( z<~}C8)&#m5w5!_k13N~GuKhJa^BpQ`ef>jVf`<%txQ-YC(VOi%h7A&koGGSqaGl50 z31f*h3HQ=0HkyT=0Gzo*m+2ADqUCSgqc%bBn(%k&2qguiMzGXjjiIFtm_lUmQle-&Lx?SZWXlDSXM+&lrA#H` z2nd1KHkZ`Y5PRrG3U_yUdh=j`x4DAjtFb6v2V5fTwOhEOJ!@^62O^UQDF%?uf0~-q z>)_$Y&vfdV z9Gs==p6`xgW3t*T?4-$|NWt+@Kxc8u7 ztu8ik1++%luAFZqZxia_u@uxLxFUU1)JXnS`zcTbRksb|t>>Eg(ErlG&4fQp2#@9Z zK&#F^)dl-yMHpUYUPxUS`4YVy46Z&+`?7IffnA?fJmh$hP(9q?&rhNs{{W|MO}f?Z zNj#9!KPq6!Y*d2|QEl$T@?+QS)x6(gkp@#`wLDp2*2Hf%`hs-W;9h!@_e?5&Oa@CS z2k>$rSbXv_Q*;LJplHsIf&#rCb7Y_Iw(LmJKHHjle;nD%&n&V^zI09=oJhhPhssuZ z5vMd>fU=2KRmT8)nDePa=xj4r<1w|Q8F|Mgu{osP=wI_X#&7{tLVMRV^I6)&Cz_5= zj9@N{*=MF0+U!w+tX=_udVyr&ZHOXoY3xv(3MwvBwS_kQdzUiOWlr5*$_B%z@Gw;b zzxsuOAUk|aH_U-??2ElB*t8F?LFK^wgE6~B_^wvK`P+->YHpzz->zo0O2G?V8KNUQW zP+8V1DS=PP(}agoF1Pa8804!G`=Fh=y=ocmlkW?iZ}=Cuf263C<6x8rduI3)UBZ;h z2I_UO)al_lF2>#FB!3e*mk{cG0b45a<%R zgU$}I55C-6rl9U%cic$~1f`b866Bbc-s|J;b%2?{TF6ZtIliy}sBx2-@D5%mu*hOc zSSoRWDqbxSD9~?C(15oITPL~b*Os+`$kNiB!wLxeJ{vzARirfx=hq3Y={HVn`W`cC zl8*Nc?_SEEi-R+24jRdmv$UjIT@RDL@h% zM$_Pk#Pjfg$jwm`XZr#w2Nw9AR(wwYgWeO<|8z3B=)8;t}<`8_j zIAADZxJyqmI0x+gjq*;JfD5tsSn-aR=us>;pTBZ1cmI_8-BN~v<6FRU zD@}KyP>TW?$klMw)&evrsm4D$0*zuzjuDyWu)Ke}v05nazl!MUP61Rhvx)}Kn%548 z?k%j_i_e{ffzA9rXDt^!Lwtbvcu-Dk=zwA}at8?{i-QpKdsJmTT00*ze zGNG5~H8|nRhKCtN6m|dWp1{sv3XutRSV2AR>EY*Wx!*mM%jrh=nsioK_z|WJ`y8q? zRe}r+zR&tp&2)90j)#rg;6Q`MOR*>LP64+L#?V?*P16`xZ^@lXuJZA=+ibzb>f{_d z3$<@&>A)-|zUnO5kUBiVeubK0-uF8}WiWV;$PWo=pO_X7y{v^kZx1&0=P3bi$0g;M zzxu1UC}!P>tBf}A2CSgZYEfuSA)HIJLZ_MO)DB~-nYn0stbYm{thspXn>j10e{FzQme z*aGj*Cb3>&doAgL?o^z(m-;cFo_~XOKt7i?CN@c|+uj9TYpfRbWw9wN02T$ zodJUspj|}PUI=!`Y$aCb;r~$lXroy0_v2ry6=OBt2jJX_X3>VzCM?p|g8M;?=gM-0 z=|?TGi$~hRQ%8|JRhA~+WO>|9W5D0igoXU(Z_MM+_Dqs-hP^){hjip`zEgfhHu^=Z zIpz*Aj(>b7`T9r+3Q;)#`g$s*3a-m?cK@~5Cy{YVFjwdv@J#u^XR{Dw%Q)hn-q0Jx z=HiLsRQ#pDMdE3XsHo6aUagt#d!ArUr7UZE>^@k8XJKm{jt0{qwcr1$ie2PR6IQmf zLURjGXNUVPw>|Dbzad{y%Y$3j@)JHRIbhyJ^c;TEZ=@rC7@vhHlDi@@3%|E``nS%0 zqFB#+wNfYlN8o-b({%LnkiWK90)hWU{UZu2K^>3C6)xr>lp)`Ca2AA{gV;35YD5?tI{}6+j>j*NNZ!do1 zDG5#5D>DS10ODbC3~iDMv~r}npfB>C0L`7JB*X|ZCW2I;G%x^WfXKS#1v88fMUpP^ zb^_!g`e9ZcmnvTjVqyBf&XB6!*v z9(y*cYOnC-<)^6|iL3%vev@Z)lqswmf)-NvWjK2ApG*-#?tFOxdf4GeV2*dC6W|xP zMo2v`Kn&xA?Jy(mNidxEF=^kH3j+x)bUDl3j9u3Y?=b1-NLl?%s7g5me3x;BT^{E^ zIiR8wmo((ro^auJX$Et#HIbeNx)o~N_^gM$twnU9>)zrUq+cp2 zSb;_3lgbQFP87b(%#RaY1586r6aCTU*{m7?7OQ)*9~Dhi83Y@Oyc)D@b2aWilH`$+ zkV|?cqE_dfj&d@3HxGGv4OciyX5>k(aLLxGU7dAsu5ugc(g$|r5+!ef1<>@ENOhTY*l;ThiWPy*&J>z`N(XKC;b306P1qKZ&)#*~BR zW!*scJ85T-ZV~wU4r}(ahanlt9`s|@sc0xAuKWbBpSC#}+;BQuswZ&hmVtK9xgLw* z)vNT_dBnM4G6nOY?+x`I_TZqM-#`8nHhbo-8+p;YSSFrLcf8W}X1RA5cF}atr8W1g zP1_Mi$@)4h_QR7C8U7|_Pik;j4v2mKX^Q&VBuluPGV$OPmkx1eVk%YFgmiY-%;MY^ z#s#x@a?QEIEgXE`E+)za>F0#(HDRVZUYpH_&ESTp8?L``CCP^FA2jf<{kW_$38C#2 zyV(-7zn&!Mn)y@GlH7(3ORU&*X~9BlZEezCC2LB8A^cx;A<3?twj1G2v_zaD!T=Zk z86U@HUJ5}|TN~ZZTSh4iMHj=>lXf=y*pO-~Q!S}7@{*(^RQgmMRG@ohHRdO^681IJ zDnl8&=*Z~hnA4rNUT}DQoYw>43BV}uOHvO9rhbcmOwNnRH+~rM#gwf;kc3kCi2e5R zq4JBs`|_Vz3ii_~im1ZEF(oZ8+k36%{)Dr{H8N@4)$+XZ50jDSkB%Oi*HLC@#V%c$ z!MXB{x*6xd2GJ0Eat!ejitQjGp?tos%Cv5Ln64Sgiy=+TMVTuKZb*m|OKQrkSZI*2 za4mhR-eq2W{ENm&tL#up*dv?Mq+_TQUI%LbaoSaWQ7i~ARpSGT{-!QxGE0p&rjX@q zKZ_5RHkgw#mEp0G5!7;@6l0YL1K+Wr>F!NbEB5H~nWHCr(OEPUf4R+7u8|ejI+({~ zyF~1`q0hQ;x6eb8JdC<2l z+V(}e|N7K_;+jzVuy)P6YDKIM>NrSxbnM9SUHH!9HL1-DJHZtROvb^4%SFU`kVYo! zQADd#MXprTG>-yCo;_HdYvbD^{{pAU{gtmVV-c||6xLFLS8JZa$Y={f4x&VrXok5CSZ_wW_2+9h}?*P zY%87b4&rWYG}`VRcOe<0Pt59}aqojy+Wcm~KG=7}k3nN)=rd%cn{ZII-m;Xv25qPN z9e^;EJ^UKk^ST4vr-4)zMdmTF%7wI&eD}{ie-R+Zh(dd@9Wth?&>)G zh%RFFW1@-~u~*}5FpFl;1q&6=?8CIkO{V3_CBADW;jD-sh-JLPq^d6}3$8?n{;==w z@2)H0|HKcBSQZ1cZJtm;(r3#P(p;!OGqs=Cx!)dxh@I&k-c1g5=5g%x7miD9cj$Y3QdT;)R7Df2g=j@#h$1xU7lUlwWSq z6H9ME5oRUREEt5pr`|CC(Eh;lnpf%BM>btI>RnP8ghxHVYK0i;YbbjwLhDf^JH91*Gl?IdBQh_H`qFR*02KX zpi*igcI`^ycEsUV-5kTMp(IhbPPk)VS^InPRpO>ZwxdoHX&FO;7?qM0DGOu})M)Ll zN3(gj_S_kOpOX2)w0V~bYk)4npfpboD@mzi?U##nc8+dl|v`s)Do@m^}XmZrS3 z8SOGiH`}!Xbzz)E68QCU&WMWu)79W+<&L*x5_7fzS%BXZQ46>lqEIp?AXE~Ph*Un*t!YQ36%dwycHH0OI< z436u9euT%tJN1x#7j^0-*V_ZQ2;wW3~;?!feZu_aTq=~TF^GWIYFTS_PTh&Y;+ikEi@?xpo~jDuQS zqUH|TZf0TTv(PLmk56Q9wruK_*mYdEQR(S2TW^k|58T>KEq>%Q^+WeCGJPXK8Tn~i zIrzB}@%L#;C@J@7%i&zL4M(*ij*Xv4XD#rWO5NIKXO7~yuh5+^s}S>?@$(HM=EGb4 z+0VE0(zE}Z#5vYkuuhaS`<$URt*`&+a6T2LDz`^%R9f1PmE^V?fx`XJ=a|@no67>L zDG%)b-pBu1x4b1(zWPJeGbFpj2C|H_KU^!t3(Lqs~N2Y)BU0{%EF~*gJeY5z3D}`aV@3?nw;YzM1F=r%45wT zmLnTr4uGy*yG)-tp@tZi{4N;^A0HG0%)_;%^M*D;s}1ZVCB_5@-{7uj*Z^SwJ|&RD zw!v@2GepU)OM?=Eg_>lt&Dp}^tj{`P#m5RcM;ufJ&KBeXLyRNc<#Qd}Do5Akdz8wa zI+Me6CC5GotKUd%0-ho7!^(mo=JtXYkM4fJcz_ZsHhMKOE#dB;ZgMO{SZ6e5*+^HvBw=2b;>ovjn#seJo8qEoU| zcbfNY*yMpicT1e-V09w3eV^CF+ls99YJ+{z=DYj9E_wA;?DZ9oa*kF`yuw^`=NoyZ zJzQ~k^N*KJ+SmVe23l5`MxfvhtC_2J-p4+l*bu$T7YdI=5`{6@n{nJrMEv|QQqWx| zN%@BUX`A^k{(G7^2u6m$Mr>QEi*eD4;6_SF`>NMreM%*EcW$)<^WG#}eVT?hxf7h8 zN`-ZT`jL=m?91vht;A_-(yBVIP=*^R3MN7h#iwdzr-kb5Y4Go19@|*FkEV)8APpFC zR<7QkM2sUC%kv0msQ1f@nKd7$slv|FQaFt~+mKvU`Rn%;$nX(uTfcXF?~T<1SKQyR z9Y*)X>#;qz!4`KHKF!Ef<9DgWSodiJ9Hn_H=FQxm*Q5$;Med7Ei}Y9|e(O_#dek0{ zBxv2PI7r3>`|Kqc+@}8QEhzhNb3T6M6{CFRb<+~0h88;4VMAmH)WO9w?oP5xbqF+Vcq8 z*_+G#J5HN5FTTMazCwTOjJ}|@<>rsM?J}CP7d-x~@%%!!mXZBq|BJN0bKXhqNU3N; zzjX`W&l=f0#aXg$<8veUyw@RS(IqJONMHU!D)s&R1~bhR&`B_g*kX$+GHo}D&i8pP z&VqWBBpR!5bRF^JZgAiHuM|F!m#V2*-sXAkYU3FJgK%l>Vp`uaW2L$VH~r&3!C)>Q zr+#&P$@6Wcm7BbI%S|KNJn0We{e9luSnoD6#npw4#S!R+l=oiKX4htTyI3(rMQk5$ z)C%I-rKb@dq6|h)6J;Q0^TMa}!>w@d^b_j& zo5dwX_3MVHu|V$TQ`=3e_vB!trJm(=mntpGzsj?5&*#&kA|}_=(7f1Nke-myGSB)m z=WX6kNEQl&0xJ;?4uxb0R%+ zcA9m+93n4Y@8&sxp}uBtb<%-Ye35P&eLIx>w9@_h06I>`j#nY8(EKwcm)$joRl;3T z_y@lhg?G%=&c2=Jc=cVU3pqMjny5J9`B?=CNi@+t(I2*&y9&*^2O}6_n%~ z9nLlGO;g$*H#L0+qMoQHV;^b8$>$0PSq!vp#pP0eMsfe*yjFPj zL1eA)htH&QAe%17Z2mYN>m$WNGa0~#kwL%a`g?XpkGsS@Tn9GvOFu0Wf80LdIC8B7 zP13C2Hx~l?;i~`|;TI~9oCM3L>GBiP#B??bpwEs_Oh9*z$sTpjv6t@RV+*aXY&v!I z99l2x5<_2ehPpX@=IuEN>KRSxr&O+!f9~7E;^?)gAd`s7)05aCsu}V0c!Q$v?WgnG zi8k|f+C@c6n7Tuy@)ZAyo3?Ooya6s_HwPpO8e`28VCE6r;t(($o1Q4opl=$31VS zUn8?eunzVVNS5@%x>~9Zb9Ddh1f#8<)w^%+G>sEeK3qu_UCh#QVg2oymHC(EuCE@n z^UNM;`;e(TTY9gyuGu^$Jx$~F!7;}p-LZ4CNLCVK(I;ej*kT@G8}lVKMgpq0`_dMw zLFvFB^-|Rj_MP{fH|csc?Wjm@>0mB^mFz0#4RU1r6wl-h%wiqh;Qoz6=m zw4gd;c<^xBTK}p-9g9!tR=FgT&tN7?hd^I1YC*7yo~qH{DnsjO_e;vbI+wof+ZAGl zDt754D>Y|^H|M9(kzz6e#WXFi^{sewQxD!IYv}tH7>vYWkf9r02CrSH>>HofhkP>) zv#&lDAQZ^h?7DqJam43&pv%#=U1FY+Ye$^OP#A)W#%Fcp9tjcCGST|`78Gq!$?Xub zl2fK~WZ_<4JqMS|!pVC(Vq*pcfA_9xbjjNLf>&24-_l&x$s-?S5-@Kq1#M5v$5?)U zfn%h=QypTJDh4?wJx``r-}=wn3mgg9Jl?oZwMVlVJAzV4&GFY0bW-A0Je`!&x)M-- z9}@jD;l0OsuA&4zep|(Sg~6#>iJ#~lX_Yxfg9mtNyD`$%i(tQ>-P-;K9{%n1S}J0P z+2Jytm5sN`YITXrE~1uhYcx_H>t()H`8GIK7J0bMG+K2F={rS5JHO)ciKC<8*wm{s zK`UQx8}tl}sHjx6hpNU~*YR~HaxfDOe`Z+i4(JbicYAXs&=T^kfNv?J+j2D?WN@Pw zFfsS?-^NyK!pr3hd8_as9A51YFKL|VEMt<9xKAy3wObcJd+6WOCK>jFrZcR7ZidC} z-%tI^7>i=R&o#09JzP$BnsUh zJULt9a2eczjDA}d`N9hM;UFWiES%&4@B!)r%OLfG<0tYG!`}3{^)vv@y5MCO(~Uj{ z!7F@n(7jNi`GM69V*n_=IT-?YGpGBM(T)}p9S?Hkqq3tV=_Ob`%Bl!h7D`_9CP6$4 z1yTc(WC#^qR6!VuQS;m#i29e3OITR9-~>I2BAIX+L`)L|YjzZ2NOTuL8~yek%hro~ z>QRm>P|e-CpX7({Cphb@pjD>e`OBF&Syt*zAE_q00?$fj76YHGmmm2SK`khv&pgp* z3o;B!&M!8}qP}oc;*@Xm^aE6Tz($2fjT^uc^qSiG7av639YC%INq#^!S;Fhfjv*@6 z$B^gCo~iE#rQ4DRf@ZG4X*;z-atTPH8DCEx^CXN!JN(7H0 zi5)!w+e_w#J()e;JfqxHrD{%LC}^pTM4K~H3!q2Ee2P7y4s<>m=m_{Up#wM3fG)Da zpX;R4p{i_`6++;Kwaww!UPFNN!J>-fTs$OJyOx{1?w+q}nszuY3}Hfi7NvCQpCq4Q zUDeO}>Qh^@d+I1BbvSsmSs~w;)jhd=sGfo}eZ;*#)1a^s=WtyI%H$T__d!k8M6Al& zwImQ{M`@b)J?~Wa$44}tv?i6&F2GY|4CeblG=zQsQZEKqtJBw1=wGDV+2`8fkQ)^)9kV_+Vc zzgr8>Og|@IkE%!()cdY{ty|5>Xj8Pg65Nl@dMoS@igO?4hT~@&{{t>?rz}kntE^XS zns~_Y=^|BDz!T_c6X(+7aq>XR=;uA`W@*Db?kDmzW|RoJ1& z06fr|C$2Fu@x;N3SOjYA9cSLh#`OVHP@giDv;C=Kq$fk<>r+Yg7F!cOhmWI0q3{nu zeQg`>#ZvKAU6iG&?Ju8F1m|fV{uzn0#15|%D;AGmWea0mIaIyKR}|qnm;9c|S&4%o zslVfCVzdeFg1^htIN(s_6ON+08;>Gs1;;W%w$#!+BtL1?W-BW!y%UIBfA1k+<(+8A!(&Vvj}byRR=oB>>Hw~BhJx!w!9 z2ltevoR$;Qa(4W#UO^;Bm~X{RqK=#z5WeG!{r>XzbTpsz)E4TiOINxDMi;#ova>xW zeiM2%%h@4hT5Z7@IN#2vp2Wd`o5oFM)c+NbHFAX>2)MZP#~3Zq2##2PAGj@+2L3}T zd?LJ2qR6={n&}?dyFNdyzTMc~PjGNiy5aT;H%Hdoh=SnQ{Q!Z;wy?4Cl~&#n&$|Ek z3I2OklksBtUn+v8Tj-5`!Q4XKnpo3XY9pqb)gkou$zUd!*XF$Y2g4!h8)^h)<_;6_ zR3P9ZLW7H$i&2gW?N)h<}1) z&>T=r25{$c5dn9Ba7{Z{5I|IEi;?=960GW!Q>7ra4^~<`MuT#HgW_un|AN;88S*Ja zJRwkwSVCw?roVi=fDv?5H^oD-2m|EG6M(kcDXoqmH4y7I6BmhJk>D4(^DRyY8n2s& zY>eB&aTd>Sf$ErWnJ0vMfvH2=Kt^GUEI5)JVZhw147vfmVxKLE1zZ9m@q&C+e;#!^ zs{-T(1GJ@U_LyjpEU$g?T)tBU4e>I;1|91j;vLJl0DL906&n6C_5><4kvE;XDc) zK)){QDGtZAO@U+zVVUQhF?)jyZSc_Q`}^EGGXj|v-b<`;`)90{w*NMvuYBmGR=!!4;K`s0bfz0Kjia0htZYBZ>0jo!0+KP1zVkL+L?Vq-cT=a z2DXR)6oSepQ&xUT+foqsG$!P({V9^gEzKZXGjMN!bj{I$w|l^5u-;KR;KNiER72c7 zG7DtS+Wl^g@YfdSm;M((!7fYvu+9$QlTMyUkGXk9LF-fWXO`g3e6yY=jdnY# zCmM9{|HZle*FA4XegwbUUhJmzP3&imrh{YIo-Crz7q%}pXxh$rInOn%{uTW7;?-T} zy&tx%m+W4`j?8P~%dXBAw4^XHKaK@Dxa+h;^gfDkS=2t7R6z`oy(-TY39GF@6KE3k z12+N92zQt~j3Kxy5MY~?2UA*RJD@nP=oonQ7!OzjY_5;$#S?iv=?&aVmOI3%!IUJL zj1iCU3=PS_uJ#0F35>}k=u>8DlnSJHAC}dPL*dPM_fw^X6S=Fn*n)EtVKJJ@!L7D< zg^qZGJfFtIN1xcjESDeD%xoso;nSvNS8V~g;;?JXBdmh*@ejL&0nAUbdv?-=T!?)_ zO=JPKtPkdh8r@19%>rRBX3b|6bGoR=r8VAvnHplI{!PF}gk`~%zEcttE#hG!(8u~R z%k`UEjckA9%>9K|IhN7Be6n^w5||(Obey^$)I6>gv>>n9XNKV_gl`h>aDyzzBSW@x z^mv@s3H*p)X-nM<5XMY*x*lh$^WKj=k1|2&TL9FjK3-M8Fam0Ewvn_L{}Y9>a2^D0 zZ)>E#e-yowSSrD3VPPQ9f~!s}2aN`DFgT!d9ae<`fn5XYx&}j&0^!c@FBhF7rGcox zyc?P>(rBd@ne;C}13?-|6>dY_@0!vWJQDz0m6pD)o?A$%>E-~G$fbi!#cF?z#=X=AyFH zfE?Y}Y3w-(ALqY$d(yjC$>^~Gu6B>vbsZ>vSD$?GrNxJ@5A~!rzHv$ba>H%VkkX$Iq#1PC>n0 zLI(w@(cf@)WO-GSW|kqMAJGC1L&D0++303Yk}7^tZBQKwp0C-nhVsHSY5({ho-0NH zewndL-l@VwHNckTbC{p*jB;B1s~mr5>OV2p}XWQl?g7r|cxD~P%W*L$Z&aTpz$ z{#E?*0ei!45D0=#Tf&vT9yCkDnPX6?)ZUD#G+};O(~rnwRM4!D^irnFsL?yhK?-}5 zT~m5r8jLYe8hs z0#9XPkRN30B#j?v+*Zv-zjr5kKM{z#jRg-t&$jzVEI z(FTt&+7=0p(|Ap1{q1D-v9FEhgRc6?~eh=dPx3{;5tgex)Q=1K=%L343FSgU1W$W2ta@G==fC!d*%4q^=(35|-8 z2zF$zVF@B#!*6AIyJQWS#;ZD;>{k{0BEt-TLG&E($U$5YpJ8ft+@nt|g;;_6I3c?x zVk6bRVtnQU={VkeJxK)tF~~BM(is2dcWcd00QIntsiU;BB%a>7$emgjACHY!NvW9ED9bEc(6@P2 zB4R6AubYT(IF9|Bot@%_N;yk1cewyl$H-9-O~B9MK7;B#DY4zu*-w&;7x>+Ej7J`y z*9i4ZYgLVT3NAfxH@mD70AE-Thpd*(@|D3}<-6uVY;pKm$epJCPm)RQ!_ahIMi;ej zkDM2eH1$^>uL!};+x%1*Y!Yk!ovxi7-T?DYoblYe(M^3Y5b;WCtLU>gOcRj zsE>s#@fXJeqJ2VNw;{`F%@=6o70O)7R3pDekMZ|`{=IZ`bF9yv5rw{U<5{Ba)x6bn zFZAzcuVyRYa6|)*{RE-0|G{1z*y(eld+$17y0o+E&laR&n&C;!rdSSp_3QO>?`gLs z4&LMn|`gZyv{hdrX%)jO!PSug7(BA&@_} zPPhWsuZ_5BEU`jK#*Udy`-gpe?VDa7-$mc6zo-v-H@J>H_MY+@7OI78=@uJPt#H%5(t{IOW8nM;(fsFKE9PNR)_2~RX5jLZ zid4LXRp#oT{@}OfuFi}7T>F06UXPhQD#Q+T&%ICi93BEs;whi zo_=e zt2;(l@N_yVb9$abs?N0Mj$my1iJ6c|Qe{B?1!FBu3r;|rFH+TCn9SA@>{61;PuKE+ zn75egEjY$^5M)vN=3_lK;luW$EO<;>pP=)5!)SKovuK^;AJ?~3lT8kES&FKR_Ab|( znCKNI222G(Lz(ph+7Om(Z0`f9AKgV1;DVD4->I7lmD3)ZUi+$(dsRk%tmk_LDoC!! zL9<;}y{0PyQ^%b3^U?t~(WSa~GyC3f`-2572H7vKRnQA0jd>>i;y0hy9QC;z`QC9;7X$DP_2csiGO@c$SF^Q} zp6dlp2gzU8VQm39vCl0}sLXa+|BacKEv6B7XgW=+c0_w@FFyhETQ|3k2AGLDPA%?K zOaFgyx4)+mr<&xKlO@U~VFv}_!e=T6kSw|9(DS^R(E5)}Bcvt>r4~qpZGbYK#*U%y zz@-orh*8X&Dh5=*UXL_W>+OAF{KAY!v63hZlz|jJ20;p}^C2&nIS%L_4#0_2EXRRc z>@h+~Jpdt|XTZ5OP!33urzE9s1)u9lJs6?PC3i_^1sViaI|7#fPK*GIU_8{c_sAm1 z>`I3e=aM+k`h*YC*qG$})yGP0xZ*`ruN%-*tjmtxnM zK-!L9f{BS#;s*c}?JTG!z$G%yw9I%w8s8v+=U0g@+k+9MvgS$|i*P|r8%GM4uNnF^+~nSJeRI?HTw6czP5?8Mrf5M#*Q@f`07&RIaIqm<_jo^Hdy$F?mx zV4rW80BZ{%wBF?m%nnQwcHP}druZYM=?r*w`rN>-x{LU1#66k2KOz$A$gdb?ktAqM8>X(lKhB*e zsG{=RxBV;UgAr2VJ&P+zFDMaKUU+#O%%K&#B6x=a+X5ezVy@%KJ5SMg_NfGIACHE3 z-2wm2x6!~K6mkki3tvt;;J#qycCpGs_-($GSbh!X;n%-}?w`)KVfx=y&Cq?};Z1UL z_0ikPOFWzwtpib_YnZWTqMq*92#3gVv-vuvhbqwxC2bh=VIo!7cU_wwt7haahq$Mp zD^X_T*t(E23)v5UR0HDK4?1>(@=yM4i(GYE&We8i`%za7*rEHwCj05tp^DfoRNil+ zeO)jy34Mr%aq|RFEA-VNy%V$P1e=fsD+1u$Mj6>1E?}^Y@`plE?-@}8wJZMNlf+D# zKZF=vWr21^2eXxtwca7*%prcZ;u?>m+KTz})ses7mU;CD$YNB{!s-m1agV!vFH)Db zc$2E>f0t77G14){b)JY9({noO-cym}V0hPsv9~)+HOkd#kGEXMJLCfAD^h+X`cuBa zZ%xS?@R74m9*H_3KII0h=f(W!DpF1Z&5^H!ReCCMM=Sb}ylbe>=BYAyti`4)^O{b_ zOw!OS#+<_mdI-r2Au3I*I8H5@-_N$L-Zyz&HC;cQ5ck z+J0{Y*0uZMQ0|;r0j@ffZc6wyian)rt+$&i{A>6{a))!5<1Wv8{(EBzb0aS;(0%QW z%24~Y^lm|eX@Ntwr`8*TKJv|#=}Cc<`_eM!8m18SWqaG(b()mTf3yH4dsicQvtya4 zZ>C6JzKu_)wSv^34fDD5eHL5K<3DG?_=4w`UeVx^o#Ia~zN$J%n6^{uaFN||f%5Yd zN7!UX{t{M!Ly2D(yuIt+%PEe=6dN8! zRmICE={rdwW%EL)lpl9EqFw}HTdGA>eDNKXB3W@vRB zt>JaGi;I5lCR-)iV|5Y>T)iIk4mY)Fxg7|=Xa5fVPpJ5RuZ|}WsyZCPCAKOx_Nb-Y ztFJzPkLemLlz=5+SF4;E>E$!&3#X{^*5lSV;cw(?KHR?7ufovnicp^qQ-Q$MWHI!p zUTyki03HZGVhN%SsP?(Jg9jLdICy~O0Vxo*<-8@}JDAr9kS^jA!U!Od^<9GlqU1wV z8%L_Y2;u=f6~#Aq@6~n)uHc0Qj7I|uXmovKWVR4QJQq=77 z15yALfaqu~N431%8i6KAa2xQX!ed!(nekOtOF1yAn*u$&Ne?lqA7kgaVxdcq1s4N6qU@=gOc&4l$D#qUrbj<~IxfeSU)c1CMqzBug2` z!?S)_lFG%tY4HZ#rNPivm;5NIy+Gta+41saS76=%wDmkD`4ag8tYJkbxc|)Nu()nO zLFHgf(tEeHw)RJ0l(Kd$O=rWb%8_2pKVl#cW6)9;C`I{n$IC0IJrz|T2{ZvM5?`1>y}KB0ABO z^N6<9czngL^3aNQ)#=1+W3pQDq2ga(@BADB%wta>$`429Z1Nfk_Ikmka)wt{<@zVT zYxp{-eR=A+Bcl!0D}9W>1z0nv5S7~TEBf44qj|A_o2Hi*3-BbL&TRz^w$BWo*Pli| z^U-Vq&GvEydB_UtxKZlB1sOV+j}Gp|emFS5^;8$!jhVR}($Q zo89ilLiK0dx$~$mIV6<*QcXJ7iS1qCKZ2Itixh=kr|Q^17!O%JX17*@YsWZSa6kB_ zcPlWxV#ePjIblqtiNwMr-ae2|2rg&ax5_bVtgL6SmSLN0ds9gY&)YHlx?}G^7dmR@ zshpO5Ko<;L`Y^#|ju9O(^;tUL0Hx zF0^ZzSkr!DjXeTN1v0WXurXJf3Ov! zxIV}t;dK!E`oJjsB=i^X2O=ji|xjr5T9d0J~-IKv6w_og0$A+MuY{qsE z#omD+D@Pq3^YzZ#!FIRyv!a3ikfpPm!_Su)A82$qMLVOq3{!bEz9-!Oy_L5uVEP~W zVS)w4W1m@adyuziviJFRqQtg!ThI0$o%(6H%iM?mn}Qgc(FWaMO2ExDKqOD z&ll!VHuE^*_pKlB`L4HAEfI3~TxtTLW%miqa~}vGerW4HV_BnA6ZOD5f%%>^c6&zM z%YuDCIAuI01eAy5o^;?~E<3gP65u&Z8e$Y~;NQcL%AUM$QFwQ`>MUtN8sG$I)P7EK z`r1Yz_^Kc*0!}Od^IOZuKN2-g24Tr{)#o3X<1K=~2}xBE9WX0064;Y{P-;Xa%xvl- ztRFF}D%h3y(&5MdA?rN@;e6LF-Wj7MI?5aOM50EG(URyyFQfNP5M@XN zLG<1udMD9q7&YqX49@Jc-~Zn4d(Nk4zRri|ey;mkYyH+1AOtV2L>zzUW{K*}{HrrU z#0(y*N*HjCi_X!mc5eyrmm-J1sDh2blhl@ouoe{1p8aKx9?fdFP)`Wer}4Rn=q9=u z`@mcqNt_l<2{1XpF$H#f5LU$F?zJf+oBy5N%4;4Q)wY!}a&hm@Tnj1|l)TC0(Qk7K zL-N|6nq7Q@#h!$)%=$T|wSomMSmMa$ZSaJfEaY&Xz(R|ilfvTq6ia+*KtlB45BfT`nBib;WVztDiY;A33DN zA@9_d6C+QovCxhK$MD%mG zeaVsShKM5*D6@CfW7IXCd>qMEdR9a*=J&=n$m1`#mChG*!!8t0(*)!`IufLIv+_u2K3+S{`iq6y&NcK zN`5yDwwemlV(nq7TrOK*a2??ZINVns$hC4EEY_7i(@rwGST^GcxcfOsfDvf_JH#*$ zkyAHTsfhd3p8Ov_MY}VJ3|M&gL?}hJXa9`h;IIB$r=j%9^|7C%LTM)cR+5-p`qW39 z9~Ew)5fq?FI4G^Ba%ojk?jV$SN|%5#IC3_T&#su9h&?ExcbzHDFeRC7vKfVV-}E>~y6#o9!H{1UxAXUO_s*gSkbMI=%-i(Z!e*2;h=ZpnX*>+CUk?5{ z|AAL{UH1nxb7N>r_#yAB$eUQBrA^636-uMN9nnnI7_Cws{K+!9i7>KET~siH7S3M5 zIzOJbpqW~ub~Q)WKA4AUUp1||)R5V=5pEdOO|@V+=#xx-@o{a!krQ~@R*q zJR@@an@j}6PL0BB-m11s6iCJRSo};99Suona1nHhyeiQd-GvFeH@yV&9>A>_l z+PBkhl%95ia?O0sDw4A=&j+ zd#T%I40>=-_I%;h$MV-kXE~Jtm(kI31|B+K4ZuSn5@7=1sTk8VXBEUz{kR7^`356% zh|13LN>O5N1R|84xB_`8G69htPoWQU9~#`-bp}m0hU?(q60q+uM1s=qZz);gu)nStlY>%1@1N9HEpt=RD#OKwa0KbIR z{j)t)zZ@}5xYEm-M}M+qRbXF*MbJ!bcuFG!w!R3H-80i^iY`PWV%z({#>^p!6gN22 z6M0h@6Q@k<|A!s)LVw6keuCD%W9&}7Vp2^CprfwTKg*J zT|?fPMqV@|0M}0?-i|2$%g{lVOCWVjb)1Bm%QYhsSB>xaX!)pagUqdW>c*pX6N5Vg zT1nj9EmJXgLVFQ<=1TkICC%sjQGS^tVY%sncT9~V7-5^O-v)i@DAhK*+pD<8HkbUf zr-ZQX<#WG3P$sCOR91Lj33{?4J zVjdQP4{UVxj~u=ih_wlEJs>O22NOuP&0|;V=xi3j2#@aH5Rd+6T_ug*6d>$+56=4) z|7wT9*?XmI)38P8Bwf71zIqeXqfspD%BvdAh07G5x>C;F^Fe^YVujF2P-v7CUt>nY}A#2A;i*WSKy5b3sILxj%lU9nI)FR4L=kDsktLqrj zb-UB8?&ph@;k@0<7$9a-4rl+Las9xQ8n(fz}G|o%@ua(HLKb{q2fP zSt*zOvD$_!YGjRQJ1lmc4-*kLqjvk^LyKUbWX@lyWlO5{Un$gfm#|Yu81Pgi&EJ{F=F3MKQr-l=&Y0`8AWj?Fa&z&pAvUZBH>|6|Iy%+X84UW_Dcq%&6ri9@Uy_JId=7N?5Mw_@7rX!h7IwW=qQ@ZalfXAjk6O7TTzV-ONMuJU@EP3M&9#&9QNYV1>yo0m& z0W)6(KsC|rPSb$IJ#qY9AJW4;oFp{M9Ygi?v#GxUmbhln)jW{DwZ=)Wf6wcC>QtRv zan``O3C@a)tR>ENW#(Lmoj78e3I}hQTRE@ziZ`c`A1V`+^r7!y)DPo{ioTN_ScVEo z;cu`%#);gX|BRPS*B&Z3P;a23nP$_cd|;<2o+do|b*PTe=JcYIWIXL?D>~qa;7l*C z!y>W~C#4WBy)hd^+V@sIM9A>4?~B@&><3HvVdZke?}Iq6^kks9#i-tWPvYZ9V!)Y< zgUYqtn;(kGwHz&MZg10;X1mWryGxt?`n(u=Whs1h7@()gN`}r^6X)kYf}Pc0e3qg& zQyE+P;xqs8EY0O5D-N4d`4N;j2xv&;&@*Kq}kSr2fmL>d({q!_X2^7(p zamKkX3)ApycjF{=w{x^jg_h~c=l*qED@7pa+;6=$Kek^)w?C5ev2>WNuqNORTRfjc zpP%~{9FReI)<;C!byd#XsNfykdujjN|Nr&0VGmn$y3(~eue?duHIjcWy;t)}66F=1 zI#||FB_n0061%=`NdI$k=Vx#bYohK4`!;z?g)Vs~g(UJqc9%Y3<3=78jLnze3wlE^ z-&B-jb#Y3uam2$_nB>dYN?H|P-X3GeSN&lTvt22xFC}9=pEL3-(Uh=h_RDt<3!Znc zpc}nU);8L{T%T~a>x#W*+@|E7XJxIY(BHsk=n_UpB-*be!hXL~2P<&pQ&#dWM(WnG zc_dKHp+YQI4cw5kkLC5zTnB@heOBPO9YqTt@5(=6Z8G5;O4Ammjg1#rV?E6|im2zg z!zg&T5|185-RzdB(HFnfle4?A=>24Q4)QtX!c0)7q*x$YMseQlXB?k+h`?5_EPSd^ zM*emf*0pq-7C_$|^(seMgFOv{>GBUnCuER^q(3)PRdta>&l2`5Cq3Y1`BGj=8IvA9 z^ONf_UQ+_7Li(m(Y&KC-7x`(CK{9WqeFMG7B~Ul6=@60V(O0>i=qqv0c1b%UE(T3> z`&`ezPsQ&2?HCa0v`|!eoXj!b@3X_jru)$c&X4xK!wmJ#E*H=?`kVGVvQbhk&digN z35x6I;r=SrWJBb??V_bDPMd`=)zMY#M8PT|OUHI^PXx(Q=Qo5)P^j{g=dd0y%jCy4 ziuFEaEws?VKqfj}({)x3(nV(WR17VbcH56<7Nnf09LLQP!gp!r|7?0!MGI~1z1|Kv zj>C*{iO~UW4nckwkQIrZP6s=bPgp!dFypB4z`KQwMByzyzOdw9zAGg;p+^1lmrt_r zyhaP8+{H8xmR(N2u200@SzT@-1^BO%G zV-auKlbYs!{&Q>k_fxtJpQhaKwdUpOUjpJ2BB47aNjvn9`Q4TBhSeyS^F@!euYCGx zilmTyW8Xj5#ih?m2eJzQez>J-1@uh0JVDR(_;JSAbWs$s5f)GbC|v~$TaOKNKqiNc z?-oGXS}sdll~{)ugThx#@qS6+V3i^#0%P0?HpJ}FH+!rb3&#+MiW5J9Jbv(Pz{lMK zj0BSD-p83sB6<4G7-|bs`Td1UqK6&7f)WwY^;sy*r(T94_sbeX>jC|Z?N4Vy0xjZP z`bX*ngpv>tB@P#`5TFc|S*4fV9A`Mex5LYsn{4wo;px>NSrMTX>jSjpOT)hqNjFlF z3~q*4IW-LsDLBAT+NF5UEfU$;IF7F1XE7(>cK&| zVk%1PZ8$H=Ewd@j#VBL(i1)DjgoP8JlZr9uq*08P3lUmBc%kGdIKaNZVKh*Io zPdd%!vf}8BU}^ULo5-cW<+(f?7k#F(UBY*Z!ihAbCqVvDFogX40#9~K0I3u)q#P>c zv5A$&x}hQbw~>~%%-g>dnAwraiKP>1(tDSwkQwM5&5NPuu2~Ba?m1%1RZ&ppY88@7xKW;H5?-k`NQNDMP~ppC<*_7o4r8CDZx%~ z6DiT1%!}gs!4aPY)1$nL5|-uOpG02dj8GJ9^=l&uCB>^Ev}4muVodhGlAtHjFhR(CER7YyR~c~^DvJ-Qxcc7h50=+_ zbCmr4+~8zWv`)kyE@JK6PQrt-QRm?CDq`%%=aOX5Py}HHj_t@CAN%|3O8`EkmTwF3 zaWaHo6MiJLi&NHln^oSYy#6?6a#|}VDl1m&r~XAPkvN?3%Hma(wep9i$BtXZBMKu; z6b_y-ndOzq&t-Z{_6jUM^6msH!q8fomMνcg#xnCP-EONAq4kxMeIOfIvBnpp7X ziHB8RhgH#fw|(bZinp1#QjJVT$JCIdOPL^AU)!o3d)YvivF{5akv_ZZur-NY(qQvn z-b3qG6_K$@=y#G}7E$Xfg`I(SVR5*r4Da=shscJGOXF0y(QnZg5VT2G`;gEr@c7%z zP(xYgQq$qH2mn$KDxbVta6Zujl&h~Ob@5*($>7QZL_Ti)Y z;kM?XzkXFMwxjStl(vcFip`ih7OiOW|7#Pwvt225Y_G<+{TKzMFhlBm4?NoS@O9M& z>b(5Us*wU7OI|jHRld5CTiA=0^zH5_pLql>Fdx?dXBa(mf8{AF(^xu8kJSVc4^Btg8e0yj4V`U&Rdc=W%B*V*kef~rU3(U1e; zi#>p_K);Sr+^0Gw zN~ojIo^TF404`%vA~9k|o7d|D%*Qs9l(GT;1ZO<0Rdk=o{-`WIFm^l}M zl03RpLGFb3_w$u$PejR_d`ERUU>EmdlyQ15$b^Z5t3xDVUfHq7N*hFe|KzLw-pn(5 z{Wkx1)J1pI>Boz+Ko04iK#ZN~{KE$w&ig_5ofABOhqGZraa~Tppul{n4M1x4v}94n ze|*!olRdWWCJuwEG^*xElgaO!Fh~bzS?bSThDaM zDbc50=xKb1^w@3V6+y;GBl#Drf|)>XI0EB3cD8iE)mDG$&NZzFJYPrn506lIQ#yW z@$CzAU7Rk1ktaf<%>m9aiwCGxGsE%y{mVR1`{1+K(@HC>u8I~mZ3CaL`#j@Kv8njN z`_m=!QPlSz|9AmPdxi*RGqeUKTfk|n*KYlqAF8#r`d-Gn^M7R&=3E-*LcjT*Aj75V zjJ|g)FIPLTFp?;=bZv=h$oY1hC*4C4sljq}Mt0k=th@A?wvC63GuT(%2=YrpdU}mp z9}oYF-|Y?6WQBdfLk6!{b;w}2Zj`ztTJ;5lM=0t2q50J5^RF5y|Mp@Ul30xp-wscgUIW6?B-?m{>pQ|o&k z#2Z6(l!KE45vJR3(#@4BEFQz1FarvEuU{d^0Ln#durbq0ipm{|l$W z_1o`I@<6(z$q$H}xF>*OU?woiOC~S-6Co8;zk~Y)$&33KMb_djWDY=caWK2+s@mub zksX|#n$La!dT%y%kgnFjb2v3J^OKw45n)$#1t1q!e7=&X=2bUA5y1mICmgX>b%)VH z8A8^pnpfBo!$;p!8}UPB5b!k|adsMDJ`(?C3QMZJ*!EhfsjC5*7rbIE5`NG9!$QtT z$tf{%7x28fmLdm{3-yq~xoGaoK!}n5a)p3uyqOR0HQ=V>^a78ss-qbZ_ZE~96SPbQ z#sGs7R%L&phk*Ukwh!}J0QFOld3|tNTi{v8{6hD^1vT_rbWUub2Errv39I3CP98xU zFoK}r7xgN+`A03=WM-GbW;KgBC}LH8PFSzkqu3y9%+i?V8K9|m|6!eic`@~RSeH$N zH;q1EEF#3R+DE_HH;X?aj)oC1cU9T2B8g@<0wNMO5d-(qZLEN6RVx4uah4XF#9)?B za;b-PjpeHh*9M33Es77G*MqqO|FM!wk26XP#2+J%{?vP;sWGZeg zp7N*17&Q06wbQKCa7&dhr^QT+{fW?z0MpWv0C$td69TNvfSk5`{|`B5r7=Hn9(f^u zdG=Fcl0>7Yi$wbS3o@4`?RYr?rvkUZ&tSQsQZRZUct_zle#>zJ!|Tbdz~{3b1*Btp)BLMljElpaP)0PA0tRm$#(CEM_cna=1J7X!BD2+)Hjt6vzFKJq`Q#>mGZ$UpNY`4AdeDBH7sOsJ>q z_^3R>Ym->cCN>W2j4*~R6%M2r^YL-fR~vtI*qVJ%*4t^`yLExk{p99gjSZHIs2v43)vp zQz_F_@hZ#e@y0{GD72Bt&F!R_P(a*mpcoUXWp<^~x8a>rtD;r7{-{n`U|(Pl5wDS3Rz;HIDTKAJ~FSEDGC4D&p+ z^~x^=B|9@A=r_4HOf`9Q+3)=7I<80Q@w(Z@w*ys?AJ6Sj>~h9yNTEC1#?|Dz7i~w5 z$Ag-D)~Rn4!&6!do(q6sC$Bp7?uZWm5*-fwU3zI0~L1T7m#`_VnM2U=D$kw3YMub|{fKz0k?{k}(N_y~F@g7}kH1ob(7qs-ldF5JoOjOX*8QL8tb4Edr z*GF9X0mb};qED3z4d4O(K9YNIZ_gJ%~ZvDi281BF+~vN z(K!nk2RL;R(3JzXiKa!o#ASuoexaWEn**86h^zUwle9Pj88yM!HMU5vCiy26`Ieci z@FHjc-j0I^pYR@@3rM@x^yMI1d@e5*7ARbZ!2xEwn#`-4XQvWwXf z*J$H#En>uyr%PIOC~&RfsXPSz+PA_0{-;lYn!%aTdt~u^qwCjX)5mUKo$NRg<0ZDj zqfcPpP_lG5%`gCCx66V&la@ne+F9)v74$Ci+j8b5E)ALa_YhQlrZF5o^0wTHI&^Km z0q%O~ypUb}@O&!>k|@x>&B9V^+l^1dxmBenX2jSVWAGa|W@Mb_3dv}0<7;rB_~Bf~ z_fyM7lkwZ9*Y#Ab%wkfHHmWvFu$c@asIwexUf<605`0b7U`@D?pG)9xgeT1qI$dws z$~VYl0cNXYH@KD>6DvTL0r{HcaeKKAPxEb%k@D%~4l|tbzm8?`y>cAwN?aTCSUOo3 zxHbCC{NHsNHiIVqlW*Gt%!cTfNTf;s@br-SS-De@? z6_(zQ&nDbz(><~ePU-V9CgfYyIeH)xd9hf%x>{P0#bAG85AGA{3R_)pfa9)4`>(rN zSP8en7jz<1MI%Jl9V{RWdf1^f(th3EMb3Hk#~L_p^!dHH!QmIE2cprZE!^=5Mp3V@ z&RIRU7^$=ScMO&Zvih3Zuy$*lf-f27tK|S6;BB%@B4VTS()wU3+;odY?v8%htI3$m zI(4$LPMHS&G9LMM%nJ#OQ3c z-3kAc4fuxr=1}r7Zu3&OedD_C!!B2EId!96ufb)dnnPoM*L9qgG73)ANRCauOMI|I zao>~=tO|Ugr*E1%u4B-8>t|wt5GXsN&gTL1zVXbq7`9abdiHzIBo0!y`9iI|K zf?c5lvA9x>(Y7|)cUCpJ*)1kwB5nD8Ap-ur<-^LC{PWp0KFgJ*sIx}nK}^1uc$!3} z;vrEZ$Fj)gi4mWoN9r$B;8n@wM%qX8%mAxp#;Dztc!tT1)+LXBLrKZKJ%z>Fs&mpRF)Uf|(@#gk|e~;c)^7Eh|CyeZfzG z4}jQ?0swOdu`QM{ULmbFif7fhDGpCX=hNGNF4PA9ZwpSacg+V>Ig<6-_1B&drM z2|{gda3lquvX%m?|2pjK(-E>3c0csC@qred^BZ$`#XmpA8e|uClAp(f%N;U__#o}K zYxf298tttv$jGN~5H{P|nT=qX5}nFQVVoENh3)uKjP^B+#m+e2qHstLF=3r~V2iDW z7cRkSwm908)Lvs*l7KgfaTBR zvY&dd9xv-Ss*)qg<`$n9Zp1cPYxqvG$Klbq#><|Dr&zItLl)}^31iA(LBwP}0F(fK z!>HrT*s3~{mR9|HALAO=r{=i!*<_y04r8Azt+J?O6Ax{wgr;Q^cCk{&$s*M3Z}zWdYPqxp_u7XQDrkVE5N z9fHlfFRhu~oGw|At;Iw1m0H78af<@tWer_k#Uzo7ai18EvS*%mGYTg!C}({-`t;>@ zf-4HoLSHhr;iUsR^T?O2E~`Efaoi$f&a*Uvh~U5DapC|s1`o~jDP718uSDd0*W#+r zQE7vKt5T)l=M)1|7E5Zfs8A*bp#TbS)E-xCgt4w24}MyELQV8P^*;9oEj-F_ zJJ-Q~=0QG<5=|F{$lqvUw8kENbS&els~7d>ROhH4r;7f<<--J-j0a0pUioxJBZ)_L z4k&bUmKtLT$tA#V#!22?GD1AT82932xS+=%QY|{T!5XfZlv)gFg0JYxeHL|z3|wcX z*8-0p-35@s~a<-!~FCt`+!bGi`RC_0a(o-9Pw`z{^$nnL)= zN@t*Ha^rlI)I-6sGLCR6FHxJ6FMZeBAnQ)e;;{bgnLNGYhxC%+jAn721c~S5hbTyf z2Lsui2+|J6f-;%}oEo5gV3!Q8Xgc0d4sV@1H+X#(>q7*W&L0UuDX#}n-eAGwQ+pnd)gGF6Ya&# zjhU&ru^G4M=BT#Il*(U7-)qz&D7+Zb#)?*Iv}7(E7;y|Z=w1&nx!!h}7ura9t~Jan zE2}uL=LVw(B{X-AK3T*R{Z~kwm)4xQvyGs0j)tI>q3e>0IMW>}vX~|T!oSPh!l7SlA zMWq2_RE2m68#s*E6|Ox%n3W-c=#X@wo(@oh*N4-O#sZB3YVZz03qbzB0U~dZ9d6j> zh+QsHO-Gfz`1yKbSceHNrG3d1-UD1p9M9tjf)ys{Xf;3%4cy~@G~;|fgCV)fd|BGr-*nKS+WBDcs1GR+;K$A@Yd-P+t2BXYDrbH>lmWXtd~_5 z^33XyF>isLRzErw@+58Y65{&$dknpzg{<)aRi8wcHsQYW9?t~(u$bHCD)!eVTMr+u zY0m#L`)*tRq-P5)$#j%_opYc4Gal=j_<8JN%NyF`4t6!Y)@Ccs8s|=jqqad0Vx}p$ zE4MolrAex|d%!GP@}Sq|o%7`kr#!JyrHihl8v#U3!kzom%e=@@v|uQG#OyOdh_Zlkx1?CGpy?6ytrE_jCzpCA|fn4IhM*u_O{#4 z`&26vlHA-!)b-24ZOwi3?nJQ8W7b%S>!_{e(KF8+PPvy!#;`c9j~@>r{I*s06~wO& zOEGEo-D8bB&wT8PMUJ-KP;d_h>trMop~fRDd`0@5t5=i1h;M&mwrb?!eT$ug#nE8# zWQhwTsXGI8V~n#+>SOo5cXJVM(JvcI{ohSCI{czyM>58+jNd~h)*s1v;WW-t>*ZC6 z_>^wD@ULxv(VkLQe}Y(-nB)Y+;oGB(P)18|)vrY4cB<@2=t_^jo3-ZK;^YB zYLJ%+u^MeeTWQ0sLS)6M^UYx0^)b6b7qg8wE^=$d=^ZNHU84pc?iWz#2a)KcA?VqlUlOY^w?$TnGF6j=1k1Kl2W}hr<4aU)5&` zQ^r@1M`_FBzL?Jj8>i|tiu7~^)F3A}edT7eR2*Eh1AI@ZXg~ffyR>Wk1Jg=jQ@2T# z4-QXpPA>Sky;gr0^@fb!E5GH>)iFNiJGOIVZ$~SDs_x2Zs}lMGWSw5B%$z_qrO zBG*A9Qm-4)9Sf}2tKInI#brc^_p`bDxP&q2VnH18I{V|{NHazeLS@Pie6C`b^e1JMAG%oSqgk3WQ#p-Ii@ zZ1L%o7(oj-Z9r>)NLrLK0tPz(E*tw#%RwI`U^~WVfU|(VOL$c~%|X7L2)Sm9e%uQ@ z)DA;Ou`Iw`j{_}uNNVu6&7Jb3r1`ymx8UpMVqH$q3&<>kd5+DVh4MQb4jd>j2w`Vl zK%}ZE2i0#97GEie(jzkUq*g!*}16uL$qHl+b9}_aR4d&Px##_$P-M$|ZT!FOW z48?*BvG-|m1A_`tNWAiCi!xI*4`B#qlGKHWqUT3%jYQ}$mr^qZaqv220IqbIUwKS& zF2MS2%KT5iZhVO$Gqf&LV5KeE-dae=>UV{~!e@!mhw*rn=!V|3_q9#yY=w9IxVz#I z+B?6#ppM)k!Z*9SR)6jp3VFPo?oL(C^GQV~&|Jz~v;Q8izqFG_*!RCn3^i_hC8MtA z-@B>1GH~Cur?)U>y!s02FbLO}A$(i9|KuQ6S=P0`+wl@{i%w@d-$rjp=DlxT@3)o@ z8QwM35A9e5pwqjnFeAc9-*Ob=bo@K~t4e?xm(=NT$g||Zk`Zqo$-7ZG9dErMKH0xW zhOP?xV*d{o@!- zkeb%DhsG5dSVX;WVV3-AtYZ4!chyraI&+rynYjy~QL5SU)Vhn;>)y?P4+>!kZDRZ4 zvy`ZqRNXVmMP{Mh-P!STEYuwxw|LHqC~FZizoZDQ@)Kh$vF}eS(+mQ;x4XL~K}fHRy`KUX2>01V6_%^VCnFg$52zTXF21Nc@WXzQvJ9>%UUHP;3+6fAb~yMFn|3fqcv^m_Z1*6q zmk|mN?`5r(+@Dy#j=t@G4-wpX%<3(w($>r3@+$v;{@_rU_H%}>_VqMo_?if_chqZ> zhJ-vWv169WXKXqDR}Tp`-W}jE5I)G`!&Lt@zpyTXC7EH*;*Z2`DMB&;D<{^Z)ec!X7s46qgJ< zmsr%H5iornC%67}UD@$=?f#Tv8-=j(X+xbu8YfgR@CmE4tP9+dh3CGiEv+OD;TX9* zjwgu$sELip%IYyTknmvZUI@q?rvZ4>VYb4yN|;OOL`1HX54=CU#yo{b{x%O_o6*5w zxTm1`lI#+@k$AzugUgF08jz-4LOXvI-p@oUf`;2&4T$5O`v$l#adLnKg3=Lz`zR=L ziBcH}uwY*Jz%LrKi|bS%H)>h?ccF;MY$PSS`&? zie~t_p`E=8BxN%aTR(-2?Knp0nnTCw5Sl02|}1$EOi1quENOeF_6CN1)_(-F0Q zW`LzuA;l4u03Y!wGI9o<=(yQs&DL^if6sNzB!um@TM+6ENrJsGNU31$ zf^B{$?tEZDmBBxB2y|y}4kaHgHV2$&25};?1b4JWgB8zJV^8dDTD-c;WBR2#T-L_R zY=*g`g?t~y7u7@rd-fEP-*`*(j96FwD)C5Y0-WqB+F17Om|y*o@ZyiDoL*CrVh6v> z>n3y^u-Ttpd+z<&WDS-hYFafW5FpVzL;`60;(&gn=90-!d-bE~!T~t-e%gu+DreX@ zBI{l~lUM%AJ$`dWd-AE@RA}TMzb+-|8G-$=>UTtf%i3;*3LzdBVc0jT6VPmx8iIQs z%M(xZrWalimTkO|G(dU7r>l`8)7bLoyQ5HH)=gg3a_*(oansVKQg_AK^uGs$f1&EI zC+hW7N60;@0e^xae&p4{U)b0^#GXs*uas&p({n4 zah5Jgw|t$>!Va0JZ7guh+1y~jxw;U;en$~CppAlAJflX~7kulzjoku|Cn%2?@ri=24%#P`qF*uU)SN4X$t_OixObi{aT!Us(EUypqB2^%(l&L86&dl8ch8kh_heG;v#9xrbEt zeZ75&)E{FV^GFQ9*JytfpZ|uTztd0(YsZlZLzfOxy&W8ogu9;Va{s32@mHxQCTwqy z7#dlwt7993vN+G#-X}fUP9Cig4G07FeRGK$Xl@1D6foFx-b*lJ=bm`Qx%xpeYqL+C z^yV0Rj*3d%EeJXeyU@5pON{n?z2ICHZ~t4F*^HaV`ynND!H?Tkt63cHZSbyJnv#b5 zVReA2!PTT(R^CV?MPMR_7hk-f7%9?A{8@tAbGhPozo^Z$fw3~a2`oiU!!&{+2HwL1 zD<>rSiN7F?QhgO0-__Se&wjNph_(C7Aj^-I%Z;y=(33)@uN>MBj;bt|N<}PY5~@Z? zT~hK-9sjP}lwWC`~TskcoaGq}Q?s&ZX;lyiwC|E0?C(n^W*zV}l z*Yy-3Qhv!PHQW8Ivfn-bAUOVqhamS$$*}K(t*wt`GCDX6~HT2UKhgLVOOsf+yoO{ zVZa}(Y6pGKn$0THz70L##`hwY< z5Eu6;4sk8niYuo!eqvWc(u`tHlc>8L51&LAoj?fdJ0Nc00>I}AU@YZ7-T?dxFzZDF z^=#Z>RDf^WjJ8C+XT&c_UoaHCO_VnRxJ3iK_`hN|30vN{oil*hT6^D^kmnb`1GpM?wZM7Te${G z=F&HyGXYgVVBkCrZw$=G-4vuPU|Rt+VJDs7W2tTUSwRI;ZqLEnh;t@hE%3yDtj_HI z>@aH>>tJ4EriHdH2hRBR8N8pYAgQcSELYW~;WFOEC$4+cDU`60P`MTBc*L-BymR`e zzNhh>3C7X1!i)K9vArexjbYJa&ApBBWXm&|YpfS{UF*a$54sGvP}?!0MSCqPAnJw) zn%Lx8s|`6hq?++UP z0Ge}t-V2TS;_1uf)sScmFO7k*Bu>H-#a3Tun4P)}b`fzhw<@u#D6xO^e)&1VPh^6q z^%Ize;Iid<>DVtp305^mG;dhZe;=Rb{_LDWB*ggYd$epO{OA!M5$mI*aZJ9=@*67d z=e*^h$sSDL*5HyML`hQKZi0bkr1TnDz79%&?PSM)q@x@=a%_ zX9E-gkwoi}7H=961M;BGHVO#jepwC6_J%O~x}PVrapNQ#Ly7HW&(Gq&L8h&d9#V1YfavghAx}5Gut80(`}SkuN0nrkF27<&Q47yLD~Pz1>-~Mb zY=57gnE`PE7fta6^kai~>^(g3aGT1u<$f(w^dTsO`(|SUJUUKo77Vle;97O8c*%pK z)y<(2j>*CHY$~n&vP=OtU@Ne$(&A?rd-vV=&->tn6lDoG{Xg;NU@?OO<{L`P??24| zWs?^flg%ts-ya9d{eJgByx;?F`w>_%+=bs|aCC*ZOnO5_^S09jtnW7dYB53VksHyd zupV{7B~gF~Sqy=pR-7#&bUnk%7C5vKAe)$2cJx=?EE37C{35ljYZ^9OI=m zDqI&y7*ph&IXqwCw%gtEx60mor4jJ z8MU2$MSpF!PCaU^9vI7EvpQf(r#m|rx^==DsPu$)CFxabI)V>m64;wZWu5Up%)f3yU2xB8W9~!X$@xjhQn$%Zj zXT>hR|BjTbKoTBylm(5qYT;Mn9N`_}H-J)bxOJ&PXTT;sN8*Xl#bqc2u#oMlKKtVH zcMfep1u!4+6q-+zuscJ{$~LC0D}<Hy@>b6-T*a7vJL>PJuMM@TW zXI^8FLK#2fLY4J~;LrHkS$|gMK`zt$XQzFOZ(F%kqfj14w7q9zt=-VNdR6CRDlD!^ zW7Ryh6|D2HITX)TI{tNKLcS~!fuZhb&_h3;IL*Mb4Z->GOl1M0r)6I}V&P`~J4J~k zM<$7^5W{z0afm)FYBTSyUG48Coa&?sk`p%Hf3G#m*~SC#y|RY;ZD=>T{Y;yQg7g&c zp6OgrWDLDp4t0aeJDnW9)SL@=DR~{gWO#d)L^SxNdNYl>6`P5zy<4ii{of|R+k=Ni zT^0WiU+*2w_W!q!n?-FZp|%*cS8LR+)tXhcYQ)ysqgJgLRm9#~QPrYq)ZRqIrnF*f zY>g2!2!7u8{kcD%`+R@j^Zh3$C+BtYNAft2*Y&(!*C2Gtyww4;y0UcntEkb=$PzqX zGDy0gMV=lb+rKYTo5rX!W|tO=9TpGpRYiP$k+`!LXuKfQsQH7Y3uGDCW$da^_ngut z09Fxd!mp+Gypq@-#w=bs^u)(R-O9m7Z9{YJ$xd<>S4_;`^#WUWH&D{oib{dZfFDcd ziz#KT@;ri+!|G`?prwq}K?PV(jG*n?K$_G9tf?NS;yq^GXT-A_)dGoXytMStsclUq zDHG17nDF;)iqd|y)2O`HXpVTIF)+DJUs z0T(!Jy-|1=JboW!$t-DJ0dsY=PhB0{W-0yfx?D+IrYo5`ZomIHXLY!i-Q0M{CQaL{ zUJ>PSp03NEC#Almp?{&OLHA(_oVt6w*_oYRxW+0K9Xm=JCqGV&{BC@`Bc-rTn@#Et z&-s;f{^DD;>(Lmzb5!Z@T}$Pr4Zw^zZh5$C?Wt4-)-v=C{RD4U8i>(w@wH>xGlzDLv9YMP#?ci{^GSgaiB_PxMPNMK!->Sy~jwPo|# ztbJ(^H;-GN(#u`c*#X)0OR`W)U*}eP@}qj=k+k_fs#aX?I2WX%q+fdN>09M6`xnos zy^{AazIWEC(L?2fnRzpa+>BzMQcC6vJ|G_n7~#BG!xqRfzv;j>6^rTS--@SvxsRIJ zsBcl(bIwaClmBHS^~Nw`$rbPLD&nDrh+j%yA3u_AR@+ekZ6m_t=?B#^Cl1s=H@BPk=T$iCP+;CU=IXN&Rs~z`f9qlvr zt(y;zI@?j2_h4Sn7T8U*1!eS^v%56>U+P$&--k^rpTi!K=62h7-^b?FCXPyUF|I5?nxH=Duj^6KqPW6LYO`wuRFM zS>QQI1dS=&m`5Q%qI5!K+T^5&*Kp~-Nz)~ciQJ6D+ zA5Vs1nVGlqmg@}^qJ2$iaL5m%hgbx+Z*^D2xB1BQN)P@?*OG9@ z>aG8}EHI|Zuh}Jm@>Zk{6bQs>BP#JLI7u{NmMN;urIh5z?wfiyrQhc#yZWV}88bzPr=1Zw_#3pPu zhSe-XQ2OodE^oDUy*kY@wE9YI54?ertbsm-TlEwX)@f7fFn@p1Tj|<<4ckFZk|vnMWd{>SMb*qhg8fpG>t!mNt&HP zT`y=wCVS(L)4}BwtDp#|pwfd1Fo4TcoyCCbzo2f?jTrr@tQ&q;I0X zmyjQ)^xA}3Muk+5)ZTs_ILBZPEl5xo;T;$h7+@zw9x-r9iI42l#i z-TTM?{xwa|spv%V{6Ut! za_sza-|~&3_myvLi?NKS)a6#UNMV)O{L14M{eRO_|Gci`JgjlP+VMs|`hNdl@)CTI zcnHrS++Qa&e<|+z`;c#_vg?$D@V*A*AZ?$wX;G`tX)6H&%Nc>IoQ!u-ktNZzF zB@RQ)-59lzC%pIv_{)&D-Fh6J#speVC?kk#m`G#35Im??y;nmst{UZU9F|RzeQs4&|Qh}R<-?O>rW@S+4^Y1fEi%)}ms_OFSbeDcF2AI0~$A6J#^WWMf*v)JwDFqM5x9SDMBj~I8UrEM zF2xa)!tjGxHNOZ}DFGCGBk|$}7KBBAl58=N~9oD)wW=@)A`ipx;KknR2z z1ip4=xD)l1+#J+bK3dyK82m(t6z>@S>Y^&DSKMp4gyQ2ha`B0D@L6@B_%cncbD81* z`j(-cAXF|=+Q5{Y2`8Q_dcPL34}jA);G&A^p0No>;9jTjC%qih!h`q1Az?<0$V~aS zD&;50k-Z0OZ6~v%CE1lA)kZ`{4VvxiT|Ohpgh@MH&#*K7!HK=u>`ytNTvHn-oBw`6>q}tUhYicsKPSIJ^*sY}xL0jF(qr#b{LL zYW5AY!+ssoW8};O0QgUxE*J)&;r&aB%Wf}`Fog@?Wqtjq`CDCH*!^1fjSjSXe3B4l z!C=T*96HH9P4?Dnft{t>7OYer{=2PMnRUK+hml+93PDd*FzwbkOCz;ncv~ZpH`EU5 z@=7XPqm>FB{EO5zKOr3-Rk=Ru8r474YN>072he1|j&b!U^1p-wD?o2hOGl>-Kx(lj zZO8ghEi@Jou@TD|toB|YkbsNb`=cUG571I6AJK_?4nE|U6?nqjR;$fss5O54 z1h88JEUIR1zv$5uxb`zz!yb-!o#A_sq3kZD$2SgRB}1sD_a6P-KUX3k#jOvbT75{`*kG&1qs35CN;yW2X1rQQzQ!z&&nA|i5k zGU8X}!lQ$@;^5ZeJ$vr&I7AhG-F>dD&GbW7*>IeYFFgB}WiWm*Pp=3W`@yrTI)1X&JjB0J24L$q#CwSM_nlkT}kKo$8H;~b%rpj)iz3^?x3vQ*GCtoU8yi5#w zd|Jfd9%x(2c(2Sqt?+H!O`Z*bD7B;r&yJzU*~P#kc6C1q%?a9XRRAab zNr=9r(MM337Q$t&n3e&Lr0jckKai2_j_$i{hRM5#lz{_N*z;{&V$!SRMVwbr=vH4g zR>4fzF#z66dQiA@Ue?ci^lUyRu5j}#=G8{)K19Bxk?pEQ9&l%i4@gRb!GhVKL**ln zT7SALZ1`F3k z%nP0^`3M$#@;^_}@fMsSn%ybXF-3J;H8K|YvDu)`A7ps6%Z~JcjNTuxdLx2t^xz;3 zoPfJ(_aJDeULa}pa*bf_-pyb0U#M4RO`xBMatm8I@nX}t%R_we&q0T;yx5swH%pI1 zZp*mV)og8Q%djs;L_{0JpU4XWKLfp*ScqZ=W~wcy@imlMFtAN;0ZbiI+U`}z z@Fq>MtKY}+5ibFJS2fsmgBAv^c$l&9!2;bAicaUQYc+840k2z0Wo%9su#^nRwAbSk zEWr^xYfFdCRo<3K*`j~wy&L5=;QO|&L^4?xkZ-doXtT+|{WajFQ-gG41~4tF>LQ(R z5D5FT^amK6N{RRaRs!8mso&7G>r%&jESj#a{i>*0kZ;M*MbXEn(4G zO`G!oNI(+`@l*yws>Z|5yWKx77m~7;60{T55R!+##j}S5E)hx*oZ+1-%cy~@i^&;H z{LSax+I=9~5SwoHkH4-$*rtna-{>~Oy-?)n^>cm@kYw!O!xkwbhKBW$V+NdVZXce0jR^wRYjCli1 z+G;qSZqmjLA0xWL!N`bB~FTzHgD<$gycc;vFS z8c-$|Sh)6_AvZp~@e&2{AtQyJy1qrr6gvF1g-X0_1 zS==C?%L(D*z-<>*pKH>oEjrO3!ELpz0L56yx$BZl^mcyJjhQTlTJiZQ>%*=pvxW+J zkK0_Zj?=$RS(=$+6#}yR2g`z+N;krCzuC{Fa{mKBmOtKM;XLm#SCabJ?@<)$nW)cubZAY1-fu)s2%K4?Bhu0K5ycN%C#%6HLpKJfXT_(!CPj>etZ zO62$GpgirCKt0$vLKgMZsK%p!S#|*0n*CxS9+{>|occ^&L^N$Yjz7T&CoprE)2`Ys zsMP#-5J3%#x=^!EG5<-D)9yqcng7H>#3Zc}0fxmPxC;52kc&!L%}f~LZQ`#Yv5yXQ zKQ$#-mMvGo(VdL1z;6?YKA773L5rE>vo zb6ApfD#|$DOs3Tix6}>gR#= zwIDc9@^@i@nB)sXwNcAFzqde377nq$X76#1&+M#8?6M}__{Y%uwVM37i7_HGsYin) zE0)5+9l<$hRcSihB%Lmy`>Q(RPZmyhEF+`fJP-72P`ZJaQ~>0EX(p~a6comW}b%6BlRdv`x4HPltEHo2@)L*gh>aAvtG<1x8taX zF@GRnj2%$DTo*oUHj}EY`0q4DYu1O zP-ZDr+Wl3kX(QA3M3bTEmF3WQ;oT5+rG|7bOLgaFSa8Nv>psZsz{n>`xSg6LrL>p4 zuHo@&9EAdsH_4iY+ z8fw5-qMkve|3Vkm=D+@_!C|wyFb!Os8D|oU?vgz(IZWN=bFW-=_Wu8=#&Yjt`%6fM z^SaJ8374)v7>e@q?P4Op_5Dsa4WgkK=(_pxg>jDD{@`JdQ%6}l*4K$aPCwiVq6%R? z7~Qj1cBc!+fs;}m7>qhE4dFF}J1hIj@!fL6Zq}ULjN!vU5Up_Ksuc8Bk{C>2aK}BNOB@#gwu(ToJDw7x9UeB&orH2g+NG^Fsa*p5? zK?eRh9AAedn&2gVSxcX(FX&W^YKX*?S#)+sJej$KokNl1aZku97s&yAfR#U2Wv@La zVRkzw>FbLI(BmY(2{z@~5`6RDcKXSPOf`12N3jOa1L$2mQza*LK@OpV3?XGRyCzaw z*RM{iCoIg9%(5r@iqFlINPXZA;sduFMm$M3==2K+!R<08%7}|6~xHiyf>Is&$yzDLj6A-fpuavp-~N&&-cd*2_^|_RFN&1)K>cET)ijN9C$Q~i6hvkCWK-RE{w0H2 zY3a^2+6a^sCi`y9BNJ0LBCgsJ+zXcV!e(UmpzP^UCIwoL zjp%zV1idu9@$Fje52OGjKf?p&kGz5BakU&L9I3G#`q==lIt#-pH(a9lC-(he2G>_5 zcHDxpG0mohu@CGe85CmG&zOMKs2pxGhlTtBg`W*LHIYP$NHkX$?Gy-uc!RJ$N|B=g1o|UljNiX{^;wdTm zSg;kJe(LbA;Aad!bW@rRR9Z8%Ys=bo`kj@A1&={l$JI#7u~Cn;D_7O7>#V+sT6q<# zvXD+bV5;G}!Yd=D@37L8GS}aFCQRCw7b#7j7LhL%)fFFScyOss#kKuAEg7-BxJ( z&S^@syw-(R?lNC0EvzmCO7pTZXlC6$+sSnj4{&yoi>Q*|puwHYSkAh8EQ2zL^zpvD zmn&1BgBJp>A{zn*aN@wL@#|n+#o=WvTSyIU&t_{kmp&d%2l8DI#|{)+lXblXy$+e-NapOv3@>~cV1w^p(s8C*oeSp2f1BNCa4Iwm z^}IYA`qhLh(J_70c1*!!;fQ|JK*8Q<_mX11BCPq<=6~4Y@wz*WF^s1ZsRKjXGt}JC zSG$Ak0_A#2fBs)3WIwYyUv^>=Jkn*4HnJqg-nq=)lsWxgY*g0art0SWNZm}nR%Zu9 z-uVIxQ_03F#9uzje!NyLAFX#Qi(s0#7eoG$D87PV?NF|UgoSO&fO>L92&wgLx;Wph+OthnOI$H)Q%DBSB)lWgoZWjfkoxIi?0}WE* zmuSOxFb@`M10XJbC4!HAEr=!3``Lgc_n3q3F!A}zrIE+pd7kk43^#~j2_h)QpT@H# z#|suv3EJfy9OxxpVMOd?Q?A;0ta1omzD`R-Qjv}T=IZQNp1YzU=8qpbLe2bKf=E8* zx5YJ#4uoHdkQ26C&Ju)I5CbA0?WEcOb;!)zA96G?S`$!tt2<_7H;bo67DVxqKScKw zEtp)5`arI#0M^xJNP-9KQ%3ustW7MrZ5A=`NJYI}YmRwFm={^Az`OBH>JUrkHpTNi zk1{#i_^sMdAL}zoE_i`l9{wR zSNYq@slV809_1Ny^2Vk1)o??E1Y(6K=B2tijhc$E>4q2&A9u1ELcSm^C@d%pnl|-w zK1TToa`|X&Pk;H1d?>0&<1e~^d2h41>}?Q?%bmJ|o4x9J284^uV`ZxN=BQtvJR-VJ zKp7sbtZMB-8^CRYJWUpN)#9U&yBevtThDHJq?)4BomTNQ@&-PzN`BNaWg-|lo4O-S zJO4>vSmPeh{*Fm4flb_IjFju)A644fqZ?AabkS?Bxx-Ew=ywElBfpw_ia0fX+9gf` z|IST%Q7%&^j0!gu`FRH02TvLyaGi>mkq8M>Y;TO)#D1SEwd9dvns$rZiFzrecyNhb z304VhWPEwGJryV3ZxuSDK>!pd5SlJ_KTBUVee9({EAE@e2YWVG6afl&FtvZM89CfI z+{7T=_j1;j28&7SFT#0Z;%;mPzGt4tE)RR0QiRQIha3}%Ty(=7j-PB2MJ!rqXR4nPNV?R}>GNr#O zRSugVazrhm+q}e#(Pk7xhRh|dTrUzwj^?QKeHfcK?qn1cvdZ{Pdk*SQ1G6sd>wmK? zON&W`CVECiil3S(R*rZttmX;`jDXx`3-`IrhLIHk%eVijPjx26s*6iiWk;Y8dcn(= zo^GoV7WY}>gHG1!m`BC`$_VTs1_3?qYG~HA~7f5!xZ**%~%Gy_7c2) zKH~%S&b)u9YH_hhwc1|Y@x5qm2&9jCbYF4z8 z2GA7yMbjS#bPC#sG{xY{Lyn7p%^|AwFVN=x-T zXIqcq*4W`w*)j|HX$-yd^hMSxfTk6ppUss^J40%+&I$Tc%HohdVpr;1l$?Ulv-g&L zViynwmxl84AFBfBg=vYHn4tuIvVXrX&Odzt#ji06i~E)yi;F64tkgGyPa~PNcWV#u zL23aI$>Le{s!py4EGEEcnpKz+ zpj9Z2(Qw~vB?5G4A?IDVT|_M6YsUDb)kWIYJa9-^*{SjIYS9y!#&y}%vD0Lfm`>`l z3^r$%i8`vOG!UKaSIgJdX+sIN^N3$@FLeGMcnAFH-5^Y?dQ95kZ{CHqbv`W?@FV#I zey3V7vPE5e86QAxqZ*7z6dEy=N&mwsy8Z=RbY%yIPuWJPlZ-Q$dXH#%Tv3T7`i1o2 zYb53yboNv9Dqqb=UrkGqzxgYrLBT{=);b(_C0!Qu8ZB2{=Gmya!zo1Vpx}BsV&b3@dI2% zdutXqc4=>LWj?k$RkB{|y*u<}-wjdeBJ~37G2OhmtRD z@jq{tdUsD{aN@obhTaWEdwJm7pAsCV=m;-a$96mT+C@^-;HDQ|_B5@P9-5PNrVH+& z2KWte+;{%?Lsc5i&FEcDU9wuS@L-G3&!EA6K$J00{qEMz_n;yVeRPS=dNZHj15~Lv zZ6wJIh@e3sX<&`;=$qSPF8M=?i!+q5V(nScELrA{Say9_e|aW@P8Cn}q-N+BZ6VHT zh}mq-6VmDaNU=Ygedc~*wa~MK`H@LlaygZ}PNh1>*-RGyQLkhi8sC-(Ue$_I z`gd!L1|I3elau?>7~coB6Sy8H2~XP4RmXbV{+jn3v^PjEPb|YrALMLaI^$g1kJa;F z(HpTh2?^r1^VkPPmsVmX4wn&4kF}yD2HxoHjgJjn+vf?&P<{<)<1;Lx^uj(EZ-d?N zXfGzWst8M~GO1pr28{R@?^Eq&{?XTP4yMBY7>K>(>kx6jK7WMiD7rSsy~9K>O4&b0 zD>RYyw{evC>+U+PKK7dL(RE&%)=M#Sk#kM*`H9qpWS}*6C5CO+ZvR{l* z{C&C+_et&tDX~u#?dNIhomml9Z3gVGOo~)?s`<1SjbO8QFGQ-&XvWBCZE%O>Bs{yErDc+J@{9iZmk%meB{H*d zq$$bYNsXh*tDdhnzwZ=yn%mXCXN$}LaZ4G!_+5fm$26G0GOnXTs=cd*24&OE$5^a2 zNYQA@o_0IcsC>y(r20xO={NrlC^GaRub<8?38&8eT@~psR|x&$-<428MK_IkV#HaC}kB~&-x8Z;izZNhqBA2df9v}#JEbK5A3u$`S7 z+Qa=?G+^l4!Pe6^e;toVBIaCmaHSanII@^O(|MiWo)j$2i+wq~JN2 z3`T#6*&}%1(r)3Rzt(#_@iuesyvc%vy=!Bi1lNzdeg=d^6*NA_UEK-OpD+C{ta`g@ zX^@lug;&eIKNkF)wCxw`3c~xWS8(6QzX%AHIm*YLY{~X(uJ0d^pHJ|Zqb~$b>vEJw zqztNR8${H1F?}9xu5^C0#1Fp{ z1cQ|nS#J`z;NwGe#j*Qv_D#aJ0g~Um*Anar;JrFp)san~YvET+UGDCVoBFb9UNhN;o!judn&X zY}*_{)HumBrb~F~Id#~}Ti#^Sq_h697I*j&;4 z!pHVo6SHJR?;H#_?iaHam9jzGNB;z1o(^WW|A50$GVUu>@s)|0bRrXqBkJ`r@4F^beEIG*$+1?|Nvs)OM85RPOOFhfb?`8=f&+ z?Pkj6o~h<-|2T5!#P?y;`eM9Gf`L1mWT!+B)3SWU)WW0cP$y|uYIg2b>EcY&mzO64 z@`I&vA;2<7b&PnMj?YGkV#cbp!;BQk@88Y)J(Q289(HooGdYLRy7)1jk!=Knv%y90 z&RkX#nX949?#<%vgDQn{U*OBX=OaFnrg>Ok0ejGQ-oTHRjC-$Ziaj#h<{z7&e zMK_DWLW55#!3jZtV_4qO;cw*C0sUPS?f8fXnH>WD@>~QdX$bXRF>Y=Gwr6Mg{3nIb z2Wub51$&;VsZFmv`NTCy^Et-h1~ie}6QlEquQ!{Nd(a#9sCOapMK8zxpg=TIeJx18 zgVgquC_(BMqLze_5h2s3uh%$Gv?;j*+6dBUd-ddvJ=YQ{Te@{~3y!%-5-15k@wg4W zQTTGueb+k>zUR@V-axLhkLc%OVS2f&$y-6*<7_}wIK&n3#I=p(4Hod6Yc|0t06tDux7SITW?iWA`Hmh57R z)e08-z&MOGn!QbjZsrLMZskwmX%LBQm9CmCS}qA9G=BQq)rbg;unTEeu?a_{g!6O1 z@MC*ly2RZXyN|Tk8!_orbZnH1YLN;c+58)JY6+-}Y4+Pw+9P19-UrNE+w}A}6!&_i zZE&Gx2}}p$8othbxm;5J7&OpJ*!CczSHy*h)7EwXFk~QXw{ryleH*K}&IlbrXa+lm za$e5Xx7eXas8=^EiDYnScc-b1By}2}QGc?$m%ONj%N=e~^`SmhruD7FCFeHR1t*xN z$?3E#OmCC{n3CgVo3t|`?k!q>?{Q;MS_LD?^Eoc$hdgj7^vS6vKuS)-&K2Ks}rgaR?syH-VlVQxEB62ZjQBsu?4@v z0K^lsWAUQFqQ)H25wS8c`c(AmwA4MOA-DYzw(^P{r~3+>jq@1;uj2eqQ-2|&OA{WY znaFO0`Z5sj1UZfx^R<)pl7?UxZTS}Pm{)>^GaZ8aU5TWJY$cmxerR%W<#oZH5P90x z*D+Cg)V7?`C!#n`FuQJzs4nO>^0Qwos69*5xYu-qz|Jc;QDG9$cINK>^sv*^9LIfq zfeHC_2U)l*>1R-gjqKPiYVHlXKy=2F?Ddren~n7=7QRpFWHLFmvFZ`-e~VUQAHny^ z#L!DGHPnrfjnBpNRr4(!7WyBjh15vz=Q6t*nYqF@4_*`|yxa(M{7p|UFo0dX3#Y2g z^C8uoRm%HiEahIxDAaT>GH!K*>2&uJQZwp5MhJ_D{M+73UaLLZjVz6yeEePi0u>=$ zNI+dOz9T~LUF5fY5H{^2#nct)-f$Murq3necqvruLAyW1lV%QBQVoKVXJK3j%M!*X05$O^ zFTj>DdM6+-ZO&8w6E3wB=#X)jALoWP*u;p7PUTH)@1AM)T5Tk0K$NHr6YX8jcr65_*UCQ+A^sVk=XF|J4x)XUJ5H=9h855N;z*(xunB6X1IAtZ}C zR{sRDOQ_tWnT`pCRjL!%5f!DfIvcVQ+L`Rrk*5N6ZG|%W{q_-=u<*{!M6Pwmt zjkTEZ_bV2%?@<3BU-v?8w(!*Kwk58FQ|8qd11rbex(6jiVxsHS73AuQCL~ohwz!np zgPJxgr5`gXJOK5Tn?l+Dd;rQ8aBktBoHDje_>FUqFdelgN5MHTuyMi>x zzN&NZ)eLJLzfO>xI3aXL?8;}t#vT4Rs}+>bJqd6MrFG8z4j>o8*2;~iqk{|vURhp5 zA7~!vv;XR{W0TsM(Z||5N}P=l=VVv@j}|~(>Z9dGm`F@*5Yc6OErU;^X4Ix-a}e>V zYiW#>^o+W;ABD?lNe3bf%S3OsU@zcvZkZ_`)n&PxlQGh+ld{A)YFJ-hi8m2#oW@??_2b*e z|KhCvnN~C-seGy!dj22m>b4qhGgYpiWai@sow`2H&z5r<>$7DKy$^;iZz0?iy#~Jo zg@s8uqIj8dV?9YP%6FbHma=@))DzeuE&m{&~)? zXA9Kq_lV>;DALx=bRGaOg^FvK0#wd|b=f$7I{iSLIgAk|?+}?%dQIB=xTlEGI4^-U z{>l(gROsf?{Hc{~Aw3Lb2fpZDwl`M9<-Qi4nM8UQ%yz~xvY$Z=}OHtARZ;~YJ z6P&=;UHxL!hWrKz;EwhUry)iX5Dx=tij~5~*dqRA zS&5x*-|Ym4i}$IIJ_JarXU!U)zFkaxXJ56?ig7t)+8|CGz`-W5i3cGYa(gg({kS%d z4)N-XSy8(`5yaxb2Op6^O-$m!0rb(kjA6gbMgNEU*VOn()^{siatm?!7Y+O0{OSW5 z)Aoz-0L(cbb->ZWsv`5H&ccyF`YEj4`_FqIJaDrBc(%|cwscZ>2ImwFRHrTfL<2o| zk4H%RriteTg<0dK2(7ee<=SnNF_NSuS{eQKTQ4c_Cne@XyZpy_-PjQgB&R8D`3{Gg z3d>x>tGXu%Uj_&`%wkQ2h)jtPLK=R-Amfyd999AUNG`Gluo6v2C@<>CYcBDW(3qK2 zl`nEy%H}DVF-pLnrm}Od%O6CroySIv={Tu@5_KnTpT?}oGG)@BcX$<_*&4CaMz@dy zt7H6ORl~g`?G~h34h%oNp9@pd#>T%VqqC5O`Ag`TRVlwPe<*ebPLvWK<;(DA?30K~ znjJ@&rMSjhV9I<=YqJeY%G^cFTRv2HmgUJDzJIsJUS%)0rZ3l|!iR$oNtW#~U@UV` z2xsclUTV*Fu~sVmzNyflB@R90ZlzY~ouDL<)lB18ILeCgtjC6b{9VnReHCwQTpo1Y zBc5cANnG}EYRBlK*uPT9mDI@pBuH^7?jtc{uR3a0cc|5dH4=aBcd1;7w-$W=M$D!Q zjo%V)|J%d`51@cc)cLJ1Wn-gp*)Us@Db*t6T;t_KOBJ(m?{1yTevMJ1n+1=T7`Q{U zk8x!7y*ewA?7}QL*TPs}gd%y!#@#xFr18L>gvto0 z_m^-`zIam%=X^FaKr86i`-7|wJ+LsOXQ+g%?X>=si9E!qZ(W9SJif~A<2XMu?LFkV zu;e~}(p5c)W@$6BgIH#qCaN`VQTQwNHTh4){@^I@3;Z*Ss`}TbSEliI7ul};=%Pmp>&^2+H)LzyPUoW}4^OZbIJQoS+E}zwlqJuw7vE3+qGtPj zvMVO9^AZVPTIj)ckx~QPqi%}^5km`ez{x3Q$V`so-sDMO6L9vOr842*O7|?OKoe#x zm|qKZ^e&oO1itD*7l&+4xqeWjd$ld-1aRs6Oi4o|f>QBHJnJ`Z;fxt~FV%&+s@dV* z&8FBtqLYj@BrEa?_OIJ8m8?%*?;Ebv2MpinN?J8KSn{RnJw)9)JWs@QxgpgN1< z?t;=vUIO#a(PHa=GfNq=Ol~Pt6*Q5kVzt*#|Jvt{?;|C_vjKvtm)ht#R+TN{TJ|tg z_Vg^f+I8{b;M-WeJTurxu#4N;c%M#zg#Tu3yse`+06$s$C_X@6NzyLEYtqW=vtnEe z_8k6XM97L4!TDSKdah^y80SC*nDSg{YhIS)Avex4$nTzHq(MMA#@ZNydGwO z^7V5NBCRJ~wOFz@&wW`8{y`!^G^6=Q{U)l{tq*72aM-C5`*0`oHk&L!!_iqQslq zZ*2rGo88TQ{BEWhjr9q=e8N6J#{vr6YuSV=oQcFVb!}dW?{;SaQFmL^yHyS%MxP|E z*ZLv6*7D+&{K{KtMiP_MLRl5-Z?I2cY&Jl;y+5S{L4rBa2-On01kTeK$5f=|=T@3B zgglJ-MNt4*_^ZU6Ek9eXKgj_Ib2V1F-|we+kDn+jhP~ohw|J@BpLR z0Dlr>I&7`Fkqe$u`*d%_UZdMKCE|d1HtxZ%tU8wf%U${xkCI*;Td}2WTZX8la$Tgr z)npN7XBG$@)Msv!lrB#Qb%YT!?ckm{>2qGXmqj)j%0w<|?rh&6)|#Dk`>&}{44E;3 zj69RtxJb|6Ks85MM@&y^nsL#9Dc*LXQH`L})v zaN+~pqv`(v27p#7Zs0viCp3a|J)AJwL3Q~@Rh{KZuH)lkzV~8kCzSk3+|UWTpsdjk zbz2iAz*oQK{ zj#T?ViRMPErr$%P@4(~TF2GlSv6y)YLCE{A{P7DSIll@80QvA3Mwd2g*&HM1>Uh%z zFwdMNUN#x9%0c^YB|qK+s0-C_94XkTOfA^Dz#$<$Beu-UhZJ5V{TcEbMqNS&Ym?1^ z_u~4afg^b|9`6P&R}I6wv=-_;2Y}I*0e^Wgla(Zn6qie}oBf|sZe+h6%3Qy3QJ4O= zI-pI{dOh063o$Di)?A>U*Q^=5-aPJhzs-x=3NHMU{V756hg}bpfVr8gGH-KM^~gK?fd^9TW1;9gxmjnQ4|n? zjTqp_jZiuiK}s5>BqXGS(H&CKJ=jR4q!bWPKo}hg0wbg*>1fyp=@J-ycAxvcfB$pN z>pa_o?a{8+_4;0)cz^9Z$@25Aq}_}US-ZH;%|kdoQWG(b@s`hCcgnAtUhZGMl(Wnb z#t2Vn`y3EqGJVVPmb0#qg{%GXli47xy%_shyb|Ju?dZ^^{<)`IY37F9q+8F6dCTc% zpjE26ppcIQb(wpH9Fji=l_lO3UFpENh8CqWsJMb3YKSi)1?sBsmIuRWoN^$`Qel;+ zMB-$${i20L!>*&6(Z}R+m&9NUmBE40m}oCdpdXkE`y#2De{zJ=%oclQ_~qmH@rus0 z4P@H*=P%i&_zN=+AOb)u^*H&8N*u!6!6$hyGEChxfyUA-cW#&rpQdKBo}U@{1kNg& zoSNopn;`6Zt}ZiKxM{l?qxC6w|Kc#*HO>T?gwk!3j9JiT#X)VW3(+@k;Y>2>t0|As zN_nylZ?>|J%G5NKG#!G_0Bfl2T8*dmZx;(wibJ%BkYYjY{SK%^CiB)|DG%b2ahkxW4Wia7!B{32F&jV0)HEh`ok2TXqLr!s^xLVm^2X+vKmw-gPYP z$NYV=#nXVT@YRM3#!URyDIfLtZ~9i0yT60DTW98a2DY!53&kxhQoK73^41f0KUw5S zw%tT7;K%lI%bay3zKPea`{3U1;5{&~z(0SG_{j%RVl{BUxB~8igY2oCgKmlTvU&3vcyx9=& z9F;lF)1nJC^>o%8)|AfzHewK+tf}~4${{VWB7zDXzxYBF-RN#}QULq=s$Yc>`Uezy zbr4{*Q#A*t8nCukb8GaL^5c;?YlIi@U1CK)o{t6j{CtvuTkd zn6OsywIIoUtALNKY(6SwCxj;ENQG^&s)F&=$Ogp@HIi*X8R`$G{^O zvZe})3lvk>f=^C7Wq97zs~vAjeUZVN?5@2q{<`6`o~HmG6t8d5yocxVUThz6Iea-e z<<9H!fe+1+VQ38OsUR+szfY;Qzpq#pWOnW*w=BcIbWr`W=ZL*2#EKHNV$2F zP^AW26Ngc{`&0#5b7ys6a|4{L1};o9j7ZYD@_s|!jj(8%`T~o?Y|Kg+ zswR^waxQYi>FRKpsQ^G4d1*P=!K13Svn zK~5pHfdQHv?72zzT9?|KrRCF}KfBYV_M7ZFWNX~l_TUjkB;jO=1bhh*&AHRDzEl%` zv(n4}#&qdr2Vb#Ae9wFI>2x5AMC&2|{rw1VU)I^{>K3!fhrjy85AcT7y7KfW)d9Z# zgQ|Fjwp@-rCWpubeML@Bgr6DCyH!GShH(es8AQ$K3VfTU^(^v>L#(AMU8W?q``*P; zWT!!{2v1e`eHmnI^Y|hy1`r(we)TZmb%Me-8mR9rog?maT6TvFudacB@}gE}%iBAI z%XMD=kx)VhO*&42;8gawHoF1`{7V+n^t7vH>J|-#pUjA3BOS%7Nn2CQ@f_)dl-aOf zwo&yJ{Yn_ojnA_e-u)Y7XFB?I;Mw+S$&TJCB7x6kBnSXrM#Zd@8Yjx~FcMP`ccIA< z-}eklnED&DgsVh*7S$Wcgo7WghH-BH&1vn#=7`I`?gq#Grq2(Mp z>ASoTq2;^w%a^!Ir|DKDuNxo4$YlrZ4>)hah>G;+Z=;PK^95COWGnlCxn#g4LuHWd z-x+avH^PaJXMZkbpWkR+%V7LsXR~m}){5|Gp>wY&W2?j)Lm?qyQ-ii68sUJ~H|rYy zakO?xIX!-4B*qHPXo>-5ie|1I3I$&-?Iwgyd1 zdj6h0Mw`wbr(n;LGe9HpVTe~`DbX@DlpvFscPe^NS716^JxZSQRy%d|RE@fWOtpDY z?*qnE;74^y*l(M7+hjX+xh0_p07)k9Hdoy~rPRi~*1EJ`O1rEhTiR;-pPnPa)WIoU zd7ft1y+j!KlGE46d6e&aF%I8{jtO;^C3i)CQ_6uT*HPS$zw-_l&!jHjFG^xwFW57| zeFA@?OrT5QI60(3eP$~vyGlt@ceUZT4pzv9K&1Waa_?!fo+e}}+d<{}fsjJ}6vTjP z73kw+FFas2B?=yhpa=bn?R9LG)igiQ?T_3uu>;{p?|hxV%x{p!zO6m2*)8Az|*N!kA~Lm?0t93 z@)H2g?Hw{AZZ22?N1cXUm6p%3baoiUoe?(y2p|s?PA_>^19Mm7IyYCN`LEt(cEK-d z{*OW3IlWL8!Q!fD2sw+{+0921ORZOe5P!DIIW1}Hz-n41x(irC_q=wXB(u9>J>;2^ zSyEZOy;Z_&V~^Y79lDI0q6mg{&JQCz^#dV`4p!YAOgZpzWW&)*q^M=kjsxA9xKIFT zteiuVipl|#94G^D;ArnsiR{#Vq50l>^?jF5UQgt>aWr?acP2L9 z&3$G4vl4fh(R#3GhyRZ0w2o0xS58Wz?I19BC9~J`$m0!(FWF&PJDK(jM>c;&V8CQgCjR z)!`CFT>XnU>0QTc+A9m3%gYIcCesjYpQz_#av`goUt+H|PGs(4WcP06r_T??aslu= zh#L4bVR8!3ey8hc;x9U9IO|xUR>)Cnh+{sJ`Q|#SC%r8t($H&V?ZDhYw;yl!<>7u0RbT;hGU zTQ?pqjK$h+_Ce(-OR5U&q#~n54J{|b9+Y=ONliC(%<#-1jm7}BC`UFxzFp3XYV@qp zG#^NGXl@zb$;RWNS}cB~nXFu7mlI#=tnQbyuzPpDohJ$QAP@b#N`%_QL`FSm#r%l3 z*!D)iSV^PiK$coehn{9SbBRs%ev`3;cvd#=eKGn+YX~YE>muZ=RnJ#F7F!nbdiY;G z8wY(V5`DWg5DkK4++Ca|$F<`paxdgJua9%vUhG5ZPKu>l#RJbOv|Qr9uk+?y)Wj9r ztZiFAK1P>SF?hR8(p((mE_U=2T7Ph6CC%yk{*1TNpNNOcc2AVU62BV6BKM?@`T&SP zYCD%U8>)G;nn;A~IJY*vX-j_A&5Jvs=cL)tQvv3-7MQDRW)xW3PD8?sYCSPoi*10Z zs-!LCV5jHH*-nCU<%Q!+$nS`eq~Mh;rjDvWLjhz)@ZsT&%if?%mC)Jh7}weS*&~Dh zXbmnmNYg6=MG_^CU)*rITnKkZ;Pa10)LgXaVq7B?oL)%$_s#ZiXH2G^Jm_M>GD$e} zq+j&vYYSfZa(&GIXoppwT%1%^m(q%?Kqx7ymdRtc_L)p`vZs7YTdGwPVBs?94d2IS zVQ(kX;8h^so~Qn|hSeP+msHT4N-4!nfG`;q>}MrYw)I376nWUD$^tDVXGVUF^Wfd0 zTwgCp9I&3$Jiz>o-__R_nC9dLd4*d?h8;PL+)1lXZb2@Rvzm6p2UL%sF0yJeP#7rU z9n+`H_gjf~lu02ADdivqKy9D0A~Z`D!J-=Glw^N6AN}`GPVs^8p>a`F=E9%bQQy4| z*_jhO)E1gUZFOAPb%CPqP`#|(0S_qk#-xv5OP|{Mj~GTtno(!!QFw6`OW36gE|uk{ zT!D1qWE9^w8|$7ggc8$iOecs35<(!MXA_mc7a#N!N#mN6N#rSc`eMS5Q+9pto|y%^ z=t?JF^g6?KWbvKd$=~4~T%vjtJ5{Q?>-?S^riPXErZP`n(!orseucUkfHW!Iz1y4&xnh!YNwwVzv$jE2BU+!R$IQuQg6;Hk=x3omvM-0@(d0||QoSP&|bn--U= zI{X^ijrP0?iW3WD95D?B1?m~|23{x0llUAvc(-S`vn+GuIOZk^rBe4#Ah#`9ePQgv zFza!<(7TkD{5XfegPKdY*^VN_zZK=)D&=M_*H*iJh>_%+yPT1q8+wU-Kl(qfupgn(KZv6%tb1V6bBeKz zR$431{9KpOGNnrOjuKO{wm_w_|@)%Qvn`PkoC*piIBZo zPf^BK1?RMC31z{cl2hi(?x!cqf1YMxS_=6R0^K0A{lN4%*-5^Et{|0Up1`Rue67}R zyM>ZG(cuoEi_wPTZ?GK08NTsklZD2bGV6SMSMhva4=k)*WoWn61)L+91FaZOX&xQK zxK@SMr|hw{fW+|tBxB&K$UbrVK|hwrL4}o+Y8iY0{`HUA%N?ep>q_%fIPHwfjB*$7 zM$PHczB%auP1~X^>W!n0+3~0|E?qj%8aBUzbsZ|tOpe*N43={5$)B&@OqAR!kZ1nY z(H6L9*=1EjGm~gK`+nlT*%w>V^ok3gZ@c_GG+_%E>Y%`H>yABg5CJWwBZK<%iQ|7v zh<}wAq{*+(6S^Pa2E;MQ6Tdlzl8{Zhy=s`H9$Jl57yjVNOkK37h%yU7&NZZ0y%!Ne5TvpSR8M^}iHy zQ(Jj{bsC|E6eMK{SwDX=L5$pun*!$f(|)#~jbx3gqwg|2fR5Zek}QE{{5>TdYXVr<3n0kf}4DQV4sdI|ex zr>xCmft2>sKLnKyKL1Q8xxL!^AJr^nxXku#COwIFIN6Jq%WyvR5kraa%-__9i{XO) zoD)FWluD}qW&!ZMK1+4cWGyp`pT5Z`#xfza?uIHp#M|8Qo(mWX@@gLuazN1RDw}mK zt|o%kPF=~GqHi6h-~2fILQ`dd)N;B1nr)+Z_rfQf>GKSuqLhyxE=0lyvIw4Mpx#@AH21Df}lQlO%PWC=|py ziraO`=XhHDO~`){^c=z~C)oaOpg!n6Di6`Ns_xp#ET2`X^i83$U5)2~mkjhO#~4zh z8fb*%?dJTos??0u3wja)Y7-TI_4%zk&)0iu34V&g*8G?E<}D|cna&@03RuOTif6w_ zg3h)S@}A6d2mW3V((vT{gZn)>!$a3RO2v<7W!v*8M3`6=yyt+%&jO6D>Qk>E^l4l;zX4?$W^&D3^3V z=j~84$mk&+a>`}LFbc$1QG~SltF@iyW!0a%oV)Tw)+8wOc_fuSTd{+E7_?RtWeBx2 zt$oqLa{qnyYjl`3RcljgyUH{cjwheY^hcQ20E40MXQJT1)SvMePT5{a=9XWVOSi?Q z-=Q>zUrze-K<9R+438id4EVURv7bZOQcr+AK>f|cjzlYp4l6nJ%iFqXz)&#VOSuU9 zQ#ONX{A}ueSwp5)plhja@ji=!Nq5mS3qBZgVm=eQ^Gg*2Uq(21J0;A%;+mi(E*;FJCH$Gqs z(Dr8Dk2G6EZA`-;J?myy;>tbKhr)wDQ@MY2^Aq_IkLRodT%#KZLN}wWwY}#{3EHbXArr@m&1g){G=7WXY5G@lHnouDC=%|=6UsTZ(5hqi`*+Sx zQo(p|gQel^kV!V-_*Ko|6&QBY@V{g5zuRKO`*&d&x;y9|BHl{q67FU_*ooIUKfFp@ zWj!i@h$x^ry8-Xig>1MWG@S7snu`ntbZdz$g3>a-4|lMte<6&(OL7-$-j)_~b+gH0 zuLieC+2*G0ZIxP+=T%i<2Kqev^lLdiJ{(a*O?6O)y5pc%-G((4w3w|1=Mb>vQ8a9^ zOl$`0QUogB6JrdBtQG$5A7;w&isg+VND`%Z!3sE98;-}uLk@r21 zno%u>UM?=$qf7S}iW1h<3{T1YNXySaLdkO=#pHZ35T|h58$e>8VvG|s_5JgNs@T#l zNr`BNy!adhMBJz6o@os6sHT zV;&0Ez>L_*6X#7EiK-7C3$@Q4v>@LKkg7XfXzhbS`gU{7hrtr#1G;_MDLEZT8kdDV zY30{oKJ87DP~ckkBqSr6NxEbpl?QJ!YJ#lU1?Ue0JtHYijl^TlIbRBO+If!N|@Z)^ma3Z{5qSy@9^60i|3NtOn?z(hd$R+Tx-ne9wlL^y5n3}b820ifjc?8~6L$76yN#sC7m1*Nn-bdR8t#V)O9mSxh{wIKVf4=70KWC=0^1fU z^WGiNX$=L6x_$}%B`nvRz!s&AlirH>SVlP3y?7eJ%Zb&RMPae zDWmhirttPmToroR8XQthd8<3llA1k4BJoLigTjpRX03OEWB*F-ApJL8o!Y4+MCLhNknnVDN$u&TJ2v^R3fRm zA|*+JZh?KyKh^V@o&_7COTb@d?{t*ChCK5AL0D)v%Y(ssSiCi7{H{g_{oa-F%-}$4 z!oncx_?wBSi$lh<;6TES-Fwr!>K#=&>;X>abLFe@eYDfg|M+75LI1lp6HD{P{+o5> z)e)S*{Y7_G>tL`aR;rSy5Pn$-COQjyk#B{O3SCrAM*nxdmRJ*?hIkCCFm|n8VHj~= zPyD*`L(ko3-iKmdE?f@zE*cK}+qKfKGIqvlgsBpglR`hBjs6bEm zd%rot_}22R>7t|~rfjV`t;x$PEezt!qAK4kTG=~o%kWGogwb9)kSXf5*f=VkL%C8K z)*nd-MHO8JfF`wGy){VyY`{YfO|LycOYe6OY||z1cuBIOS5_p8n2pdF`cT@NHC_xovqxvxQISmslS`!*hIR`D!q0~s(Xqls1~59Jy! zfoDHrXO|;Lb6#oQTV|iG@1MfOM3Z7xQTe8JnpIU@LNop5qqg?)B%?*m4x~4Z>{%u& zRT%0!yEi)wGkhWK;s`^#yOE}-Wi6k%NeU`&SG})trsS`tvpx=4X9bjoDhGlj$Q%A5 zdaE`g*v8_nPiom)!jEMlh}p!1%;D?sJ+U2Z`H5W~lkmJ~Q`l-CmtXv#Ms_YL0w1FB7d0zmQ`GCL42Ij5k+55?}A^ZWst#VTs}jR1rQCs!yLEN5PVPW@S|VXKG}N_m+8w-&UOF95I%5L)sY)m zVUdJ=sns5f77U+Ua%hlyNIK#w;Dt`YO@f{Z={N=Ancbq+LscLcD7sfccp4;+qYzER zMq_$0xE85Y^Co5bKD@ncjQOR7R7mB)axB%C5UKeG;>-I7=*+y7b^&2Ie>Xz_CeBgA zkjEtL_wV}sPbalFl8_wV{hiuRHt_8Y42WNwzGioFbe;ixKeo++)B}2^@~qFx@>|N@ zhx!Xb>w1aZk+W?(c?gcNabL*_lMzGL_W02N5d4dK4FV*d8=ahA-OM zEMfU9^~G+jpGrZZgc%BcgXBCL!lvh*35otbg04?B4UwUwLY_rbu4-+|Q%^8CR!V&_ zGwPnScEFQwFt!o6QM=(}`1Ae{`i=BM^uixR@NwpMCGt+Um&9@PoCwG#Ia-5W zz#k`X!)>A-jsO-jvtl;;loL<#$(KtsoPx=8Dx)B@Nghf~>J~Q8RPg;P7y_WQE?e|~ zmf<7fkMfaS_XjS4l%UhFOl3s~wC?6)Vy$u`T{OV=XH1b?OY<2ZK5||0rZxCyf`f7~ zG=#!r?9+vBq*I&34EX7qpiAsDPLj?q<8iyj=u8vuZdb*bV$q|C2K2`QN)}xz3*NZDDdQc zU|xT;HswQ5vcR3Sj8pU0{!Q&iu@o1`G%2@j;~%|J?QZV^(Q_?mQ=OCNEElmm@t?mV zVEEHI)VxJYUE7m?CV+o64(pvsR|c}^^h>mel!7L2JBBO7Rli!li+K>gC^#SKzOjEt zKEAE@cOU-O$zSwip*@g%_Ck#Cpr3aBuVF77PwRvB*v3xoGhulIu_v&YKi}cbW|4GP zQ(jXhJ==lsliPQ*;`03!LZp~3!ZH8oV4Cn&SxBN0kOdz`e+{w-PS#a#vgVS@BfQN- ze2Au5Z(SucpBpU4IjYiBnlxzCTlJ708SYWAr&jh0W1zcwcb2js$Vsz{SJ_Woo^d1s z8)%KuArE8koF+9S?v@-2s*VHz*m>~tYv#;eL zZ|p2_Y8%=9nmH7qFs{6XvxDy^SJssB&KZqU-Z=5Y_N=4|tuvhpLK9&JcNZr-`L@5i ztn^z%|Bm&u!wqri1EHM7ysY#|_z{z^XPsv|JAf+gV;WxE6LFNL1%Z|&1SEX`q<_s9 z`nm_re)JW`>scl_(p}Kuteo%^U9cIZJ|tNc0Q;hi|6{?%Um60-%pOAuY7!T3UgoO3 zHo?YDG})Gm7iN2kg`yL?<8r^8O)UG&#o@)Ao9by5m?^g&7)`eMp|4KeT*RPY%>;zk z_YCWroMT($gnY;gP&pZ9**?8uWPEI{qaJ@7+QI;d0Z&YcWT!O2yLv8M7no-0%|2I0A$bg?xw zo*W-@cewHV*|m>ryZmyl7Q2p+k)p5?Wv^~*5G>R`qI&JKG~2_ZvoU$%-rgro?sAuZ zjN9J4Fbf=K@H~^19sd2B@oXTQPASDyXMZCl$|^K;>9eOpKhqHx`{cy=|CUgz@DPuy z_n$of2Jlk-Ss+fQM#SkfL&mzKfe(hoY@gYlC-u)se+U!)w&aeJ($7cXA(Lrsc=(xZVga3MoEX?{=iZh&tfbZmQh`<*n&p2b{FOb}Eg{p|x z%HL>LIWP$I3c81mlwvHR_NxxG>Gy9#h{$jV0T9qDC*8~X@q@+E$Fl%ZJ1HJ(y(=MW z*W|(5B#w(u@>w}kBHnX7KcqZy^i;|^{c1+a%}Gg16jOV-6Zh_*?u;-itg)r0JfU`s z8&G}+fgW0Rf0kJxnM5{D*hetznEV))YvhChi91+tOBYL90f6)_TaBzL#^PUbR>1ay zb%{A*vR6v%@7#;rA8ux{D=Js1uhiz8Z=8iSoW85v0nz@=aOh>aKd(q_JzjtiTpNSRwB*LBz!opSQ!L~*CwK3&(>sQfN$%2pCj`#n>YHmu{MNc4k$ zP0;t4{1Cf^_FthMwqR?(`R%N?h>8gXoR~_d*>+B#Sh~ApU`knC3Auj? zqXj9+suuoH%)jrCdCbFc$YVeKgH_Vrm@rk_BEP5mv(o1i0PzC>oyX13N{%V49g z(JU=xf~u3z=AflpMg`_q$dA#q#&_ipWRplZN2)olQ~H0I4|JiKs0vpZ@{}m~p2&MT zyWP_7huFD~MZvrS`eD`yk-o<8aKUfnr>|8_h-uxQi9zmb4bitF)M5L92i@Hiyg2~& zlj%{|?0y%@&73Yq*6~uLKIR|mb>TkpM^2MBY<*PCz z?p-ts)ZuQlR(gHk@lzu*Xl;>vS-o$Z&(1NSJa_vxjjivtip*OC6;p?lN_^50>^5jK z7D{ru($$fT*#EUwmmmbbOQ=0xoZ;wf;GUyxq0Jc1#j>>9KQwG|ygk&CRJk=3;BW{N z-_U1s&NAjlgkt7rv0X7}KO8@*#kZOYrp{5gH8=cq#!RpJ#8AMHT3Pq76x-iJr6;$_Lt^E(Si>B`z^*p+9U6w5+6EGL;ddcV|+so>k;0ERfrf z^N!ivXx$h9Zq+~SBc=`ur14fW*w6KA@0vusUndwPG_88F5ZE9s^o=3Mb8vlaIX+c4 z3$Q$)od%Z}_{Lh_-4dB2!+Z3;>IQjd`W%SY^1S56r5CYvppQ*)F#mUmMdvzcdU*(k z#p}zTH(s8mM9wh?hn7cMS)RLxf-!m3^KY-EPN4rUD~l?8o<6+B{q#*v=z$6f<4qS`7T`%L)}dOWqWB3QdVp=AQ~9 zkB+W}M*zxBSPF< z%_(zm8|C}J+azE;Yy@I8rBc}nbQjQN8|&;o>+0GL6%XbVz9`qceoy(+JaDpCiwjk6 z%JM68`DJNu;f0rdBkQn7WHf8%sZIE`wX7Z`2jPME7UJ7XJ+M`8Ag_N5RKMKgP%`U-xso{eWcd}!ksM01!H$bAvfH9L6G`=lP<}K|xDU z_PDomgrPqswUVlTD-te_+?YG_e#v`ORR42ST~^7>Pz$_!TPO2L6wsa?&p;MdVmYBl z!hLUsc>V5=IeJbp6A_HV;_OFl50I8mtDxKccVxMhe(kR-?ODaipAY;#KoW*fn;{_l zt}8`6!6aZNS28&t!~6P^C4XzG?tAu3llK(KgwXRBmpNzWHLF@{Nv0=(Q+>j#qmu^c zRgmA_YMlwQ%D|YdKCaX8k^Q*6P)JerN!+=f+7_`09>S%#sK0O3rIR;$T+Ix1V(nw( z-H$%mp3?Mq=wpMf;W27^S6P;OI=~p6AV%2vs`Z^gd@oJ2BgmYw?PZV+T`VC*c;L}; ziM{-I5BmyZnHso@UO9N`nGI2R6>q1RTVGjSuf$WPIeRB(*4x`=D7d^%h+|<89(`%I z$~W2d*otmZk1eJ2&hdDH+BI>_!)a`MKRRlPlcb%lP;6Amuz0nN5N+dxtq zmma1T50a|kP+wld@VG{`^Dei%Cg%hlqGODfRo2;@AOPj!$m*J0{5P!KUB~@kFQa_S zS?>AvK_z6B%(`>B{F~y`OsuV7WZw8^_Z-z}vUI0$`>mc&x5EaRuZV{w^NXeCbsE@L z9qUID8-1E40XfC3HS9fa;wdIcv(ctYD>8)mNBT0wTlZb`inSE_MqkypS?MPf>N)s~ z7o2|8iW0Hy#M$jEK(S${dp$9}hji*Z_Rw42^Nl}7&wt{L4%AJVQ51W-Pq=H&z8>0N zmyrj{Uqsw=Q#M)WTH#kix_vb%UVK6hFQeUP8q>vXrPS%HFl?)|r9Bh@jma_w(uB9vOX5s=#ZkZVVr$3TxJOM@wbMdfkdu9AN=m(nJuG7uJ`dN=Tv zXskakL7|&-g`EGL!kChBB$x6l-u4(4KV-DZb(8OU4m@e{Vl6hxUIS5u7ltoJB>X%e zw`_wHc_5K-7Jz2B;ZpU0@iL)l+yB}!^iM708nQ@*!--N6F!`Ac0fIj%;;7D8Aam5V zQH+W)2-+TdHq)$D9!0NA4G|K2ZS3&GjGqjMxOQ0nhFm|nN}VXjUUCSfVDd2dJ2H_h z(NCqW)2&@S=Y~_nCO6Mp8b9srv>V$KPd~LxOf`G)G*B^}?2+<$8S7}`wKY;bkm7bo zsgO&l8WElg$KS<N4JRymNEsBN<+pWQLUzd zT`S1{W&w;jO8G7(KjlXm=7~OR&1-0U+mi^u8NaSdwgKMELUJ7E%%`+<8{XoV4y#Ku z$Mp;P-vf86yK{+I=>o;KXYx%Dzv8qAnkJhsWI;k$QN>Bj++Ir;g@n*3{Ws+IlUFkJ zGPJ2%w1><_^>(5i+jd3YMOD9Kd*?w}#(X;jTzygQ!I}bNdx%fKNP+q-z11X9?hj(r z-D$6Wnu+w-IEb?&nFEh1H(lnSzBNnjaU~-P9B8 zn_b7tFVsT+4zl3 z6ypw}Y$SLj?$VI~LU&8{8{IE!jKke~^BIknP=A9&dM+xG&71p0TyK!dYY_>8@9TF< zPWo{9^yhF>7c-7hFCA5$c1<@i+R^#r{JmQxK@R6;UhUq<14fz z`e~wOkb3=ED_;n$Ju@ZP2pOF@c|>6PS%|bt{|>D1XU+)#<4 zfuO7U1phZsd|eW#VORg!Gm}X#00;A_(FnRO&EF&AdtFq%lYXT;%j0?eAkoof9{mG?3XH#^f5T4VnYu<)O;X*=arEuS>V6fHn*{$kaXx=z$?t9OIRapf451*=e zu_N%8t?8idm2omZ{B_28-Ms#$YdZLB(dEmxPz$fIMU)-PG6+|`(}k^*6%{zOp8vjr z{>7;iVudxQnF9-7oq}(jUp&6(%12(5$U0|VX*pB<7dspCBQ)m6f0_*;1U$kbKy`pk z8V_Wj=d;4 zGrp!lD}TjtO=N5azFz%=$V??JNK;CHdce{HT~fWbVWexwWN%KMl(SxKlazX{l{kJI zlIm>Q;h3?(=xa;R>wuqSa`{k?6kl>jE-~CF##b|A_GdqTQ)Wvb&>wD6z;FyKBy~hX zK*E5uK2AjiftTb@#vEaG=8Aml(hxoQ@2ex!%3QkCxZn2bT9hok0ZZ(9ERJzeLW&Ps zn#qh(pN9fkdyR^C1>zcJptoxz!-`a_OgdDr;Cp>d za-I42Ddi9NKk~sUB6MHd6D4UlTW?!!-%CvK`KZ|aV43z)KqB^O8Yw_a1xAN|Wj)dfrnTb}6+f@1l;9@3<@K z;sTgE>s24OB@atGTOW1zslExb`KV%g$Qo0n1gKf7maHk4OR7E2K}lFNJ;&#X+Q|#K zM%hk&Z2L^RvKhbi=j~%;O1`*vT43*fHTFR%?QoXv(AAV;a)XyX_j>-kExmq{R~={4 zEzTqBhF*WXoz)NVT|FVM=|+?m!fbc6+suP6YmfM#dm3SC5D_4?@2$yQCwTtu=DS=z zN4EiF-BGsDN|tZG#Etyr@C zybZ4J2HARgST$?SzHVepPQ|#TPVi>opSRA zIb!bin02#qE_8D!A`M}^xtj}{feY2mQ_tfk+W(oHWge5ZdjDqd?4yx?ys*r#eK{p@ z1#X^pYw7y>wxrv{vWep;Q@Vx_vP^z3*Sr`0OJSzxSkvl7y#Kkjh?uM9VcSW16G>Qp z7cWB+L->%A5A?c~{Kq?OFJ!vd4J78#)Y|RkzAn1_Q&AORB`%@SqiRwmc9adke>aWziX`m;`+_H0LKX9j>PB6DnS1aw(ZR)^Y3hPws$1M88s_mmJ;_XDhdQW-}zB+?A;I%kyyz?F&xy0 z+QtPS6C`J4Jw?Ey_E(6EvD}_u+Q;o(Et2e_?+ASaFxg@JnU&M_k{uMUZv2UrSuN1w zguCB6gJI|!-Bo*;4RWJ8G;JU}SC&!R+KeIbgnGA}@H6L_S<|X}8+*;PHX!jHB6GM{ zShRWmpwC!a8eOweu2J4SlmNT^d*5Hf-?>oochH05E@U1?RLHv?u}pDO z$6}S=6%V$0d%dL(=?)UnA%A>4A9{72V3~h~#|F6SAeqL%XWLDtcSIeee=JK1^>{U@ zQh}L`+Exl!KNwX|{zt>Dfx1VniQX^c_|7 zeT@CO!UNi3NotN7eok;orMi5JVM;jph^5@~{t@k{HnG3n;dr*5F#+XX{ip|va6fZ( z{VhdONXtc1ukz~^QAiVcfhDPsvMR{PE2C_6A>K@xhkqU;CI?L6j7X^jnY{aWb-K+a zhK;yEJ0D#1Al0G`$+@Xt8vQp~mWW3(eW%;%bK^MW;}niP;+sGtvI4=q{saxdrJ%^& zDMd}$rWHJ*qGCi%IZ{X2w(O18y)kY+hf-dO*{t}u*L6(cX3@Eq{2ObtDLFScmeZ~^ z!17;_lOX=^Xe#cr$#` z47g@0^s)*lQKGXeAwe2_3IkTyd*T>E-Zob%c)QwJP{`=E9Yd<07 zB%>$%RG{l+-*CQ}gHnk7tr&3nxaY21pcTExI|j`aVc+XepUjr2&on3I1#D_QPWs!= z{K`Kyt)4+vOPVw{i8x0{W;Ad)9qLa$7c*X8^VHX!v%TY%)t3;{nPJepnoA}54Yi2? zn-m4Gz^nK9EAQ&7NNlUPDV?VNoZS;v)PZOrG`Bl3ijzY4o}P`l1EamuM{R;UUoBb6 zet%5}KAu7)rE(#8l6}9Qt_dd{v+bsr6bb)&Jo`@rqC#PzV7iTty>2J5nO^Q^pcDnY-ho_=26lNpbv#L^7u_7XY{Jm0PA#j(|w< zTFGeERas4L>SL6G14R;~V6xdvjTrBwAG0CBTgil9Nqh|BULc-D^#sZ@!>qb^P3vOq zt)s@Z?wMmCV>LM;u0b`yqVR9INVMpXm>0W9M&m7NG{W!ELanGb+OBR}3|%e3^3V4P zr0J??ohbW0{X~zl79@1w#EB*0Jpl<6yz^F~@9_~l$2Tdjet;Vnfub0`emBSgO)WR? z!ai6MLfBkhNVrpeF^_FU2kn_LHQe@kvN@!4SP{CnS)JpX@Ct&nLf1Pj-blm4SUg>d zn9T`f6716fD?WQ;v!a>PBQe+n=|Paguf2;!TcHLnyC2+Bj4WS!{nN8864oQi*Fv1& zXH%x$GNB+kgou^@CMVisZ&zy1HA{6N@_JcUZ%5YU(Qx&-A>h*AZtnAe*CrdR`{wV$ zi-wDWmv{b^;w;9gS(iuI7z>=coR92WPQ9%QIl=zMFzx?&LHX_fXNg8?(y=S{7S7@y6p^{Z@FF8FHCm3V=;XX3% zoa?P(CMPd)6vL_hY6mik98}lEyWTUB)!B?z2#shwOIrs-t)LdsivTRKT4h*ZJR5KTHw#;8^c4 zJNjadZwIV_@S*D<@IJBHT#Lp&AC)Jvsm=yj1#=`y0HX*7az^#%S!>8zxIUMl?F(su zy}i5iYWO2}yNArcd_O2efK~J9qm`4$;>kn2>MU0pZG_p`63%o>5fAZ@vr^ac_5Ik) zZwJ@3bI7-GblYbldsz=ve1}@P=f9=aNyp=G_(a8>bIe#()_)SN+vU1oQ(?Jc`cWo0Ue?xLNaBla(o@k8}$CP>BY|zYqo68MtHAWv1=JY-V;_F^P(uLIH$i zQL~+=+7UaS?I!n*0mIY%QFFeWlgx2~H$~E&ce3j+`Kb?crz?F)y1qC2Rr`AU_|LZ_ zOXVZ8u0@noc~1T?sTv1AizE>X-HmU;jzj#}Xyrr91mXs|RySa-`GeqRXVm3c&i7O8 zUFoxV;xP*XR4on)G*7t0Aklvp8?htjn=J!k$r*swb&TKryecef1rO(3x0lb2ooDF7u0cCEJmPA9>8_O0lQ|gyVojbosq5?%td=OB2x;>1`cuK^zsD5tY%_ zy|xV5yL0mW)&l}nSiJmGJjNKj&j5*^Ggsj_SGr`psbP6;jE=;{?r6MD&54cEJU5rP znOMqx&(3xpaRE3Bk(`YzcNQG1f3b}azMq^1yApIRhj!@b0@Y{xt?pAlLM8X^ ztmN&jkrgerkJR7nyn7q^g~DK(DsBJl;Mwd=p->UdY|-mk_C@fltVc3xD+Kzu4Ft;h zKC_By!Sv?*ebg-wtRoU}1b>Oi4R#^8uqisvn)hg0eN&#>M)Ye)Y!ZN)O%T$!0eEu) z`PF3hBdfecjJ$S7vPp`y_E0uhG_>&_4F9PI#q3@ZR$NkvQ10IPwm4u2`zKPWdh9zo zzT@lgjzmG6KF0m@eM?SKu9ac8%z(IMQq^m&&r-Q?_#drVYoDYMY-x77g+*;c-He)) zL%P&Ui*8uHlWd}*BXL5FAk{(33~r^RE6I|h(ZtD$YUVJiIEro|Ras-!jqlFb__#$; zE&}28_liYILJO4yE)JRx+iC9N-pSq*tyM)l6J_?x;lo`nebW(*>4H<1cgYdzXeMX9 zk`rlkfW9^4owc(n2YY8{sxhl_K_Y5WoLRcRiBOT`Pi2o9LymQrY5mmA?KzQ;?^PM!oYk* z`0zk%uqMlN8(T&o6ezblUNY+w8d|F*ebK518Hu`GO;{{<<+pDIt=AF!I}Sik==LI` z*h_nJ!knhvrJNkvMc;GtI`>y3O0n+0^FRJGT-$mO4ilh|Is1f)3*p)NZsA`k{y*_K z*AKi!N!a3Pw`31rjgRG{*);f8keo-8^R# z%O$DSqapoA`=baU0m|8vRaq4Qj;a&k2GpeG%5iLMwbb`1KX(dO$eZGfFw6k~pJ<>Q zXoLl~Ih%m{+Z&`o!fdKvv0Hy8t!%lrVq&8syt!QbwMbi1HZhTIaa+|w2;eI{D45kq z-MN<+bSqGwm0`rB{dv99^&LP3llhBK-wmI>OMV;Vkg_}Agz8DJ)|7K=;(ud0^yjqm z5MK0Ek$vb6NxjojiJ(-*rdL702(Y}z`14J~v&|&A?J3r{ct-!fk207f}rcHpmJjIj%EgRF$8K*zI_MxA12P`jv>3!xk@%iHWVJq)I zO$pLg$mg0dbkbm@Pc;7viFrL5szNoc-A8C9OQhyp_*q z_)bj7mh5IiT+*HliYKg%f^O` zg?`jQ;jv2dc)ujq4Iq2Nac!^`^dqI1>zfU+l|GDz82uFzMJ)z(nW7jqo9ROt)O(Lr zUEuCqfPG!3PA*dfliVg0X!d&o3pV?$&WaYjx4^qnHW)U0W@NJdSmu{LJt$T=+X7 zya|ao)??Q1bJ~UTDAm@loPlr2%k~(3EgQelSEEA`i!?UdArJ z`dYU>Iq~vf&*V$Vqjg=^WY+!Q!gwi>5(E3^tARAn<8P-$RZFJXbN6f4j2xM5G}hLN z%Q0kd%Gk(FX1MNLw2m}Se81cXou54lyO{iruX!cnzx#{o?4)9c$B$8l+2Fkp{YLMk z6NmwqYJ6%AjQdhvx8CcMm9=(~A@oLDtKi9F!N$c|FvSeEUOH27nkPom27BZAR{g&- zISO48wk+Yz)55&vgN4Aecbxel#5G$~X%N+@jd<<9o0b2w9}G1l@!0$>ZW%OhMRj`I z)`I^kW&4A(?PZ$I$=VP3tMg+F4-{BGceq3NR{JBaC@I+J?_SMHMoaMaxdyapv)xaY z^*x=^eS*Uz50XUGd#o>f8JN;sU35kS+z0z89PxmFc&;`L^yBCQRsqKD zt8j9Di_11FB`1_q+Dm*$FNu0Z5||~EX(*=j22uzd*j8p?rvAlhy7en26qpFmmGJ~d zKh{!qUIk`>q-cIbS%PR%a{Lm&xoP>_;HDNHTa~f7QMj^w-5d^XcCpT`=u)u)7;4ox zc6tbL&njZ6H^`sb425ZP)BrQwy!gr9vqaEKfK*bpSE)=Xl|Qh4eAq%$4hY2yd;ezX znD^M5l};Ek|Lfd;`3BEXNc>F7YqZ@TZwqi~$Y%b?OQd^T8MfzS-m~u9U%~H?w3TV} ziLA2PF-wG=FjWRez2JXfx>k7cN*HDd;fKUS9(Z#S$x4T0%q*^3{Ws`t-QwRHw{CE0$2fhEC^!#(gqpE)EsDC{xW7-?~_0>)?qLD$glU?5W5K% zmuO^U_pdCWLfYbdVtBwX^QEkj?AUe0(@B`)m&kw5^rk%^fA9AWX2FtxRy3j}v%!X* zb?-BYE!SSXapY&0Zo@o%Jd`CCN4`Re1B*0bbqXJWGTCXg;bew&sl9MQw=IrOq)AFQ z+7VrzD2%(1HF{pDl&+}d%f57({U#wVAiHGXE;k`ZGt89f={$F9hECkbiYkc)1{x)9 z>x}-0)v4ffydO*3e{8X>lnrqbVAlE2b7cE_2uOz67m$#E1|k{F9l$5=CNV#tR!Q_n zm(xv8%K(0Cm7R0}0SgT)8oYYIPkm1C20V$II2*I~03mQr1Yt^Ve3{a_o)K(thbtqs zX_$)$_M^#ctcU;RrZ&hMFu!MHJZrV~TkVlVGu#sYWaW4`hkhd!<<~2axxC(N_c)PU ztw(T@PG`mh%nfyZF>IH>qw19d>$6#*C6Y*Mc*r6lC9R)c&@0;Bqnv^y$-nd%2IAlC z?&Y>(PKhw-A{LB!u9-ATFus2kb#*esl5PiG5%YOzKEm$)PQ)=V29ewk!^0#5SQ}^B zS04vn{|AOqA$6^E;rvQ!44X?X_{ zQKTrXET&K)MO@Y_xlcz7dc!WEjd&|7uO$~UanLaSmVP8P=e z>M*2zQr2pIFwuqhxKsBs1FW&UdZc0(K!Ve?QztOXr?^h-uQKs6`-if5jSQU14(cRY z1bOqf{`Ea7*CXW{d5?6l}!CB>`uEE|M6$4S}^<*tm@yXX(i z`6vz*{9&&ApBxDahyT>uiY!;bo&VMXcn*G++TJ%#_sOvE;U0?LX(4JV2bvGp{d=DO zkL}nB7|#60Gj6ir$T$*u(U=v?Plc-8H+CbGUSaPrnA5PIVS910^>ZMnLLUznU(9<| zE{E7hwzP3sz5E}a-z!DjS9t<{iu{g|e_9Ew<~RbD0c4{diwcz|yK7bh;Zn9g*N_`f z{}bYi_i>9PUh%K_U_q~YA9HN$?|%>lDl*anIb9~p2IQ~hcFxjeU4)p8^_@*cBM2Vx z&cXL00nL$}c$29#c~-Z4VQ0>mY;bLu9s52P#@w*bc@v#X&O|O5vL2hF)vT_JV1_?u z1S4z`rPLlwcgIJ)o)S;2uCs1e!wCP%&AtQN@KJ}^+3^s8x=(}Gq!h-$whVE}*l)K{ z1=YI9L8Z7unqm@VfX^W_#CyTXdc8Pk!k3&M;3s8juE2kEU`%8z{lOF8;AT-ER<$OA zny-(E98z_wWk1oOz>C4(z*st?cRJ+BJOViW_+;&h_-vTOm8Nu%0uNqaDh@@ymKagd z0Vxl7(WR9!UgPe;Pz3vGjDWfW^hT|BaDUVr{yUoj#P)d;ezkxFg7|dp#^mg-Pn2Xu z3$-#MQ;^YPVI8O^6^n1g$4f%|i<^VCu>`9t>jE)y1$AEp*Q*+_sSk=qbCI!Y;Uz=C z;6?$H07_&54BIY=au{LIWeuA0xEc3bi^+^ZKS6gz!lxrlU^^Qj8yb6|?v5~fOKb|` zO(EzrP_WwBiICfD_!yaGumE8-D{BnxF z{pmyJDx8_U462{hmGffF>ROC&M3o<$+|iTKd$HTbQoj>@Kj@8P{TBlhOnUkH5lMvr z#VR@zTI}BH&;lBly?r*4LmPH6uaCPEw(BI~tL#ZJ^A$?>QVa-m%<6yhHur zQPsf-iO{1{S?ois=ANjSD2=H~aaRGu;uI|&KiZQ%>X*S7dvo8qza<-XRLSdOfKJUu zN-1l7?~Q`bbf3*32~i3X?EQQzOy1NY=j(#($l^HmI5D`c0U@>aGzY!3l|0s9bY33z z0k{+Ab>Yqr<&$7oi_3|V!6bW&1|suI{GZWlp~p8GbyZqb^Oa_~c4)h5GE!o*)mr&1 zqsa&~BFPPG^Ad&d$F-uV=6dIk+lH5yyFXMrR!LySyg|1LiPI$y*52rNcx@;j?7>F9 z_$aAEaE`~oO>`&IsT$bh%{m(utUqtdhV2To z=1UGQW<-SqCohr~uBKM)x=7zq%rbvo$ioo+_$s9caYV-a?P2laOqpyKmyfmd=S1mM zdA@?Zn~iVc|0IlD1ZyX~e=&7rNCkPoVzqWpg2;5)dX)|jnjFi2VJHTGf5!lT0br!|DITk~wvk-&=GUOcb4H zIWA>MTGT+T-nZOcH6t3%!b<;P@J$FdVH*zJTW8|T9Agg}s$ZKhXCz<1OMV)Vgm#Xi z_19$swk@P??%nb6F_oxEEW4$E`YlPgCV|R7;LEe#l78NpZ-QpgY^;Q?UHf3qafy*W#H%ly+_oY1%m1p# zF8`^>Lx4)lP`mt~wP=yhu?8uZHiq6*Q$);ud#>02axp!))%M`lOgZT6x&X^kp?r3$ zCKiA1KJKjktt}(qanV7&%&vW<#uA7}M%%+)LV8o;o>l`nI2|qeR%BRii-04ZlTNKD z;W#@&EFB&(bk?R%u^YuH%SZ#K7?YTzrYLA*6}mGmTA7W!)YCI9Mkl` zbyPTHkQM4K;79hnolna7+~q30>>sYsjDq;h{XiQdpN9D|jcaJ$$G#h@3xk`Z6luXk zWIl*r?>t@UQ57=}C$(tGt0)CHO=3u3`t67;>$}LU+CDA&uRjdUl(vfi$ltsT9oT>i zWo>35QQF4RkRz}yvKVSdMN>x-0@vCyeXgLLYlc#d0UKOUc`o|{@f_*H)S~wZRdOF+ z(xO+R`yMB=i175hgi3nEoBUI5^sIKTX;HfT@XLD6;jtoHM|glSr{;=ulrWgl58yUl zF~ne&kgPE=7o6|qa61jZsFjr~?N@*(M zqd7QNuoAA(T*%KV(rSX}7#NFH1xC3T>AdA>saem6H=0-exCiY0ksajYaP#BlODl^R zaYqK!E1_n+mh6x9C)QTdnfCVI$V&_9?^*vbogi(|2-+z7BarN|L<)FAB0kA#pYYeB%ABsK_ zcy4O_%E9o41R>-8S%#Cpen{bQ;)1~Q_JwSL4@~S~`xZCZFZMDjRN8g;d9SaJkgMHi z4oL zT%=W_#Z)fAL}}Zp7OwI1F%7T__y<4gp#sCGsPNf}5{efz>1PrRH*JgJ8-9+4;f%dX z8|0D$8T1Eb3|$9W(oDL6nNXh33=9KScs4g+Wc&pt1ZOH;bevh8_)JAn;w9XoHXa!? zx5mSn%{ar&)Sqw}qTQ00fx&#Ub!yC$9o+F&$QTAx?(Ob^($CFIQR@dl zUb=3rRd%LpLpGog|Ei}0X2@}5f!6WY`nc8?tz&(Aq5eHjTaciI<=V*6ePB`0P;@Xo ztlJ+jgylJcJbxk?8k^XNOPl7)SnV~ECl++E`Mpsajys7pOOof?9wa4uY(eyc1?AF7 zukR&Gi#iS$vR+-(I(7dMmlFxrq>rI=?W_jf|2G)Nx(~A35N)Fz$~D~n|MagscfvQ` zcqB=lcZ%RpSBc5JwT{#lHrQweOGfsKKd|KqvoME%VGH>=wo?dIe9WEv!9 zMu*qsl|JK%^0pa=0u^LJ4u zYutxOCrWrdHY%W2Jsb{U^x^csP=?l!FXh8{u9I~F1Gyl#rqQ?h3}K`Vld6m1)-W#G zKLM;vrPLnGlkYDWryVhE>X?VDUE@}v5??7iDe@L5&8X1H0(r#_g<*Ab5I0#WI# zJIm!XeN>(>ZM>ixwgX#fDzi8BQsk3C#k4`c#YN|a4UD6*JnG@Cv1sRS!q&PR46ay8 z&7Hq95fnt`ryGv|Q6(a@dmN?Tlb#$txWzE~l0^`qyo=*=Q+(C+Pcp?QDa(|zV9KBE z!Ga|~Kx@?NAL|b4FUUEAX`Kc_TW{K3H0YUkhc@pTsty+5d)kwS=&gLJSXYt;w64Us zL#>i}yb>1iFOU@IXDu=L+&`4~n|qZKRE2SpP*cDNl!PCfP54-ZW!#>%t_iwh3DcNU?zf~Z8TQ<4hXuLOsLU<=j zKR*Xi#Z2Czy^!Gs3G$NLf4k}TLPaELc6_Um=c8Wfh!UNdfKdbNj)+t?q^hKy zfKS`>PZkMEid)&&Isfbl-D&Q^#!(E*>oRgWTL$;r-mvO-8ptpGl_Me0O8i!9+hMu4F*;3cuoRVzq=|flam5)| z(Y^i%=v5>65Zc>yjn4f|BC5i;O*gWFT*iqT!ZEQpe!_=c&J-8a)ZVf_z;-a4?O>&y;Xcc!a3bXselWVzSof;0*CCC z$mHE&Gtu|CAHjTbLksQ!@WP~cmx0Sn4Sj5vBapIiYnAhDpHn0?JellO3wPlV?;Oqs zHjW-v%Ndfvix6c|BkLwOJ?ZeF=ru6KZ01WaY$Op@fHw~UrJ%QH@_WCXFm0C67u>9iYQKKTYl~yWg`?$e>Haf zbn=AE)@2R55x?kt33$;hnVfc{-@JO~t~X`isgHlvhOVTL^cMr8`u6*;L;|Pbe*#w2|FgDMQ`1Hu{Q|`!e zXD*b)Y>Bt7$b`2|KT-L~vk-&K4_-Y!ZQ5Zv>QoX;lrcTL@_ZLGGnfSLuU+kyKi`r)~H5=9I*0{(2rle^pE^gBw_4GTn`Tcwqd)j%d%3yK7 zxbV%(S?`T6glJDo7O}$@EUprUqRhJLB$2O`Rp>l{Q5-PfMKsBl9|PSdj`6stlr436 zm6t{bHByVzJ*F&uMUTD40nd&g)my>iS)nxPNnMb1n{w6L z_u}hio|j?2uC^Wd6s?5XfUMi^eaTz}B zQ7mDGtbprA@!=Rkg-z$TIvtpa4~*2kZn4?*54fy$G4elY|KW77gVU7148*XOmjMv% zWJ&PgWi236I52fGB1PlwrfTPlkFPptm)t|KcEB5cukd!KzO(RX&YiW+fz%wsbo)x+ z_KGuNyN`bSl{?)p*7Q00OMwc-cT+=61pAWicgWcld!6Mrk(od$fmBC2uI(5V+c zN_VBdB|9ZKk|!zjS*w7p80DkL^3~chZUZAneAqTfX<^IOm@mc0_s`j!Zgi9s@osMv zLViV$NR>50H%(X4R|{7`wAzuz=aS{XTgHW4_V|t^lV-C zHNMS7^OyotQ)9M|1F0-sYIg(UrKFP6?wbu!dN?%&!!=j z%l@la*X_})+3wGrhk?(MbnHt)8dK0KUVE!KsKML&Tb_Z4e2vQzN@!tTE?zxYSQ6xr z?50g*!O-&kL+H0O899EC$`zK%tEV_Fs z6_>-sD=`wg0UmfcLD`5Ay2gy*Cn3I;cmmM_C&dh}0q3_Adx39jcMS&p;u zI3{rA)f-KqBrI|ymj&`-f}P5^u!hjzs7X}NSgq~$x!m#x&rtDg%L%#-Nw)-L>K7)3 z-~9e7QAgo=EVa82*~MN9&Blq$w*P@lbr$wwzM?JSuv^)`t``bd=U>_W2VC75KoLk1 zy0=jkw^AO2C;(vu5~x=;ninoSg8wM9$LD!Ainj*OI}kQt{Jb(HK*uN{cv}sfugXJH zw}ZKmZvwTVqXBr1r5II`iy3!B%V9n5^XoEa%a(H;^8wMP zS%zzV1e?)(=(DM+r5k<8P@;O<#O3!bOs2p$E2Z*^8a4jc2s_HN4G;gST584kbCpLk zzGajs)%i{ZdTvay7ufWm7fMn-@S^7fZJL+Ni(97gvJ-U$)zfcd&&Xm~VqHdWdznSq zCcT4eV6u31ipt@`8>`p&VD?+3HTrdJKg7_qvMKei4kUlcxvTcjj&uA$u0dUg`fQ*} z&`y3I#1J>Ge~t(+Mo7a=K7J`;9}tP2yA>ZAoRpo6dJ(1GK}}?w@M~$_OgfU@OO;6% zh~RJ)i0AMVpjh$B!^8k=eDwT^M@mrR?0OF_RgmXB$9pA8B+?a2+B7T94@`gxrmq`5 z7u$Mrb}A)E*R*$39c<0lG{12#ptf7v0QK-cn02l{$&4?W4CY4hKwW1YV9?p#iN?3h zP`NaK4}t~czinZ7A%LRxvDX4wq!6KNQ^Hq)1ei~|8e_KdNNThc`9sjP5sW$X<;{*t z?~%rl_FrNfO!d}y+gj<-V!cAd6|ILU3HohMOa+UR`8k0m z>PiBUQbt0&bM$$k^E39-^lVdQQ%6*jf(z9qG&bX;rafzGN>@h(cAU8o4dSc%Qwk;I zD)aQhwB^L-_diQ^&kep=Mq8LO)_w2Zstw!NL+g|?N~9~lbu|00IqRkZiIKZGT`ww> zXhcqx8>owy56`If~~b zyJqt~=A~O3xQ&Uzncd=!5P)GE%!|FhtSfpy3yd;(rj-Nh9i+re+lsm)+K2)27j!cL zIu!h*`W?NWffqnhU3+g)+DWO!I6^r-d9ecw4go$-e0f|@oWlQ`At_fR7C-D zMUyHY!WxtPy1zzQdJk7vKg_!BB;8l~Y|XMS&(XO@ z@p%V#c$i)BdJ?Ae@8|k*b+REx@R>O$EmKpI`BcNA72e(Svp=X|Zx)=~EiRwU;)Yq1 zwyRgH@*R{dD|S%ScyoeKGR|JU<<-sAJUHMQAZM}1dxdA{fy_(DpVBS_$wli;rw8>1 zu9R0lm(%!_4zry$=k~~gb!J|8TT6c-49FNv3=9lO2+e)_a7iiF`Y?I5i%1^|`Qb#m zFkq*2?a0)5ou`O*uH{h~V$?sOl1?QIT1^ds0zsR2=AI#*1Ug3*EfVzxisjy98iz)m zdGFq$ag-csql?ZZPC8O1=)Ce-;CYQ9keS8hZ{O$~Z{6zC(5yV%v0$@7z#xQU#VK~= zLCHP^pLwL$AaDv2CaD8mo{zyZPdNdGCYrix-f_kw2_2oNOSP0vL3tCmxiEANXIZdW?|ib6?e; zchYDvDJ2P$KK_gYB7v!iCU=(NZ>Xp>^#UpSY?_O=K)#%$JKKI~tJk34Z)VM`SoMY3 zll4ok+uxEIVW+e!&g?k}?JC>!5!XL@fTItIiBjKGoTXbX>A^$olp6lId*i(;Qi1t* zui-7=W4N0?O7(6?Eql20=wb{hFPSDLm7E*86UtQ^^evIU-Z}!#^F~n(qClq2|AHf7 zt3eG%H&v3Win(pJqiOgRouM*s&cI4jyn53se%7(A``)#ok=N#Ws|R)-t{p)mg$Jbe zoB=X}!)=X9O|-u_-VO8Net*zpdkRRNHPm?&DW#3H5}cuTR2vG*&Dsc#f4qshq8$u`>;_AoI?A=aysb;1@{ryc07)Dp5F_OlDdd^9!V zN>7axYK0@LW5c6wH{_Crk_e5s8Yw=a=P*$D)A#1+#n+$3sBJOoAni&MyodJ!S&uu# zITXcOSN^=WSRmBV@b1WD^pO$!o9**AZ3NoZre8(~=AP^Pq$?p4DQW2Sif#FuXMq0s zncQ~~=tQq#^Q-P^^6l0qm#3-J6sK2}WL+`)VOPTq|8-;;Zvo7`cg6_?&4Nix%b$A& z8Cs>NvRkcV&3xN$l49_W^_P8|@>!`9a*b`DjeB%Q+lrq=G*~5Y$IyuZd*K4zGv2I$ zDN-Y@DlEhfy@CMS!~=kf#=*yNalhZ0Cgy@Xjt^OY`apAg!F!C%QkYI$O(1Tr-|#J` zRjo*@f@aGjwfizzyaOS?qUJJe)^(o!bR z1)%;{6TI4UF`QoC24(weZ61$gHfNYS>VKilj9?9nY0>)OkY>Dkf0IG;jO=zs9`+GW zy4izr?9?oxV`cQygBfhD6#>X>q;V-*hb#3w;X=Jd=Qq23H8tFW_@DyICkOAo|7$q5 zHZ75rX~o3w-tgWu7Q$d(AOGwXSUrujzk4yM`PF^yGrX*z)WDZvGz%}^FsoSAsr{jV zlU@DV+mz~8RJc4_=i$3(cpb$`MnYU zTH=Es*_qu%I*EiS1xFv+1&3s(_JF+zIutjD&n!4h6WUwrnZ~iebC}jlgtSsg=6BRF z6Rb5iqjgd@YEju~?6sO#+4}0(|JDMm@-#lQON%|CE=Ling0m{h>^NwneM7DAFLUFlglUYNYTJiN<%l9<8XMFN8qLV^Snr@O%J{6TK60f%Am=swG(drb7qX z4bA#2aa3GS6>jLXzolzCB^_-(eE+NSSa%s$W*oLh_H_a}{qG{77!>|3WCNEiRQRMM zElidGxq4sSNY+(2ed7G(Ul+!IF@7ikG%??=cAzx%v)(@W2Xh*j zLAryeQ~cFi@4LGE1}jQi+CO`^5S%He9*XC)onAXYl1PIKv!nmqeqZto&#S~j7B_ar zsW_6!%Pq=HQblfRnsoi4+jCW&>Gefak5!)O^M9_=8+WyR_ym~%MfE=Dqzdo*0e-Sx z9sssndTX!x6OsU&^y^+7&2v+#m_~2)DTZ*UB=&2+urKMRKyV8an_0J~jRoRL`o4qs zQWkfuAz$G^N)O{sigMt~^%v(TrU|+;ryT|;O?UPvkTi3og z=jgZGyknI|G%fJgd(P&epMQYuXhba z>TZEdEjfjr8i@T#`rB8e2J8U&9lw_Le(i3du$y}}Wuw~}4PU+O_h9eK_vU4##SOr- zkz}V>DRLXCvl<%V59Q#WaV^IomYb4}N^SXJ<3Ftv4eII4WloRuKYu zb57g9X;X{AT6;?X<#1adz6fMR#2Qrv6(&-)p3mQkB6NrBZa3h(| z6NVQik0!1gq|-6MeA$IiSoKC$)p4sZI|xwO&~^&%zMI|9>z}-ndjBfW2>T+*42_+z znh_V2GHKzXUs5wT3z@e~4bsccMm)Uc26n40?^!rk{PnCBmdFNQ2>_0vc~UOkErdDt zxUBD|i6S9(o(b3%SN4a2lkuo-&w`7lFQGCokNX;M<7=2~;9Mh2r|Zh;3*vt?358O( z5Fmm0xU|n0Cmng2O#WZ+S_I0@msUyxa5GJa!iqk(G@9MEieVT?wPiJ?*ya1C3pu| z>!MGgMFKg@fY4~ft>C3`GI@S@9oy$%FdFhcmRAkunbjI+i07^*=&(F?6d3;un>+=gr?TxKeKts0h8MdA4#<86}$SQFdOqg2({KgD<0~!&sN*=h>Vt8}+UX-{SSi_D_gyTKM?8>lr*Zosq z3lk}4riQ^Zr^gG8bcxoUF`T1&m-@gnxLxb3yQ?Uj{(|A#XD2T_JUD4ycf6<+itU4N zYHE+NqWe7YR>GaSyReYzSnED+K4=Gp&pqmZ@?377x8KaWx-Iv*t_-4ov+)m(MuZ%o zq_dI-=oj_MG<>fI%%jwvo@<%yVRapA3%09&IP9_eAxP(rcCAm_N!9v~3((aSAD&02v8z z@?HQ^);md^>~R8InY-N905E&0p)hk2fBaj1)Qs)o?bzOk6S5LMd%xv4I2EVvK_c!3 z_>>Y1@Fo#OlPjg)7<8H&G_vQSWk)_`v>R=Ye#bxl>$5TOXEwG<9syBTQ+aZeeiW3- zTv@GF2vHX3YuHp8Z!IY4vpj;l7ofo2(G(_?iK;mK?&%~H%#U-N!FyA;bX3ajJZPZ3FxeGx z+7;tTdfUf)8|1eLe;$LBFo;u5$|{mpGwuY1TY=>Gsb2T0bG%;iV4F%fu772}>A-N1 zd-@>E$296KQ|g05z&UfX9e;ux1H(P!ENkos&#EB5{lvG9bZ$e;S6{Q+K`Q?cry4Hy z^8eie(IyT|hSQwiPu5n1? zjxpz`fJZ{*@<5RttFi5QFzMf&vk3WI{jFoOhZ2`-#JPi=WTT0<7sVZ&V z93P&N+hD?0=fD6j)&-xAubU-T(d+aeF#qe*R-gPYuD?D$CB*onKqDb5VTkCiprSU< zNl*;a-o}r!@`m?EnWC2qru)AFjz&G_{$3@!-TuEhC1RA}_hUj%Hr6nqL56o2-XpW0 z&nqaTGjt@%KGVvgw|4*8SA@mP;JCd|lijYiu&}|f7B!WJnOQP%%vIZ82w1d_t02cA z?Z^NR#@(Bi&>&^i`bV5lG^;cJ^be;tJu^aJ#lTxuG3hqwyOa!p18u4q?5JN{@jwwIFqm60=|lA+sqZOTcz`6_9`>iXc7D@$oyVnlF+Gc zMijJrLQNt*9e&&V>&T^Ehigx}?pr9Sj9>rSlv`-qm389G3bRV!>Qf2lzRStM zpYf?>(}^Vk13T8_{#&k-v(D@6`=7FH{QSQ65VPv3jmuxGnXryq{=g3Db=LL{^|L6@0EXo`4?LgE0(5!Nt&3s!`5vP(GSryqldeE1<* zGjXd|{Cft6!|fR#(iT;Us1l1lmA4>abKz?2&3f?j+~*7o`!;2TUmF_aw$i1}op3F#Ec*V|wCz0J2xu`?c0iF8uFuxrJXB1MZEg@ly{EdLU=~ zR^4jkdHfeYN2j3auQzO$x@vFG9p&hNp(AAAe0PxZ&>i`RA`P-?fgL$L5uZREGr#CA z%FxxRb2{mqw%IuI>IYV2epRM4O7=4Me&NCgH(n`g=Xs8BhDjKI677%}iB*mI0z)R0 zBVeF^WUnyVemZ9Adv4iP6?Kb8_w!6?t{sei*6;6vKJiXBtV`}nI+6>W_vCXSe~hrW z-1CW0Fq}P>V2^CWr>aGGk?X9EzxB&dksy7XLl%NCWj0#y88%ZbE2eIf*7oXav#&VV0{fzt%9G_THj;rXDimM zd6OTUiWcXoX;ct==;~h?P5O3NX=rk%Y+NNvMcu z0t-(+kLEk&#vzOCwIBLrGWYvq%5mDAqFyEOPl=Q!=7C{}7lu5dRLkk8K8plJdEt!M zk63joTk};65=Fe>=P=GMoz8-^@V-Uo0#Uz5#PlS2jMYhV4~?SERZ%#9u!v6&H>0c0 zHQnv)r*mPE4E_+7&_06~Pi<_K ziFnCS7^Q^^MJ;u0Izrl>hH=7qgL`6f?U-UaU!EI>Zq^WpY4I$G`-R( zy(KaU`q=q*{{+>WK5KQ<-p|M=@_}TW@Y@RXKJ?3IIB?~Uij|03;`hEhNr0YIHA?6Z z%k!H25^l2z`t}&ZBeUM z5w%0?tyYKDEMluo5?g4i_KFy_V~60E=Q+>$o^yWx=jE@sbAPV;y584-K)ks{z+0jA z;~;irB5ou|2IZyj;Q73=)0^2%^(Qd~i{n#`#EbiHW@za8mX%Txr>VfMeL}lhdr)8e z?F-$)`@xo+sXM$FY8xO-*3T7{=&url78J2x+&4G3tia?Gw->ulYm$3GyPOzuRR#Tv za2qe~oZ78y;_#|K4#DSTL8#^L?v$F6VkFd*x6M@&viL`5-%i5+Z;4mhj;gb zDtwF2V-%7I@)ZAoa4GI6c+@r;^*_P^Y24aoYApQJm5L{g*jCS_cm-6u)p>W8ydMTQ z_3%BgDQURZgj9OQM_tL_vD_F_5q4{j=26UBp#|ReUc9};f!Wbs-|;&7-}Omf&Gl|j zCxHE=41aCF>OmKP$E!e1&%g9`!zOSBZBs2u#lO6MA;3kz2dXDvt}~8-4!W@)NngPl zz0k1289TU{RtsYkk%)M)Ma^>R#oI98nc4k1k~cy%CD~TIEJq^W1SKqL%Nq{JUN(bm zE4Hh>@iqQlt065{-VQ}i0DkqVlM9B)MmlLf2diKKBC$lD&c|n@w+rrBCY9HcS`zTd z;sDek#H311XSM6SC)3{!#>ZBoAKfY<)+3UAI=lQOs?FYyMvW)^*%nwMm0P-`nqlm% zNJb~HhEnrHa>JCK;qAwXZ#BtkdM1*)v;&bXM^sST1v!3sRfkLp5t_#=S%U}-@-0$u zsK1e6W;qK(Cj{q&g^+1=i9#U=-b7@CYA#^r)R*^r{P;X^+#kfJ?R(B{z@=_TwfMMB z=c?CyF7RV=Z@2OzpzBa{69Se@%Iwy9JbIaqVY)mdz8e1wU&U~weYxAr2RcazAPKo? zG(Z-Z@fjXwyIz(7@b2yBec6@5Wp{NbC;{qqIP!{r`FYd zg~d0to8f|mDh?BtyTjU8MVY{&eXx4gxhm0BH4Vw~4K~=Nr1=ox(x7U%I*x@q4~AVU zs8w9N9kkf>*mLR?H(WJ%i5;7N_6{;D3uZHM{`kMG+?(Z89F6{-aRt&c7k_oTo4(}X;pL4#zpTXRS zD_RMUT?M|Sx%BRnj9orTp^7i``Fzus#CO1tu+lPbN+eq=&`ywhIWewj&m6P1HvedH z8MyyS$})VDf@sgpx-xXWXNRbUyJ43>d%5vbOtSrslRPSKV*;t;knsY}CXZh*Z@rT1 zN#5zbhEr78@!5*;gfk2XrVIgSP?LEhv9t0?z2nFZudDk&YoD0!Ztvcg5cqOa_Se*( zNY?%FEn#_3gI#s+s>|Un?^z5uFB02O#8Iz2=Mw#vp&k=sm+8;2Gpe1({YG+83?Yjm+BFd^4ywac;^GsEs|V!*V&&q)YtnGYIBh83KoFL9B?Ea3f|zqNWT zR4xz^vipS6o049PN_ubP`-v#fzOzyS!Bf?yb-?p*W4)$FaHqR1F3>o5WtTi($-fJp zw--P#HmT;zm&G`KdFn@WDp{CSeY(t{@Hw7!%iObZJM=WbUfwU@_Lp(DDPBgo24c5t zZ;|aX)NCX3;nRG92Kx}Gls_FvYI9HgcB-W)g|BodbI8G9-)Ni>*LFZMP1mHNhe|$0 zCBDdY=}$Cp+uCaXA$#xwg#zZwO_GYrpvSJ_PCJ)6j;$Sh{KmCQ;cpJN+oa)Yv_Zx? zOx{he7>mC30q<-^P!==j_SiXR?U|!g5xY2~DM*x~KSrY4+7xjeR`%Z;Nu%`7B|c~N z-wWzOHoSx6haue(ny~_B`Bhd=xlB=2|B_Z4e;Fi5ocjpCg*OMJE(Ku{ zqq<^+2md@;=YVwhd^ly=M>(oLL&Eaj1-`C>=Yn?$v^f)>Lylg6A7%iZbScWr(jjVlnQ0`;F2(`Fj?S>zUQ)k$R6>@`*x|D=79 z>M;(~yjcdWizIJ;4)_AoapM_X4BvJ30$fZ;(`+rZl9vudX4$T)fD}N zb6D-`8?P7`51nLr0&}cRWs5d7`Zum+h(_{yCKHIG!0UFYsH>kvp)Ri5i|#Du4D}K3 zrdHv-7KJK^Jn@7zcohTJ3jL_wCbA$tv^Um0VaJ!xqQissvyu!Yi;!)KmVebO=mbRc z%50J0!x>c}Z5DeA2;XLZ^#;L(12(C-4^?s*MoxECazXH2t@nJT`&4?+K|wh4ipt~7 zTihS$dyv(s5&<}Er4Noi!3h&@T*>oR&}#9Ksg}3YYip7X`1%(MFiecx@}jy`G48t$ zE?nsj>}OUIq^iC=542Etx;%^}3lY~M^HCn(LhA$aC~l~!&$G4(4VF3g_{EMdV4{1J zpiU6flliH84bZ(x&>!tFwKfO>32Hicgu7Ac*3S1J1buX-D})kK#pC_YH*C0%#W!Mn zNRVl4WZ=z`olB=D|43HO^Gfo~;l-{!J9YY@MQL-~5 z&9V19KLsKK$nQATjIMu}27vmmB0V6=$J5&OOz~z}BVbFvV#R0avlVyiZpxFNLGb0| z-}QPr;IB}fDh4mR=sfdVbX`Rno__5`2_jlJMgk$*x1t$tr7x{2e~LX`rpKBE_bCL; zY2Ikc1fkJXSbpD_x`C*OZMFvi_FQ5wIjmVt?=(-Crn^G;)nsLaKhfCzL?#1z2HAV* zmzyB&$J-CSqKmLjCw)B&ymO|^rrTJbM)og3qpRnV&I3)UMX_~unuGk?a_&{K+{cw= zo~?~+P-_Lv^V9O&n+e!;AWQCxon(7>-|{4yTpizxfafhYU|%nVQV%Yh&BCnl_q*`+{E(_4#QYs5&DQfoFS<@2N9rkx*iA1Viga7ueFihbv`UpbYcIRv~P zl4K`m`{tVhUUfrtHwzAL=Rm6sb7$Zo&K4{85We(RafA4}*DN!GF)hO0@`S`D=>{+J zdVjrqUcYE2RiT8GjlQ9nle_LXKjJgG!oAy9=7#KeDre3hmuR96Y#^Lcn zEt7jo8^2tM>nr)+r+6Fpl>%%|GeOCD`ED4RL6FhZQjOQ^6B{oZ6rqtIx0BZFEQw*Q z(a8s?BsSfn+vzhV1iYbp9xxTSH)1%Zd${$+D0k=9ym9`sqxqWZVYzu+^a{!^DPTlU z|9zEv*IMX}@t|=wkSa2M@7)PId-I}1BHAxId`9}^Ma|DF!o3|y|NSwL;UOVfDz-a8 z@$Q`O`YPl!Dt~RhMTE|}_TxfLjg6}Rnil?piHs|WNa7Uo@2{i3Chu;I@iFSL^F`lB z8C5${X5iS8#l8Jx=epc!>-^=5C*0F{MSF2!jW_H6F9FQ9nAd}_oY^xyPuOleJX1i9 zsW!^enM*fh!LqcTP9MUx!S8`&$=e#6HEoP(Fa>2DPjlE)IJvgnG0%EZ9SmPy9>Ku} z-D^9mJvOuXegb}&&f1l0)&se=Cs7ICDT}!0#r$X$Xv?SQJvkXy$ghJK_`NeFWcKJa zAMIAHL{F<;2}DBqL2{ID6!30cBFs@tZNz!2UURLpgA}aOHghQB(>(BY5K^(H{K;VF z&U#$wqs0jv2gFVZ+~FHkgEBF{VtqxUisbnWP+GT^Z%Udg<7}2`NvVN3F4;xj&{yd> zGPEjT!m_b?%`7WYW@YH;rLF_J{wx`y$1alFsfNpsA`~Orn|RxF5IkYc974aguu^c4 z#dWY<4`w4l(cG#J()HjRf7>{VVg9Smi&Yn*-l2Si#9bEZCr=~%hxx>ZuC}Y6^0j$u z-J@L~#TsB8#Z4RptT5Wgs;;QmxS!!v111N=exqDJ54wks=CnxKW4Y4e+@NH+FsM?= z7vuft{mH2FfwO5H1;2ypSna0i3WDmYjy~30$dD7?VGB=OrJ#=++!$88De8HlZa)Qv59^ulo zXpnQ}4SMt&I=hm)SJ;i|g~^)Ue2TVmMHHuE<=VECFp)s4A{=rWN^dD~a_iCjrVei3 zXWu2clcRI6#tnbv!hCY*1Z0pv4%`OrVXwggy<^voTNnnJN9T&CDiJH#RQw6uE@x`y z>j0I3RZ_jc>TRc$sW5=e!TBjL*#DQ~sRmlo5k;pN5at4zU z>$IM|673B?W7x8@$Y-7dKpEGAq8l(|YOgCzNuW?R z%{RQ5q(C<1t5!GW4)ktius^7ksJvwWe-=M4@Gbqa+CqQrqFj>VT2re`qn4!Z0-u)b zr7PnJ2_I2Zdgmd;sP%Q5pZ39&j`X}ADJm1*VB6Or?N@f+Blm~Hv|g$;IBW2O=<7b zutQ>WG_aBwdDS2qtt95S#fNc@Eh~{bY&G$~-TA6lAKjVfYX$t0E%ud^Xev*4SHm9Q-=I+Mc%Il7m5XS{9S71@@U4Llp{$H?3WdK~r%!r3l&4^^Jm% zhoIH9FWByai&Zmdhym?6T`&IQPPT95HL!)lts|m9_)Ty|DO|ohh$vG z1F=k$*zjp(IElQu+A5|$vr7G(_6%)+Nj$dpocgGVIm?qm&&1UD*$GdN{QoB`7ILcY zxx)%S)ST(zUAW!OD+2B1iCu?ElGdXv3JEdU4)fuWh4Tl*2~C$^s% zyM3QSX(o&GXs%Ehfkl7Pb!t8ZAA~N5LBuSf? zQSf*UJlmqvLNX5V1X9~3wN$JQen;kE5Labj2l6KE7P$|Rj61HI37OtfDNKuhd#S;) zv~iDBm$Nj-^1i+OoT()ysS+CTG>7gc+hf#(~4wpbo;G93+M@`je|-*I%N)|IkVOH8KriNK3w!scpO(EAP= zO-DOt*F#779CtNMm0=S#DH`hDK&^&v9=Akx*4W#+wIuohCwKs+jpVsVVz~pFuNqeg zn%VG1rn*WyZ{pN9wL43kLq8_a6B1-pe6#4GjY_2EwPc+hPidENLkIf^A};e;j{)*j#xu4wPLJ8Vi$$xi zj|rK+mtP(xw&FnJisRk`h75da5vn&O@t)Yz7IcFIgaG3M-L)cuf(!UIv;2h~gR!w% zK01N9bt@*%j)Mxw?!*f`n{R}S*PVdGMoVbNb-V;VbG_4%De23ov8RQFw+bN)lsNLr z(I(i6>$43ZtIf*GAEA(gBezy)P$dQ+!%L%>zWVeuOw;bA>URia%DKxwpD4cOY{qzn zai;h0VBPo$*{6KVf?4^BUcD1~1gE5$zC-?kBNxtS*SoNU_@W}&7-=_XP@N(@9sl^u z%f^0H9nHfn%@sg5f2>4^swZ$?9{x~TQm&HQA&$v*`VmxIEB}%fp(X>aI^mx8x;G|U zB>g%O9mpBg-^NPviLN-Bs$VRfx0O%KW9tTWr+^{%8me?WS;Yxqh|VbY;#0KKF;je> z+hI=#>8*q7QLPMn$hPFNccSCpYrb5tQpyp1zka1G-=%&MM5*5Ogz&4z$rK8f>|@#A z-1Cc7Zr!PAqsL{M9zD-_F3JCLX@2Dn7dq>+ml>q|$8_K6SV zRrXa?*&F6(nYvFEPq}%BOSey+* zRNiTeUl05^V9vLP*qD$qlP|qVQm93o4Ax8ne9aZ7JO0mP1<3+VX1+Tk$DwcE#BnMK zUfANru<3AXmBP?QY^)eIZzssvGUWWw^UUfPb>8iiJ{xzYSLRSiqjc2jXpGyRnH96M z=xx^LP&)`)(3k^c@e`uV)Sm!v0UE)^us68x^IIRmwdUFn$$@)GueH5!Z@99xTEhJ` z(=Mhqb+ms_Qp4GXZfI|la$<7Hh2*vY0kgvvZj9N8$HsT<)sVkx(`SE*Ci;B7%RHaT#%7fYQ1AmS*?)%de@WuXWJ4>oWUpG}vh9~?`R|LjM+*#}SOtZ)t z2q^Y7ujw`eH1)n_r9Ge&aw}ZBIa%&zf6!F$y#&q~UXm*%;L3|AbUBFjgxUH;)s6ud|U$Qk0E;k`0aK_F&_m0s3aCP zgg0!ua$Bz={r9spmiT5C4bU)clA4a@Ix)ZERsK>5YyVW<`C{(^D3pOaxJ?L(C^cyIYViv1oaWT5K zZK4Lxek>C61vu$`Ax>K;JQQ|=jQhIijjov;>tFS45@v-@4bF&tpR=Kv!=?5TaK)VU zW4H{%hZj}7H{P?vF4%|?;=j}AqvI!p$ZC3DJ(7{4@nB&*$=!L7xpSW;vci7#4+UFS zRXedmXer=wxej4rLs}+UWawPGs(8;Y?PULl2Wp@|mN^sX6SP_Zw?{XYc>e5SvcLR$ zrZOu?Gz`(r;NbXzj*FKH+Oj~roqus^wt3Wgw*HL?k({OXW@XJMEKtVDWSeAc)rWDT zf+31weC!lRH^`s30;DC@PR3=$)0|hA)|oFUOIpl6rU{t`(d~J<0!Z+>^|QAOv*f&t!=UMo`g?FZNIq8?Yx|Lk zlj#XJYe?#hhN{P&`SE~2Ew7WD(?qN;YS)VkBBoUH`kBZFz%}JAjurEgC)*$0vA1ME zao%4@AjVk7T52XG7Fw9+f*lBKG?mm`m7WK23JA|K<8qio&P}CCEemjGF5StLVW2&o z%^h%GmR)Wfj*&Bo3U8sNx2@1=`#IG9`&mVr8h=wZs9*vX+(@RBff?8z5(7Ld$&h>X zQ71=UR#iq-KB+O$y?<*#$RLgHG)Jm?&a%UZ%Sn7Qop1lz#b|t+vKd~(Eb-|vuYO4AosyfDXAo%@h@UgyK&4 zvch@caBqISlOLJA%O6jUr9>mxtm z`CeL0jkc>&YbNbe=@)u)d8$oZFDO@Ylp*`n%cA%K_r6uPPK3NFkg7iAxsdh17p=Iy z$TbZlU)iCXU00-bo!DFj#2y^P_qCPIPb-SYaB|g;za`N4sQ=4-yZAUc{T{h4?vfk2 zS!N6#PiXh1$!J6KDL5JdF-;6ebl6L+^*z>RZ$O2s+5*!yfwubgry*w@pD_LB(Jf;| zO5unv+_jF!k_FXpP6E9*H2P!Ywb6{@E$B)E@pt>JV;(pmTH~6xJ%`3fZN+d=6YrC| z^Hu6cE}8VND6g|v*!H`hqNShbv zvA6sx-1q8dI)^eRVuFOCmb8Mh44MqMSNJGi&0%yXf>yHv#<(&yN@<`btgO~mTAbXM zQFW`liDQcfr^{ll5@B_J>weyu_o-YBx2@ucSN4Vw$3zNZkK4D}(WD?4d&B#pq;qO>aq6%H7qDro72CX&QHhpJ1M2&lfP*7s0RPd%~EkbW@L?p z!-NIjvWFsVu-cw!{iR-wzz=u05kWrjiBwOj*Q;;nVeeM*fog!6&{uWN*9Q-Ab~%r1HE66)>v~wRFKYG?G|eIfgsp*t+FXL1oDm$I$_u% zIgIHyG|$Uo1G~No4+W`H;GBm_31LH|vaEtHf` zp2aHx*s?Ak+{Zl_&$sC2!7DlC_j-#PD$2gkjCmihr_}W2h$_o42wC(zTDB-#Y*9@| zqq@&$Cfj@J<@KEuQ`eGX|0vhmJ>ts&VlVshTdx57-q+hfe{vmFP%INpbRV>=`rARK zo5>fAiN(~bi~FaNgsruHH?{(?GL?b485Kp|{9>?{sdWCBT~_sH1|H_U!K$zn-1k{isLtt^Z-Z zaJO_{8n|5lA7V@()qz$>t_ON2B3HZ;4&4!x@t%=~8%_u9dQx`}6Y=e+d8xai7 zF131k|KB(shIhyv&$GFMF7v{#d#v~JWa~$1(V;|V|t|pvvaPqn$flf7h?E0Vmy*UsX#Q>s9cl_0VJ6yf(wvh53V)s z?V#Mivjpmu;O>(#dgdx;O}=;4{KnUk90KdTr5}(e9KRJ1A(#{61gmE#m-GdCC+|YX z>Ag6q^R(VM9Ey6Q~CD&nvlhIPlDX3o*`bcUn3^90G~hcBNqYcW5YEEGlG)g+hs`N5xBb530{M;8jo zr~1jz@9G1l2xT`k3xTdAyb5FY*3K$?&GsoBbzRZo%4A~+BXY&KS$n!18F{ZkI^17w z68uD31A2M(C0%$tYCPV?=Sm3Q`{dD}5y#Ok2>K;lOm-cc01eV)zUv)6NJ8L~HQlo(;JaNDGyb!|FxQK?L3#Skdf^ULg32?V zg69J80&`bsZmKo=mERgSX=JK!WmO9eE0i+ZwD4AQos$uSS8*U z;d!N3wEf{mEMEo>>$Ti~vvu8Xz&||G_?|aYP%AIiq39)Q9Vn>hAD~yEig9 zuCk?LPy)*vmgEz*@*%*JMN?$Xvz^Gy9m#g4>c7g7*1He4*)uhG?N^WUc_Z3)r0fp@ z+NfkPph4Rq_n_#G-`H6(`VVXc7Y9XHpUPk->h5>rDr{e(5@T;K{TR#SJ!`j-E&t~h zq0ADxzkO;=9Qw+A$00&bBURI{8SI-BpqnX48p@hIrWh3kE)F^84Nd0H!mM^Qp7BId zf0dlPcZ>)s7VDLsV{}iA%COWi{yVc3DpIuGsZM$ec82^35kr&*)_#Gc5g!x9O_=;* zTu{!~dBfm$Iz#HF%1)kd<2g~K>JOaJs-@UDJS zqdX3{*Bn=bs`UV5md25Dj|~n+pN!+*p}`|{Zp<$DcC!g|fnmI#E^|VkR9tr!POU0T z$^vz~CnEoYK7UWjvxd!bm=B$q30qvWr?WJ_sy`_12e28qjRU@tqK$i&P;7AAALvQ8 zC%uEGlt*xC*3aQf3Y4p#fg}|+D)DWlCgd@g{FrTO*TexRA~LUzULhwgx<}hM(u@D|`RS%N?@p#+;ve#(i_XF~1PjbWDXdoOo%C z`ye75UJ!4pctxe_(pL8gwYxnja(r%?&$*NBe0(P};HRS(vzPP5TK3AoHX?guAI>Dx zJ~vLMVt1ZF;y4|xfQR+t%o7|rt-ak@L4^GN-8LJ`{C0T8*eY)Pm_yOTtFrYtK0JT_ zv;TOs>g`|h2bz}|5(wP;VBZmi^VIn*n)baw{KyY2oo*)0_(U#}IDHA&_lx)`_mKW$@t`{?FyA)Kb(&MU2?C835C{>%$s0 zBxw<$8ull$wheosqXz5%Kwy^qDt9sI4$^ni-qR>;1tVohO}~j(G_X@w<7_qFt;)R7 z9^rqvMSSv%70A4}85|~E$+wsEHB+jxuvzCJ3(G{rg61}_-qsu#1oUZ5kOs2=2}!l5 zS`aSjR>tKEeMZj3zh;z$ipd;?CaP4HOEnfO)H*n|=V8KQiAN#N$Rk`ey%;akIKNt~ zd-6?1V@~w5P?Af(qfu9I0x3$Ya@D6ycjqG&g%b9a!h{t!a?GxaY(mrL8NRSQ5qC|) zmv5CCyOr`w+%?Nt88J&Pv`CbHc6%Ff-`#hW@vM`TI{xJ!E?O9Ja4b)(^y#Hd0n9mX$r}?^obNH?uRiDpH!ph0(aOSnzU4P2oMUp!+b&j+ap#m6YVMZfn42u4I9!xPL7EO*&4D(ol47YB(g<1F(6{UY(#iI*5yOQUk6NVao`4;oMK{|oc+gSZ)c};sioF#imn3@R0kXl9? zA-;ZLU^SSs*lA(orhX8tAm9P(#*E9Gb6M`vo4DoXD=Vi}!XL(_Yz^BC1Wj`++nQ_f zdm2nj?y9GM{d;mQakq_RHZfACAxnFX<18Fd?@k(Q+7czr*XYfVh@q-~zNed4$i=}e zm;H(K>x9qq=Q@KN?dMkO2AMIs^h*4iacs=1K^r6oZ{y@wGDec0&|F2}Pv6Z)qQWH; zV%!W;a0-+uWB^!Yn(pGwtbD$^D);T6&1_DPuj!kj^%L#iQqWsV1I)<8DY33X{Rp6- z1N|c{r594KL6s@b0h&I>#X*`+{yy-`RYA?2X8OhKqx!H0I|H-G0P~v@Z1Imd-Wa6? zqRQpJY7bL+!)gym?eV3(*vlCr@0+^GhwWZ8{x8G*CCh$xJ(iOl%hc8X#X4F^_LjAB zRgiaLK)sqQH6Y1`4bJhQvB#1_r5W8g$2!2CGrs&7^78W?nMNXV!VLt0gGK|<_A}TZ zyrNzD>)!$50%sNL-_yGW0|7MOE7cwlk}yn)F{ouZ3ylza7dr9E$gwVc%P$80eSt%& z7Qq?2TGk@%DehGU;yc0q%~~znHGB5#m>C!S7PKJZ!KH9|`Pl{=E^|e_4U%v!*^jZbupon#$TDjhe+OPyyC5aLu)EkE3p6yYi|Y_{}?Coa4AVFvrn^1z9f#%#A068zdB+ z`QeC@N|R`yRBI)aHLpr*NXhQGe7ujEy75lT&xJ123Gt$XCkziyB@Y6;?FaKe0e3AL z4RZalx}F~-3_MQAGNQJ0_%Qp~5n%hL!!rh^`I)&eo3jn}lJ&EZqm;6%v7?#}a33bi@LgLs zLUNQYMLv?(S}SOs32&Zo&(=P~?b@S6ZAS$Ny-Y&6x+bt5klXuWiy??-nv+J0r|^_< zPtLEM@gZQN_~&!q=3zEP=;#KO7Y~mt;J3EniCcmW?NnWSuR{)su|Ou{7CFJ9-I4M> z=*Jh@gd7_g2>0i}=~#_Zo*6IqlJ)Bw6))1|XK1vR_)bFUA@i7-$eT2Zx28X*QE{GZzKF)N0XlcwZtoA8`CyNlD)NHzUPn*uF<}}>m21~_ zYNkEuHtW_t0dI55(t%aI3f3rPNEDF+#~x+F3D0{~h>=if&BlF&O5PfyTn#g=-{>BK zLqk&&ti?-9#g5a)wrCYw+;k`uHV=edER@`Y(}H~?OnpUju5Il)wrM>@YS~f=VPLD# zA2ID(3V)n?R)?;MPq-xnN2vloC67U0ob>bEg=H<+R}2UB{+S0M$FZC##1%@H!@8j1AOoKHt@}bV zH49$~ZlMr8HSdd8jfhjuNu)po^RI%R<*%Jv(>u0nPC{zgLv0 zYSrl<+>5%&4X^=iOyk$qCN*wJp_%71`di9e%J~c!mwpf>S@?cp_*#u;1BhuRzp?bvlgaWo3h@d9h0O?Z<=iwB=64cUdwM%2OHAxejJk0u zBQnO@Xy!|oAy-|o1U@Ga1%-6S@$Ni({4yy1DymGLgMkc?1p8$Lc0@j%Yd}2Y5L@Nd z> z{B4&v@&L*KJ(Ae`!0Q^mmg9FYxtzRqA9cfbH2Qj1S-G$H<*kq$`+Xq2NP1%wtvS!s`|cA zmwI6Ed;dy;c{*#a`*L=6`z}Q#LC7FgD4@U=uIGPsNmfge<9f(IDP)f|Cl9w`{yo-e z&r*qwqqXOF`CdTz*P)<%a}wG6hSrs)9|_5M35hrxFD|I5{QK{f_ABh0GV@-wgRAkp zW!*V`^E6eXQGw?Pu5uO zuK0vs0k(4MAND6H&G7Qy1J`*5s-OFA$oYCaE=5&Q_FKa3Vx)9!^kn(}p)rmy__t6M zr+tR>*N;D~WYc6gs&8nOsA#`9J$bd$-{^dfRDon)U0;9X2fg%0aEFVHv7iI*)%XHQoMdh-Vmji7 z#Y~`wS}t&ClETH8*Dbz*gTP>H8_}X5xRZX?WBhqM?3&l_#sL`#_KmKnV-l`QmNPU( zIi0$e!`(1}#?p!c)cX>CSKDk!CNo0EcXr)q9;wpn>R&bX^(MapS%&Z+h;O8Fle3sA zL%AisJ+5rp&dPVgy%07vLg503Zbpv!fjJ5f>${`hGS^xCKLcFD|jh~SkD$(Q!>T>J{1 zA8wGLi*4YhEJ{gzE8}M>(IZFVz!58!=D`{Y!3%TP>YJk4NZ?6lP0~*9McaKFs&_lL z;WX&dl2;8J-FNHfyq!t*^c&p!ikNbwZRo&x8@o7Fn!Q%kctGC`7c|BI)Qw&ZCP@Sb z1AaA(JOy@To-aU_%?Rk9b7ERB%iu|+FT*8E-lnir^WoX`d`GASILV%pMILmyGAa9T z?RsT3Uwc{YH=R4m5}KzMHU3Ly>hq`jv)>Gk0DgCzV_6=+6J`%vW$d~lPJS1uGVSMI z_Q*IJ8N|iMdoDl&AIx3q`~Eol7sS5hZ&)XD*Tu0r^lrv>y?+tAu59B!v)6!;amAZv-QX%mPwiZK670u22 zHA4-V{fH0iMDb}8&o{-k`2+#s={K3I9L2)8S?waTl3}oiNY$Rpk|c31mg$)BT7hW5 zWlXoRKk)Oj^baGV6cB7ZNX;NZ?I!Srv_-N6?h*JVCOnSfhxd0>tYG0 z&JBx4iwuuP2O+a?V6^0_CnDJj;)M{ju)>ZG$}L-oFobeHp$g7;QW-!I8ka>-^1i;E z>dm10Dp676g5Ns*3@6BeFV~~R8Y?kv&WdHqaeMhFeI{P}hIQV8ZN)#!=hXr*F`1;t zGp34how6EmBlNz`mP@CP1umaMoR_51ThCmG1|EEgy`+4yt;*tJ@VmD1YFeX!n6v=P zhG&}4$Ip>ae1oMv@lCEq+8C$8%Wc*Afpg0saf(dxm_5e&9LlEhmQl}Gv{gdgW~tl; z>u|pMek438BrV7fl4svm65@8J0I{e!$aje?LoXCr4g|42`#p7^eiNsRmT>l|9LHJi z{?b|mb8Iy=C5R}DO@NlIFKk2~yO#uS@KHR^SN9fJb>x1sXjIzo9;fKlaLU0%>V$kG z&pFIBp}i)z|2lv2ZvoMIc(BMrQ{=b3Sb}=|U&vB{B<&_9Rh6XXj%frwRi1Z~)?}FAwM)$V+3o+8kNn76CClS6S?z+A zU~P3yDzSMt=?uXSo=2Ax#;pV0T9zf;W7yqWWViy}YPjA}lBrlLWpZ>BMcV{~Fry}T zKQuQd$5Fj-kV!F)2~tgNO9%ktrerqFV#;eHo~V0GAI2dCB=5h|XEsoJ(`lTr#{Nvh zk?IMl#>pGo3(KZDdXpI0wpCpx{W0toqqLibIB-@%-@%8^4R}KJ36}dj5>iP4gKT^g z#f`FJhn)erRLHV->ypM=`8+JGQ9K$jK2md;V(m57S1$pbUF3`$p74X?AAG`qq+W0# zuNNy_ua<+rGLzwJdMcvMfIA7!4cnyhx>M_nuNT=tQyPKD6`4v z5F7?H*9!VJM=*r``X$ZLmU}IT(_|=$Z z7vItOTSw-+&ijwukUm_-WJ0+f07@UW41{~J?+1G2_XIFk_p^lHHL!252c+WG=5j)a zayDl&1cA;PQs~O&=^JGZifY6F6oPawHy^I7Q@(mLvl1f(oTt&GALsn5g(-8hC|-14 z0T5jB#W!b8wUMx5WRq*n#ga@vO zUriiMukg0NIw05DmsVMB44RfiG*q8TlyCmQ=r%7G=Z&WOYZbZ-Y)EI%QtyI}FQZ$P zuO8QwZll`o=F$o=WjkM|xCPb#JaT&KQJSH33sGEbYEj(qz3!;~oy%71i@#$p>b}?0 z`4p=UjGYw=$5Nz~ypOwE{E&)`r%#FcaWAM~=4|rJDi;|-R5cT!jy_j0$j{wBYu({$ z3*0&`Kb)O!t@o{#4Hl&Jp-pPCx4ZIpC%~JD1(}RCw3)27j~JvlKOUA&$eyJ)VS$Ki znlTu%2L5axgnnyvCBs)hm$KneEG(o=yMLluiY8E6=wtJDi-rB%W7u(WLCn4Q$&#}_ zo*rMH4xh!}%wCnWr}93pyT(Pwa?1;mEKxJi$Am@|1fQhhKg$ls;5S%M^={Kk*#?3A z)@Kb1<8Bi^x^H5=+uO^eH{nv3W}rZ{EOhqs^!|TR@*@mvDOALQX35xNn|*}UX}up+ zcfJKA!oX^`)gOIT7Ct{%l=>=zzSlsYVv!w>Axs24ZF5u-ogIy+cGN4DA>D%_#DiQB zR||4rTATdxyk^xgUpe4ye2_6TOo{0=$T2+X1a{fez?8UKgJKM-PKoy~SRV+mwp3$7 zRT^iy+D8D}Sos(-@iz%?gRBlkYaAHoo-5EXBNFuP|0-2oCjf6uo1Kv|_9nZD7!eZZ zztGs&p-XDsTwK7qIzTf{_=rb%F%!;oe#PA_Dm)Oji@bu}NttxjV$SKzaR06%BgRYL zp4zTM)M(Ub`B{*6*yE&CB|B&Gj5#Gc1Qm_1i;-2WLT5gN?A&$cm>b(Ix=kC!$% zUokRqn`^5tUK49_aWB{P&ZH8b2UlywtaM~+7GI6(Dj+K8Z5BWa--ObS2(0#tp*c){ z;E?;xg*-^(q~;5R&*W#KkHu^Dg~H0aI*6-?_lo5X#v91D`HtP_B)z|>PfnfBwrBeac@R&^@SUMk_*_b-iNST3jo#V#(<_uV3ZGD`a!6Y0<<+(`O6HuJo8&qJ|8Lp~mn_cR1$Q0Flfek^e7zfKZArll2K9WwbN!>aCoYL;rG&Np}|H8-CABSQbz$C1qRmaHMW@UALT z=v}(JcO%v`n8R_Bv>b9aO=^p9k6#uuLAB=( zyfRcjnfu}wH2ZnibOb-n>EO&q9tOQ=5hfGwiH|FHGtIAm0ct#6{9!+X7n}+w^$SFZ zc-?wNM~M?*{9SW5oVPsrB!Q^@90=KGqXbGXGlH1!win%45;x?@-+DX74HkUD(6m0n ziWKZ3L^Rcb9Nf6#okKO1gSVY=!o2BFr7(>GKmk};+ti_u6X|H`+fe*PHNf&C;()US zuGl;5Mp zMh-;v_qj6tOq3wMm~v<|+${sTQyhHPH(z#p*XY}Q@fVI!qV-V|a$KiwgW~#Wd{0b% zqas050*S@8tfrDB$1layI4@3Z^LZKp+ovUiXMaqvTmZ>m8Swbml`?X};Edka_N!{c zHIBhT`9J-R`-GinC$f%s1_3h(Kki-E4m=k!yVr)c38cPa*A4A|CiagjHdGs>^eZohOi+cm0`?<^C) z5?@XpWd3$Nfozoiq}#Ay(GgJOV95?+Th>n5CQ%TpC^4>+CVnJd!hQhY_u=n%t%)sg zuZH?IhUoK!(AUjE!{6bLrK>ya=EQoMd$P=3pVOZqUV5CwO}#nlZ4)P73y%cvD8U7x zCJhu#tPgxFiKB#qxZ{@d+%=o~2Z<@f(UhDezqU)EX5#m=t^rk+XcDK?`s}z}?!S+H zN8)77r1koAiU#t+J#*NHUT&ue^8k3=cM~QRvJ{B;?CgZ!LV9NhXU%Jybv7)q$KX$5 zi2*9*Y;me$zS?+3UgqSXVf@E4$Ft>Mv3Zt3o6ROB1#$F!nM>_>)WG!wJ30HZn>5w( zaC=zT@8zHJp2_ui^SWu&>TgY`1b1SAixIB9qYHq(=1moog9=v&GCnG^6~R@#Am*nvwUY&{=!S#p6$N)R!<5DjT`Cy z@lO8ZkiwxUfXR+6kVmlgcHjA{K;k|~-q2ET<&S2VIHLHb$!))v4UJl~f=A(@(A94& z=MI6cd^I-3uUwTA~<1=zQ0E)Te-iguXp*pa0^`!OyDSZ z1Y6?_)qNk2`02;0e0X6uF7no)A^(@te%~26eOG?kqPNeQYO?Um>i^^FtHYWM)bl_xfbErk1do!7V!^Z`vy!??sjwPW)T-e$^JK!9#7Z z$fMXQezDOa09mYCaqDaoi6K20J2Wo&J~jRCpZ?ESzOAY>yK`C|=WTwl)cA1U%JR5d z##V$OLRMv`X?GxI!lf1Ld~)1_dzf2G>np5!4>B&*yEIrh53|=&;d~@)<3M*_N&X=5 zHJ^wIHR@?eh>YqsSALWaZI0I$kWu0e{OJN`WnutDhkIWKu1)P`qfal=307$?7OC(qepjqyR{>_G^l&EQ^rsUg$zD|vAC%Wxs}t=k*l~@ zRayO!02a1W@v<5#w(;96Io&#o-cb2Lv2ZrAVoPWgZiKN8yfVfCvXl~qG;yEDyTy`CW?+p&n>x!6Q|9`i>B$JkF{kM$ zfjHR-1Mww3}(A+H!MfUR-tfM|WzS zml^gGYP9v=AR6~yD@SIf9j0JD1b{ZJB+`#*7!;%#V5&3C(zrOa=Lg-JyCM6#OYt$S zXUmG{#(@Cnq~GO7T$866>(20(-WzAHSA>XijF+_*7Z(8+b{ug_ee&y3+e?krsDHB> z@p2?qt!r|`U`K@(t!BSa(RDZ&0pB2%!?(u>BW!^7$>|9>4tdWk{Z;U+3am33gWWmj zzyCBacP^2cpOw++dSWMfr@=QtxfQaV9%nKaY?ldESY4n401sC@Dg!ovyD)ZVJ}sq# z$LKTBc7FwaMa%URv749Xi+KFyK;ijp4A5y?=-7YNK(RGp&={>S6~T5<|7fzKc0O-s z%jwye@{1vZ36)t=-~~t?-gR`;BjmQLurHf-``$uVhjY@?Xft&Bb|~{@+NIDYE!B#& z@?Ea<(=t>2b5~D0?M2JL3Y@xs3WUQgc*#HpBVB9Sb5v+{I?UBr)h{6DaF+p0+Xttd zvtGCT!@KwB6K7fPqvy%H1iNY-W{i7iGU`Q6osRiJ-~#R?Nd`0IlMY1})}9o?iu#Px z>n!>x+vMOn1n~Q9FD4L+`Ot~E$pGOLtMZ~N9>am8ehU+SJhE8t^QpJBXOJl5i0Hh0 zgJ@kx&{TivRR<16XW?G3D-TZN;3t@y_?Tm$faRuf>+L7&7RQ|-zv4IAEae{e=0|ny z8IO&BvOB4V;h2psv3kj|JsAR)NWJIh`1>1BM~FS@&8@;=n}JF@F#~poTjYmtVzeRn zvc4ZzamX(GS`+8Oqjx7dM5{cijAhIxjImD}#i8o$eVE z>V_;;D?0W3ybp~kh*=lCojf``&K`E7@*5om^QcUii79hT{x4yIg3|}d&F*v`M8Nx{ zyTPycL=a{TPjk600_{6# z`6RaS^PK&#^>JzYe-Imio@DIRqU**Y4Ud2SUxZct2f{{OA#97qr;GCPvq+zlVba6# z%_|>>-)22=DCgo~i|1*yj92S4=$Z!?-tH%8fb+f5BT(Z;uDbJ84%ruB6$);-5CA1y zMzs$F0N}cy?et`=YM})>B`RX7_bQo9#_>k89=_Z}S zJf7?$Epzm&IvHKq>&C2Fui`aEl?2hKikmB&zGMn2$*-y1;$Z#I?SybmLsdfjiDNzp ze{bU#@4QF|osF(7s5q%1Dv9=B`%GT|RepHR-YTCDcef+&9{eAl!N6FTb^OE$ady$1eF=_eRg2y`pHy%~JH zWL-symw^_37_Ici)&f_t`{^9@^qiZd%3xwp*ax7pk|g%q2-o&PcGZ@q$ARUk61Y1q zkq9LqHb3y0>8A#+8E@wDwL_NH`Qx{SrPI_Tp&s)k(UdGuaD|1?~{e%ZYNr#A)o2Joc|ET&*?djhQ5(DD!28OCSlDt&J7;RUE1)(!pkMpURlkHhVe z&Ci*={Hki#L+f3#UuPWNg7wLIY1~cIaD98_@2I;UUwR@Oo;S{Y%BEa|dg*P+aBJ+I zUl)eb2sLlK2S>5JL3pxBw9H5TYlG!M#dt;XksmLbBT zbq`CNV7w%9CR~a%;+HHBq=}Qr!O4ZH1Fip9!RUjhZgmVaaOTHNbueGq^+7jpdZBAY z8f2v6G5|DPH4{z@vsOS?IJw;kKl97T5vGt!lS+BOoHz3)Oe|ig{hnA-T_48bF3qvI zKj-G$8lA&-FIp>%p2y6vHcBZr?ShdbLGixVytKfCME&*1@&_$*X$!N3{$!+wEXQn(6bUO-)r@oUTrg-Y3vd`} z^XSZ7p329Q(o09jqX`g8RE$X(Ec2BCR^fqW@_Jb@CpZX+@`&;khq7}+>kN~(}g7n zElXz@w2CnhxzI*lOqst&ucbiZ=V^KC&9e?Q~^Z=lSaU;MW6}Hm5X0lvG1b?F2MG4dh z3P?64TrakrHZz>CamK&KWi`a6iG5JB4~$HEkM;DVFSFH-TiAlgc(sI&5+#Bty2KA8Z;JkMNt3l6SXbo7*9h}U z-W)d+{~L2@JOT@;q9kb)3|<|G^{->7F+^le=~ca3JM5lPSAq78?oBY+NCku2o_Q)9%r-5CyVkyQcnKL#|o^1jgjtn8`q z2LB4P@jE>FG5Q}xK3BK5NdRt2@72sB!Y*nC?HliB#_kj@J?#T+S}1L0JDdzKHm{of zVj>5FjoCz*C*9_+y3OU8XbOM%mDpzRT?ri!_N2=Y%`t%3CbvPn_6vrxG=Q%^_S^sS z%(IgM8X(btCr9>vw3p%QIWMD(82{`==v1i8ew;7O zBgV#IZe4abZ!ESE*l24+B^fjWkjd~s_X0_G(+rw~ZYNLlAbVL@wG`KwkP_$f#LMvt z39p4hj5E2E7+Y>Ns|Bj`*68{R-n$<4gJOcdwz&!wJS2i4T&lI05Aym$BoP>j5K+5^ zCFUeB`!WL21$_|9=#C@Nw5OBsa#arz0Q$x$d5h#`KR-g27W{&L=sREKBY}9RW#+Sy zdMdYvzqneVNqs7==N4@Aup}R3S1i+0!J!SY zlqU-w&=3BR!52Q#NCQ>qVl4sUrLa0Y;C`4RQ!Z?DJa!r$@J6CBwA8DeMxhf!lwmLt zELpDdMtT8*Dj#oH4>H`r#nr#zy2%?kxDiKlxlw>;7V&+eJyFT6zR5J+Ucqwe99J8- zWzl%Ha$Jyh@tjqxn6iU?V}{^m^-p+}ucxhhJ!eOpDL*T=coeWdHWN$Cd!*q@)8;mx zsKKCodV?`g@kFEVemi@hh*f$JR@asI6!9-D0HHXw&&uNFD+uGoGRoto^ce1C`wZ_j z{ND$8tjD8vM*z9}{gDL6ipib_-!?m60QD3%lj@@UuHc60d|RJ2^(2>2J(&?6_d= zAkU@ae-pfSzG!*n?Hek64Q!DV946#kw5eW|9B2M)<@@~G-tC$Fa*cBIAT_k5;NaL| zV)u1>AKcEohc|VzOT{$(cyyDnBp_EMZzol~U%7=S^I6gh#NQO-6$7+UvC5bG+p$0c zK+}L;;2HC2U-C_fnU$*N;ytr5Rg{DjWIH0m4CAP9*eny3W!otrR@LI=XVv4=Xf=^i z^j!7D_zFeqN922_xTkh%z?u8HXP;?WpnT&`hY2A|hFWhQBeu2m!16z+vO8lezNZN- zMo5~_@u5f|A~~leXiZ4kUUfjz8r2HRROT3g5Lny6z z|As5SX}udP6=eO^<4)gsnZFd@G(>}^crPE` z;V>*iBMojD;b3`>uKyNWZRlU?4xMu4>ol$%j0>(IJcQ{dV_IOs(GNhoNI#7G;=>kY z*ors7P7pUx+Djgfv<-6ge4~p}V^z8`17-T$iExqg@@m@ecZoi1*%E>L4h=xLomMbO zIL&-KFZr)9J?5)2saI?)wNBBp1aJKxTlxIYnQ9z53r7As_OV>edhKV8%!NP!Hs2{j zi^U->gPk$wc%-?e`JUI%b7_p(%*m)pg|+hDzDRruDU@m~ikkboa$xHSR?ruD6x=1TEwz9jgZF>T_`6`D7c0fwZg|?4A{=HPS&{QTXWc#J*v470`WjSc@ zSfc{!7P3tyn}&S?V%)t?jWyYGDQV|3jWySjeu<~~f^gNy1r^%`tGK_-VO!JGBs*2X z@^`h2uo;HjRTF(Q4QPY+som}I$_FA!Ua*VPNvZN_YN~?V?|pe&AgVuPr*}On{+Fsc zNMUZH;k_GrwX}NUMD=T~aF`^DWe0b@sv_R*8ZtG?BA{0!58*uIYN*xVu}&KPYfN?9 zP7ea1w=oq}&L5{o#6~#U(@SiwKEV1S3h`jMYN3}VKa{5Fu$fK7$=8Zs zU|_P?)7U-A--1a@jWr3^SY+0!defIh^l}0VHJSr8TB>Z)-&BRuLG8XoE=QNXiO<@A zfr$?lG@YgTcxQXqXO|0A8{@~CD&2LuYd%knJ6?~edpdC~(V4vx7U;5z*62Jh|- z_4U+k5s5QXB~B#+#MJK|TP@d0iam3=Bf0A-Q@rUR?Z z!jvsc@NT*TKa)qv{V#lH0pv7W_W~TOI%9DNCT(U4eMM z*Bm*DF1DEm;UZ0EP`~f8@xxk7HE()rj?gz|;-4I35aHz=*poR@Lu&V(vwI?S6mmzU zc(IGeK^d1_R)oe~&wv39KH**2AXDw-pbJNPO5RL>+!)zB$6T}nCSO%R{CwMq@-yoM zAL7T;r__n4J2Sc^KMUriqp6N&!sPws0>MF2@yaiQh#OdMY;1YiK3(WMAPKKCXutTQ zPv-fDyscGzc8&=Td`!`l-pUC&ezAC0k<#vuVnhxTGM&3h(UDJkXvv#KkzUx}uqFQp z&QWa1v`l)2kvMyMQMwh)`Mp=OGl)KC>@!AV5G*@FklpYi244oei6dfI$b?UR4n~UE z#Q8nTpO^I1Mw>&}(tOl1Ii2r%J4R}qVy4dgJz0POTuLETThHvj3lEugI(1f|hl?F! z+sLsj+hfwVRr{`j-MLXOWN%dhzoo1jf^S0C$>IaH zyKiWkM|7XP3;L{D**E*STRM)$%dW*+<#7#xZC>Jt*(DR<+l3HsY|O#rwn&$w)5Be& zdZ-EqkJkN57QWHEG{*!Wd48R_mvGCoSx_0sUvqw9Q7+@})ijqWjXl2H4RHIL+XAs2 z^c`>UJIlH>k(^Dvki*MSiNuwXnh{dSvl#|6_SdoBmyLA(y?$L7(E4l{azwk#cs%7l z#no$c^68w;ij)>mc3c=le5U^|2%e3K`zaaY5*x!{d5`e^Jr%P%Zm(c#gstItF@qrF zawTtTI-E8c|I0z}!*-5nJ@^t6`=rOt9?U&n!IqM)+Qdaz5958!Pj=!VMmYGYU zH}S?4l8Zt*OiVxanmU`NDw*K*ut)=Gt9yE*cjTqi%hY+vp5I z1x+im{P&4}dq752M;|C^Dn6g1rMom+8?jq~>K{O4BO4BAzwXy}4PWL?J^c*2+_x}` zxrRmER^T;Ib%7!MlaPHh9SZ z%or`usj(bwUGX6^S*|vQ0|n&HqSGa7ElLZ z91g`Q|1`+Ze-Ys-HEQPda*}p<)z-bz(A1VIANr(1qor{$H}nRuW{Ek#MsA(9Wt;n} zdu&)Z`9{@;WNwArCV1-2Rs09H2as?5^k$w8>NltaME`O~eT%1XMpp;68_5aX;`+R6 z@&sBSLb3GmxVW~)faBT3s8J)A(GcIDqd*4VTic-%r!Tz@*#0u9IhD`A$Dl^QB}03k zT@0We`Z%6JuiV$^w`RtOWTjl-kjHpY*q@@!aLY`ef|P3l(qjY<-ra zHT7qB(EU5J@pMKhB~LpXCzWWwagaSmQfdlz{57j}`gKWQwED|d^c4M77hhqPHX^f) zt`Eh2aZC!TXAUo4{>Vic0lDUB%lnY%#6E^qJk(`93KM7|J{gLW780M-e+YR$N7Wfmb|ip2!u z@7P5-#iGQ~q!4bXM}SrJZK%kd7x8uRwAgc1rEyXRV)Bx{zrA3JLsNAmZFj`IjE9pV zey*~-?iL%;6LcBL&jkn|7z4^?;hJgG+(Q(eTfLp}zE+JGBPt1J`1s_N_@B7%gHc?Q zy7JhXXGYr_)$EMd^~b2M=mcQ{HnR~$6)9ArkBR&@!GjKA%wJ)Th;;pu8$o!*^yQeK zY>7p_z9NFfxZ(>jNrgrJM)!E)KC&{d{4_SvMC*8yO|k@^X92558`5aVdpygE@A=z$ zx9@nYdAn2St82du(%W@6_Q<%A?fR`JVter?t4wYE#MB=B9Gs>7V?vw(9r+_EI(tOI za3JW3)S?`;Anruu36f~Dw3zPO!EW~%%TpmSIF}GTrCscn(@;I-F#U9##u1tegQj|j z$2*0$wxr8VhbvsYm62|TnM@C7++goc`b>!*tEL&2n%4#)>nAPCY?AWX2g%3(MB-tp zf#?O6RUK4RUMDuiA&7u_(2z3pZ{ilq8f-QBH7~@a^(00ts6BIP^s2Ha{+RX$$^Xgh zWp^QSu3t!%S<3W){LVdvcK>Oq^X^D@XT4@aNy2#W zyQ-o<_kn9QrTBR#$(z_oLk>5ZHX8XoAhDGFYeD5~Vq=&PHK#WKy}94KL`gQ~qQ~bw z%t93d8mH1CL=4xwNR(?Gi9h-QPr^om?Ad(V@6ax42Gv}b$W_=-Kd}63Olb?@`}$V+ zp6_%s17H$+XV0p2q+qh|g)u^!O{|Xe9N;*(SWXsDnf=dJxCQ#Sp@BeN(?yYAy6e^<+J@M~&`X>L^ zT`rc8a;fC4t0ILGL?ZOneqy?oU!NVGKSo7#D3HpK!i(@EeaXQDc?m!GbAh6lfG&!6 z_C$uNF>aAj_Umky zy@E*v{YD%2{SigWtOlq0U3)#13Al7WPmI25DubGkdKahb*+nx^gX2WIY1hdC+i|W1 zS)*l)c--XsJo9YC7>j@e>^JO{P(j9V{PBl5)kgo~8UEo5YQ0IK!RGlAHu*!g#gE8? zs&sfyY=ytlzt%22??4=qkhtR(6H|`y2JUWykDbm00;`sey;b+mtnJ`m#LWb`B4#j8 zFNks}TIOxFi@MR|Q3^+uQqQ(KY!eqOcgeLPP;-sWckms=1vIUH*Pcst(q*5U`PnNcu8_I46H5y+F#ZV%yXQT>pH@#8|RqPYnS}wf7<4>m;V^N&~e~w)6 zIo^iyX~!y8>P2vpXnw<7Fh4D-(Ae^K-o?T zk;%s2!O4782jQ9fW>*%3d|`EJJi%(M9l8_rGH4IJ z_}m5YO^X5R?P77SLnAIK&)x{%r!(M~X7tCbhMR<&k?yeaR6x(WFY{RlU9AjBVj;E7 zC%KkH+pCI6X?+@BotIEP8F%&-Qv^_X@=o#BY(GF?%&4077MXZg-^XLe=k#HmS&0`K zeI+Dd+sEQ`^>Lz}T+@^fuaY0_$t2zX3YS4#i&@WVBMSIM;^5j zbjS*gMnJO{6WB7bz^fhP9|y$abUbo^=S*55Trs?zX|KsCS7pe*7AoLmb-2UjB`JGNk}sHlg{g`>fz=D#nReTWLWvdB1xJWEe<7; zv!oL+UnRcZjVFy^hQ3t)OWZ|>^UbyCSZq4*tz+8}7>1bJ zT>%8=vZ|#Y9g~!UEyKmxeQy&EQlLv75OwIa#w(vto?GXBXQRRy(r0EXn~g@kPNv3b zhW$!n`%CtLt#?rF#oi80C+6_H!hgU091#!|F`jsnI54ClGn3C25Fl&_EC&n#LjoWnT3&ap)EA9>Uh z;ny^IUj;H=c3++q_swGX7D9I)A4jRNRz85pX!vNvi5y|iUIu<+O5D;c+0suNJoZJN z8wz5)n~ZO+35{@YE8+bf1)z{jxnHOto>W;)vpo zVqhU&q>T3+_*U=XlUq|bak&pwfvBs31;J2JkSp-87^uVV|8Q_yVw#@J0v0zrP=`E) zX$K(ZvYPSMu_6j;CEe=H@#ya-8CQPqex>!nbjFLw&y@ui>lbvph_ZI+g}Od+5BP_; ztVO#_n~=2^wK3=Qf2(B3x8jS29MCIEO^+3}rxl}kv`+JC9en zfM4(B#?O-KJvdF2;(E}#xr&%ql>*UA4AF)FDUl=qJXn?M56zpXLe(Fj*BeY~ctF;Q zL_4Ech6?Qr0P(sOb3^rkO>~f`>oAu-OVM(dyecn=VPn#4>&FkypEnyK(hf{!Ik#0- z?MFqpJ=kXwvEVxLIZCUqFnbdLxpaq@DkCYTzpX?1RN)P@sa=EaO*t?Z!s^yZRH0N0 z1C#h^qT0>D*I<0g3-ZLvcQGU^YZ9)i+l}PRJiofczurdn=vr@_pViJd1dDErO2XEH#g=bTb& z49c;{0~6QZ>bdG@DR*NecCgfr+1o^bsx1!9>!Xs+h#EmO)a8|S-q3Tt{*6@)Z_-y( zO&wMzOL{ozTN1~>_CpO>Np51IPkud3p^C`8F;>-b%8^gw1ZR@|ejw&OXZC@sv+{$@ zq+k=12KHGc07{}!=SX8#^~-vW6Z3ri+j@kCt!|OYCqIUSA67wq90VAbQayuO!jZ>& z$5x5nEbkEC7IUe(r`6O1)C;K!p_E^P1jul&b8N~%n^o(N{-tq8*5Tej>jDwjugSjf zyHe@ccXYY!zcPDeKbkVTOSjg%m1qQyR#AZbat33?O8TK2-5Bv26(;-ApSk&i)!lw; zN9Wj1@{5BU{Eb$knHaPe&xBJD{ffACY!_6X>f}@CFPZ0E@FT_#A8%G%^&c>MNlPN) z(?$iEI=SseY_+&2X7gUq#85)LJO4?t$~$zyyc{tR?H%?Aax0f7m$ID(R4O#_y&^hZ zkbQn@r}?M|kB~RgPc>%YF!v>^%jpHg(ineX0JQi7(>zEusI60*~14%1|1kUuB2xps?sOi!n1>KYx{xtJ8p?_+T()iZKT^P z9ui3o7TAI4I&Y^qW6U7_k`+v3bBmvesvRyZT@UfmT^A7$K_%~CxbQ&F7!7!X^*rd{ zk?q?J7xp3k>EBXLd?w;j^?G4HquFSKqRz#OGX~+~@N9IEzb`72XdDzxF&5PlBRMJH zh$P&@sEpq-%jr&!jH$4>FYyNntWPY1HR)M-zsv8}zX~Tz>gj0wS>j4cxH<8047YEU znS&gU&GPE~RmP5QtwcIIEtns$Se>pNek^L}{UdnLv+lBb*UYyJ?KSaMPToOhmJ97h zmJa)KgOQl&{=-->{~X3AasbJW(Zghm(u0dTn1CwF6nc5%S5*~Iti^s&a)L6L?Kb>lyd zyd9^Pj~Ab(107h;D$^C+4jl|?e*YVxmHu@Ro~D@ens6e1`kPHpBV@(kJ-KVW=frG4 zA*w=an>`h$Y4w#IM6Va|Q1w$o!W&IF5)kNC82`>~K(uyh;sbBxMvfInHzj13=OLIW zakxuLwE=TYHOmhGAAiypEU&5q%;9943Y9T$mV`8drSlE-?*LqExT2hF*&(`(3G)HmdHkqNWZb=#K;R{e$a>v+9^v90_?n zT)iR82a`*mGYI#HMS2Z*%T3ta7f2y?=Q;ccE!1UO zSWc9rw_@H9{lj$kroXe>ha>%C3RmcLD%*z{wxnII3rx^m z-R2YZ&$ewp+yAUS_Y9`;(sUnVoGrhzA!a-ayWXd^_vTBxxjqMkrACyPsg~Kdx?oE3 z$P?5l)YCTRU*oDKXdkPU-{7n#6dvIV%NM&(1r*P5Dy(}IWEW=Y+(*drMR^sK6K#unR<@zeOOE@~xowR!tf13sC2M5((@ruMAR{C08^tYl*`7 zs0`91|L2bcgxWO6=@xz|^|pfCTQf?XBk!|UEd|dNR__uD3t+CR{;yD?Ip(nY7xR8Q z0lg6)J*zDPQG*zt@uZ9r_$pe|-yenagT4Rbg{p|jd5&%`?|c4iC4&x0Q9jwLxL7qb zOw8F|C>*=OaNo8qJo{mk%ieF9sFghnb#CZ0b0ewscN&uIFZ_8oC3uC!SY~F9ibRu|n6j}LH|~Z%E~tlriiw6Y^kRa z;oKa)(?mx-49)(ewQh82oq{!ZYgJ=5)iN}2_tE>o+4vv*yh2bxVMFOaRhaYU&o+5s z4GS-p_~GE*-`-oSV`SCzRvp3?>%Eh{gx!2hux)G zw^!&k9|d9bJhD&8woDxZ|A~#%hGbrR)Ta}S&5Allo?$kJB`3a3CmAk&WK{+Sa#9zI z$*oM^nQ8+6OBD8+LcWc*?)+ea&?hk%8_E6(5X0`n`5qf9JYT{#y zfS_4b>AGCLGUI!fD8%O3J|-oQ6)mgmaj8X_M}Kgb|GdpDAqu$5^*7w@ zkWu@JuB-_5VDF9!Q)^hIDxpQdwb6xCvbPB6C<=1DENtnroc0KmQN-v?t%tZF!rUb|$wY&$ ztrTSHYA_P@B3rC@&;l*!8Ao>6Ni(QeJH%S>!=VD}rjHjH<-~X^U$u>y&;|k&A4o7h z!U^o0w^e5;X^*1z4SiNTJX7-28VIUmWb*5E#`dP^zICY%ZrI#lj9iSLs>!%*OI!N2 zgt(rY4mR3yv=fz+^-IT9tN4fp%IRcEK0B_V#KoS$^}xl?P}y~p+U>lY&L40wjnRuL z142&wBj_BnUHTFO*IxW{Uk)VI!qGjIw!|qw0%6TRO%Ku?(NOV)4fYG+x5c#~Ja!TB z*GH?^D)0JiBv)(x6nj2h9Is zHz(d9$IA$2j*{t&^KrMO_6s?ug!TW2e|?sbR%S6B3hf{FBpzC|3U=yzGOBD?^u*wW zJ+^+V>eg?Xm=HL&UwMw5lJ9TB}}oA zD}0GoLZ_U$2Yzf)JfvIOeIr? z?;LIy&xz~`m&9jF`jlAP(-=fD#hAQkqTypf(diQN(_>sU&O4)Kg{Ar0o>--Tz4jhA zK5+AQ!DQ3Y2qT#-SjLcbsxZeVahLnpqnJkAje%>2A6VR|ztm9(ua7lX42uj_DZ72D zVKPR=ivbJjVhfIXa7>PPh4dUoUGgjMCugR^<>{P+q%ASIM|56rJIoj zo^T7a)LGtqU)PY+3}1k&xLseYq_X7cn5lp>Zkl1cc{&+~qFpedzO2H2kQu~}$NuWo zJRUuM3kk;tgxY~qg3o2+41h*(Gd|b`OsFRxWTOiTbzW%&PoGUGPJR=4&LqVhQRA8W zKdThA>D2>&O%csz0#Aj{Pa7EnI1xEP!_KE?h2jwbL_|48!{ulXd?S`!>_OmOXH0}3 zycGI>h*@1hvcR3B9CWee{&$o8?NyT>uk~WtBpTM&)$cV>d`rlKOMiW=OsmiIJNB!p zJy;&_o9wRYV?;z%2avK@@N1zsErh~@Og1F;7v=9rbJayqKL8=UXDH6tmWl<`4JLB* zfEtvtXKJN-e)DcBXM-dX30=DLHum3D?t_>U2Ub<6ou`e$IlCMn%#7EgmJ({aG|2=) zfXJw$UIL{!={?BbM2}Uk@?JN33I`GfPmuXOV{lpP__IPXEhg{*pz^6Gm>sZkqLDyG zgF7*Q40oUcbs17o!Exs46#^4FZikAFZ@q1y4v4PhiPXOs`g64~x>YWr#95iwF?T3j zd;mDwc`ntf$X{2oN;eUW@ORh;S9D%>&F7rX57&CDDx^lm)p_Q!t!`fzEoy;9~3f|CvfigML2xO;85=HwEyQG3}SG6^q+ zB6kI|<(DmL^=Ey4G{UQ0FsfBZ5_0U0`r^$dT=?;3V;Z}R)Wr!$D{W-X!MJ2`l|Krv6L<248iq2pg4~0ctN_1DwPFLy3@Ig;c1X&C(8WZ*D2 z8AHG=99B}{;>e=!tiPoz55Vzu+~aiMn5dCA22lsmYn55!niQ!lkw>*B&wttr>My5a z%YcOKwByEAhMc#>KFNhKt$nRhM&dROUVIm&Fyj*gRqKwM@$=kXM7bRKaPJ=87N7(1 z{CKQl&TmOC0H&1LzBGCPf}0si+yjyo4SDzAbz>wj#>{*_bF$j{o7Xku1ygNV-iVN? zpE)1$hjs}}aNY#0oxskz;BI+uThD+&9I|=tw?*lfn4pADrid|qvCm+YeMy477@K_c z(^ikXk1ezJ(en7~VxLS@8s}^T_jRd7?)3F}jFafrh#>fpGw8O{;q+va?yc=z#Yr^m zWD`UO9Ac6?;NCT5_uKLlOR9$s&}U5QW0NgblTaf%`|Yv z$VKE*_y+zNs(5M7(5znr3d)C^^1lwPe-E1!qw!JzRk99^+l?hjBDVW+?R}Svk0#Gx z&P#e}Es@P7Q>sNLl+vD2o?~cwtp`i4?M?4RCie}`kAMXJYzG>=uY95`M4?ExbkPF@iZmG^5`DRf{#cgDPhjxpoHCt?ujl^oM-w3p%`aib$Kdg=Mkj6%EnB-DIFGW zBXazLRq|9;cR=xL>EC~1V8vf>g`5p;Cg&v0ZL(=;t7aqq8Pfqxt-qMUK0#zl|7ZM+ zf43!#y5s+?jz}U6{zqW6+sR4+_LHO|VYHDE^L-=lR-(FmSeSYpXnPb^IxkKFI99tB z{t~?0111N2O`Ei$>@Zj~{3z!wf0g*6ekc8<8&8djD)@-Ph_)TBA9K?S3!1Q_1ktKc z)75ga101_vk$pSh+NQMYQR%38CJ$<+$$t5?8x%Nh)UD(R)Z^Nt9Z(fO{-y>LJx4qA zsMszF>mh?voxZDrf~j__IM@i+Sg6P~pN4T&(wlx~kKs|M0@tuE$<*KSNJt(>2&NVZ zOyu3p2ETg-$@omQQes8+P*kM>bbq5RN4AD;tdkp~z`&k>B74$Fr2vP@I68Fa4`11v zwSGZRHclH!Y>neCfL7N|_uk)0kd z_OjvINLj*6moWqkl0{dbB85mMj)1OhqqzH8S>stGN;3<9D7f(v*J5>d-78I{+=8zA z@o7pB;Od**_(rHH4!M)i(b)$|MyX%x_(FRIUOfWEr`TwSinAvUDEz>%iV0JA+tv)u zc?^DU;IvI^?yUm^%0Bo?`|Gjcq&=%(NQG|>Acd;UoWj7U3Q#Z<{wn?x)TkGgVPJfdWIQSkYmlgOWjC?LzThV(G-q4FNH0fllqq zsFUH1KNs$MgZT}(=4K(4_&T-;+PFT=8X^Ij{$@39==DXnOe%lceZEi0 z;zt+M97pmy?>Kg^7XF5Hu77kc_x7|#r&&FZT&`LVeYFl18N+%LjYO{*(rhaC(+zM; ztOOq-&O2~EhB$N4i$vwRxKUG6quX?mm-9y*f8PIZHCn_^AVV+#At%gk+01*f@rMIl z!aNkM+nWQV>dsxmcgT)U@FoD4?$|r?YJOCUgyYe&p<_nJ8DY|A$}Ox`84TaymzaBq z=UY-mw5(%aMT_PBB)W7dE-CIPALsKtAs*agAub%-`imXjA96VJ$%%S{4n2DU;Q_H- zpF}vZDxiQ}LDt+~Bpb{L zRNP#yv<0G9z=^lM=yt!9YlO_>ljstNd6YFrMRE@B=zvjK7(3CIX-tV60-Y-l9WaOV z87W8aU&e_YZ*@NLvdYbyFjm)IFH#U+r%1NGMM}Kciu=|qWk|t^v14xBDZ=1-?uODT zbgyzdhoOid@sHBE`58l;o+H`K-XSVT1_{Hj!l>CtHGXTn}lcvu1WUyOo%| zH1^!yvX|PjzFvEsKT!H_Ph!UQig?(mpA>CMXBnZ0d zy~Xb&?YwwT=h`Sw3!C04U+Q62`m39+D!r4xZZJw2N+motujhuY*RwYEne(+gTyoz$ zWp#n}?F~&zZk4~%hrXKph~lA^JIvaOV$3?Xg5vWpmf5C&kqUMNdqcXo)_VZy!x?s$ z<4rm5m9~OUqU)6Mxuq-r1G3i3U{~yp9ASUvxY^>-i6d2qg4-@5UZOT|AyFlghJ``8 zb!8?(;Ztekf6b-YUn$JbXZPKHxA#Ku%S2+vKct2K$c>3Z4+b7o`CtSr0c+B*SP{zr ztJq~`dhEdTe%C`Xb`+^fZ}_~5J7}4T#0_6 z3VQWJX}p0W_`8A%XAJpx{<&{#h}Rm+4#S)BOHCE-+&qb1BHZGj=qkuH)Z`uTcbeKQ zEO_}8FeK0xzy4C1)p{03Z406UaD9?{ZxdHBYV1@|k?Ydg;Xz>-23Gk?LeU3U^DZqJ z>-f=6a}eQ2OC;-+og zYMNqbVsdMw=rHk}oKHye0BST5z9ZJmxmMm5le#U6$F2FUfN3;%!t_(*HZy+NkSA=# z1T_cyV)%GmFJY*pV$5VvlK8L?GYHIA`sc0t`MiHL0g`Rrh@$3_RiL;#)2n+mw!R&N z!MxuqwamhL2RTE^y&rpCHx?hVkk)7~!r2A5`_|PZ%kJ-^WJ{LpVGH4xrtwLbl`LOe)ayOGV$b$ zG*%Z?YO&Zp{{EC{sLH;a2Z;cpyYdlDjgv*O+Fb+5Ai3iFkLNBn1wOWrsmM22aI$m| zu)54syKK}w%VGym#B!~lk@>D^7D{#RKhtTQy@uR)ON8rxG3_6x)w4Ukuiwh|#{IS3 zqP(X589brX|Cjk7o(mzJ<(ELWKV*la$m84Nt~gsNo|~ z2l4St{%Y7ri0Y$D_B+^~k0JDZYt9Q$_71PdQ~mlHw&nBHj}a16D_!=RK&2qX;?5AH z^vdLrdWlYkUF6{@FiiRSn01r%Bw)VEva#`i@lyv}i@!nmOTT>7LDvc>jV~8Z&RenW zW?wn&-s|#zP5Po_I|kW9oODv$0WHyWlTQQ4h2!1!bbsVI%8^*j0z{J_-#7*B$~Y=4 zK;Igyp-(Cqy30puyg*GomQ#5{b=_w5m%EG*-c2pL86FPw`gi1Rx~+jSDHs=Fc4i44_YswkJBT`LRZcL&HbOKNNTlG@H?V@m^gro}b+vh904b z*V5>02GA}MFEYQob^%luH6J+i&(QM5Mwh5d4;~(C6Kw~U6SmHjdwPD;w=Yq?fK@FTH#e6k@cMDp? zlYA-fQjgvBZ&*xUnZ4{z-S+?(IFeAeohL-;z4z+@K_&KFr#GqrF0t&6o2tjUeOC+* zb&qnHqmRSqA~NJi<%#r-5M9Jk)wbVPYiTceIsA&h0wxv$Bf(Q{6!6Cvon!p5xcu;y z2e?6W&b?%h!9?ATxDw!Pw+qd~%I^E!I1*aNQD0zdf9@z+1y&g0`8Dn z^t}5wE{TAHbLTVW8nOTLBqa9v`I&HT7FR{o$P&=+?vb)>VQ{g*=X|r_{pj$`=ATEX zPe|_Jy(eR5F}#mK?8msJzU*9TJLIees6Tqg(YUe$&F z(|^M#5RO{yBa*v+$k>uP%IJaulW*f|fzO#;ze+t;-LyK7&Do-rvU!IHYC3ttZetjK z;x#1n%9gMqU?TA~5J11vGgB>04fCQQx_2x=vt{34c~k5sWFZ;5U+zi-TBOESsr0?2 zTHyjHn8bC~=&N}UjopOMT;()9$<5QuW2X=E(9m+m0nn$z88qpW{zCBpBGGS`qAjJ{ zmb+p|q(!LwBd4%Z021a@tJr?-IsIZcRG{*)Q_m+CHqQ5p(HgRT4@7}k2x(NKhr^#w zz8JjRFZo|n=wL_4850z?lMpqOZ^mfP&5z%N0AxC?8<{PRj$88dLS1f9HTZe&tP#iXcn@WmaQK5dh8MheZV-Tj>rGpum=0t%Nl8E z!a>u+34o27EM#S6+Cm~Vn|8ROHEdU>hHcF|#>vstK{~s5f&Y*1d(H*D62!)-p&vW`8dr1+EvY`WTNc^bMg(A_4Sp89u*^-OG?vfZ z8iauR(%;=FKbcS3Rb6YtnF_L+9x`YWp@5ZG4RnT0rj7>-1IJ7TSU3r7V?9Sj@YD%9 zlHetQsqiQPE58aSKW^AD|_*#-jXyXeBI_1+hSokd7uF8S9!d;j^c z@E>7!SnpPNZ&YmMX6Vb0U1~fsku4%_UqJF@BAu0LDWV?V&9T}-=rkiuSXZ>Ii z4_D!JG)}BKJ-kUI4IiR;)ip|wanLX;o$$!DR;cpopvZn+e~a5b`_$x@o~b_^Hhd0kLs>h-+iFCW zAg|}_i}kaFm}CCUcnZC=j-lGsvD}KY{X%?5*iRiQaY%<1giNU$_bRs2${BjmD)CHR zwG7S};Dgl|ao4nn3$fj3Vu{v&$D3B>yLSgR#F z$=I7dFrig;tVFj*&jkQ>wV1<+v0Kov=wE*uo2q~n{$udg#QX^=!Z0*xUvmkZ$ksh- z{R>;u8|*Xl=Mv$aKTOE{AhU~+jeFaO`7}%4g2rY#;x{h7qSmdIB8gO5>&GKA$~Aec z(E~2O+gUYQ>pHCS-Bf`*h`vH(j?O@ZC=Vvb8PgngyT?JdxKF=a285mFL-$T*V*Q_E zdtxn=M7JZ?n&+SYjh7)T1XL|Ih$zDjD@SG4I$1?7nK*3pJU)%GT|J1>psULW$~#AV z`*QU4KYH5_2r562SbJWUJcrEvyU{Sx^W4N0iIz?S1!RjuryTXx{Y0SdKeMipEw#+EJ%&jlR5m(!~OJ$XEZz>8Oe=GbCFoW5ZElOf4{G@-EbajNAcY_=4w*$ z%OG-G#E&fm%(ng>lAg8(GF7#>5<(q2`bH~CKh$I}-fvG04ET(-MnwOxEjgPHgcUY z{%vBQxF9EW7SH`^&>Ov&jW%rVqYP;tG@`*^_A$cWQ(QZ81sm6U&f|mo0xGcssS1a_ zvJ+KLQ)qAS@fV9sSyGRLjfF@pLM=u5js6w zWQ~kVq$&EZ39lh@npxsjMIMu&S*zBJm%p3)8o%nH=yRZ87`4#3%k8u*jG5*n0t;X* z1{=Uy*XylkDwHZsw_21qEPT@EH|iPN{>yisPW?V&OH%VPKrDI&)Lxd6T2@%@cQb4=glZ$(C|(((_ZYShXU5Rcqqo(pILykQ#JdvtJ%xKktf`7$Wh0}?w9s-xff zO5EGD2s6{8GN7=grrVy1wgOR);vbpeJD680==qu&#c~(KM4J^8OJ{$*Q zp(w1%u`dRj)3I}TfF}^+J#`p^te<_kUr+tC$4<)DM#uQrX7GE|dQ3w5!-m4fk4|KQ ziNaC72SwiCs9#N=S19n=h5|8a>j^r{f~7;|V>7ie=yt=3WCpB`m2#-QavFr_N=wb# zrJ0Z~Nq^ZBtk3bo7QQ1VfJ4005gt@0L8W&ivLRXq)L#vGZVEf+9i_L!6Zi(<#v$w( z)%17AT$TyM*(PO->YdvMpy*E4UuM=5X#D`Ld&txE&Ncg-d`Ww_j;>R9S~B3-m)gNJ z0;Ty5(QSOByA+zF;fEg1Al zAIEG=UK5N5{Wr^?PCJVb!ndo|zW<~PQ^xdm)bfdTdz@j)W5xshH6B-^Ma~txA6{{{ zMXq$i4RjOs3nYFQsWUt@PsD39YL(kGIm+*rIM)I*e;g1v- zz#n9Iy3Hahfi86{TK>KLBBuxg+xJjH(VB}h0UTWiNGz`fG2Ax~UrXHpWU?t$C!ep99iVPr1-#I2cGIw@`wpWW5^aVI&uDRY`f3L^)Qr!0ZT_Dk6vH|9MJ>xH6@b?1mo zQp`e^av!$FWtb%>8#byiq7m`)!CcvY+*|eK>Rk<)uWX(!5{EL#8%be_!8>*Qd&K_uXz{b2UOiT#U<(Vwd%;DG z&#oENqc6Un^*?=SePF@aPv_uq;9^<>L* z<5T!SMC*GHmCUHp8sKK{UiH&X>`g&9X#;eS4?aE+15gMLEfE3GVdtH}#&I zpAYF@0X8w(l#O`@xIkTETSvysa*$Ho_u~-R`%$v1@IP{$DV;%608`kSiMLzChJt%J zDju8NFb}kRfPWKXYOU+n+i+0zJtZ9-g(>bP!HeD|(bH{*c0V|s8u8)q#S=xOhhvVM z<7an+14q2YK&&G@I*#|IA~{9ymgJ zz|pqeO!N%Nd#UQ_@DDk3mP63Ik!e#>qQfpYyC3iq+$jtL)lZp<$cCI}y?oT9<-c8$`HZo9qVwwM&ua zVm@EVpibR;^4}mrtdGCT&k+&lWNd$P?xLtv@RSOjy|L58pe%W-g_aKe1A!c>L`&R|Q_3EakDtk%5wuKxl#=KTeLjg3nCCKp;KVLr#aPG=K1 zjgA|?`R=xpO~L2bl-`8KgfnO#Whm4^=(!oemSfmq?m1M0i9h5-3mItWad@TmX_x;V z%dcZAQm~%XNn7LEW2tD1iAhl(B|Lah{>3UA=K9HvgZEi+Kafz`n#!;lJ2Glq%9i>s z*5UB{``UFdiOYdbh~RH*jz}bF8miNT?g$|?++oR=j)Yf|XP2_=_6xOzrZZXQej7i8 z+BdOj*pdMH{-Tv6+(_2jL0_+qX)ewX4FzBk!Yc6!K!04|4Jo09Lru7P*lYOsuGUwQ z(YjI^0BRGVmP$PGYC<(xn$$$1RVC-d{fLS=m0CnHsHI9+NF0dCW(O5iBe~0!<-=Ot z4|Ym9LEVTwc5{^_ing1hYeF=(O=rOY^2OB2JsrysGlTeWl7zvDCol!mGm&jZpV(N= zMHJ3Ogutm$4(es=+~ari_<<2wG4RV0X1c@dlk8!c&lCm1V?3x!V1$l9JmRmSIJu7K z(^af)ADBAo%riOP;2T{j0l`W*Fnm$41DS6|=H$xM^WSV!DH;#iRtAKk28PDsrH<8! zVRsk_JEe)LhvHrYw%c^?3J1ng3GlG7&NK!Lv~>j7OSzMoCT%in6H>SBGm)5M4(Bf5 z+c*;lQ>|X^HeOt-8+M{#9Rqya9>#xXI7hO^`k!jEWq1t9R|tOgf|d5p{7(DymByZro2LHTlt96+c^M;XX!G@v0pBwA;sw<*3N9+BZ7{LV4L>a=KEOj5x?9XWrsW z2{rEVOljZ%FNaR6Scez8b^rU$aKnf2@-T_E6}<4g%6bCpJL<+)A9UT*J}bb_bDbHP z?(y;RIq}v4jUT8hkjT8JN}~W!Z*JT|t?sgHTISngYvsUwvYUdqrV;fQ!$N)*XAwU_ zvI+A+N|hCW(EMPdn6pXXXpFQ84hNFqm+{{!B9>~g!7%8fB^2%@UM>`pCOdXH&AD8~ zM;*#x@j)! zYt5?%>I(U4!U}|{+C8h*^2M`_?k$M4VGZ8pl7Hjji>dCWFVGly(^YM+5uh{Zh9tNt zpAl^Z>tKIx6WKL@bt>xfZ9p=nM6o^<$|Q?2A0oQL#dlt?ak%)3Nv6$D$A6e$b1%oU=XZQcYIKJob-AuzY4>>R5`tyfuQAB zv133D?dt+K&6i1*#4zqR4PaT#i_9s_0;DwfM{k~WlktQ-j-6*}B0MJkTpTHowI$ln z2(la3U<=6M`DO1)wX4?SURqtRb%qCy2#=&#Y~y*QWSFnHJx1{<;`0(#EN3)oX0L;V z&|_&=u0$JiKJvyp&$;t;@DAi34pWmaHuKlivQsMu$G4jnC3qNZIoW>S1Vus%Fnt;Ft{Zrzr+#&3eDYHy={&0vzAAB;rI_wcRpErlU z5jhknU+Ct#e|{mr^9?o@P`CshwVRYk5D}B<4L2iM{JBjRPYy zK0jcO9VdSYXL(%}*HQGjH+=?PJ#8pyh79`sEze!T6r>XEVVY{g5oizuRXcIXoQkX2 z00*$8I(SG#OIzZ*8clhUsaP_s;!UX|P+crO1rbKtKKjVOz2-!;A5g32n`$zz*U@%F zZyq-x2XZcJM*Rhgkg!lOKoElb`c@tr0LHSyYO64c_BlisU&)+C%8s20E;Pc0 zYuOlbBB$Rg0)CD>&-iF57O%2e_Muh7IKNyyJC)4AX~H^5J5CE9Own5#uE3nt9sXCx z?=kAoC>1EC4;lZqkye5g4gR>)Ok+PTrHNwG3)n&MX0TT4$suu20_7Ntl|4tc zh|KcM3j$lQSh7>b0%RF-ifacLDOeFS#NOquW=_?p7Re3?KJQjScOe4QG9r&gUYVp# zFKbLV&u%YNY}#&yox9mRT?!oJ{5!tTSD){LTeSTY?>~pzNRH}XnxC}(X%XCZhJ4N-yFRww7~pu!*HaA+Hd2?pzG)0M;~rK>_i;OH~x##ZG9+o z&+C=Y0@Nsw!Y0o%lkpoveXq>Gg){Ty(ZQ^D3PQtLd+|7yDLi&H&rBQ>BbOB_Ok`XA zP~6nM+M7mg$&RQxs~;yQs?mH?B?voF=72_6v5%9^^y8`bGXu~Ny};n9NqjwPfSZXO zJ5>SQ=OpQaEY|dXu!uo(+kM&niC{fE1oDK$zNzE8M-aVX%ZWu^!PdAW5Ty?pVBg^z z+|ZAi9?13i>QvFvr=gfRq;;VbsSR7cA0HxLG>_k${XpQy1N{KeR+K7htli@3h*iI* zKV@4C@@CBQG1-AO+Ko0)4uhjTK<}hXkocF5_`6#PWfa3b*xf;&2V<(i+SFf%P48e( zkg<>JR2|0)Xr0!^t93+XT$QtdKg`jsS|KN4lfkr9-$bb`YFbUML}dw?E8_!Zk4-BK zk~*Yk-O&<(B1Dg&8gG@fxExc=5ypZ3_no>O#~UOER%kPy+dMc+M^`a5M|yC>gxzIk zy2NV83%!zqQ*;752T?qk*+X`cY+Kw&!(@SDZueTJv&{Ym9>tE}#dD1>vlfQtZmi4z zA$-8#F=41L=9|!rV;G>Uip~%$n54Z)kWI8^TMHciOA>1L7H5Kz=ky6q6hdsV$t!B{ zmG_e8f#q4N)xAGMIHPh69!yfxClzQzM$hE#egG7>(pq`7 zRlB&DM(Ud*l4CoqN%zL`bM~s%g-xR zw`v(btL41iu-zz%$1IpoJhZ7b5+eXzcp;j?sYp2oeDQ(u4Ad^zHF6eaoEM1!GKLXN zYMncP9uVMTyR`z|D%QqNto{3L`5#p7ms~&T6Vslpqov=Wp#j`)ah8?N;yNV<_c(GL zZ({COfr8Q4c@f&1#L;igxs>I0^vs|{YReX*8sSb74Zn=6>6@OZOk+z2NP%Nm#kO{# z+yywCWP!(fNs(5rtEn+Llg#SF_DB^2NM^0xF{L8k2#1+fU%{Z`9}EfLnSW^`jWRne zP28kZpW%xo)DD6$Ow(5n0bW~1In2M>AQAyBIOKOL;I)>{8*CYTf2>PexWt+XxeFoA zkXY*9>c{IMgqhZYZf*?z9qvzN;j?A;ujrifk+WF!TT$cMr-y|P^Z$926OQaf7VTi4?6F^n zG4>8+KTc6EtgRLG^BmBWCZzki(SMN(vTa~Yr~dm;89z+F9Zb$+_rHWbt0ZA(^*ynGH$Vn zX@bR3a&sa13Q9;fPaeKu{EdxRws0%O>?0;p@B>6)5>UPB6w5Ct(lcYlwIV=Qb3jOyX*En&GPA;Z(+qf<*g(yre2vtlg!`?>i&@(i^Eb+5c-&_?#l;I72E-nn z`EcCpW5*TE5i_6~rG%7R8L437-$v*Z-$xW(XoDT;Z-OjFj%kTq{9~DnCc~OCg%5(C zxAkB>$E&EFKutHc$JFir`zdD1;z(pzm<_^FG2{;$EmwX$tgb$(Bwe$)cCY*URkw1X zp!qdaui09^cys23`CAMW=^$ww@}58Uq7FI9#wo& z;12bO;o|Sv>U<;R#~FIaVyiBR@DgxYU1yObCK`jv4m!3U>Z`{1CsP!M6j(}go!H9% zhrhe}ZaMr$QODGdSg!SgU)-OBZ zvBaNCtg^vbOkR~$r(MQ&q`^n}!$ZwHH`GKrV~w}uL=G>PJ&}-SphHwFQ<~IJL`#N1 zJx>44_Dg^B8Dro-wZ{~=Cynk>bMf*x`LeXO>%}z{b(?!}y0S=esQvMjZZbODl}>nb+&DEDNuNh}LM^a)$tyy#CGZWWEGw>`kPO;SO9Vne z=m@Y5uoTODtJo`S)YXIgv4R)z*8yQvD)!WsIoxtR3Yqc?10MvIek z{cv$&{uCyZS#Z!i?aaW>AhzChsnq(goq&OmS2Mj)k)m?|69r}+W8++c)TDj?-2>FfYkcz7|!LV}s(=AZtq63v`LswDH-FV7=Mia8B$#C$UQ%ALh@-&80Rm*XTz z$l(GVf!uH@>DE>s%l;h1OwHO5g0O>-FeQo=HW;V>wcJwl}bdad}b zy%|kA9nOz(lt@{v6d#BvVl$H;NaybQrM*_=jbwYpAOZGpoki+;t~+beUgHQz^KDp{ zZ@otS@JMi9jh6MiF`19!N?!n$EU=$I=l4vj>gJfnYLG#B_g%Jq(=)_&^)Hr|pwCL0 zNJkF4SdAIiGK`8nI zF?JAyUNz8nsK(5{z6e`Io)fdi#HzScnt*Ru8_ z({243?VGyBMU&!&CMm>iOjBuAV+d3oy!o-Oq}*?URaw)m)$HQEU@F^iy7TAzb+pPn zo1A06sgCgpmwRKT2Gqs;2=fuGqtV;CRNCb8?1?~@C|i@`Qsq%+6NScwiE54N>#8ZA zsTMZPlEtCp^q14AOhW-VDmWIkkA9ii7G@+g)6LyYLxNCC=MZ zsO%o3r)J_202U_9VKvC78i`aiZ$|5&+_ZCVnqKfL>{xAyG0;#;3Hp{;FX>)9)u?sx zEv_m#qwv?wDR47$u8XF&?aZYlFVZdKIJmWe*ESj64lILCT8Az*A! zM?&-YevqwovREGI9h3Q-^qPpIv3u4oi2wbCK@)={1%eVO$NTBwW?MNN7Jykjo`HII zD9IVmpNW!WLaBYP_;9*&luY?lkE`dn2IJW=^G>OpgYxbG*mpx`anSH zs2oGC`qKEKgQR~}jZ^kt1*@eBtjy~aVQoKoIp$ocG@Z6dO zjEfWZH!Aq-SPRIuX$5c31wH@9F{_HhZDZxv88HWm-(yLD@%IL(757L{@HP(Xb@uP_V-Q%?CwTUxUJpS;b7V(@S`b9=5$`O$_jn-sxSin{FF!|$}BcP z5TcT!JTfP+1I5UWoPz3L)?(1g4v7ir(|((Xnejsmb7H!@n~2W#JSFK!B=cOr;>|nX zl5hkxS4^>52N&s!BFSyaGKzgMvU#tSh|Vxq`CjQ_9@$cDk6+&*06j1!oZr#9*TWA&TYHcYt=Y>s@C`HI*D#y zC=}cf`Zxu4eWiKwE>F)->ldnIbzO3*ygbQK#fJHAA8au8BjWuZx1jT_-P~mU-wl5F zAK&7L$X{g6xoibFJl(S%-4x8O;nrsPEg8T>4N28f#r|ErdFj0iUZ=bSdtLI*~4FpH*q`Ca`zoX$ON%Rf}Vy_&7vDslBfP? z(3lQED}BNu2H1>d?|iit=)e@0=Z&zeB_rj0+(^i9iY``F^#Y-dU zq9Z{3QADK1eKA;$;?Wp{cjHzL8~7@H!Z^8VIPB(mi&?x zRjIrJTv$c$NH;a(?@Wj5huc1jCi0;N^$nL72;&7kERk`7dqiUU%hlh@rI{Mvm;?*9 zq-^LpQFFZGuFECeR+6LajStU{{0zQ!|r)W2gbBMAJ&3)HKR>!6ug^mW0ZcW*Zz02?b1b<$|h{_P$`P5 z`JYQ{zPypg=k*Hu9)k3hn+^S}j@@g+$j{Wo?te}XEqPnGJWf~mZosBRl^yhCKlb}9 zi4epm#TdU}VZ|FEBuI_Jt=*wJqG8Fn!(pWzDg~%-6RguyV0=Uhc(dZ_AYfmMiVt@I zw}#9vyDs4he~iEun1~EQW;{fRKygLfPOY+`VYGw0RNJ8#@@5_hAg#kR!Z=10K{$Z- z?bQXAGH;cPs!)E)thD{o%cz!O0e5h}migt)BT5!R{|FKxFb+>IjcXJ>GYD>{3?vod z^mkP3O9nSyS1d2g?oQ~5R>%~1z#EjPXdDdueqoB%u|z!5~%`w=S*JvLeo$xp4h zsauiE;L4KNs#VW@wja z!*4D1a7u}JFC}t?A5l}CD?i>!SgJTOo4YxTJS_Pj{}@kJzE`db zd``~h2hc1|-S|^&+Ks2eBl)dZOb%+qu@$(?dx6*WgsaW;JEk(`%m2>B4E!Plu4hwZ zT^D& zLk~SXC_U3htS&15&s6}dKy#i0s^c{vTkRLP-3J)njdGc;J>Ef6&sMOr!>(zFn^iso@&|Yc|U{q61Ms+PGv70iUyuL zzLARh20Sq|``AMMuyT2<=oe%SDmMAxoede`-QvZENC%tne8@r9!bcw2RZY504&rs*MX76yh75Z+*MGh%Dlfb^C!HIWN9GoB zq#P)=Hb1)fa6W=n4^zj{0uSELk?Xd@KF!zBwDEN}XwbHtF1Zn9UyCU>xDURj6gTGa z(?TRMli~#v7NVIG{i=KuS0_WHwpuanTUZBm;`nw{lJUrs-Z_wtIbA&hj;dLt$fl-o z@5l3a{Wy31Q>Zyt`{Q?s|3E%dH$rU5!eb@{(voVkD%^MVT~l8+yq+6CSyE=!b#HA< zs(jQ0*1cqtD>PzBLjI;dZd42U5V%M&99vBseOA7Tg_x~YVUtghs3(nQMO42_D|EPE zv)LjNVHVXeNf;v>caiWWQ{WFvj!UKCKQhL+%6n9p6La25C*xv0a~t7y_4=-IgQ~x4 zt5RH{7u=Y$ju5%Nm{gB2^??aECsIVeq!cNobZzB5a}Oq7!yTv%E^h-KSJ8_u8*qHx z=4eavb(l1>UBykrdxMmGum)Y@FhJF;FeG0|-rLx;xv;q|vO6QCX-I)v>?DXq<=I>_ z9W+}B?3`{k9cPllp*TxN88L ze)b+<{e7F*A%Z8O4E&^+AyGG{;dL}20?CaBJmQ!tVXr~}@K`s$)X8!d`d;jtQB|dx z33Vz4#k&?MxDsAOV+;mH1nN*h_#MXZ9+I?1oP25?t~9oBSk9lh`OF zIkoK~e`gxRpWLz}36Vx2PGg%gSh&L!{x*ye@QydUSaT##cEZ>;Gl@i`*jxgaXAQ&Z z-|by|7{u`R87milp<+>NT1tKy5rxNEoSw%{us$B5jqM1R@YDAt^gA$lxSslyqHj$n z28*KznicebVSoYLb#*>;Eu#AK9TKRB3v!AmXUZ3Be+Ab-T z>O`Y}v7G%>VYA#vC69@rPGr3q4(g|O9JY2CyF^@tDfK_XRy2ksQY7b>TDXJPq)$W*QY5;MO(G`Ds02dN~QW4}qY?hp#5!=;k-gz<+KIFW+$5E+UUMyITFt(#0XyyOl-N=3uhi z;Y^D>BA301__3M}Y7F2~^09ggJ`njJSZVlKGRD~7$qn`)>66|u-3?X8aQ$`?2e_7Z z%B})OX|x+hHwM_t^F91x75wWF$Ih}9CUUIUjhP**AHFgG5vwvuug6{twH0qMl}GxJ zbYezB(LyW8rkQH(gWz7+UcZc;A+Lt83^e>wfmgg;GJ!4nE$2j(r}(aM;0{pnjr#69 zb1^maJVfI+iUi4qC^ZDut-(*ne5C7sn|t9=ktD=SUu_xg4{D|juEkgU~{0(rbioT1U9O%_T zvriZ;MRMUv?$3d(c(NSEcLT8PSB+o3@Y$fgVc8_QD1GW*prLQunkIRv+8L6;pqNTWJ_U zh7ZWO=TsIAY!1+XJ4p)D+w!2O-wTZ9tX4qg>Sav81HZFHdXHe~i^1SNBH`<3Rdb9C ze$zt54$ldnGv9j|M0QU>yiV;%81R-)<{0M>R)qLDHW*GM&K7}XJ3uP5NfQCf3?)NF zuUY)AOg^C0O>S<=Z2rs@y=bNQIFch=KKq&=oF%$jwYw34O1=O~%jfyEL~?ye>Nv7iYEuLJ=I4o%HfXz@I0by= ze91TX1ikZ6*8QQZ>|~38MQKRDpDWS88w9kiMvRhPO?7Ss-TA-YM&fSJ3lrCa{1FI5 z^^)Qr>SU`Zee?YXKTnzibqJ1PJ1uHnxB5CWqU$^jB>EiRy=R2QT>EhBX7t5*)_ZP- z39LSna?Fr)h?iXHW)FS?pmvZPWx8hm5kGW(fR(voC0Eg0z@ zD@I})2MJ25^G69@+J|7nwp@1XDVQ1p zOox1|SX_LlY1!!Cx)p(i@*M^74#Fl}OksceI81@*tQ@wdS;)|(F@L-CmopLeqxj7n zB8%g>7nJ$F|96Qv{)h^Y$hnT?wLN>zfQAndOg``DeVDxQn-Vyx%HZ-aSoyI`%Hi(H zni(vm3Sd6|NFbQzFha5EAeoD(+cJ0ta!bH%nZmN!)Z%bx_FNS={(QHesK2bh zFEyo1x4^+!23CQ=r>*z^M<4YkLN2cl#N;}_M|Yq??*>}xsKvc|9|4W)9Z7wZzH-a3 z&SOXln3HD=SI1&!7huLA`>A2)PWuth_YeJ#O@oHQc%N?~KX2r@h3@-$Tto8jC_dmN z(fCKbSa!Rn>y7PrD!Q}~Tq)gFF&Qd0fBY$dB-oA78IpIYb(PI{buA+_o4x>-IH5&w5{ z8J@ozb4tmhA8Vkm5~rGP-gc{RIRFn`>rDCBqd#&8OgK0tSRqxcwIeJ6)yPpouLV{yPFY3rib`HIcB+{Gg zVl_WBzD{qqx`Id?M}s^7F1WE@V{MI6X8W1 zfp@B%tNYtwH4+~7W0sXp`1_XNPLdsn7n}s zU<=^RNAIncz@hlNw*$uP{l@Zm5;zWr@e!bV=7hr9&w}xbdP!L9g;%J6+!-&!F z+w(rZC*Jq$kKKRWJ7?!U-}`f2pDO^jI0e))i%fB#O`cRxz@;AB<8;9+5bwynhkS+e zxi^rZYf`pDCCApee#txTgyS0jhbPMEIs8DxbK1kC^o#3>-k$8SiwO#3O;o6RxeXKEcqe z-EP;NeU0Y;r5j_k){{s*rtyzqW?h9Y#9FUW%HDu)yhksc@Ix%$fuldD>#d#BerL3Q zN=y}_$*`+i+>9cz9gyP@p9EWJI}>oFGrQm5-Dmn^tGiiK0AR*-ne&bXPcbQ$$vrS5 zdMI1Py%$|&L8ILcqK@sI#8SWfuK|&?Y;`6+Jywmy;E<(;p*BJbHaAc+Ni6C4ekRji zw!Do3vv!>j!54%nqeekrPFc6>@YyfORou55J!=En8}K4ECZ+(`(Ga~+6+7M4%)WhZ zP@GMojy9%dAMC&L)a`P-IFRHOJ&9Rbncs~qx-@YaW$WvewK*B^TvIHE6#J;)UU35+A4FG5h`gSoJ+me^U|(w zGB)`1j-U&%w0U+${9|26iqM;Xq!x{EN!fwg5>FcM9QgI(*IVx+}L+ zJ8Mu>vj6ktMU@5f)V!ZHlXwyD%+C;!NMbGqjQHG#%E*8o6E%L@{92ls5CqMxo|F)y zwOf24&y2N;ksk|V;+=7sVl8?o*}p##^|$?Xj&-lPs)nt5>2^84P%!);>`70eWBoS# zo{J#%ET=~GI`w@~wD&=yr;{`+cb_&%qTW>wVkV>WsSKDp`unDof(`T6yYaa=y&s#} zWz_wiDY(W>>o_NShuf2}wDEc>WP0LSXjOi%9e(3HzrF!gig=4em|nA;nUUWTpu&}3 zUtj8Jl8+<@UROLhf0L;9h)0Rax{d-JKN6yS>LewHigfP{efq;zB4dRrVMb1NHZ`C9 zO;q*1#L;ZEhzY`P%~aJ(WfD8v zAq)*-v|M*F@2J$W?U@ENl=HA%8*Z`FfBqPat186{>T^9*qF{~BMZ6<-5}LQyg}9GY zDss@@JP8oDx@#C)5Qk%syZtn%FGgc(a$2#{BR8US;_GKG)d$QFRtOJ-x$toTFT(kn z%~==Or!)1JZQVhH-nx|7)l!c8OTu6q_yw0#vLXA}cgoGqz-jV6cj3$0=8>$#s~igi zG8iWEBsBRqmseV(iX0BBr)FMllSUl!s@V-q4nF*QX)P5uP^?yXISJ9b7VB>&9c5@trarMcF9-q{LR?Ku+Wpe)ZN7x zz#X+$i7mJ@=6?3SK8N49YXZ>AGMfbvc1Isd(f%*)9+K@c=MrjlzXd$BA$bnc$V@ym zO$9yyv$HWH20^HXK)e7=CUuXalZ1-bGdw&Zjv3k7VCjrXh5yIfy zjQ4F~m_QY{vuXD8fc9=1^&9{x@aLAs_e#o+9*HEE`MQpg$7%tkueny5V68DGU2&T5ffNU>4e#m9{v(L)bQDn-tDdHfIBrqZb{wioTp$Csm zEd{6I(xNL5j|yijY!6_Sk0Y)9RA7hHs4=gT`k^?ljo`Bv#v%;EVBb|v*K~UpVD+j2 zKM(*58%H8S4DlKy11nEg%)F#n3gpZ(-3PbbhV1_|`5H*Z=>U2N!Rro|My3*a0J(7s z)GE=JQ#1B)Gl8)-RS25$=gc9Kfj9&fdSfko47}9vtmkqMH zX>9|Vm5`noUm(;DK*1wW=~1!E`Ai%_OqVPtb&5Irr)~9DO)J4hz6Gp4D)Q1;5G>|w zK$g<-je0jUc=WpRMG&i`I!SU^L7eB-Z_{r*h(s2%;GlJhHUSEokX47hUA%n77+8zY za(Kk-N`3x?jztLiCwkh@+ir6_efo@Bhja%eM^R!K^t@uny33M47=o>GUz)g5KDdK# zC;a!=5NrjihMtzMWX+8Az32*da$#Kj=prCRpOekpJ7%*{mpl_H+{7kt`~y#(MCHd% zj9QhA^;PajpT125NATg}hLPJ9`I?LA%%Yd&x97MnI%yHpVY4ach5CP9&BTYuD-q=^ zD)L9wk_=4*x@@TG@TZlYd`GU))od9*v)jqaXvKPzYtOB&Z83RH(<#apA0QxaFJ%<| zb3K%c!PuL)n;{HRzwG54mn55LE!~CN`VjJ!^l`~~0F~oO;boc>0)d*vRP_nxS#nC3A&NoN*7(wxGU*uquM~${QoOk-t{gWfmsn6x~ARd?q zMCRBazRAsd_}5uuEx?1U8+>tY)}3XB+jyvjhW)IlmC^?&qTa~wGs)W50acsN%In;e zYHJ=%&1enr3-t1C_3=|ntzVStwSpD71RS4ZN zn>~?f-*@Ze-XBxK>SPbvFJzmZwTG}l7*aPVt_E{=DO+&5D9vKYLDmny@Exs>ozHC` zT&u)xE!^N;JHJK+jQGwNdn3#1uUqNKRK zQss?WwARzN1FAkW!gg+#!ZaBpKcPNdzKyp^sYdA<5xQ&jQUe~4*1>O{$JQP0oB5Jc z)%lAw7?ZMR*xX_V<81SKy&t@Yh9!AqVr~U9bHhGgU@7-i-m0B&h)R$pp$+sGO+b=l zGtxnqw*zbU&8v0e-bxT|)eleq^2rN*^Oqipk{@+s`N$d7->!sNJ719QHnNZa@Vd!;1{@F&;e;?0@ya{u!(Y z?430Pwg)$&fN|^iyC=Ux!s_#ISO(?reX#Ubs;MOtY^^Lvyp1DBLuZ}tkW!w)UF zzVFE?kHuqzrn`jwT&sF z_7MTix8V}2@n8ZOUVU##leCdd;tLWz`fBtv=e{&S=x@HO8VCE-u(9{T)A|5sv*A^f z#OnJ@lrn{M;E<`&U|gWS^$B$5@*C<`o->GK%{1AU5FR1kBD{p>BQ4$AZ_qKuQtZ6b zysBggqC82lfUP->9ei^dcv3S2ecnn29D&rej4Ytm2$_O5<@a!I!uCtc!ruFoJ^qR- z_F6qn>X@#(W(@Znmu^_sCQ^?` zIooaydPna!wCCRkNBZ$z5l|K;shxYdC`NK(=nj%m-FLP_SQUm38*%N$w29INTmy6@ zKbL)z!~d+jyPf;R`d{rjIz#TV$_rLj18XHGd+qDwr5{r^bal^Xrd@0>5?F#Er!38N z5K|U>9=S&N(SQVpgi1W+F8-yP;!4M71b{?<)L@u=~TKe>kjN) zjbW+hwxgF4`>Mke{Y&2ytjCSs|01_M5)5P`3tDf`oVoMPik4iH&%k{Unwko&Y~Q%> zQ_2ARaR1<8P~{b$-)PrWGU&!wx6i#il`UxQ+`FN2avV==>C3lEo4Bga zTPe@fJKIfrlB{H&29ex}Rxk?@fu^shj~uV1)>$1AkN^{uT}BZG{F4*hPXwL!>X6s+ zSKZSH#lM2gX2RDdSIG)w;2@VF=TDZ;t%u3EuZmq;_EiuvZqb07Bt z5J6U5!fdk7$OA|kB&5Cw_4lL+`WS~Nbppx}?9lW=Rlrx6q0PeiUxsPnv`(feV1*>v zQn}|FYJf;hL05Zr#h(;K;&E@03&28h93ZzF!74n^%Lu4MgGL9;kb-Pf-F%!Z^zVIe zNNElqay=Bs9e1YQbg_!@gdtQhplzH6Y^l&^3xI9^i?=VVxrhGHGs|v)yg<+)F(!b) z&R17w=Z~j&)52Lz08iJP)Ril(HOb4mV{{HeI$UejWlxJoWCoPLY#jIuXZ5#)SK}*< zSg=JwqbEbxQWVBg$vct@nF|Bi8OR!hhn$)v`iZ&ixDVr)jy<$<30dPY{`tUw=#R_sM`**xes{z-7i5=&NJQFx)eQN5uLYy-JHPY z@uW7XTg#7lUUQ|+IWD+oHLsjMzGN%#JNuzPhASJ)%UnNg#5kTINm)^I+Z_nx1Xh(G zR~6Yco|Qc!e30}J@ZOi23-E<5kT5ejqP19YibCa7lVw%_NbihY4zaCj=r0tC^b>DQ zJw2<;FAK)xbr28J$>_|W%cwxd(GDG&44Xn1mR~|Mz%;+?WR>p6RI|#xEMp-4{IytZ z{X}#8eXc_z=h95-svWdQ>$7i7##Wr-`oYmH#p-0DO-_gFLBjTajPmUcy#J?rptGR0 zD6d>Jc|z8e&NSm4<8-CHR|q0|1S00Rs(m&+yue>GYx*BdX2la$KPJnY2i@LkIcaOR z3vlx1(64Eq?jt|7ncZj~C&uU0|2_B^H#Q`_Te z#Hp?H&R~ngR?k>s?5K+?KPgxUh)`no>9%Q8z;hS+S!Q+JoteDD#*CX6hZ6TT z7N6eHc6si#`vn&Nc<-jnamg_Vh6PSva8S%t4PcTw`3 z!g5Qw^orlkp60#W`@hn$0#QqM4>^ZD%>SKemCURf(4*P{ zJQ)bV^TByKG!YMGwd#gm^`IIRVHX;}vIF)23L-6HTDgoGH z36MlKEXi_Q+v#AM_!kghZlBR=uHObY#9h70t6=*03=5~oM0NDmTAn^(l5^|?n=J8J zvWd8wF|PP^i2>hfH%d5*w97FUP9$B%GqmtuwK)9X>{RUFk2vm!k9px2kUaeG_67L0 zeL;JlRSet#ct3qcwMe+hjV19BDIl{Rw@xn$u$)vtTaq z?mA-UJj(lGysl-LuuO-=*bmc2_YSiHGb6;z3>~;tWPw!QslqnG2FShG-1l?5|pW-KKhCTaX7hG~EPDk>CeNO5&VZ4vr|u z1lb)#$iNP)?VOXibpOG7o8%P@SDT&fgJIbjDAU z6bry+Q26@z^vTg{a=vEraHY_b|aTsU+L7x!tch? zb9FK|p+|qIq=lkDtI^VrR-S4gR(I3x@uGrqDvw@nCOq0+q&DGZwW}s}CMSg3^(yxO zJKGxW#JOU{vpaQXT5E4Qxy+N85qHb*)(u2$YdDp8V#i=~%9qIDJ}Ikj!dJN=y$0y$ zy^TQ3*$2v*>Lcl2MCQ371L}X_heXqB>uw6SXuj!I7YEFzvFW{i-GOHxDdCj}2RbRS z94fIWpGkuv6>Dyk<&kMHQvQn2ucui` z`U%%jJ!`|gjHP^f>D}%i(;got7sHz}u6Q%@qhscUzxw9n_R&R$-#6=XWc;8u+qOV*P=r7Owo{cmB9D z<)#xG9|;FHok#FpxcOq%_V_OU24C?cA7{UZM03=-BEF~vPgSu_JRZ0x4n*oN(y0V6mVP_5mqVy+>G_v8<6w^5Y*QD$&hi+EuI1DN;` zZXeEbVBtP6Gh6u?V@xJ&8Oh|~0lWaV#Ml;b(2XZ4G;jjKZ9qoc^5PSDVw^d$!oP0B zje)my4!|}-@qHYuq1CcmyZdXQ`NGpH7Bkw!KB2gGXex1sHa%Zqw4ZBo6N(mQP@!_l&9ndRv~ z>c;Rus7LJysY|@>F-weVPq6)JFGFqM-@@8f$0t5I^U6{}A&*|R@$@3YbkUm&(m!we z^JvYRTw+V|vzUiyvA?UYOnU}BIFi{s|GhFf)g{DpAfd?9P!+fD3YnM@<7o2Hjiq_4 zrtUPiL@#Zp@yi`i3t=NcIkJuqsTMSh;c_EbYg`j3=Qd5*c|ge!vR$=nfj2tl)=RG2ZWm6@oZW=-wqvbz0Q552RQP2 zMC@S!BWT%|uu+07EV{6!L=ePSLoaXF1I?Q8ss@vjU_oD07&b2{T?%#xv->y+Ka^4U zI4U;LZ3zeFi9-85t1zs;O4t%^1Sy_K^|F(EBx8(Lj6gWLEt+4lhX(2NVLoqcDRx^M z6RoN`tJ4BPy|aog%?!g-f)`VfBS9&S{fK0A(^&`?^g^hM=A(0d0;b7U%=PGeCk*w9M#dTKY2Z~A*HO0*I1!3y@FCD4Bucc( zv0Xpa9NlY!lkZ6Q5Q@T5hNXQ&eUI;}5ZZT@B7Y+7NRDkOw32>k;fchGTz~Ou;E+!c z`Qmy@ZjijPKI5SzVRcIpoaq{~*?Wg(u%l2;x@TGjuDy3r;1XodfwM}6EuP}^E7d*% zevb3g=621mOr*rr-1 zogGycZSX?C@H@ppE4B2$-s!z`P&fO|;+3(Py}lkbj4Xz#;U$|nVVz15#i>J{R7 zSLtde*mQ^0vHDL~`rBcYFRTo0JUxlsI$h&^QE^R%lqTx#mmM4#a#^z#GpNg@*C|)y zv4$z34H1)V-|Pkx?aw!fKRToyOK*m4Y*D)W$Ub~ZOc_@_7X45LnBOh4DSj6Ty~sHj zR$oqKyB(*Y2X?))8n@l~-c_Tt|CnCj35OC9v!8;4W^TBdsr>PB{{$-(-uO5woOPP@ zBoaFP_{7`K+R8on(`HJeTHXpPJI;eb$UrrA4axI3=nZR|zqZ5tkJ-S)Dh@FYlL=QP zio2nZq-Gp%82UT&RH8EmT9_6z`xE?+ z5HYUi-fNOx4+C^%2UGLfMFuM0pdd(vJ#?|EJW7;X$anpTpjS=aIw=3|%53wh4*s?F zS+LWzGV8@HEC zE9z&x)6aGJt`(2lP_7;P@kco*$eHloO+%SLd*#aPv;TlQth_9k_LgfAb8vfb`7YL$ zwdI)FbEfdF4Wc2@R`PR=F64HD$qrKS?{~t#Y{WKaS~hEgX=09plQP#aoGWFF?%Fh& z4hEn|GILN9`5WHYI+<%@l1Ly&f z#aMQac&%#67XPv^e(0@SK)(ce?VcVN+?dR7?CY4-qQBJhjrmL^s*mU)J_y9RKmbk? zB7xz{w23$($OhTCJz9(mv8s!a5ySRNPIE|>K=)KGlUTsJSfU9)6;f0HP~&T{p4 z#B+g8ndO{V_G1O4OmRG(VPRpJK}*T#vgT`*hK8n}%TBCt0p*KD zdiqVcp>TjU6XwXPg*%_aRnp>+#j)Z(GJ4jqoT0|JuJy8?iou__DsN~M34JRpY%)XP)!!D zJ6WAfEn5A4qyr3d;SXT0!9VL4?mZuZdWb-ZOE7u7GSk1G9etPY`%h4}- z!CgjNkE{VoVC%z#eUf5?44vRaSBGjSo_t%B8df+7|JGO%&&e#`&fX=0nAAVOJs=1Z z^WrQqxEV@jN4RL%g9P_ag^zx((X;kfvIVB3DXw?0Wpc|r7IwIPZRk0imn~Z*v3Pt- z-j{z}-Q3Tq|H^J!DUH4<_ztJM^1ojqyM9F2@Z;*(ewI*<&VW5dF;|Nh9GvVVX!|6g z_loaY!k>lLd?-_|9D@=u>VAHIa1Noeqj)x*RTLzks(3Y~$eTDeKvndM9u&XbT6ENa z**E<_B;41Hnh=&xfM?F`5BgP>8EU*uVWJQ}FL8OcN(N2cnEo6ijF6OPHQa(~io57O zNlHO*iS_tj3k=W-bET~MH#vR2pObl09(v1sm1_AmuPn2cF}a^2RqH8VK058RP``7Q zJi{S4``TjH{^r zr#nLoG40TcN`5Z(rmt#ErJ6D-#Hv3$EwH&`nKQo;{s^g^oI$7c6^&=kOHhZd&(tw) z9=JyZ`XMhM$pVTt);V-$^;a|74rRJ+YRCbUTbWF1rLUx0(D(kd!|(93c&T&1$$My4 z`B2*%g2b9n$}4!+EPqC3PN@DG&sNxRLOK9NIV7R&Gf`q^9~gsW<-hHk-?%;oJ>8u*kW2MpV?z*vlVozO6-!kDV%g`L5-jx zI(~!2d169I@b>(7Mt_dg)%)phZ$0A~7pU!ntOt8*;6KGy^4qru-R|J!Ql|gKXJc8E z7+Y(F4fo}*p3zE9+GFK*)A@^+pIRjauU|o3^4ACa;)&FHW`KLKLz?Q2f z=yW?%#?y|;7n>Jd-Q}k}NGjBC2e6||hb6+yz}^F2aFc*%#GCOJ%P~NkHBD;oV$pH> zX9Nx2f{vvWxHV5_0aU!=T2t8h05BZGhG6cNgNZCrzb+91^Ky`S+$-3UU}N*301(`# z^8tWB-+^A>4Nf)3q{VlSK$A}wMMZ8F8bw)^%@F3ZXRVwpunL42Oew25oKaES8tbxT z1?V_Z4z;<~jZyQt*{C;_x0WyA$@rGOfmD$dgQ^x$ni~9VS9&69% zyWZz$G-5&esnfyqrg@{_&F&@(jrHviD#6pxsdopuqi^?mr)Ijv&$z;@Q)a&%U6v^t zs5RWSS&40V{xUt=#r_I)@o~Dr*MmbPA+vV+91@0DW3 z5D$@S6ie z3||%y_}tID7b*Nit=o;*?kRF+i`m?6wIBh#`#!<*?)~=(xdzFor=ble)d@|;`q=Vi zj48{YB4mEwkX%_-s>+i2?)tBC zyqF;-4%?r|h+a7el_yieOq$ld)|)>+9qUVCf4scveW%Xkx9x0y+~@0g?3kaBKYzJk zTK`J-8`_dJ-f;A;G2pz|{bw$#6`iZAtLHu=iq@Q$m0HML`sbu8iG7HFaKmXl{HM7Z zkIhGy;Ue5Oh;-qkN?2Sskz$cQ24D$1;xr?!16D8SyYCqX>i~$c)_M{3a?_mqj~EcR z+GoVwX%LQwxT18V6U~Z3n~(4COg0<4feTG)Cpj!T=75PSwIWd<9NfS9SdGj8ZL&RfzD?(K=`Q@?+L(@V6D_gP7?25GgfM_c#cTBxwiT zy04Y_|A`!U$9O)zMNQ3LowNpMY4(;qlnJfrIexp3!I`?BTUDK>&8uAJ!&XkBB%yIh4H_rL8})!zpf*M4zY<;nAb(dmT8 z%ec#Ng|Z7nYLYxk$*7ADAMag|Cik1p6z!gUk2t1}&$8~Vw#(o|)f6QMBzg4R8zXud zTTm~>>y#O+$?vJ0Gw**bqwbqth<~w0r9ccMQR?n|<#c@Zml&yJEbKPcD{fz#zM91E zuW9i%5za-8D+Fb3efi?ZurYfK>~zkI(CX7xb6mI)&X@jQ|=o`h1v z+JivOBvDP52Gz87;f#&VHKkg%AzCMFe#oWj&5z3wl&-%IBi9>)M<{Gx;(8J}`K(D&4NFs(Mw-y10n5 zyW$qtM-g@Hl!!8~S#Wxx^=fbR>^GqyLpM#kV z5&ol1@8Ig120bXD7uSTf8eUH?(l7k}CK&ox`Yg|NsWp7ZTBaQvS+rX=x%jWGCst~` zZ*^FBUb%DYkzszjHQ$xM+0Sy63s)4en+|rnv9UOwOqgTL{3R<^)wZea%l$8n_P@TZ zK2x>WVqDQ3GtIrzm0`9|O9u&b%iuRUlM}9H_W>?YNCRfN^#RRJL&?nGPM=3sIK%0MWLV4~sICNvc8n_D zF4ARN`iJ?2C=+jy=mCAIpngF$K(!T@^5k6%=v>OAo8N}q=AP-3uYCQ^Y@ZP+_!^u& zUvy4%87KtR?-Qy4z>c4;bWn+sd^TN5^T#@=lJF1s4Y;(7+Oh_}18{-EcxHomY|>-t zjd9q#^SqcDXLGx~q*2rBbBLJ3YNly>kg*H%BvnLoV}Ik_`QL!`Pgl#|n!BWnS-o`T zuTS-VGEZ5t5HQONykde{`1qXmPGD;Us_u@|S7y`?;1Z#0()QcKkL}ie;fdMyeX4aF zh1+Rbhko1rVrZvv*1O62E3a+{D-Ms@1`UInjTt4ND~|}4q(zO#0byz$fbq&p#=ro4 zQ|CR$oN}FaOU58sLi28u<5Pw4g$IN|Y>U7zja$$HNiTAWxoqHD%M$%juKbjziC=ho zvaj(-)(3dtq(5FNUzY1S=usRO-QRoRKE3xP+d$`AMZfiz%T)B5hC1(2SRal5CS6v;U zo;tnow>Sw7#r|=jYQvp7+eVc4C=^$^AKTdsf3Nl2DX_RH<0Tlv)xmYdW!J(30R^~3 zot+Mdh6$s_2Ylkk3YbC;vq;8;&yB-5`RK=!BLcvl&MhH^WS1W}A%N}0d;7rc41UVl z`h5pD#lwf3HilrIt6wa94gx#wA&Y!Ug>*;_(eI9e;2;(1Ki8Wy%rqy|Y-p>3W)SOD zDbut=+1yZ^)T$VXU&?d!BBY36&;z9))m*s>`TUh~wW%2Fn>MZX=-d?V049vIFlXe@rED^}-#l zctG&@2hFl!I55yfgwdGVz_%zK|f4INeNHs3gP<%w4I=vNwzrrEn zC5}Ne&!D`N+dt~M2_bkd8iZOEZ`;Q%jEl5B#ea-pzL+rX zI>tl%xk1Vrzup;zhObJug&P&!;}TYaL8&HOT`?r*g=+}a+lQ<)t#D->C5P^6OfJ8r zMo7p@uSO~4@HryS+DYe{maYrWcHC*rR4d@Uzytu z2E)Wmnj90MMB9&rc8|3;ga^Wcua#l>-heUR53Bm+ZAadIhOFiPh6~fKQ~_0Y?VU&2 z`n|UHWFezUd30jCaQ6$a1=fCpeM8L3^4*?(4xM$4sJi#xX!(CgS4FB!RP)2poAsP# z^38wQ&=w`SH|RC3t*zsk<)!pwwpP!}LpyD+YFWYJHatnB=l4SJNkOeJMB)ix6o-MC z6}W`g0*Y|#2fYHm?%r?2kp%;uosN03!xZR5DGrJ0=ewj+t1K=FUgJ#10}J@d>A;CF z9FO0fW0YCf_ZkSsgZqxVm25ue1DuwaYMyliRPap$j=zygVKavC@_a^V)G-Mux{gm-6Y-emD;tNTCe?;TAP9Q^z)0% z(8LdeM}*$I=Q0ka=}6N5Y+axfBwM4!UW5Zbn}-}U?(vwDK>vq4TA(ukZ-zGx)~5IaQy zIj&;e(M3ZQDGyFObLi%=*dFCv)2ozEk|~u3;ygRJ4YasPjuzq}TU;q{$&+^b`&;>^ z(SG_aW0!ys;Xk$Usd>M8R1(9?@*TZbH+48bIyljd8=244KL;T_g&e?i#1rHCb+oy) zn6+t@Fv|R*6~7>f05`ppNhc8gzND0m-<*y80lb8^G8U;~Zok$&ZrbJb=6ddrbqu3> zi*OU^8#t%aM`mV4d%HeL-d>t~Xy|-!4~^LC!=;w<6#c&89(WvqTbJLx!HeZ|bO60FwysgQts0e4n@`GcT3*-)F%@9a@}l8+QH)mL8_L1q|U2$hRjJs&{` z;Gpx^TTB!J!M_Px_jz0Z45(%edctdg`2dbmLi}le@=Wtkhb`J|rW~uTM4~{7v(|ND z1SIkOc_jyLgre3VFA^R8z)x!qh9=4vS%r6q&!xw_o(vc|dr|bXlgqlidNIm>233iY zG~tq}GvHGN3}ESSuaB~3+Q+-w+lg_giw*RS`(3F0PTh=HS-oPh?prM!tXWfF^1sZQ zMnvD}sZ8sjX8$y7ZlA}h_d8jiexfVf$)D}tu{vuD*i2Smv36_WeL34s1>Cxgy5F<^ zRF02Gbt_XroycwU%fn8Ft0WXm^s^jg@OxK8pO;0xwkiSR^v_$z==#!W=x&`|IeLIe zdsJ^Vxb$+jBzUF-!LsXzVY!0C`DY?S**<-tm_4Vb0?+eO;!g~>kc7p496hjiPTwgG zY!!iqkIiI;zzz1C^AmMo6Y$=Q6z~rd;YhJgxENRXV4KShEo;KwppvjU!O_Gp_lT!< z6W>5g=$ooi;*>!hXNkb5O4m-RlJm-Ib60fQ`PXZ@PSHBkl;b`fI~79ye&S0eqQtwf z-QsO(<#-FK0e7}5xez|7R>_7@2i-irEGK)V;uI9tg+#8M_Gwle3LC}|V3U_>+?bhk zv|8`QL`feWEP>V$XLjCKdTD<(_b$GU7_c)*fuj(bmz<$W5se%IP0AfAE}X$$XCGzR zJd-mHsDN(+^wd`Bi?;{vL9zQ`{3F^QnWJ3PSzT9~Gz^@X><`VHZgnS|?f7iRkbK01ZC`G;BL5@9`(e9MS@8qgbHORjBW&A}p7=ByEQ$lP} z7C&#qb!>UpBuH}n^yE=!q$D)muM+MX%|OpN3_B?EGDWY2xa|#pj6dI9br4BTMUPuw z>ff${tMW<;kp&1i`L?1Bc{ig)$eXp0q2MeN?(gBR8i-ye&4+3j2=4e{>_OZ?n2wpcHP7gQoTaPd%rdO#&GA@4eu{!_cYoab$G<0}9v!qnt$J&e+b(d>3r>C% zJ;naIu>!)^{d8`$jcfn8#XqkUdBXmY=eKwl(X~)?Cyxp-CUt)^`gqQs^J+}qs@csl z{(&UF9`vFVofXxP??0+X=0@3KJJ6-mZ|U*92p#fQ{ecd^f=8Xslo}hO?=E>hCR+C z00r|FaLF5JnEy=ZYp}Yp7(-9D{7lW`b+6Z`_0>vnMyWgqVb`0jhk--(GhWD0C*{s|i5xT31GtX`4*OFC-e%^!g6+!3Rz zej55b4nUIuTupq9_uZgzf@RKkW`?e&h7R=L8eb4gd3=!&KsXDOOF4`yS+TPF=OTdC zZ2CmS7nahoE7Q-}|0=6!9s)iRZexc%?K&lL;3;?9@h7IO7`)P;=<_aPrdMaz zOqOk(P=_S3&LlC~EYz3b0m?@-`!1IMFxri8W0$p`|4d9Nb78?$zuoNflD>4;IlJ!? z`n?~rqI>C3XNfYWKdj*^qjJjl$jU@Yp*g$D%tV>nafS&gXcyN86@Z`Nn9pVccTTHF zIPJ~?BW#xjfxB>~ALlb5?scYC6yE~w`?3)Gr_~fN(&Fnb4APOX1OJ3P! z94hpRtQ->%Xnb`ZY7t=_y1_>^omUlUaMu&W@d?(eEC8fnbz> z;hTS8ee3d5UlX@}WM*{Txz2lL^_sL3c5xKORZv4@7>*a7VE-V;fde-Q4?<}uSD)V- zrO+UKRdXxl=Vg;~^t+*uzw&^>?OgNn!-sAb-F_9haEL35z#NJ`fzKGp@&TfH8-+$! zp6iA1ppqH#Q^>zJw>Ww7Y-dFTPp=?HEU<|$9((NHW!#h~1LTfmE&>ox7YI~OlLbqG z!9s)1Gh=`>lP0Ugx*<9NpwM@gB4IyfvpGX2AD~5stx>D0#al7Mwt>tB@3ux--IX5P zEw-h{!Sks4)f^0-mok+oDw&kN=YEc7_BywaJcroLK?ivl{sHkNGLw(i;qev_sqI!&%Yz%;5{gCi@}@W zj@hCdJh*6R@1w|yI(H))32XZIUuaf%l$CfCx;svoKItugfNnNO@`;~HcM%D9mwaNy zgqO#|4=ngY%Sm0Yi|k|q4`~uc<`KhCu44nr>Rsj==b=2oC*aJ8jii%n9pj_)jg0|Z zKKPxZe$d%{LG@)C#f>gArvu`vM60cU*HT=s zc+!dbxRB?!^|bcw@9aqjfAbgf*HP~K*hj+rKLVt7OVC}w-PB5*dbQT=lnASj)wiuB zlH1?^gBup4JCxHRgfqOxUtm){7L*QWZT`Iv|7YOk|B1U4a=$k5xi=U5J@0g9iWk&V zT9QwRy4v@r0utNeB)zZs3qs18P#uy9;`ITwD9!V>hSa|T3Buk3OlYEtIiaotHY^m> z0U6@Yn;ikBIWSk{u*Deqy29kwfIr=ufKrl~o@5|w*NZfAEc6=}wR(fQ1;A#7V0(Zc zpQ6nm_U`9}e|MwbkSA~V+c98y*dFKs!gF8c5-7|uR=Kwm_vb8BWL?mLicw83VG%-> zC<|AnkPh9^MxS>y_r_E`_nh3SPO!JSXxn6#V27UUjr~l*4#GdeMB-LP+eD3zvnLg? zaw}Ypc*s}Msdakl@4(fR;Ph1;;}t+BM=RS1mreaZ0o`k}38OL&cW3rY0HVuQ51+4n zR{Ua60nZW84b!u!^u;v=W#Uol(PzY}m0xk13|hF?odO#Xst8fW=2rzXFSqoIBnw^> z6PM0UCa>l0FQlk=*vQ(LJcBU-i`So(^|RBMIju;&vZ=gkgdavs;(dFO^`7i2|0~_C zk4~o%F@?HgLa!73?-QaG6!B&`^4V!0a0apy$W}dV@584zk<~sdX38hB5s?!<{2+cc zSFeC;p`h(#Ez7+OT=D!e7*ny~^ZZ%7o4GuYe@RZ%immSeY`=nQ()0C{z1+G+x4Xv) z6MG6W!kKF%niNra2$X1Z$OZd%OH#~xMgv}7!Q)L_=V=X_hT-N_or1U9oS}?ecN5iW zPGgzp=#dxwFO-ke#r)=5WX{*B6G|n>-@hSXp)66cF+~5JDQ_-0P z9}7%}_FXvlC56#_4T{N{(9K$3YI;MWPbJOL!nX^`*f{wc|DWBzoIaP7bMnCZF(F%4 z`M2ndWpCw+jYr=h?Psy>mWSjb3j@fk|3K>Na4Kxk9V(H0;k4B9W$T{qi(Uk>*a0ar zeLHq_ezB3yO0IC?VR6|Jyi&vWaiDYMcWogByAk6uZ%vlbklhuV^#=!hDN)9F<)419 zu7VO>`@5c8{y(bDGA!zUTl)-+pp5fA%@=c=5ZKSKn)`d#(HatWStjtHmg3ty_%-o=$bM->;HR+wJPn zENJl$3VP;jDGk?7b}j>Q`y=vp9}@kU?`qHC(A$O85>|29(TVL6Y{y{_u2x_|aHtg| z-oKndh>LE?pMy&L`w8;ZT;XaInvfXU5BiGzdrMZstWZ_Q)bP|59_fb(s(p@Q{!FN% znPoB_$MECFeLD~tBEC{?GRbK1N>hzgTYtU*V`pV*?$OS1(#$@vc!}Hho5!Jti z{C*lESbZrZ^9ap30Rx%3rVWn$X-8@^eyRblq-wUQmt-_l<$wR=Pp>a14NrDULOfxL zr-t#?Y0LyIXFw%C5&MKjtJDzQ{fH`8SFqhvR@x@ZTH~~h`>0;HB8^PrwNNk5u+kym z3ZN5Zx!mb)x5y%V6)T~tAZh;gjs9Ul64^uI#|ED;CUy4VIHQA)H-{Vq1_8T$S64Bc z)=bJywHk4PAn-HyUtBk?QaeSX_nA)m9C$v33H6@T4BXR`i^R}1DVvb&DdU?@cM?`3 z+pJl6Lo+tN`)97g98Ku(7~Ey+Dn61;y@-uC9F;_MJa|7qy(+d24c#C{*BkB={6%ag zwFu7t&vyC0Rl!&1U(oK0ii~9{Gy%gNC2cWc67Xy5a=Yt)Q@Q?KMR=pJdHk;;ucSO7 zJ}IzE4>Ne^W4heZQcjbT!P>P`&Pt7ZoXubFJEivb=*;JyME=mOu{R5^cd)3u4iY6R94$#pgbVIjJpTo zDX6Nd?k4$Ra|dp~B8z@D4>CR!Q_F4*sK_W#~&;(WiWc0 z6G=54ve^kSM4x>U6Ek;xVjf=)x_tr{YOKchzN0C^-FWmOQ-Y;3WaW!*zwUW?iss-3 zThNP3mT1vOvKRG0u@~RENC(S`rGvH-*a0^)Ox|jc5>o@=mKDapmIlCIj+g`%Q#voA zKkwOyK9TjK$r?fy^0){9YDP^uh_N90>>`|r^^uSgrx>kO-O2~o{K6brF-oi;+h1}( z$Xt4=$5liz#3%Ia45IOw<(MG}G3eTE(e=z7X!HA0yBvN6*1R8m^>9KT^=^0<*u$Or2A!WUo&%kK#e)V>Ectk&U;953zBbN5t#D z`k)cnqp_(-vKOKDQT8mVe&;W?_BZwfDsN0P`A$-)Hl-HlZT_b>>Vh~E_?`c7>XnEL7+AA{YxHL&4C)anJmKDHF}mTATG%y4Ok$$xGoz z+75Rob5SYK^SCP?nFvm#h3E4KasPgjky2jB@SIWzXvjbibJxEtH*CgPGxc1)YVS$| z1l~HKm^bKJ=wv6`larX=162tBbe6`;l-6ECMh*>G z8VlXfdv>}_rS;|L%P|bX%<1YON=tGb#T}93=A?P?=4!FusxNxz;M7r-wbh zI@OP8gAzn6S{=q_-+cAb?}bp)y=sAZhqx56jN*gBC>i6s0*?F~mTOn4chO&{b;sdz ze{0_*49-_Wu5~sg)Bt@8plJP0gX3i|Ku(V#%UsS;IrMGvOxbQJid%f)rzZRwFxvnSq%D z(t_q-EtdGQLAHbe(&(y4gQS|V-7HfHb2HurDRZ@>etFrrdSJ!7tU36Az^5NS{_z6z zrNj3Ewz^xkQ-)gmL=Gg++=#g%pZJCbSZm7Ch}uMHzK^vkAjc6{8){xuT}FnE4Lp4D zwGLZeaGcSQa{E1>kSCg0+o0PkcX297^gE#jnYf%(U42Y&oeKjW7|Vq{iRrwWyfmAM z=u^1d>@7}5szy*Z$f@o+{|?o2m8Rjh*afd*8Qd#a|tET-4|v?PoN&53?tzxh! ze`P%$eFG@a8cd-tlP>dH)c##IG)JwNmhGj>;uRNR567NuMVFy8_c%>_nWL@E@}?#P zx#wz5clvaZlo<$G;S&8IE<+Dt%>blZAihVt^{K|UV#E;H`v}{bIgr0ptB|(7v(_Zp zz$4@@A{@_}NSoDc<%j{~UhWNaHCQ3Bwkfcc0ZI1FkAFS(?bgR}!7g0Xi+zQZgwQQ;}c+$kzo>$^mkbC&s`4iKb(1IBZelU9*Qrl zgOL7}oO+f4otOUKQO!`#LzFM%2=zwE6*C95;Via{>HWA$!vtBzEcij&pHe9pv+x`Y zO{hMn%IA0N^43Drc_+m?7aEZ&DPf8P zMT|dQPcr0KD(@jDw&~LMV|eT;EBH9@JGHQdA`v|wGcGYLwUR9=eHz!N~Ns1YRYfzsz|nNmlgNZxmaJx4H^U0rAj7!q=0cN3y64qJ-hH!bp;3t6ukq z(C{HmhnP#qaojp2U_-9je6ECgyi#-?PpT66%lSfhiZpR60Hw~GI?V(<@pWFxZ=|;p z;4aiw$@wPzD(D?%0d{}@nHSIup1J1`^|NKGnlC`W`0hh_+u`ZZ`T#pLQi+l$@?auy zpFe_Xe|XJD8HZgyHd1nAS@TQv-Q0zh>M09+!w*yM*(Py+!+RA8vG4Y;pK~5C`@cy% zp`Q#5m>X3F?W5WJ0WayIjSmn5Sgx)8!gi+6;@tvB$_BaocL5zp`QR5m(9?|Z3tN1e9<5Z6uecq!j+P*o3naXbA0r)PIMWOnhkS3-8nxwNOv2ckPN zvN58ni>sO^Oz`D-0mXaTxf3c9aQw}c6oa}_UY?I5J$i-seZMS9PS<^6Z#-MXrAgeU z zQoNz}-q^U>V!DRfd3SDNvQqH9#%*P1J%3b#h0!Ait^7w4Rl0wH~Bk&jgwqshm7 z{fQ($xs)0533Qy!b;guR9qR$@76+WS${$EVlwzW;J#W#!bD#?}?;)62oD{Z+V+Z9fG?zZ(KqICq2--J`hUb4OY_XB+BA-hTr|HPDicXD+d*$SnYdKK~lCd~UV3^A)t*5>`^ zyMH}Y6$1KBva6X%CKx-@{cpk-S1uTr51M30hlgm13v1dx74AXZulAjke4^?10PH8U zlUSoE!TGclN#-o9-!N{>`b}}{A!(!kb<)XC#KYP4bSa0Ay}#Hf=yK7T-cy5qcRE$t zyGu0jopW6%Fl#z{i|E__`>egUFDL*!{!g9?zQ=gJLNXp}glUSMJBW$PpO_V?DXrmx z$CoHL{=R_6w5-Dd1B)K;qszOCE0DB_mm1?Occ9tIPbkw|qQ!bY7J!7AcW#G?0AB>n z?~F}$<1*IbxG;7$v6Af&=|qfJx;PRTP3HJq zCNa!)!c6OCpkUb<`uIJX?jbOl=1T)5l2bP`3?hnLW?>uJDG?aJwXEpY;IjWg?&%;_!KbRwl?V0Xh zug5i2m4O$Bwd{?$C9VamnkCOnB%fg|b-6!(lXitvo$0V4irrIw-u9EoG9#{@H}LKm z=e*>mrTvp5_|v`%`#5_gpFVBEtsa=W?OH;bR5TXqqGxaUnjQFQSG4*(O+l;O-&>6y zBCD1yAsQMjem-{>*N=~E)HMG^*h65-3`%U5&Jt8maWjgS4y?~h!SvuD#HWuB5n7CL zQHE+TaN5;$igpjj-Svinr{~dP7Qy*sSteo&x`7MXva3G=vX&gzM0W)yQ)s@H2qYz>!7jmc!LeZ zl0goL`q)DpzaNs>lPxDAGZX)(yHC2`thJ_EC+b6kW?vna8T6MhJGoMs{m+Y10tb?BPBe`A5M6#GayRW584B`WchXUs&GUp+Z?b4D zz{%W~#KEhJ2EglSJ=n?*hH6j5J-o{Ab2QW=fL^ppcxJer+Xj~?s-Zdwe9wT;)cuC% z9vux{LQDG&$&(GaTCW=!GcGNY>l%2I`c4ze3fE%^CEw1l@0 zSI1?cb6?{b@I!4e~Ny~_&U3&xHRUj)dMy~jGzGj%p{NDzGL;7mbXRqqdQ2^lPJeq z|NZ%DNez+DE=HHDWAaBZnAhpW1I2pb$EVye=M(dj)Fa*Oiiq!chAwh>|H=bHu6;(i_m&_=)J&%vXVe`{*l5$lUm=z_?Zb z5C8iF>pwg@_R<$8rnvW>ahG_x>}L7xgm^)YUXXFCfC@=Nl9p(w6c=fqc;B6Zg?L9T z3azxgP}nkm?h@DcUmejANP;qc$bRy_m|f&d8*c44acjn7A=`;jt1IONXXOp9PTXp& zvv(_zz>!)cM(u|EQvvL?X55oU<@G?<%_ZmgKgHEHa#nvXnaIeaQs57F&~G(g|6RKN z{X$n7Uj}`QpuU*;E3nRb`EXF%eRVhG5PhlEeBUTiR|9ensjj?b27JO{eiAM>jA4V-O7eQs(=zv+ z78}7UtWQ|_KlzDsvAc-*zT@l22?QRf^yF3;krG)y_QHP8xfQ3M$3e!o^ffRTiH(of zgoPlVD;7Xt@qP1tR3^WO`G>)%o$q_u9IdUeLqy5G4g*#R#YHm(qYAN z!vq`mCU}G^#U?9nq#8GKpC;`PM&n=;%Ek)>{xQOUN^8Mck15~od)nqQKmllr`KGNH zW`PTKE)WoG7++!o6}ORb>RH5A#b)i7&%rf)6hAFxfEkUWS|=BWQ9J{`F;w!O0^ZSG z^3F;Kzh437T>nz{9*zaaFR8x3)GX%z&id5Xia#CrxjW%`2bI^W*t)0RCK)A#H8xlZ zTiRM!%@7k@gkY|I$Clcf^qoO*!%DXeU?av z;TJj^@MDd>3n4~G)P!_w$C-)*yOV5g=N(~e&T}9IbWz%0?I4T~6ET`SyiCRnlI@1z z1MMiYsh=?ug+F+NB+jiR?zTgKPRM+(ZgmJXLtdYf++{2^unB@>Ge?sC1MVa6~XU;HSpPnV@-~QQdtYb@}Bfx(1 ztV#)eqUY`fNseT`&XI6S)RhIpUD=qMj)tp)wsd#8??t{u;#?vv6qmRB1O|yPivkWWm^Fba}8kAi&aBmHv}d$?p*SRkN|`rE4)eULmq) zksN(?g7QQciK^4w4MGdIJpprI=&pE=fzfh@#p3a=%}-d-{EI{Vv+53ubk zHHe?m8YY(yD9Sl;mhjfz-GVt)I6hga+?#F{PnI%lPzX87G|28wG9soVu3p>iuJy~D ztzI5e!HezQ3l&r=51R^{eje$~ywXH7;>?eJa@gvM1_hN5AmWL7gf`Dk$aRdx>#Th3 z7QOjeTHh;KX(F~kej*L!-eR=#eSI}}N8yh%#MZwN^2CWY`b*-vMZX~sSP(9ca4v*W zoj-2RYlav~ob~&ktY~&JX!EvneE1M1Z`&6RueJb}K~58_>BJ;p*&Z4aS7%3x(+P*v zlK1(k_w%;7C7uY8s?$~d_F_(2T3YaK{>j9Ym>4<$NAVc1)$H%Zp*7Pu`%QgA!6P%) z4?exi-MRxQ(y4EBi%M#aw(&b;L4Fe(wG4yU3=f6^1l%*Sr#K&}RuyHxHIxB5)oUmq zQC!Aud&ODTsOP9|8pv^NM*^~cHnof#njX6gMeKrFxF=#9ys|5;h>wM1k{u=)ZXPkM zDvjJuG_GeeK?F+T_TxNndsED;X20v7jPvF}P;hj{%m!&=9eJ>q9U-Vn)sv{S*&80q z;=D`e_{3|tM#-`dOuS6z+u#X1^4nm_ZGPy|zdtrUIoG^1pci#xzDHKx3xz^mG<0S! zBdo0>jnUTA$ZO9&SPWgB!}xaU{pKZX32|rkXLhFN)s_)i*ri)<5Cw5BTzf1MuwK}= z0&33%zqPd!HG-PkK;x;}pYQ4Xs9>XYcLrJk7B zx&HFl?Wc~!yCNq321ircswW*xMm-%@-X>dZr`>qZW-De3(?mw=o-+FwjhG* zXsPYsEw0jd_G_0JdXJpn>8hv;=8uVxLt~2=HmV7{0i$Jg*l6SHKFrn?*5CZ}pLa#6 zlMy?Za|sF6zj*d9*OXQBU*EX?ji`4%lDzC0C{&B6rxOQT-NlPIE3elosoxjg%IRyg z{PU(%2-;+yA9Ip+KcN?;mNN42m8iKsN&O?lQjzK8jV!J7lB|r6_}?oy{sKzRc7?5JZ+jw7OHYr=(eKP~T}kR{3%d%?5L7yaXTgtK z#eh$kiL*;J-AzQ5V0N}l^c|}wu&t&D5Cp<%qFAYj{>)s#rJd8kij83|?SuV9`csLI zE{iOSErw+bK~p%!3s(wfb=>2nxQghC?2c-%p_Sha)~uqfDwJCM(>pcDQay0x%d3+= zZLR1LRwqSwUv%6MPimG41h-# zRePQNU(kp?vLde3pyMg+WP%Ty*wWah8N>!QcwYD$uRRfkU^Y&S?b5IO2;n}Wt3;UL7%fbrnluTX{*f0 zjjoZSDa7*!F%rOK}ztR&siDQr=I*?s}IG~XyR zVCgw!a} z**I&xC}&Mej}y($i3h|XT64fpKfn+c}*5XPF+AX<2{}ub5fDgauw4q`}ERS>*|%o=WG=W|cG@UaGmE|oj9 zzgGx6R*pz1J!jSunOq=Ewv!w?OM)-nlHALeY|jff_7Tesn&nm3!lU;03Me|0V~zx< z5R>f#eb)XJr*+OXhHMqgK_|dDh%)bunG_v+F3Gz`8MFTTA0wp5T*+vP%zRHJ;X7lM zZkCzhukbi2V(04YEHCnG)X8`(b?{#+6z~c)?pm2Q*Vsbb92QA@<1QlQ>ba{uQQuP^ z@_2i1V(8YR8yD$SHIdd;o{b(u;77N3_KBL%M=XWRhvO`J`NkAkq7#1L8?$nqpGj(eArwh5cnO3C<38gd z8-+Tz+BXUbBsbd_5A!0gMsdc z`iXiRm<48DdL|H&pa)WRUC*h;4UYV0zQ3!>$aXg?rAWjt8KPlw#?@P0tNQ0?7Cq|X zsINKYBSqZkO^V2$QqO3qv&3y(U5dE-+l+|`AlGQy?q#0MRtxp`JmoaE+?u|+KmFbZ zMq6}SEoeK_Q_90-Q>6jOBoL)DsJrrY?Mnc2D%+3wMm zXtegzKQWh#l(eWk$sl1TEh=l4Jj@;1w68qwzRvK|_Kk8plAX+zL(}EB{GHWpqpT~& zE>Anli2a?^xZeGgw9KlP3Xp!`+Y-sDb6)5o^f2cu|Ln)uHo3npjp4IrOV1s}(#R@q zHatV?gK5TbYzIGXFj1Wa(;SP}8^j~pm{xF?skR!eAQOL$6_2(b*$v>-uB@{{vX`{T zJDY4hGR6LW)9XQp#aLi7^?p>#Q0|}4<@^Utv}F1 zI#(d=IqlxUw_LO~yAZJd?N2%}kA3|=fBy6sRq&DR6CL9!&t6Q`R9OTK%`+q}VBz|_S1f#_+%Lu> zy_XpySq(;A=$~!xU-f!+P+yL;a4w&-GsS50`nb|dHnGo0T$tV-4?$xCx?z3i4+oC9 z*W07if-dsW^uTAj!c|11(=rW|)?|;|pkD2v0SitI{%OiuaQY%W4R) zD+1Z^H!Y@j*yWMy+(EyQe%GVbNbBr5U=Z_pY3XuoRm$}8||Ee#4(e;HBxW8Lk z8H*Fg6%9$Rf63t87b@={-C)L4lQ%cKukgk1{*gFiP>6p&4+jTT?XPPke8pSLWPcJL zxUnCN5bbH-PDt&?Zp!z%(e}fm8--2qfmhx;`V9kqVaPFDi`p|fxYNGEeM&%rR2^$X zVB7%0RQMT1_1_a9{Z~Dmj+sX1ogw`z)?2cRDp6~?<^pBPV^nuC>&AJE+Ha72&IBbS z;XnoCm&uKa?fnsg%Cp*w)W3$eiM%#7vOCz1E;zGPkn5BIZm}aGHt)-w&zbJj_m}1< z9!|e@#*!CiF-`FXX#bg+?zv&7>>cc5ijA#i@7)m?jhvB@%j*zjl58q$We-K#MxQAP z_sL}$ypZIuVHh~uVijSGk9)ql6db7ij~5_cxqodhO-ZXDLvy1xC|po-u2EaY?=W<~ zJ05X6avgBNcYVxzg+A6J)HKv?=NzCSc6e`k;k?)l+YEWbx8``}oY?t3iQIt1`6>nW z`{Qc&narI=e;c*OuG%Ya#bik1`=J}BI7GpTl0DE zPMg?PQ^U@+jfdgo?cUzm55M%@8V}dS4Bgg)Z!7&rz=7#tVY}fW=Nn$FhYbauhLR_~RkQxMbox3EEKg$WKXQu_(xGJ-p6C zw~m;O)OUs};uCu|qgDG3Ygfv|IX;RcG>DOMG{)8IH&6Vs9o!C9o1a1Zs9&gk1o+fR`A>wK0&P4dC<~yZirBkW~wq4q?eX@ORr3*4;6YD zl2-f$q7BNGfeF54fIljdN4vlqiNN8HH1IG03V+tOR2`vhEp}?nLSBZ+$>}EKvf>;~ZQO%t=7UX3huNaZPvT zzT3}3S0mmtH(QvG12>aC2n6AL#>eN_qaMf?xxnlScf!`eeU8>0cYK~C?bMVJ;9$uPH=X@*1 zKNmJ`$V`zVy6=V`b z&&*+#JQkCjeZ};a_%+p2W~>@kRofh18R{M$!1MK|5{WTU_!iMH#lG#Ntug_p)Q)G} zqAxYHS6+RNCm-b~{CfH~iv1yaL`=2lMd>Si|>h~r1sl?24 zS34o~a#eLoewMK}N;c25eJe522MivhJ!G)_vC6}cqX1kV^V?TVlj3pOIip_YT!g>% zeeY;1Pm%=YCTKcmb!r}V%BxW(?xH@j-;qH)UfI$8j4N?!sT{cY8}3`4K^^@fx=srj z3zQN-p%sZ^dJ#?7(5z#OyDC%cfw#IX}P;k=%_w_Q8%QoAFZ%Z zVo9q0brpN_DXO?^XwycC#9!1PrQ5E&Og)p0YFa-U5^g4syz-` z^zVkrs~@Z@Md$@5>OX^#hr-MbcW|cODrfTb$vp&>t`-H}gk}d%?n#CX5KGv~5Fv)lepRGhIp42TZxCe4dk9doBd|qU_^j;`?1V zIw<=%EKNAEY7QpYT$j@P$Y8DynjTZwJC@;ePbYo(W=r@EG&F@@%6 zv*f7c(Ji&-s-Tu3LfpoqJc412D||Ymp?CG?1>AMTlt_FB>9rqwq%gAl*m+)*s<%jc zECOWTomcS#I7*+6Dok+;4M;7_=MHGTQ)8Tgj$REjs{5+eq=9ufmAsy1B`Sz5pIKkb zT^R&~IgWdSYWcC@31%g$M?WO$*ZP()^l&4JB z?lY-SFBMxxDW(*MF3RT zn>g4q8*snr0sK*;>YtgGNdp<&-CA?8^&&{;&+6hQD|zVrBk-+)q7hlQNyCu-ld^xl z{CBxHo>Vs7`ep3ADrHO|Nst&LQV90(JDiN`cpY*r=%YZ?x;ekMZp`#xiRl11>vc!m z5Cw|g1G+ZJ@G&|7Ujd(a0&DW{Fml3yUAkQeGNsS-5hA}%;wUgkQX{axbOAE4)(T3r zd}DiNEQot^zY>B`zet`+EWT1Rc<%9oBu ztZDFrKVi#mka<~wK~%f7m0eHIg@6O2D9T1IP%62bK80XBqn!mSCYYkjJtxQ4f{Sh) zhk-^~{`E=OQD6^-S|HFR=7^yazX{hAD{}y_y$`*Q%F_-klzu18?nFwm?=4+dX2*QG zs7}MDNzwJe#mU0`Zz|SZhOik$6)E%QTZ}g{QMr@fP?4-WnvO%if?8)Ss%Qga^v$DV z_4x2y(6M>jr4e1rw!j#7+24Q-LPlz0V?a^M$F3rbiyfHkbcctz(>J07J8ZCysVmE0 zZ``g&snehwqw(LV7y~ylU9y9KvP9A@5eC9J$`j;ah)ot2kw!;iTM{zTOxsO5dtxel|iQQ^`O1R1V=27-|Z!TFHMyzxnA0SEvBg8HVBxp&pY=kV= zbYbH>RilB6yI{ZqD4*AU?{YXu3M;exB}Bzc-*o6I-6m~N5>7?RPTZdZI)?HjNXkGz((UTR`up`0r^CV4txJo%K+mm<1+-e4USejx24W90>rH?4Dx<4E14#cxU zy%dzG{!@)NXqcLgBQ&7mO5?kA~4yFJ>%B8a@YEc_=qwD)P zSQU98tol3-_Nyech;E#eyzfbzeOL)OP!TP&dHL5WkA2~b=#|YYrVz<{c!S-nZ|u>F zv;m*^;z(OR+B2&&N)SCXwS2U5g~?i}^;Q>@J649XMh?N8Q{<1rrrGQ3V$lv`Q{{Y)!ZY{Bk7|y zyOZp1^4#H#iJaS6?1Y9^{i4{^s}4>``e70qVpIXj#zh%nenD;A_#O$Z{LmIc_PJiK zhpijR%I#xS(9;MuxQyC0y*2Ep@IIL^o-uyd{Az9efG!vBFwJx?d{^zJ1qDx%7nq_6 z3$v*g8ax!CXg2nbgTKBlU6rUl>tCC_CrN)j740kMy}AifdcMgd1uVT7ME!R%)dfk# z?m6PQK3vG%>$>=}l^;aDw%~Zx_kg%Z?aeH8qqM6^o~TAa={McGf# zFJ}aZrbup*fOg%7hClY@_X;h-iZ|>G@V{N_@FoS1Mp?vxo@yda&P7oBwd?Ret%*fv zGvpuPUfzylD(Bzh_drXS?b@)OF>S`hrOJvBAN4kYInFIWDu$Q_w}@NBX~Vh)$wHHZ z%Y|hhL%cdz+s_p1>*ZotK&$)r@y7 zoJ?HH4B~kG?@ff&oVritx^|N-R+QDvv!B(9F+3O${Knt!_n{zpRg%ntVZ&rl&Rmrs z{8pU7(Tll}?d6I905f@QJJdUsH(qR{{RR1>gyDX~o} zI>n!*jd9Hf9(!v-YkY9D0^71FijFhyapZS7066I72~NE4vKZFGz?@$~XngLXr-$$8 z`v&4|!fVu`){h%Zhe9w#+$Qs&ft-spra^xTzFmynU=PO)er6#Glk^5jkAax~xe^-b zlFS@sN<@QI2N=M&LWV6HaoObFTO5N$7U9?1D>#!EYW9nD~$d$fr!GVZQBx7`eUB-FI1y`6ThA%nlso|U|A zM}o;ovv$Z%ETa`f3&26OiQJq|4#=&a+B!sD`fYZ z5MyB3^U%8+elF;Lot;KxO|H}aK-cqq>iO3%mnH7qfh|YJDMlEMz6%R$Kf<=y&EV;B z>I0kWAFDFh@Qz=>`}~Lq$oCyONa^qmg3JH<-V-fA4_@cJ1BPk7a1K`=hUvXZ;Wnn9 ztw;wlP5eC*rK>Hk;Ma2glJ^|<9i@b^Vl4#*&~sNAB5ZNYk2@`@aQxW zA3?q_?3)NRSMNa(qZLhCI}Fw0wBWh!%bq;f!|3Fp?=bi)E2V|13FlLT%Gd(e0LDGW zEQY&yVq% z_N}SvZ6%kltob$141SB9{=Iexx4y+|3KHZESMOM7FMQN!>v^TIWK*_&FOwpI~ zGmqobAJ(n#7c4CaODnBRZDV>AxiTigG^du{t5%pZ8xdAA8) zY8S2-EOIto^d6DAQ=I3fd-dP#dFNvSu7eMhvvj$$4>c)WeQUVODHO!G9d;XuKuQ3b*A^B|5Tx58GkNa^l zvAzt%bMd4>V-v8xv%CfLT9{$Mo-l|}mojG4ARY#-z{_pk=q=p?A8zC0Xt3_|M6M(kT6bapW~H$MO&G%kr0nR&mk@bj-M}t}lvrt#PB6cr2VmY^ zc_&9U*l%_djktMq3IBHLwib@9qp`t@7 z(>$2QECLuCS+=!b9<7i`mz1Q50;T}D_)2&Tjw>R;_cV*RE|||Oib`OATi4*B&&HWw zVoKvQUYr`NN*WIDv2d_#0)8G#6%FVb^d17jfX# zA*;cAT=S6;ZU%n?7M|k3Q2qR|;*e8;P3EiTBD(a@X1(d!Z2IVG5HciNOe_&ZlT@F- z*YCTTjmar#@IKr`8nxC$Q^Rj^lOwhFrS0WQX6gE+bjBfy-7?K|xeexU4;@!lPoDzl zQ=@nsN#;F%hT40amld*IK40pMuLW$se3MUU5DneXH<1cr&JoN?wC6o`edNEKJd2>k ztSKi*^IE1OW7lwC1R#nB{%+@LB;@ZeEv1ZlHTq2?Z6l)j~G)KsVhCOScd-J z&JuEEx`1hMoKKhUc@;%#jxOjO4**T0c!Y;3oit~!z6pYLN-miX+SRdk zk?ZoLgZp^q5|^w@kGu$|3HWWoh6`hCl_dXp`{U#ga$1zvd`%*$;zd^0><^5021yCs?TLR{^4gStLd1I0C z_#PihCXI@3>?D-$?B2=qg83N(*t>}*Y-9^+h!G)iq4H}c1cF&vSwP40?CsspD#kFqbyoW@j+5{>3s55N z)sL@CUsnn=Jzg3@m(s|JpIEh~FO4uAbFD=|uiebq-+Z-8n5p}CW!^DMY4F@dO}Alb zZe{JB?eA|*&%MiB7FqpQs8|hH$Y}&1AYJmKj5nWW zG7kfKst}+b&&b3>L|9L*qcduX(dgA9b^ZYdFzJGY|PybJXLaZ{3E&B*`y={iRf^xC> zD>~ttGpjaCG?Ju!143D!>SXTK^&|1+lxe{E=U8SD4GC=y6iLLs_S{@0AI$&GknG`m zYAR<&$Evm|8yGubQq4|wYX#LMmnl3IvkIl-wPCD?HHiY_G6^WyLWKd$g$YmxO-yWn z4M6(o57~&4%6OB~n;a+bmV)a5HMq8yVi-EEHPH%^#roBq_c)`ss1jptdBYBWu7 zSe=ny)x2g6CJ&>NmjKt9mBLWq2qe$py3_a!oSa79(8IQv)&_`c9P!m27$}Hk*D_td z9B~4?iD;a|b$CHr^rbKoZa}5+zNt3oq*m;&Y4P}BXP%0CPfc;-?-W;NFN{1@s^)To z?@BKypkGoh%PIm3g}sIFL6_hDnSDhhW`G0eFOsR=PHh(#ANlVCutNh@ORf~E=2)2( zKR)9Lr5^Sm?9GlD>X9JZ1iNEmWR2Q7We~lkCvidt&^>!6s{moqtU0aEWY% z8&o}kZ5p|0dX8HGgPnD1Hs&a&#v#-YME{ZPkm>$F;(|5povLG@`y>9s#%aMJ4sJk!?^%KDD-eK=nzEd}*#O1K;VO>D7g4Jsz28QQo zdvZJc#3Q9G?2K|IWH_EqzFE-hwvA~a+{)eZCJOPR-&)hh)q{Zv7&c~H)O&-FV%crC z>h|{j_du$UBcjbZz*6=M8g*VO!;+|f)#j!ru?Uu8fKRILOqXD5;h9SxJdL%{a zRi8kQDP0!3)#Q%##XBC55->)P#sG=Ds+X^vc@k-%+W-r^GelocN7-V!;6$2s>(Q*d zdCF;#E&YR5sfho^k8e`1Vb34p49_nk%Fs>_ec8s%`}Px!aK<~_M+p+$*L}n37mh=) zM#^IMjiKx?IL=Jq7IJ2`i|1tpS&s}aVM9Rr-6T>vGfu(PRQwA>AE(Z4X`PqXzYUvz zBiC9HuE@1yDOHy`aVmBH*xa;5=)#dVm*{Wy>D>8#NYg{0wkrJ5sxetO!aZz%LET1C zo{z!^kwT$F7K7k(wF;}e`r4r8I}`^f{!GK_K2dk9arS6ww9?F!o8CEgn}(ly2!@4B zz9Xi6`W7zoF#Popp&Mt4@B2JR{y0QFVyqjvc3FKkr9W6}XNrdqycbRmd{1=tNFV1c z-kRritZP~@gNs-Yu@PHP6j0F^#Ywu;>HFSJk#afuKY}3-VM@n6MLpXqv zB3F$LvVMDNbc#BPG>F`;4&G0bQj}mz-OE}wObSWj05iKSK%Q>A$Gf`sEbMc#urC$v zWm*J=Dk_o}8x3zlIkeqY+Ifs*&z)EAr>s*5=7i%52N$eb zp*_2042R9;|Iz|HQ0NPXgb*`L1DEkG)ie68bUbQQI3&d#SBG#Qg%3kuP?b)fhJ3Nc zQ>L)K0KAO}X^x!pcRe2CgDgd=z2)h?V2?wzQc&-`%;NQWh)}TGS`Q>X-gXB=EIqK) zMVzUmq5@5d(Pt>0N*a-&h!&~x@B{7Fscvn}4GkR+UX1}QS$L77*2~_w|NY5Jx^r(1K!7OYfrjwTtxU;E^qtW5&Pw}#Z7XzN0n|+O zDJ51fClSk8ec52mP2==T(mh^P#~0Bm%@e!rS}HkIl2ZT5l0y-9|s3K;X^A+ zncR?HK2^|1x!3y5!-*v1qTx=Gzn)@zy|D#t&H7E_$)h03d355F)u>VMod(VBkU^v zpb~AHv<6qy=qYeCgsTSdj5ix3r}}`{&a7>e`~|^=;X~NEG}(Z^qZWn}gn_{u(E>n) z&SJr&wet)Gb2j!fGHCMIme>WxG-n%zSDH@^0X?S?28fvv18i8U#t2XiWuMO$o2GXb zY)Ea23lU9q2@^G%OZ%vmv$z!!K@B)8ln+{0$$T2bAlyM9%{6Pt-Nodb47D%7ln0nx z;1$pguzO>BV!f;7X4XF^#u$^fmX%GP0@O4OBoMkM8vrnK`7zVk01CAD4~TiJ8@&{r)FKQweY{Pm^k4)f1p_dz7m(&|;`c@J2h#mliC*nFpGHSmAq9LA#)|HmvQg zd6zX6MH!ehKj|gKtvj6(<&EWBeSL60jzDBEv{X&;khJH2GLA@ey zzlq<@O!*Q^2^|^-^y+M=WvlE;+`PMkr5+mqlsHO>-~}yh0V51v)3Vre*kjEaVWe)8 z-yUPgMJW8FhaK_qe?>9#f8u)~dE<}NKmReOGaMR#dWPGQ5}Q8NE7@9ONzRBK`^Ign z4wsgvB+!dFmQ+Q}56*DdZx->cn_pU~h|CG|ea@+G(Ir;|C(2U|=g<0uK<=rU&VV1c zuAE2`5;g+0P;GrE1EwPjmi`!$WQ@DyDBrX2?fSj@emvW`UO|!8jf%gg@BY;!{UfM7 zBm4yQTd<_{*_Wpy6#&V$G99M73W=}iuRy9lj|JGIb0o8Qt0`>aHKZX3j)CeDC|ZBo zzPQ>^xIu%i^bWYp$@fTZ>qF)azdIm6<>U+C%5Kk_sI9qePPUjPbEN=g!BTwxUc5|}W<6zmndo54J-2ZZ5^G$J)odRSr z_;J>SLloy|19{R)cAD~HBfhh|Q(LvI!#z$%%t^&}fnJ6#rlt3HNe3TMqlBiarOyqM zSAllU14_9~Ye|8v-$VlLzLI`EK8Y6|+js(#UZoWmvra!9(8;$@r<*0=ApA%slmGCo z%}e<9lWTMB7F8rw?z~AY$8S;JUsIRcK zG>D!h-9SGPjgkm|odo&pEtsq*Z@z^Mdwfh0xrI!fb9t|&5x(&<-j!672maO58X`lG zpm=)$Ip46jx~T|sdfQkLrS>JE+fNEE=r=Y#o7n}UC!0TNlhvRvKXG! zc-Dx3fE-7FI3fbI1Wikg-8{V-15nN&&H3o#6LWR+XU8SF7#Z|-SoZ3z+uA$XdsP@; z)hczy{KyPLpp)!eW#{6@ig&Kba<`-dla^iEx#1VXBJC~KnxPXdjqkQc>7>sSC4)V~ zpAGhAKl6JzF8Nm3H6`;0#Lp{@d`)fGgJp7iGvvDvq5)omosVhWK=PsQc>TLhlu9Z& zGI;nPN}CN-%2oa&%zBh5?fMwJJ{O0t%y$8?WBe=3mtth`8!puOognt=M_(r;9k8m9%?*-<>IM{aEJBMD#V! z>_7h+|M=&j{HmBOEiGPmTBnIR;eUt-4zL+GWB}`ACIA<(!%`VoimmjOj)D*U7&uU& zl+X<7s9cN#e9#8nYgi{!^BWJ|KKy32+axF-qP%b%v?E=kEq+OoLhsQbg|-lJHQ_W+ z1^!VZppFK=6)nMlDVQs?2F=LNLxFvSQ7e7BD^l z9Jpvqf5s}nM3$8T6|1B|J#p;~{a=i}0{6Hc%?pt3JP)-H7sZOYdHsuU(Ts_RK+Tsb z{?wrvewzQy!G^Dak&a+f0F$)JkbMj=8nFd1vU!*fl@harOX*tdiA~c~#DVZqv5zqY zCs@J!3AB%s3>>X)uy1IG(*f7|Ke>DuvN5(h82?It#4{y=0^Z{|jx&R6L+?6S)wMRj zx)&TuqLgRTxb#HuX-ev1ZTGPVYOX?qpPHqOH^ge@7p6x|7Kx0A&#~4&rP>S6EYd3T zt4NgRUqi*^$Zgmdr#f|ZpByE+aN=XMx69ZX}`gk=mv+J~L;okwjv^u0LtCU!yQ3CP_819?J= zfqOg3KtM8WcVw4`iB0=x?3=v3rgWv-b{j5VqEvjE{G3b^8>P24HFlL4h6p)5|2N#5 zBE87X%*LB!rsgM)?U|aI$kz_~wjJ6|rb09wTZ4kGQ-3am1&1HY`#xj1Ax)Yz)EU}> zgh>^cbaK_9`uh^~%d}H2$`VtOZiBhyTEb#oFd5f{hm`6Q2yrk);Sz-#A+NxRqn5ywN@0_kS}u1^+!7EycFd z#9Xir4;{}Dlb`|ia@~kutNTBfiA@@u3}{?gv<7jhmQfFve6>WnyXp-HiKlB6VKc_( z!^9mfDi6l%ZH`LqNH}k4VaTe5D!K_=2OYF3*8WDrKagAf!-RPEFPrgv83`7%hNr)I zEg4?xvqEm6Kc6Vt{3w~*?gZXA6EjPR<6bW_hT@SXOmg<5lR{b5hq2*ft%YA)ARh5M zZ-iWxl*Rh(<~UW)HPX@uS<|LobJ2R0>1FJVlE>~8{(hR9Bm6;k_8fZ#@?Wns=bI#ubDJM6MMQ1 zB58TPuXRL*Ij(~@B|YVh7ME*wxyXf+!HYQ(skDUWju2k!Huid=uBC_NHvhpHFbGHW zF~__!V_f`kf-;RsKPO+Up~G+10CuiOhUti38BJtCSaa9tLITWjgPrJFn zNEDPBB{j1_F1Vy>*q8&E9DZtb?^(5JkyTy(P08Tz*6sOHS@TQTMzQqn11?rwR*EG= z`MlcJ=%)zscYHfyw^3Gs(KSf@D*H5M)&xj#@H5sKliJGr+G-K@=^Wu6PV*yG|G~5z z6h$ys1nEfX@p#lJp>?B`@2nG?Y3&Q+vWQ3acxUKT+Qm3QP8`GlohV{tFxJX5RJqmO z3(Evf?kiVZ^oX37k0b(PLH?>bDNedO5AFo=f_uqn#|i^XYfbfpY|O zadLW_&rv3~-#TYP-(~ToolY8FeC)Gk_d_OY=kOB~DE_=vwf0?-ra6^6743Y&KGLZk z_-QqU&i^)VaHh*Gu-VrmDLJj!j%*kq*>06c2TvLUGMAHl_GKEc%X{&!vdxt8U!b9f zL%N-RJm4p#z<3>56w+z;>ettGT4PAy;Q8Y|Z|(nh`u_JEs9u+VEqV=OZ zQB>d)`k7(igSmyZPWBA20MG+76jA{2oz2^KO=Md@el;fdnzCZI=v%Q=2o9%b!BW*q zwA7hMTIkvR?aT_~PIF3q38(|V*`eCxoF;)18{kf2EbY0435`*xWwA6hRaFd7)wyi zGGLSA81NY*Pla2w3A3<^)VZK3oYaAhQe^NBY`Q5roeKhghgsMQH`t+)mn?eto!YQW zamdE$Q_bxSiH-ruIFGR%!Cim=Xs-z7S;YL;c_%6MFoH5b?G+9Hw?G;VNViuDTlPx1 zD%81IDCn)ln;Zi z@yo*mLaW^Cy<*@&iC^0WOgpntiY7voOZ*n<^oKJfnJ7(6cP9%Gqb?d(#`~ccZ2{`D3Rh zB&3o}h>)k!ImTXX5)8UydrX*WDxC3STwSKBK#F6yAn<2H4W|m55c9?Cr|J(FXNS(@ z&%|22LOK0eN9>xkyIKPVKL&l>x;GWuULC8C3+cPNZuFf&1wKGRWwp`c_t(Z7GKX1E z%DWf1KUrrXNa~++HH|GV+`BwYG9gedsTtOH>em*L1Wx(SI41j!1u|FGroA|E-AVrD*>Z&1eh1^VvEd&QjL!fhhleaiiL4Q_Qi>rr7Xk>CRQARVXC+ zZqVB9YiFu4f&|8{zf!;nIon;_2Fdplhp?!Bs7-S1hbY}Etey$<#oZlj;Z2w|0{u^q z<4;jnx3=@bVHCBswIYYz3&W=MU3@q2x`g>Rc110f^0*|-nILvJH)F;`;EV9Ecdct_ zvx`MHJHibc!v?TdPa4YvZM6sM_QVk5J}81P-0;Ya4~d2d(V=9}cRbsRuBi-|G<767 zW0qT`9FQ|9yFT6mCJ@(b$UfdUH}u5<==Qt)Mt_* z+}pN~6mi|>AV_3R#Q$UuVr#3PAaoK=dt*@2T6@eKwJ6tmpQ8q-gfY= z?1E_fE<(BETo?7#U0f!m2O%N_27a|qj&L}r*Iwu6jFWvvSnntc-;E1hGv%(M){L2| zV?P-qLQq`Z%2a>p^OaaMMjZT>!r3*#DEl%&ksj6Ih^QbM)%00&yXGvspUm+m=Hfi`HP#&h?#SuWq5IH~?N1lNDGBTT zKF3pi(TqvbT>hL6FDf$BTiTI;41{$_)-i$r@zgADlOsL$u{UN+R z_X)J)XAht0;I{$y*MTwJk~DTwE&m_Y!}v4y@87?-h5~wd*U!rz zviZ-S?Qcr~oE7TySN=``j1>B6oWK(3@Bj~;>qe7K-?y@X8#N{}4_PATt7AnE2m0Fz z`@iWzhN`y*ekpA^`)Og0q`Ie$0_>OlO4xO&V+Et=X7DQrv7`Gi@iAgz&A`gaGyoQW zajWomDsNm0@)v2FnBX5@!9W{MJsMpxLo~H6!W_`#kI~Vj9dW9lup^?(xcTJFNJbye zfsH(t@ELaWXfO`hXW*u6i*fD>t)^t~voV53g0umz+~odrQ=LqCtY$2|xippxK4qBQ z%{)sX%|RTteXoMcaB9gm!E0@^8X6~VmO~oT^ z*g~bX`<&1K!)4-2xMe2fJk==;DV%G*A+Jizg?04g9sSv{46Nx+m+4LLbtiFwj{DgA zZ?-*`IE#2CN9oA~G=O@``Dp}s!a+pP$8-n|HvpdOL(YWxipVjw+Nov^yiY!wI*6WH zt~<(|r1fTOVl-trk#k2}CoiytgkU`V<7_NVqT7~|D1)OyhJU+rdr-HD%f>SD+DJBk zp{|9tLhUClM>-Vt!>Xh>(%Sb4#(5e)IbF41u`nhdoY%5>Dk;h081F)DY5953UD{e| zd$SJDkozCs@(KeR61=SOM04Q7h)KKWn?%{eAK76@8QW!?`Z$rhs_pNTcsy&L4D0io z!?5_@Q3Tb`y|rr*K6vAmN4UmDWG60uT7NXjLhsSNmE^Sz2@`i|6HJ-uk14BS+%^0+ zE%6_*bfA>RW^_O|r{h!sa{{Y1!%^q0Y>0sU8(wO8jF0jwsjNdZPNYeOPue_MDUlpi zv|p17bc#GtoL!#;2U!HGTIHL$SNvVkKGKJcwlChGkg3VQ<3FrJQ(^G06|8cCxG9qC zB*$yiepgAazlH|og~30(mhgX>$hw$%Y$o0tKjxQ=eLCsZh?7lpc!^5s~QLWSVn;qQB7rojd7?~S;((zOJ&FAQ-6&Ol(siGrr9ML z1@$?G8(n=E`8(J+s0Szvt6{^72ohI&c_MlaQFe@Tdh&)=4&CRD-g;FPhPfx^@@k4~ zv#r0iQI(O$AK0AoPz}DH90K4eu;|butI*HZzxqCx2ffYGa-T#ANJDuqW$&I!U<0YU zkqRJS=O=t;YTJ*kp#{l=vZ)SvXiVr^xgbqYOfyef_=yak)`ewvQ!BJBwdq#D(>eXA%yQf+_l0iat&(Moh_dR`sYtHcP&8gD&T{qpW zIEqtWeV2k=#JIsf_e4z1Avqz9(H3UPiUe;}{oUe`)&4_e89GCADRN99Xg@;hFFV`I z_aigqPT}3iW6I(VI}isaL$%XEotz>mGW}9#FwnxyCR<&-d12->{zvRhfGms{ z1@TRB@H}}Wcq$$i2wGR#Nc*7@@+mJp&x|c^^BTaV}dkZmiX> zdxQrsfBy~QK>gSa!c@hm0jM#Fe<5w;eI!3l_9H0nDkJZvI1XFY1rzuO z*k_xYHI%J!gvNh7c1mBNoC5kpbp3=@S}S~fjVW~?Ucj?NS>c%|ebBP%O*!e_Rv-aw z5WYQN@g(1u>XqRnibi2hf}<1)M#?TDnJTB~(0c)DPfTU3a`Fbii7%S-X2GTy@&wj3YVrf6dThPM4lV> zWS@%rhg8b!QPX8iTyw)X<%!8-!hN#$=d2GRETOhRiS+W%4A&ml|Ida5I%bL~u^wo* z>T?=;o@A;~)cNJfWTnC9=Z^PDd=1AEBdo5%t-P~1jGyxl#Aut8U*{X?;V`aVsATZK z8CG&gqp14*okGe>h^9Q&nBNry3xuJ5>I|#XT2ilw*Cf_W3VQ9S)F<@hE)48^6;6bw z@yeQih?9#R_!iS)AE*s`)7OY+h~ZfOHD+l8B{M*8_cWGcBt{3?dkxH`o{6*M{}!E} z$LDcnFGGnDe+n&gAf*}RrP&dek9*G#FG*k?XLYpuJ3%&qutyupD7uVSP%QVY@Rm}S z98S!UoW387Z>yzm-Fx@#8uCZv48#0o9XC*kxAAt%IXTz5*r%#1o(=)O*bTu*IaPx->kVtl0%A3u zQa{Z7iac|?BP+L%*D*XG0R~_Tu+BQ+G>(BQyRH<1?FSaYH4y57v*dwmE@iTTqh_);g2;`HY0)KIJ! z?_kNB+QYjqmQ6w*XFb2$NT36S^;?L9c18U~qj>4~LmT@n=ZAXMefCt==k-|OmCwZ; zvvD5Gy*Vv?Ohek~!zuo3|D8Q-tQxN zm|vt)ea*FtG)4<0+e(bWtpC-S2$!PMyTy3#o#!6{zmfGmlnD>E-xpi^nmh>EE-o?8 zZDncz;d+x_kGuY-xJLKYKTJMg?nPX7kH1x-^I_};B-k!*DeT6hv28g}lxfoQEfn#OP^&0H^|ynx^B z%7C=UF7canC$_!8!j$akO4M&mkrgXQFz;gX~9`YUs7xca$(rXY2ccg@725?`}e=_(YNRsN6OxAVU6RA&2_oWBMgp-xPsW zVVF(crD7pJ&Q`F>v-#br6N%3K*xa{nLE*vSCRp#BQw}#QF1y^@q^<@+H|{J@e^oc) z_#alBij3VXnM|)dL1$|VDt2~upS$kt@~1qezG0kVTwE1gepLX={rYN9I(7c!p$oJB zxl>Zyf+c(z0af*g>tW0sCMaGm?$F_${hJ%)msR`UkJtaAujpacdlIa6{O--}2=;H5 zc$6%W(kJlpiuwNI)InLUd%WrODx-DZe%wK&o2KCha+yWl;~=>2FP}yoq!Nf5USm(( zOWqfM$1~DTo}_l8CK%?}))kXKeEsXTv2@Wu2YBa;y8P4O6?it{wR6zee!&QdAH3cm zuMfYK*?x3-ulo%CF5zOidiMMPB?-@$Pv2OQX&b4t@45(B{6ispX-Z~<%KJ#f@UWw*CbrZV!JK5g*nD`y5ib)cUFhfRevUY%a{;$usqAGoB^H z+Z`lq)7HwcuH2jrGRLV~UybyYkzNi;+As{g(V3>d&kH*i35nO9;T?GHCJXW1V^JDeGULhr2Y^UcBKXJm8;HjH-bd!#AttQj zX6{~gAGn62X+u}Q5Nm;@n;%~v<;{u6$p;*&rYN0f==1&O4(gv*E@HvddoDVU!MgW2 zT{z?$I$bg(9O#Zb-r!Xrt|aordxm2)+Jp_m{PXhXaV+p|vAj4K_FmF^$5S)=8TV(# zqpj6B(ar5_Vkqk-S!}rr+4Q5p1WE7tO=1en2XKdiIN(bmMiB)?+<+UP&egtGI>B7trgr@-vK=*&l>YH|TE)TAcy1$|B>m1@c#CH$JnBSj#r1y;tJ;4AQ}w|fFS zukaTW+B!6!EI)_kh85(1n_CX4{Q#LrIL3CxR=HH?#Wrt_s3?^N-08g~A#>NlVF2$W zlZb?YL#uwwr(WSl5H`38V$*;p_OuJY-oeG+F##KawK4lRTJgmcIBKaq_LA=sP>FL4 zXuT4al#W3%gIB#5fo~IuNq~22=*A6(BdvheSshGeqH5|E!NVDsWFKy{*j`BE>n%&o0m>Q^hXD5 z@mr7aBOj6BsFc1+w^B-bZ=k0(rPXmQ0qL32wz(eXoHx$rCf8`WFJ=KzZly|j_V~&Uypy$`uSqu`BZL{k|JIzG$aK13-3?d zEo%X_29021!X&~KgxJ~Mp6=hsBoSu%(ZGJghsQ-?w#dFBf#*{i(wbr)2y-_dBq9w} z&qG{4uwc=wv+DC`#j;1`QZO*yJrEi~t0Mk=fNi*rLiv>SvJbGU`lav-+5uy0)OGlu zh5MB4zB{xe)Y>{M$RcEHZHD3LW2EyS-WFp*qXj5*gjOgc3Td-NC(qu5_dsX*{llmC zh=Hly@C*%2_(8m%NWik2*OJa;GErYZaQ7u_+pgO3Iw>tm#&(s)d^n;@OTD*F1bKkk zHE47-74SkSwzVNkiT;PzacuYP78Mbga9d*x1w2U=xW(7>q0NoPXLM6x?DJNtUEX zzKm3NF<#2uACcIXx!9L`H@RnI#=!AhU6NcQVI_5Xz~XY#wDGF-P6Af@6ZK22-%5V`EW=PmyB zPR9179wWdlqRvZsd%kVPtThuXWgdiPRhg`$u>fTo{f0?g!_TafoFpEmvPKOq&5-vX zb=;pLT)DLqrxabOrOk-~f<_wr>MxdbY}x$>S&kJ?+jvT)rIEj6;hCcz$BLR2gw1sI z28v(96Q7hd$MmdpEfVCueywBi(xX>`Ola_K=hcZc-p=)0{lE(@#gJ?gM<6JC{PVp+ zGwJfPFyvkRz@3B@`EAe6Pp`kXIc7a

AK(e?N&t!NIt?&&6F>o0}ugK25cm56i^QLUT2#$+NyvM zL{39+G?y-sVKuEunA{M&iq8u*W@FIR%oI|fVv8NXut5j7jLzBuf^a)9v!ffZ0H;qmJb(hfj;UryREM&j5ajx*V z#Jp332r8M#*fLEexSkpgf}3}|)UegK6M~vPct6H^DwMP8O6WBsJ(rF}QV6``u{Ge| z`as#_z9f_*OA1pZ;UI!awcISrKm4EgWi0hyQK>9*N$BlRSoJgdYTq|Q$jduhxE|}Nu8(zDr*y&O6@6k)lY>cs|a(nJ4i(j$0uPc0a>0<=oYSJc$u%?-@KX!jt zmzp|OwvTI?2fXm#JX%cHC(QZ5#N^rFWL#NdqZ#t!OJvWuQH_MTt^P5=S;6w{GwLg{ zKL&XE6VnmH7~4LBGWI_VCJNb|*?|mS4a96xNJN=%*ILzHfg&i)E= z_J$u`d0meWZzaDIPPnr=N4ps&x9vu0wkaDtbSe&PT=78ni{;D1H(_?yLq1x|F0Wj# zBbBz&tr0JMg*$;|+681$UAI6H*PqJ;*}e9Tu3rz0(04%Sf8GI3dRY5w7he%E@A{f% z29rI)E^@cy(ZueMKRv>RGP|Tz0%O;*p5Jl3$_10Ne{wyL1%Q-rH0bt#lWB~_1$FisdT zcKMjaGX?oE{XxS$BW_R#8dvQ8o)r-Hjxw&kvf-a=AYo1~ z!>ut;zr&PCMYytu)AD-P%o48ut?B8%b6lVJ7-(hZyy<^4w^lYrYBc42y+{V6`>SP!`?OY z%_b|Dj+`)+6s44^D5z|~!}|U~=wAXxv|0$>HmOIH zRSHImb1I2R5x*V+Y2+&7u|fTP{D3ING;Ej}D~aYfL_75ara}t!I>JcR&iRI~T+3s= zxSyomJ=VS~E}ab^HrL_G-gnEqimTu>-(bg#Oh~lv?5uxl`b$9(N2pWOItCwVeWVH@ z(ba?3`(b_-cY9JJ;zazF0za2}d9P+oVx zaG5z1^>QevUP|sIvFm6&Drdtork}}BsX58631F;@#Bsj$SRn6<6La;5sVAwiqeO0 z7wIZ#qw%0`k*$>~4#vr^?|$)f4##d{yk_{nvT&#`%L%S*nUPR{VB`;-U`FmJ<(q6Ib-4rh6HK#>*OH%|WL zp!b86HhDUu@puHF+@*CfQ~PixM1SzS7evaMpXZ6yq|WsA`OnsIYZ&MHtDjZDxr7Ff zFh-ZNA=xjEZ41`7Nw>&l_{@I& zKm2To%)KXD5-3_Er~epQotmMRGEq>5b)8;|Mk3F%8~R$Mov@OCf9&4bnuWyI4ZNM7 zlO^vxpjS+|GueJtmTha(YI)>#vKYwj+&P?gI21Ct{}ddlI-W1bd4JbTI(U_3O{MR@ z#%qO4CLMb3WoP%7hH{I0B}MZHxBpGZ5Ij`>k`&K&rI&L6vE@W7@IlMmJUfX?ptCW2 zqQBt1hdN7S24d+tS*qLC+Z?r*iD&z}UCVa8n8-Hkq>L*Ro^=$x)Hd*e)Pg48E&sf# zmNaQiVx_WAvv#uh|8?kW1r#F3NkBQCKb8n+uwRd7Lg-e4@Qtsb_5UdE=wc820X6oJ z7V8aKkvejkpP46@VDTGy3Dh5GuuGN^x!+TI$Oagc@E5W~4jRtw4Zj`k7K%<`U_5=e ztsnYCP)v!|$m1TfzhEnK4gic}rLt#z5~s%JeszKcxMT5*e};t$8_cACiuF-S?JR_g z%Z&-#*%v4o1rimB7~|glaR(h`R^1&{pu}@JV-VQ}qXW*f_&>@E+C%;YUKV|wI-KnYKhwx?O?DuZ} zeG>~T(88lP%OaVy8lo){$(g9B%@ zYziGv^0BFRebnx5>EM(FFNDWOkqv0v{^cLE|Bgw80W(yGKIo9#Fe{yMLv~#FfZ(zf-*BPhW;w5@{w@b07 zPdAk8T8@qr7sD6aZ0qmfDRWbjVl2U%_t{N@?R3&5hvm&P5A|o4*s{O3u7_(c{#ZPm zsa{KoSoN({7p&V{RsOp*3ag7aT@6FGAk6LQuF#SK;CG?5%!F_39(6`ih!+8;L+Mqeb;!q z4a1YSzo?1%apR$z>@-jk`*w#mD!y?*0_AqI#hPGxIFdI|CQmi>ccaB*XDZ#A7z}%{ z*CRgW{ZWJ1K+VXOScJiP6*VZJrnDZH=y(ruy*^(W^c(W3pE`_2fh_D|aRye^te*V& zJ#sJ4Y+~1#WYWeZHp2-78XB6XQTij00m7q4NAgV^ui4k)_{k0j=qOa0ldo$QNB3hT zwm7^N=BsRxo$BN>Gg zyBuX1%w*vAIGhf2M%ZVcV=IYeuCQ;#aM1b;oPV(Dw)GHIIc}R&b^FL~agS zy`m0iO5i?x`N74foOUB^#|gN1hVpXrx;h~p+!0Z-{ew~wL8~~Q_#29JTNz^g`!KfQ z{!{QD0fTf_+YY{6iAe<}+-(sF-|P&@edV+KUo{^(Hw!g(N7wu-Nm~;qbJf+e8n$S^ z;l^PI9pr9xpF-ggLWwO$-bWjB_^H_T;?0TIWJ-7eR3Zigy83^pI_tM6yshoeFr>gx zQqnD5N|$t_Fmwt7qf*ihgLHSNN_TfDLpKQ0AdSS(9WUp7p6_$cx%LnHAK2I0dwtCtS|B>E`r{S51;e{&MI0#i5)5cjm=BpBeKBOpG~=oKbMmh%!B#-On=}? zp8mw%5%@dS9$p0BDYe>EbsnP+1ROwv6G&Mx6jKd4KDxXdYGxSH23TQW!u1@1g#Kxr znb|JP@#+k)jL+BXQKm}r`Z)YzThtFG9Y<)G(ZWel; zD~KS!oUC@}x0UeKDaVqskx#WXTfl)s|aTSFH2^wPk6vKH?pqYk%>QF%054$D|+E| z&H7`kE{NUZ+`$TGrf&W3q|6)g+QawOLTa+(vUYwg;^((HU3G;zEK$sBe_~yW{qdgo zC}&jMdJOomJK;GuwPDG?AsjRrJEfi72`l0ru8`+P3dBRCr~ zpEK}?+#a9*tTiQ#Ip@%q>=v~1)AM#muHPO(P!d%YBq}TS}TTaA-Y#fni%?`h*8hd{B46O}fkA}uE z2t*0`ts*UQsF<17uuZi^rH=6)RnGNL>AStF}1CT zC%y_IG`p(uHXL9um-jVSa{pr({`)FZQF>#IVhV&3C7h79l1<1L3_Zc>)Diu$w`G+x z?X|?NFDFHa_(uy6gcr#nPinp#UnVEHwo0eACyvOXcPbhEwa`BSStMjABx^WE61eUp zh?z_KijWU5x$?=E441`gnntq{5tKfuttAar<+<4?47VXZ9v_%5Q$h8Hh7#>$Q;R-_ zD_a{94V&abKM?Qd4iQ>gDf1%WenwW$hG?5!&(IWYu>w+uA|Yu)1^WGSE3ev7o8)5pJj@jqJYFB26@8^f|e3v9&Q2q`83Qo+!y*`Q|@Gx>-UC~bz` zh*x`pZE8m6E@?5Ae>62w$0TChCW$kwcs4cFw8;OJlBu~)b;avKh07n(2rEqge&>x# zminJI^NKZYc_no@8H1+f4R>PZ)Jt&zb}H6`#tPf@Od1BFnVOtXC#T zmww96QcZppZoSLIv@^bjIS60Rr8SXXFm?oZgfjG`^(szpwA83p94J^xGkUB7FTUp} zG;)S5Anz>}Jua83KWz@C3ZDM?kRiz#Eq1fSYnK8_@cAiV2Aqj1i$5xBzAk1o!K@}+ zL^Sa*>>aS_r6ZqRPUhbaM!Qi?lfX=GKkrMte_LjBqsKws;S#PpRIBmmmv969kILMY zV+hiCGFQz+sE004w|lj7D1XRyU0r!-wk%!O{a<+hKL{U!D+YRTH5s)MX}{uocq8am zj~BYP?0L*jJMegzw6wJ3uo%YDvn_dvxBDh{{kN~LQ`wF_DZ>qQ#JY*!2b5W0#8W^H z0}sw0jQ41v82c#SK(|H!2sA>o{Ark$s>;D;F!V^}Ry;5J*QaWwNQFS)JVVL{2lsx2 z_c#Dw!}cD+25JE=Y0n!Z0`?*qlv8CZ)+%xym4eAZ&<|Xm z$XQ?;Ds4u+!r&LN{)?9~ns0f2=^kJ;g)!x}$rk;{9OndEH1rj#WH=9wBg z@;zu*+?wwiD;4KevTZh-Z2jgZt(iq2V5v~qHo#H7+z;dyg+Ymt4$@ZXbueWQm^g!a zr#1P?Co9_$XMosOh2hI>{kh-LpP9h7MliNr&ba^$0jx-K8L$}s$V-hR5vk5=QN5S8 zMCF|`1flZ#kzDN|hXZG=3MVgWxErLnZbP!;$|zOcNqwr>;f(>{5CWV2%pFpPaUo}$ zoXO5}DQTxr%L6L>DA!u9R`V)0P1bTjfFErNnlN$|Qkm_;pX|2@q9WsNdpo zf7G`sW#B`0M*{p}f0$0+%S*!MGr$ZCuG`7-4o%p96V!SR9g5~)ZzeeC|48X+5Jc8! zF4wjfd+^O#3TEUx1XA)n(U%P5PXQ5OIN5Ba$}~mb9$(oeV@Vky|k89 z=BV>F+;?Wt=SVoD@0+&TKv$@Hw`*l|%)ZmlTKNaIf78bi=N(t)e!Bc;8QB-tGqCw2}>`BKN z)%l>*ww|cb_YguwE+a^ucIV(*p+|SU8?z}CT-l!@*E?RrTmKq4{7^L;u(FkP=j6+F z60>re)8j-aayKlw(R!N}GeEOgqGX1z>y9^x{}{XSa(R^|oCQI$WrZ_#>Ze5yGVdD{ zljLO4Mk8d8qrmEid22bqXK@M8cZbA7)r()8{#6y?#Y6t#rtce1d8PuDtzfkUsDudf zGE1iBjBIbUzA)XVm7up!K77}1Xt`W~BII*)s)ELTnTQ%5e-u{&xO`3AfrvEk8|4V_ zaCX_Muc0>g;iQcVinJVQkCEhf7c^Ri_vp8oj+<1T5NSKtS!j(^88A|N&2dcgGtNyp zkT4)=&~R%PX1y-XhB5VhOy?D&fMYerUh`#>5wXEOxB43r!dg9hUi*^B=@g`(#(HcF zHGV68dYPnGyffpBKu7g}t$0s~`44HaSIJlDQ8f(fp-d{~xS9-YUpT`Z=IWb^9&`u| z5$fhVj|CXVXol|%p)&D=Q`b-NGYHSm=q&`dwV(~j>IAYz2vwW+jBCqf}`dQ6J<)D z*yo6NpG8Bd=X(UgWb!wmbg|deM^sSzh~ge=U-hKP7nymp43qV zIv4wE`Rr?rFdu=Ai?PBUW(I|x!&^#9``g)+r<~al^UG>mR$u3^F{EB<&ZSL>V&f}a zteiF_L_o}D`|#*0ZE^nAd}iIo?QnKIcOQ;jgyCTZwTc&p{N;QPuj}Lt7DbWne-`rI zO8-JxoZFibSkG>wxBb11gx7e;`lcaO&GA@;vfk^r|Fw=fXW%-te4Rtn)62wN_fhxK zIHDH_JcOa-X9Iem&qZ0pdO@i#6$_1zyR*ieAke<+Z7!cVm>!)LM+q$!8;bT5CHROe84gWi2ZX?+{op|KnGCIX2SwjU?Gm^00aQv63<$$4?NlO%{c3qb zK(?T63kwT5VC~F?YWJ7dU1T6A7fq)$9d)PORb9fn`l1UO!mTL2nQMMBuA1w#W05IK z_!Q$~4ByS4s$ItKgLlJqp`2Z>vtnBz^ryaKw5A@7&pt>Y9i>ns(QBsa(RAa6GV$GF zJ>eq&C++1({S8#dT2_RJ8JD5`=O>6D$}|2Yz)pKwn!`c{jAmyX>!LN^lPL4dQ793> zHN`EJPBpI)q}byN{KJ>N+r3QdB?A304-=7^x=38AhMlrPd-kkgqHbg|CONhKLj~KH zAM^e3x23SFC*}(SN-I?FWRAWOG0NQz{Q1&dJZTaVO%>dvoYV?pv8lql&D&?$3s#kP zZO}IOGG2UszZ>AOSlmsYTs}nWNf$%!UL4tb=yU0w(jDg0xAod8;sR^I;qAIt9}t(X z__iKRI-ULLj|v;C@;0-eA^Uyr9Jp9ANEQDTSw6{yJ`o`XHZ)=@Y|c59@EE)`k2r9P z>GVOqtKQ9xhU7=9)plzZ<9XP|WHrWcy3O-HY@R)arV4Vp&RaP;yRsFJ`&E+Oui{pl zZGJl^67ycr?diJ^uYOc-`VWo3s>XO%0#P>?ctCD!V(61wrEe{K*G8|(;UlY z=}G%_cE2=N2bW`b6BZDALT)lL5Br!jM_+T`Ll^~>Fr7>r!{JM9kAW|!KkbQR=<3K4 zXhxCec38}q)XV9i@@m>$!Q(xK?mj)_f7|b-@^knp}U2ggJJwy8J~Wh#l~B`IH8m#i+>lk zr2SR1ntV{8XR*^lGqCB`Ak~^^^q`*) z?TJK^-@GS1`}v!jxCb9`wY#<}jVdjY0N;#%&Tsv(;!rhZO=vwX=MlM0P-6Oey7o@Z z4^!QoQ{dysz`HdlZveZtDRtFXO<^h(h_tFXo;mH97G`|9N2{r3bl~&#q?w$V@yUv-pMvklj_2Q179Zdb~GjXB!@%KU`ExXs_@Z~H(~|`-r?Od zwB!O_3Cqg+Ock}HWl?U)c|13TeX?vu8J98bAF0>OZ&DkC7NR`DwaR0fVn>p6lGZ9U zgK)o&$W32_kHtOjsVI&&(qR7Xk$mTDY1+*`>m5$V#!POLV|%55pEz8Wt%H>n`iF`(Ue~O8>v<;di!`IeBBx# zUTblgh9^y97$EbMI@5E0DM9FC3;Na$Q;MARE)ArZF8x1pp8Lsc{dd<>hjbvheRVlv z{YeSalfCX5)!pbLCq!HJpN0Paw@M$Ux=8J=t7r#`~Y;_Z(WlwCQ==uyaibSqcM59 z1V~Yc%%0C-d=72{qAJJ(l?T6}vN4E~gH|!SRBge@TbDpnZ3@lum-Qk0{irm71X8Xj z;i7y%?5Q6K8f-YR)V6RQ*JaY6`iAoneDx_sZ43Adc-0RvFebql94Q{)kWV!z zex{#bc?j?NBUjS!D+7xKptLF?9oLOoQ;d#gbS5@F_Z0}B;@Rs$`JjZ9(&D3&N-BYZ z`FBowo5_E@A`M}3e!30BYBUGJT`DgVaF3Q}@Y~_P&T4*Jkq{ zajo!jMX8x6E~>Uvytkx^xPdN0zV%j;Dna}c$ca@CY<>&_kK#6m(*k%=iAAa?fiU7kd`^~Jhj1pdQMl24FhW6o%rJ1;Pzcu)4nIunE zCRmVie^#UGv#gXgjA|!M^&-|s_X0N!Ldfse(qV4ZF=oQt2?AS8VdpM;whRLC7wSzm z)Mcg09cG}kOCk%6;Obb`-3)aq$~41|RMum2A)8*Cq*JH#S9!WEjHKPf}C5Z8TezON;eZc(~8*t@jKg4{#J_T{m zxRTw=WxW>LWzzU`kF{FZG0{3Cd-eKx-|1cS!kZ9q& z8-vS{(^b&j>m&z8Ia)~1_sbqq$?G5P?#pXJJ5k6e0v{ENm6SFS&yYy92jh?VJ08%y z=iRTggRk3}$b)GbbBhBb0D+M|OwYW=PA0B@usI*+^w?lt`>GER^c#q$1=4kFC`2q> zeKqIUpyrKrxNi2=TE8L3QXOVlmg6BJZPK88^8kq}=IpbP<9a9_Bm9BgtZF!rpT;O- znoV38jy2rZijZH+OpNunnXKzvA1e@uHcmUsTdQh{Mk+}hH(n+^v+U)STtBspGaEKF zTJ=D@KGCCgQtr4-r`#qF8AWuhp*WyCPKyr6a6{=#KfNhJdHw~Wk!`4SCjIl+3qgx4 zEaX*N40F!6{qEj#Hi<^X8GJj81QhhJp zW4#qsXF-MdVeY#ghKG>rg&1d!c;-KDMhZB)Auj8PCfEc~>wSi5J3Z3;m{2s}E@ z*ae>3(=pIdrO}8omfkZ~R13r}%*ubfRBB}VI90BvDAyp{^4A*k!`fpsZc?&}3lf9G zQZ;Cayt~%M+}jO7lVVvz)Vw38t!>R#7lEs7`(2lhnJ~Q}NiB%?qPJ@&;2?CDIktTEhgI}eMrkj8avgter)EB;ySXMX`uNL!iT!I4@;paeTvG zP9I@1I?$Z*xxi}Wu&*p@S4lS^EnBXMC^(N|olfvt+&sk=v*A3*KMgCoKr%LL~?%C-Zn_S>JSyKR~I?7pi1 zMOpPm9jTDbUvOEJy+v)->4IT0Rr>4`z{#ucF0M4T06!0s!#`$josWj$r4u&jKGO(k z(Ig)7u3N6^+exHkI}zsirq!a1TK4rC-t`q2&mcaL6M$MXzrM8(AN*s0@>{f4Ew7!Q ztx`OmoZKkXy@aERU>bWEZGTf+C2Z)cADONpOXNB{-~ip`W;1d`=K?;?XFj_q{raV9L= zgoo?flk#||C2mDR?r&|!)@U@gU}Y@2hrghwV!=ME2620O9`Ce5d8#vPD%tbf?)2oU^rsepZGWo!hAvYiki)(JOan_$<>wDiWtVHL7 zlXYjkPuXVmk>2Vkt*3sOj*H!P;rd2V@JZcL@N9;V z0Ku}x?JGv36PbVsQ6u~@LzqHh^#oEBKGKZ6#JB3-SlY@o7~<@|443m!m+U=@h7{Y_ zW^0vfsjfuja2yg$h3Z~4mWbVEjQthvXuUkP$IHe)&QRb>Qz>Jtz(*$i?LRzsJnovz z4mDxSDln&*jC8mjZky4xBmwfYa*6Z2#zVRr1dATL7a109KBzkFC?AQwV|qo@LdmqRE~ za?gBiH{knWh{=?N*YxMK4uDI16+*yLwm)KTYeSf>r@ssB6$xR2SL|4<809NKC@^g~ z>IgK9>Pf!=AoGuta^-t;wVJ`6Q?Zs!JBJVP2Aqo5g!yN|KLa?;=C*Z*x{z~k-(anV zOQMLmeFm(e_fF=6A`*9(vJCzE<(V};*-z97&N@q>3j-4Yx}JQdEgc{2m@PaiJ>o*R zh*&E=(qJ*>^CQv|e~4Luax1bh=Agn}$=SgA8CLCQ*8Q%E8l5>wKu1TQzyHR(&^Tvq z8$PC`Z0R!ExCRDUcMT_P>jb}#C*ILA5ZtPqv<(#y)NaR*8TL1U;5XUXH7JG9F(nw0 zG&UQuc=B>PPGODfBsU8P@%0kaFK#cP&ARY>7a?t4iZScsf&iarOO1@H49RJot2165 z3!WFszNqS(8x%Isc6qHUd$wCr30AKH%6Gg##q}3>#bAA8iT<2=?AFdohoj=R8tu5T z7dKfl-<_`lq<%xpjwD=-6tltXJ4+Imm=PbAv#gKk2v=ITUd$PW#QbiUr zU0xQoPAyQ;ixQU$QO~@PA=t+CM1;?K@I{MHmlX>*y6LjoX8mlN|91ILPykv8DO>ym zuegwN+wO!Ij8RTjIE1ZuK5H;2pyrU0Y&>ghF8RL86;i9R(bC{u^vB5+b=Yku0ICqu z*?j-!su!jn{yo}PW8bk$Wh(W|Y9+02pmI^zb>5-x>Ia@LzTk>5r|ZId7W+(NEh>Be_PFut-8zQlV>V5{;D*)-Ki;xfpP{$> z`i)VfRte--n@B&8^LCan4#BY;(&SGY_$!!<;gAP!fb>p@FE9DegS!NugO!5}{#xbf z`L&z(TP13!G=1C#t;y=tNtCvg@&>h%qOtG;zu=NdU;8!nK@8}qt(S@o-_Nx+-8dFRMqkt3Op&YX4yB+z?V}2+gjgD3>z#rxV)zI z`hzY?Z+8^x9ar$yEH7hu30_e+=K5GmMm+Yo1vz8Daz#_YSwG*El`C7G)(0D>x#Wwq zNBA(+7`T~4KsY~N2fKb-dw*fa)zOH*#+XsfnlqC5(C2;?gVzJPT%s}tVe~AItuQP* zA8~y&Hj|kFGH+y=L)}5*?uAWpV5Sth6>)o2c3+3>#aSzN#L4E6#ow8PsheN_2~Jki zCg7tnooT)C+eY*C{$lQ6GB zrM}pJx)QFjA*g{-zh=HC`FBj}0IRlFmeDZLUks%$H4LPqiwwSXsRGoYqBGC}SKt*P z>chwj$}TYA@G~F|jRzYa6@ijU@HX)rW0brb3H&zr2(r=cVuP}*+X#y_Vn{vASvsRj zjo^|0^=G0`)LgJjul3$V{ecr31<~Ov-No(?ZITvTR$~FEcCkqt0gax3ATOU)FFLxW7mkg^m^)sF&lAP%MbXrOtjVk**hj#iayL$|?jhT{dIP4$t^L z^r?awV$R=x2RwZh%^6;b*iA#_;kN7@ zMJ!%Bd;;1y1Ge6m4AFbSC|qT{3r?7u`ZrFtlJqp_Pe2`NnDDE`Q5L-wTdMLV(*cRmhf@NjCu?8%*sW=^%6?n7tHZL#_LC9& zP*i<*LwK%e(&_(0Oej2H1(8f*3IRSdyM@PZAEdou87X-2zb4sDBvx4jK88X+-rIfg4b`)A5A7FHrPi@kr+N>t|UP# zNkON$7RP(FYtGflt%TOkjj7%L_Gy6oqy{V+iHN>)$~iS=!5!*w4&%HoGDkgTqtP6u z@0j@Ncw9oceoPl-IV}Boo#s^Qy1^XVFtrV+4n^(WsXeK#{ zzv8M-{l!&Xe8+rI&%B0fO<(c<+goABA!@!K{9Z$)MiHepId>n-Dw z*AYHFk*wsU42?aIC^2m+>)z_Ejpr$0-x2w8F>3+>tQRDBwOTd#jO86h4rBx4qWe?= zbOq9Xr#zGH=S`oKv~&W=7m=(4Bff7fZEe*fYl9EvTG+63@^9)=Gr(o97cPATI0o_& zaZLIOs(W8pV*6T>+(%ZNIpz6DXT!yj`XW*&XHK7XXBmkmN}Ea{@kHBU)p0HR9pN$1?x0-eyhQ5`yvx75E)@Ch-!T0YCT)_XF z;Cl$D-KX85>(Z2B=y#bS|DyFBwZo0d<8fz}EmQEhmQ2x9$^ZR3|7E4P(t34t6tA#0 zpC;I|q1F)E-h1#+h;vTr)nL8aCG-bW*lXuSgKzI~9zlqO9)}5M#U_1QKseTpEeI__ z`3=v2`^aMDk>wGS=hkr4!`RarvB*r)-;8T&W9#8A%960@XEE;^`-Z$)zsFGTUzMnO z(G>i$xQkVdz+PoukLpQE$sVrRDIRb~QCH7@K#M@AQ}Au9qvwrT6j1Daq2p8+FaObEmYD6rd;NuXVKb5;@13o|CE z!Hxa(C(t3z6+S6t?CCntR6s;4DV3l)vpD9Am+SU&m0nalp6W}4-gd{zCs++v3|bTV zXV5#~uGAT*cl%NV2Ur901GXKyNjV?OkXIE5N{JY+@JcSw(58>XlH!-SJQIeng20Bb zQ$dXyPt$?Fg)lQt6e`W|)AeJ7yo3FG`CXegr*7S}Zh7K#Np*7Eaxn)de&g;+|a^|3b$pWIi|LG(pe z>z-LTGgB;her#Q<>LCNuK`0n%U0{s^%PI21$N>xmE({Ty958-)8CKT3R+q0?i_f#v z%UkvgWpD?@6U@`d_}Fcnt2CA({@6UOXy_%7rcBuWM)gK9=UQ zK@Jy5Q|2MnOU3u}k0z?lJxjIgUz|E9I`99GJ8WRlMCnpJ2v!%AvtN&SOXpET3n!^H z7M~_$yb{y(*G@`7_B9f&(}fgk+IT-O`c**K)>0xEG`+w6EDe{mK83B34Pcmy5ho+W z)?N)@^|SXrmwD>@UPTZyuF~oq3tuDFerO)NWD0v#etYE@ugb_1Di^CAuQ7j>=KZlF z&+S-0PIXv8tT$$ZJ>2Q4JYSjQx`)s_PKMcP#Y9>r&fk9DCzNN)+{TwP$Dpj+k5h>k zN{knVcD=C1cAR#Rap%ihv{_5Bt%6iJ^r@TWJTS}YX z)K)CZtmB|jyv#{WfF04gqeLk~G8O?NY_8;F89OQ+DF5>N+$o*Rvp*Qh*U@oR0rAla zJ2)n8KoD;+|Bx9THf>ag;)f)9^=R01Z^Bxb`4?UVlVuNYrI_ahe z4d+!HkDRBqRH5Q=<#!I1dcoOqEEx<8hBZ2CFPpG38U-vRJsaB{_P*<{Y?TfI3=K=` z=`k1IOPOD}*lO1dEzPf4x%bN?FqJ&FtzLSl3~j%hXJ2-jePC_I^kt?Cv#m0AibL(? zGGpqmKd>!NmGtu+HmG6t)F}^7>TXbV;Gx*T``xi3%Ar#>fHUGCBM_lt^4R{sQ!Wzn zkKMty#DCA~o^JVcsMF`?eud|dhIv1HYkaG7xRtQ`rkL*6$N$DGVkxgaPpJv^NZjrd z^<`c8yN_TM_H6t)z%s%p0Hyo?36rhn0D1Jk0J!JH3abe)?_~Qj)SXNyYFTfF@FHI;rlnQPw8#fvyj*Acj}38l1H3EP=Tc=L`JPATx=9k3s*KYXpP`?RZ{7AR>7Mdbjn@FhQbVMB~W#YESdD)%)YVlvyWn3Ep=G@bK zBK{qXKKLT)GI*4cWNtf@RYGQ!^?bS!@x{*6SM_pvEnv<$5IYE=}M&rv855z2stSQdz=wKW-u{EDt;YFBFZzyt5_Ul&*=P+G+yFl?50D zPEK_y{Ob-WTBokA-u*XunjxQN+VJmpez-*<=`r9PH2V&++!#S%li{&@u>8{q>#s;m zPW}FMH|GP*A0z%u`c%C|5^uO|=Kr91z1M9<%#2H zDm3k{Z<`%7x^kVthtqRMsy$JA^u12MyQuR)iR$ zMgHzIxx9()yOQ-b>G;+JeiP<5nzG$_Tzu8*?ZgYD4-x`aGiZ-#ySQs#G+!015l(-L zMLNeG~hDQNYq@0 zC23}ehrNs0_CL~fZYx!j5YqI!pbdCCyT?xw^0H0?S!la1C9eHB~B7C8VGA&I*-H!k#XQZtHmS zdaT#E@|x~1Eh3hjT)8a1M9l^Eh2U{EU0)+9Lo*&iw4UTOoYgi%Fc-|tRgjB^%%|B) zTb|2y8Ob5V%bQ7MsL5VpNq$ml^a(LFFjl^{0F`hsDAA>deQnpGv;c={^pa9Ai^=fK zmxw9UjC1=;(nxk8QBpw_aNax}e6g{Ax7zxc-nsDXz(l4 zYYQtZGYl&)Q~D9rmUE{&`iV`x)O#k|;rnarQ(yjMHx&dCyJYq+SeCa&-nsqQEo$2E z_C-o_chJsC%ak}3gLC-i9B*bW!n5DnS*|btgnIvn_*Q0#a_xdP0p6mEllKN^NU!>W zJ<+y_r|nIo?Rcg5uJI9}SATX0nkw~jI2txd?|zT?#MBg#wLsc)uPC3H$CNnc&r_KT z>r^S3cYy=hNs8W=j8BFn*=TwfU z@`a(eNdNOP|DSzK9JlSf+&;=_Oq@Gf^f*uGJRwI-e-SWr-v`47>ofaDMetvRoWUV+ zCF147wEW{Q%qr+ff1={!gej=VuS(VsRuSM=7(6!{z2|FC31*|k1>p6Agc!ax{T8)P z&+r$|O>@B40>tOnQ^Qwgb;m|?Da`R#-|73Bu@NS3`+G}Z46pET2ZTcvM3gbm<9>)q z@x@N*@mW3f3LudYZ-em7!2r!m6uXh%wOtO#Oc9R8N=EL_yHni(p?krSgL+of5}%xg)LuzN`T0GK9ZwFe{2en5XfVWRW$w&4o;zUPF$G!0Bh}h z>OLe0Xpx}SD%pa@Ls44yA4KrKyRtd+2mXD;un4w1i(N8 zf5N990sUdsUicK#)JzvH4E<)YE^1@O&X-?~HK$cNT;M}5&Y(hfDBNYv(1Be>SCj11 zXA=9HQgIw;EP}5@zQNbyCD5gs_erQ*Z>lCKX29=x+$Zat2JD8>}E7W1t2?)pkQPF7IZ?)C9p?EZb2$EuLY1;Ouq02)`@uL)Ijl>xMg-z-O|2oun8iAz$%Aj_^%Had;b8OS?w<6hBKU(f>HT9NVKDX-AbnQz|0( zQ(flbR177XZ0v5})8Zr>kGB1%A*VPaxyrTXJke^n&QnO+_=>Y({2K&l&oHcFRDd1} zA)-GNA1P~cn#b<>Mu2c7*5@`(?L-Co#YpKyiIZQ~$~fthW{-TCuqw*eVVJop61q^5 zn(>|NUD=2GS@c#_;!dwq%BTLzcSvC^`WbAbhr(v8_F=?z7`NjG7Xm)h3fXL6QN~so z5U>f_UlVmGMP=CgVKN6^$nzufN992BC10le9dp(qTtMVu1{Qy+^-w(99kFOJBhNRd z&R9@Z?Vugv=p|GzVDXC0q7?|oQaN|2X+q4Ecc=~%;zh8G_;(+9@jo-DWL;0>vi%k+%!EzHDSuTr{p zebJVxkX`dXnF?z;5{}Z5Wa0wq!kdX?{0@%v7$t#vgf**#^XALdv};`>h7P}n<*F-S zmSx86A`KaQth;5BM!MpTK5fXF7>W06D_+yO=7kdr=OMe(!vDB#&SY?n?z$@1zdt6C zxnAk>I(&HIAl;i4TL1ns{!gUD+g{(rCWndTW$L~hXJyK>!!gEO0X}ZL(yHi5@V*KB zZv?XyE$-2?MO5!(9TND@44RQ#8d~blVf`q>=odgWOXDFDv{iZ|VM-}gAT`P|@H<>G zmvwDE@N08@(AY2qFqj(fCI2R+8qgh7#+>o|v**r}O@1vF(Df`cuT;8BMu(rojD$xC zeeMUFIuPf#z!N2PTNQ^Bz;TB$j6gQKfLVP^Axti*$rSsvZLjS+Tt;RXhG< ze7SfD>c;$B*zBvM)a$2MaeB{zWq~o2y9822Rae@M09?4l=h^fqTfV#~SQM2iAa1}; z6~JZo+`L#VKnGrZ9{Bu>9$2nHowkecpR zW-4T&V9QHm`I3EJT_EMPPX7t$Ht_5YjU!>MwIA?uCYeBSkO5f9|M0o`rg_qu9?Fn2&O1%;Y=-clSS@zF;#Z!r4ws13uN<(YWE{uuc(ZlJnoosROmCW9|rE$p}iNvpD61oNd@mu9kw#3iP!0A2cEKu<^jLB zg2v`iAXv*fDfq3D;6ChP&|A*}S!A{i|FN9U;<}fM=5gAlQW>W5N-~FDbgVs7O<8Ey3sM~F>unfP8D51Sfnm!rvfCLSb`P@?H;q7%vdb#6bWpf;wOi6C^KQ!U% zS0?8455}Jai;T1WPN`9}{i>+?PS;Iq^*X5}*cB?7t--N{FQ{bHZ2eB>Bez#|LqKn%1qsxohMONxVIUVPvmf_O;#_ zI^|*-H!fx%1b6S@>vcC|1Q$#G|W%8sDr zO%P)1!BcZ2y3g0y&zc((h@MS|8R1qyF!+7?I*UJma4`q2pVku8lsPF+lBZjkK-rLM zDWza$-$aBQ$zIrzC9c+Mr=+;w0*q}1YxT2os%yQ*@~|(2nLkCkaCfjOq$++fCm7dC z%62qRZnKD=Tb*P#sjDidd>mo&b&>y6KB&IPZSr2B|IJJ_1koV4`aGMivS|YOZ0>Cv z!>3s3FvNh8uEShB}OoO#8Je?CO^QU=? zV?A~QFO|mKWan7SrB+M{)jvX}N)T1BKYkb58~;NywwutoJXdv(tJxopu?(7aj*z`uGJWF3 zR@s_8RUYhHeQ1{^l$YE$7W=P#WBz3>^NlWTR`2|;-s4mE(PE-&4wgejYV`Syk@sBseHYi2n#=|O zu*6W+y<);u(Dr}Dqf}uO$;gA|(^$HGrvhy9gf_T2Sty|ZTs%q|hmlMi4*K2?x>8o< zn3Y*cVQ>3+6(P=$P*y2ZS_Yn{3AVCmU=Z8x5FI?yOO^w`;d5oA!%9WFHJ-y}x`qCV zdXl*MK2%j+^W(GJjCrS5oDe|uJRi!AB^4;5{5@R{(AAAREeGV75jIOkHdAqZhi)cd|uze zT}fs5?uUvYnE)^k-9|JMCEJvry|Y_#HwymmV47G%dcFl2*N2eZp1QRoRj z2sb&zez<@3axA+n>~)R8jtohAH{FF9vWjXCk$m8^Zorb%w^QEA**N~j#$v2kd3MeF zv#cZ-NI80~-gFmd!@a+7nc0pM&8_QpG26K9&pwrqRdC(FA6>4opE)aw^mAXy_+~Nv zt!XWsozQq=M#XF>15uhj9MSI570F>zc-EI@6?pj$#Jc?&mgfCae{mb!q2Sve_VZ4Sexy-bkRbK zyGzjGQmklk_aMc+K=5J>UfiX)7A?WuJ-8Jp5WEB{?ruNd-g~XR_J5QdB)M{MzjMtq z&)hRVX`9|#LQWw;d=YYqOgF3WUy_VxSzZdDK9jAb%uJXxVo60DxVoI5z z0ebBeEzb9D8o{>vLWXxfaxLJLa~9Pwc6(I%34um7EE>7 zvGN2NDg+DS3yk{J>Ag8@K4`_b8LrCI()MvikJ4E6k9UI0p3gb|SiNV6JSNlaPu`vy$P zv}?Cg9wWH=Sv*SV+aHzMXifg*#3CbEaX?>C+%(DW9@knQSk?7ZG~cWiaeqjG{<>nq~~mw zo*6#h^|f_ERud)VKDe)XvO5s8TZ)lrWs&^%dSv&rE|S_yuhH#(7x6|I=&Eq9 z`^?!j;H9BgpC5mbV~uMwS7A+lK6Z9PV!QK%jG)vX*fG3A_`*8Bl`H4bly5V>`1kMM za0bx|WvtzyKlHC$=FUWj5NB#9 zPI2e4c2o&`LjQG%Z9$8H&}zf!#E_jMOxKLOm5HeAFhqY9}^`n<)Yf)$EEQJJK*>J%
%y_5=J&s{N+pC&Bs!f^z0UG`V2`!g5UT?BWh$UJlhyS{wAqSwOaOy2Y z>KIVryI|a~(h<`beqtXvxs2s0kxMC$s*JsY*?xgS_*#GkLI@TJ%N%+3cGnA*xO8}> zM<^nkg~F~hfHP6jJaQp+doV6oTgSo!slSuI}f7!+JI+f{o?{1BDG zK15^%LdZ+L_mcJjcPl5=r;Hx&uvbNov`a{5Y6ibkv3kmR`y{@62desQG67MEt}lvm zDFH3Wje|5}NHZ^fls#eo} zFzG^a4PBYV|o4BP&(`4WsyHv;GTz{Tsv6>C~{}Kw3M3DWHZuPY!k+H zd;f#;gMsfUY){8Ao2QxcapDn6wOV}F3>wgBY0xQGUc+~K@Jm(r-F`YxMG1HsLBYf% zk=Iww%g=r74)mC1x|(`bf6VQ=&2}b|BfeW#tSJF5a}wpAvZ?qRwWUNP_u|UKpb}}m zUEPnOTf3RB*&Wh2-Kz4XTU=Uvi3V-_I?#1q_UeC?kbmAiC!xMX`2sM_}%|H z`@C;J97f%46HU6TXo=nVNF?RjU_q=IE=}y0LZ7hN^k{Rh;1UCAmj^y@i&08q`D@5f z%|>XND=mfE89nH_7}~alfkJ*mv9|;O%a#M8^k&;`tHb3s zX`4223%R8kk>6RqI|~odoc*hku{Xiu>1p*6xdH>zYlSO4C}aEBcXsK;9O0H;QDiPn zoG0+&ZPDN$H3}Tza#5M1#7CJ6{`^MhTXjVVX zg?XDTKV;fr+U;mqm~`Y z@`_EsS%;Mg=_{S*OAQ+wD7e2@5Cb*&Saaa1LA$o;=ZM-WofKN>mqyJM>?=U`@>ZoG zc2ez9idr=jzBz=GQxy%hSmwaV@6F}(iU|ci*8b(Yqo-u)B9n8_Dm+t1|M#Qxs^(7N zb|7fZJHqAzI`GmONWFoBo@ZZ*5ge5RwYSWe(uQhfj~TX)o`dKT;AGK3?Of66O5|rm zh^3LMaW4_ia0T!H>?*3IR&5QliDPJAI!C%3l!%)kGfvnt3jV{r)i&hEOoG1jgBZ;6gF`{@bixV{?OD4Gjnar~I|2L#R&vl1fn~+g=o#p0o z4U4CfT8YH=U{NEu5B2B)*Y~NyciqP#mOLqCKA=f{3 zd~fs)(0uv6(kmNXITOUp$4(m~6G%|7Gf&S`UI=9onADODk7- z+R(xTrO5kG>YVC{T|S0}B_}dTqdT9+TxCfmp7*sWX1wn>uv;35SAxsaCFI0DAP9ng zO`;qiKi!iufK>Vhco_jXEhUYNIVzi-s2J{j8@!%TsnhO|>lr@76X7|{j^z(S7&cQP!mtit( z!^m?th7!QB(0yyl_{`d%V!P?=9DJg?`GfrW11x_-lf7a{d5$OS_g+oH+o7ya$>oPJ ze7+9ezROD^_hsd7rM)_6IaY@LnVc%u<@QA#%8QuyjH78+IGRk67H@~^Xtnu*r)qT; zzMLN`W~TCZ-Y5E<`>}zU{2SLtP<1bC3e8PcdsZJ^Rh;Su6UBH*lMMSi7ng9 zx~v>4w2c6|1@`^b9J#a|TRS?JjppidWwz%FDLIcD)5e`k-p2vt>ZJy`Jh;VrzN&g@O= zJ6n0fIeI=Cx7#LqqC#SHhE>`|i6^d0S6)OGpmgs?9v0wm z1$%EIJq*YOY=_O6g zCkHJ3SvnFXJ1(F{uvhvxWDI6CANKLtXvq{}@hplxGAVC`?z9!&+K#yuwPqmG zAD;_lN(2NAv)LyWz*KEdTkd}vo<>nY-)$$N#VoS&i_@u=3QklG4H++>wJ7>%v*fjf zDWiG%h5Zc8+j>#~VmU#I^~DS2kbf5L_j{|1-lgT{;tSQ%h7gJb9O{$b$FL3Q%neig z&0wz%j6Qx(FLd8%dmkRH=y4yHobR1>3LOX$1PQjemZ{GwSRP`+7b31B+ zl^p0;E2z~_)j*nu(uiblwT6g^Q2yynYe1^*_(=De-v)2qAtG!<5!DW|xycozEMaBJ zrH-YK$;H%1EQn@F|CVOyUTKaO2ZxIl|0T}#0EwVAY`M09QX;F4VI(yyKp% zS@A_LSDo#iODN+EOi*7=AHBz8W>wNbZXq-eZ`Ql zN>Y5W)O9x9-F`_tzu@QjS3Iij7S^S#O9tZV)vR61)e+@4g-O3x>qV&v5bp3_{>bHL zj#XRHmu-7GkITwPl`xF4*SIQ0rPFYz4c2SJfjTh`dS03i?q#hZ;Pw_zm9m|^e8i!* zDrjg{C7`%-&9d+S|0)8Q`5Xwb}ppZ;q4ljbHwr*{3EEZ%;z zTjy(Rx&7TI1*QSjfZIJ~2+v@$y&Hpg_wAnvox5mdmR;|zd)Y4y(>+?o1v-#{WLA!P zNny;__+>g3vB?z(yT;&`w%&5bqHoCdyngbGnnLxNZTZPxiawyY=zM6SCVbVOnJi&WnT ztKVlZUX2i~7D7~V8G%ImI_at|7YIG4a*ee$AuEuJixueDRXNQ*_OW^NN4h_#Qv=lw zGr9~jq>3y(+5bHI&y6sVFg|B^1k-@GxQIBGFg(p`{YVR5-M5zYkh><5==?@_Hk)xG-9i0guWB-3Y?63JpSAVk{69YlIL z+cG9i)iwX}8Dip4m9G1qmuw-r+_^35uR`V?NL?1Dr1=>DbQx`y(L2#4(Vj-f@yTbI13VPJb@i zNcw<>X91-`oe22^lJ`(kYCnCv6RJX^y`hrCC8{(4FksPnGIH^Ci7Vc(B=B#wzT$= zLrY-NOGUi7GVSzUa9x+$zgL-syPTR0l>I+?hxlB#TFE2N(-CA++${8Y2U`8_@X8vp z{|vAE2dZ=0$nicZ(aY8TaoMPY6F%Aw-`g{JDhN44TlJnILgYv_BvBzDt!MUYl zytS@_P-&l6p#ZB_!&Y*LAqcJAcp9%FG#@ zpNyL}0fF&ek`jVIHeufW-r?s+h8QUpDHJaTnD+K4hvyuOA3K|M_)i)KBM3nY&n zi;^u?uQd5M=>siRIFe331P#Dkmq(MQ{Dv7-o(2caQq|G5>*-32RiNfZLL5WEG zDf2p~F6`NOXZ+LiqlrC}ceb1{9+0uDj|IhikwY$pNY?UmHr<&nzmVqq4p^l^+C378vo6NV0j&f_Wc`T- zHM*>OipeeOtZOq!xx~y7+=4{pHQ?=u@0Ka6OdrQ0!m&c-RX0N7yh)NSYf$Cg9rT@o zS%S!aa9WT}v5uxvCXZ(Yehn`0GYw+C5;@Imj7|=~B#o-~5Z7E?SgV0HAVQZY zANiM-xi~jwY$C7XVb!vNOZC<7%y|1V48T_zk^*j)eT&m!n56sie{5GCX(2BbyD;AU z;y_O!6rZ{6RxoRXDh7o8IQCllS=xB}jWB;O@^y9qYz=I;@~W0pn_nUnm}NO+v$nlQ zc}bz%!MnZbnzbY2Id@#_TReZ@xBu;d>CHZ-^npOfVuYWmCeIdSgd&Mx{?%)z<5-oq zxwKd40}r4WMZO^PS=4n5rv1-#{S@mTEM{6)b&cGC?I$6e(b)bseW!QxU4FCIkH+9b z!i|BLs2599%ec1FPzV4?~%z6F$3MBx)+*^aEK?`MT+CH$-+c8@?fsZ7w*D& z&#HJ|_iF|R{QVxqH&&ic8@yI%?+N{L*Pv?S(qw)@w6Rc9mv1EBs3!!N$nXc{0j>|9 zbVxP?lPyUQF@ga3Nn3nk8@Z=FXmTS7-f%U<(j)mMO@$E`_r5koxmfT0DnHUL_32)g z(}~Evok;r&nV$@@>$-P_W1l&sK^%Vh%@LD>B@@BS!zlWPsmIL5TW?ct(wrl_EM=f> z{AH8&sd2}~E(PKPlOk#m)7(6%{1+UY4g=$ptX#>^RqE zANu22$Q0s(*b`#Y=pIeYd9GguqK6LUlGB4u(e+DFnnHBCONQ9E#sduzAurBexWb!Q zyyyX)HBnY_@V1avnbWwVqKx3_VLi(<9=Omnu3CL*07IDjPO}E&sr@rjXM04|(64cB zU>uvcuTCwuPuY-$BjFdI@qLvmg{eQ&7tM&4Z7ss(5!`RSe16{=8hEMsN2wP0g{M;? zR`V03ZlOhjEBEn;ELRLqTut?~+}{gi`jwMDe57o1CM^?`d-IPc^n>|3gV!4tquV9=WDbHq`Fnxo%9AgN-1>gs2MBayx0JMpL99H1%?qzE zpr2xkgOi2u-D=h~S3opyKgq_xJ6}4~5TKCG7lkcsn6r-g3(R0Y_GF5ZL=(|&*WCu zs-nK*GT7LV7i@bWF32Q{dD!ovW^lcB?O*=vOr=V4)sX7L)0lm6A+AGQksT@_mG@tB z{GfsB)m%V7`8>*NkrdOqhtf5_RPYiZ{j7@>^*VLJ=H`2*>-@s+Bv}7QJ*qFp(AUeXy2<$|gAJH2>D=#N) zO8Z?-RGYsXtBW7e{bAPs z$qLBnuw~eZUyzpy1|Z@nMEyp#n^ z5J))E3E@5t0o|C`q%L}qPfIb+U9fo;+8cBAA|!j82<~xea1u#`CCP9zkwvF<@3$qP zAl{VJ zH$UJh53wc0o2KS%plH2yIbE#L{FsIjByq2{CPrr4Q|A$oCdox-JU%ZH6~MZ82awhJ ztdkS3}n{@QYjSSb<8#^|ZW|wr;Zi zPB?WOk-t=pT==Bs)Ld-nGjdC#*7rj8{XLS0{d**i{UDW$2IO;Cb{4NFwK3YI*-hkfzL4u zQjwA!b=B{QGQ9`>wn=5Kx@`Pzye1NI#5l5vJGrV;A$6-qKoa&qV}fo(S=O#~ECId3WCU_^hI^U?)%=WdQd z{`8v=cH!=9>fQX%7h(xveNa3ldd}>&Mwx<*>9tq7I_Ox9q|Gcx ziF0V!%Me;b7}WKWaL3v#W7`A?!M;bTt(*p!>vCu4Y54mrYud7**sV;3&J5`MNVQp) zY(~P zR*D_L)-OH{boTHLo?L=l!p_1C%n_IJqc>u>&p%%Rm2oFOypLVmP;o%{hn)P!laLdD_K%6Mzsc|M5y*R=bZP)?!oFYrDm-H~ zn$lmWkd)umB`zCBMfrTar2CTKsK&XOYw>!d<}E8LdIX8|PdZq9jJ%sA``M@q`jK2A z0Dksa2tYolOcQOTDV+a}1_L+x7o*Pb+u@QIw|BUebbb`hpe%yxG%h}xKD~LO=Md0$ ziC%&Y&zYt$p)6bj&g_t4r#s5(9rm7&su$m~U@a3LK)h@Ft@r#+_F`C!k*aj?olc^j z@Q}7NL*j3*vA3tqgTEDf=~x7)jZj32^(KRyJSbkD^L3UC~_tnBNP)xk+1xoX_VxV-1#wSAeGwJBQp3a@f2SttBzMt@i-1^@exHZ0%^_E5 zqmz;8q3DwTdF$PsC2Ms+l&7Hqzgv6iL1aL(`ozvmu}T!B2aMM5Y zYnO4?-Hth6`%x_a_K!}FeE-F!L%UJKx>KEQbh0jH)GE1;>`m_b+{NN3Jr{+x$6A;i z?=GF-bNvO8@lk3_#rKEpWaQ(!5Q_63x5ef^MQ~%BArvTTpdWywf+jg&LY!ClvvPG0 z_V(miL_f&`hu9WTL75sm(I0^`ncF8HM*x+>Syca5I74UI6%b|P88T5w`2-o!gd_V^ zPu?a!cvzerwtsG6CdTPWtpV+4 z!s1}bc@K1XbEf7qCkAxfH@L#MuOkYgleh*y;dbF3+$?=n?42rZIqe$Nh+GBO}xv1XIoGV|=^Alh0UN!);;q*1MhVNiw-CqR&2=<2ZB8 z-he_rd`EQ7QApC|3!%ncHeXNy$-=S-r?p3yUx!@CTas|th)Wdq>{SKk(g0_V0E*|_ z*grBlI>S?Nz%1gCIT;hKWhgqJN4E((H9I!XO z$kJOD$05hukIJ3+MCFS;5o;zD28~rSiNP`0S$l}{eFe@wP1LLRak2eeH9k&R`#BW=9)5@w zwc+W%@hMBvzV$zjm@g=9YDDYYTSOh>w8rBFg3(!#m6y3xt{$HbQd2YK`nVpn@A#cA ze>28A7J7n7MsI6;4Htt_1)}%jn}tGU1nD*n!{rdEQVSN|M6?#Zv9E>W!nZx0DAlmE7oRff*=$a=Z0&o0>B^`E|Jp_s0aY%m!^Bp_y zk}N6W(i975F|E=w%jS1WUvEgjwQ&zNf@3+_5%n5yelx_NQa@%AoZlf*Ou(@?8yoZH ze75mw1cu7;uF8bm`ZlMS>u`GE^5!kP)HPVve>~6To}V>*`p+NpHLDHVFXM|g#2n;u z;^{_*6Fz2rDdm}bDGUyVM@8GS%0w@^iGmeY!F-!vamq7JBjv;5HnCySH(( zV2Ev(j-?cTc-_pRwx4oypQRrLyW06GJMZ>jwk6p*&vw3=Pd-}*_VDKOHTo{zDlV!WPuG2TiLQuY z6EizqLxoHxn}fyPtr;423vA=7njG!`w)fy1+!W8cY~3dKCODW8*AETpuNyP@22OPje^+?fcDk&R07uz^APj9%c*|q754XgAsEBaA$trs6_b;2;iAmn z0gnWiiu9XzIRyzbI@hAsBP*+g_mJq8VEPb%4%jL`vZ9)A{xa6*?QHP7Id`U`!58lhr^ceA2spj#NE3;>;$?K( zUaCu~=|fe-pgSTQOtI@VYWRtlO7Pvz1T?rjk{d|I+VWCmK;0@Bia`xz{f=FFWpS_( zcC82+@>sZ9?(bj`>;3j6xm6Zxcb1-AQl=SeH~GnMHL#6%j{gtSYUt8t%vTgG56cQ- zwqwF}QwQU%=AO>Q%FYH8SH$zB4HndKpo+y?$LL#}IHV!H=@bqw54%pzjvS8|@W{kFpb;{RIuOk8Iye9unPMPTW&t(HkX}!YqTB4^h-=tdikhrtPc8R(fW991gy;x?FkT{ z{B9wZI?o-|G_ICap4cw5=4=9W7k{d{S>YodoOs>Al5?F!TI0Mh0&`o8PyBwnzjPca z!x}bFjXpEtIgG#6>N+>M0dC5srVEP=m&$qSg}I#Z<}z#9pZ`k&43!XJF@x=~*rrjo ztgN4Uwo%XgvH#b@@ZTzn7b4&!M@cR6c=;dv4yD1!6!vsf&JhtZzS*e?4?F4<<>-1i zlk6;2mR4UMdXJp>*7ob|fg-<{=lMrk^q!#xH^5ilZ{{SDSnv!2Q<~rLZSod_55v{c z$aEPA-a}T1?=2~M4Xqgg#62;e>3S1zvk6<`gE&Y_y}tuAGOlpSf^~+hN%MI86NZuX zpn^kN1TDCTq+JIZPdH<{&&k06nM~^WjXqZm9!V^_`xeWYD6*I z8P*$ng1$b6N>OKqB$vC*C`??c(!Fu5yQbwbD^Ly+)5pKTZ>3GB_%Y__#|S2vKZ}mjXw)y@1rPK*h!q@XaatU*kXzRi;Df~Alil7zzg%IO zfH7Er3o@ph#?j7TH1OpNy!X2XZTby?%`rp6T@46G*V`_|(xLo$phnn1K$BQSgG;T< z{x{R6E5FH!1{8}Ri9xVy67dtYL?cX_tlvKLa{eC`a> z5pTVkUSp5k5qDFhxSN)Omzg~7;h*@|KRDVg(shNWNpu*==Z{GVsUp}!c>^dY7@hFQ~cFnHe2^etxZIOrO z5FU85e6(SYCw)3d#6}%H)v;AW{}YTFDgMD}S0Z(+dn1O#IoQxC5A8k0tgLBa+!m`2 zRN|t)x|8KA;1^)|R8G9;ZaR`hl4UkfF|l9bR=-^%&b?~m@bU!{`F`z3t#*%);33IS zZ0r%DPn!mX-TUx+xj*l*S_h|)4HY1A*bbq{A z7M&ZKoCE1GeTIn7gK1~x%ghVQzhpaXHqV%-vDJ=05wcqR>~RNHFUScM*OY5H@b(** z4J-m<@pvP2T`BGWd**cm6+i`bq>0@Fa?Pc^ZJqg|MSOhr;g^z!Q0!gS8okPdH5<(s zFR4sW@7j^s%o9fiVP?R-M1&H?atCQs^I&_-!g18k%DTQFbAiT(wnf<(t(nM3-%7me zT?Z@NFw&C7vpK`Cul}Dl@*0Yb2$kD}TF$QzLCND4JeRW$VoPO>xmQX1-;Y%ta&a+Z zR!5%rWH(x9eLF~|_X+P6Kdy!U=umCfUpg{bD4WfC4GH{NEmxo7p}EF+s5i>uOujnL zIyjEE-D7ibVk}Z$9(gzr_t%}UfA5&+>N@hq)z+W$3%6PD=>~OTH?9M; zrZx<@()u60`X3o&pAIojk)&}a6)TqEks-UlP|o4`%xkI6q)Tj~B&PKLlIK6%fRoA8 zEP}NTcXbkehq2<*$JE?Y5(A_AIJGpv8m<(r64e-dH4*NdhG(TH=hq3L0c+M9ii~BI z!S%{`SNhrUA$gKTjOGb|KYwE}=~ojDS>1@I6ewiSB-4T}=*e2na#)mImQ54Of*ByJ zv^414@e%xV@fpaJM@+$hJ6f20qQ;90&?1PJ*eqgg={rp@!1&_{-p?%;5^remDGj03 zB7~)oGoQ*FKbTr0{f)VhjvVTXIGsU56#)*n{i74BrKf(+H$gu?K6#up#=sMVz8oH} z`4C*MlQ1kB#ZOUy;Fen?Kj{??w+zAWv}NT)|zxdfz`3LAMxj_ZaM7%^xFdF^YT$orRRoRwbt@=^|8> zrv{x#Oa1fV0(+(n@AgJVedwLQl}My!1K$-?RuR?RGYgPFQfnx_Ev5dms>IPy#I40YD|Bx}b@!q7 z`8{P&OXq?z-Mt*%fBh0oDa;I-)_0JzQqdhk`C%kTL(t>QoGL<@V!)u z6PTQGk7rM^=tGxp%5r9@o@Z~qJ}Oz*I$07@;#Oi*CAS;S3|>X%jvPXHV))AO zkVM$uC_lunpUOPTHOq>a+LDktLiL1Ub0*gd3KMbSxE8Ayq@o}J<`DXa-Wepzq*Pult`K~6hJVoznUD$3A1ED0w9PFg5so5qs3 zoz@2aC7+IpxzmB>KXvvNMN@oGPuxqXpkNM?$1X!V^t-`6Cf8&5doDb?7ahfp^QY+N z)P1A56=7C!v-)wFv~PCgw3lhW2Wpq+9Kmm^{+8Jg*9Emmsn;^j$S-8FCFi(4nbo3+ zvMHv_|F-Ppn7vpfLWS|mRzLNYfJ0lwe}JfaSa$(lDCNm)pT%n8Yu%W$m^KQ+!GniA zcY(b*xBtN97smScAOpLR%u{Wfl< zi<$^)kX@t0>En_m?C?I&ZYTn)7?Sho-Y98c_aM`v1tt_o7!FxV;z0!hU-M*;Z0cTn zl9p%3v$2xmhTn8xoJiIJBHC&nhMXnoq#={&{S-~%%k=!TL@viinL0ILqf=hjoUyRb z8;G#+^l|(a1We10{;OVPOe;2dKX!|Y^E!hQPWdD9Z*ZU=PJV3KFL7M59u+F=z*nB{ zsd#|N^vJwC6r@Vu^COe(ZRnLFqz^B&JdvBy@)j1-^|ou>*TQ zdtK`>KCU*ml1emhlOl_r#zuKf4n*<2MJr|(1FXSPOru395+yTU! z&xHIn)>xz6(3oWxz`QVu^(EDiiST|vgHusgVwHX4KjPcOXQ+#FCjQTdr{`e57Q2hd zoK`m>)mo$fxD|O&Ll$#8Bt4C=?`$66oO^AS7HQ@y6$%w~qh=c>fa8fJH%n%9WAEIb zF5OJ{$UGTPNeww^Ue5VG%xLO+8^+Mycz8?au}pg_7m_F+)|4xWz~}efS|IX9nnBG$>I|$d-YH#j)gMhIqv>_fhn<(BEvgPl3EUyWYm znm#fR8|c4q9HX>MABsPJvdd8OcPV+cYJFcHofxi&E}tk|PFQY~7(`#7r#9Fj+&Y;R zo$jv^Ek!`DiU$stx-f#9%GqL(EBj5yZW7y<8F6!Fo={}s=zie;b!Sf(=P{oGrqG`} zPHC>)C?uoP6L)dYx#8D6Jm2Uq;NoHO6Do)Dvd~6dnqoHr0`{cEoG&R1T z-g-16?t6FJ5l+SAirR_e|A~&tZXN>~vJ6Y(VT*O6NS!x$oLo;-V|!Top0JqHpIgtw z${5v`FSd8WDmLkkL8UqU$LRD7?&~%e==k>6^)AW&FU}MEC^*fD zz??#+w1K(MMw9V7YXb5<+S@m2CSP?a$(Q@*x^i@vdPtkwzs2TTnXK|HCyjp6)0$il zj$UIZCL)gPUkKqQe`~;SGqV%Ce(9zD5JG1~?Harr{y~Q%JZgdbem2+rg3{%sWgX8% z{ISlZ7o7=OW_$_Jt1*{(@ymU|?14Q$nEdda{$Ddi_g&;aAlq@DkH3+%_V9W3C3fLv zqvmnbVSZky!R3GMNB(8n5J5$LI)!5ozIczSAtCGos!_*Oos0|5BpD|AaXEf>yZ^Pl zas)mk*EQDRg(ldusMB^_r5i^$5C_f{)v?k>$x9>B`A1mbBoA3bGv0iZ7Y!mRte;Hq zgi?l2XyUT5l!m1-oJkbZ`X^+Cf7+x7B7c`V&)_*r$BbJrB%6wfw%OnZ==eDuf%St`KEN*uFnC;;q0g)>d_=`s)` zQ$1nyvVbVcPfq{AK>}xohAAP>S;Y*?JpBgq9joy21I`ZQCv8tew8$|jJ)pbzwptpLO1cI4sxQ9(hI6u;Dn(v1 zcj@6~cm+2zt`d>HH(Ni7<=wHKto_ckKo(jU&cJ|O1#UA}4OZ~SGV1vRNzqJv5JQ}z zwAT_z^%XxteIRqFc%}vDBw*_MgsQ`);I!uboy@Dg1oer#g9UVom|0m_9YkKamvcLU z_W@~PHOS?v#GjlJgs5|(Yoy%9-*J&j&JDs39rASJeNvH|1z+~%z|vJPz3>-mME5Z~ zGr13PvMn#U&aJKo(CDt>(^o<+jP>d|aIYZKyKDEa#M4?{BN#(SUcC1sr&*)>#Ub21 zebg2ghExc9k0)7nNc^Ivhr;v%=rGMU-G8j>#s<*aW>UfHV~iJ8S_wv0D13UK=i5OS z3x7sO5I_UPDKXTU`02yrjpIFSAV2;a5Do5bk9nI4L~l%nULJYd&thEBcg}U~5j#Ay z>QUeD>u~?eT5EK}Q%5_k`$?QPSeP4zoULAX7&lZ^MuAj858aT&0P9oFjySjo^ZQ zWl`dc5#f^}7Bh>XV5pdn$rD5m4-wAGovvia5PIr;`YcfCqTl$^L**z`c{dNCP2G5+ zr~6VvT|=B3r)PiJoY=)qq^=S{qv*rHzpjO6f(yp^aT3#SG{B5H$CMBO8<-O>DXm1n`KZab#Le!81m`Gy! z#woebY{!io*JOzoD&oheGt#X0Ah(IAjwqZ@l+RNWiHr^>XJYRiS=MrXeJ%_K^4~qC;QHymHlJ3_&U$Fc%Gg(qA_X!&H>PI>1!4FS`Vjpxb;`5XqytOz? zjkF=3C6Qk?KfF2d@i;B1i5fn^-9}dP^VL}*l2gD66n?0P@|sQfd4l7nm#c|juYah7 z(Yx(?0s88S1Y}a*qQST%B>-F)nHbv}~r|+~gIiG=#Ya6V;&CU33zrhA z|1gMn=Po1hdL$0okwrCg*}F$jca%vdA6-86I1zffJ2jv<)B%rMul1)hybKKv!YDJM zg!GUsG)dXZwsEg+W1%5E9;4j2)DJIxp6NC@q;A_|5ei9+GXDPl807rr=zVir{*D#L z|Moe&z#>&L*Foj2=iom^hvvr~VR!(0E`FHEV@TYO(W}q@A6LDL?mlKh0dYHi^0~Gm zkLAK>)HQUGdDzW;vIVtlrMUE<5JMmPiV5<|Eh9OrpzJ}EyD}JX8>mnZjyaKS)NvuSCd%OlOW8m_A5E14;;#H$=|%a3C0xkb%>+BzT2u1Q(52=i)EWxFzKJ z$=U&?6a3Sy_J`1eb9Qk2-oYik$igrK37W^!GzVi$XNeN=7NV+uhm~&%@62B%45IZC ztkVdbGox-+b&etRyd_`Q`GX9dRRV+!}vHyrPf3vja0F)lkrq7V5<> zZIesAt#BY`L$gkA)lVOJ6q6IA+mDifR5`X2{7_3Bc9cS@Ne2$cmk%8za(C6gNyf>W zBNM{Fb_;B1q5TN_QM+z>j)ZFj5o9mV=aA+`T&0#2zcx@pcBi5%rA}{<*RzkyvQ`UL zpTmr(x(gUBjycgUNb#?5d&B@12uo!P{OiTQ4B=>J2D=j!1 zs|@7);a|wn_#58*sQhX$FJNfM{}YX7L98dyuRN6%-GiKHE-5CC$~eT5>vveAl^OXr z&;Q5Od55$8w*9|Ui`I(0M<_+@icJwht=iO%*@|7Oc4-@X)vDF0MU2>chS;iFVv{JX z6`_dz^L?J@zMuQ~{hQC??-nO4he6hvPQ-eY}cHWLD~qWxy$Xd zmYCjG;j~>#FFhLL9Vh9y2cA1O8lym7Sj?8OagQSZ#;DMZw_rbb@DepF?F!!Y(w`y5 z@V6pW`(2YdtAXF4>76g^Z7xr}xXr3@jvD%iNtw_cforyd3 z!ulWMo2~nvqq!PV!`zqHSnNZLM=-8m4vsrN21+-499L2O2mUdSz_@B2@{|t!?PXj}fCYpqQ>^)%f>Wh@YsM(Y@ZrHC+6q^hED@_!FtSOPNt3iwwQHMtz=8 z{g7R)1rDQ2f(4TjowoYV&LaY87_`mR*exWPEEA{^?iR+<%mH`f#WHWETC(7p z{(k=6c(4XZbYFh5bp;P}atBGqer~pADfXFHl*+0U}tI(lz=ed(GUTLM4a7__i?cU`O+p zhbjC{J}_h0Cfm`|oc55{BYOEw4Dpht@S_$D^psrrinULV;-E3i=q%ZDV90ZkO)CA! zC`mkjfVaNp2b zM`j}gHeVgXxY5Vc1z(On2v~WUDbO}0#6%o*4V@6@3(jDRL~5@@2B&oM*%_U^hv27E z>PoZI;yW+486G~jOm;Bgs(dX8!&mh8b(8aOIvfvK4i)5x*)a2KCwcT#ADpYLfja(O zO3z6CDW!<_)BoF|{?mN!uBtCDuteM)J04B7G$0D&K&h9{XV&H9ukEzrJ20W^g}9=y zo%pEmrFcSR@L2?(USgALq)O%WN zZ}a*AT2(bwfu(?MctAeg#Q?8%<)&UINOEW`nhFDmg(yGOQ;L(IFpVhHaJ>h*4iBSi zC=2c$dU;O^0TeJ_(hvYDq)*S9iVZfc7<#-M0E2rfU49*!^L?+A3N)m6wyHw^Q}FdD zEr-Ow!*O7o-mkI_b;L;DTj23R>eo?zD#~bzCy39~Bu796rEcSn-+`hRM{Z7^g7cB!-inqYz-nQkkQ?UG8KM{*21!gTIUK9Kw zV+6@zmr2j7zfW5{!&%ekN}Y~LqPjV|UvRJs=_^+TWkozmOwOzNXqaT&33tm^0I4tU zK=nYS^ZBdw3TM7<+bqYU;&!tSa%+PR5k9P4LyD(cGp0aJy$u---bIG|+aTTL!NaqW zG0ySFDR;T-`)ok(m7P;k#{H_2*4i)zGw;}p;k5$ zL~hIq66=n;cZQ`t^lqN6ay_W&jpnW5JXNfk6+8PIlNOBh!PU>C{k-9iU>Qxw#Zwds z2eyX`b7nQbhYk*{D zSfu~2EWh8~FBVnS=7UjLwN=(H`^HQg5+&M*tFH|H z<5s7Q{YOHr4BZZ$5S9KI7|iwTn>wMF=R(p@X}eB-uPR041Eq#&{5?Yn@;1dnaFVxqL^^H=iz_xZoSV!oT=Ol=#P&qbbQ$<>dkkbZ*9FQUMN1EV$e1` zPoK#IJh3$gTR#&6G(j62Ewtn@rn*|La|_ zPtFiQY{^@G&jn@OXYjcihh_Wnim#CGTdsU`AZ1e(Izxe=EK)Je2_Ng_LS0bTt=YUh zymBrh@`t<_HahLj@IYT<>qe!X30r|yx(YZGN(;)@)ABrb*=FyGE3kvmxp=#+#I} zj1Apg>x;q-q&@-0B=dl*(0RlGN&=wOf+}KJGM5UF$oD-yO2s20mhV#>)CJ?N1CA0s zU;hZHHH){gSD^E2?=Z`;IH0zKo;5Kc>+m=Hlx;DSd0z_Y(cEFMdH-QCp8=5h}+=+0$HNyr3>H z{NPTp)o^=d;oACWzNIuL{t9kqm3Gnj$6AXp`*F!i$2N`=pnv7R3v+Yj#R`Bw>6;4V zQ9X>~#YSx8KFkJ60^m9ts}*6CQuB%LG$V)Wv^MZcUXMK1R9`TC!Y)qUq%`aiA>+$n zF8%EeWCpV46{Eldb}rJ`pZ(Dayfj{PysrRZYi~aB`g0z?{wlDhZp(i{S30YeQYpUS zueL}3{-Mq%JC`T)2Nr{VLehHwy#KN6ajHEN5n#}Ow@b%G9XYK$pwzWrk(9Y)_A(Qh zWh+>jk+%`xQXVMD>>?-4F14Za2qpgB(p$vkKz95q@eMkJ*TQ^S1Y4q;m1|-5)UZ)1 zb{AavILwMZi!Uhs5+2dR>2e=g@KLIkXWJ@Do+Ehh{tl0F{{*M`UCmV=P#M(APR5i~ z8}!D7lfP&bJ^wfHQv>CSPd>BsmJ`I09EZBU9lJ{@mGn-~-ye`V*fR~WxI1}qEK?5u z6Fpj9(Q->WczTq6GZmrD%fL_qf7Bq4Ncwrx+-`Lv;*s6KF$cu$famO0HxM(5XyTd&#m)hJth zXGK)`J+{H^jddx>Z7qAL!lty->ct?%&(N@^!|R|&2wY$7MysogaCvI;bV-J4(w$Uc zB%jB}UiPnXZXGF5^9h5_4o}Bo^rN?(etdiTxtyEPb&cu)!`B08`WsJ-H9+^nd8!r6 z$!&eY_m}#=sQNurUXNx$1&=HE{9HrN90l8dzUZz?TM!8BYmXePLz%pQH5Ud#3rX2}|h-?E<&3c(;1T$UB#rxe1S6 z;lmi8fH~U7v1ff^eeIvThgB#im;W z!EZv0&o0uLXr*3WB=?Tb-g%C-VSi0brX4;Sy&CunsjdX)@b7)-?^@IP#DDV;VP#p+ zWFcr!!Zux;HwK)_I1O|?4L+CT0TC4Hy#iB_^P=XNE}zLZ4-1H~_7+?v*wd7P!4 zIVe(6%>njgXUDPvgSX4s&ttKOQYhbl%mP};z-0W)8`bN{zBS%oJopf6Ny-=5=qzcz zJC!Ow<9Y@a)8(QMK=7y+9`2H)Jo(|STV`$R{D^QaZdyj&T|nKzDrz6g!I2(*Lk}pDa}b>stn~8fqD_zi;)W?+GeK-7n>ZYNtyM-lz_E($Bhm(_ zx?N2hPMgwwbVHqe1WvkuZ{Kgmc)eQv;FJ~CC7Nq<%+2AY`TD!zvFL|y3^ATF;<8y{Yf4y8HeTvrX%k%xCcHoXs=eMyA-L#y)M}Z}@Ot{Ac3%#I zp#ELk*_@8QpCPC9b36ZmM>%rw`YwGq#X)2w5`{Uu=*ROqJd;?zb4lz;IzQ>D4y=Aq zG5qhQ^uK2RGNhJcC!w7CvB8z>*a;;rfY0KA?B;$Nj~`5$t8>2)k7Blg8H1r!ifc_F z=($v}7bODgfJpGYE7Nu;GtcXLqt0Lo3%Ve%uyB*F8Xt`Y4HEtUtVsWvcMh(7^3hFp zPUpb}|5DmPDB?4fJ()aq3J-`8{-OJQMk*t;?M6%r^)2Yza(ro=$lgRc`+zEo$z)TK zYw?q;v_?J+$Cvj5?~$1RgmrUY{D7$DB-84zJcw|^etp<8U!Tkl3y`kI7% zm=$k-#pfu7wd3|=_J(CPm+E>B)w+~U#Gf=pZMD{AaJ9<9aj$2&! zRS)%_JsG>eP&{f**=|WYn_`ZH`!`ifafr|Q{&l}~i^0+*T!F^*nb*?V>nn09Jh}T- z?)r**K#bjSK_TzBc~qK|&t&Y^F>N@ZcQh=ULsSw;_(HoRvnYX?p>RS^Ew;g=`H0D4 zGJRepxuT>zg3Ss~OuJ6WW$=h(de+&tGS##+y9VTZw$?_Np3PT2mWpA#6ffW3n?X5Yo0XZrornL<7?AvM@*8`-nC*2~*mc<1_n>;%10;7_09?30)qJa2szJ=M20nW~g6 zG9=?elGL^WUVPOTz$TW*HJteU%}9XTz(4;Lo?1RlI3Uigg?#xWG$?Mj`G8FD2x_bK&%rM7wk8FBSOIYLP{w~w&&1UfZti&-~0 zEQhDi%^!_KtD0oin}!+knCL5~4a6tyYPX`P2UOVvlZ23@m~o>dvp6r~X{#;u2ZGFN zc--}*cp}9PR%IOU{E2Al!N`y~R01g1b4T|ctmCiBmxMk<1h+FjVDL^xila|N8w*Tp zF7$^m2VK=42DiMwK)2UQ`pFA#6DAYydU_X|iDA{P#Z$!b_xSNWzIR^1R6dm^RgDLyq^ z=Aq?6e9%Y3jf&258CWE+OzBYx(F6d3*jSvt;wcFQth2Ti!l#3*MdzMq#n4L%%bDyA z|Nc*2eihB#*{qY}B7~LDWsAl1%Cg)eZK|EZ7wN%oys)*)t`|_foG86(ZO%>=;USnr z2fC}1V>gmF>FQUp@ADV!bB*{7zYr9e#I7h!6FIx@j20e$ex~T7^6!bza#VcRcP2gO zVwnr&?5es`M#7oejNHX`GyXWX;=U8+l72ZT>_47J)Gz8BAP{u@GgC3oqyb+Ok7z8s*u!!Mu83#KYterXjx z755O!zr%U_DjM7ZBuU?d+gs;SJbS?e7ALLe^pq>5?;_)!1-Hy4>AW{}E9Do~ldTpH zn*qEERp$C2jsC@|u&N9+=YZ>j`K9OjNq`J|9tgO81V3wf%K!=ic2%vM|NY5)VIsJHh9K;*=u0FmEd}}>jw7-~X!lg(8{M6@uZiSb<&Lc8$DCdv< z)H9*q(ve<&dfWT)Ukx~f*PPDcvp&ID z1+J0;Htgr7A#5K}{LTst7l*2k^Hl+soBe*d=hIKU+4b7_{xl3^*N|t0riE-?w_#}; z2E5-d;{ue;{Ls}{2zhv;?pM~eaf6pNCA3qwu2(}~>wby@UZ8DOZmTZC&YHrRYdJh>Eyebx2;=~wVqmbx}&=vJLPET1K-bNb+*GPqq-^`O+K?@CeP?mQm#!JgxzqS|)9S!UxV z_4>ZrSKLBKXT&ihUuUu&qp{S$TRBZTk7wcbOi;QRI#=5e_k&h*K`a{3usbOLh1(E= z!4h$I!y8P@89e2Yjdqur>MzbGH?dmZjf$Plp+ z_F%AlTP!~=51}d7eQ;)sWa$LqfSANPwvlN3xYdAipKG}Pc==QTQ^xTg)R~n10}sy9 zz~-K(aNn<4CbWmUe(>KfR?)c+seo?FYP}KGQFZ}R^{o1~LX|(5qh<>bwFmcwjuM11 zH`JL|I5-AErUFo^W#;ihDC#NHN#X?jjN%J%limtL{@zS?{;dO=)+QHF9M2 zOr)TJDoM3IeLOYV$BYup+d{oU6k-;qk2;J0jZ@Hq)fgON&W2KDMv7 zEDXo$C@T2!3rc36uAJd+j|Bp@vs1qV8`t_IWM6X;=iYBr=W2ke(fSMO92@O4PuXw8 z4CSKgtKGv?OHn)maEygGu8rgoXfJnZ{kH3;`zIhg zTyhJ~Os~8FO9?}rk!u+N0yAT1?meTqnf8`B~Y_F8V?) z^+$DR^fL%|*dmcDFvjsPv^3$bBNMn=OG`Y8|Gb`rfw+-5KvP=g@G0n4a#Fy|15{mQ zO(v558*d?C);jMglT=3?HXbuxW}K2=XAh#GL&Jm6N|%Oy=f9-e%SG)0@1;8Ir zURyC}67$NSOFGI6V%c3TclVkMt@9AS@n2`tl!&sLcU;?HUl6xXV^WVM1(Sm_d>_4( z@=VV+oEmjau^t>(epuh!aiZeLV5$`7(;u?T92?Y?T_K~SxUR>ON?WvRG_iSrjpaFW zY`ZFei_4v@JmZuF;XmDRw>y;s%yT3nXJZK6=Zgm+H17|7{;x#e z=`ry^el<-KdzJ0%P!M%-jNDutxA~P%Xr}N(Jp(gdz|niG4>Xq@2v6c4Q1}SM@4oNT zz*6`_g%Pl%}K3 zuWSBfH{$s4#5`uYUGgBWV}C$RLxhw^io}VrJGtzK@Ee?r-nYSrK5JjpHW6Y#HuI|e zra}CYz4MFqlArR%w&>y<#!p;14KuN<7<{6m2e?AS;QeZ@$_%#T)1G){ai$BCf{^67dzx(;IGU-t81US8&%Dhk$=z z);7Em^>fQOFd&FJsvw~OQ)nfME*eyi52BDy;hz>M2xNii>JlRNT~SE=({+ zALcef7PjaVls5i`-~Qt*#`@Pbk_`wmH}0*zw!hm8{$6s(NFfhXn`-7_WU8LqPfW^J z@$CtDf&tWdyV^nd+c+0m5z!%M9kURzCZfB!(|3h0jdyEp?JS5Aw!Xea^hbuTDUlVc z--GaGXZ877ZV4ar1|3(JURJ<8QkC}x+eRh#%n@7wANog zF!$iuv2Rzh=!}dxHfW>gs?$@Zu@IQ@rio1W%Smz{ZzcY8C2tb zufxqCg&H5TZQ8-7&V6TfaHLvWObu2#I&%w!YkvQ>_8ei=#Hj+WF zMv;}Gy56WN1BMWWbGlf*uPbX-dK}FCG525H0GL46gF#`o19q3%oUKc*$dmy+(goX! zpIFDwDdt7pElC%w0w&{C-m>iFpCe^KZn)lgC-p7Y2&V^aX1>2sfm^o@YgSe~GzZ-n z^kMY8Wq@@GU(hxjEvB^P(!+4jd^LJC^%bCW%A+QQ*0-e{=v;hCb1QYb-ia#ZL*%eprG}QtM7G8-&vjTyO=x zZ6{t{UMFFaxm+vgOg$cEe!~w|4O*r|uGg_$@`%+#{=N6~jm~PCq9AxNRBQFYmhZeD zx{sy9FGwGA(cFi}CbkgwYg?SV`^2zPQValwCFAhSi*nWnwh$QV2#4Ma{^h0Y9BzPG zA%Dn9SGzkcogTY1n1l04XeNG7L0I|;J400OUd{&yhYSvlpM^`kci}?D2mR$sxw;?A zQS9NmxM%OEV&L*RJ)}|T#TBy>OH1ci<;cpVe3?$0&e_q8r}SnhP|H@AGCJ;3l|p$9@BRm%gR9ZN3>7k&cy2bw|{$zSs37##11T%`Byl` z>^BpxY2Jr=#64Af@dvrXVgU9o5{@iW)R%9xHHR_9ptgrMPZGvgJiW_a?H||fHLx;_ z!AK6pkshUHZA})>Wb6a@mI0UWQi@ANg_THV`d>>CzhDCUh}rKKD#c5-@IR=^JGyS6 z_2fZ9s#iJkp?`fMp}ry2S2Dw5II2Gs!F$#>6Q>UL4voKrH=&gKubT!LHGNUR>mZ%c zFjX_rmx;}&2$-O=vwWxz$`!iO69F^xGP_3;MufM^Od(Y>K1+AgNc5;;1oTnni$Y#! zaqkl4zZ+LOlZ(F0uNsP4Y*sF+F*CP$j6;}sJrDh5`cT8(^3Uj5T^K%t-3S@WXj0?g ziS`~!&%F-FS+c{k2)TWhi3ovUsPrkWjrKiv2sP@XwTEgntcGr5Ws{f$eO>t1L@kcm zT}Io<$s$5{IvX#bBN>P(ryfI8Og}g+2NKmXK2A^DF0mtL7(}TF(R!LcitI&f92H*@ zVu-84mvTWEr`Ju(FK$mASRN_HvWfJNP|F^l+p$OkD zxlEvSK$hg5_E<*9fVic0oOryhx=W3^^N#=9T`p55c0trmCWyPQ)i|$E`Y3LE__`8K z)ZKy6J>pjYa`pWwF0d-h?pUVLM+4yQax?f=GrR{5A0ni;KWrL&V?dH>K=w%i3V6Rk zaU+gTI!Ch4_%&Ec*MouS%B1VgZP$r4LI~Ud!VO$ZZyL~tGPu;jpyxmgEl!}n@&VR5q_BfX(!)6Ko1Sr@!?(9Qx<$-X*$1Py?kR(Ia?aNl? z`D3|5=($%eKDe?X9DWmEB0%_FEOo4{|s{u#+TQfIW zT}&6faP>hp!TFIV4U~R_!ob*#8#X_rS}`fXa;ds}BG0O*+0JJKYKs=RuGCIx@qkP= z8l_E`O3f_}Sol)40*3`Eq>`hu?e1dOSw8mA#yjQwa89D*%H9xVT2%8k;ehg#x+6#^ zXmZ{Lo0r*O-&$BV_3vYORUJ1e!hdV>B=DRqlM_zl+V9w(Cv?ImJI<~gD|%@pI#`z8 zENkg&v1*}uB!sYZw8}QFzYQN~oBguKvPW_jXZj4TT^r6cn=B->?5cIYkcyER`@S# zsoU=Xgd};L5vKyE#zljbooyCV>ZopkkUIJVzKyzec0hu}p}Jl8oxi7^)aIqEW5LwqY%PG$NbG6JJ!-p?b$j4b z10yP)1M|#c`s4|VW~g}T$JY_1FLv&ph=X3eCr*bvq#t{sD7QZtjAGXnkQrxGaO>OF zzc3MotqUJ0NU`xTpQhix%Ap_TY!ea*OT;6Z%Un=as6-<+2d^KBiGzJesP79g0>{;Q z)e{Zpi2T<_I$DxPtZGRsJ#GXt*eM9xds<#$^+lg|IM*nOn2Y#L!$R5>V~;Xz9UqOc ztG4v?TtKCg*-Yg;G6{mlLTYa^+gW`&9K_e5_qqwSs-V4RrMvJE_jbJip4$ZG+)YlzNu-q=e9EzC2s0n5v5e+ zz;&fgp44-D-TxnPeRqH&{Gh}K-DywY@thBtDDPmxL6RacuX(PZ&PLirfcyE$sZ>~Z zK}dJ;7K=pq#zm@fMiAuxXq*4IrCfjDxY!m-K&D0@&O-Y{?EyYfr*qC@1qy^diAW^H zJ$qseKdu7Z2BJ~)z07b*4uK#_S>uwl-!a7VP0{)5!t+~B0n5LdP{LVX^_?=->EcA# z07%TE2Ohxg^xTx|`ZZI=nL5EPA{oq-3DMe9K<@h3ADZF72?f7WB#Ajd^|IrgXNKzdpOMXcl09;67v**a$es#mBWg)ddMqJWFfJ zg$VeR?#ezI)H@$elT*zRdAjClIVCziaZ$ZhLk6c%*o4OR3$a}n|MJQ zdW!bX$z)hrMKxtyRYQfJ0D#TW) zL`q9{wlOd6@7O5scy}Ru5XsvQzV8-`dUaEZ*@TVKi%R5csV}IeJo42y3%}^(kg*aP z>9^5Cvt5a!J-w}tVl#sv22pOwVS|_z&CS!;AHiEf6AP93Q~KUH>j#H* zs@Lm%f?x|2SUB;p*nS;%MN8GI)?JF;LHeaM*&Q-nsH`7bXR4a+8`Kg%mR?k+XV>S$8-&27yl;U zui`zxaetgexTeOvj=GP8x|O>Mms4^vNvx?=gKA8*L^-v$c;OCUHn0xpvC?@`@Xlp$ zZ&v8i>H~ns%2t>;3z7bUe^}`7AdQ#j#Xg zN*|DBO8gca#y6DDU<57bO^?K^sGx>_sy0nI-xr?CRYkas zr27^7T`g69NDF*MCdi4pU-Vjz$057`9ZbKa!z43MTec=Eun=W7rNA(PI>XYQ zkKn5yXV!WVR+lE~dNo7UBG-m-HXv?Pn9I=PvEj&zt6Hh44rWrjPqh zG_o&g@_fD4$yp*&Mi z-re8azy~4SdFM?OBJJ*4^Hb)&!#K?u8uib)6Y}lBiw5{lP4xmAflG3#`*wGjE!f6e zf3q#wO`(or@iHM)JXYL3YHL;4Y>p^^s09KZFs2|>bn@ei>e$lQrcv-e#=>tBO)RQ z8~mwBf5_Vu`}K28;*4|_G_VUc@tU9by7d%Hx{(?CBEkl7FU%sQ1Od}amQi>s5*HDA z+8OIOXzxaU^oWUz7%8ok=p1`|!UOOWusPn~jN2Oid+L(gRCK~2WzELwr8Zn!19-Ip zeoB{ua-*;%6Py^2NI`I#>KcK)yrFbocq;&n;y5rjgT^0@nX91ejH;P&>Lc^3{ExJO z;3HreWgcBAh2Cn_?QZeOsqkf28k7Q=Z;@8?8uHG7l|We-pnF#8X8v8cdB8YT=nDm0 z@QkB+1OJa?*?3(WbTL%YN~sv+#qOcC#Td}Tg`;e9Mn{t8!@YCG>5 zr2r$?If4tPDOAWQ5pl6-l#9oL(*F;g;dz||qHBLVS=>jidX`SaKn#o} zU{><(2+}+6wi7>>`RHQ!DtT{Vhxh7_qt7&fj34d*StBJKzPX3P;z{TYO>zYkUM#6T z)2Xnqp?}U<)%2;~OoUsZ<c&rVOX{nIR zrI+cpCN;9~{Z7+Ojm&1%wtWo!77D24q+YrTfz(2LR+Ew{a6&Dy@HEqo^+Rl3R8T@T zDdhyRFg~5CQy&I(vtx{k(Brs zn5lIwMo`&o^cdxvM zjJLILkWoF;<*t2;E_8#rafdL2D8tNW9C;1ps(@w%rb{;X7g49yoaKA0-PwK&pHB+a zwkkQFl=jR#NDjW^6FPRJqwp}u>X%Lu6M3{HFIjJG(|A*xyEVyTu9@n{!-GZRfY#%a zO{_CM#4d?-Hu2)(g19Ev$!6nK|8thOvEVoh>#3%8E1iAtuL7sJJS3fQF^Z7A6X>bE8e-i8bB)Zff)Ig0kjAY=_u;`+nJd;uG?$Qz#|P3G5L z8IW__1aZOKh%+VdWI9kc2=m2nQ|+a{j)&LUL_USvv{o>60#$s4?ZA@{s?Jc_exH#m zC1lR!+ZRHOO#ZcgN)FFKn)zN;SF^b-UQV#dT&@%O8Z1+bM-u!j41{*c>}hp$?sDxN z5sc>tC)?d@I36-NqM5z>0KxGZ*({eDgfy0Po)jsFQ?t>iyz)7l8d-}S1>jSuS@R=P zA_I@-Pp?h3f1#eW>ktApIi}~|s;(t*yWW$VtJa+#D2yGquXlK%zySn>VlpG^)kB)L z#yGG_?%|56VY5$={(T9UgPAatF*@olje;+JPqnf9|5Iwx0U>zuOIgEXwM%Zi%5kmV zuvjAsy>yupa(TMM6BRJunus@I1pmkyC*iNLMcRmEslQ!6))pc0PPk^gIPs1F63_5}7Ei>d-mkR?$)RBDWW8 zZYW`ukk^V$+e#9ccyg-rbod4N*;nuh90z^mEMMq@35haOQrgIzkYr*qkI}at%b$Y! zD6fn=D5a~;&%r{SUX;!)uMsn5)faXrlFI}K9bZT0udNI`BV_6I#ItJX=R$a&CZ>u5 zG+|FT!vjN(3o!=8{T@4aEClE|q;sQxMH1pLQ{(;4g?+!y0;S$H=`Zc*0kV-jjFC|0 z{YLFjgwU4L5I6DnR6H-_<<*grz+R)&OgRpScNl?i-Z6f8O*aWIvkB}lB4ICB7P{cm zaS6j}3@TnQTjnuvqI6+>kE@vo9mIzm{hQpm$0~Er0J6vW$};Xw$*GCEeja_=%A@uV zKd{2=?2?rRaGA&A7APqJ!CES!Y?DoRXk@j78l)@O|0x z6q~{+K*hhRq5WZcAxDYLfeY=|^IY7na8Ie<4II;${C2E7d>@lj-@_9^jwuQ;N?I$F zZB*|0$^I2;_~VJ!yyscJm52syX?UE1+g>)SIVXMrdNd`DMvWCUh8D&S*Jiw}6Q&f_ zdIEif&l?H_$B7@}TZe6Z#i7JOyQ~M>2`}4kXHYx!3XUu62N1@bm*`rz+5!|n^k~^9 zCezFOQOT-Kcp_nB80*DSP~Cslaq-;zrjkQYh)eay^YvU#gYEW zdA5femkATSEwF^8d>p?8l}%H)@m55?-gL+oK1fY4WqxN@=$ft9t$!14|1!2yONvGe zP8uqSRkrT5gp7LHGeEck&Gd^^RXPsqtNNzLlw~SgHp(#gz9<0t?B_5}OG3W-e%#ix zBpwsL;wQ0Q!y#hkeIMwv<79PotPvm@csgB)v^}LR-6yzuoS-y-E%oo;dstfIgaU!L z8dLm!@x|T|?=pTw=4c3GW#Y;X7uGe1L$`zs)wAihn$og#T*#!b+)iaaOwDu|YtcWn zg0c-V2!Tlye&EJ)D%9Qgi3$231G?26Du{k}%-FPmB*>5Ype*|TbB4xN3bzM5U;3_zZ`W%)w99YEy?kuE=azOldA z@LDhy)Gk0N;nY@0=pfF4%ye)n1$8sGZvu0@x%+8aUFZCsT0 z9M&2>^0>Co)eQ}^&)tm%AS$f6$vq1bG2WRii=ao21KzM%|az>1e78qhAp5QS?~l7iC`G92Hp-T zhcZ~6ycc=&Bwyzx9%3b+x_o;L5YYeLE>ck~&u3If5F|rmUPSB_!MfG+sW$4FKSg@n z%B(qIo4B=)=S_~D(&UlNQ=SLG7BO9Svh z*xwl9M5(8=Hwx}9k0G_k$M;Aff}%I25MdVnwSmdj5JMpCa)azibhK~bBxIe`40 zyfoil6JvCY?z!64i@6PLxMQ)(J!ZB*@4s!byP*~h0dL-^h8wPa0v0MHEcLyBY1Cvk zSyH)+jl4H2-vN71^?v@IrGPZmHP5>ycr!aKPRKEH?Oygo@kdJ)(-Z?Pi|IjpyM*uS zvuPx3bASw>(DuZu$0ec;qiXvAoKeB%E%2Z{2tt zUy*zRO?umzr8WN7-qn6w7`|Nz6))a-RB(a%RTOi*ZKRhtS}3+*NtzvY<+`U(k8l4% z!%dmc3t++WU*T{#Gf$!8)X`tY=~IhJ;+0J6J)|_kAQ_9SwwXfwN0an+o3JGS)C6CA z1h)&tQ&2m}Rn`P93ehIx;aGuTKJdsb9%U;R1(pFP7FR9;{ZY#TotzX(2E3 zxZ3>~95O7k!U848p3hu?Dxn zwL=dn48dX=wPq(9V1Ez~1=7s0776XWiQKC3drzHDrYdLgLOE-iu0F51a*qWu3Mmn5 zTk$dN{-wj1OCPcFQli*A-Wqd-7}bKUC@jIEq-;p<_6k{g>sITE;k7g*Ul8CsD4VVm z6(Iaj6#az0Iq-wXCX505-TGi=-OG6Wi6KSk`K;A9X8MKx*b!JHgHr zt87wm-~=B5e`sL&H&yV~Ue*lqz?MvboO&Pqsp+<}#gk9bw{P}8HKjC!d*@qIocbrN z?!xUrY|53r&uxZH&h^)Vt7bX;Ic8||aE_KIj%pNM0V5w3FbY&NO-awA_y;Puu=D4O z0NjrtZ&f;<6E5T@WDS$E>??CfwS1Yo-@-ko@yJ7RRnRN5ht=_}Dk?IiW!nJ1_?)jPj**m!!$JCAoqnOmrg2K-?9VD=mx|wpx7oQV{CmPV40s63x z(1`fuG~l?<@R4u6`+rE(n?j^Z?FVg5zf(k^!+w*vZ|2F9^fEbxbp`|Y|+mM3%~9uhBEw+#IH*?b0_RwtR%WCQR=TyxAr}uN?h%ZY`viD zZ^&n9wA#a><=Dh0C;_musUm?U>a;^kR`_*peAI9!^L4^>JzwRroF_UL4u4p`vGOyA zX^F5|FGjqtJ$UEL*Q-l+J{`*JmFkzIL^Aw4;dO{HRf*U>Q&@sAg_pAX2uhyJB;4&N z!E+y&Eqzl8cdQ&->o^)>=UG z5h8a4oo@FFF#o))GGpC@8v5Oxi*3yPHg7w{;EiPpfd`;AtX1YZBgFl*FGbwKrk-18 zUZNKxqGv+Q*Rc*V?19P8B`lCG)-|@P-nd1tE=$vDxziSMpUe$gQ{#6;U;S5)E8@rE{>Duh0Nf+bzIrmh7w5lUhrBH{otafNr?RZh09Fb=Vrf1c}vVLHf7HIS;fbFfHK{ClYMbpc8(=Z3 zbQtZ{c{cg;lA-u?wHTEvR^Ee-u}c$2Zd9=Rj~$z}0FDhL^P*6~M5eU5pX+cyv0-+?*6Y2ep&+b0E z|Mw!7zpI?je9xIPbH=GSDvXIi3!(t{8Ksc(#wc^~#{sAWl-~`#ubQ}#ip)g5#^6tu z=8@LozU{Pq`bHxuTFGLrO*dMGMf*mEaf8`w8j%HQ-(t$5R6qp~I%YTrKqLoJI`q=v z7byL{EdUDXZPQ}B4I-z{>T7qC3^eXI*EO(wl!`DDuzy>x#+AnK7{2a>@*1noS^0?uA*9z&`CfmPQLfK}g

|RGo~q z^9iN)`1wbX!FvU}KDON^`iQlTk+P0l5iCcRn^ZWh5x@voJ<)BQyn?g}kK`&uE^ZFQ z@W6iXtWV_4?W2O}7m=C+2V+OLQBi?*^MW7TQ9KriXEF$RUvR?2-YJ5Y(vvN=5)ZD= zv(-DnSJD+il&$xVV#}WEE~V2)m42qYIKFw>qM&#Y6{*Uvh=8WPDcnqfRp``pqit7Aej8Ih^d;oO>tosJHfm_6`_nsuQ!I8 zR7C`o-$0WZ65As99lLiyTjn#{B?P1VYs0nOVkigI@j$iSMKAUM#Q-vs40H@qM~JH0 zvtMLJ?Zf*e9J}DKt13|!zHWQqZP3&?2oqhS?rWkr&C1sp*(R)M#+{5H1KU?^5YBU=Zp+VLuv0bi7)|b6p3V z4fs95FX%3BBBV3t-B1galC~B#oJ;C97=uMwrDoA!%6l%BvYr$t+9_1Mm3St@tI=se zylKhA+OeH>Gm26z5y0NnIRDVtN7}r;NobQ0Ffo5C;!QH!tIE2~YMI4Y*jPO#gly}P zuw>V<6VUfipD(HG{0Qg1Xyz^(nr9lWx$ENjmK8Nb9Y{T_=sDj0b;?3HI6JZ>oWKm6 zs_#yTf{hKmC9D(5hvs;;`J?#RY6`&)*!CgnGuqIcm|*v|KSsZK?z&eBl{j@5JN=H1 zY!}ls*o${tPr9#SVj-}gl`qlZ)Sz8@%x#lX{bgD1^%!=axiMOFiAf- zZl`~?@s*v1WO95FXby|_9aEBwO*x%BkAvm~$Tce7?A|FTG(N{1Dph<5X5@vPMJn%~ zp071!hC+ZF>g5{7WLWzzcsykahmH@W_?{E@m7nLR5Wk_%B#)mlOivRtuSGwfZBW2A zZ^j1;9ml1rgSL=fDU(t)vDXKb&`f%R>JLvhNiPX1CV~Tgch1?+sEk!EB9_ZwY_B# zC8ud#5d}?t9HRiJrsM)TZ;xt!KwPO&&Aj`wp7Np_trCD{tWPtJlEQ6>G+1bP^gTSR z>)P=!2gAIvA@1}CUt*V}n`2O3SC|&h9uiOW5-7NC9yrJstAJ(yVoArj<{E5Q5W1|C z_VZOsk}C2KN9mm^QJSzb=upmbm2${oEX5@(UwRqX7=!_UgGZ2o6b^e&gW~ z>9>_q&w0>!A^NnC)4rRCt8z1S`#Cz=V-dRe3*LQbidimtxF(V3#c;;lIA^eOcs0Sn zz0FWvzTcxQPeZoy--@faNMRFfe7k{jniD< zmlKE@A@-ZEy$QQ#3*@#)f0sE~0-@ba+aDGGEs*{L+D)2b*< zh1E(TT3sg>O945hlA3wdQDcLx48#cW3Hpe)gL8o%>UMss3GKZz6R}#0%&=|;xZuR1 z>)4ca)p+bG&6Hz!jZLW&o-@i2@+j_t!8w}U@U_3Fyh}>8bcO1=7sG%{;EmH7?)4$| zEE4;cam3f?Zpsq5LWOWX{W~9YCSEGxy!Pm&tew(l-^!72%Q5{Sqo}C(BeqF#C;5S^ z!fD}G3h}P=&=aBza?o#&qj^0}EO38b5LiQxv$dJjLCXbN4ul+23PX$hmlCaJdrxuC zhimfG(mp*@Zz%n^<$$j}xjcq^2>CjUbR5MuRT>~%^!)IHwjtHy9OgMu=it@ivD_t7|d?d7q9_SSpSbg$)g zD3{mjFcSaZa#zTSx|Ztcp(szXFUUH|4zP$9Mf}^5{_OyWP4%bdD%F4b^mz;Eb6CbL z|1?kx4r|(y&lnol$uJV=SfvvGYSl>?B_Y0vsam(i3=5BcOp>F+@>sBdzWRQ?-&&4z zG3Z6jxR4*O2oB;@IxJM;`2 zPX|IU5Yggvt%Ee2=w(xZvxd++lKer=UVAym%n$o$2i^}e_NyhkD8h=xdOGa%8G1~T zAB{sC=ka}fVTD66>IYqVb&9g6v*s&B5?VHCO^r7R4`yagxxnBx#h>WJGU z3hB%?<;l<&YCFm~!@IqXICA9YG%u~+Nv~hOKeCPQTB(3%C7U9$qmkl?1bQDju>x+qsi@AdsNOqp9Qk~tatH)T(9gTtaXAmWF%KjT<2YH1mMakRo?xv7~ z_Y+?n5DEuH!zbF7Dmdi$>?=9@|DIp2Q31&$J$S8cF`=fdF6Cp*Txjn_+e3r56EicQ z^FPw(k6Rq0&c5oXG1aRbxm$(~u@;n-NvaV$=91J;iGUJL9_w@ziN;NZ2ah)&MN~jN zhsRL{q#MJ%sF!iKsBi~X82;gURE}yr(^Y?r;0{Sodis?HRfIUdgn5rjOuh^H)!oBK9r=En_mAr0V1ARovKpDb_<}tuYThSR*ZE7o_fF^`>gv`{3n; zD>tsi*%A%IZ^h8-?J+9)<1_mDw@{g?bAe~rWuB76CX4SAa`CuQRPUwRjES`14kr@V zN#ZMN9l`PuqGX2&h7lY|Ij~b|Gtqt_v)hRV3!}OyxgMo38#6brei|rP{<4Pl4{zF! zVu^81CMh%>i7mu-BQ|&^p^dQKc_7^yoyj)Lu@GP0)kK0JsiC$d-*?7l17Y&Ml3SdX z{Zq^Cj_cK!beSrtIO?*h(=eNcxz^P1VzJCgl#Gxof7+sHJAB<>tz-_lGOZTgR_Z!- zU!c^1NAH);1?SMp2XlL=yNEp5`M?9~aMv*`cir5)=1J5dnq{xsI_eFEKWW`79Eq5gTEDsRSB-3p*rMRXQU9@${CJG(v^Vb zu2&&Pb0)|Mw5`Fb$J9T>zPg#NPIJtEDNlzy4c((MT+%9eoVVGPJ(*YYx@&x@gQ6T= z70RZjp|d%-9kgnc7jGR5z`RW#SXd0* zBar&qPPQrk%q@>kIiD8=hjx^WG`UrvS7Ylj*JG?sp5{Eli2pl@mqfRdv2m>4JrQwE z;5ud_vKF0aHlGreT3qj@C)53%*8gYdzD8xOPNn9z*1JeDu2H@U_L+E1UJ0HZ?#lnZ z!0As~=z(t!DVg4`oc3rcyY=L+*mE(0PU_S5-N3EAY0nC4E-o(k<{_b%uQ!(mnj2`1 z#3X?F-e>1dA>UL>F@oS6UfPHkUd~J?n8rYCcU9l}4MaX4Klg1helg&4Cnhih+HCSFl$MAPf+SIcFCzTB^d3q^4AK*1SHsrGty`+RI-EU$2QaIl3`r!C_t| zOjK2QM%jxQu%wzNhdMw53WbsSe#6T2N6Fi{&i4?ivZ=C;Bi}*QunUMY{64sX>nBW` zll22ea1Zz7<#l(O=s_;)sN2YjZfE}UJ8B4f=8mgdsrNDMCGo4}TzAcQ_E)Dh6DawB z&k&_RZXaPnJ>?Z(5I`8{4E9VKa`DtR7VUaVGtfcT+YrgKX6{rpmAhHR-K_%}qIyz^ zFr!d*nC5ZQ*7nrJ1_i@W(+@yB#Bb1KYkW|MHg!evlfuqsg=AMBcqgLY!r&@5G3FsQ z9Sl*Qwm8BwliCu?nsEFj8TKZ&<<@?zkD%)?q8(Vy~29*0YG<#($MEcILH2JtEbVLGrk9OAz zOt;kF>yw`GzLsZ&e#bWm+_vZaTr>EP)5$H2x>}v^#*wZ-VQ;AQ4n1K1!@&B#%nnhU zpSV?1o+LeV7C`vrZOB?P8+u$ZF?|M~u6sVcpnkTfUOfIjhMR*dO83+W-nWMTsy)9> z#$JPudM6nr1TLc{4v?o`L8`z1K>BQiy}1iG4GJ=^_%DO%6ub^_SA~ENEWqE+G)MMm&eb92buB;PX3B^W%4MrB<^_z*c}w9rG((BU%)AJ4~RmPhRDFcgPHla1`U2tL1i; z6h;sz=R3Sb<$S=ZiQ46#>073*IT*avk^LLc*3DkRTN2%E)dDa&Dek}5EClCssLo5G zx(9wWyc6kWCg5P|q}sIJrwt9V>^a7_o1A86%BDF+G1?gd7pe@_MT4j5w4?VdUbbDC zQ587)SsiG;g*3z-E!;g);F+Om3vc+7=qEM^_ikIXrn(oU-|aWrI-M5rE+`rBv}ACx z_=?9vTDOS>s}t5B$~`5{8_+uI%_`|2+8sOHGU4Qvz@=6(dFxZu*}A9Odf;NfZB?iMQkC^f1g;GV-7ZF z&Hh#F?p?jIn{@DJbi8{s@3_f1cF(Nl*~1g8&Y8&B9|LukNb1dWj^OhHXq}nizaw`< z`&!sPIQV>yfnarx4c0pzFgll+y>*yW5!vAM_5Wbt-)c4G44-RUPFd(1HSh%@W{3p~ zZBl1NrhyZY)#s8Hbx$ZNl{e7^{S03M_cz4^zD+{&xS+Y-CN~&JYNXh4crO=gQLeXs zq6!}AH*g7Re488i2xx(|0N%#xW3{&iG(I|__QASb957xnt#=Za;IA;*5|r7cCj9ph zCKAA)WJ`T}dmf-OV>7Y^gv2mcmHy<`X`6$%LAD`{5Q8L_AmIH|r(UnRIKPj(!$opCQgM7;9E*BcP7Yn6Q$ z0lg5YDxsl}N8igQ_LI-2{A^B@!IW*3!?;3zC~b$AcGLcj|9SsX7^~{~t4Q9yIpjgQ zNI8pn*<9n(rAErDXfib}2LJQaW}zy`b{^Kzk^sQW57HlbRk+S}rmbQOwqS^N4KOIi=>41!GW zLZ!0`AnnOz5Kav#@$7<%-Q`y=4+f9GB31kAE^96=pgj@Ug;ynF#?=C}36RTY zY-hI++B>FHYF%|^lpXF$D;!K34Svx7x`cP(#=|Eu-pc19DbMI`x3r#$T`Ol`)w)%r9=`rY4<)N z1zDs&_SB6KUigUI9rH#RbJ7^O-WG_E8m>jvi@!IW>rPN{ppzMKoRb42O{{iY7kx!F z+-ab4Ean{-L&Nq*B|+NHx>w7|iDNE{>MptM-Q1T*7HBjH1A2V*2@3xmL!;ZZP189M zQ-TvPX79DqebHsDa@i(a2m2FKcx)o*PUW>!{pNrcp5tGcYu0Z`Qf1E$m#COFJ zfe7ALZ)Bg=*{$*M0(`?D7O*SL?aj2yJ1-5GvT5h}O1)GAC$cUDgFh;a(5od=x}dKc zTC#k_Euz(19i-5FiH=L1*)T2#-;6iz573-8=Lea)eUmAdX6CoG?^ec?>{gjhxTuqu z=RZO~-CKB&7K(eZweOTARC+7Qv_EVb<)d^FQ+GzRu*Cp@hS8Z!SKe*M-@o3gnW;eH7 z+e+(AnK5nuLj^kPK^MZwf6x*kJs?{d${S+#5Jc?E0A=cmR(+7)CvuI9~9P`+&wEWA|0N5y`MXyXxO@WF+7ykqo?ykt6 zt4N_>dlwZ)?LGdTP5yb1+odDg0U;nTfxL(j<{_q)peTJJgMK}b3e`1K2 ze>V8ZS}O*a^us{CB_P+UpPU3clE1pGyxFRR%2usmO3C%dXOC>f$~*l0VpJ0QO=5L{ z25)xFNjxGGk=0J*b!v*fWX zgnH)tuV5!lP!r8+DRWGl8;?aQmE-*gd}KsV4*#=0*Rd?*!RVByuA;doKnbX*t#5j} zBt(~r`a#V7>JR1?;|D4gIs0CB6~}LVfrmXwFLu{6#N(aRVadv%et={veZ$Tbz3r!g z!_8bbe@|OB6WV*vY$HR!t5$#q$w4t(>pp&kFA}#Rk3k%h6+of8KcB}I@r257`~U7Z zz@>O3`6EzqIDzQi&E({XN;@s2Uq7e)$&H z!wrsw5V}1r{f&R>=veyx@`fL8_;!Ex3^29a+nbA>3qAH9l|+@O>M#|}>uC#<$vBJQ z29&TW<)Ryy0!NQpl2>Bf^s8faUpSm3lvixJ84MRiiK5z)_#V85hF%oM2*CI=_`Y>G zoD3p|5fE&+{QMJR_O`vWkF)^djFr>z(>#2KN2m1of-pLY5S-6@mFEq-A1x>AuP`P2%e7?cRn*5NwHHo?fj&^^DrrFd9 z>rzAfRF}d}azV?`&&CCB$`wh-Fm*3w^Mq(WJj2uz8P}qjYdCHClada~8<@S>>FYnq zJ*)kAxKK_N;HOyix{5>>L=E5<>*RDwmSedBvsklJgm_O5(~Md| zhgUguuuhNSSQJ2J#J3I8o{&mv;b3R)?!B=u!!0R+<_5vCr=R#lVV5ySB=!^9y?OU@ zGta=$!k7}hp;=-6?WWqQahf$4Bv7O4crwbAM?qwR(#a<7DBw8x%FH74bM?=%2O%j+ ziT8pm7#_0#o~n0tN5!Ze$owCn*toqSU^IADQ%D?KrWJ3xekgJWSS)u7z^Z(JlEk6+ymd^W?n zotML^gYpYl&N|6eKlt%Ga6%Nm@SEE>P2?ggL285%%GY7Y;t8Mi5+dkXA!nlOL9eh4Q7j}nF$8ff?7c182ImYA)r&TeLfnLJ*c1Ts0bHx1JwehK@<$)abUs|A-07R zydFV&l$9XcyrTrIpv**)`VZC@EeR?Fn&D-^K~5}QUj<`M7i!)BDkP7-?-2KtpYV<` z`>QwlHf9*1CW`yNEkC-`&~Ggo$RXk7BfrgLw{fAXBa)H@?B$A3V=l{f^Z82X;(omV z`@$Xd>?rkm(x)rb$bRJU=J4bN%f(>8{rm;U@$T!I%M)7b^Og8!p}K7)fNB+Q(1!Tl z(r<4xd8$0i;U9e!anN<+*jBm&aeJF!G~jOpu^l#Z`ok zq)rZ==v3y>Fw+8X97S=Ja>-R@KEhsnBVh-u1ifPrK2if)=7|1jzCpXcetqLJ1hM#F zu2lgQG+%CZ%h$x+tW7FlclEkOPL9Lxud;BAi)ZW)eTb+&7#9Uz`H*V=%*e{AsjK!o z5JYu0CtwrniEVoS!?rc$c=q&^5=znY{ePRcXquA`GNo$d)~#;*Tg14}r(9)U6Z=Zf zknJ27MK-&Od5yxB0{21#2~LEVF&c|=IB*nEqGS`Fh-#4GFmGLcLT5H;v?1w97UB|+>E7oDt?CJ=C z8G32Kgx6Qu%hzRuDWp#DQSU#0$*)F%6V*y-HPZ@b3f73?Ct+exKa5`4Mn-NLYNW z!%fS$Vr`&8(*Aozd~~g{3z(3*!ByqDT#Q~ji&>l$<}U6QEM5W7j3pIyzh2bw zc?K&+4&BEq2-`i7vgvH-pByqTKLO~7#fVltP7Vkq;jk?*z16bM&AU~kFDD8*1f-sT|2ahGCXYJPU=r0+=Y6>h8pKobAJ_JiJK zsEpxbmXGkUTctP+Aq@mQpfx0J8uWspn^7aXNQ*Ou1=Q&7-R8FQz|84;zs7HMx6Wg|5CaPj;LOi@%cHKdBTU)jq~BwqZi`+$Ol1Le)Z-(A_=g+bEF^>WwT8xsx|}eIr3TqLfV2a)o~`X!`Zns zm5#&w$^7dbNwH62{fTjs$^vg)hkK}O{a8?f35@W^_`4X>h!oqeHPuj9&;YT)|z@=XDC#O~}eUneEEBDJ{ zw4l^wdY^3NoWZ%8<~%v}f!K^Ys$h1hm%ahg(CYqW9EsO5C5-m0+X8>dv*QN1tX;hM zipPOKP_b>QhiIw=wmEu$Ju)noZIA#ii~g}7j{Y2$`uw?Q4rkS?XdRq{ni8w!)sTp! ziTF7t5bg&i{5t6|7XOl-nXBqYpkGeu^D(-uo&>K8MnG3N)8;7@!=sm}xWxuR;dMtj z3yUs(=xE)(n5?PJLNr++6;(jmNikx+PaeYevojAFwWj2aA7z!ADd^Klhfp9{xFd?! z=RnX3e$4(jHKr=4l&guHeG%QvCnyiDWEYo8(p z>egwCYcg#O-d#E$e26gd3VDfS%$?XMUv>!|5(gBKYTET3Quhx{f_f+HxYq3uRpapB zIj3#e!c!Nu`q16Hg|_oGbq6wOZ|o!U@wxh+*C|iTe?RzlFYwPkG=Y~$M-C)@o!qbR zAN|#33IKp&t6`;!r1t}nn+oy%Ng{2r1|7|3&0JKZTfRun%w>A5<~CO9w>JrOm@@1o zOJ7nFF&K=qi%Z-M>1H-EG&x@3xrG+f)s;{@%Q7lh`zjzNTtMRxb0JDjPK$8>w%UKM zhh4Y1=kTlO;OC8CpeNRdLNEz-zfd-L#38!yiWx`Mx0Zp&+BJ{qfHXI;-lq(!uxdo( zs@9h(8u&PQjnKcA$rf9a2fHUIL#U#pQSAG(WDT_Q@lQcyP#(Td@1w=SB@x+o)9$!y z-%O*Y1ee66Ya^Smnz}3i_TG!s9fm$;>UFmuZ)nrJ99tU@3tsOK-3V7g*Cn8}pK?G|eUtT;l1|@$TR>>BeO&uVf_C(;5iS0sffvRDUro{{XVO8x@q>y0 z5sZ&5P8AH1_=*iRI~WY29Uc5Nhs4QUMswpEqKejNCqOffClhzfE>W6O3=T|~Kf#z7 zE)y$JN6YK1anIWrb08WpGg}@e)_%+Ok>{acSfBZ3X^s}Z{*epikM~Kzl+ucmKOo8% zNLh1S-zaj~;fYS(I^Z?1WF9GFj5&NueYBNmgCFbU%0 z-OHZ-2$1YD@xIJn%hnuQPW|(g?O8v6q~F;xeA2(jWH>cS2F!-V9bVTV4Q?Hpx5wUn&%Qk)ayc*^XH{ejOn1FoaF1jL{7Nhu6_zL!wqv!=xrFGpb~qB! zil#!+LHB17af_rIf`(!Js9y0BV zuWwP!H_hyRxY2u}N^ClXK6iY%$7Sorl4vf_DdFZ3bUd1M!UP$}zT$|_rfjtZNY}CD zJbL`B8mXBB+cNwp<;LE8z(Mo-fVOxLzZ;jiI6x$F*)rQu&qW1CXL3kGrG)J*t(k8! zMJ=y~tk>0HdSik;$pZ9UjOt{u-C=q~h-9nxP+MS7Xm#K0NPaNmxAO>C=B{ zg1@Ab4NExxm18GH@$vrhK7EC;?^{w4 z88UGqW$^(O>F4uHL-st$Cdq-pv6r#Q9^(m1%hy;9hed}sd&lm6sr&dRO4}V&+-VQHkwdde(mZ?7y+1M4sO+Tp)f@o2J!FOgny1kY4Ryp`aYn8|lk~Tyw4$sr zoZkf&vg~v%pXnVi%TH+m9joVuI8-5o!%uV7{4A2zO!5TDxZH;i77qP~F$*^yI2_mE ze@~U^e5u`tkCxh%wd;%muYM|6*!f|Q!aUq8Q)rO=s4Ol+{#W0#R|9(>@VWi92chOv zYWoM73saD}&E_&4t$n{GRi)GFUukRqE~SZX;q9Xaq4H-NeHAaTwT@GXSxTPPGeO%! zqynB(5$=!!oL^T1Yww4?7@hsS4fuZIvBT)90{rMwCI-T4!_jum$!a{oxTW$dP0oe3 zjwDgq$GdF)G(!M%PoTeZptw4oGL=TJOUd!^pP+}85xz9f49j1!^#oIiqBV^5E2ZKd z?Pz5Qeku@4QsPZ7ujp5(6KvJK_R%KkLhQT_i@FxBoLkJ_aBK&c^{gT(I{2M*BQn-mTNw^W>89 zM%Uq`e$W4CUR-HPXUDF|TL*#fDgaY{+|4^cz(qSNtDpb7hW=|XAU|N5^KYT$DWSm& ztJwXs)vG)S;=m^KyDxbHm5zOH#B$6+Ag{8NeLZ$oeh44!Z}E70dsn$^cV|8_U<9fN6fB3(L+^H9isrb$XdIx0EZekKKUe==)ERrY^(~<05*R9ox z7n|}%Fs(AsIWZ=Mfa6QNf&=5iz#0&fxGb=j0?-lbq3;azu;-x=*<#O&R9AMpLv)QY z#NcD`Kk<5a=W!)rW#O9yUlwuyxt61a6YqQT8XAEx$fH&W#CizAo2_3P||^omz6kwgr|svGOhtpH@B}f zxC6C4xVRXFuNe42z;NP^0yU?le)9$GKTR7Tc{_ z0N@|XO`!z(jZ5rX6Skg%HVu$Qcgt&>8ItkmXgsIviwWX=sydIJH)dy@Z`fpPHOPQ3 zKDE|#cRG2as@&yaBDdq#rDMfIiGjJPjeeaF(u%w~9QN>! z)8Mm>sai5qUEj;)JHtpmBMR*q!01DSeAYc;t=w2m+279{V3aWItj(g)xx~WX>b4p; zg8np1p|#qh3BhfP98~%TNl>?OMr!i*%smCF$AeT8C@zk&Eff7FfS_9t*k_<&<~Hq70x2MGQdy=^pgu~SsJ^C0b8 zQ8(3C!?ZOb-Hfvf+&YBupKv$aUp-`_{{}0_ei#^~fcin3?)VZjMB@uHy_(mJ6FZx@ zLE>IMjxD{rqZ^E~j_}#BvqU~v2{@r9JThTY60m-=e8nTm*-u8zlGOI}PzUs=GWB@S z>9to1R~$V)EEgF*7~uGx$K#Gh40E63C9T_{&0hm6I~44qiw5EoOI&1Xd46}qeuPzu znK@fkNBW5Z6mU5PWd^6YpMKgs42o@A$@F`O2d~8)|BhrB2!eZ`dbmEE?DDE>knk8V z|3Etcdz!_(Iw_BS9~gJ`1$lLFE9mM`gnW7Won&-NZEq^=4TU<9miV=2@A=DDl;ytY zbVrW~vIv&Tsm;5t4#QvnYTGd`-_(|ROTZ9&+sB<-2z-`L;3YJDvgS30w99aP$U%<(e#x6QF;rc&IR z;ecB0k4;$lPYOt>uP+>|DFv-VldYocD*CF^H2(vLKwuibcPE=CIVE0idVzT?o;fFl zzb7Bj(UW^0Ly59~E|+AfhlUW=8VINoDhEy_kJ9Qy@AX+Oi+cAsKCS2{uh#|W)zzdR z=Y!z=r4?D%pP%~8hhGm=HT#-tcJjth%nsZDL7qYGLY}8*%wHGUPT!lKl>AM0+)OZi9{W(7C#z-fefj5E9JT#bd`g{e0zA6>+b4r1(^2wOe5b|siigKCoQiqx0>W# zgSRY%+?$ex4|7atZ;;386BR18^QF)pQ`A{ruvGTxnet`l|MM)JT%q!?gjvkgufJv+ z_tdk5Puwv665yiF72eB3R?WBU&!Ue}?4Osowy1^S19n9cuR6?oqHypA!;{E84jrYuZ|leVSCV zpGQuqDUaq+ox_^mHIYRQySG(TzI_)Y=VNlw@A4obbme}va1z-`;T+RNmW6f&%X1&d z*=Pc1nW!##hCi$J%C7jH434CAnvIF(QB)lpr7yn!FjfUWL6|7(f4URP zHm1yF$-oZhAK=Bv_BZs)_J?nR!gvSlD9J*iV4tupD~g3Z*2g^E*7xr@gL)c3OS1gG znuK)P?s;O}0F0n{t2KVquUFa+L3Q~ro#X`Ki|<$O=(Zs~Aj}Y#Ij6%ZVgj&=m=%em zoSMAK_<|gfwV!W|vV*A}fqsB`fp;w32E{B)H|Ad!Y@vB96VL6$UGr#oX0l(@L(=s+!(vBz?K)K8yIoY_&Qe#&4}-}$@Unbi!?k#= zOMp9|Q@MAL3k;-n1`7Sz$ckD7dhtSs-8Iczt;@^z(!P8tclUaS;|-5QJwz_t&+OE2 z^Ylz{gR1Z(unwl6IPtytm$nxV33(|E!$T=!V^*>*3-4v^4=V5f9BrV_!9H|b z==qpX;5J?^>(rmNs^IZG4ZQj3v#j^(Pd3?nmZxWK2fw6@Li}lFst+~~x)Tk2eY~8{ z;iO*!Z6|+jN&5cBoO~ckqe5(_B+W5f2}jxBe_4a4|_E2Na9*JbCAqNiN@4v{mV3NjVA4Hj;7ST99TXjUhc8 z_&(K^9;Ep$IV8@8$lAs%jAr$e5EA}TU+`w^<#(RB0R>O05C*jTpcPYE;t&(9SG zp@j8E?xS+!UBijG6AnS3*Wftbm=^p!-VZapiB$dbwjqtw(l$W&>#cI6NS&KOxW2f&9j;p1~f@wE1?|X&f(PQ$^0F1cPy;NGPN|TZx zh!HEQsF3*#vp+NPRo-i3tAQa)uXQjVGp#wcg6EDMe#Y__{^B`{^s_y5 zARYUj^r#ii93^{p6KA#d0o(Cc|9xc+XsOCWRvQoMv&YxB&r;j`-ClgIxMO=V!Sxpu z4F7*nAp2pMX(X%~Z$85!*;CYxoCmYzh0}^H$zn?P$?A_xe~4fAHb+au#+8B&h|VBI zMIlgtGxFwh`zxG^64Y0@ITCI~-yJ^FT97n4dXnsz^i9`C68L;s9$ctkFN!q*+BjW` zO9qGg*4>Dy9geL5!yr9z72veEO!Dt-Y$G@@spCC1drgLKYd6yAf3yHPxrnC&?H}XB z@OtC1)!^^6`Ci#fTM4b!O_KI{4!6SQfBSrDACYi1^N|`)_-Ycr@SCp>H`t*1*``~b z^Ub!^%|M?*gy2Bp4Sw^`&E*Mvknn{807JP_%8J&$q@CY*^$QL7)F;(tb#N(UovRf* zC}YF;O|AqY$k;O+cU2f0=#$eV3qr%bH{})Bh-Uh8rWVZNE(o7jqFnShmx+qQLGN(H zcHK@*-QDAIxPztMW~i~2i5q=3su*?4$@iT*ll5Bq$|mcl z@nUUEQt|oR^^&pDr01Mt-E+!@ zYn*uNxkXig#bf)BlkRh_EwzPsQ?J6QE4Y7mdIyMc=e z#b5QF;h;Hc(T#;sg7Foj3eJ+l!;luv!DPVusGow}vabbA*>Tl+X)@HkO;E6;zuQ-^ zY(!{>YPX z0&~kEFMuxU_@#MAP#z^oiK3H(@A9TZ2cPQf)IOK@xJS1`Q%&p z<8q@y@};pb-LT|C)n+lLQH(mmT-Q8j%Od;eF$*K~2Tcx4hXSl=yGJd%5avM(Jx-v( zs>Ig9+=3St)?+-e#2&>6a8`!^fX+C(+ATt&!z4YcDgzRLi5IMUbAuCmz2eE)3kRmk z1```h?XwdqblDnwy+8EPfTG7Q+cI^tBejVXywZEm{+m#4zpCmywVE@0ru=$#h2Go| zzNtM|;pEp-=0?VF7fb^bH|BSMvRHVj<5Aw)8zlBu>xXJN?tZPKm-N@aJA1n6+q=}4 zI?xt&%tzrX(ITxDGCa5GkbQwK{PzDYn{7k2=LZae1^!C1j-dlRL| zhZf-16CVBx82|c_*}}=V(<48uV&udgNM7lbBsvUaNTztNy|pJ`bID?=BPpx=vK9fK z+Pb^zo3SCMM|aM{BlE|@-pfAg{`UKqudRf2wV+hP{EYLKEbq|{Cqr)%Cxb=fmDn+E zO8bL%7e`v)8pxaZ6Q~bSsSkCoX2md~r~8 zSTn?VE=@M!TjHaK*MfbXB6yiI;0w&34^=a%aVi8qe3*|0&U3Fy6xz-&hnUy6CM2d( z-{h7rWjK_dqoD652cssbOJ2 zw`B)Mej}EbKh!cqcG!#1LT>Gm;@|nAV_of4hdPD@O5RAyy>gKWbT<}LUwEa-gMY3P zqla7u3MBuYW2worxJIv5BeMFI1@mK@r8|L+(DUZfaL=lOo5Sx)oUEVi`S015K=OLG zJ9=p7FKmAThZR9UkZviFknTsi`m^fdl5mD)GMM@Sl*p z`?F=#Z6rU5M~hmEB6*QvHhvTH*8HZ&X{RGrpXb+%(J(8?b|3rR56V~zi+drPZ2Xv? z700S{8^%@XN4R;^rE8wddWjgCnJ&0$6RV+TJmI6bgVpi@n{g~0{<%F~vMQc1vZ+@6 zdblADgIKuN2!_TFag~d&#Iw!x*!5wpJcukm-r7U1NhLQvCSf}KfJhPPVTL&nKFZr^ zCPB`E$0&^X68Mm)|MM4WIQr)qYq3*VW@<7!Xf+6D7*3}NvwhpK7QSD0#^M=?u3NZ! z9Lz%~wb{8{X8rBsh%qY)_rh2jCk`HRKW|c#A0pK|c)SBHB}n7XYQv*b1%ZOwR>pjWCvBJ-uW*Wd$k3UakFs+3f`QA(rO((-cO z+)+gSOTrNIPl8(}8;NbuqW2>-43miS@wr{&Rr%u~pNo@sa2Xuoo zj{sze?oM{eB^i(`nYbRwR95~~AaYKzlQyOq;+AByDP-2`JhS=cn*Cy>{u9f_YN^${ zPrw$^=i(^Y8gf}82jj*+tAhU`@E7oKJv}{&y61CL%q=Nt%r6GBA;U9l!MSRcY_J^l zM$+6yBW~}84yE9VEJPpa zjLv!}9$d7oJi0vNY8!p*qSNxFZLOA*B&fd@G{f`$tq#M~FhP6Bh6V|euj{h4t@~rg zN`Lv8i1-$?mpmVM9eA%u95I|M#*K)l;`=jDXXf87;ox~}sx~qBpvSIg^+JM;Wv$Vi z;0hFbI+8ccKQ>P#yT7zpWbqsIEg$`i&d!r2eu7SAf-jF?43F+(`X-Ft*v9 zuxn7ucQ3ATQJxA7EjZh6m^hp#)1o4!#pl#AyI7N!z~`YSg!p6&e@eJi6FhnFttNVZ zW75F!$Ek9K!5d@EbL||p$`mYDTG4Uf$kPg})QAdcvQS5YPLfYoEKo?-ScZt3?nMZx zdTm=EA$FV-2^PMLFs1jy>|s^fnXJF$O8*GM^eGCon!SPSEB{>EBeTGEQYVH;MzE4a z=ChCYTUY!P=DUk~gS(h&IeG;g9F5JOQ22L18gVx?uu)8`h_`f8HYRHaStU7~vc*Mr zp;J4HPGJNV&KS+&H|u>zMz}?|$OJ-4F)Gfb4@Xjil;2qDYYzVfV`afu#~z(&Kp8t0 zxy^$4(GFb`WeWA=3ycS!!?3)0Nb&|so@l?#7yLl=jF$(yT8=c)^EK~B)ooKrg2+t{ zGQt$cAsSN8e8OfmK>S22HJ1#Z)7r+dGrcH*XRdjDpFtQ>{C)+iKjNkF>sahJL(^2) zV++o`wI@$3h&C+s=swU~yhU!seoxpx`Yar11&&Ic*};dQOM5Jdg9x%U>?CQL6hKZv zDzZF%aU63muts7BQK4)uy@GVBvsaByKBhH&lXjnw!SZA2oh-1%&Aa z{c{GYBX1EJ4%ddEST3*PxEOl{_PZ-Kin_8zG6v9Oe)d3eiqa&(J_`|Kp?RCb^y~2D zM^cX@YScIY3vykmaeJ&aDn8?AmopvdUwdq@LV8?(?!BU_2|cy^E~-lXhlu}0R%=3$ zjHjwNm4JhlA&kn{T}rurSJkm8Sy{BY6yP#Pbq3Aq$K!F_EwG+P&5b?-wCY4eDf)dH zid;oN3Qn;tOTBs>DkD$)T?`_nwq;-v00gN0{nJFbKp7)pcgdNzw}J7-qswzHrL+gY zF(wicbtj4a^oKxoa8`eYT$0pVSbwT!$*;8cL`~^c(AL4}nbOxJ%nF4mT}cZXfYz zi#T!iy<*(lJ;^Q`o$4oTM>7oZo?5-kfR#zOl(e_B9oT`vV4K$*Mu&OP-}ONZ$|FRg zRhxlJkqL!g3?)!E2C$~a!P?ER$k8e-6M=eXb>pcLA=Pr~$p|#u)5(DW`NMnq&zV1e zpK?43zI%DzR`6Jq&WGm*=om9>{(HaZ{5Ol{Y_^amF9I{o8FPOlFu!-o-Uj1S&uQGu zh2Er9pCGH*bPYz%e5FgvN+GN3+*h9MK!y2eonSv?9}-fiBbf$5Y&@@H2&0%_3#%A^ zix9kkm`sa&3qL%lMMz9SO!9-IIg2(0@WyusT>~tG=ikLn7WZ@c6~6eP%6Lk)XtGh1 zcg=Bd_$40U*>rGFlfM9ZMO6zyb|?ra=$@d4i3fcDHY24|6mjXP=n7&Bt?;w=`;=Ri z{{&&>oidvYW(v@bEYO`)n_8PICV5QGnG)$G7sIO~x~4Q5*w-W{l+1&Sw>16Hyo+tJ zwuB>>op^evILE9^jku4H6XCHtdN<5G1d3`3`<-<^>OmPmEe2;#=suo$Cve^cT~oRb z_eivdE9Xaaeb z@QX9m{%rU27enCs0FJmp>b?2w_7so4)e+-1|DEXC6khKUvn)?3G(IJhQ6dzWX}}xx za>d2BH84|Czr{G)mM`8Ug-#>A1|}xC8c^orRg2j9TNu{I8mx&VxuJx z1mH7Dne7>m#InVqkq=B%A3Ii(U%Kpd(10L1Ro1KW5JjVvfwZ$JXr55*NUm0&)AS69 zO@z5=XE-gZ+tr0^+&+Pdh`z?scp0>`a}7aQyD~ocRhvh$sE^VI=9t=WyLb*md6@*h z!)3k(@#AGSM#$jbAg$XN1n8;o!CbF98goR=>QzML%~^BY<$m+5-T8J<+LpO@zmKfn zR5MygfLturgzfQ4x3{?Q$9#<4rx_BSVi+aGjB{TxfvEGclyOyXEY?zqX)X;>i5l~h zr3;(6VT)=2w|JnT%w;DZHJI>mQ|s*YI*;3Z8;uf>KPKJCxEmjh}%o#@f8LvJ z&pZtzU_}&t6VWG6Fe8lL<*Aek9zI4P+{MHMnc6W+6XpP~Ey0jEZC&P~{5)FHDEW@E z7!Nb7^4oK+Ibd+KMc|dN96wzmbH+ZsX zUm>O}wPxZi?psb$c>8qLYjt>fx$H8Bg= zyT*vJGDmnCAkHvxES6sog%-Enul_>6G?1oDhf^f_865WSrI+q9^i=rEgiM% zQItZL!vO;oAsQrF{k}vJsnWceg2z=uBcK{#{X5N0$PKc>mj^rmkPJm#N+Y>Ix&Yqv zbj*C6PcU=+>7&~o#QT@Dn2S(|;JhF%vvUFjrE(p=B|`Y5)`jol!ols4ejx9uJA5XA z`roUcZ<6!G#7O2Z_+>_`0eE+1K8afz5mlJ!<$ME3w&kvvsg$yL9evj`HSy@B!_fgo z))eW^Oq-ibZA+F!drGwW<$iLxBz+x*UlMvdX zt&ky;b>fNT3@=Typ_nJP#H3Q<`-vKTQUT~5D{Zv>^1@&FeI-_K9Ckhh9K{hKjDK#- zMzX6qk&#h{V! zAAuPD4FM;w+8AO6km?T}qu^-~Pz`TYQR-3%HRJjvAtfN?BMnszNdP!ZkT?$&G>R=M zHc+io@O__|6x>sR{cubtTi8b^1y>2>=kUt+Vu}S#R<&~RRCO!6r5&!L1^xO(c9;r{ zYhJmle9zgfKJwN{*U+R!>8g0jwaJ@ zv5$?)u{eTfodgQ5M?1TzV4Rs!W(S`k!7>IzKfR8CK$@ZntrF=vVGc6Om<414lL{o5L1 z?=;}Gi1f?x`w4cVL5i?KaJhWv90;Lq67+X&+o6AAKL252t_~8?a^k8px7W<%_a>;> zZLzL1D4zuGgS76eJ>VVW8FQ-{Nx>?`dTHcgt{+nhB}8#2i}ZS8S4Q&P0%LhN(`9%C z?h~_7^$K3?L<^ZnF$7^ojArPM_~#8oUhryG{%&7Mt}@_;+kJ9ZHOk2(|EqM)JW}uYrT=%HqbsjM|1)1(ljXcP1t4t5|j>`?`ecVctXI_z&k-a zuaG6Qxu}Q{G#djmLwtLdVWN@T+l3M4#s+QN4R ze0M-l(I>-BIid5W*wG?e$c9=qPomqIpK`&wHv-k~Buk8^2Va-oT3HNh=p*9G@z4mlEYYB)(_W4Dh>vyXC%Ke4_QY{B z16>2bwYrql*;!^QL?*fXI#X3Pig+0o^KET!BuH>m+g}A9J;T;HIPtSse1!H;#h)|n zKAC2M)a9Zv@QSET1T02cbRL(NSPGc;H`iW5&==XL(d1*z8`IxLe%^WiO1h=Rl{SC? zGZa;~?UPBjOD8oJ-YR%i0ywSCl19O)&5^=DnBiNFl+OXj6w@27@|KP@DxLBR#hox* zBi$s9ve1CMD8c{{DZHY_+JVcnC(m`*EeMm9B!C!QG9IWesPfJXWa)}0Q^75C)o(F; z^5p*UORh?gr0l3#0f>{|Wg*9?MOzGfr4$=#kXOm5EniQm-1WTLLvV0ZO#Lj^Q(II% zy|5KbLG(yoiIwV^U)4LQjkHEy{hcDxGma&d)MIDC?kU0fM+#*{fu%w@UODeIVvYRv zyC=rG(p?5Gi?xs9c?)$G_Y18%29yi69XN8qWZ*L6;Ipc#-khIneYCjsw|ooEgVZJ9(4*5FvSLPs-;^I1CSk?^~cx>O%=k}(@Y* zhkH7ft9$WUBita zehN~Rge9Q4_+mgJKksH=%WP_E8X>*!|ISh23?0nXV6*(a)rM~rY zj^D+|e7u5P%Y0ymLzs(UiiovvyDj$c(flseqtx}@p#CyLn^HLdD#8nh z%JmOgA89?xjmr+SE`nem*qE#k)t(;&d)&L<0-#ITduf9iav_-5>1`bna>1XUNGRnG z0LO#y;3n)!Te39kON!4eF56ljf}9tJiSiD>zl{tC-lN`ew%B4OAf)B-<%@Qo^lQC% zj=j;Ov2CD%lwQ6I*RZo|o5t@kXh`s`0u$CD z-dnrhoJ{%1jhSE6u_0j`F{qY2)g{_j1v;A^s#ch5VT6^ImWu1>=uqM8pTly&sdaTi zH-Ma9OS)_VQ7u4#tLFCh)4}#Ot@(DP5iBvm3OWdk&vqq|%@h7Dn`s9hSD_h}xL~nR zO6?QKIt54A7!(xcyUb1XCMwhqUR#IgNjQ{}?a>T3a)XkYG+frvRMyuNw$QVBH*q>b zhv~k=dL(mf2MQ?l2E(g7J1Sgh?pbrgqKQ`10SlBop#;o&iZce9x z1&JfVQcs8X%_=!wh|EGO$%SV@?IK^| zPU106#La)b+jDc$n1J*B+itZwM%xnO09d3+;cP$u{5RmGjrb#G0T01t;>SlO{bf2} zAnS6fQcOnr7phJoD{0+r$oCS+ft(b!=42jVq*C_YQ&r6rf=%ICTs zDLmfZ31z-&=W#vh&(B|k9QXR{VjV#Y%hfcl!}zwI_>4|sOj9R*f-Z}oq#b&6*xa-y=E}Ev8_jwK~!z9DqsD0LlcP3!HoxjWEbF(@CP^2hCjFOUZLeB4GVu=XI|p z80bfpxjxN*#tA@}L93S+<5RVEs2jt%bTi+mxd;@l&8hcPYaMM4i_kRgA)@8L8)y{O z9Bzyi)9qH2-$9N1)9buFQo1pNRP&X^_@{sPifmdRZ$$lUo7Lv~*Gnh8)~bJOvL>(>qQnjbTX6C91_H|6*FviWmzaw;;XP|dN%d_(F)iqj=~!ZuNn zR@wPQ{3Uf4Zlh8Z)5HEWX_tu0_uH`kLVnxrt<0hb%s9imvGa(TeRj?H3@4;vUH&fS z54qlXQz;V1rV-|h^^ONCZ~U?^Hin^~!?pfm(81ai|Jl*1I&xi+dzXz+-^j91cWeA! zKmmO~chNWLEZKZUaA+nfDK7ORZYAaq1wh_LF(2rP2U;ZYK_gMEMOvwO5lDd9?1LV1 zV|n390Mq-M(QgzOnlrqHJOQk*`blramcN1Nlu}QbS-BAF{M1Z9Rqul}L?I-|{l8uD z0L}@6=lX2MH+?fJ{-bTH7Jj>Ct=7!I976u@Z6FRrx-kDivKw`L-7KU~eQKf^07Qo9 zZL5*IzYn3$LLT27*du*7HUIfIJWz`nWyo@$KG>bjmv=uhNlf9CN(b+8L{epm_En4* zNX0jz*bUQQF=_*>(W2j??WujLsF~zxa0=0G(N)EZEbQ4nU7m(xkEz%*GV>s`P{E6Z ze2z(KfhfKxtaE{am>!PRyIs@8#cpT@1(ote=JRx>HUFOPuQup}H)ezN%5PY%6&-I{ zqi23k62JXGYw&297kA>r(Er#u8)3GBYh&Aan;zhQaJhN>G^y2JZ=ot z)kR(3hK@0&Hwl3eD2L%!GG>I-gN&JKtTCP3y{AhPI?cha63FU-mYc1b@$#NpkoI3~+#4E08W;n%gXOwU z4ur5T8^QHNJ_jT=J92g1e>UH)r-Vy#x{$Wmj5o8JR`k@Wr*vQ3`$fr7W{lA?Bd2(q zDX$~I+ljdv(ufnSEE%T+ z5ShdupW9kzZ!hJ+;&I#j5PQ8_BTLNbv0oQAUpH1e3hOUpU(=D|Oo4!;2(tjU|! zQLXoWKWmdNGWnARQ$OD0+yCag8cs+ChpxAoH!RgB9sT7`(|qwy!zgc8mH6PI&?z{Q zSR*Sw>*FwkraDCSbN?U{59!Z4dq~jjOdJVwylaiJWo0lF6sN63cm6u!)%bJn#3(Y; zoYF3lE_(c547}maO0QUaXkHVvWg!2W7KX?ysYjnu$oH=a>^6&SiZ+gORHgKL98$N7 zJE>{-)-!*28oRx*r#5EmeSv*?>bynidqZn?_Y61*=A`fK^xlS-evFO`qR(nUN1SDv zM>wBvDMwn_5EAD)h;QUp5TMg+!efk!^UF#5h`5*I@jxfFzB9S{D_LSyl zYbwLUBTY>6+)_gMMfu=}-qW!z62@Ls6X!bV@EH|B3xp1eg%+ z=Mm?zPNa_pqoBUb6=&Qw)t@W6hjuGn4JhzLuN-9&nMljT_jF$>y2zKt;fuXMx?P_b zGmF8Zc~G!5bL0TCS7b?@lNsJ2LzI_R0NPb<`O&_}rt{F7wvq8>liCDtY$ zrf$^L{iv*__kHGbOG`D3Ou@QRKm{1049f&_hUpsK&dwexGSpNsbVYjzf_9)a+o%w5 zS#3Mps0%dYeaz}{RXTdBQakKk@uwcyQuuOMGE#bYAPZ(j7+CB#dstuBr@>2dE6>|_ z_WD|6JrngUcnb^EGxVT$XxnJ9E4P>1i^0{KCOj?nl3XY&SQJY`etGFjp{;zYg9PyH z9eU4IEe^JnLg$HGQZEdxoTf4LZ`JC~CwL*1-H0~R`f8g67kuwmGyHN>_-@+xS0x!Q z=y)KJKH*r+w?l6zC}8Xnaz&br%%48-u)1gy^^|7MX*8LI^ma4R6=&lP>kYbA6W&MD zyiIhBu-nGXS7XsmVrEMp)=DU8^A)3UX|&}nI{nd;*PU-a%! zerGIOSUDJj>~<gCMk0l7{2 zq(SFEHtIeML>?r}-%BJVUZ@z6~kJ^|fS$^%LyB52W{b&WSvcrhXp~_LEI*k=LQ1Nxq z!E_WS=AVMr65EjS(QQ5VR50i2L0T8I@BM-H@Tl@&+LPZ@x|t~X7E1Sc`D?O^;Tb7P zK;b;h8CPE{j`TnG`+WEJHr~v2_6ZylN;9BI^IW@p#?$!oTY1vtB4H9pFYonC$J-P>2f4d%_<}p%^aH04)GqL=p+Hg3B#hvH3V)~o6H7I9+ojsd&SgSk1 zuKt8y8lMRmCyns?$-jsE3|I!?PCHW^urpvc(8;Lq^;3k8QEQ&nnHyyGiP!jL2?H7kXn*$}LF_ ztv$|!A{keI&f}!2VS4|(bZzwhqI8%v6}#XPhx&tN=gUD6*FWwg!hn(^SSRV!NA|jQ zk~3UDvPgL=Ve59i_62bI`3WOd?0l;Yt%pbt$CDeXCydT+^uT>+mrrrbV_`yTpChwDll9n zH}!2`iB{*EO*?W6`MW{&Z-U>BkwWYPZ`F&t9Fkg%tI9*_vWU}b^+7s4`dm5a;cF3X zx1?_&ls{KG7um2&Pjfi8!Nh01yCUcjV#1?_Ft`{5M#f~kS*S=2K0(=$#AShDPEYbn zZ#W`Fw`fuP2hDSr68G=?!AcE+9->jf*^Mo>wutyBbUB|7y(>oUO8oMvkPz~wPb8ST z9l;a58+A1PbrDsW&l0~&5Ri!8`faoPaDaC-kO8eLl>Sy@eN9(VKX4!ZOg2UL!%vlP z2)E?0WW~22FVeQ%y6DXnLDB4bqyqa*&B=~H;26KK8OCfL63 zJ7Ci|3f><}U}EXqK4mrxZi&jd+3$LgWU8>M&zSzyWYgn;Y)mW7J~i#n2W?|jxGV>c z%Q!KPcRW-4(DmM+r*0aTrTe0&9n`zwJ#VPs zE~18aV%z-mp{DR&B2M@9GFO+T+@`-kZeRy{%OZ~7PaV01QlPZq6FAh%YNPN;Dl z$5V@I>N${IjjCl=PWgGENW&|S%jt)Hspb*d6^v7sO7 z?=k23lfn)72pVw{ie14u!CaihsMRVSUblXWJ2&zlk->x2!_dBUuXa^O1^bqtJm~H& z_aGX1d7E)9!-%^%wWrT`*|^N+m&3V34i6)p$sv_ST>F+bzoxqNij(>K>@!r+q+22h zyuG_0I4H0lXmG4fz~$P`ad>@>0`_^9Y+dtdaoTHayua5L2y1h~C}p@URC z?z-DPO**!%`U5r5&)rGF8MU!Z%A2gn#v%+j(RHQ#<>#y6^O)}zI5Lvt9MY6chIL9r z%zyx`Hs|Qy5^}>GfcGbpybBwwE;$|IG7%~jwXswL^~6Vz4y>Tw1~Kk-NMekrD6%o) zgNa0|EIdFo0I-t$jA=zRKBNgAxn#@j*py^}WEC6XhTDF!TthQfh4ZEV86#Qtm=?-5 zp=Gm`oj#pFjy(b5jb3jk2Re2MX!q<1S)N9tsSCWXg&%cv%m9pGITknen5)r2>5ZUs z!H?Z?IEDnmjpgqHx#{CtOO!~ys#Dl%h(}}Rb6$;J+SW|*M8>9b$~Nwdr3m|=0Eu*? zxc132KWr1Oa$T=FtZqL9b6=hB&(z=OfEWc`Yx?wgknHjdNp%!9`KX0?>jtK$2*IgYl=BvGD-??wnESYO{sCJ9hD#K z(DfjLzotgX@dPo;#l~kxLA^;)=y2#=F-N!oA1LEe9jX3ntB=ykw=^B5Ih4XY31b(H zqOae+b~ZwA2tJK3>W{ZnoKFg6v_oVfpEYI`Rcv$-&&s;Rgz1N?;5H}dm4$M*W?lJR zEJS@{?o5(YbM>Ag{HQ}3?|yn}dossLQft`+^klXF;cF|t?{J>`V}$M#Q{P7v&&1ns zZimgoGyu_{ZThq9?~$n%qz#XvO)i6;$SP4q=P> z?mK>MI*hB%?{HYsW|EZsDx-}4yKuw+JUrbi5jv{ZaO*q8BTOqp!|YY|m+~dcaXxNK z9>y^YA^bh#-Q*YND@2r3{2J@rO7-licOhnCEWAPolj#uoNQ58EsbZ@zmT8(Nt>zkCr z11uM{!@4rUOTE1T4-|b$Z zM5J1rKX?VGlwrCB%M4s}x}2o-hZc?oVYHi5{yo;ARN^msoX@r>?)2MC+VAZv^~dt( znx9<|P0dPY_$Uz!f6K%8KGwJzmOfmg-^RPy=SN2x)h&8Z2Qi;0S+ksvj6LO^-CodH(@_8Hm;z)Nh+47~lc{Cr*-;E- zrUXIh6@x15t$B->USKCg5*AtMYiaLW3Olr{ybIL5lID>=D*WzX1;d+kmM zyGf#(RkQjpCaqyIS{bW-iq7fgMbEZW=|Yp;2d^T@R8m#W@v3UjyQ8S14%yE#dgdpu zT-~az5e31cr+rrCLYc(BOc*hyZAQ{PvZ6NYvhFyIj;WfHj-m;qe2x=1uO?YvX)%#j#i^7sqHx)sx(^7%UqII3 zH+jo7m#8EUinT7o*=@Lnd(=hK-TPD~%q^in%(-kyUFN`}!4Kjz;;JszBYhov6|5;l zTi8UF~mno*r zvN6pEY{r~#_2SrZ3)!8sqkro;H0KPP%3&y2_%20aSy<#=?IpT(w7eySpa*RfKI*op zxHM_;`If_hOC&E|YN=#|g-yR>h7_OPDNH1`O@wd=xADdfa10&%~oUx3_9Ju@qI z0XknIY^TW+tN4^?5qY?aYMgI#dlR8HSDVgGbsz5GQ0ZixEc)Ss*W2WSQ;zgT5ZXCA z7&Gd;)Pp~{btT$XJPxXmg|B1HM02aN-QDew1E;R4g;ai=9Q$YXD*>LB8<`6I{<(Lx ziAtPsJYK1j{HShQJP^8e>n5+ns+^Wgx9Cqj?BO$g)8&VTa@yl!zqy+$xYmb55%b|I zFyM1(<5yeKL+9tF5+!SIj-sMK(sk0*(rJMJJ9XSn>MX=kL zmt;gc4MpkM?SAF&F%@c4C1I-4+uDq?Cz!cKiC-VM>f1txhd_eF=GGMI0ydnOf>NH=S~)9*P*Vj~*7 zfl9*I{a0dXzq22UZ*lF*=vb`NqM_GYUl!3hU?iy|^j*|g!svoc8TJ{P67+=Hm-aVu zBFKhc>!pd=#X=RONDo|Q-Lusd`M<{UCtIT4a9~Ee$H)w!e*|Fwqa|p zLa=YFXg^WtHHXU|4n3EU9NC>J1*B!kAKv`vI7!4aQZ#w-mgj7jmm3^0h*`n0H0V#K zV*E@f>it4OnSNKrBjBLuW6x z1<*#GpuVua0Ef@o8ksysHZ&y`m6uX2r+Q9^``sETHbuJ-Hl*TS<&d5z`@{*v4UFLujmN*WMTQoNTbr zukTFia4Nt4vo2(`@=ETB z$6VL7A16jeh*xrUtj}Yn-mhvsPA+yXj~`Fw8l2gADpWj|q>{y4Rd#fuSDLgKlf?fq zZW)(3%04oM#jb$o{!dRU1HM;-KOewM40;NKU{0C6Y5Y&!#wXFNtW^k(#?~;;AYD^w z;3)^%MTHc~TZivw=mdpJSUMhP`q;Gvm1DmL>-MyP0T^!hm{iY{o}MM2YFg(YVv%0A zMNpl^Nr1h~S=`~l)0p88*(9g!f7Ak`80o#pq^;Te%1f`tJ^??JwBjtDlBsj~dYL_< z`z^;fhBljmvt`(J1U-vH$z{x@{`=qnS7}0t`@MSOPO2|;+D=l(6ZSz8z)|TMCNWht>^w%UZ*c4wpU-eBY6@z z^k>M@ljekn_rCH2$kLQ5FGH1{X%#fYWjyt&8%1zmo4E=v3_rNHPPkXI`b)Ns;KcK0 z6|Ia6Va-Vgz1a>FS^({Wy*KXX+z;)-J{pw3M6$dsz#h$1@}=$Sq#1^{w4 zjw{h73LK3=5t%*Pdp&z2gI3}RGZHZ-cikp-eY)4QdSm_a#T&iZpnZHsTc+Ys^eokD z3)xJ?f?taDs0q6#xn~wTVd?c%mG3jf+9+ht!H)J3OP(=|y>dK)y_4YKF7?6HHI?*x z#ow9$XGq<2QNQfWp-SXl6#YlHYOQeB89_j#$MIap#}kKDtd94!{ZqU3`-}&-avX{x zzVc(239RP7P1ioF>&=jzKcCGH;WV0o1I?JiMtVAR^bpwedvbOlu1uAK-CRLW)Qu60 zl+4-bD}kRVn)}4k?TOUYmSWV?ah|~h-^Fx? zK&_YN*!b^!|AVNd?p;jJ9*QrD~STmXs-3!+?NLS8xY-eTH;K zdu@GYy`B%FH9bUu9P%J7o>T6@!lZ+Up+&15_;JrKJb~#Y-LcG(fu!e1p>m%f?HtG7pdw4wqNE4MFr$4t(s>!<}$?& z#;2BgQEIPy?4|Xb-rB_#cYBc%rk*6f5dqMP7)|dWy(-qk%gb!4` zxb$q+R-Kks7a|m-Lch7LJJyR`n;Mc8dby+-Lx}OVCBBIn^O{jJM_XNDT~A1eXA}=|?{er%hzs+UP6UwtW_Wp8M&P)E2h)75U9+ zPMVsmDr+U+JE`$4mDEofTB=^gI2r2q;Ar=bS2sYkQWRIBq24luiN$(lO9{AT4T~;c z#u8yTOMI%s!rFn05-)3VXESF;^i z(+kI^M%tIlOPpQ3HQxDgjZ#0E2{tDg$($k zCVVo5nJSDuD(vWqMvFNc=A{L`Ry}2@3dh|M4$lm(<-f~aUDq;jpy&4NO>Na+_}c%d z7!iLARl$Wi20t*pEa0H0Catk=Sv)i^;|v7fv%vU^6#sz}`~(Z!M;-ux`J)ociWd@e zsOTd}xt$0* zSoHwNYbX(`(-&{H$EA%!?O$u) zV+8&wYJd?a(Ec_K{~x#gCDebN2)V|C4S{NqQLvf(=Y!L?-K}{cINq&YAxM(980sw^ z^S?aoFMj};Ic30XXj~V^F)o-c@~y4H9g?I2#i>a%_cF z731*(m89>WI{+V zCJRFOgJ#==sSM6`?(BC}HFTc~U#jhqEB(|K|L%jl7sWdMIQfdNq$yG&+1i0K{fD`a zLnQ+$*ugr1uiK#y*60M$ROtE;G%tXI{C5KV-z;q*KHK9!_TIu6&)cPFjy?#8!5FWL zRHWA8Xb@X)(dT}a+WadL-i4p5X?V0>Wz>-zQ6}K8`}E73Lm%Gmu0?;XZHA3hhx4dW zzHedF8Pr@?OueF?{}0aiA2Y@P!QZf3B&h}jrTiD{;q#-K0oBRrnOTo;!4T|OT}dTJ zUB7R|+_U)qaruAdN0E4Z->L}R!Y@rkDrUaTHEMX?wVd@CcqD43>*RprOEj_)$Ad2Z zUq~f@pJSf54l27;9!Y>JHvPFk8S>10s53!8VVju{vc$cqe*dNf0pD1$uDAqOWTAWxeZs*^tmOFQ6Z~>)yv^I%ea`BBQPGt8>(^=&-#tiOb z_J7CZKUF1pFbbgFolHzYjQmC8kxSSy0qfP{ALs1HJ%1w5|BhHlCwVtMp&8djwi)bN z8{7UDs8>h-T<^bO58@j;VY@J3;Zma=&6PNruKmpG0LUCgFhZ7i61jf-d#!l~u8#gD z_iCp=^WTu8fg9l|>VD6<)UV>5eLJ{y9AEfmybMOO6%Z<4(w13aY zCy5O}dC{=R?j5l9J*X|n;3ck)pFF{mQ_@|w+nmY2v21tAuvdx-@~)H4UWJg9VnZhbPUks71d~e9bZI|x73JCpe>IfW4MnGU^x`)z|5pd$ zKW)crpfqVuMcUAQr5z2TmPY^s%3!<_gbmioIllVeSK375{P(*6VDq9_2K<+=O!!Kt zxW<7ZBF@B%nj=jf-Sq<5ytT86PDFHC67TkYHDbw1xJebQ ze=*%6TGKpr`TGB*$;cCtHu&8{67Ua{23qc}y-5yxklyu3j*aHkAKcO41b_c0^etP0 zF!U?E=ySJ<0Tn7-n2V;#r?>v)S)%G1cvXG7Bl_h(sH#nQQ^#;q&g2+vM!E*1ZgEmw zdH!BJB+_t<;5y2o)C{{apizVd1Xk?;-T`b10SMnpI`!--CdiF9<*Y{x(1Dqs^vXMJb)tw$%1h%~&;b$59`c z+mO@C;<*FnLm#@QDrY`;_wN0k7n1#rdz}NT(6?S&BLw#WKuT#DLGqvf-ze2OI&+{} z@enK|Hh9z>5iSz64^vvE(U1oc=R#q7Kr!O5t)m17U1B!;EvDG1k5@wrF=&E zE92XzH4HzxUI}uTDgj_Nuro3?p4E)Tv9G47a-1vTA~#IxPxl(g-r~55G0( z7A9b5@c8o5x|y9Ya{&kkb`{R?w;gE!A(SPIQqL zprH2#z%u3;8kZFK4>~80ZBEZ{=@Eeni;Xl&^S|E6z6Guy*IWEy2aZ2PI!64^YUFLg zs#}5>WVZVPVVYumcQN>sLeta z0}4WJ;a#{>P(u6os)Is^Q}2`ek?y93%d3ey;_X@$6&d=v>NkhI5(0ql;CT zFDBTt1gNFrv{LfN7T12l75M+y`_8Z?v#sqJ6;X<)ND-x25D_U-Rho#PQk4=qq4%QF zOM=J%(nP7!6(RJ{L2494q?Z7p2%$r0p$7s9-^Me}j5FuVdFQ&mpXZN;EAV7zKWndb zueI)bJ>8i3yMwEyW#xLY@qT}{TtGr1-+X_2IM&-lFK)mfyW0A84=yNHL$qbWuu5=a zdE>&yV!*?)sLM1?gt;eYzuU&L)&3?*4lXnQ$gy%4J^=Vhwp+xMjh2`oHVUJ%SZ~3! zU_;&&X^M>I@vaKGd84(u@nL_`0wfS2uwaZ6`XPpIWqjoua z5pla$0JF?J(kwiGnre393j5{j>4ag$+Va^8prve9<$OBQvh$0ltl1LhuN>6TQySQ2{M>FSwJzK&tQB%Dke{{GKK;ZE zeRYn$)LXJHS2vy=IJqM|uCx${dNPr{PnEFnpM7re}pZbc} zo|~&!+^ z@H<=kB*BWyo8GwJoawU02Zc`OjG2xNnDDY` zXhZ!swN@`Sjkj%ZKK$`0h*G372GC{>YL?1o-#A;BJM9fvW+2lIfR9MDLoQCoUJmlq zT1dTFaW>^l!sDtrp2{YHdjDK^0b;} zipJtJ!^(+6-!1do{vT)h?pty~F#J5qw`^c~UN2V>M<4SS_lcTZFrKzwx;O zV$$7)XH-=#WIu_^mEfr>ItqZHG_tBXX~1J9eUFkT{~beA%Z#QE7?c3=oZjU;Dv_=# zb3+$q7JuWBN4?K~{_X67->z00-R}+CErvtvk|owfi))o1>fp^&aDZghx6LWU(EE}F z20Tf_g$@z$i5A=QxcXH`$<_Yv5`tfM|9Q@V;(Eq8k{l^-*|aFN@0DWX#@ALAL4qBk z_shes_z$L#0(cZ}Wu3s%Irb?AW4rHv*Kwc?QJq;cLl`<@GnH$%s5_qdkeM+>n)g>S z_ph$%7=_YfOcnJGu7ebkXKKjZrNSCqzH-kFP#@;X+@HFr01w<#H7;)RlB?&P6x*kd zz|qE?mb0)p@gtM?7Kglk+;S|K-U5|t{>J!Nm;oRv zIQKRj+#@bI84I>3r&PIqWNEQ`D44o=Yf3d?$2Yv~r|+ivZF8RTQ+=(5sXOw|=An+| z6?6;n&t}hLzPWfbG83GjRS>N9nO`6_p6GwX>hl~M!p34-@< zt`ceJMOJ);TP;9SHp6c5WHgs@j#^wumUV6AzNmy#>7@W9^PLJG)qU1n_BlABoxdVe@pJz|rb`6}%ON!TjgHolX-&TtZl~bTrMva7epvpkvkceWSDq)Q z^y*~fCzo1SO7HaxH78#Q={}TJ#@33hb<(Tq2(VrZY8!OoQv$ujQVZ7vpKxScLa`J> z)n$&tJxQo2-N0S@q%;c37~Jd>J%oMw{Tnl!CbyooEyClTkt^qeXWCuD{O1hgc53Yt z6jjT>v&Vm$J@m(OaD4fiZ)T3ou&Sq=;Hl0=O{oWunyA#--E4D%_)3t+Fa=Opm2H}11Ve6~@__(mR&j6(@I#V%Tii7U zmGz{wFBQLk>1(H~1h+kg6p)AzF4=6|p>S~c(@gB^1oj|>tbFU|Z|6IszU z8j2hC^w_Kt%(>?^*!t-WP^RSQ$EevvSdN`Jn5 zQz-6|n~|$6LdB~63PA~Zjpvy%R!G%P%V*+AjN9Z-t$y3hAE(TyDq1(gUnO`v6abtU zTKyXmgXe{c^X}n;4RTLoUs2bqZE<2SZx3n+%la};HQ)dJ&V75;o$A-p>mkEGTFbJb zoiKb>xUpzJ6xC*Z@7~{M-WL@ooF>l>D9R=~<)w{c^MK8ft66teq&TD#@V+q{dKh~i zn*>vCnhE;fDlrl_eKY-yfvJ^45?p!`83W>=0_=M?dX~OwDVCrW8-^q*X-=R1VXNGa z92jP#D=6!J)YE!!OTzbtriAGUTR9|%(@l20uS7XIb< z+W=$nyU}iQuA-ZGGDJX_CVH&7+a@$W-vk;aT4bN>>4@}VauYB??Y7{KeH3}!b-w}y zI;mwzBk7pE1>~~cSgOFnIq%oZ|6;@cx-4%)qfY@3`(i>7abCC8f7&#=#{gWM9^%7( zdeY}}%^J^3yysNMIFMvR)!b@wtk+57y`?5@7Q!q<$b$yL?UeNeb6(U45@4*A?&~Ob z`pny9-JZo}UO5l!F$1tZ8W3nf>*O-r#nL>ik#5smmZ$}XB4&APLLB@Hvj>WD}SOF*4KIR81W-#zXAE5eaG zd?SM5cyH~uXh{maYvyNa;c2zQ0?n?T&OA@$Fy#Zp6;KW@1x@(*mZX%~HMi9M7I{Q$N2CdaF2e~3<2~1 z06QWaw_9Cz-kx)SLzQ`wsM1V!)u$&o*IJfP*c`%Y}yC2}CStE9iSF}RvV2hd#|31mR6n=$-MjyX&r?8JkqHa0O)(F?Un#U^j^1uts7=lC{G5>)`4HsVIN`YiS74lXQ<~0B9Q3fjB2s*?XcXZ|-`2V0$36q}Cz0 zxm6NdbRj3N)>F&-F74_spU;K~{V^>84Yex;JNmB;#DkOl>Z4r?rC51#AFpFB&S z3J_xF5Vhz0^kRa-Sgby@kN8EG)S@G#C+7-X4YK!Y8P(8P2dRs#X7Tg7f=k4;?}J@}nujxe)dLeR z=z3rj*B^w5`|ituI&?r(4z%*iUv#{d@RRR5W0H54QExGpmwp3~ogi*H>K5H%s_@j& zD4j%C6sgr=p9FGDU&4-6OHlnGZC2M^(=w6+4~^G166)3nL$X-XAhLXVqZ8=w7TXOT zJ133k^>paU z8H6tLjW|(`2a;EuAycD*3a>fd+9#eVceLrK5Fk~1R5P;aTMQi#1hnaZzJ+(7JHg;_ zzQ+_aDKzuK?HUZ+obR?A%ZG$>`q>e}Ur~1%J zKe`fZJlyQkgQl2kgkN0$A(J@b9`xZk?K`^$h($cgdO{X0YwQ^k;+QBd*wAT^ODarxl!-q^!g2ro%E9kB zD7)=;0`J)!zP+#U{q$X+2BAlIf{05kaKf|?!G?FMDjd&hmsYh>K@oXUWit7D0|wJ@ zw6M@ofTkY+g@k4Q~vz*0B{4#lyY| ze&kaurntL$@qV69mFs+E`(8Qi{Yk(5zNu;s%u4U$0%5qg*A{0qbncw*z`odj9v|u2 zR$@;wCOa51(;!D$bnUOE(i*JQzy~GTiStf!dYPtKOl)r@eicN0OYOlwk5xyFPX)x) z<)1hM?*%ISVr7;mm&`BS*q0FQ@eJxu``i_FN*RFni4S_gQR-I3YT7Blzf0bwsG4Zq z&Tl2%ve2}>#N1HRaplCX4X<0f^uH1)_NgN(`jUAdiJ0{(a{MICDfl~{-dB2aF2A9! zr|_>dKLeKNJv;d=0-fna4(d>E4?W2JAyWiMIrF zdc9Lya|iV?zS1Sm^5hY7J=Vd*e(Kw0Cmx1`4{La|c}Gr|;%c&bTtr zl5L#KrFk7D1rpum0D2KQ-0N|~}#a3kyDO3XrId`{JnqOWuDB*s+c-xbYHSOsg zG7+(Pi$Nh)tV}&!`nT2XgWC@opsX{J{xeUl#@aL5#WKV7zBIR_p$wpm$pIZKZJw9u zM~`T{(9i)wxX(Zysb4}!dF6C%hQA-Bkw+~StwW0cy-+urbl_Bg$BfIlD}Ve9_g@Ym z`fXbKxOE>rimQzFLXTa=-DOT4?z}Xj*(f^OQYvjTGf>la(7QPOF7VYoWna)&7&Y!4 zjrw5x{=^LadU4~R&Bgn5pGG2B9{-3ffA>h>6^NI;jiOfg?SuP;u-gZU#Y^7`gogiy zpud~?4}bLi^!@9)qf-a=Q&X({S^JPDfF#l!D;is$$xXAiO0D4jH-Go%OW#_ZU7-4;4CZbM`*c$YEZc4B?Q!G8ZZVJ z)U1R9xBIlm&pL*~tebul0sJEjOy zG+w(KGQa}Ld%k>Q9e=ME{!nZGA!q#dEtXAu0UH$Oy(OpjOUEg@G(t=5l7LADPe2lR zCfA1CSGP0?o%4AMiqq>R2X6le{{Q~c-ijQc29a}HdEFsSi}ez&M8FOtZZ_n*lvR<^ z`CW>=MOw?eB1Jz&p1;3jwf39U*-JpTRK#1ibA@IIZc(nQQks9|48Z@{hhjJW@e1E` zgUg-D63BIVdui?@nxTIGWJAz~#q=zY;*={Cu`B<0g`)#FN2|3g*0LjB8nbDj`hGLC z9|ws5ZN&!(ILH1Z35j*n=nmcHkfTR_%pLyTsFrzs?~7Yz;#bc>)b_=RCXx84W`6(r zi%E}JT59DLj1iCH03og3MWxr1A zaZL)%lzaeWWse4~QU1MY{^{LM$sa%$p_H&Iqe;t`k;^S~W3k`bxPNdWp%)IZtU6W; z5+PMHJ~pqeZu%cQ{hwXKj}GVQQ*~ceE!ewr$7RY{;Bp=(IpXoA&IOY$!VtEpkDp2Ik{Xjl8&3E3Vy;(gW zkNyd-=7_{aUwSPS9B4c*$j@u8*o(C54H+K-)l3#uxFM*k7r6+$T`6x)xHNe#{gc4| zVIRK#%B@|-ekTW1GI1C#lP}XNrID8y&02Szm!`^df*q)FI+rHfRh=IIL0^NTbjFP1=OeHd_8RseT}i&K!X3)BjI?r~rHQ^NbFqw(X9$59kF z`DfEX<$U1yciy1fV;$x`b7Lr}!ly7V^4rv>Cnmcwm%RSLPJmV~jqVNocjd}J%mV73 zF5IMGbQg$ju+k+`5IfRTf7TL*Cdla|DqdfiHsQwQh@RVtv11IhYX2Pgg zna1AE06c`M^QvBtb$|ICkNu~m{qEd8LHC*J0f@o=4CkdmiUc*nD(i*@nYf}A*7`%P z{?}OhgVW(>e3T=w0OXd!&TRw;i$8h>12V@bFg1-SL+(2*{=Y8=ptxNIaHZDetAGyA zgf!3?2Fmh$#<+iCgO6{0Sgb3!{*wCKk9~swvb**C<_>ioPKyAAWe+=#PKlcUa7yJ(^EvBelNIshhNHFeafBI7;`ENE7+^7`;qum$Qb9)3P zf`F3EYSI(R>GjuKpZ$%&OcL~4#k=+gFM&aA*j~1@+qgB4vxolK#WjtlK?9eFJ#X-e zwlc~?Gmly%=!9Y@b^ZPv1gu*}*_obGfiTkKPe9&j6#8uJ;=lR&|LHDpNFB`ug$Dli zr6;P*=0y_76RPl&romueSgYOd04UV6ZOgQDdKcW$joXC~&_!pO_;CIAsZ9SprYyVs zt7kTjgLm?LV&^bG$zZMcR;IN!}YY4TQFO%LQM0T9*&u^ zG3f7i{fBp-@>6TD4Bv@GLd()$gANl(-|;z^x-g z-RebVv#KrDKASZA2b%?kYSiizB5SeNKP$AI@+WD}2!W|ho3-jS_&Nc4U!7~YjS(_{ zandIFb99sbZBP`d#^1vI_bvL}c9-RR0UYDji7?BKt*QibPZ|}13)PqzPc#7;jj(&~ z5iq%~oC1?-Bnx}68K!+SM&(EN`L|!j_dUlW;Aiu|G$2p`hFIN;4rF_h3y|3?9rPxm zwnYllY&st;{P^i-;j>6k%s)n-P+(dK2!Ha8`H5EcoP9PJ0j;Y1-g9E^NO`GQ|c32MVee$u5# z9s2n($Nv%FKE)i>uR0A{Y8V$%--Z`ictaSBpnJ??f$jj)L7eZtn1`udyifi@+!rVS zW*yDAH);2$agIISX=m>QQxoR#7i^QJ&%Er1?$h)D5puuBQg6CnAO`x+9?)n= z+_Xf>0n+Lmz^pkB+8+vG--EJ#H<4b?d99r{u#s~oU!c(Z<7bsdNibIQ(o(#2!%VKg zHI7%P)(tB_+;mA|6VX7^kJy zow^^9Wf#+!1kacIRK2*)$5Z==3%hrp9MUmBaJb`xu3p$P1f%IhuE0VQ?!(^(>}fC*3vZ7;Vn;<(ScvJ zl>hYerP?!w`pi`z*`MEY=QeZMiFoq2W;MEYpq)xH;*v@>=mA%lA0P6+Vv!-DzBO+5 z_RJc*@=au=-xuEma#`YFx{m{y-riVcEALF-IR8{plv=Xz4TI@wz^t8z5%Pv!VBNR~ ziqoz>w&9L_fB|Qcj#Ag^uv$gx=(>4Fq6sV0BiVRqR~j1GlSpQDAm$M5@A$H2Ei?v~vnkp@&XT96fMS<5ucZV>yEhIhoImWp3TM zBN%a!`{W(1Ysg?@O~Lc27iB1-uFAYhbPCw>2rl2j3Muv0#5$yX#7oXd;+r*wYd5mu zlb7^Rp2%qm&z?CBB8n70t!Zeu9H8l=YjuC^gbWGyK45PPQ7FwCKC(uh?dysVM|0Lr zpmXKIb^O9GnGP?xocOk9W4e4jUaD%Tyi6_*(B6m@b8>L>)-7nxuUW6Z+{MXipFlpw zKUCOk<5UwUJwxWtD+}wDpSj9xA@re*vP|J!_)_VBaCKX3d3bc)0M(bIl=6t^sy=P} z&ZF(BsitPSZHK+D<^0W`M6lWfOzPL9)pe2ZEr-4F#8|o5z7l(ub&t35L$3|o%cE>& zYff*Keq6iTGK6|j%$h8rK~7o4H}k^E*-MvMPj9RZ^^qhW;-ITvddV{*8%%jl8yS=B zf?|yeyT@t@1AF+?>dR5JPS96$u`pv;wXEX;cWHBZb)u3Kythms3WfFibU$y(w+%sZF+)_b~Xw zhXVv;`4K*yBM!u(Q%#Ug!iLDx0S8aF8_v50k3&U2YLkqXdwTf#KK8$&B_4*T^w8bT z%aE|_h34JXtl_YIn;T1HYa!O0N#Cp1k~{cOrcLxqrE7=hX#u>Z=}S%eRicbCcHYUn z8Mo8T@|9K8CzQ#V#-@yYcU`sy{s2w)6hXFO%pNB#9-&HJx?ZBVUf+9w#KCs_Vvm&Y z^MPt5^oKW#$rpCaz6R%4b4(XLrAlB4ttm6&tf+CO@9NBh7Sn#V@nO+$fO|xKpsOrg zQcXGDN$7d-;D&kULsS6{W!~|!ms)B_Li5BtM@}1)Ox~!c?AY9hrJ#B-cm%_0gIfL+ z1!C0UwtPjIk$J^##7V@MN3VfTfAzf=jhD4^`K_{<&&*SmcuEfak}1oK;3%*y=+}6R zF*mu;N6+sGo?z`V{fm;CsGIdfY2D!;@B_fIpVT<|)+h_fwT?t7m=p?cD`0}#)byoO zsR~u?$Z2<6koNrG)h|_gkkk3!u?;U;`yEP22_gDJI2MOVn;*TNK`{R>^I+d-}jiD(1TK+O;IfP zbSZNcr5Tw%MBvvU;R=p+dv6bEc#Kv33?bpkH)MXU>Y~O*zdA;! zl78=T$B3g{gkPXYMj9`b2%VQEXl@$~%=E#1Tzopb(TWIUg0-X+n&gBbAMRN?`To<} z5yfQk&ei!9NoY;j*N2EK{3czf^B0 z=#C)rV*w@7hHo*uWOWhmO#iZY=NJBpulVBt9D5YP4-Zm+YX=5PK#Df zh7JLfYX-x)7~I7!4#9^tEq1RpR!XZ^)a=xHDy;iu*?Uzszv~{)7WWoIO|0ED??slD z4F};oJ?x%vO$3&FVX}o3`L2UD*KTEP7lz-ph9-CI8Ggk%c|i42E_smXu1vxOGLn`} zhFGAGyTp;s0k^dmLY^&ArPx8&8B$lLG#fl`BTD7-OV!C*-WDvcD#amH1HW8^^qp{3 z4;2eXZ6jDUOK|U_T&R;I3Snf2AE>W>6K-EMADl2%VVklFvd!n)+WtFJg~4=Nn;GYn zXiW!2Be8GTGb=$&YMV0UqG!&bp&ojgw3*z~$k?sz&H?qsyrSb>U=h7LxN&3n6x>S@t znj}5963WZbe5uLB)hG<-E;x{<=)>|AR+F?L zD4(iQlF-|5a}W0(*Sz(j?apRvQaJ?pMtFDF!F=fd8ZdI#%mJmA@XxstMDLRdDGCwb~*Ln~!R|P@Z)C`4uB5?<^IqEUkr` zSTdNSDN}18EoL!MwU?7|M=QV39`UAGmVQu2Q;Vu5xqXkK?Y@K{?)1c*_A65{2AhhR zkVd(BpE6~94Nmep%C#d_^*NH+d`O9~M&6dQ?Ybd4WKjt{Gf!UHh4OR>And)i=Da4G z6zGURXlCbGZ9?r)QU|LgRj}p1P;LayAROZ?Sw)7w9>E*NQZtDckiUZ%7TAQ)1p`YZs3fmUUvKD=V$Y35vDA(G`l8~ zy4M;@qS6B5b(P_LbMo)liZ|Vq$vLomPFSRmnF(bMxg>G~Bh90%*t52%Dtm*a9eiOr zIFccI#7g4cl^K5g&MNY#IXVnbG9dMH8xdy?T+yg_(XlQ+#bVY;r6@BcV$czobvtE# zr7ZhVN(r*Rj<5@+#nf|_<+X{>wfIdf0Z+QI8((|*{b3ztQU&>(AZ$6rMF7&`Jol;C z9&O{JyU~$facN6grf#Nok%u0mR1SP*I`8G@I2N;BtOzM-&6by|jGnjDc4*yA*5~f- zAa9DqWfY!-E)&PgT6a=PgQX!xQ|349Zn7g$j)-~AK2inzVK2Wgacm&J;;_y}jVksa zX>b@S;b1Ta+35^g*vYqB8p0avc_|4inGUThhQi}kY{OMNYTtC6K|;Nip@$5x z&>j_9QoQZU!BdA^X&L8bxrqh7P;_T>fa<>c*NS!Vacs&c8}>No2;%F#N<{*YrT50VDlJ4+pBol_LM2DDF7K721*du~h zkv<*DbbRm0H9baN6%yv&ba!P>+{`c?k{4s)U=dicMWWadgc)OM!&os^HVMI+y^40a zIHV?*%FDRd|X1O?t_$JKohJn+m>kWAjrY4j!tm? z#3j{BOYzf4nd9g%=>A)NGe|5!SuDZ;rJ7LNvG1^KZ(P2LX9=BsuyL(x`~bYorMBH! zD*1J{j)nbeN3U%UY`Py?qQj1hSlmjZ-8@+d<%q=kDD#}Ekb2LKU#s%u*FdQ^&Us$j zu3$XS={3bN4MOBv17iC=W;6gt>JWLJCU;tRVFE*58K_UC6B`so2P+{7U`Hd7a0Ede zLy$)AhRkEbney=$#VB%_r#$!CN)ANN&sd^o9>Zq!*`>?HDv&m=e?T(%R{NW zAABu6{xqvDv4!B2K;@2P*ifPiuJV@JfGk&a{m)%qErY^XwIaw+K4r zY1QTn6h+f(S0BeORIh*78(A*G>pxMc5uSDG5wRr5S1~hP z!jQI;Leu=7Qo`}~X$Cf=MafFl7s=N>iCLKwO)0@QIWww{o=cbtGSRsLX|z_i!SFQL zRA@xCsX=sv%%bP1HHG-X%y;f2FVaWwsVdFW?+`yqF)C)^=$$>`_{-?4kGM+@HXdt! z&oD6+7$zNJ$e+=2IfHyCsg3@jE@uI@dd$!Vk>Ob)O;Xbku!UoxKD0G7iDKQ_3^-?s zaD{H%U`Dl=3CcpxMk`-B>8E)}4$KIrGsKbe;;!Pr96h8mG!g2Q_jDB!`PNtUX~RwC zd9^Y59EVW5e%0ogiaLV(M$PC7cTyg}e`oHpP@(BE%G#VKzPOAxuYc@tNo~@o#BBH# z# zB}LACcm1pZDf2V>Q?ad2;jw_Y?)G`t3GZ{q`hYAc?8=NGT`60Fdj^hC3-u|#Ru7Fn|*!BQ%dQh zD`vhyqp-j9Sp_c08gqvIk~C(`m}<4kkRL(TZ?wEQq7CIQhxMuTEs^Vqq=r*=Zi^it z0I}tB-<$9x#f{)iVQ>TRdxl!lXunwG3;`Rh*DO1=hw}mxD=a;I9)neOWFYArtTVM| zp6|xbQ!$r@^c*K0Tfpc$(%3KvCSBM+B>cKH_v&ZiZ6dQ)bKsn0(Yegm4}%{wbDaiR zEH=R5hr1lpb-c7Af_al?Ek}#lK8wa)z);31rMMZO_&*VMYPqe(h@^U9)HF-AAcdGd z`@%KJ_fx=kd7|7%BoWDbxpYTy^|!%oB~=`@SC%n?%__6Qi|rBf9WHW5)ZbEK7(|pl zCW6wzIif(2J(}UjGpexnZ1^f==+Wwo1s3nqZu89CamCt7WW&L)KIp*R^)a>t3wrOz zS)Caq5+UZ5FVA7ChC8qhvC;<(UbJ<%y-nMYa^A?dYmLk~@dJ=fOzwvQcB}wIq(8%9nh^hi))*X?`$>+FX7FmX)@gJ~Zoj1yHs#=#abqaz{bv*p!Z0#|D z-YGk3O@9$qxgK$D7^g|2vWG|SLG#TM%p*1$O1hUK7I~(kwzOK?BVM0ElS@*cbVg*# z|MHZ!NFf*!J`V|7&yBz-;pHUUcc`|?K>6JYpPO~RO+4bV` zl21pW#jQu<((IPH`w%N^p}lVwYfUM={c=6uRGNL=K2kK-5ARHWp>lR@!}Vy9O+!IS z+0__&E>cH+3nj|qj8BBWUTkyL)AW0G(pv+3(I!==J}uRInI)F5M|oJEPcX_|>^{k| zj?{gV`q(;1n@~RUManTtleC=scIaKBDvIe&E&nVk@L4X4cUMsnFoG|{+ie*Kr9%h# z(p?L$wpmnZ7|wdXj#))>t`4fq+vrcrc4V}vMevaZu5#i|9xBsO=;q9{6Dk}lD*2`D zQ%K9!y5gXCo8hZE9qKJ|ElzNTrMAc(K?Ral6EwXeI6*ErYITZJm^X`FZ2>LO75s!L z*Q76O*xjTLl(hOgJNUK>2e~fl`+YzJt08CVg&!`kw2ErpbIN1304F7xPF;=#bEXs# z+=KjRpiUu(c~fL1a`law$awhaR6aEO7y=@a$BWF?4RA8?wk2$aRthXu@8ILUH}DVaSTTebrj_LrP5z*Ts%g ztz91Nlw1<_l2Um~47vuFN|T&Nvqob+mari+{w7^01DU|hk}NFQlSdlx#=2!`Tdu*dQy-xQ3ad4U`hzICK|ap7 zYv=s5xFPKNZKn%*rsjs{%|@#qj;JAI+FWa`7n3(Y^)06<`(;{R{-WOs@eK@BQO`?M z#J8om)^2iF2rEiqWpz+)@77ZY*$sX>uB1irN^FjM_L_M`&Er0jORpv4n;11A zL=kOpNz_DgCDl|Utb_Aj&BmzfX%x}+#*^LWd!NjnK`z&P&c0ZpTyR}@#cnN1Gj~Uv zi9Sf$!SJdteNs?dHCNBGoX@?`)oVht95$LObi{Kg)Uolc z!ASQcH4P@j9ylQ`rDB9?1PevZb4WFn4RJl?g(_FF>fuB9KPJkhr)oze%8#xNea(Ed z9|vrGJSF#fF(Fbi`o#}4CpL<#_ZYW7jeB-+LGpR@c^?g2tl=v^+dsWg-s$z=@@&vx z>j?JU8}r0c>7jW}XOgwt?V9aTOnbw&O9eST*4pMQ^eV`7DJ|_%u4BE8atJ#XH&LE7 zv)J+>1+in^sG>Y~c069I5WZJjlWgE4U1DPJpcsZKM;VrR_=MXbnGy(0Lj)d>Dii(5 zY;g|Gjl_?6evQYP8i}KQpHrsN5+&Ys%VduGj_Bvb@7d&NN<$X(d7VVB9-*0;RsMP< z*3iCmE^t%Ktv=kBj@{ZvH!R1bHYYTNOKVY=r&#RjOWDR_+YVkMJ3CJB))(I@1Xr;u z39SQLrlSNITF!pthg7bQCF7ym~C1P{LlRp#%9-%<1``i;jn)|zxdw={i`MUzpVqN_djF! zpE3N#LHM6B{LdKvXAFNpcKg)F|AmSF|6zi|;m|QQ@r!XMg%nus(~Fs!aQtc0zyJ7Q z`y>amYwe_m!Ebi?of!8#?!z8LIfkwHuwwMCR*Rxbl|tXTj!B;w>wm&eOsPM8ETCS= zy=L*3iyfg}5U+%S3OFRj0m^NSPJ6{xdh=d!1nu$P#ChLw+OMBa?mKX(p4^v_;`e8o z_GlfGcByTi#7*4k0T=ghH-S8!vX>BsrK)AR&u7T$!?<3&b^P0r~$#IZeC^a+H}9DY1W4&V5_BZx6+bBniI2aQ2v7 zTrqPHXu9eRD&zUMRFfhUizg$+99hn9N3JpxOb`BLlm4~hQ4>aRORl9Dy!f+*!BXd_eUDJPu^P2rL{44KTn+WGU_)Egt87e4`-<)gYFHaZwZ=DSI zPrTLZ)W>O@E}2sPWf|9F4?xMHnuc2rPYEaEP6{^X&>BW5Y&UP$PR;_F$Cs2wPidd* zRoU*M-Qk%h?(2UZ{mWr`{n}4Ioprc>M@9pX2)@yq^^b$Q$@d)niQ~^edTZy1k{%(+ zc?)5=_0+G8Jecx>1xfn3B6<2xY zAN9w;Dt%0SqZDPY$Zbn#eR+NuRugQ*Jp@`7_d)BzWAE!$(aqIy+Kv-eMepIFOW5;J zlBnh-BuO5QUCT(6a1pH58WgskTv4EFuAjn}%?2s|>FoXbBZncyk${HzIOBgkz3{uw z0GqK(OHs!Dm7Dic$t&6&(ZFyiA2madDx5%5!VSXd^Bo-vToYP8izF|C?&4IRS{R?r zx6<<`5%d%(J*6dOM>O~_?ulhHr%Q0(%a|#=O7G=EPbNQ|hyx{ue3qdiR-UQJEcIGQ zDV1jQN0%x^qH~aZhx!u*^4IeFG4@c-?c&L3o+r@}pGuB?CXwf8dzK;@=qHOc>1zZM zzi@Xfy%1EMBJ(6De*T3j*gSyU+x9CVRVFaG zQ_Q=6}ex%dtDeFb!I`b5-Pfg9rrI^ zPvlDPxOzV*V-IgPv_K0+Shtdk)|Qtvsye3>c7~U$Cz}#mwoY~>Qk%}${ab$qo}vqG z^YKXJUpL{VuVHauGZ)WiuK7C$WiFgqk6!g?xwJ!omhr~+so!iOzoR@5n?SQz0>{eZ zh{LyZN?fdq(&=TT`C~Ie0U3q2U@m5{%X-TWw;64?eAPU?*pw^01rRuz(n^IUYk3@F z8MTH_Xd5fWdh}d@=JR@r6*R}bP>vlsYlsTh_~Ml=ra^nH=K75Jw)?i0C5^#BeGzI% z^d(M*sGL=OzBqazy}*eQtQ(wkCtz=#9a|80xOI-HO2#m=OSISgmijTPmA>?D`#z3s zSO-z)h5AmmdKzNAdg*k=)7LN5d77=?w4Vw_KkDy1jwm6Yz7RL*i&nV+~>_n>2%@ycLR9h9YRPMpBN@9ld3^I5@cV;^oWY8l{pVNFcO!7|bA>};WHF(*R zRGQafw~w()kBhU>7M137H;ZFL6*X;8EP_4o3yoRu8-ix^2KSsWW5Z)9xQbb5RY(uu z1mUk==t!EcxXxqc`fnpS2NiH(4@V2XJq7v)H~LA1-sD&ekDm-DUEX~KQkXepKTB@H~=*-jo~wf>N4_QFK%99Hv*98xXfoPnn! zu35^-ka4lxs_eF4DS>bL{29>7r!cxFq;#tk( zo1;pFrZRX#>Z4J+*^jN=mp0_^Et&rKU;OM@zE%plS#!r`iQ%eFj9=%apP&PSLCVsgg{5pY48> z*MAR#S3!7excy4%uZP>l_lx;OkvGK~qnpb`5iGy33>Wyg$DvZncE>5|kFiQ$jkRdv zavTx9BP<+UluonOb5&cevd3y-k$wP?x1(~?8!fb}D)aN(PWiXN<}4;>3{mA86(!HK zwzDw{=bB<}(`=Ml&7ZUel&A%%BC!G6yG!ibeqlT1_j2yD%Ef-@fk@mv;gN3W$Q`xO zZMHMt9c6$zGwR=7l1>wEt*zXcrg%kOlvZI_H~Upd&T3|_TKHSog@fL&NOA!vXQc~p zPsPt<;=}&iv8{G`Qzt+itsYj(Np^K=3g~`2XKESBRdh2Ea(f;IyKAjc{Q@sizO&3` zEje{Vr_40EJS>2cJ!ko;gxc81@_e8xTiK|K$6731&EC2=zVIf~!@Y>ke=j~d1_H*} zg8oxK#OZzi&<>_k3P#)zvWUg7&_?l6mfau9ukz5$FG^F50L;_-pkZIV2X~cc-zF09 zH6M51Ih%UCokm+8g2&iF$NU>_%jE9+H6|MgRwN^X$Hm|9h3a<1>X-R2!wA6r-C}!W zrhPxQvga0Lo;%5mG=i2vK0p_|s&%!IrnW~H4o*B#9T=+Hv9g+LxWOO7r+C_iVbu_) zNoA{BRC}ro@<5QwB4SD$9_hO#AAES~Hm?X>UaN>hgZpU-pY_u%A~qYjLkc3B+3{0f zUJtuJ!)ovPRQcXcD3fxE((XQRK&nBpHD_`L8w0<<-m4jc4S?T$p zYo;FZ0=v#QEY+iSm_q%SZaK_V9{=cao=y|7yA*VlV&CW&@3`Sshkt5{dijv3zqfEY zdfWuY7y98pgr?Aa>pc?T@E7YHU7!FYA+14G{Fr|&lJ|j5K=1syofl_c#?TM7;Jx)VAYWAimvi%xn{GGDdSSrMC+fgygANYZwekoHKzhsynx7k6umlo-p_a= z#DHI%4j;iTwzu~bVzuLA_&6kYu=LWd5UmMd3PKp|bT6jl$4}bFJjrT}7RP)sjZ9&n zZLJVCkb0s~PgWyF^u#{zQP9obT}J@IX_Q%u&YZ0kM~?BznaP#lJt~?{)|VYu2TwNz zxR`e7cB3}eMz){ZamU&$80OSyrC&|=c<@Nk&y`MfZj^#TR@u*tWwk2Lc|ybEFiAjn zL`SfFC+=|fXVKF(`Yb&i+xkh=v1`p`e*k5_fzu<2VIUDJerU@6mq_+J?kU7|T z!PRi$nnava(`!I})ZVPiVzV_9xcbCz9e0uwv`vflW_^V=(GOk+ymLN%ht}T(BqZg^ zfca8mq?swl=a{M45+9R^r$|zp7b*#dEY9i7pU%=NL9BeWx@GsZ`RM9)bI|Hct#VTt zrc-m{0Onp*cDO>&*@g(x!iPdXLx!@KKC^*vMFB+arVEIvlm0CB=46Eb>SPb!K7Qo? z1<^aI#`h`HtZ| z7+j}#hAysXbI1&4W0ZS0&oXVr+@;zF(`@-RU9faK4kCrd1g&?zgzRMJO^pw>_@i9kEFV?f=A>UA;VD);cLq5qy4(Y1N zMjMzdY=tqoogh@b8?)8}KQF8M_NT9DrPzBJr};hWyQeO&=l7rQJqK{;7a;}S;~Api zTAmNs_mdOYlJx(KZbj9f} z26;W>0FNs&1`>I*dFg@|r@0Fk?RhyquG2S;(-N!utlmU5>+FWEv~7Xu&R-{+)HA$u zg7XGTA%pN?k+Wd5w@D3h{<0&9XzV`F7-fw7!lb~<%&1#bL|8Dkyjt#lHxAKVK}6O6 zECM6l<&wNmbqxP%e1N*;j2JDW0hQn?*2%K=4jJuU0F(m)yWP6xw!_KN=50&Znqb2Q zr&F&!ol?ABnJhs2+*&}jF-eevv4Uo%&u?hTH-GTU^g+GInqN}Xo2g9S8ugzEk$$NK z-wnqEVg;jE66XbrQEmoS=w=gx?DAJ5P60uD{8?@JEMIpNr6Ye{lmDerd$BusRc#m< zAp&FMieG!omw5Qg=YM;e4}lic#Ok+g{Nq2qYgYv9huylz5|T%l)%db9_cr&L$(?i; zA~lP4B5v90yg1%T;rMtAc5#bT}1v!fCYp3ohh5G*?WKlNVv(Fn5ZM0Pvq+2+c7| zXQUBNh)n;Ozt8E|FL_MIiZK|t3YIcbJqJZCfi>eM->>IQHwL$W26@#LF*Rx~Ra zt0|d{or0eNyT`aG4sqy0qRlzg?SVG?$`12Nyd{0Ei?ESmb}Zsyf^J=VZzZXWp!Tei zU}@6i_pCqWb^qj>rU&O+VtzZ)IMe?bCCfS``YtDbquHXb>t#iuyGiLMKLWzTUE9=D zm7hKuaR>5mzE}D{unzXDWIitQv1%wB3)*#SS5*FjjsFr~?fp|hqk)y?ftO=f`^Nf4 zLD-C%m_f9pXZlnTdhwevdL0k%H!R}lkVfo%8@+XJi3@|)J6Ad8FWu~`{0%qTv+o>b zI1K*AB20i;R`5UN+(-Y^Rf817@(TzCUb3FsjA6HN+FIY3$$jlZxDd`IiTwPVvfC!fkRrb?LP z7ai>0Zk(!nUF&gN>~FBlOGrl_aTh=jDkkn)&rc)Ye*N(08>+ubfr2B^kn^oV@1IW( ze0~W=<$qexi9}Bd{!?N;n_V-kZ|kglB~n4`&z7jO``kUfv8J{`aQVhq^7ckcx`p{j z!w?5K-7b4`MyTan?{U6cIb+EaL>-nWj%^X(VMA@}*Rs*v2^7I z>&6D?&vTYi+DWXp&1pj6obc7B7wEGY=Ot9oI67tP{igUT`uuW(j7uF^P+#>sgZV(5 zqVxC2E!w&d{e`xD;3Z2B4gFbRF)w>J@#?L2+yJrJ;cd#6s>?i>>xx#-?=l{gskQ!- zZWQ`HOSSLY3aM`_y#D(3)2|nE4KSoHp6x^~lz;*{jw`PFhpdfVhr{hsjV+PO~#n^Ho8+1R78lY|t-xRrxH7n-+=` zcVv9gWNN$i*ws_SH81kViLYbmGUPkA%`3H2bAOkP9&l!$5m3jZcD-tQGrc=8_F{WW zjL3DZg8d;Ay4_d$H`S#bN^Uu=2XVK^Q&){L1H#51qVf2faU|lXMj*w5-KjX=6Yv+q zG10;K#;xJQfBwpFPhF~?0UDt~+5AVp818A!_qnh5^}VGq*^TYhiCgMlhTHX&;mtM7Sw?_O&!Er|MCmX_O*^_mcR6g#kpo+HbTn@VcA{Bu~KQ*CfpSp7XSa=s{| z)RTeQaQd!ucUy+x2B)_8ixhmv&cKH!8?VOijYr+*`>@OIjYR~x2Zd$coU7vohYjDg zi+u4z=oi)aKMZ9k8ynWnlR^Pd%J6#ZXL{#IHqzQhfbu!v)tpk-_4f(H2i+Vt1Im79QR!o z-L7fVfx>9@IOSX7HsPVRALZQK_qKz{zBdet{g;0JpzzP*g&u>fsm1Dwrp(`6(+Rug z>=wC%{#Q!I!u{SX^=R}MvBgXO_!7Q4T{G4pvCcA8!vJT(N{LoKUyGgbniyQZt%bgO zpwpc9t%UK{cDn<;H)6yi-=c@ikN@7jRp;}z^aAv)%b6bQ%VqZtO5KLWJGPzZJ*9Nh zKWOBz-$x~*4?X_jr>=_g-+UAG4ee8h#pP@0X2Qg6KI~uL#QWtqqJBb2{*w9+nY+A!aJ5=UM& z?R*qPxMxET(eB~`_M|`Zh&&EI{;v4(@Fb^z`tC~P2M@6DYc|!CyV1W zAt>#67)&}uPbRspFT=ynx*B>&{=K?Jf`isq%MmsIm`x2?Ha}=c(mAur-oP^CO=qVpXU9p{cHuljD({^A^I4W`(zH0>pRY+%>NO6;@nKJiZp6Se&=UfEI2Y5jrD37_CMLnGOUdG@S!+b!9k z7uKIV-Szd2_^bgE|MMp_|6Ih6PbeJCBF4;Dntu{FW9$DV_x)C3-2p2z;wKNXKJ%+X zP5+JAVrR}L?tgt#T#vn$*6jYu;e_3pfu3W1v$YPneX8&O5GSLa`yr+j%+-T^xOW|V!oNN9vE}}S^qZ{N=&g8ylB|hz z&p)oC{%n@*;l=Mn%`E?p@3)`KwLbg&zt9Kze)o%I{8H0Gzu7XvpO?joLT@9WGaIkU z&EN1*%}>52espUMxNSct5qW57biY^TW91yK{n6%Pxyj(_82{flO}KX%YtBYQ-u~ot zPAYQmvYkn}*!*$${6)Y2T}$Vchr-%_^)d2~XYg0yrM!jfbj*dKoBofn`FO@qH;dlU z`tv82)c;oJXOeH?(CjO8DS#>Uf0BFx(E#QDO4oniU3>yD$@@2S$Rd-je)a$Hf8bCD z(M$x{~xfI4Ipj`}Mu1RanC}M5Qw&r$B z*VWM_xoC*G{K}(zt-C{U?|!#lTOeb_d&>1>-{g%AI}NZ?02MuCZ=T$5`ECYRFtY5i znBsGIt&?Ei`Kw5*j17-)cjz{%dfQUL(wWaE?hld(>{CZB;ctJE=s zQ3>EALxcfnsdFy4TEK)`##$B6grlyk$cPYwv|d!u*Uk2B4es zM7xj?mY^!e^_KLUo$a6H7k6~~rP)}8$=pVnfJPyCA^E{|z(6n-b?L4+;kY|Cfi}*r z*d-uNWe#xTFQza-#XLrR$o8b#V3PlVKh6$e#c18fkXM-CUF9JhL(hz>G~URW9Nr>!2eZ^a4$00u-Zs@QH3zSv7gjz5N!z&=G_K zDmZI|rQ{Oyp&zuU6+%l6d|?zaV8h}1YkJts>%R zkTa-J8rgg_KL;Y**looQtr?u2D|49l2wet9I!3&)M7GufRY;s$KsdWVT%vVUSosHq z@~h(an*ol3DNXAeG>p8v=4pU_@kT8GU~qtm(1?*0-36tTw7?cmeFnAyU|cW4YRa3@ zz(~d-99D7%_jr`dKpUD48A-M-jcqSctRR2zQ8y4t2XNYxS)*lkwvkvFe6J=OL9BOE z0342}>bFte9irGxUZTzR)12iHWL0eCSfcNx@nO^E$;sxy>*s)yWcY~xVXqW39$`hP z@lQyw5k?{x0TITgImQjqu4+l z(2iKg2@i_ziip%Ayj7ZW^$2FDxF>)`D(E7vNJ|4@tS@ck<&)ADXVR7jyM*c5=ijPy zBCHpeZpma&6 z;Df;n_mka%9pEAItSP$20=t56!hB1ATuWtrP&3qMLx zIHlxvMgw&`_ZNbF7XA$*c_0=dUmvP!;Q)hqgb8PEEEHW+Y?T2-P>gH&-3HJpME5v< z8A!mBKtW<}g9?o6z*aRbov*=Xn>L9s+4lNTyU+cA2m&VPomRCx)&^?8bf(pNmG|!y zEc=qo&xsbyKi>psh?t(Mtq~b%yKN$XK%70Re6(DLyhNK;AbrVwCW}vA@)!n@=R%u4@Rh z9l#1x83otI^YX?q<06z`vq-h1Phv7CcA{}vp-(iga+?sO>uZ5Gpo{xPUr^F2t^vO9SJ9to(gU!bkE(O^jwX~tV=C6 zN%JQm?vsa0*-ir-@3@+=;ju~_``*j3&>VMg6%gEh*7vmMv?+wQc)1%vL~ioTISmy$ zCUjVMm4<;12$Qt*!zj}giAz8y9IjKpq$y|z0!TW~;=Y;JJAi>RrLai>Qv{P904Qnm zKs48d{NdG7;r>jFnK@u%#1uT|ymx;jCxUP4Cq!#Mx(C3x7nJSBH{*08OVEVOKp{Qq z>PLf$w^*PBh5%w5rSvFWeNB;yMyM)WI7D*W!iE^uGVU7yq_l2Pc?9D!-?%=3@KPzm zhPYD?0(Fe0XKZa4`zuuK9svmiL6b16<))2@@=WdB>dNGt7?FsJ-MBl21sFP;JpzUc zCL}(%ZEr2Ug>_=~G+Mm`RHaNFx^D0kj)~7ZvF8B{*z7?%g(g!+92<@33SS3$ z=Ba3*>>>pbO)eRPH>k_)=OGJr&8@NLT#I!gUo2|mu?V^PkFUr*>!`B^vKWlK83r7Q zjXC9Fua%Q2fYT8MVdRCw5d(w`h|Kk_YXd~YwD!=nqww5(P5aWL zK;`aLv00;`DS)ENfW!(SR+TiqI#n1T2wu;Kr}Ij$e~;B5s$Nquz*3%xiry9HkMD8_ zv6)Pq#?mhsTglYdXBx1KnHn4^|7Mkk6H@WwxqB(*nQ^h%nW9`75TT|e+@~QM)T#XI zn`}8bvc8bu&U0_MV;&63Ia=1DY_1(N^vtM5PmK4y8etz{lTKZ>zns6q_p~0NDi+SJ z0i{UhV*+6hB{x9B`~))qqMi{UJ*t+)(paaGP-}^p603?84B1s}1VLls| z9=!tyh*48Vve&m8RIk+|3=1uU+R?JFqKPn1ZB#IWt@tL?LE8#pF3Uh!Sg@cA?mwB) zoC(o=aZvD5p|B2mbn^~p=RpP5BSkjZMrk2U7PPRS!Vq4@W)I)qx=vp1K^G4a%of3d z6eTs1#2$OM)v=5DP6B))@RW;1{MoEo?m{L6s> zo^3ynUqF&siOuGT55(g*?(aa~XrQ!1FmEpjbRqbzU0!m-W)e4gCD@0DXQ_PWp8dAb z@ryT0%JT}YJF!46wv4C)BJM}6P6&f9GPx3A$RfO~J1O;=Sms9Z#T)=kDtlhG3%E$3 zMOfAWCofBgrL5W(ZzrBoLD;xSo(<{>*d;3O+{W?}Ngde?zq&nI-}9RV3SjhLs8E0& zrgtBh07NVWix?ta%XhyKcO9XUlQs}modUQTQp7@|QN~hv$(lQ8xW*C!M71cwg%vb;-DESXj^ zx*2_Ap))sK4-OgzKRg}J1wv>QK^2dP7yNw#rX6}4rNwUnD5+7wR&Z_16g22pxdj9n zd)(``4%R#%pqrEKW%N^|m@zY=0F~4hk29JfVkSag7EYxe#A)sUP6EPcfB8l@r7muH z6IcOE)s<%9pU?<`-3*r8|14D2|X)-fKp0=l>iGK;e`$QG@giw#l|nBtVsA2 zYTcx~oMrD1@ac)fxZDLqqz~z8A_w!kdd?d(SshG6O1G(@GS*9Yd!+6dh04H!AU(+I zAZpw3x%Zs^6%1bzi4o$36>=Yu0^R{APTbwWY-u5K>q%U0g41$kui-pqtPo@F*1Y}$ zea}!pN4O6gaw`xaZrB1;aIgI2o8GqGD?7{s6!d(HwD$euz^d~(WdJ|{za-aCY^3lr z%hv$}cte=U|KeVFLx;Th{MG|coj1NjEi0yrG(pTtIVLn9Wo^TRKN(u?f^0> zBd$l$_jQn{zXNC!E&05#3 z&jYGK#Ak`?i$b2GZV0uB%MamRvU^_Jqb{dms~-TU>+;4k59P16q+Z6NlX=4XhpK`N zYg>Z`MZ@|7LI}g%re=M8M!__ny%HNEUSu)7=0X|)ISq^(O$q2GHXM{RU_=GAkB=5yH~5vgaPnB&j7TBUCA( z+U|uGK!7cDNXv01a)Cm4bL9~i3gfZ0PL#H4@EFD16i5jnI)8}B?dQ|w(H^m4j{W;> z=JgLb0?*%OUg={Z)C*JV2Qz>l3Lo(`th-@fxjN9f{ejbbwEjf)W(c;*h>J>gKH^0P zwGk+Q4+j1ghVHusWu|NNU%ud&u=T_(lV>Xsh{CxUp&!ZxR|iwhVCvFg;Tu{Qb`7x$ z6vce5l%icT5J_C~lXVnKf35>sbe4{98k>HBzL@U{CJ837gyiUzz5oj%2P}Cej%0S$ z@*$83qYp74yk3R#siRhM076htQetZnJXbv%Th3`j-*|nxDy>7dCPN=!M|cn;N?Tkv zn>8w$X9hAvm`aj6Z(PEN&LO;5L6A292;oESkk`oSWJl#AX`lcR%U|#U0cJ8yBunKb zDQVRja=hjN=$WV_5GSy5TOs4+{S`TcDg;zDcVYx!w2fJ_h2blhPOwwLhcTcH%+0&0^wC)jhv#*r*!cnR znf=bJLX4~PlM?qzcPYTm(D2=Z?~j`_4y!WXR!Pi1W(r>ITD1l0!2~R#kv>E`F+FwF z%Z&WNr}OcJ31@(cbknnD9L;3gN9QnQFqt|HO4uU8rvm`YXqY>5)`IcKA7MF}E6Zcb z(pRJQ_dayy3%b+&VZAbNAO^z+1DF*NICoZCK_AqpZ97hprmmE*#oUfw25bE$){AM+ z;X!^2V>F8zwz@i(Dc6%t*y2wP#x^muKIWamcWW8J`(E-u3XYQ+^nUQnqFDz|!?vCGdg8XCTvFL@2V9=u}BK0EJaoC$MeX>x+tWiMBKgiu2Hy zANLCO_e!X!eQ9L$v|m$V#Sx*V7JD{elLu4G3Y2n~8I>Lqd?j9`Wydw%GD0GgjfkCt z{HS_}{l$bU7i1mj^4{&vSm?l}OUnQHzBuTVRPfHP9@HR1yK>wp!fOXwxF#2F2}w>$ zsW;D`%LxNedaxN=64YpYU|R)Cc8O^&XpP0+x48h#0u0G6cl|v=wRToCIJN;0;@Vs; z=Iv=b3Xd4Qo|8>J2=iXe!|21kN^OX za*UK4p8!=t5h!5U(m^K~R`DU`MhNH!W`z|oHt@>;RQLcwZqty{>6sO_*hs_jmKOll z+<)01s~3b|h-#)TcXz~BCIjOGG9=FtbpsrLBna2(Wr4To0&tSaZJ7y?eD;GzuVP`< zmXi0n2&>iC6X4){#_X=0`b`i&U{Z;I#fsCMi^%n`_>+8hGtAfH3;`)r2AVJd=nYHv zkDEkmkjg@og1KlI$ESLOr4XSy7TU5JmjyWR$@8<3JFRT-J5`6}ZnaqGq$I@*I(0U$ z^mtzNlR$S*qO4$N?@nR`!aN-toZjBV#`N_CWgtT`PP8U)y2P9Zq1sF?;y_o@3kXYL ztFTk0JVp>Ab5<_C17K|42}^Zv>W2V;Fr4g?Me0X*>m)CxNWacRYu5v_!V-2c$suDP z@W2c*CbI%}X!jjl}r7i*%(v|I?)x0wk1=bTMIufJJ zhgG+-fiHnc$zB)FWsue)*<{#GNCL|^fCqxj13ax{0?~a}b<39RMc-Q+yO^wt$JiJ! z&g$9%2#polbD<`8t0YDZ*ghnQ87O5~KK%Tp@H^S)znYsY9MvCcQ0ch;L8jOLA!H*M z3W7O|+e?|>Wlbc-iPCz(#o)%XCRaHvDRmJ*HpO)d3?vNky*lF5xo*a%-P6gM&t6yY z5*Y*xR4fF*v>Lg33!)m}l0|+B!!0A45I_UsBMwrX>)hp=v*O17!H&hnab=BdcHIbUybi|76j5EqX%Y* zYbn*P4ZSJ=K!E(#+SIzd^13@Tl&|wlOY+TF3kXFgpg#TFse&tjkYVD-KT$xjln|~i zd%aXKD@wARksQFbS8%p5UrP!anvn5T`;>$(&UlXpXJh&X4JT!1SCic^gp&& z+Xguz1lMw5kmT@oK5#7%3$_nSh!!1qyRl>FwqPR}3`3Eg;O0 z@%)CX*k%M*CO!_et-5vPsU9~boO|kgMacZ&gucQ)pq6yHTwB91Q0Vr>k{n6@>oXm% z64JC9olCJEYL*L=r?8MoG(=dZ_h6*o&`t;zmQm5Bs`g2^+6p`BZBK-e05pL}5kcxt zJx9^o8$bkple3A*(%%~ey%NtICIjyXNuEibTwis`0s{wwPzGVXl{ToOJ~QI(Wvu0a zFdK8kdJ7<_hjkOjT9ue%rzQYVbfa|sV9RMBpJ5+)T@Tbq8upO@2H`|?sv|C2CEGe82#D+u6?$ZFG)^8}jXZ1+j6Nlf8}g(AU`5mkzy2sXOAxr9F9E X&+FC3YT^A1{ZqZHrIfFD!~cH(b|Z=* literal 0 HcmV?d00001 diff --git a/docs/source/serving/deploying_with_helm.rst b/docs/source/serving/deploying_with_helm.rst new file mode 100644 index 0000000000000..21b17e881b945 --- /dev/null +++ b/docs/source/serving/deploying_with_helm.rst @@ -0,0 +1,253 @@ +.. _deploying_with_helm: + +Deploying with Helm +=================== + +A Helm chart to deploy vLLM for Kubernetes + +Helm is a package manager for Kubernetes. It will help you to deploy vLLM on k8s and automate the deployment of vLLMm Kubernetes applications. With Helm, you can deploy the same framework architecture with different configurations to multiple namespaces by overriding variables values. + +This guide will walk you through the process of deploying vLLM with Helm, including the necessary prerequisites, steps for helm install and documentation on architecture and values file. + +Prerequisites +------------- +Before you begin, ensure that you have the following: + +- A running Kubernetes cluster +- NVIDIA Kubernetes Device Plugin (``k8s-device-plugin``): This can be found at `https://github.com/NVIDIA/k8s-device-plugin `__ +- Available GPU resources in your cluster +- S3 with the model which will be deployed + +Installing the chart +-------------------- + +To install the chart with the release name ``test-vllm``: + +.. code-block:: console + + helm upgrade --install --create-namespace --namespace=ns-vllm test-vllm . -f values.yaml --set secrets.s3endpoint=$ACCESS_POINT --set secrets.s3buckername=$BUCKET --set secrets.s3accesskeyid=$ACCESS_KEY --set secrets.s3accesskey=$SECRET_KEY + +Uninstalling the Chart +---------------------- + +To uninstall the ``test-vllm`` deployment: + +.. code-block:: console + + helm uninstall test-vllm --namespace=ns-vllm + +The command removes all the Kubernetes components associated with the +chart **including persistent volumes** and deletes the release. + +Architecture +------------ + +.. image:: architecture_helm_deployment.png + +Values +------ + +.. list-table:: Values + :widths: 25 25 25 25 + :header-rows: 1 + + * - Key + - Type + - Default + - Description + * - autoscaling + - object + - {"enabled":false,"maxReplicas":100,"minReplicas":1,"targetCPUUtilizationPercentage":80} + - Autoscaling configuration + * - autoscaling.enabled + - bool + - false + - Enable autoscaling + * - autoscaling.maxReplicas + - int + - 100 + - Maximum replicas + * - autoscaling.minReplicas + - int + - 1 + - Minimum replicas + * - autoscaling.targetCPUUtilizationPercentage + - int + - 80 + - Target CPU utilization for autoscaling + * - configs + - object + - {} + - Configmap + * - containerPort + - int + - 8000 + - Container port + * - customObjects + - list + - [] + - Custom Objects configuration + * - deploymentStrategy + - object + - {} + - Deployment strategy configuration + * - externalConfigs + - list + - [] + - External configuration + * - extraContainers + - list + - [] + - Additional containers configuration + * - extraInit + - object + - {"pvcStorage":"1Gi","s3modelpath":"relative_s3_model_path/opt-125m", "awsEc2MetadataDisabled": true} + - Additional configuration for the init container + * - extraInit.pvcStorage + - string + - "50Gi" + - Storage size of the s3 + * - extraInit.s3modelpath + - string + - "relative_s3_model_path/opt-125m" + - Path of the model on the s3 which hosts model weights and config files + * - extraInit.awsEc2MetadataDisabled + - boolean + - true + - Disables the use of the Amazon EC2 instance metadata service + * - extraPorts + - list + - [] + - Additional ports configuration + * - gpuModels + - list + - ["TYPE_GPU_USED"] + - Type of gpu used + * - image + - object + - {"command":["vllm","serve","/data/","--served-model-name","opt-125m","--host","0.0.0.0","--port","8000"],"repository":"vllm/vllm-openai","tag":"latest"} + - Image configuration + * - image.command + - list + - ["vllm","serve","/data/","--served-model-name","opt-125m","--host","0.0.0.0","--port","8000"] + - Container launch command + * - image.repository + - string + - "vllm/vllm-openai" + - Image repository + * - image.tag + - string + - "latest" + - Image tag + * - livenessProbe + - object + - {"failureThreshold":3,"httpGet":{"path":"/health","port":8000},"initialDelaySeconds":15,"periodSeconds":10} + - Liveness probe configuration + * - livenessProbe.failureThreshold + - int + - 3 + - Number of times after which if a probe fails in a row, Kubernetes considers that the overall check has failed: the container is not alive + * - livenessProbe.httpGet + - object + - {"path":"/health","port":8000} + - Configuration of the Kubelet http request on the server + * - livenessProbe.httpGet.path + - string + - "/health" + - Path to access on the HTTP server + * - livenessProbe.httpGet.port + - int + - 8000 + - Name or number of the port to access on the container, on which the server is listening + * - livenessProbe.initialDelaySeconds + - int + - 15 + - Number of seconds after the container has started before liveness probe is initiated + * - livenessProbe.periodSeconds + - int + - 10 + - How often (in seconds) to perform the liveness probe + * - maxUnavailablePodDisruptionBudget + - string + - "" + - Disruption Budget Configuration + * - readinessProbe + - object + - {"failureThreshold":3,"httpGet":{"path":"/health","port":8000},"initialDelaySeconds":5,"periodSeconds":5} + - Readiness probe configuration + * - readinessProbe.failureThreshold + - int + - 3 + - Number of times after which if a probe fails in a row, Kubernetes considers that the overall check has failed: the container is not ready + * - readinessProbe.httpGet + - object + - {"path":"/health","port":8000} + - Configuration of the Kubelet http request on the server + * - readinessProbe.httpGet.path + - string + - "/health" + - Path to access on the HTTP server + * - readinessProbe.httpGet.port + - int + - 8000 + - Name or number of the port to access on the container, on which the server is listening + * - readinessProbe.initialDelaySeconds + - int + - 5 + - Number of seconds after the container has started before readiness probe is initiated + * - readinessProbe.periodSeconds + - int + - 5 + - How often (in seconds) to perform the readiness probe + * - replicaCount + - int + - 1 + - Number of replicas + * - resources + - object + - {"limits":{"cpu":4,"memory":"16Gi","nvidia.com/gpu":1},"requests":{"cpu":4,"memory":"16Gi","nvidia.com/gpu":1}} + - Resource configuration + * - resources.limits."nvidia.com/gpu" + - int + - 1 + - Number of gpus used + * - resources.limits.cpu + - int + - 4 + - Number of CPUs + * - resources.limits.memory + - string + - "16Gi" + - CPU memory configuration + * - resources.requests."nvidia.com/gpu" + - int + - 1 + - Number of gpus used + * - resources.requests.cpu + - int + - 4 + - Number of CPUs + * - resources.requests.memory + - string + - "16Gi" + - CPU memory configuration + * - secrets + - object + - {} + - Secrets configuration + * - serviceName + - string + - + - Service name + * - servicePort + - int + - 80 + - Service port + * - labels.environment + - string + - test + - Environment name + * - labels.release + - string + - test + - Release name diff --git a/examples/chart-helm/.helmignore b/examples/chart-helm/.helmignore new file mode 100644 index 0000000000000..2d1303b784cb8 --- /dev/null +++ b/examples/chart-helm/.helmignore @@ -0,0 +1,6 @@ +*.png +.git/ +ct.yaml +lintconf.yaml +values.schema.json +/workflows \ No newline at end of file diff --git a/examples/chart-helm/Chart.yaml b/examples/chart-helm/Chart.yaml new file mode 100644 index 0000000000000..fb0f06f6d2701 --- /dev/null +++ b/examples/chart-helm/Chart.yaml @@ -0,0 +1,21 @@ +apiVersion: v2 +name: chart-vllm +description: Chart vllm + +# A chart can be either an 'application' or a 'library' chart. +# +# Application charts are a collection of templates that can be packaged into versioned archives +# to be deployed. +# +# Library charts provide useful utilities or functions for the chart developer. They're included as +# a dependency of application charts to inject those utilities and functions into the rendering +# pipeline. Library charts do not define any templates and therefore cannot be deployed. +type: application + +# This is the chart version. This version number should be incremented each time you make changes +# to the chart and its templates, including the app version. +# Versions are expected to follow Semantic Versioning (https://semver.org/) +version: 0.0.1 + +maintainers: + - name: mfournioux diff --git a/examples/chart-helm/ct.yaml b/examples/chart-helm/ct.yaml new file mode 100644 index 0000000000000..d273e118203ad --- /dev/null +++ b/examples/chart-helm/ct.yaml @@ -0,0 +1,3 @@ +chart-dirs: + - charts +validate-maintainers: false \ No newline at end of file diff --git a/examples/chart-helm/lintconf.yaml b/examples/chart-helm/lintconf.yaml new file mode 100644 index 0000000000000..c8e8c5d7d9767 --- /dev/null +++ b/examples/chart-helm/lintconf.yaml @@ -0,0 +1,42 @@ +--- +rules: + braces: + min-spaces-inside: 0 + max-spaces-inside: 0 + min-spaces-inside-empty: -1 + max-spaces-inside-empty: -1 + brackets: + min-spaces-inside: 0 + max-spaces-inside: 0 + min-spaces-inside-empty: -1 + max-spaces-inside-empty: -1 + colons: + max-spaces-before: 0 + max-spaces-after: 1 + commas: + max-spaces-before: 0 + min-spaces-after: 1 + max-spaces-after: 1 + comments: + require-starting-space: true + min-spaces-from-content: 2 + document-end: disable + document-start: disable # No --- to start a file + empty-lines: + max: 2 + max-start: 0 + max-end: 0 + hyphens: + max-spaces-after: 1 + indentation: + spaces: consistent + indent-sequences: whatever # - list indentation will handle both indentation and without + check-multi-line-strings: false + key-duplicates: enable + line-length: disable # Lines can be any length + new-line-at-end-of-file: disable + new-lines: + type: unix + trailing-spaces: enable + truthy: + level: warning \ No newline at end of file diff --git a/examples/chart-helm/templates/_helpers.tpl b/examples/chart-helm/templates/_helpers.tpl new file mode 100644 index 0000000000000..a9690bad3c945 --- /dev/null +++ b/examples/chart-helm/templates/_helpers.tpl @@ -0,0 +1,164 @@ +{{/* +Define ports for the pods +*/}} +{{- define "chart.container-port" -}} +{{- default "8000" .Values.containerPort }} +{{- end }} + +{{/* +Define service name +*/}} +{{- define "chart.service-name" -}} +{{- if .Values.serviceName }} +{{- .Values.serviceName | lower | trim }} +{{- else }} +"{{ .Release.Name }}-service" +{{- end }} +{{- end }} + +{{/* +Define service port +*/}} +{{- define "chart.service-port" -}} +{{- if .Values.servicePort }} +{{- .Values.servicePort }} +{{- else }} +{{- include "chart.container-port" . }} +{{- end }} +{{- end }} + +{{/* +Define service port name +*/}} +{{- define "chart.service-port-name" -}} +"service-port" +{{- end }} + +{{/* +Define container port name +*/}} +{{- define "chart.container-port-name" -}} +"container-port" +{{- end }} + +{{/* +Define deployment strategy +*/}} +{{- define "chart.strategy" -}} +strategy: +{{- if not .Values.deploymentStrategy }} + rollingUpdate: + maxSurge: 100% + maxUnavailable: 0 +{{- else }} +{{ toYaml .Values.deploymentStrategy | indent 2 }} +{{- end }} +{{- end }} + +{{/* +Define additional ports +*/}} +{{- define "chart.extraPorts" }} +{{- with .Values.extraPorts }} +{{ toYaml . }} +{{- end }} +{{- end }} + +{{/* +Define chart external ConfigMaps and Secrets +*/}} +{{- define "chart.externalConfigs" -}} +{{- with .Values.externalConfigs -}} +{{ toYaml . }} +{{- end }} +{{- end }} + + +{{/* +Define liveness et readiness probes +*/}} +{{- define "chart.probes" -}} +{{- if .Values.readinessProbe }} +readinessProbe: +{{- with .Values.readinessProbe }} +{{- toYaml . | nindent 2 }} +{{- end }} +{{- end }} +{{- if .Values.livenessProbe }} +livenessProbe: +{{- with .Values.livenessProbe }} +{{- toYaml . | nindent 2 }} +{{- end }} +{{- end }} +{{- end }} + +{{/* +Define resources +*/}} +{{- define "chart.resources" -}} +requests: + memory: {{ required "Value 'resources.requests.memory' must be defined !" .Values.resources.requests.memory | quote }} + cpu: {{ required "Value 'resources.requests.cpu' must be defined !" .Values.resources.requests.cpu | quote }} + {{- if and (gt (int (index .Values.resources.requests "nvidia.com/gpu")) 0) (gt (int (index .Values.resources.limits "nvidia.com/gpu")) 0) }} + nvidia.com/gpu: {{ required "Value 'resources.requests.nvidia.com/gpu' must be defined !" (index .Values.resources.requests "nvidia.com/gpu") | quote }} + {{- end }} +limits: + memory: {{ required "Value 'resources.limits.memory' must be defined !" .Values.resources.limits.memory | quote }} + cpu: {{ required "Value 'resources.limits.cpu' must be defined !" .Values.resources.limits.cpu | quote }} + {{- if and (gt (int (index .Values.resources.requests "nvidia.com/gpu")) 0) (gt (int (index .Values.resources.limits "nvidia.com/gpu")) 0) }} + nvidia.com/gpu: {{ required "Value 'resources.limits.nvidia.com/gpu' must be defined !" (index .Values.resources.limits "nvidia.com/gpu") | quote }} + {{- end }} +{{- end }} + + +{{/* +Define User used for the main container +*/}} +{{- define "chart.user" }} +{{- if .Values.image.runAsUser }} +runAsUser: +{{- with .Values.runAsUser }} +{{- toYaml . | nindent 2 }} +{{- end }} +{{- end }} +{{- end }} + +{{- define "chart.extraInitImage" -}} +"amazon/aws-cli:2.6.4" +{{- end }} + +{{- define "chart.extraInitEnv" -}} +- name: S3_ENDPOINT_URL + valueFrom: + secretKeyRef: + name: {{ .Release.Name }}-secrets + key: s3endpoint +- name: S3_BUCKET_NAME + valueFrom: + secretKeyRef: + name: {{ .Release.Name }}-secrets + key: s3bucketname +- name: AWS_ACCESS_KEY_ID + valueFrom: + secretKeyRef: + name: {{ .Release.Name }}-secrets + key: s3accesskeyid +- name: AWS_SECRET_ACCESS_KEY + valueFrom: + secretKeyRef: + name: {{ .Release.Name }}-secrets + key: s3accesskey +- name: S3_PATH + value: "{{ .Values.extraInit.s3modelpath }}" +- name: AWS_EC2_METADATA_DISABLED + value: "{{ .Values.extraInit.awsEc2MetadataDisabled }}" +{{- end }} + +{{/* + Define chart labels +*/}} +{{- define "chart.labels" -}} +{{- with .Values.labels -}} +{{ toYaml . }} +{{- end }} +{{- end }} \ No newline at end of file diff --git a/examples/chart-helm/templates/configmap.yaml b/examples/chart-helm/templates/configmap.yaml new file mode 100644 index 0000000000000..cc5d03782f878 --- /dev/null +++ b/examples/chart-helm/templates/configmap.yaml @@ -0,0 +1,11 @@ +{{- if .Values.configs -}} +apiVersion: v1 +kind: ConfigMap +metadata: + name: "{{ .Release.Name }}-configs" + namespace: {{ .Release.Namespace }} +data: + {{- with .Values.configs }} + {{- toYaml . | nindent 2 }} + {{- end }} +{{- end -}} \ No newline at end of file diff --git a/examples/chart-helm/templates/custom-objects.yaml b/examples/chart-helm/templates/custom-objects.yaml new file mode 100644 index 0000000000000..8a65ffd0e552d --- /dev/null +++ b/examples/chart-helm/templates/custom-objects.yaml @@ -0,0 +1,6 @@ +{{- if .Values.customObjects }} +{{- range .Values.customObjects }} +{{- tpl (. | toYaml) $ }} +--- +{{- end }} +{{- end }} \ No newline at end of file diff --git a/examples/chart-helm/templates/deployment.yaml b/examples/chart-helm/templates/deployment.yaml new file mode 100644 index 0000000000000..536983b587be2 --- /dev/null +++ b/examples/chart-helm/templates/deployment.yaml @@ -0,0 +1,122 @@ +apiVersion: apps/v1 +kind: Deployment +metadata: + name: "{{ .Release.Name }}-deployment-vllm" + namespace: {{ .Release.Namespace }} + labels: + {{- include "chart.labels" . | nindent 4 }} +spec: + replicas: {{ .Values.replicaCount }} + {{- include "chart.strategy" . | nindent 2 }} + selector: + matchLabels: + environment: "test" + release: "test" + progressDeadlineSeconds: 1200 + template: + metadata: + labels: + environment: "test" + release: "test" + spec: + containers: + - name: "vllm" + image: "{{ required "Required value 'image.repository' must be defined !" .Values.image.repository }}:{{ required "Required value 'image.tag' must be defined !" .Values.image.tag }}" + {{- if .Values.image.command }} + command : + {{- with .Values.image.command }} + {{- toYaml . | nindent 10 }} + {{- end }} + {{- end }} + securityContext: + {{- if .Values.image.securityContext }} + {{- with .Values.image.securityContext }} + {{- toYaml . | nindent 12 }} + {{- end }} + {{- else }} + runAsNonRoot: false + {{- include "chart.user" . | indent 12 }} + {{- end }} + imagePullPolicy: IfNotPresent + {{- if .Values.image.env }} + env : + {{- with .Values.image.env }} + {{- toYaml . | nindent 10 }} + {{- end }} + {{- else }} + env: [] + {{- end }} + {{- if or .Values.externalConfigs .Values.configs .Values.secrets }} + envFrom: + {{- if .Values.configs }} + - configMapRef: + name: "{{ .Release.Name }}-configs" + {{- end }} + {{- if .Values.secrets}} + - secretRef: + name: "{{ .Release.Name }}-secrets" + {{- end }} + {{- include "chart.externalConfigs" . | nindent 12 }} + {{- end }} + ports: + - name: {{ include "chart.container-port-name" . }} + containerPort: {{ include "chart.container-port" . }} + {{- include "chart.extraPorts" . | nindent 12 }} + {{- include "chart.probes" . | indent 10 }} + resources: {{- include "chart.resources" . | nindent 12 }} + volumeMounts: + - name: {{ .Release.Name }}-storage + mountPath: /data + + {{- with .Values.extraContainers }} + {{ toYaml . | nindent 8 }} + {{- end }} + + {{- if .Values.extraInit }} + initContainers: + - name: wait-download-model + image: {{ include "chart.extraInitImage" . }} + command: + - /bin/bash + args: + - -eucx + - while aws --endpoint-url $S3_ENDPOINT_URL s3 sync --dryrun s3://$S3_BUCKET_NAME/$S3_PATH /data | grep -q download; do sleep 10; done + env: {{- include "chart.extraInitEnv" . | nindent 10 }} + resources: + requests: + cpu: 200m + memory: 1Gi + limits: + cpu: 500m + memory: 2Gi + volumeMounts: + - name: {{ .Release.Name }}-storage + mountPath: /data + {{- end }} + volumes: + - name: {{ .Release.Name }}-storage + persistentVolumeClaim: + claimName: {{ .Release.Name }}-storage-claim + + {{- with .Values.nodeSelector }} + nodeSelector: + {{- toYaml . | nindent 8 }} + {{- end }} + {{- with .Values.tolerations }} + tolerations: + {{- toYaml . | nindent 8 }} + {{- end }} + {{- if and (gt (int (index .Values.resources.requests "nvidia.com/gpu")) 0) (gt (int (index .Values.resources.limits "nvidia.com/gpu")) 0) }} + runtimeClassName: nvidia + affinity: + nodeAffinity: + requiredDuringSchedulingIgnoredDuringExecution: + nodeSelectorTerms: + - matchExpressions: + - key: nvidia.com/gpu.product + operator: In + {{- with .Values.gpuModels }} + values: + {{- toYaml . | nindent 20 }} + {{- end }} + {{- end }} \ No newline at end of file diff --git a/examples/chart-helm/templates/hpa.yaml b/examples/chart-helm/templates/hpa.yaml new file mode 100644 index 0000000000000..5ca94c8213541 --- /dev/null +++ b/examples/chart-helm/templates/hpa.yaml @@ -0,0 +1,31 @@ +{{- if .Values.autoscaling.enabled }} +apiVersion: autoscaling/v2 +kind: HorizontalPodAutoscaler +metadata: + name: "{{ .Release.Name }}-hpa" + namespace: {{ .Release.Namespace }} +spec: + scaleTargetRef: + apiVersion: apps/v1 + kind: Deployment + name: vllm + minReplicas: {{ .Values.autoscaling.minReplicas }} + maxReplicas: {{ .Values.autoscaling.maxReplicas }} + metrics: + {{- if .Values.autoscaling.targetCPUUtilizationPercentage }} + - type: Resource + resource: + name: cpu + target: + type: Utilization + averageUtilization: {{ .Values.autoscaling.targetCPUUtilizationPercentage }} + {{- end }} + {{- if .Values.autoscaling.targetMemoryUtilizationPercentage }} + - type: Resource + resource: + name: memory + target: + type: Utilization + averageUtilization: {{ .Values.autoscaling.targetMemoryUtilizationPercentage }} + {{- end }} +{{- end }} \ No newline at end of file diff --git a/examples/chart-helm/templates/job.yaml b/examples/chart-helm/templates/job.yaml new file mode 100644 index 0000000000000..f9ea3541e78d2 --- /dev/null +++ b/examples/chart-helm/templates/job.yaml @@ -0,0 +1,37 @@ +{{- if .Values.extraInit }} +apiVersion: batch/v1 +kind: Job +metadata: + name: "{{ .Release.Name }}-init-vllm" + namespace: {{ .Release.Namespace }} +spec: + ttlSecondsAfterFinished: 100 + template: + metadata: + name: init-vllm + spec: + containers: + - name: job-download-model + image: {{ include "chart.extraInitImage" . }} + command: + - /bin/bash + args: + - -eucx + - aws --endpoint-url $S3_ENDPOINT_URL s3 sync s3://$S3_BUCKET_NAME/$S3_PATH /data + env: {{- include "chart.extraInitEnv" . | nindent 8 }} + volumeMounts: + - name: {{ .Release.Name }}-storage + mountPath: /data + resources: + requests: + cpu: 200m + memory: 1Gi + limits: + cpu: 500m + memory: 2Gi + restartPolicy: OnFailure + volumes: + - name: {{ .Release.Name }}-storage + persistentVolumeClaim: + claimName: "{{ .Release.Name }}-storage-claim" +{{- end }} \ No newline at end of file diff --git a/examples/chart-helm/templates/poddisruptionbudget.yaml b/examples/chart-helm/templates/poddisruptionbudget.yaml new file mode 100644 index 0000000000000..512bac727da87 --- /dev/null +++ b/examples/chart-helm/templates/poddisruptionbudget.yaml @@ -0,0 +1,7 @@ +apiVersion: policy/v1 +kind: PodDisruptionBudget +metadata: + name: "{{ .Release.Name }}-pdb" + namespace: {{ .Release.Namespace }} +spec: + maxUnavailable: {{ default 1 .Values.maxUnavailablePodDisruptionBudget }} \ No newline at end of file diff --git a/examples/chart-helm/templates/pvc.yaml b/examples/chart-helm/templates/pvc.yaml new file mode 100644 index 0000000000000..e8d203a7a5ace --- /dev/null +++ b/examples/chart-helm/templates/pvc.yaml @@ -0,0 +1,13 @@ +{{- if .Values.extraInit }} +apiVersion: v1 +kind: PersistentVolumeClaim +metadata: + name: "{{ .Release.Name }}-storage-claim" + namespace: {{ .Release.Namespace }} +spec: + accessModes: + - ReadWriteOnce + resources: + requests: + storage: {{ .Values.extraInit.pvcStorage }} +{{- end }} \ No newline at end of file diff --git a/examples/chart-helm/templates/secrets.yaml b/examples/chart-helm/templates/secrets.yaml new file mode 100644 index 0000000000000..4e88e747b616a --- /dev/null +++ b/examples/chart-helm/templates/secrets.yaml @@ -0,0 +1,10 @@ +apiVersion: v1 +kind: Secret +metadata: + name: "{{ .Release.Name }}-secrets" + namespace: {{ .Release.Namespace }} +type: Opaque +data: + {{- range $key, $val := .Values.secrets }} + {{ $key }}: {{ $val | b64enc | quote }} + {{- end }} \ No newline at end of file diff --git a/examples/chart-helm/templates/service.yaml b/examples/chart-helm/templates/service.yaml new file mode 100644 index 0000000000000..12d0f68b03a35 --- /dev/null +++ b/examples/chart-helm/templates/service.yaml @@ -0,0 +1,14 @@ +apiVersion: v1 +kind: Service +metadata: + name: "{{ .Release.Name }}-service" + namespace: {{ .Release.Namespace }} +spec: + type: ClusterIP + ports: + - name: {{ include "chart.service-port-name" . }} + port: {{ include "chart.service-port" . }} + targetPort: {{ include "chart.container-port-name" . }} + protocol: TCP + selector: + {{- include "chart.labels" . | nindent 4 }} \ No newline at end of file diff --git a/examples/chart-helm/values.schema.json b/examples/chart-helm/values.schema.json new file mode 100644 index 0000000000000..812d54bde1397 --- /dev/null +++ b/examples/chart-helm/values.schema.json @@ -0,0 +1,265 @@ +{ + "$schema": "http://json-schema.org/schema#", + "type": "object", + "properties": { + "image": { + "type": "object", + "properties": { + "repository": { + "type": "string" + }, + "tag": { + "type": "string" + }, + "command": { + "type": "array", + "items": { + "type": "string" + } + } + }, + "required": [ + "command", + "repository", + "tag" + ] + }, + "containerPort": { + "type": "integer" + }, + "serviceName": { + "type": "null" + }, + "servicePort": { + "type": "integer" + }, + "extraPorts": { + "type": "array" + }, + "replicaCount": { + "type": "integer" + }, + "deploymentStrategy": { + "type": "object" + }, + "resources": { + "type": "object", + "properties": { + "requests": { + "type": "object", + "properties": { + "cpu": { + "type": "integer" + }, + "memory": { + "type": "string" + }, + "nvidia.com/gpu": { + "type": "integer" + } + }, + "required": [ + "cpu", + "memory", + "nvidia.com/gpu" + ] + }, + "limits": { + "type": "object", + "properties": { + "cpu": { + "type": "integer" + }, + "memory": { + "type": "string" + }, + "nvidia.com/gpu": { + "type": "integer" + } + }, + "required": [ + "cpu", + "memory", + "nvidia.com/gpu" + ] + } + }, + "required": [ + "limits", + "requests" + ] + }, + "gpuModels": { + "type": "array", + "items": { + "type": "string" + } + }, + "autoscaling": { + "type": "object", + "properties": { + "enabled": { + "type": "boolean" + }, + "minReplicas": { + "type": "integer" + }, + "maxReplicas": { + "type": "integer" + }, + "targetCPUUtilizationPercentage": { + "type": "integer" + } + }, + "required": [ + "enabled", + "maxReplicas", + "minReplicas", + "targetCPUUtilizationPercentage" + ] + }, + "configs": { + "type": "object" + }, + "secrets": { + "type": "object" + }, + "externalConfigs": { + "type": "array" + }, + "customObjects": { + "type": "array" + }, + "maxUnavailablePodDisruptionBudget": { + "type": "string" + }, + "extraInit": { + "type": "object", + "properties": { + "s3modelpath": { + "type": "string" + }, + "pvcStorage": { + "type": "string" + }, + "awsEc2MetadataDisabled": { + "type": "boolean" + } + }, + "required": [ + "pvcStorage", + "s3modelpath", + "awsEc2MetadataDisabled" + ] + }, + "extraContainers": { + "type": "array" + }, + "readinessProbe": { + "type": "object", + "properties": { + "initialDelaySeconds": { + "type": "integer" + }, + "periodSeconds": { + "type": "integer" + }, + "failureThreshold": { + "type": "integer" + }, + "httpGet": { + "type": "object", + "properties": { + "path": { + "type": "string" + }, + "port": { + "type": "integer" + } + }, + "required": [ + "path", + "port" + ] + } + }, + "required": [ + "failureThreshold", + "httpGet", + "initialDelaySeconds", + "periodSeconds" + ] + }, + "livenessProbe": { + "type": "object", + "properties": { + "initialDelaySeconds": { + "type": "integer" + }, + "failureThreshold": { + "type": "integer" + }, + "periodSeconds": { + "type": "integer" + }, + "httpGet": { + "type": "object", + "properties": { + "path": { + "type": "string" + }, + "port": { + "type": "integer" + } + }, + "required": [ + "path", + "port" + ] + } + }, + "required": [ + "failureThreshold", + "httpGet", + "initialDelaySeconds", + "periodSeconds" + ] + }, + "labels": { + "type": "object", + "properties": { + "environment": { + "type": "string" + }, + "release": { + "type": "string" + } + }, + "required": [ + "environment", + "release" + ] + } + }, + "required": [ + "autoscaling", + "configs", + "containerPort", + "customObjects", + "deploymentStrategy", + "externalConfigs", + "extraContainers", + "extraInit", + "extraPorts", + "gpuModels", + "image", + "labels", + "livenessProbe", + "maxUnavailablePodDisruptionBudget", + "readinessProbe", + "replicaCount", + "resources", + "secrets", + "servicePort" + ] +} \ No newline at end of file diff --git a/examples/chart-helm/values.yaml b/examples/chart-helm/values.yaml new file mode 100644 index 0000000000000..9c48e7d061bf7 --- /dev/null +++ b/examples/chart-helm/values.yaml @@ -0,0 +1,119 @@ +# -- Default values for chart vllm +# -- Declare variables to be passed into your templates. + +# -- Image configuration +image: + # -- Image repository + repository: "vllm/vllm-openai" + # -- Image tag + tag: "latest" + # -- Container launch command + command: ["vllm", "serve", "/data/", "--served-model-name", "opt-125m", "--dtype", "bfloat16", "--host", "0.0.0.0", "--port", "8000"] + +# -- Container port +containerPort: 8000 +# -- Service name +serviceName: +# -- Service port +servicePort: 80 +# -- Additional ports configuration +extraPorts: [] + +# -- Number of replicas +replicaCount: 1 + +# -- Deployment strategy configuration +deploymentStrategy: {} + +# -- Resource configuration +resources: + requests: + # -- Number of CPUs + cpu: 4 + # -- CPU memory configuration + memory: 16Gi + # -- Number of gpus used + nvidia.com/gpu: 1 + limits: + # -- Number of CPUs + cpu: 4 + # -- CPU memory configuration + memory: 16Gi + # -- Number of gpus used + nvidia.com/gpu: 1 + +# -- Type of gpu used +gpuModels: + - "TYPE_GPU_USED" + +# -- Autoscaling configuration +autoscaling: + # -- Enable autoscaling + enabled: false + # -- Minimum replicas + minReplicas: 1 + # -- Maximum replicas + maxReplicas: 100 + # -- Target CPU utilization for autoscaling + targetCPUUtilizationPercentage: 80 + # targetMemoryUtilizationPercentage: 80 + +# -- Configmap +configs: {} + +# -- Secrets configuration +secrets: {} + +# -- External configuration +externalConfigs: [] + +# -- Custom Objects configuration +customObjects: [] + +# -- Disruption Budget Configuration +maxUnavailablePodDisruptionBudget: "" + +# -- Additional configuration for the init container +extraInit: + # -- Path of the model on the s3 which hosts model weights and config files + s3modelpath: "relative_s3_model_path/opt-125m" + # -- Storage size of the s3 + pvcStorage: "1Gi" + awsEc2MetadataDisabled: true + +# -- Additional containers configuration +extraContainers: [] + +# -- Readiness probe configuration +readinessProbe: + # -- Number of seconds after the container has started before readiness probe is initiated + initialDelaySeconds: 5 + # -- How often (in seconds) to perform the readiness probe + periodSeconds: 5 + # -- Number of times after which if a probe fails in a row, Kubernetes considers that the overall check has failed: the container is not ready + failureThreshold: 3 + # -- Configuration of the Kubelet http request on the server + httpGet: + # -- Path to access on the HTTP server + path: /health + # -- Name or number of the port to access on the container, on which the server is listening + port: 8000 + +# -- Liveness probe configuration +livenessProbe: + # -- Number of seconds after the container has started before liveness probe is initiated + initialDelaySeconds: 15 + # -- Number of times after which if a probe fails in a row, Kubernetes considers that the overall check has failed: the container is not alive + failureThreshold: 3 + # -- How often (in seconds) to perform the liveness probe + periodSeconds: 10 + # -- Configuration of the Kubelet http request on the server + httpGet: + # -- Path to access on the HTTP server + path: /health + # -- Name or number of the port to access on the container, on which the server is listening + port: 8000 + +labels: + environment: "test" + release: "test" From beb16b2c810a87b28e7b8a7aa29d26f842f654b9 Mon Sep 17 00:00:00 2001 From: Travis Johnson Date: Tue, 10 Dec 2024 03:27:11 -0700 Subject: [PATCH 096/733] [Bugfix] Handle <|tool_call|> token in granite tool parser (#11039) Signed-off-by: Travis Johnson --- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py b/vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py index b5854ca39ab47..00917c866e496 100644 --- a/vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +++ b/vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py @@ -35,11 +35,13 @@ class GraniteToolParser(ToolParser): def __init__(self, tokenizer: AnyTokenizer): super().__init__(tokenizer) + self.bot_token = "<|tool_call|>" def extract_tool_calls( self, model_output: str, request: ChatCompletionRequest) -> ExtractedToolCallInformation: - stripped = model_output.strip() + # remove whitespace and the BOT token if it exists + stripped = model_output.strip().removeprefix(self.bot_token).lstrip() if not stripped or stripped[0] != '[': return ExtractedToolCallInformation(tools_called=False, tool_calls=[], From d05f88679bedd73939251a17c3d785a354b2946c Mon Sep 17 00:00:00 2001 From: Jee Jee Li Date: Tue, 10 Dec 2024 19:12:01 +0800 Subject: [PATCH 097/733] [Misc][LoRA] Add PEFTHelper for LoRA (#11003) Signed-off-by: Jee Jee Li --- tests/lora/test_lora_manager.py | 58 +++++++++++++++++++++++++-- vllm/lora/lora.py | 18 +++++++++ vllm/lora/models.py | 42 ++++++++------------ vllm/lora/peft_helper.py | 70 +++++++++++++++++++++++++++++++++ 4 files changed, 160 insertions(+), 28 deletions(-) create mode 100644 vllm/lora/peft_helper.py diff --git a/tests/lora/test_lora_manager.py b/tests/lora/test_lora_manager.py index 8d109b2c81503..0b76f466702fc 100644 --- a/tests/lora/test_lora_manager.py +++ b/tests/lora/test_lora_manager.py @@ -1,3 +1,4 @@ +import json import os from typing import Dict, List @@ -13,6 +14,7 @@ from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights from vllm.lora.models import (LoRAMapping, LoRAModel, LoRAModelManager, LRUCacheLoRAModelManager) +from vllm.lora.peft_helper import PEFTHelper from vllm.lora.request import LoRARequest from vllm.lora.worker_manager import (LRUCacheWorkerLoRAManager, WorkerLoRAManager) @@ -30,18 +32,68 @@ ] +def test_peft_helper(sql_lora_files): + lora_config_path = os.path.join(sql_lora_files, "adapter_config.json") + with open(lora_config_path) as f: + config = json.load(f) + peft_helper = PEFTHelper.from_dict(config) + assert peft_helper.r == 8 + assert peft_helper.lora_alpha == 16 + assert peft_helper.target_modules == [ + "q_proj", + "v_proj", + "k_proj", + "o_proj", + "gate_proj", + "up_proj", + "down_proj", + "embed_tokens", + "lm_head", + ] + + expected_error = "vLLM only supports modules_to_save being None." + with pytest.raises(ValueError, match=expected_error): + config = dict( + r=8, + lora_alpha=16, + target_modules=["gate_proj"], + modules_to_save=["lm_head"], + ) + PEFTHelper.from_dict(config) + expected_error = "vLLM does not yet support RSLoRA." + with pytest.raises(ValueError, match=expected_error): + config = dict(r=8, + lora_alpha=16, + target_modules=["gate_proj"], + use_rslora=True) + PEFTHelper.from_dict(config) + + expected_error = "vLLM does not yet support DoRA." + with pytest.raises(ValueError, match=expected_error): + config = dict(r=8, + lora_alpha=16, + target_modules=["gate_proj"], + use_dora=True) + PEFTHelper.from_dict(config) + + @pytest.mark.parametrize("device", CUDA_DEVICES) def test_from_lora_tensors(sql_lora_files, device): tensors = load_file( os.path.join(sql_lora_files, "adapter_model.safetensors")) new_embeddings = load_file( os.path.join(sql_lora_files, "new_embeddings.safetensors")) + + lora_config_path = os.path.join(sql_lora_files, "adapter_config.json") + with open(lora_config_path) as f: + config = json.load(f) + + peft_helper = PEFTHelper.from_dict(config) lora_model = LoRAModel.from_lora_tensors( 1, - 8, - 16, tensors, - device, + peft_helper=peft_helper, + device=device, embeddings=new_embeddings, embedding_modules=EMBEDDING_MODULES, embedding_padding_modules=EMBEDDING_PADDING_MODULES) diff --git a/vllm/lora/lora.py b/vllm/lora/lora.py index b648312ba76ec..dde347b78bf81 100644 --- a/vllm/lora/lora.py +++ b/vllm/lora/lora.py @@ -4,6 +4,7 @@ import torch import torch.types +from vllm.lora.peft_helper import PEFTHelper from vllm.utils import is_pin_memory_available @@ -59,6 +60,23 @@ def extra_vocab_size(self) -> int: return self.embeddings_tensor.shape[ 0] if self.embeddings_tensor is not None else 0 + @classmethod + def from_config( + cls, + module_name: str, + peft_helper: PEFTHelper, + embeddings_tensor: Optional[torch.Tensor] = None, + ) -> "LoRALayerWeights": + return cls( + module_name, + peft_helper.r, + peft_helper.lora_alpha, + None, + None, + None, + embeddings_tensor, + ) + @classmethod def create_dummy_lora_weights( cls, diff --git a/vllm/lora/models.py b/vllm/lora/models.py index 49cd9f0c236ad..70806a77b9fff 100644 --- a/vllm/lora/models.py +++ b/vllm/lora/models.py @@ -21,6 +21,7 @@ LinearScalingRotaryEmbeddingWithLora, LoRAMapping) from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights +from vllm.lora.peft_helper import PEFTHelper from vllm.lora.punica_wrapper import get_punica_wrapper from vllm.lora.utils import (from_layer, from_layer_logits_processor, is_regex_target_modules, @@ -104,14 +105,12 @@ def get_lora(self, module_name: str) -> Optional[LoRALayerWeights]: def from_lora_tensors( cls, lora_model_id: int, - rank: int, - lora_alpha: int, tensors: Dict[str, torch.Tensor], + peft_helper: PEFTHelper, device: str = "cuda", dtype: Optional[torch.dtype] = None, embeddings: Optional[Dict[str, torch.Tensor]] = None, target_embedding_padding: Optional[int] = None, - scaling_factor: Optional[float] = None, embedding_modules: Optional[Dict[str, str]] = None, embedding_padding_modules: Optional[List[str]] = None, ) -> "LoRAModel": @@ -135,10 +134,9 @@ def from_lora_tensors( if pin_memory: lora_embeddings_tensor = ( lora_embeddings_tensor.pin_memory()) - loras[module_name] = LoRALayerWeights(module_name, rank, - lora_alpha, None, None, - None, - lora_embeddings_tensor) + loras[module_name] = LoRALayerWeights.from_config( + module_name, peft_helper, lora_embeddings_tensor) + if is_bias: loras[module_name].bias = tensor.to(device=device, dtype=dtype).t() @@ -170,7 +168,11 @@ def from_lora_tensors( for lora in loras.values(): lora.optimize() - return cls(lora_model_id, rank, loras, scaling_factor=scaling_factor) + + return cls(lora_model_id, + peft_helper.r, + loras, + scaling_factor=peft_helper.vllm_scaling_factor) @classmethod def from_local_checkpoint( @@ -212,6 +214,9 @@ def from_local_checkpoint( "new_embeddings.bin") with open(lora_config_path) as f: config = json.load(f) + + config["vllm_max_position_embeddings"] = max_position_embeddings + peft_helper = PEFTHelper.from_dict(config) if os.path.isfile(lora_tensor_path): tensors: Dict[str, torch.Tensor] = {} # Find unexpected modules. @@ -242,7 +247,7 @@ def from_local_checkpoint( # When a bin file is provided, we rely on config to find unexpected # modules. unexpected_modules = [] - target_modules = config["target_modules"] + target_modules = peft_helper.target_modules if not isinstance(target_modules, list): target_modules = [target_modules] for module in target_modules: @@ -256,7 +261,7 @@ def from_local_checkpoint( # https://github.com/vllm-project/vllm/pull/5909. But there's no # other better mechanism. if unexpected_modules and not is_regex_target_modules( - config["target_modules"], expected_lora_modules): + peft_helper.target_modules, expected_lora_modules): raise ValueError( f"While loading {lora_dir}, expected" f" target modules in {expected_lora_modules}" @@ -274,30 +279,17 @@ def from_local_checkpoint( embeddings = torch.load(new_embeddings_bin_file_path, map_location=device) - rank = config["r"] - lora_alpha = config["lora_alpha"] - context_length = config.get("context_length", None) - scaling_factor = None - if context_length: - if max_position_embeddings is None: - max_position_embeddings = context_length - scaling_factor = float( - math.ceil(context_length / max_position_embeddings)) - return cls.from_lora_tensors( lora_model_id=get_lora_id() if lora_model_id is None else lora_model_id, - rank=rank, - lora_alpha=lora_alpha, tensors=tensors, + peft_helper=peft_helper, device=device, dtype=dtype, embeddings=embeddings, target_embedding_padding=target_embedding_padding, - scaling_factor=scaling_factor, embedding_modules=embedding_modules, - embedding_padding_modules=embedding_padding_modules, - ) + embedding_padding_modules=embedding_padding_modules) class LoRAModelManager(AdapterModelManager): diff --git a/vllm/lora/peft_helper.py b/vllm/lora/peft_helper.py new file mode 100644 index 0000000000000..edf4ba5659575 --- /dev/null +++ b/vllm/lora/peft_helper.py @@ -0,0 +1,70 @@ +# Adapted from: https://github.com/huggingface/peft/blob/main/src/peft/tuners/lora/config.py + +import math +from dataclasses import MISSING, dataclass, field, fields +from typing import Literal, Optional, Union + + +@dataclass +class PEFTHelper: + # Required fields + r: int + lora_alpha: int + target_modules: Union[list[str], str] + + bias: Literal["none", "all", "lora_only"] = field(default="none") + modules_to_save: Optional[list[str]] = field(default=None) + use_rslora: bool = field(default=False) + use_dora: bool = field(default=False) + # long lora field + context_length: int = field(default=0) + # Extra vllm field, start with 'vllm_' to avoid conflict + vllm_max_position_embeddings: Optional[int] = field(default=False) + vllm_scaling_factor: Optional[float] = field(default=None) + + def _validate_features(self): + error_msg = [] + + if self.modules_to_save: + error_msg.append("vLLM only supports modules_to_save being None.") + if self.use_rslora: + error_msg.append("vLLM does not yet support RSLoRA.") + + if self.use_dora: + error_msg.append("vLLM does not yet support DoRA.") + + if error_msg: + raise ValueError(f"{', '.join(error_msg)}") + + def __post_init__(self): + self._validate_features() + if self.context_length: + if self.vllm_max_position_embeddings is None: + self.vllm_max_position_embeddings = self.context_length + self.vllm_scaling_factor = float( + math.ceil(self.context_length / + self.vllm_max_position_embeddings)) + + @classmethod + def from_dict(cls, config_dict: dict) -> "PEFTHelper": + # Get all field information from the class + class_fields = {f.name: f for f in fields(cls)} + # Check for required fields + required_fields = { + name + for name, f in class_fields.items() + if f.default is MISSING and f.default_factory is MISSING + } + + # Identify any missing required fields + missing_fields = required_fields - set(config_dict.keys()) + if missing_fields: + raise ValueError( + f"Missing required configuration fields: {missing_fields}") + + # Filter out fields that aren't defined in the class + filtered_dict = { + k: v + for k, v in config_dict.items() if k in class_fields + } + return cls(**filtered_dict) From 9b9cef3145381721fa950c89718fe71849ac2a55 Mon Sep 17 00:00:00 2001 From: Joe Runde Date: Tue, 10 Dec 2024 09:38:23 -0700 Subject: [PATCH 098/733] [Bugfix] Backport request id validation to v0 (#11036) Signed-off-by: Joe Runde --- vllm/engine/multiprocessing/client.py | 4 ++++ vllm/v1/engine/async_llm.py | 2 +- 2 files changed, 5 insertions(+), 1 deletion(-) diff --git a/vllm/engine/multiprocessing/client.py b/vllm/engine/multiprocessing/client.py index 32bd83305bb8f..a729023bc00bb 100644 --- a/vllm/engine/multiprocessing/client.py +++ b/vllm/engine/multiprocessing/client.py @@ -576,6 +576,10 @@ async def _process_request( if self._errored_with is not None: raise ENGINE_DEAD_ERROR(self._errored_with) + # Ensure the request id is unique among running requests + if request_id in self.output_queues: + raise ValueError(f"Request {request_id} already exists") + # Constructing guided decoding logits processors is expensive, so we do # it here to avoid contending with cpu resources and the GIL on the # backend process. diff --git a/vllm/v1/engine/async_llm.py b/vllm/v1/engine/async_llm.py index 26fd650aee4b7..24cafeff63d1e 100644 --- a/vllm/v1/engine/async_llm.py +++ b/vllm/v1/engine/async_llm.py @@ -152,7 +152,7 @@ async def add_request( """Add new request to the AsyncLLM.""" if self.detokenizer.is_request_active(request_id): - raise KeyError(f"Request {request_id} already exists.") + raise ValueError(f"Request {request_id} already exists.") # 1) Create a new AsyncStream for the request. stream = self._add_request_to_streams(request_id) From 250ee65d72a0c7b86ec5cea9cbe9377da21d6439 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fl=C3=A1via=20B=C3=A9o?= <119421251+flaviabeo@users.noreply.github.com> Date: Tue, 10 Dec 2024 14:38:15 -0300 Subject: [PATCH 099/733] [BUG] Remove token param #10921 (#11022) Signed-off-by: Flavia Beo --- vllm/transformers_utils/config.py | 63 ++++++++++++++----------------- 1 file changed, 29 insertions(+), 34 deletions(-) diff --git a/vllm/transformers_utils/config.py b/vllm/transformers_utils/config.py index 3da99bcbee9ae..4529cf27ef565 100644 --- a/vllm/transformers_utils/config.py +++ b/vllm/transformers_utils/config.py @@ -1,5 +1,6 @@ import enum import json +import os from pathlib import Path from typing import Any, Dict, Optional, Type, Union @@ -41,6 +42,7 @@ from transformers import AutoConfig MISTRAL_CONFIG_NAME = "params.json" +HF_TOKEN = os.getenv('HF_TOKEN', None) logger = init_logger(__name__) @@ -77,8 +79,8 @@ class ConfigFormat(str, enum.Enum): MISTRAL = "mistral" -def file_or_path_exists(model: Union[str, Path], config_name, revision, - token) -> bool: +def file_or_path_exists(model: Union[str, Path], config_name: str, + revision: Optional[str]) -> bool: if Path(model).exists(): return (Path(model) / config_name).is_file() @@ -93,7 +95,10 @@ def file_or_path_exists(model: Union[str, Path], config_name, revision, # NB: file_exists will only check for the existence of the config file on # hf_hub. This will fail in offline mode. try: - return file_exists(model, config_name, revision=revision, token=token) + return file_exists(model, + config_name, + revision=revision, + token=HF_TOKEN) except huggingface_hub.errors.OfflineModeIsEnabled: # Don't raise in offline mode, all we know is that we don't have this # file cached. @@ -161,7 +166,6 @@ def get_config( revision: Optional[str] = None, code_revision: Optional[str] = None, config_format: ConfigFormat = ConfigFormat.AUTO, - token: Optional[str] = None, **kwargs, ) -> PretrainedConfig: # Separate model folder from file path for GGUF models @@ -173,19 +177,20 @@ def get_config( if config_format == ConfigFormat.AUTO: if is_gguf or file_or_path_exists( - model, HF_CONFIG_NAME, revision=revision, token=token): + model, HF_CONFIG_NAME, revision=revision): config_format = ConfigFormat.HF - elif file_or_path_exists(model, - MISTRAL_CONFIG_NAME, - revision=revision, - token=token): + elif file_or_path_exists(model, MISTRAL_CONFIG_NAME, + revision=revision): config_format = ConfigFormat.MISTRAL else: # If we're in offline mode and found no valid config format, then # raise an offline mode error to indicate to the user that they # don't have files cached and may need to go online. # This is conveniently triggered by calling file_exists(). - file_exists(model, HF_CONFIG_NAME, revision=revision, token=token) + file_exists(model, + HF_CONFIG_NAME, + revision=revision, + token=HF_TOKEN) raise ValueError(f"No supported config format found in {model}") @@ -194,7 +199,7 @@ def get_config( model, revision=revision, code_revision=code_revision, - token=token, + token=HF_TOKEN, **kwargs, ) @@ -206,7 +211,7 @@ def get_config( model, revision=revision, code_revision=code_revision, - token=token, + token=HF_TOKEN, **kwargs, ) else: @@ -216,7 +221,7 @@ def get_config( trust_remote_code=trust_remote_code, revision=revision, code_revision=code_revision, - token=token, + token=HF_TOKEN, **kwargs, ) except ValueError as e: @@ -234,7 +239,7 @@ def get_config( raise e elif config_format == ConfigFormat.MISTRAL: - config = load_params_config(model, revision, token=token, **kwargs) + config = load_params_config(model, revision, token=HF_TOKEN, **kwargs) else: raise ValueError(f"Unsupported config format: {config_format}") @@ -256,8 +261,7 @@ def get_config( def get_hf_file_to_dict(file_name: str, model: Union[str, Path], - revision: Optional[str] = 'main', - token: Optional[str] = None): + revision: Optional[str] = 'main'): """ Downloads a file from the Hugging Face Hub and returns its contents as a dictionary. @@ -266,7 +270,6 @@ def get_hf_file_to_dict(file_name: str, - file_name (str): The name of the file to download. - model (str): The name of the model on the Hugging Face Hub. - revision (str): The specific version of the model. - - token (str): The Hugging Face authentication token. Returns: - config_dict (dict): A dictionary containing @@ -276,8 +279,7 @@ def get_hf_file_to_dict(file_name: str, if file_or_path_exists(model=model, config_name=file_name, - revision=revision, - token=token): + revision=revision): if not file_path.is_file(): try: @@ -296,9 +298,7 @@ def get_hf_file_to_dict(file_name: str, return None -def get_pooling_config(model: str, - revision: Optional[str] = 'main', - token: Optional[str] = None): +def get_pooling_config(model: str, revision: Optional[str] = 'main'): """ This function gets the pooling and normalize config from the model - only applies to @@ -315,8 +315,7 @@ def get_pooling_config(model: str, """ modules_file_name = "modules.json" - modules_dict = get_hf_file_to_dict(modules_file_name, model, revision, - token) + modules_dict = get_hf_file_to_dict(modules_file_name, model, revision) if modules_dict is None: return None @@ -332,8 +331,7 @@ def get_pooling_config(model: str, if pooling: pooling_file_name = "{}/config.json".format(pooling["path"]) - pooling_dict = get_hf_file_to_dict(pooling_file_name, model, revision, - token) + pooling_dict = get_hf_file_to_dict(pooling_file_name, model, revision) pooling_type_name = next( (item for item, val in pooling_dict.items() if val is True), None) @@ -368,8 +366,8 @@ def get_pooling_config_name(pooling_name: str) -> Union[str, None]: def get_sentence_transformer_tokenizer_config(model: str, - revision: Optional[str] = 'main', - token: Optional[str] = None): + revision: Optional[str] = 'main' + ): """ Returns the tokenization configuration dictionary for a given Sentence Transformer BERT model. @@ -379,7 +377,6 @@ def get_sentence_transformer_tokenizer_config(model: str, BERT model. - revision (str, optional): The revision of the m odel to use. Defaults to 'main'. - - token (str): A Hugging Face access token. Returns: - dict: A dictionary containing the configuration parameters @@ -394,7 +391,7 @@ def get_sentence_transformer_tokenizer_config(model: str, "sentence_xlm-roberta_config.json", "sentence_xlnet_config.json", ]: - encoder_dict = get_hf_file_to_dict(config_name, model, revision, token) + encoder_dict = get_hf_file_to_dict(config_name, model, revision) if encoder_dict: break @@ -474,16 +471,14 @@ def _reduce_config(config: VllmConfig): exc_info=e) -def load_params_config(model: Union[str, Path], - revision: Optional[str], - token: Optional[str] = None, +def load_params_config(model: Union[str, Path], revision: Optional[str], **kwargs) -> PretrainedConfig: # This function loads a params.json config which # should be used when loading models in mistral format config_file_name = "params.json" - config_dict = get_hf_file_to_dict(config_file_name, model, revision, token) + config_dict = get_hf_file_to_dict(config_file_name, model, revision) assert isinstance(config_dict, dict) config_mapping = { From e7391949267a4eff3d84f02119f442f46b16d163 Mon Sep 17 00:00:00 2001 From: Russell Bryant Date: Tue, 10 Dec 2024 15:08:16 -0500 Subject: [PATCH 100/733] [Core] Update to outlines >= 0.1.8 (#10576) Signed-off-by: Russell Bryant --- requirements-common.txt | 2 +- .../guided_decoding/outlines_logits_processors.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/requirements-common.txt b/requirements-common.txt index 112528880c0ac..c71fc458aca13 100644 --- a/requirements-common.txt +++ b/requirements-common.txt @@ -18,7 +18,7 @@ prometheus_client >= 0.18.0 prometheus-fastapi-instrumentator >= 7.0.0 tiktoken >= 0.6.0 # Required for DBRX tokenizer lm-format-enforcer >= 0.10.9, < 0.11 -outlines >= 0.0.43, < 0.1 +outlines >= 0.1.8 xgrammar >= 0.1.6; platform_machine == "x86_64" typing_extensions >= 4.10 filelock >= 3.16.1 # need to contain https://github.com/tox-dev/filelock/pull/317 diff --git a/vllm/model_executor/guided_decoding/outlines_logits_processors.py b/vllm/model_executor/guided_decoding/outlines_logits_processors.py index e1309c31f77e7..1f0dbe024609d 100644 --- a/vllm/model_executor/guided_decoding/outlines_logits_processors.py +++ b/vllm/model_executor/guided_decoding/outlines_logits_processors.py @@ -99,7 +99,7 @@ class RegexLogitsProcessor(BaseLogitsProcessor): def _get_guide(cls, regex_string: str, tokenizer: PreTrainedTokenizerBase) -> Guide: tokenizer = _adapt_tokenizer(tokenizer) - return RegexGuide(regex_string, tokenizer) + return RegexGuide.from_regex(regex_string, tokenizer) def __init__(self, regex_string: str, tokenizer: PreTrainedTokenizerBase): """Compile the FSM that drives the regex-structured generation. From 75f89dc44c6e44cc28bae59d5b40a588735b507b Mon Sep 17 00:00:00 2001 From: youkaichao Date: Tue, 10 Dec 2024 12:40:52 -0800 Subject: [PATCH 101/733] [torch.compile] add a flag to track batchsize statistics (#11059) Signed-off-by: youkaichao --- vllm/envs.py | 3 +++ vllm/forward_context.py | 32 +++++++++++++++++++++++- vllm/v1/attention/backends/flash_attn.py | 1 + vllm/v1/worker/gpu_model_runner.py | 2 ++ 4 files changed, 37 insertions(+), 1 deletion(-) diff --git a/vllm/envs.py b/vllm/envs.py index ab12a7b48dc53..be5d9985b63a4 100644 --- a/vllm/envs.py +++ b/vllm/envs.py @@ -69,6 +69,7 @@ VLLM_DISABLED_KERNELS: List[str] = [] VLLM_USE_V1: bool = False VLLM_ENABLE_V1_MULTIPROCESSING: bool = False + VLLM_LOG_BATCHSIZE_INTERVAL: float = -1 def get_default_cache_root(): @@ -452,6 +453,8 @@ def get_default_config_root(): # If set, enable multiprocessing in LLM for the V1 code path. "VLLM_ENABLE_V1_MULTIPROCESSING": lambda: bool(int(os.getenv("VLLM_ENABLE_V1_MULTIPROCESSING", "0"))), + "VLLM_LOG_BATCHSIZE_INTERVAL": + lambda: float(os.getenv("VLLM_LOG_BATCHSIZE_INTERVAL", "-1")), } # end-env-vars-definition diff --git a/vllm/forward_context.py b/vllm/forward_context.py index aaa3e4bb3a1e8..cd136f43c0c57 100644 --- a/vllm/forward_context.py +++ b/vllm/forward_context.py @@ -1,8 +1,19 @@ +import time +from collections import Counter from contextlib import contextmanager from dataclasses import dataclass from typing import Any, Dict, Optional +import vllm.envs as envs from vllm.config import VllmConfig +from vllm.logger import init_logger + +logger = init_logger(__name__) + +track_batchsize: bool = envs.VLLM_LOG_BATCHSIZE_INTERVAL >= 0 +batchsize_counter: Counter = Counter() +last_logging_time: float = 0 +batchsize_logging_interval: float = envs.VLLM_LOG_BATCHSIZE_INTERVAL @dataclass @@ -26,7 +37,26 @@ def get_forward_context() -> ForwardContext: @contextmanager def set_forward_context(context: Any, vllm_config: VllmConfig): """A context manager that stores the current forward context, - can be attention metadata, etc.""" + can be attention metadata, etc. + Here we can inject common logic for every model forward pass. + """ + global track_batchsize, batchsize_counter + global last_logging_time, batchsize_logging_interval + if track_batchsize and context is not None: + if hasattr(context, "num_prefill_tokens"): + # for v0 attention backends + batchsize = context.num_prefill_tokens + context.num_decode_tokens + else: + # for v1 attention backends + batchsize = context.num_input_tokens + batchsize_counter[batchsize] += 1 + if time.monotonic() - last_logging_time > batchsize_logging_interval: + last_logging_time = time.monotonic() + sorted_data = sorted(batchsize_counter.items(), + key=lambda x: x[1], + reverse=True) + logger.info("Batchsize distribution (batchsize, count): %s", + sorted_data) global _forward_context prev_context = _forward_context _forward_context = ForwardContext( diff --git a/vllm/v1/attention/backends/flash_attn.py b/vllm/v1/attention/backends/flash_attn.py index 251a103e60f06..c9f04ace644c7 100644 --- a/vllm/v1/attention/backends/flash_attn.py +++ b/vllm/v1/attention/backends/flash_attn.py @@ -56,6 +56,7 @@ class FlashAttentionMetadata: seq_start_loc: torch.Tensor block_table: torch.Tensor slot_mapping: torch.Tensor + num_input_tokens: int = 0 # Number of tokens including padding. class FlashAttentionImpl(AttentionImpl): diff --git a/vllm/v1/worker/gpu_model_runner.py b/vllm/v1/worker/gpu_model_runner.py index 0a5adfb28c9bd..a3335fa838352 100644 --- a/vllm/v1/worker/gpu_model_runner.py +++ b/vllm/v1/worker/gpu_model_runner.py @@ -445,6 +445,8 @@ def execute_model( # Eager mode. num_input_tokens = num_scheduled_tokens + attn_metadata.num_input_tokens = num_input_tokens + # Get the inputs embeds. if encoder_outputs: inputs_embeds = self.model.get_input_embeddings( From 134810b3d9a05510622282479f0f9e2114b88017 Mon Sep 17 00:00:00 2001 From: Woosuk Kwon Date: Tue, 10 Dec 2024 14:41:23 -0800 Subject: [PATCH 102/733] [V1][Bugfix] Always set enable_chunked_prefill = True for V1 (#11061) Signed-off-by: Woosuk Kwon --- vllm/engine/arg_utils.py | 21 ++++++++++++--------- 1 file changed, 12 insertions(+), 9 deletions(-) diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index 3db069ec64ee4..7b9adc401abcf 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -122,7 +122,7 @@ class EngineArgs: cpu_offload_gb: float = 0 # GiB gpu_memory_utilization: float = 0.90 max_num_batched_tokens: Optional[int] = None - max_num_seqs: int = 256 + max_num_seqs: Optional[int] = None max_logprobs: int = 20 # Default value for OpenAI Chat Completions API disable_log_stats: bool = False revision: Optional[str] = None @@ -205,6 +205,9 @@ def __post_init__(self): # by user. if self.enable_prefix_caching is None: self.enable_prefix_caching = bool(envs.VLLM_USE_V1) + # Override max_num_seqs if it's not set by user. + if self.max_num_seqs is None: + self.max_num_seqs = 256 if not envs.VLLM_USE_V1 else 1024 # support `EngineArgs(compilation_config={...})` # without having to manually construct a @@ -1225,19 +1228,19 @@ def _override_v1_engine_args(self, usage_context: UsageContext) -> None: """ assert envs.VLLM_USE_V1, "V1 is not enabled" + # V1 always uses chunked prefills. + self.enable_chunked_prefill = True + # When no user override, set the default values based on the usage + # context. + # TODO(woosuk): Tune the default values for different hardware. if self.max_num_batched_tokens is None: - # When no user override, set the default values based on the - # usage context. if usage_context == UsageContext.LLM_CLASS: - logger.warning("Setting max_num_batched_tokens to 8192 " - "for LLM_CLASS usage context.") - self.max_num_seqs = 1024 self.max_num_batched_tokens = 8192 elif usage_context == UsageContext.OPENAI_API_SERVER: - logger.warning("Setting max_num_batched_tokens to 2048 " - "for OPENAI_API_SERVER usage context.") - self.max_num_seqs = 1024 self.max_num_batched_tokens = 2048 + logger.warning( + "Setting max_num_batched_tokens to %d for %s usage context.", + self.max_num_batched_tokens, usage_context.value) def _override_v1_engine_config(self, engine_config: VllmConfig) -> None: """ From 84eeed21f9caf808a3b9dbe85618d5003cf256f7 Mon Sep 17 00:00:00 2001 From: Gregory Shtrasberg <156009573+gshtras@users.noreply.github.com> Date: Tue, 10 Dec 2024 19:10:20 -0500 Subject: [PATCH 103/733] Reverting triton commit to the one which showed a better performance with the existing tuning, prior to moving all the way forward to release/3.2.x; Using the correct hipblaslt version in the name (#315) --- Dockerfile.base | 6 +++--- Dockerfile.rocm | 2 +- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/Dockerfile.base b/Dockerfile.base index 1a87eb91b04b4..fa7200b947fd0 100644 --- a/Dockerfile.base +++ b/Dockerfile.base @@ -26,7 +26,7 @@ RUN apt-get update -y \ && curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \ && python3 --version && python3 -m pip --version -RUN pip install -U packaging cmake ninja wheel setuptools Cython +RUN pip install -U packaging cmake ninja wheel setuptools pybind11 Cython FROM base AS build_hipblaslt ARG HIPBLASLT_BRANCH="507a649" @@ -50,7 +50,7 @@ RUN cd rccl \ RUN mkdir -p /app/install && cp /app/rccl/build/release/*.deb /app/install FROM base AS build_triton -ARG TRITON_BRANCH="release/3.1.x" +ARG TRITON_BRANCH="e192dba" ARG TRITON_REPO="https://github.com/triton-lang/triton.git" RUN git clone ${TRITON_REPO} RUN cd triton \ @@ -104,4 +104,4 @@ RUN --mount=type=bind,from=build_triton,src=/app/install/,target=/install \ RUN --mount=type=bind,from=build_amdsmi,src=/app/install/,target=/install \ pip install /install/*.whl RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \ - pip install /install/*.whl \ No newline at end of file + pip install /install/*.whl diff --git a/Dockerfile.rocm b/Dockerfile.rocm index 2334024ec65b5..b665bbd42709b 100644 --- a/Dockerfile.rocm +++ b/Dockerfile.rocm @@ -3,7 +3,7 @@ ARG REMOTE_VLLM="0" ARG USE_CYTHON="0" ARG BUILD_RPD="1" ARG COMMON_WORKDIR=/app -ARG BASE_IMAGE=rocm/vllm-dev:base_ubuntu22.04_py3.12_ROCm6.3_hipblaslt0.11_torch2.6 +ARG BASE_IMAGE=rocm/vllm-dev:base_ubuntu22.04_py3.12_ROCm6.3_hipblaslt0.12_torch2.6 FROM ${BASE_IMAGE} AS base From 9a93973708d7f52f1d1439f8f32b8c1514d18b86 Mon Sep 17 00:00:00 2001 From: Tyler Michael Smith Date: Tue, 10 Dec 2024 19:16:22 -0500 Subject: [PATCH 104/733] [Bugfix] Fix Mamba multistep (#11071) Signed-off-by: Tyler Michael Smith --- vllm/attention/backends/placeholder_attn.py | 64 ++++++++++++++++++++- vllm/worker/multi_step_model_runner.py | 4 +- 2 files changed, 66 insertions(+), 2 deletions(-) diff --git a/vllm/attention/backends/placeholder_attn.py b/vllm/attention/backends/placeholder_attn.py index 888adbffb8578..658039bfc3365 100644 --- a/vllm/attention/backends/placeholder_attn.py +++ b/vllm/attention/backends/placeholder_attn.py @@ -11,7 +11,8 @@ from vllm.multimodal import MultiModalPlaceholderMap if TYPE_CHECKING: - from vllm.worker.model_runner import ModelInputForGPUBuilder + from vllm.worker.model_runner import (ModelInputForGPUBuilder, + ModelInputForGPUWithSamplingMetadata) # Placeholder attention backend for models like Mamba and embedding models that # lack attention. @@ -186,6 +187,67 @@ def decode_metadata(self) -> Optional["PlaceholderAttentionMetadata"]: ) return self._cached_decode_metadata + def advance_step(self, + model_input: "ModelInputForGPUWithSamplingMetadata", + sampled_token_ids: Optional[torch.Tensor], + block_size: int, + num_seqs: int, + num_queries: int, + turn_prefills_into_decodes: bool = False): + """ + Update metadata in-place to advance one decode step. + """ + # When using cudagraph, the num_seqs is padded to the next captured + # batch sized, but num_queries tracks the actual number of requests in + # the batch. For --enforce-eager mode, num_seqs == num_queries + if num_seqs != num_queries: + assert num_seqs > num_queries + assert self.use_cuda_graph + + assert not turn_prefills_into_decodes, \ + ("Multi-Step + Chunked-Prefill is not supported for attention-free" + "models. turn_prefills_into_decodes is a " + "Multi-Step + Chunked-Prefill specific parameter.") + + assert self.seq_lens is not None + assert self.max_decode_seq_len == max(self.seq_lens) + + assert self.num_prefills == 0 + assert self.num_prefill_tokens == 0 + assert self.num_decode_tokens == num_seqs + + assert self.seq_lens is not None + assert len(self.seq_lens) == num_seqs + assert self.seq_lens_tensor is not None + assert self.seq_lens_tensor.shape == (num_seqs, ) + assert self.max_query_len == 1 + assert self.max_prefill_seq_len == 0 + + assert self.query_start_loc is not None + assert self.query_start_loc.shape == (num_queries + 1, ) + assert self.seq_start_loc is not None + assert self.seq_start_loc.shape == (num_seqs + 1, ) + + assert self.context_lens_tensor is not None + assert self.context_lens_tensor.shape == (num_queries, ) + + assert self.block_tables is not None + + # Update query lengths. Note that we update only queries and not seqs, + # since tensors may be padded due to captured cuda graph batch size + for i in range(num_queries): + self.seq_lens[i] += 1 + self.max_decode_seq_len = max(self.seq_lens) + + # Update sequences, masking off entries greater than num_queries + device = self.seq_lens_tensor.device + mask = torch.arange(self.seq_lens_tensor.size(0), + device=device) < num_queries + self.seq_lens_tensor += mask.to(self.seq_lens_tensor.dtype) + if sampled_token_ids is not None: + model_input.input_tokens.masked_scatter_( + mask, sampled_token_ids[:num_queries]) + class PlaceholderAttentionMetadataBuilder( AttentionMetadataBuilder[PlaceholderAttentionMetadata]): diff --git a/vllm/worker/multi_step_model_runner.py b/vllm/worker/multi_step_model_runner.py index 3ca0d88a42183..e08a61e31fe42 100644 --- a/vllm/worker/multi_step_model_runner.py +++ b/vllm/worker/multi_step_model_runner.py @@ -29,7 +29,9 @@ logger = init_logger(__name__) -MULTI_STEP_ATTENTION_BACKENDS = ["FLASH_ATTN", "ROCM_FLASH", "FLASHINFER"] +MULTI_STEP_ATTENTION_BACKENDS = [ + "FLASH_ATTN", "ROCM_FLASH", "FLASHINFER", "NO_ATTENTION" +] MULTI_STEP_CHUNKED_PREFILL_ATTENTION_BACKENDS = ["FLASH_ATTN"] def _get_supported_attention_backends(chunked_prefill_enabled: bool) \ From eb4d191ec20819099bb28d565bf9258e2791ac78 Mon Sep 17 00:00:00 2001 From: Gregory Shtrasberg <156009573+gshtras@users.noreply.github.com> Date: Tue, 10 Dec 2024 19:18:29 -0500 Subject: [PATCH 105/733] Navi docker (#316) * Adjusted Dockerfile.base to the Navi architecture * Using navi base docker as a separate file --- Dockerfile.base_navi | 99 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 99 insertions(+) create mode 100644 Dockerfile.base_navi diff --git a/Dockerfile.base_navi b/Dockerfile.base_navi new file mode 100644 index 0000000000000..d9449843f1bfd --- /dev/null +++ b/Dockerfile.base_navi @@ -0,0 +1,99 @@ +ARG BASE_IMAGE=rocm/dev-ubuntu-22.04:6.3-complete +FROM ${BASE_IMAGE} AS base + +ENV PATH=/opt/rocm/llvm/bin:$PATH +ENV ROCM_PATH=/opt/rocm +ENV LD_LIBRARY_PATH=/opt/rocm/lib:/usr/local/lib: +ARG PYTORCH_ROCM_ARCH=gfx1100;gfx1101;gfx1200;gfx1201 +ENV PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} + +ARG PYTHON_VERSION=3.12 + +RUN mkdir -p /app +WORKDIR /app +ENV DEBIAN_FRONTEND=noninteractive + +# Install Python and other dependencies +RUN apt-get update -y \ + && apt-get install -y software-properties-common git curl sudo vim less \ + && add-apt-repository ppa:deadsnakes/ppa \ + && apt-get update -y \ + && apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \ + python${PYTHON_VERSION}-lib2to3 python-is-python3 \ + && update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \ + && update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \ + && ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \ + && curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \ + && python3 --version && python3 -m pip --version + +RUN pip install -U packaging cmake ninja wheel setuptools Cython + +FROM base AS build_hipblaslt +ARG HIPBLASLT_BRANCH="d43d84a" +# Set to "--legacy_hipblas_direct" for ROCm<=6.2 +ARG LEGACY_HIPBLASLT_OPTION= +RUN git clone https://github.com/ROCm/hipBLASLt +RUN cd hipBLASLt \ + && git checkout ${HIPBLASLT_BRANCH} \ + && ./install.sh -d --architecture ${PYTORCH_ROCM_ARCH} ${LEGACY_HIPBLASLT_OPTION} \ + && cd build/release \ + && make package +RUN mkdir -p /app/install && cp /app/hipBLASLt/build/release/*.deb /app/install + +FROM base AS build_rccl +ARG RCCL_BRANCH="dfe4a3e" +ARG RCCL_REPO="https://github.com/ROCm/rccl" +RUN git clone ${RCCL_REPO} +RUN cd rccl \ + && git checkout ${RCCL_BRANCH} \ + && ./install.sh -p --amdgpu_targets ${PYTORCH_ROCM_ARCH} +RUN mkdir -p /app/install && cp /app/rccl/build/release/*.deb /app/install + +FROM base AS build_triton +ARG TRITON_BRANCH="release/3.1.x" +ARG TRITON_REPO="https://github.com/triton-lang/triton.git" +RUN git clone ${TRITON_REPO} +RUN cd triton \ + && git checkout ${TRITON_BRANCH} \ + && cd python \ + && python3 setup.py bdist_wheel --dist-dir=dist +RUN mkdir -p /app/install && cp /app/triton/python/dist/*.whl /app/install + +FROM base AS build_amdsmi +RUN cd /opt/rocm/share/amd_smi \ + && pip wheel . --wheel-dir=dist +RUN mkdir -p /app/install && cp /opt/rocm/share/amd_smi/dist/*.whl /app/install + +FROM base AS build_pytorch +ARG PYTORCH_BRANCH="8bc4033" +ARG PYTORCH_VISION_BRANCH="v0.19.1" +ARG PYTORCH_REPO="https://github.com/pytorch/pytorch.git" +ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git" +RUN git clone ${PYTORCH_REPO} pytorch +RUN cd pytorch && git checkout ${PYTORCH_BRANCH} && \ + pip install -r requirements.txt && git submodule update --init --recursive \ + && python3 tools/amd_build/build_amd.py \ + && CMAKE_PREFIX_PATH=$(python3 -c 'import sys; print(sys.prefix)') python3 setup.py bdist_wheel --dist-dir=dist \ + && pip install dist/*.whl +RUN git clone ${PYTORCH_VISION_REPO} vision +RUN cd vision && git checkout ${PYTORCH_VISION_BRANCH} \ + && python3 setup.py bdist_wheel --dist-dir=dist \ + && pip install dist/*.whl +RUN mkdir -p /app/install && cp /app/pytorch/dist/*.whl /app/install \ + && cp /app/vision/dist/*.whl /app/install + +FROM base AS final +RUN --mount=type=bind,from=build_hipblaslt,src=/app/install/,target=/install \ + dpkg -i /install/*deb \ + && sed -i 's/, hipblaslt-dev \(.*\), hipcub-dev/, hipcub-dev/g' /var/lib/dpkg/status \ + && sed -i 's/, hipblaslt \(.*\), hipfft/, hipfft/g' /var/lib/dpkg/status +RUN --mount=type=bind,from=build_rccl,src=/app/install/,target=/install \ + dpkg -i /install/*deb \ + && sed -i 's/, rccl-dev \(.*\), rocalution/, rocalution/g' /var/lib/dpkg/status \ + && sed -i 's/, rccl \(.*\), rocalution/, rocalution/g' /var/lib/dpkg/status +RUN --mount=type=bind,from=build_triton,src=/app/install/,target=/install \ + pip install /install/*.whl +RUN --mount=type=bind,from=build_amdsmi,src=/app/install/,target=/install \ + pip install /install/*.whl +RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \ + pip install /install/*.whl \ No newline at end of file From d5c5154fcf4c5d65551c98e458cbb027e5f4b672 Mon Sep 17 00:00:00 2001 From: Aurick Qiao Date: Tue, 10 Dec 2024 21:09:20 -0500 Subject: [PATCH 106/733] [Misc] LoRA + Chunked Prefill (#9057) --- tests/lora/test_chatglm3_tp.py | 9 ++++++--- tests/lora/test_gemma.py | 3 ++- tests/lora/test_llama_tp.py | 6 +++++- tests/lora/test_long_context.py | 3 ++- tests/lora/test_minicpmv.py | 3 ++- tests/lora/test_minicpmv_tp.py | 2 ++ tests/lora/test_mixtral.py | 1 + tests/lora/test_phi.py | 3 ++- tests/lora/test_quant_model.py | 9 ++++++--- vllm/config.py | 3 ++- vllm/core/scheduler.py | 15 ++++++++++++--- vllm/worker/model_runner.py | 12 +++++++----- 12 files changed, 49 insertions(+), 20 deletions(-) diff --git a/tests/lora/test_chatglm3_tp.py b/tests/lora/test_chatglm3_tp.py index f17464573459f..49a527b99ac16 100644 --- a/tests/lora/test_chatglm3_tp.py +++ b/tests/lora/test_chatglm3_tp.py @@ -53,7 +53,8 @@ def test_chatglm3_lora(chatglm3_lora_files): max_loras=4, max_lora_rank=64, tensor_parallel_size=1, - trust_remote_code=True) + trust_remote_code=True, + enable_chunked_prefill=True) output1 = do_sample(llm, chatglm3_lora_files, lora_id=1) for i in range(len(EXPECTED_LORA_OUTPUT)): @@ -73,7 +74,8 @@ def test_chatglm3_lora_tp4(chatglm3_lora_files): max_lora_rank=64, tensor_parallel_size=4, trust_remote_code=True, - fully_sharded_loras=False) + fully_sharded_loras=False, + enable_chunked_prefill=True) output1 = do_sample(llm, chatglm3_lora_files, lora_id=1) for i in range(len(EXPECTED_LORA_OUTPUT)): @@ -93,7 +95,8 @@ def test_chatglm3_lora_tp4_fully_sharded_loras(chatglm3_lora_files): max_lora_rank=64, tensor_parallel_size=4, trust_remote_code=True, - fully_sharded_loras=True) + fully_sharded_loras=True, + enable_chunked_prefill=True) output1 = do_sample(llm, chatglm3_lora_files, lora_id=1) for i in range(len(EXPECTED_LORA_OUTPUT)): assert output1[i] == EXPECTED_LORA_OUTPUT[i] diff --git a/tests/lora/test_gemma.py b/tests/lora/test_gemma.py index 15ec66b0f5502..5ae705e474ec6 100644 --- a/tests/lora/test_gemma.py +++ b/tests/lora/test_gemma.py @@ -37,7 +37,8 @@ def test_gemma_lora(gemma_lora_files): llm = vllm.LLM(MODEL_PATH, max_model_len=1024, enable_lora=True, - max_loras=4) + max_loras=4, + enable_chunked_prefill=True) expected_lora_output = [ "more important than knowledge.\nAuthor: Albert Einstein\n", diff --git a/tests/lora/test_llama_tp.py b/tests/lora/test_llama_tp.py index d3ca7f878191a..dfeac380951d8 100644 --- a/tests/lora/test_llama_tp.py +++ b/tests/lora/test_llama_tp.py @@ -78,7 +78,8 @@ def test_llama_lora(sql_lora_files): enable_lora=True, max_num_seqs=16, max_loras=4, - tensor_parallel_size=1) + tensor_parallel_size=1, + enable_chunked_prefill=True) generate_and_test(llm, sql_lora_files) @@ -120,6 +121,7 @@ def test_llama_lora_tp4(sql_lora_files): max_num_seqs=16, max_loras=4, tensor_parallel_size=4, + enable_chunked_prefill=True, ) generate_and_test(llm, sql_lora_files) @@ -135,6 +137,7 @@ def test_llama_lora_tp4_fully_sharded_loras(sql_lora_files): max_loras=4, tensor_parallel_size=4, fully_sharded_loras=True, + enable_chunked_prefill=True, ) generate_and_test(llm, sql_lora_files) @@ -151,5 +154,6 @@ def test_llama_lora_tp4_fully_sharded_enable_bias(sql_lora_files): tensor_parallel_size=4, fully_sharded_loras=True, enable_lora_bias=True, + enable_chunked_prefill=True, ) generate_and_test(llm, sql_lora_files) diff --git a/tests/lora/test_long_context.py b/tests/lora/test_long_context.py index eada902c891f7..e7a34f2ced7ed 100644 --- a/tests/lora/test_long_context.py +++ b/tests/lora/test_long_context.py @@ -124,7 +124,8 @@ def lora_llm(long_context_infos): tensor_parallel_size=4, # FIXME enable async output processor disable_async_output_proc=True, - distributed_executor_backend="mp") + distributed_executor_backend="mp", + enable_chunked_prefill=True) yield llm del llm diff --git a/tests/lora/test_minicpmv.py b/tests/lora/test_minicpmv.py index 2c45ce5141f7d..1f3de9edc0d0f 100644 --- a/tests/lora/test_minicpmv.py +++ b/tests/lora/test_minicpmv.py @@ -67,7 +67,8 @@ def test_minicpmv_lora(minicpmv_lora_files): max_loras=4, max_lora_rank=64, trust_remote_code=True, - gpu_memory_utilization=0.97 # This model is pretty big for CI gpus + gpu_memory_utilization=0.97, # This model is pretty big for CI gpus + enable_chunked_prefill=True, ) output1 = do_sample(llm, minicpmv_lora_files, lora_id=1) for i in range(len(EXPECTED_OUTPUT)): diff --git a/tests/lora/test_minicpmv_tp.py b/tests/lora/test_minicpmv_tp.py index ba29e562e58ec..930f177953a5f 100644 --- a/tests/lora/test_minicpmv_tp.py +++ b/tests/lora/test_minicpmv_tp.py @@ -69,6 +69,7 @@ def test_minicpmv_tp2(minicpmv_lora_files, fully_sharded): tensor_parallel_size=2, trust_remote_code=True, fully_sharded_loras=fully_sharded, + enable_chunked_prefill=True, ) output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1) @@ -89,6 +90,7 @@ def test_minicpmv_tp4(minicpmv_lora_files, fully_sharded): tensor_parallel_size=4, trust_remote_code=True, fully_sharded_loras=fully_sharded, + enable_chunked_prefill=True, ) output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1) for i in range(len(EXPECTED_OUTPUT)): diff --git a/tests/lora/test_mixtral.py b/tests/lora/test_mixtral.py index dddc299da446b..150221dfce6ab 100644 --- a/tests/lora/test_mixtral.py +++ b/tests/lora/test_mixtral.py @@ -47,6 +47,7 @@ def test_mixtral_lora(mixtral_lora_files, tp_size): max_loras=4, distributed_executor_backend="ray", tensor_parallel_size=tp_size, + enable_chunked_prefill=True, ) expected_lora_output = [ diff --git a/tests/lora/test_phi.py b/tests/lora/test_phi.py index 733eff48a9bf3..5a3fcb8d690d9 100644 --- a/tests/lora/test_phi.py +++ b/tests/lora/test_phi.py @@ -53,7 +53,8 @@ def test_phi2_lora(phi2_lora_files): max_model_len=1024, enable_lora=True, max_loras=2, - enforce_eager=True) + enforce_eager=True, + enable_chunked_prefill=True) expected_lora_output = [ "SELECT catalog_publisher, COUNT(*) as num_catalogs FROM catalogs GROUP BY catalog_publisher ORDER BY num_catalogs DESC LIMIT 1;", # noqa: E501 diff --git a/tests/lora/test_quant_model.py b/tests/lora/test_quant_model.py index 5432fa4ad0d3a..026269667b473 100644 --- a/tests/lora/test_quant_model.py +++ b/tests/lora/test_quant_model.py @@ -84,7 +84,8 @@ def test_quant_model_lora(tinyllama_lora_files, num_gpus_available, model, tensor_parallel_size=tp_size, gpu_memory_utilization=0.2, #avoid OOM quantization=model.quantization, - trust_remote_code=True) + trust_remote_code=True, + enable_chunked_prefill=True) if model.quantization is None: expected_no_lora_output = [ @@ -176,7 +177,8 @@ def test_quant_model_tp_equality(tinyllama_lora_files, num_gpus_available, tensor_parallel_size=1, gpu_memory_utilization=0.2, #avoid OOM quantization=model.quantization, - trust_remote_code=True) + trust_remote_code=True, + enable_chunked_prefill=True) output_tp1 = do_sample(llm_tp1, tinyllama_lora_files, lora_id=1) del llm_tp1 @@ -189,7 +191,8 @@ def test_quant_model_tp_equality(tinyllama_lora_files, num_gpus_available, max_loras=4, tensor_parallel_size=2, gpu_memory_utilization=0.2, #avoid OOM - quantization=model.quantization) + quantization=model.quantization, + enable_chunked_prefill=True) output_tp2 = do_sample(llm_tp2, tinyllama_lora_files, lora_id=1) del llm_tp2 diff --git a/vllm/config.py b/vllm/config.py index 5fb9563fcf3a3..c66ddbb47f22e 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -1698,7 +1698,8 @@ def verify_with_scheduler_config(self, scheduler_config: SchedulerConfig): # Reminder: Please update docs/source/usage/compatibility_matrix.rst # If the feature combo become valid if scheduler_config.chunked_prefill_enabled: - raise ValueError("LoRA is not supported with chunked prefill yet.") + logger.warning("LoRA with chunked prefill is still experimental " + "and may be unstable.") @dataclass diff --git a/vllm/core/scheduler.py b/vllm/core/scheduler.py index d23009dae01ee..94c62743883ec 100644 --- a/vllm/core/scheduler.py +++ b/vllm/core/scheduler.py @@ -166,9 +166,18 @@ def is_empty(self) -> bool: and not self.blocks_to_swap_out and not self.blocks_to_copy) def _sort_by_lora_ids(self): - self.scheduled_seq_groups = sorted( - self.scheduled_seq_groups, - key=lambda g: (g.seq_group.lora_int_id, g.seq_group.request_id)) + assert 0 <= self.num_prefill_groups <= len(self.scheduled_seq_groups) + + def key_fn(group: ScheduledSequenceGroup): + key = (group.seq_group.lora_int_id, group.seq_group.request_id) + if 0 < self.num_prefill_groups < len(self.scheduled_seq_groups): + # Sort sequence groups so that all prefills come before all + # decodes as required by chunked prefill. + return (not group.seq_group.is_prefill(), *key) + return key + + self.scheduled_seq_groups = sorted(self.scheduled_seq_groups, + key=key_fn) @property def lora_requests(self) -> Set[LoRARequest]: diff --git a/vllm/worker/model_runner.py b/vllm/worker/model_runner.py index 1bc5f65c7127f..551b84435fdc0 100644 --- a/vllm/worker/model_runner.py +++ b/vllm/worker/model_runner.py @@ -622,11 +622,13 @@ def _compute_lora_input(self, inter_data: InterDataForSeqGroup, inter_data.lora_requests.add(seq_group_metadata.lora_request) query_len = inter_data.query_lens[seq_idx] inter_data.lora_index_mapping.append([lora_id] * query_len) - inter_data.lora_prompt_mapping.append( - [lora_id] * - (query_len if seq_group_metadata.sampling_params - and seq_group_metadata.sampling_params.prompt_logprobs is not None - else 1)) + sampling_params = seq_group_metadata.sampling_params + if sampling_params and sampling_params.prompt_logprobs is not None: + inter_data.lora_prompt_mapping.append([lora_id] * query_len) + elif not self.chunked_prefill_enabled or seq_group_metadata.do_sample: + inter_data.lora_prompt_mapping.append([lora_id]) + else: + inter_data.lora_prompt_mapping.append([]) def _compute_prompt_adapter_input( self, inter_data: InterDataForSeqGroup, From ffa48c9146fda1e8810d1cfa159e1d70aadae6c6 Mon Sep 17 00:00:00 2001 From: Mor Zusman Date: Wed, 11 Dec 2024 04:53:37 +0200 Subject: [PATCH 107/733] [Model] PP support for Mamba-like models (#10992) Signed-off-by: mzusman --- docs/source/models/supported_models.rst | 6 +- tests/distributed/test_pipeline_parallel.py | 6 +- vllm/config.py | 58 +++++++++---- vllm/model_executor/models/interfaces.py | 37 ++++++++ vllm/model_executor/models/jamba.py | 93 ++++++++++++++------- vllm/model_executor/models/mamba.py | 68 ++++++++++----- vllm/model_executor/models/registry.py | 11 ++- vllm/utils.py | 5 ++ vllm/v1/worker/gpu_model_runner.py | 8 +- vllm/v1/worker/gpu_worker.py | 6 +- vllm/worker/cache_engine.py | 12 +-- 11 files changed, 229 insertions(+), 81 deletions(-) diff --git a/docs/source/models/supported_models.rst b/docs/source/models/supported_models.rst index 4e5b10967e3bb..6540e023c1ab0 100644 --- a/docs/source/models/supported_models.rst +++ b/docs/source/models/supported_models.rst @@ -128,7 +128,7 @@ Text Generation - FalconMamba - :code:`tiiuae/falcon-mamba-7b`, :code:`tiiuae/falcon-mamba-7b-instruct`, etc. - ✅︎ - - + - ✅︎ * - :code:`GemmaForCausalLM` - Gemma - :code:`google/gemma-2b`, :code:`google/gemma-7b`, etc. @@ -193,7 +193,7 @@ Text Generation - Jamba - :code:`ai21labs/AI21-Jamba-1.5-Large`, :code:`ai21labs/AI21-Jamba-1.5-Mini`, :code:`ai21labs/Jamba-v0.1`, etc. - ✅︎ - - + - ✅︎ * - :code:`LlamaForCausalLM` - Llama 3.1, Llama 3, Llama 2, LLaMA, Yi - :code:`meta-llama/Meta-Llama-3.1-405B-Instruct`, :code:`meta-llama/Meta-Llama-3.1-70B`, :code:`meta-llama/Meta-Llama-3-70B-Instruct`, :code:`meta-llama/Llama-2-70b-hf`, :code:`01-ai/Yi-34B`, etc. @@ -203,7 +203,7 @@ Text Generation - Mamba - :code:`state-spaces/mamba-130m-hf`, :code:`state-spaces/mamba-790m-hf`, :code:`state-spaces/mamba-2.8b-hf`, etc. - - - + - ✅︎ * - :code:`MiniCPMForCausalLM` - MiniCPM - :code:`openbmb/MiniCPM-2B-sft-bf16`, :code:`openbmb/MiniCPM-2B-dpo-bf16`, :code:`openbmb/MiniCPM-S-1B-sft`, etc. diff --git a/tests/distributed/test_pipeline_parallel.py b/tests/distributed/test_pipeline_parallel.py index b818ca921fcb0..85d408efafe96 100644 --- a/tests/distributed/test_pipeline_parallel.py +++ b/tests/distributed/test_pipeline_parallel.py @@ -156,13 +156,13 @@ def iter_params(self, model_name: str): # "internlm/internlm-chat-7b": PPTestSettings.fast(), "internlm/internlm2-chat-7b": PPTestSettings.fast(trust_remote_code=True), "inceptionai/jais-13b-chat": PPTestSettings.fast(), - # TODO: Implement PP - # "ai21labs/AI21-Jamba-1.5-Mini": PPTestSettings.fast(), + "ai21labs/Jamba-tiny-dev": PPTestSettings.fast(), "meta-llama/Meta-Llama-3-8B": PPTestSettings.detailed(), "openbmb/MiniCPM-2B-sft-bf16": PPTestSettings.fast(trust_remote_code=True), "openbmb/MiniCPM3-4B": PPTestSettings.fast(trust_remote_code=True), # Uses Llama # "mistralai/Mistral-7B-Instruct-v0.1": PPTestSettings.fast(), + "state-spaces/mamba-130m-hf": PPTestSettings.fast(), "mistralai/Mixtral-8x7B-Instruct-v0.1": PPTestSettings.fast(tp_base=4), "mosaicml/mpt-7b": PPTestSettings.fast(), "nvidia/Minitron-8B-Base": PPTestSettings.fast(), @@ -234,6 +234,8 @@ def iter_params(self, model_name: str): "OpenGVLab/InternVL2-1B", "microsoft/Phi-3-vision-128k-instruct", "fixie-ai/ultravox-v0_3", + # [LANGUAGE GENERATION - HYBRID ARCH] + "ai21labs/Jamba-tiny-dev", ] diff --git a/vllm/config.py b/vllm/config.py index c66ddbb47f22e..2a9f0ebae997d 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -27,8 +27,8 @@ ConfigFormat, get_config, get_hf_image_processor_config, get_hf_text_config, get_pooling_config, get_sentence_transformer_tokenizer_config, is_encoder_decoder, uses_mrope) -from vllm.utils import (GiB_bytes, cuda_device_count_stateless, get_cpu_memory, - print_warning_once, random_uuid, +from vllm.utils import (GiB_bytes, LayerBlockType, cuda_device_count_stateless, + get_cpu_memory, print_warning_once, random_uuid, resolve_obj_by_qualname) if TYPE_CHECKING: @@ -284,6 +284,7 @@ def __init__( self._verify_tokenizer_mode() self.is_attention_free = self._init_attention_free() + self.is_hybrid = self._init_is_hybrid() self.has_inner_state = self._init_has_inner_state() if current_platform.is_neuron(): @@ -340,6 +341,10 @@ def _init_attention_free(self) -> bool: architectures = getattr(self.hf_config, "architectures", []) return ModelRegistry.is_attention_free_model(architectures) + def _init_is_hybrid(self) -> bool: + architectures = getattr(self.hf_config, "architectures", []) + return ModelRegistry.is_hybrid_model(architectures) + def _init_has_inner_state(self) -> bool: architectures = getattr(self.hf_config, "architectures", []) return ModelRegistry.model_has_inner_state(architectures) @@ -669,26 +674,51 @@ def get_num_attention_heads(self, num_heads = getattr(self.hf_text_config, "num_attention_heads", 0) return num_heads // parallel_config.tensor_parallel_size - def get_num_layers(self, parallel_config: "ParallelConfig") -> int: + def get_layers_start_end_indices( + self, parallel_config: "ParallelConfig") -> Tuple[int, int]: from vllm.distributed.utils import get_pp_indices total_num_hidden_layers = getattr(self.hf_text_config, "num_hidden_layers", 0) pp_rank = parallel_config.rank // parallel_config.tensor_parallel_size pp_size = parallel_config.pipeline_parallel_size start, end = get_pp_indices(total_num_hidden_layers, pp_rank, pp_size) - return end - start - - def get_num_attention_layers(self, - parallel_config: "ParallelConfig") -> int: - if self.is_attention_free: - return 0 + return start, end - num_layers = self.get_num_layers(parallel_config) + def get_num_layers(self, parallel_config: "ParallelConfig") -> int: + start, end = self.get_layers_start_end_indices(parallel_config) + return end - start - # Transformers supports layers_block_type @property - layers = getattr(self.hf_config, "layers_block_type", - ["attention"] * num_layers) - return len([t for t in layers if t == "attention"]) + def get_num_layers_by_block_type( + self, + parallel_config: "ParallelConfig", + block_type: LayerBlockType = LayerBlockType.attention, + ) -> int: + # This function relies on 'layers_block_type' in hf_config, + # for w/o this attribute, we will need to have workarounds like so + attn_block_type = block_type == LayerBlockType.attention + is_transformer = not self.is_hybrid and not self.is_attention_free + start, end = self.get_layers_start_end_indices(parallel_config) + + if is_transformer: + # Handle the basic case first + return end - start if attn_block_type else 0 + elif self.is_attention_free: + # Attention free + # Note that this code assumes there + # is only one type of attention-free block type. + return 0 if attn_block_type else end - start + else: + # Hybrid model + layers_block_type_value = getattr(self.hf_config, + "layers_block_type", None) + if layers_block_type_value is None: + raise ValueError("The model is an hybrid without a" + "layers_block_type in the hf_config," + "cannot determine the num of " + f"{block_type.value} layers") + + return sum(t == block_type.value + for t in layers_block_type_value[start:end]) def get_multimodal_config(self) -> "MultiModalConfig": """ diff --git a/vllm/model_executor/models/interfaces.py b/vllm/model_executor/models/interfaces.py index c3979eab905db..70b78fe64f2d8 100644 --- a/vllm/model_executor/models/interfaces.py +++ b/vllm/model_executor/models/interfaces.py @@ -363,6 +363,43 @@ def is_attention_free( return isinstance(model, IsAttentionFree) +@runtime_checkable +class IsHybrid(Protocol): + """The interface required for all models like Jamba that have both + attention and mamba blocks, indicates that + hf_config has 'layers_block_type'""" + + is_hybrid: ClassVar[Literal[True]] = True + """ + A flag that indicates this model has both mamba and attention blocks + , also indicates that the model's hf_config has + 'layers_block_type' """ + + +@runtime_checkable +class _IsHybridType(Protocol): + is_hybrid: ClassVar[Literal[True]] + + +@overload +def is_hybrid(model: object) -> TypeIs[IsHybrid]: + ... + + +@overload +def is_hybrid(model: Type[object]) -> TypeIs[Type[IsHybrid]]: + ... + + +def is_hybrid( + model: Union[Type[object], object] +) -> Union[TypeIs[Type[IsHybrid]], TypeIs[IsHybrid]]: + if isinstance(model, type): + return isinstance(model, _IsHybridType) + + return isinstance(model, IsHybrid) + + @runtime_checkable class SupportsCrossEncoding(Protocol): """The interface required for all models that support cross encoding.""" diff --git a/vllm/model_executor/models/jamba.py b/vllm/model_executor/models/jamba.py index 5d5e8ae1ee532..6bb4c13ab35df 100644 --- a/vllm/model_executor/models/jamba.py +++ b/vllm/model_executor/models/jamba.py @@ -9,6 +9,7 @@ from vllm.attention.layer import Attention from vllm.config import _BATCH_SIZES_TO_CAPTURE, CacheConfig, VllmConfig from vllm.distributed import get_tensor_model_parallel_world_size +from vllm.distributed.parallel_state import get_pp_group from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import (QKVParallelLinear, @@ -25,9 +26,12 @@ MambaCacheParams) from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.sequence import IntermediateTensors +from vllm.utils import LayerBlockType -from .interfaces import HasInnerState, SupportsLoRA -from .utils import maybe_prefix +from .interfaces import HasInnerState, IsHybrid, SupportsLoRA, SupportsPP +from .utils import (is_pp_missing_parameter, + make_empty_intermediate_tensors_factory, make_layers, + maybe_prefix) KVCache = Tuple[torch.Tensor, torch.Tensor] @@ -281,16 +285,24 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): org_num_embeddings=config.vocab_size, ) - decoder_layers = [] - for i in range(config.num_hidden_layers): - layer_class = ALL_DECODER_LAYER_TYPES[config.layers_block_type[i]] - decoder_layers.append( - layer_class(config, - layer_idx=i, - cache_config=cache_config, - quant_config=quant_config, - prefix=f"{prefix}.layers.{i}")) - self.layers = nn.ModuleList(decoder_layers) + def get_layer(prefix: str): + layer_idx = int(prefix.rsplit(".", 1)[1]) + layer_class = ALL_DECODER_LAYER_TYPES[ + config.layers_block_type[layer_idx]] + return layer_class( + config, + layer_idx, + cache_config, + quant_config=quant_config, + prefix=prefix, + ) + + self.start_layer, self.end_layer, self.layers = make_layers( + config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers") + self.make_empty_intermediate_tensors = ( + make_empty_intermediate_tensors_factory( + ["hidden_states", "residual"], config.hidden_size)) + self.final_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) @@ -304,26 +316,34 @@ def forward( kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, mamba_cache_params: MambaCacheParams, + intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, ) -> torch.Tensor: - if inputs_embeds is not None: - hidden_states = inputs_embeds + if get_pp_group().is_first_rank: + if inputs_embeds is not None: + hidden_states = inputs_embeds + else: + hidden_states = self.get_input_embeddings(input_ids) + residual = None else: - hidden_states = self.get_input_embeddings(input_ids) - residual = None - for i in range(len(self.layers)): + assert intermediate_tensors is not None + hidden_states = intermediate_tensors["hidden_states"] + residual = intermediate_tensors["residual"] + + kv_cache_index = 0 + mamba_cache_index = 0 + for i in range(self.start_layer, self.end_layer): layer = self.layers[i] kv_cache = None layer_mamba_cache_params = None if isinstance(layer, JambaAttentionDecoderLayer): - kv_cache = kv_caches[(i - self.config.attn_layer_offset) // - self.config.attn_layer_period] + kv_cache = kv_caches[kv_cache_index] + kv_cache_index += 1 if isinstance(layer, JambaMambaDecoderLayer): - current_state_layer = i - (1 + - (i - self.config.attn_layer_offset) - // self.config.attn_layer_period) + current_state_layer = mamba_cache_index layer_mamba_cache_params = mamba_cache_params.at_layer_idx( current_state_layer) + mamba_cache_index += 1 hidden_states, residual = layer( positions=positions, @@ -332,11 +352,17 @@ def forward( attn_metadata=attn_metadata, residual=residual, mamba_cache_params=layer_mamba_cache_params) + if not get_pp_group().is_last_rank: + return IntermediateTensors({ + "hidden_states": hidden_states, + "residual": residual + }) hidden_states, _ = self.final_layernorm(hidden_states, residual) return hidden_states -class JambaForCausalLM(nn.Module, HasInnerState, SupportsLoRA): +class JambaForCausalLM(nn.Module, HasInnerState, SupportsLoRA, SupportsPP, + IsHybrid): packed_modules_mapping = { "qkv_proj": [ "q_proj", @@ -368,6 +394,8 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() self.config = config + self.vllm_config = vllm_config + self.model_config = vllm_config.model_config self.scheduler_config = scheduler_config self.model = JambaModel(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")) @@ -390,6 +418,9 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): config.vocab_size) self.sampler = get_sampler() + self.make_empty_intermediate_tensors = ( + self.model.make_empty_intermediate_tensors) + def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.get_input_embeddings(input_ids) @@ -406,10 +437,8 @@ def forward(self, self.scheduler_config.max_num_seqs) if self.scheduler_config else max(_BATCH_SIZES_TO_CAPTURE) + 2) - layers_type = self.config.layers_block_type - num_mamba_layers = sum( - [layer_type == "mamba" for layer_type in layers_type]) - + num_mamba_layers = self.model_config.get_num_layers_by_block_type( + self.vllm_config.parallel_config, LayerBlockType.mamba) self.mamba_cache = MambaCacheManager( self.lm_head.weight.dtype, num_mamba_layers, max_batch_size, *self._get_mamba_cache_shape()) @@ -423,7 +452,7 @@ def forward(self, state_indices_tensor) hidden_states = self.model(input_ids, positions, kv_caches, attn_metadata, mamba_cache_params, - inputs_embeds) + intermediate_tensors, inputs_embeds) return hidden_states def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs): @@ -504,8 +533,12 @@ def load_weights(self, weights: Iterable[Tuple[str, continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: continue + # Skip layers on other devices. + if is_pp_missing_parameter(name, self): + continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) @@ -520,6 +553,8 @@ def load_weights(self, weights: Iterable[Tuple[str, if weight_name not in name: continue + if is_pp_missing_parameter(name, self): + continue name = name.replace(weight_name, param_name) param = params_dict[name] weight_loader = param.weight_loader @@ -533,6 +568,8 @@ def load_weights(self, weights: Iterable[Tuple[str, # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue + if is_pp_missing_parameter(name, self): + continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", diff --git a/vllm/model_executor/models/mamba.py b/vllm/model_executor/models/mamba.py index 8bdcd2c5aad1f..1f5cd02711899 100644 --- a/vllm/model_executor/models/mamba.py +++ b/vllm/model_executor/models/mamba.py @@ -8,6 +8,7 @@ from vllm.attention.backends.abstract import AttentionMetadata from vllm.config import _BATCH_SIZES_TO_CAPTURE, CacheConfig, VllmConfig from vllm.distributed import get_tensor_model_parallel_world_size +from vllm.distributed.parallel_state import get_pp_group from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.mamba.mamba_mixer import MambaMixer @@ -18,13 +19,16 @@ DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.models.interfaces import (HasInnerState, - IsAttentionFree) + IsAttentionFree, SupportsPP) from vllm.model_executor.models.mamba_cache import (MambaCacheManager, MambaCacheParams) from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.sequence import IntermediateTensors +from vllm.utils import LayerBlockType -from .utils import maybe_prefix +from .utils import (is_pp_missing_parameter, + make_empty_intermediate_tensors_factory, make_layers, + maybe_prefix) KVCache = Tuple[torch.Tensor, torch.Tensor] @@ -95,15 +99,17 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): org_num_embeddings=config.vocab_size, ) - decoder_layers = [] - for i in range(config.num_hidden_layers): - decoder_layers.append( - MambaDecoderLayer(config, - cache_config=cache_config, - quant_config=quant_config)) - self.layers = nn.ModuleList(decoder_layers) + self.start_layer, self.end_layer, self.layers = make_layers( + config.num_hidden_layers, + lambda prefix: MambaDecoderLayer( + config, cache_config=cache_config, quant_config=quant_config), + prefix=f"{prefix}.layers") + self.norm_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) + self.make_empty_intermediate_tensors = ( + make_empty_intermediate_tensors_factory( + ["hidden_states", "residual"], config.hidden_size)) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embeddings(input_ids) @@ -114,29 +120,40 @@ def forward( positions: torch.Tensor, attn_metadata: AttentionMetadata, mamba_cache_params: MambaCacheParams, + intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, ) -> torch.Tensor: - - if inputs_embeds is not None: - hidden_states = inputs_embeds + if get_pp_group().is_first_rank: + if inputs_embeds is not None: + hidden_states = inputs_embeds + else: + hidden_states = self.get_input_embeddings(input_ids) + residual = None else: - hidden_states = self.get_input_embeddings(input_ids) - residual = None + assert intermediate_tensors is not None + hidden_states = intermediate_tensors["hidden_states"] + residual = intermediate_tensors["residual"] - for i in range(len(self.layers)): + for i in range(self.start_layer, self.end_layer): layer = self.layers[i] hidden_states, residual = layer( positions=positions, hidden_states=hidden_states, attn_metadata=attn_metadata, residual=residual, - mamba_cache_params=mamba_cache_params.at_layer_idx(i)) + mamba_cache_params=mamba_cache_params.at_layer_idx( + i - self.start_layer)) + if not get_pp_group().is_last_rank: + return IntermediateTensors({ + "hidden_states": hidden_states, + "residual": residual + }) hidden_states, _ = self.norm_f(hidden_states, residual) return hidden_states -class MambaForCausalLM(nn.Module, HasInnerState, IsAttentionFree): +class MambaForCausalLM(nn.Module, HasInnerState, IsAttentionFree, SupportsPP): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): config = vllm_config.model_config.hf_config @@ -148,7 +165,9 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() self.config = config + self.vllm_config = vllm_config self.scheduler_config = scheduler_config + self.model_config = vllm_config.model_config self.backbone = MambaModel(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "backbone")) self.unpadded_vocab_size = config.vocab_size @@ -174,6 +193,9 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): config.vocab_size) self.sampler = get_sampler() + self.make_empty_intermediate_tensors = ( + self.backbone.make_empty_intermediate_tensors) + def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.backbone.get_input_embeddings(input_ids) @@ -189,9 +211,12 @@ def forward(self, max_batch_size = (VllmConfig.get_graph_batch_size( self.scheduler_config.max_num_seqs) if self.scheduler_config else max(_BATCH_SIZES_TO_CAPTURE) + 2) + + num_mamba_layers = self.model_config.get_num_layers_by_block_type( + self.vllm_config.parallel_config, LayerBlockType.mamba) self.mamba_cache = MambaCacheManager( - self.lm_head.weight.dtype, self.config.num_hidden_layers, - max_batch_size, *self._get_mamba_cache_shape()) + self.lm_head.weight.dtype, num_mamba_layers, max_batch_size, + *self._get_mamba_cache_shape()) ( mamba_cache_tensors, @@ -204,7 +229,8 @@ def forward(self, state_indices_tensor) hidden_states = self.backbone(input_ids, positions, attn_metadata, - mamba_cache_params, inputs_embeds) + mamba_cache_params, intermediate_tensors, + inputs_embeds) return hidden_states @@ -252,6 +278,8 @@ def load_weights(self, weights: Iterable[Tuple[str, # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue + if is_pp_missing_parameter(name, self): + continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", diff --git a/vllm/model_executor/models/registry.py b/vllm/model_executor/models/registry.py index e69596aa915b5..4beea4641f5ab 100644 --- a/vllm/model_executor/models/registry.py +++ b/vllm/model_executor/models/registry.py @@ -21,7 +21,7 @@ from vllm.platforms import current_platform from .adapters import as_embedding_model -from .interfaces import (has_inner_state, is_attention_free, +from .interfaces import (has_inner_state, is_attention_free, is_hybrid, supports_cross_encoding, supports_multimodal, supports_pp) from .interfaces_base import is_pooling_model, is_text_generation_model @@ -218,6 +218,7 @@ class _ModelInfo: supports_pp: bool has_inner_state: bool is_attention_free: bool + is_hybrid: bool @staticmethod def from_model_cls(model: Type[nn.Module]) -> "_ModelInfo": @@ -239,6 +240,7 @@ def from_model_cls(model: Type[nn.Module]) -> "_ModelInfo": supports_pp=supports_pp(model), has_inner_state=has_inner_state(model), is_attention_free=is_attention_free(model), + is_hybrid=is_hybrid(model), ) @@ -484,6 +486,13 @@ def is_attention_free_model( model_cls, _ = self.inspect_model_cls(architectures) return model_cls.is_attention_free + def is_hybrid_model( + self, + architectures: Union[str, List[str]], + ) -> bool: + model_cls, _ = self.inspect_model_cls(architectures) + return model_cls.is_hybrid + ModelRegistry = _ModelRegistry({ model_arch: _LazyRegisteredModel( diff --git a/vllm/utils.py b/vllm/utils.py index 7cdb2cb320b05..1882264c19775 100644 --- a/vllm/utils.py +++ b/vllm/utils.py @@ -170,6 +170,11 @@ class Device(enum.Enum): CPU = enum.auto() +class LayerBlockType(enum.Enum): + attention = "attention" + mamba = "mamba" + + class Counter: def __init__(self, start: int = 0) -> None: diff --git a/vllm/v1/worker/gpu_model_runner.py b/vllm/v1/worker/gpu_model_runner.py index a3335fa838352..8d9976ded7c5e 100644 --- a/vllm/v1/worker/gpu_model_runner.py +++ b/vllm/v1/worker/gpu_model_runner.py @@ -15,8 +15,8 @@ from vllm.model_executor.model_loader import get_model from vllm.multimodal import MultiModalKwargs from vllm.sampling_params import SamplingType -from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, DeviceMemoryProfiler, cdiv, - is_pin_memory_available) +from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, DeviceMemoryProfiler, + LayerBlockType, cdiv, is_pin_memory_available) from vllm.v1.attention.backends.flash_attn import (FlashAttentionBackend, FlashAttentionMetadata) from vllm.v1.outputs import ModelRunnerOutput @@ -68,8 +68,8 @@ def __init__( self.max_num_tokens = scheduler_config.max_num_batched_tokens # Model-related. - self.num_attn_layers = model_config.get_num_attention_layers( - parallel_config) + self.num_attn_layers = model_config.get_num_layers_by_block_type( + parallel_config, LayerBlockType.attention) self.num_kv_heads = model_config.get_num_kv_heads(parallel_config) self.head_size = model_config.get_head_size() self.hidden_size = model_config.get_hidden_size() diff --git a/vllm/v1/worker/gpu_worker.py b/vllm/v1/worker/gpu_worker.py index d32848c3775ae..49e415ab72e0b 100644 --- a/vllm/v1/worker/gpu_worker.py +++ b/vllm/v1/worker/gpu_worker.py @@ -14,7 +14,7 @@ from vllm.logger import init_logger from vllm.model_executor import set_random_seed from vllm.platforms import current_platform -from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, get_dtype_size +from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, LayerBlockType, get_dtype_size from vllm.v1.core.scheduler import SchedulerOutput from vllm.v1.outputs import ModelRunnerOutput from vllm.v1.worker.gpu_model_runner import GPUModelRunner @@ -260,8 +260,8 @@ def _get_cache_block_size( ) -> int: head_size = model_config.get_head_size() num_heads = model_config.get_num_kv_heads(parallel_config) - num_attention_layers = model_config.get_num_attention_layers( - parallel_config) + num_attention_layers = model_config.get_num_layers_by_block_type( + parallel_config, LayerBlockType.attention) key_cache_block = cache_config.block_size * num_heads * head_size value_cache_block = key_cache_block diff --git a/vllm/worker/cache_engine.py b/vllm/worker/cache_engine.py index ac3270d1c9909..7ccd4571b19df 100644 --- a/vllm/worker/cache_engine.py +++ b/vllm/worker/cache_engine.py @@ -6,8 +6,8 @@ from vllm.attention import get_attn_backend from vllm.config import CacheConfig, DeviceConfig, ModelConfig, ParallelConfig from vllm.logger import init_logger -from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, get_dtype_size, - is_pin_memory_available) +from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, LayerBlockType, + get_dtype_size, is_pin_memory_available) logger = init_logger(__name__) @@ -34,8 +34,8 @@ def __init__( self.head_size = model_config.get_head_size() # Models like Jamba, have mixed typed layers, E.g Mamba - self.num_attention_layers = model_config.get_num_attention_layers( - parallel_config) + self.num_attention_layers = model_config.get_num_layers_by_block_type( + parallel_config, LayerBlockType.attention) self.num_kv_heads = model_config.get_num_kv_heads(parallel_config) self.block_size = cache_config.block_size @@ -105,8 +105,8 @@ def get_cache_block_size( ) -> int: head_size = model_config.get_head_size() num_heads = model_config.get_num_kv_heads(parallel_config) - num_attention_layers = model_config.get_num_attention_layers( - parallel_config) + num_attention_layers = model_config.get_num_layers_by_block_type( + parallel_config, LayerBlockType.attention) key_cache_block = cache_config.block_size * num_heads * head_size value_cache_block = key_cache_block From e39400a4b60d28ff5c0a1a5194068c928adcaf98 Mon Sep 17 00:00:00 2001 From: Maximilien de Bayser Date: Wed, 11 Dec 2024 01:51:40 -0300 Subject: [PATCH 108/733] Fix streaming for granite tool call when <|tool_call|> is present (#11069) Signed-off-by: Max de Bayser --- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py b/vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py index 00917c866e496..dae481a2154a1 100644 --- a/vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +++ b/vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py @@ -88,7 +88,11 @@ def extract_tool_calls_streaming( ) -> Union[DeltaMessage, None]: start_idx = consume_space(0, current_text) - if not current_text or current_text[start_idx] != '[': + if current_text[start_idx:].startswith(self.bot_token): + start_idx = consume_space(start_idx + len(self.bot_token), + current_text) + if not current_text or start_idx >= len(current_text)\ + or current_text[start_idx] != '[': return DeltaMessage(content=delta_text) # bit mask flags for partial JSON parsing. If the name hasn't been From 2e33fe419186c65a18da6668972d61d7bbc31564 Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Wed, 11 Dec 2024 13:02:02 +0800 Subject: [PATCH 109/733] [CI/Build] Check transformers v4.47 (#10991) Signed-off-by: DarkLight1337 --- requirements-test.txt | 4 ++-- .../vision_language/mm_processor_kwargs/test_idefics3.py | 9 --------- .../models/embedding/vision_language/test_llava_next.py | 2 +- 3 files changed, 3 insertions(+), 12 deletions(-) diff --git a/requirements-test.txt b/requirements-test.txt index 38a064bca449a..8ceb705cdffd7 100644 --- a/requirements-test.txt +++ b/requirements-test.txt @@ -506,7 +506,7 @@ tiktoken==0.7.0 # mistral-common timm==1.0.11 # via -r requirements-test.in -tokenizers==0.20.3 +tokenizers==0.21.0 # via transformers torch==2.5.1 # via @@ -534,7 +534,7 @@ tqdm==4.66.6 # transformers tqdm-multiprocess==0.0.11 # via lm-eval -transformers==4.46.3 +transformers==4.47.0 # via # lm-eval # peft diff --git a/tests/models/decoder_only/vision_language/mm_processor_kwargs/test_idefics3.py b/tests/models/decoder_only/vision_language/mm_processor_kwargs/test_idefics3.py index 31896bfd13e8c..c71a2d359043d 100644 --- a/tests/models/decoder_only/vision_language/mm_processor_kwargs/test_idefics3.py +++ b/tests/models/decoder_only/vision_language/mm_processor_kwargs/test_idefics3.py @@ -3,7 +3,6 @@ import pytest import torch -import transformers from transformers import AutoImageProcessor, AutoTokenizer from vllm.inputs import InputContext, token_inputs @@ -36,8 +35,6 @@ def get_max_idefics3_image_tokens(): return get_max_idefics3_image_tokens -@pytest.mark.skipif(transformers.__version__ < "4.46.0", - reason="Model introduced in HF >= 4.46.0") @pytest.mark.parametrize("model", models) @pytest.mark.parametrize("longest_edge", [None, 168, 336, 400, 2 * 336]) def test_input_mapper_override(model: str, image_assets: _ImageAssets, @@ -77,8 +74,6 @@ def test_input_mapper_override(model: str, image_assets: _ImageAssets, assert torch.all(hf_result["pixel_values"] == vllm_result["pixel_values"]) -@pytest.mark.skipif(transformers.__version__ < "4.46.0", - reason="Model introduced in HF >= 4.46.0") @pytest.mark.parametrize("model", models) @pytest.mark.parametrize("longest_edge, expected_max_tokens", [ (None, 2873), @@ -107,8 +102,6 @@ def test_max_tokens_override(get_max_idefics3_image_tokens, model: str, assert expected_max_tokens == actual_max_tokens -@pytest.mark.skipif(transformers.__version__ < "4.46.0", - reason="Model introduced in HF >= 4.46.0") @pytest.mark.parametrize("model", models) @pytest.mark.parametrize("longest_edge, toks_per_img, num_imgs", [ (168, 169, 1), @@ -143,8 +136,6 @@ def test_dummy_data_override(dummy_data_for_idefics3, model: str, assert img_tok_count == toks_per_img * num_imgs -@pytest.mark.skipif(transformers.__version__ < "4.46.0", - reason="Model introduced in HF >= 4.46.0") @pytest.mark.parametrize("model", models) @pytest.mark.parametrize("longest_edge,expected_toks_per_img,num_imgs", [ (336, 169 * (1**2 + 1), 1), diff --git a/tests/models/embedding/vision_language/test_llava_next.py b/tests/models/embedding/vision_language/test_llava_next.py index 329c6ba279f89..693abd7252d5e 100644 --- a/tests/models/embedding/vision_language/test_llava_next.py +++ b/tests/models/embedding/vision_language/test_llava_next.py @@ -86,7 +86,7 @@ def _run_test( ) -@pytest.mark.skipif(transformers.__version__.startswith("4.46"), +@pytest.mark.skipif(transformers.__version__ >= "4.46", reason="Model broken with changes in transformers 4.46") @pytest.mark.core_model @pytest.mark.parametrize("model", MODELS) From 3fb4b4f1634a896653acc12c72b8e5d6d87a8f82 Mon Sep 17 00:00:00 2001 From: "Kevin H. Luu" Date: Wed, 11 Dec 2024 00:39:53 -0800 Subject: [PATCH 110/733] [ci/build] Fix AMD CI dependencies (#11087) --- requirements-rocm.txt | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/requirements-rocm.txt b/requirements-rocm.txt index 121123611d2da..ccc9062341772 100644 --- a/requirements-rocm.txt +++ b/requirements-rocm.txt @@ -5,7 +5,8 @@ awscli boto3 botocore +datasets ray >= 2.10.0 peft pytest-asyncio -tensorizer>=2.9.0 \ No newline at end of file +tensorizer>=2.9.0 From 9974fca047bb332ec68377be4579ea515a300d69 Mon Sep 17 00:00:00 2001 From: "Kevin H. Luu" Date: Wed, 11 Dec 2024 01:01:53 -0800 Subject: [PATCH 111/733] [ci/build] Fix entrypoints test and pin outlines version (#11088) --- requirements-common.txt | 2 +- .../guided_decoding/outlines_logits_processors.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/requirements-common.txt b/requirements-common.txt index c71fc458aca13..792cd58e80669 100644 --- a/requirements-common.txt +++ b/requirements-common.txt @@ -18,7 +18,7 @@ prometheus_client >= 0.18.0 prometheus-fastapi-instrumentator >= 7.0.0 tiktoken >= 0.6.0 # Required for DBRX tokenizer lm-format-enforcer >= 0.10.9, < 0.11 -outlines >= 0.1.8 +outlines == 0.1.9 xgrammar >= 0.1.6; platform_machine == "x86_64" typing_extensions >= 4.10 filelock >= 3.16.1 # need to contain https://github.com/tox-dev/filelock/pull/317 diff --git a/vllm/model_executor/guided_decoding/outlines_logits_processors.py b/vllm/model_executor/guided_decoding/outlines_logits_processors.py index 1f0dbe024609d..b63fed1c8a8c3 100644 --- a/vllm/model_executor/guided_decoding/outlines_logits_processors.py +++ b/vllm/model_executor/guided_decoding/outlines_logits_processors.py @@ -25,7 +25,7 @@ from outlines import grammars from outlines.caching import cache from outlines.fsm.guide import CFGGuide, Generate, Guide, RegexGuide, Write -from outlines.fsm.json_schema import build_regex_from_schema +from outlines_core.fsm.json_schema import build_regex_from_schema from pydantic import BaseModel from transformers import PreTrainedTokenizerBase From 61b1d2f6aef8e29c6a0d795a9c6682d525f4d8cc Mon Sep 17 00:00:00 2001 From: Russell Bryant Date: Wed, 11 Dec 2024 04:26:36 -0500 Subject: [PATCH 112/733] [Core] v1: Use atexit to handle engine core client shutdown (#11076) Signed-off-by: Russell Bryant --- vllm/v1/engine/core_client.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/vllm/v1/engine/core_client.py b/vllm/v1/engine/core_client.py index ee89cece73141..4d96b323d1662 100644 --- a/vllm/v1/engine/core_client.py +++ b/vllm/v1/engine/core_client.py @@ -1,3 +1,4 @@ +import atexit import multiprocessing from typing import List, Union @@ -157,6 +158,7 @@ def __init__( should_shutdown=self.should_shutdown, **kwargs, ) + atexit.register(self.shutdown) def shutdown(self): # Send shutdown signal to background process. From 2e32f5d28db3cd79f6a421f640e083be1f9468b7 Mon Sep 17 00:00:00 2001 From: B-201 Date: Wed, 11 Dec 2024 17:27:07 +0800 Subject: [PATCH 113/733] [Bugfix] Fix Idefics3 fails during multi-image inference (#11080) Signed-off-by: B-201 --- vllm/model_executor/models/idefics3.py | 21 +++++++++++++-------- 1 file changed, 13 insertions(+), 8 deletions(-) diff --git a/vllm/model_executor/models/idefics3.py b/vllm/model_executor/models/idefics3.py index e5d2edbd81eb1..17e772e7faa32 100644 --- a/vllm/model_executor/models/idefics3.py +++ b/vllm/model_executor/models/idefics3.py @@ -60,7 +60,8 @@ class Idefics3ImagePixelInputs(TypedDict): type: Literal["pixel_values"] data: torch.Tensor """ - Shape: `(batch_size * num_images, num_channels, height, width)` + Shape: `(batch_size * num_images * num_patches, + num_channels, height, width)` """ pixel_attention_mask: Optional[torch.BoolTensor] @@ -520,13 +521,17 @@ def _parse_and_validate_image_input( raise ValueError("Incorrect type of pixel values. " f"Got type: {type(pixel_values)}") - return Idefics3ImagePixelInputs(type="pixel_values", - data=self._validate_pixel_values( - flatten_bn(pixel_values, - concat=True)), - pixel_attention_mask=flatten_bn( - pixel_attention_mask, - concat=True)) + if isinstance(pixel_values, list): + pixel_values = torch.cat(pixel_values, dim=1) + pixel_attention_mask = torch.cat(pixel_attention_mask, dim=1) + else: + pixel_values = flatten_bn(pixel_values) + pixel_attention_mask = flatten_bn(pixel_attention_mask) + + return Idefics3ImagePixelInputs( + type="pixel_values", + data=self._validate_pixel_values(pixel_values), + pixel_attention_mask=pixel_attention_mask) raise AssertionError("This line should be unreachable.") From 40766ca1b8b0ef92e220595bda96c4336b597e5b Mon Sep 17 00:00:00 2001 From: Rafael Vasquez Date: Wed, 11 Dec 2024 04:27:39 -0500 Subject: [PATCH 114/733] [Bugfix]: Clamp `-inf` logprob values in prompt_logprobs (#11073) Signed-off-by: Rafael Vasquez --- vllm/entrypoints/openai/serving_completion.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/vllm/entrypoints/openai/serving_completion.py b/vllm/entrypoints/openai/serving_completion.py index c54d5f07cf58c..ee97d35f2b087 100644 --- a/vllm/entrypoints/openai/serving_completion.py +++ b/vllm/entrypoints/openai/serving_completion.py @@ -392,6 +392,12 @@ def request_output_to_completion_response( prompt_token_ids = final_res.prompt_token_ids assert prompt_token_ids is not None prompt_logprobs = final_res.prompt_logprobs + if prompt_logprobs: + for logprob_dict in prompt_logprobs: + if logprob_dict: + for logprob_values in logprob_dict.values(): + if logprob_values.logprob == float('-inf'): + logprob_values.logprob = -9999.0 prompt_text = final_res.prompt token_ids: GenericSequence[int] From 8f10d5e3930f05c2057a831cd80ba24c52b8ceef Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Wed, 11 Dec 2024 17:28:00 +0800 Subject: [PATCH 115/733] [Misc] Split up pooling tasks (#10820) Signed-off-by: DarkLight1337 --- docs/source/index.rst | 2 + docs/source/models/generative_models.rst | 146 ++++++++++++++++ docs/source/models/pooling_models.rst | 99 +++++++++++ docs/source/models/supported_models.rst | 157 ++++++++++++------ docs/source/usage/compatibility_matrix.rst | 12 +- examples/offline_inference_embedding.py | 7 +- ...ine_inference_vision_language_embedding.py | 4 +- tests/compile/test_basic_correctness.py | 4 +- tests/core/test_scheduler_encoder_decoder.py | 2 +- .../openai/test_vision_embedding.py | 2 +- .../embedding/language/test_embedding.py | 2 +- .../models/embedding/language/test_scoring.py | 12 +- .../vision_language/test_dse_qwen2_vl.py | 2 +- .../vision_language/test_llava_next.py | 2 +- .../embedding/vision_language/test_phi3v.py | 2 +- tests/test_config.py | 17 +- vllm/config.py | 137 ++++++++++----- vllm/core/scheduler.py | 2 +- vllm/engine/arg_utils.py | 7 +- vllm/engine/llm_engine.py | 4 +- vllm/entrypoints/llm.py | 53 +++--- vllm/entrypoints/openai/api_server.py | 8 +- vllm/entrypoints/openai/run_batch.py | 4 +- vllm/model_executor/model_loader/utils.py | 2 +- vllm/v1/engine/core.py | 2 +- vllm/worker/cpu_worker.py | 2 +- vllm/worker/worker.py | 2 +- 27 files changed, 527 insertions(+), 168 deletions(-) create mode 100644 docs/source/models/generative_models.rst create mode 100644 docs/source/models/pooling_models.rst diff --git a/docs/source/index.rst b/docs/source/index.rst index ebf1361976c5e..842013d6d49c4 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -94,6 +94,8 @@ Documentation :caption: Models models/supported_models + models/generative_models + models/pooling_models models/adding_model models/enabling_multimodal_inputs diff --git a/docs/source/models/generative_models.rst b/docs/source/models/generative_models.rst new file mode 100644 index 0000000000000..fb71185600863 --- /dev/null +++ b/docs/source/models/generative_models.rst @@ -0,0 +1,146 @@ +.. _generative_models: + +Generative Models +================= + +vLLM provides first-class support for generative models, which covers most of LLMs. + +In vLLM, generative models implement the :class:`~vllm.model_executor.models.VllmModelForTextGeneration` interface. +Based on the final hidden states of the input, these models output log probabilities of the tokens to generate, +which are then passed through :class:`~vllm.model_executor.layers.Sampler` to obtain the final text. + +Offline Inference +----------------- + +The :class:`~vllm.LLM` class provides various methods for offline inference. +See :ref:`Engine Arguments ` for a list of options when initializing the model. + +For generative models, the only supported :code:`task` option is :code:`"generate"`. +Usually, this is automatically inferred so you don't have to specify it. + +``LLM.generate`` +^^^^^^^^^^^^^^^^ + +The :class:`~vllm.LLM.generate` method is available to all generative models in vLLM. +It is similar to `its counterpart in HF Transformers `__, +except that tokenization and detokenization are also performed automatically. + +.. code-block:: python + + llm = LLM(model="facebook/opt-125m") + outputs = llm.generate("Hello, my name is") + + for output in outputs: + prompt = output.prompt + generated_text = output.outputs[0].text + print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") + +You can optionally control the language generation by passing :class:`~vllm.SamplingParams`. +For example, you can use greedy sampling by setting :code:`temperature=0`: + +.. code-block:: python + + llm = LLM(model="facebook/opt-125m") + params = SamplingParams(temperature=0) + outputs = llm.generate("Hello, my name is", params) + + for output in outputs: + prompt = output.prompt + generated_text = output.outputs[0].text + print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") + +A code example can be found in `examples/offline_inference.py `_. + +``LLM.beam_search`` +^^^^^^^^^^^^^^^^^^^ + +The :class:`~vllm.LLM.beam_search` method implements `beam search `__ on top of :class:`~vllm.LLM.generate`. +For example, to search using 5 beams and output at most 50 tokens: + +.. code-block:: python + + llm = LLM(model="facebook/opt-125m") + params = BeamSearchParams(beam_width=5, max_tokens=50) + outputs = llm.generate("Hello, my name is", params) + + for output in outputs: + prompt = output.prompt + generated_text = output.outputs[0].text + print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") + +``LLM.chat`` +^^^^^^^^^^^^ + +The :class:`~vllm.LLM.chat` method implements chat functionality on top of :class:`~vllm.LLM.generate`. +In particular, it accepts input similar to `OpenAI Chat Completions API `__ +and automatically applies the model's `chat template `__ to format the prompt. + +.. important:: + + In general, only instruction-tuned models have a chat template. + Base models may perform poorly as they are not trained to respond to the chat conversation. + +.. code-block:: python + + llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct") + conversation = [ + { + "role": "system", + "content": "You are a helpful assistant" + }, + { + "role": "user", + "content": "Hello" + }, + { + "role": "assistant", + "content": "Hello! How can I assist you today?" + }, + { + "role": "user", + "content": "Write an essay about the importance of higher education.", + }, + ] + outputs = llm.chat(conversation) + + for output in outputs: + prompt = output.prompt + generated_text = output.outputs[0].text + print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") + +A code example can be found in `examples/offline_inference_chat.py `_. + +If the model doesn't have a chat template or you want to specify another one, +you can explicitly pass a chat template: + +.. code-block:: python + + from vllm.entrypoints.chat_utils import load_chat_template + + # You can find a list of existing chat templates under `examples/` + custom_template = load_chat_template(chat_template="") + print("Loaded chat template:", custom_template) + + outputs = llm.chat(conversation, chat_template=custom_template) + +Online Inference +---------------- + +Our `OpenAI Compatible Server <../serving/openai_compatible_server>`__ can be used for online inference. +Please click on the above link for more details on how to launch the server. + +Completions API +^^^^^^^^^^^^^^^ + +Our Completions API is similar to ``LLM.generate`` but only accepts text. +It is compatible with `OpenAI Completions API `__ +so that you can use OpenAI client to interact with it. +A code example can be found in `examples/openai_completion_client.py `_. + +Chat API +^^^^^^^^ + +Our Chat API is similar to ``LLM.chat``, accepting both text and :ref:`multi-modal inputs `. +It is compatible with `OpenAI Chat Completions API `__ +so that you can use OpenAI client to interact with it. +A code example can be found in `examples/openai_chat_completion_client.py `_. diff --git a/docs/source/models/pooling_models.rst b/docs/source/models/pooling_models.rst new file mode 100644 index 0000000000000..7fa66274c3c5a --- /dev/null +++ b/docs/source/models/pooling_models.rst @@ -0,0 +1,99 @@ +.. _pooling_models: + +Pooling Models +============== + +vLLM also supports pooling models, including embedding, reranking and reward models. + +In vLLM, pooling models implement the :class:`~vllm.model_executor.models.VllmModelForPooling` interface. +These models use a :class:`~vllm.model_executor.layers.Pooler` to aggregate the final hidden states of the input +before returning them. + +.. note:: + + We currently support pooling models primarily as a matter of convenience. + As shown in the :ref:`Compatibility Matrix `, most vLLM features are not applicable to + pooling models as they only work on the generation or decode stage, so performance may not improve as much. + +Offline Inference +----------------- + +The :class:`~vllm.LLM` class provides various methods for offline inference. +See :ref:`Engine Arguments ` for a list of options when initializing the model. + +For pooling models, we support the following :code:`task` options: + +- Embedding (:code:`"embed"` / :code:`"embedding"`) +- Classification (:code:`"classify"`) +- Sentence Pair Scoring (:code:`"score"`) +- Reward Modeling (:code:`"reward"`) + +The selected task determines the default :class:`~vllm.model_executor.layers.Pooler` that is used: + +- Embedding: Extract only the hidden states corresponding to the last token, and apply normalization. +- Classification: Extract only the hidden states corresponding to the last token, and apply softmax. +- Sentence Pair Scoring: Extract only the hidden states corresponding to the last token, and apply softmax. +- Reward Modeling: Extract all of the hidden states and return them directly. + +When loading `Sentence Transformers `__ models, +we attempt to override the default pooler based on its Sentence Transformers configuration file (:code:`modules.json`). + +You can customize the model's pooling method via the :code:`override_pooler_config` option, +which takes priority over both the model's and Sentence Transformers's defaults. + +``LLM.encode`` +^^^^^^^^^^^^^^ + +The :class:`~vllm.LLM.encode` method is available to all pooling models in vLLM. +It returns the aggregated hidden states directly. + +.. code-block:: python + + llm = LLM(model="intfloat/e5-mistral-7b-instruct", task="embed") + outputs = llm.encode("Hello, my name is") + + outputs = model.encode(prompts) + for output in outputs: + embeddings = output.outputs.embedding + print(f"Prompt: {prompt!r}, Embeddings (size={len(embeddings)}: {embeddings!r}") + +A code example can be found in `examples/offline_inference_embedding.py `_. + +``LLM.score`` +^^^^^^^^^^^^^ + +The :class:`~vllm.LLM.score` method outputs similarity scores between sentence pairs. +It is primarily designed for `cross-encoder models `__. +These types of models serve as rerankers between candidate query-document pairs in RAG systems. + +.. note:: + + vLLM can only perform the model inference component (e.g. embedding, reranking) of RAG. + To handle RAG at a higher level, you should use integration frameworks such as `LangChain `_. + +You can use `these tests `_ as reference. + +Online Inference +---------------- + +Our `OpenAI Compatible Server <../serving/openai_compatible_server>`__ can be used for online inference. +Please click on the above link for more details on how to launch the server. + +Embeddings API +^^^^^^^^^^^^^^ + +Our Embeddings API is similar to ``LLM.encode``, accepting both text and :ref:`multi-modal inputs `. + +The text-only API is compatible with `OpenAI Embeddings API `__ +so that you can use OpenAI client to interact with it. +A code example can be found in `examples/openai_embedding_client.py `_. + +The multi-modal API is an extension of the `OpenAI Embeddings API `__ +that incorporates `OpenAI Chat Completions API `__, +so it is not part of the OpenAI standard. Please see :ref:`this page ` for more details on how to use it. + +Score API +^^^^^^^^^ + +Our Score API is similar to ``LLM.score``. +Please see `this page <../serving/openai_compatible_server.html#score-api-for-cross-encoder-models>`__ for more details on how to use it. diff --git a/docs/source/models/supported_models.rst b/docs/source/models/supported_models.rst index 6540e023c1ab0..b9957cf9563b1 100644 --- a/docs/source/models/supported_models.rst +++ b/docs/source/models/supported_models.rst @@ -3,11 +3,21 @@ Supported Models ================ -vLLM supports a variety of generative and embedding models from `HuggingFace (HF) Transformers `_. -This page lists the model architectures that are currently supported by vLLM. +vLLM supports generative and pooling models across various tasks. +If a model supports more than one task, you can set the task via the :code:`--task` argument. + +For each task, we list the model architectures that have been implemented in vLLM. Alongside each architecture, we include some popular models that use it. -For other models, you can check the :code:`config.json` file inside the model repository. +Loading a Model +^^^^^^^^^^^^^^^ + +HuggingFace Hub ++++++++++++++++ + +By default, vLLM loads models from `HuggingFace (HF) Hub `_. + +To determine whether a given model is supported, you can check the :code:`config.json` file inside the HF repository. If the :code:`"architectures"` field contains a model architecture listed below, then it should be supported in theory. .. tip:: @@ -17,38 +27,57 @@ If the :code:`"architectures"` field contains a model architecture listed below, from vllm import LLM - llm = LLM(model=...) # Name or path of your model + # For generative models (task=generate) only + llm = LLM(model=..., task="generate") # Name or path of your model output = llm.generate("Hello, my name is") print(output) - If vLLM successfully generates text, it indicates that your model is supported. + # For pooling models (task={embed,classify,reward}) only + llm = LLM(model=..., task="embed") # Name or path of your model + output = llm.encode("Hello, my name is") + print(output) + + If vLLM successfully returns text (for generative models) or hidden states (for pooling models), it indicates that your model is supported. Otherwise, please refer to :ref:`Adding a New Model ` and :ref:`Enabling Multimodal Inputs ` for instructions on how to implement your model in vLLM. Alternatively, you can `open an issue on GitHub `_ to request vLLM support. -.. note:: - To use models from `ModelScope `_ instead of HuggingFace Hub, set an environment variable: +ModelScope +++++++++++ - .. code-block:: shell +To use models from `ModelScope `_ instead of HuggingFace Hub, set an environment variable: - $ export VLLM_USE_MODELSCOPE=True +.. code-block:: shell - And use with :code:`trust_remote_code=True`. + $ export VLLM_USE_MODELSCOPE=True - .. code-block:: python +And use with :code:`trust_remote_code=True`. - from vllm import LLM +.. code-block:: python - llm = LLM(model=..., revision=..., trust_remote_code=True) # Name or path of your model - output = llm.generate("Hello, my name is") - print(output) + from vllm import LLM + + llm = LLM(model=..., revision=..., task=..., trust_remote_code=True) -Text-only Language Models -^^^^^^^^^^^^^^^^^^^^^^^^^ + # For generative models (task=generate) only + output = llm.generate("Hello, my name is") + print(output) -Text Generation ---------------- + # For pooling models (task={embed,classify,reward}) only + output = llm.encode("Hello, my name is") + print(output) + +List of Text-only Language Models +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Generative Models ++++++++++++++++++ + +See :ref:`this page ` for more information on how to use generative models. + +Text Generation (``--task generate``) +------------------------------------- .. list-table:: :widths: 25 25 50 5 5 @@ -328,8 +357,24 @@ Text Generation .. note:: Currently, the ROCm version of vLLM supports Mistral and Mixtral only for context lengths up to 4096. -Text Embedding --------------- +Pooling Models +++++++++++++++ + +See :ref:`this page ` for more information on how to use pooling models. + +.. important:: + Since some model architectures support both generative and pooling tasks, + you should explicitly specify the task type to ensure that the model is used in pooling mode instead of generative mode. + +Text Embedding (``--task embed``) +--------------------------------- + +Any text generation model can be converted into an embedding model by passing :code:`--task embed`. + +.. note:: + To get the best results, you should use pooling models that are specifically trained as such. + +The following table lists those that are tested in vLLM. .. list-table:: :widths: 25 25 50 5 5 @@ -371,13 +416,6 @@ Text Embedding - - -.. important:: - Some model architectures support both generation and embedding tasks. - In this case, you have to pass :code:`--task embedding` to run the model in embedding mode. - -.. tip:: - You can override the model's pooling method by passing :code:`--override-pooler-config`. - .. note:: :code:`ssmits/Qwen2-7B-Instruct-embed-base` has an improperly defined Sentence Transformers config. You should manually set mean pooling by passing :code:`--override-pooler-config '{"pooling_type": "MEAN"}'`. @@ -389,8 +427,8 @@ Text Embedding On the other hand, its 1.5B variant (:code:`Alibaba-NLP/gte-Qwen2-1.5B-instruct`) uses causal attention despite being described otherwise on its model card. -Reward Modeling ---------------- +Reward Modeling (``--task reward``) +----------------------------------- .. list-table:: :widths: 25 25 50 5 5 @@ -416,11 +454,8 @@ Reward Modeling For process-supervised reward models such as :code:`peiyi9979/math-shepherd-mistral-7b-prm`, the pooling config should be set explicitly, e.g.: :code:`--override-pooler-config '{"pooling_type": "STEP", "step_tag_id": 123, "returned_token_ids": [456, 789]}'`. -.. note:: - As an interim measure, these models are supported in both offline and online inference via Embeddings API. - -Classification ---------------- +Classification (``--task classify``) +------------------------------------ .. list-table:: :widths: 25 25 50 5 5 @@ -437,11 +472,8 @@ Classification - ✅︎ - ✅︎ -.. note:: - As an interim measure, these models are supported in both offline and online inference via Embeddings API. - -Sentence Pair Scoring ---------------------- +Sentence Pair Scoring (``--task score``) +---------------------------------------- .. list-table:: :widths: 25 25 50 5 5 @@ -468,13 +500,10 @@ Sentence Pair Scoring - - -.. note:: - These models are supported in both offline and online inference via Score API. - .. _supported_mm_models: -Multimodal Language Models -^^^^^^^^^^^^^^^^^^^^^^^^^^ +List of Multimodal Language Models +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The following modalities are supported depending on the model: @@ -491,8 +520,15 @@ On the other hand, modalities separated by :code:`/` are mutually exclusive. - e.g.: :code:`T / I` means that the model supports text-only and image-only inputs, but not text-with-image inputs. -Text Generation ---------------- +See :ref:`this page ` on how to pass multi-modal inputs to the model. + +Generative Models ++++++++++++++++++ + +See :ref:`this page ` for more information on how to use generative models. + +Text Generation (``--task generate``) +------------------------------------- .. list-table:: :widths: 25 25 15 20 5 5 5 @@ -696,8 +732,24 @@ Text Generation The official :code:`openbmb/MiniCPM-V-2` doesn't work yet, so we need to use a fork (:code:`HwwwH/MiniCPM-V-2`) for now. For more details, please see: https://github.com/vllm-project/vllm/pull/4087#issuecomment-2250397630 -Multimodal Embedding --------------------- +Pooling Models +++++++++++++++ + +See :ref:`this page ` for more information on how to use pooling models. + +.. important:: + Since some model architectures support both generative and pooling tasks, + you should explicitly specify the task type to ensure that the model is used in pooling mode instead of generative mode. + +Text Embedding (``--task embed``) +--------------------------------- + +Any text generation model can be converted into an embedding model by passing :code:`--task embed`. + +.. note:: + To get the best results, you should use pooling models that are specifically trained as such. + +The following table lists those that are tested in vLLM. .. list-table:: :widths: 25 25 15 25 5 5 @@ -728,12 +780,7 @@ Multimodal Embedding - - ✅︎ -.. important:: - Some model architectures support both generation and embedding tasks. - In this case, you have to pass :code:`--task embedding` to run the model in embedding mode. - -.. tip:: - You can override the model's pooling method by passing :code:`--override-pooler-config`. +---- Model Support Policy ===================== diff --git a/docs/source/usage/compatibility_matrix.rst b/docs/source/usage/compatibility_matrix.rst index a93632ff36fb8..04dd72b1e3527 100644 --- a/docs/source/usage/compatibility_matrix.rst +++ b/docs/source/usage/compatibility_matrix.rst @@ -39,13 +39,13 @@ Feature x Feature - :abbr:`prmpt adptr (Prompt Adapter)` - :ref:`SD ` - CUDA graph - - :abbr:`emd (Embedding Models)` + - :abbr:`pooling (Pooling Models)` - :abbr:`enc-dec (Encoder-Decoder Models)` - :abbr:`logP (Logprobs)` - :abbr:`prmpt logP (Prompt Logprobs)` - :abbr:`async output (Async Output Processing)` - multi-step - - :abbr:`mm (Multimodal)` + - :abbr:`mm (Multimodal Inputs)` - best-of - beam-search - :abbr:`guided dec (Guided Decoding)` @@ -151,7 +151,7 @@ Feature x Feature - - - - * - :abbr:`emd (Embedding Models)` + * - :abbr:`pooling (Pooling Models)` - ✗ - ✗ - ✗ @@ -253,7 +253,7 @@ Feature x Feature - - - - * - :abbr:`mm (Multimodal)` + * - :abbr:`mm (Multimodal Inputs)` - ✅ - `✗ `__ - `✗ `__ @@ -386,7 +386,7 @@ Feature x Hardware - ✅ - ✗ - ✅ - * - :abbr:`emd (Embedding Models)` + * - :abbr:`pooling (Pooling Models)` - ✅ - ✅ - ✅ @@ -402,7 +402,7 @@ Feature x Hardware - ✅ - ✅ - ✗ - * - :abbr:`mm (Multimodal)` + * - :abbr:`mm (Multimodal Inputs)` - ✅ - ✅ - ✅ diff --git a/examples/offline_inference_embedding.py b/examples/offline_inference_embedding.py index ae158eef2ca4c..17f6d992073d7 100644 --- a/examples/offline_inference_embedding.py +++ b/examples/offline_inference_embedding.py @@ -9,7 +9,12 @@ ] # Create an LLM. -model = LLM(model="intfloat/e5-mistral-7b-instruct", enforce_eager=True) +model = LLM( + model="intfloat/e5-mistral-7b-instruct", + task="embed", # You should pass task="embed" for embedding models + enforce_eager=True, +) + # Generate embedding. The output is a list of PoolingRequestOutputs. outputs = model.encode(prompts) # Print the outputs. diff --git a/examples/offline_inference_vision_language_embedding.py b/examples/offline_inference_vision_language_embedding.py index e1732d045f949..bf466109f0981 100644 --- a/examples/offline_inference_vision_language_embedding.py +++ b/examples/offline_inference_vision_language_embedding.py @@ -59,7 +59,7 @@ def run_e5_v(query: Query): llm = LLM( model="royokong/e5-v", - task="embedding", + task="embed", max_model_len=4096, ) @@ -88,7 +88,7 @@ def run_vlm2vec(query: Query): llm = LLM( model="TIGER-Lab/VLM2Vec-Full", - task="embedding", + task="embed", trust_remote_code=True, mm_processor_kwargs={"num_crops": 4}, ) diff --git a/tests/compile/test_basic_correctness.py b/tests/compile/test_basic_correctness.py index 99781c55b672e..87d5aefea6cb4 100644 --- a/tests/compile/test_basic_correctness.py +++ b/tests/compile/test_basic_correctness.py @@ -55,7 +55,7 @@ class TestSetting: # embedding model TestSetting( model="BAAI/bge-multilingual-gemma2", - model_args=["--task", "embedding"], + model_args=["--task", "embed"], pp_size=1, tp_size=1, attn_backend="FLASHINFER", @@ -65,7 +65,7 @@ class TestSetting: # encoder-based embedding model (BERT) TestSetting( model="BAAI/bge-base-en-v1.5", - model_args=["--task", "embedding"], + model_args=["--task", "embed"], pp_size=1, tp_size=1, attn_backend="XFORMERS", diff --git a/tests/core/test_scheduler_encoder_decoder.py b/tests/core/test_scheduler_encoder_decoder.py index 7cd0416d321ef..16bea54936bc8 100644 --- a/tests/core/test_scheduler_encoder_decoder.py +++ b/tests/core/test_scheduler_encoder_decoder.py @@ -37,7 +37,7 @@ def test_scheduler_schedule_simple_encoder_decoder(): num_seq_group = 4 max_model_len = 16 scheduler_config = SchedulerConfig( - task="generate", + "generate", max_num_batched_tokens=64, max_num_seqs=num_seq_group, max_model_len=max_model_len, diff --git a/tests/entrypoints/openai/test_vision_embedding.py b/tests/entrypoints/openai/test_vision_embedding.py index 425f2a10ec855..43c63daacb17f 100644 --- a/tests/entrypoints/openai/test_vision_embedding.py +++ b/tests/entrypoints/openai/test_vision_embedding.py @@ -27,7 +27,7 @@ def server(): args = [ "--task", - "embedding", + "embed", "--dtype", "bfloat16", "--max-model-len", diff --git a/tests/models/embedding/language/test_embedding.py b/tests/models/embedding/language/test_embedding.py index 5ef8540265d14..f458ef5ef556d 100644 --- a/tests/models/embedding/language/test_embedding.py +++ b/tests/models/embedding/language/test_embedding.py @@ -54,7 +54,7 @@ def test_models( hf_outputs = hf_model.encode(example_prompts) with vllm_runner(model, - task="embedding", + task="embed", dtype=dtype, max_model_len=None, **vllm_extra_kwargs) as vllm_model: diff --git a/tests/models/embedding/language/test_scoring.py b/tests/models/embedding/language/test_scoring.py index 30fa5ea7b36c0..0c3115d195fc1 100644 --- a/tests/models/embedding/language/test_scoring.py +++ b/tests/models/embedding/language/test_scoring.py @@ -35,9 +35,7 @@ def test_llm_1_to_1(vllm_runner, hf_runner, model_name, dtype: str): with hf_runner(model_name, dtype=dtype, is_cross_encoder=True) as hf_model: hf_outputs = hf_model.predict([text_pair]).tolist() - with vllm_runner(model_name, - task="embedding", - dtype=dtype, + with vllm_runner(model_name, task="score", dtype=dtype, max_model_len=None) as vllm_model: vllm_outputs = vllm_model.score(text_pair[0], text_pair[1]) @@ -58,9 +56,7 @@ def test_llm_1_to_N(vllm_runner, hf_runner, model_name, dtype: str): with hf_runner(model_name, dtype=dtype, is_cross_encoder=True) as hf_model: hf_outputs = hf_model.predict(text_pairs).tolist() - with vllm_runner(model_name, - task="embedding", - dtype=dtype, + with vllm_runner(model_name, task="score", dtype=dtype, max_model_len=None) as vllm_model: vllm_outputs = vllm_model.score(TEXTS_1[0], TEXTS_2) @@ -82,9 +78,7 @@ def test_llm_N_to_N(vllm_runner, hf_runner, model_name, dtype: str): with hf_runner(model_name, dtype=dtype, is_cross_encoder=True) as hf_model: hf_outputs = hf_model.predict(text_pairs).tolist() - with vllm_runner(model_name, - task="embedding", - dtype=dtype, + with vllm_runner(model_name, task="score", dtype=dtype, max_model_len=None) as vllm_model: vllm_outputs = vllm_model.score(TEXTS_1, TEXTS_2) diff --git a/tests/models/embedding/vision_language/test_dse_qwen2_vl.py b/tests/models/embedding/vision_language/test_dse_qwen2_vl.py index 3dd8cb729f8a6..2641987b25a3a 100644 --- a/tests/models/embedding/vision_language/test_dse_qwen2_vl.py +++ b/tests/models/embedding/vision_language/test_dse_qwen2_vl.py @@ -93,7 +93,7 @@ def _run_test( # if we run HF first, the cuda initialization will be done and it # will hurt multiprocessing backend with fork method (the default method). with vllm_runner(model, - task="embedding", + task="embed", dtype=dtype, enforce_eager=True, max_model_len=8192) as vllm_model: diff --git a/tests/models/embedding/vision_language/test_llava_next.py b/tests/models/embedding/vision_language/test_llava_next.py index 693abd7252d5e..f4cd8b81a0d7d 100644 --- a/tests/models/embedding/vision_language/test_llava_next.py +++ b/tests/models/embedding/vision_language/test_llava_next.py @@ -47,7 +47,7 @@ def _run_test( # if we run HF first, the cuda initialization will be done and it # will hurt multiprocessing backend with fork method (the default method). with vllm_runner(model, - task="embedding", + task="embed", dtype=dtype, max_model_len=4096, enforce_eager=True) as vllm_model: diff --git a/tests/models/embedding/vision_language/test_phi3v.py b/tests/models/embedding/vision_language/test_phi3v.py index 6145aff1a5ea2..9374c23dd6ffe 100644 --- a/tests/models/embedding/vision_language/test_phi3v.py +++ b/tests/models/embedding/vision_language/test_phi3v.py @@ -39,7 +39,7 @@ def _run_test( # vLLM needs a fresh new process without cuda initialization. # if we run HF first, the cuda initialization will be done and it # will hurt multiprocessing backend with fork method (the default method). - with vllm_runner(model, task="embedding", dtype=dtype, + with vllm_runner(model, task="embed", dtype=dtype, enforce_eager=True) as vllm_model: vllm_outputs = vllm_model.encode(input_texts, images=input_images) diff --git a/tests/test_config.py b/tests/test_config.py index 45b0b938af215..4518adfc31bfc 100644 --- a/tests/test_config.py +++ b/tests/test_config.py @@ -7,11 +7,17 @@ from vllm.platforms import current_platform -@pytest.mark.parametrize(("model_id", "expected_task"), [ - ("facebook/opt-125m", "generate"), - ("intfloat/e5-mistral-7b-instruct", "embedding"), -]) -def test_auto_task(model_id, expected_task): +@pytest.mark.parametrize( + ("model_id", "expected_runner_type", "expected_task"), + [ + ("facebook/opt-125m", "generate", "generate"), + ("intfloat/e5-mistral-7b-instruct", "pooling", "embed"), + ("jason9693/Qwen2.5-1.5B-apeach", "pooling", "classify"), + ("cross-encoder/ms-marco-MiniLM-L-6-v2", "pooling", "score"), + ("Qwen/Qwen2.5-Math-RM-72B", "pooling", "reward"), + ], +) +def test_auto_task(model_id, expected_runner_type, expected_task): config = ModelConfig( model_id, task="auto", @@ -22,6 +28,7 @@ def test_auto_task(model_id, expected_task): dtype="float16", ) + assert config.runner_type == expected_runner_type assert config.task == expected_task diff --git a/vllm/config.py b/vllm/config.py index 2a9f0ebae997d..2d9a76fe7ddb1 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -45,13 +45,27 @@ logger = init_logger(__name__) -_EMBEDDING_MODEL_MAX_NUM_BATCHED_TOKENS = 32768 +_POOLING_MODEL_MAX_NUM_BATCHED_TOKENS = 32768 _MULTIMODAL_MODEL_MAX_NUM_BATCHED_TOKENS = 5120 -TaskOption = Literal["auto", "generate", "embedding"] +TaskOption = Literal["auto", "generate", "embedding", "embed", "classify", + "score", "reward"] -# "draft" is only used internally for speculative decoding -_Task = Literal["generate", "embedding", "draft"] +_ResolvedTask = Literal["generate", "embed", "classify", "score", "reward", + "draft"] + +RunnerType = Literal["generate", "pooling", "draft"] + +_RUNNER_TASKS: Dict[RunnerType, List[_ResolvedTask]] = { + "generate": ["generate"], + "pooling": ["embed", "classify", "score", "reward"], + "draft": ["draft"], +} + +_TASK_RUNNER: Dict[_ResolvedTask, RunnerType] = { + task: runner + for runner, tasks in _RUNNER_TASKS.items() for task in tasks +} HfOverrides = Union[Dict[str, Any], Callable[[PretrainedConfig], PretrainedConfig]] @@ -144,7 +158,7 @@ class ModelConfig: def __init__( self, model: str, - task: Union[TaskOption, _Task], + task: Union[TaskOption, Literal["draft"]], tokenizer: str, tokenizer_mode: str, trust_remote_code: bool, @@ -295,6 +309,7 @@ def __init__( supported_tasks, task = self._resolve_task(task, self.hf_config) self.supported_tasks = supported_tasks self.task: Final = task + self.pooler_config = self._init_pooler_config(override_pooler_config) self._verify_quantization() @@ -323,7 +338,7 @@ def _init_pooler_config( override_pooler_config: Optional["PoolerConfig"], ) -> Optional["PoolerConfig"]: - if self.task == "embedding": + if self.runner_type == "pooling": user_config = override_pooler_config or PoolerConfig() base_config = get_pooling_config(self.model, self.revision) @@ -357,60 +372,90 @@ def _verify_tokenizer_mode(self) -> None: "either 'auto', 'slow' or 'mistral'.") self.tokenizer_mode = tokenizer_mode + def _get_preferred_task( + self, + architectures: List[str], + supported_tasks: Set[_ResolvedTask], + ) -> Optional[_ResolvedTask]: + model_id = self.model + if get_pooling_config(model_id, self.revision): + return "embed" + if ModelRegistry.is_cross_encoder_model(architectures): + return "score" + + suffix_to_preferred_task: List[Tuple[str, _ResolvedTask]] = [ + # Other models follow this pattern + ("ForCausalLM", "generate"), + ("ForConditionalGeneration", "generate"), + ("ForSequenceClassification", "classify"), + ("ChatModel", "generate"), + ("LMHeadModel", "generate"), + ("EmbeddingModel", "embed"), + ("RewardModel", "reward"), + ] + _, arch = ModelRegistry.inspect_model_cls(architectures) + + for suffix, pref_task in suffix_to_preferred_task: + if arch.endswith(suffix) and pref_task in supported_tasks: + return pref_task + + return None + def _resolve_task( self, - task_option: Union[TaskOption, _Task], + task_option: Union[TaskOption, Literal["draft"]], hf_config: PretrainedConfig, - ) -> Tuple[Set[_Task], _Task]: + ) -> Tuple[Set[_ResolvedTask], _ResolvedTask]: if task_option == "draft": return {"draft"}, "draft" architectures = getattr(hf_config, "architectures", []) - task_support: Dict[_Task, bool] = { + runner_support: Dict[RunnerType, bool] = { # NOTE: Listed from highest to lowest priority, # in case the model supports multiple of them "generate": ModelRegistry.is_text_generation_model(architectures), - "embedding": ModelRegistry.is_pooling_model(architectures), + "pooling": ModelRegistry.is_pooling_model(architectures), } - supported_tasks_lst: List[_Task] = [ - task for task, is_supported in task_support.items() if is_supported + supported_runner_types_lst: List[RunnerType] = [ + runner_type + for runner_type, is_supported in runner_support.items() + if is_supported + ] + + supported_tasks_lst: List[_ResolvedTask] = [ + task for runner_type in supported_runner_types_lst + for task in _RUNNER_TASKS[runner_type] ] supported_tasks = set(supported_tasks_lst) if task_option == "auto": selected_task = next(iter(supported_tasks_lst)) - if len(supported_tasks) > 1: - suffix_to_preferred_task: List[Tuple[str, _Task]] = [ - # Hardcode the models that are exceptions - ("AquilaModel", "generate"), - ("ChatGLMModel", "generate"), - # Other models follow this pattern - ("ForCausalLM", "generate"), - ("ForConditionalGeneration", "generate"), - ("ChatModel", "generate"), - ("LMHeadModel", "generate"), - ("EmbeddingModel", "embedding"), - ("RewardModel", "embedding"), - ("ForSequenceClassification", "embedding"), - ] - info, arch = ModelRegistry.inspect_model_cls(architectures) - - for suffix, pref_task in suffix_to_preferred_task: - if arch.endswith(suffix) and pref_task in supported_tasks: - selected_task = pref_task - break - else: - if (arch.endswith("Model") - and info.architecture.endswith("ForCausalLM") - and "embedding" in supported_tasks): - selected_task = "embedding" + if len(supported_tasks_lst) > 1: + preferred_task = self._get_preferred_task( + architectures, supported_tasks) + if preferred_task is not None: + selected_task = preferred_task logger.info( "This model supports multiple tasks: %s. " "Defaulting to '%s'.", supported_tasks, selected_task) else: + # Aliases + if task_option == "embedding": + preferred_task = self._get_preferred_task( + architectures, supported_tasks) + if preferred_task != "embed": + msg = ("The 'embedding' task will be restricted to " + "embedding models in a future release. Please " + "pass `--task classify`, `--task score`, or " + "`--task reward` explicitly for other pooling " + "models.") + warnings.warn(msg, DeprecationWarning, stacklevel=2) + + task_option = preferred_task or "embed" + if task_option not in supported_tasks: msg = ( f"This model does not support the '{task_option}' task. " @@ -533,7 +578,7 @@ def verify_async_output_proc(self, parallel_config, speculative_config, # Async postprocessor is not necessary with embedding mode # since there is no token generation - if self.task == "embedding": + if self.runner_type == "pooling": self.use_async_output_proc = False # Reminder: Please update docs/source/usage/compatibility_matrix.rst @@ -750,6 +795,14 @@ def is_cross_encoder(self) -> bool: architectures = getattr(self.hf_config, "architectures", []) return ModelRegistry.is_cross_encoder_model(architectures) + @property + def supported_runner_types(self) -> Set[RunnerType]: + return {_TASK_RUNNER[task] for task in self.supported_tasks} + + @property + def runner_type(self) -> RunnerType: + return _TASK_RUNNER[self.task] + class CacheConfig: """Configuration for the KV cache. @@ -1096,7 +1149,7 @@ def _verify_args(self) -> None: class SchedulerConfig: """Scheduler configuration.""" - task: str = "generate" # The task to use the model for. + runner_type: str = "generate" # The runner type to launch for the model. # Maximum number of tokens to be processed in a single iteration. max_num_batched_tokens: int = field(default=None) # type: ignore @@ -1164,11 +1217,11 @@ def __post_init__(self) -> None: # for higher throughput. self.max_num_batched_tokens = max(self.max_model_len, 2048) - if self.task == "embedding": - # For embedding, choose specific value for higher throughput + if self.runner_type == "pooling": + # Choose specific value for higher throughput self.max_num_batched_tokens = max( self.max_num_batched_tokens, - _EMBEDDING_MODEL_MAX_NUM_BATCHED_TOKENS, + _POOLING_MODEL_MAX_NUM_BATCHED_TOKENS, ) if self.is_multimodal_model: # The value needs to be at least the number of multimodal tokens diff --git a/vllm/core/scheduler.py b/vllm/core/scheduler.py index 94c62743883ec..c3bc6becf0995 100644 --- a/vllm/core/scheduler.py +++ b/vllm/core/scheduler.py @@ -337,7 +337,7 @@ def __init__( self.lora_config = lora_config version = "selfattn" - if (self.scheduler_config.task == "embedding" + if (self.scheduler_config.runner_type == "pooling" or self.cache_config.is_attention_free): version = "placeholder" diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index 7b9adc401abcf..d485c2a9e7208 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -1066,7 +1066,7 @@ def create_engine_config(self, if (is_gpu and not use_sliding_window and not use_spec_decode and not self.enable_lora and not self.enable_prompt_adapter - and model_config.task != "embedding"): + and model_config.runner_type != "pooling"): self.enable_chunked_prefill = True logger.warning( "Chunked prefill is enabled by default for models with " @@ -1083,7 +1083,8 @@ def create_engine_config(self, "errors during the initial memory profiling phase, or result " "in low performance due to small KV cache space. Consider " "setting --max-model-len to a smaller value.", max_model_len) - elif self.enable_chunked_prefill and model_config.task == "embedding": + elif (self.enable_chunked_prefill + and model_config.runner_type == "pooling"): msg = "Chunked prefill is not supported for embedding models" raise ValueError(msg) @@ -1144,7 +1145,7 @@ def create_engine_config(self, " please file an issue with detailed information.") scheduler_config = SchedulerConfig( - task=model_config.task, + runner_type=model_config.runner_type, max_num_batched_tokens=self.max_num_batched_tokens, max_num_seqs=self.max_num_seqs, max_model_len=model_config.max_model_len, diff --git a/vllm/engine/llm_engine.py b/vllm/engine/llm_engine.py index 6eca304b45f07..9be30c635cb2c 100644 --- a/vllm/engine/llm_engine.py +++ b/vllm/engine/llm_engine.py @@ -288,7 +288,7 @@ def get_tokenizer_for_seq(sequence: Sequence) -> AnyTokenizer: self.model_executor = executor_class(vllm_config=vllm_config, ) - if self.model_config.task != "embedding": + if self.model_config.runner_type != "pooling": self._initialize_kv_caches() # If usage stat is enabled, collect relevant info. @@ -1123,7 +1123,7 @@ def _process_model_outputs(self, seq_group.metrics.model_execute_time = ( o.model_execute_time) - if self.model_config.task == "embedding": + if self.model_config.runner_type == "pooling": self._process_sequence_group_outputs(seq_group, output) else: self.output_processor.process_prompt_logprob(seq_group, output) diff --git a/vllm/entrypoints/llm.py b/vllm/entrypoints/llm.py index 2a02187223a33..0bec978c4869c 100644 --- a/vllm/entrypoints/llm.py +++ b/vllm/entrypoints/llm.py @@ -381,19 +381,20 @@ def generate( considered legacy and may be deprecated in the future. You should instead pass them via the ``inputs`` parameter. """ - task = self.llm_engine.model_config.task - if task != "generate": + runner_type = self.llm_engine.model_config.runner_type + if runner_type != "generate": messages = [ "LLM.generate() is only supported for (conditional) generation " "models (XForCausalLM, XForConditionalGeneration).", ] - supported_tasks = self.llm_engine.model_config.supported_tasks - if "generate" in supported_tasks: + supported_runner_types = self.llm_engine.model_config \ + .supported_runner_types + if "generate" in supported_runner_types: messages.append( - "Your model supports the 'generate' task, but is " - f"currently initialized for the '{task}' task. Please " - "initialize the model using `--task generate`.") + "Your model supports the 'generate' runner, but is " + f"currently initialized for the '{runner_type}' runner. " + "Please initialize vLLM using `--task generate`.") raise ValueError(" ".join(messages)) @@ -793,16 +794,18 @@ def encode( considered legacy and may be deprecated in the future. You should instead pass them via the ``inputs`` parameter. """ - task = self.llm_engine.model_config.task - if task != "embedding": - messages = ["LLM.encode() is only supported for embedding models."] + runner_type = self.llm_engine.model_config.runner_type + if runner_type != "pooling": + messages = ["LLM.encode() is only supported for pooling models."] - supported_tasks = self.llm_engine.model_config.supported_tasks - if "embedding" in supported_tasks: + supported_runner_types = self.llm_engine.model_config \ + .supported_runner_types + if "pooling" in supported_runner_types: messages.append( - "Your model supports the 'embedding' task, but is " - f"currently initialized for the '{task}' task. Please " - "initialize the model using `--task embedding`.") + "Your model supports the 'pooling' runner, but is " + f"currently initialized for the '{runner_type}' runner. " + "Please initialize vLLM using `--task embed`, " + "`--task classify`, `--task score` etc.") raise ValueError(" ".join(messages)) @@ -864,21 +867,23 @@ def score( A list of ``PoolingRequestOutput`` objects containing the generated scores in the same order as the input prompts. """ - task = self.llm_engine.model_config.task - if task != "embedding": - messages = ["LLM.score() is only supported for embedding models."] + runner_type = self.llm_engine.model_config.runner_type + if runner_type != "pooling": + messages = ["LLM.score() is only supported for pooling models."] - supported_tasks = self.llm_engine.model_config.supported_tasks - if "embedding" in supported_tasks: + supported_runner_types = self.llm_engine.model_config \ + .supported_runner_types + if "pooling" in supported_runner_types: messages.append( - "Your model supports the 'embedding' task, but is " - f"currently initialized for the '{task}' task. Please " - "initialize the model using `--task embedding`.") + "Your model supports the 'pooling' runner, but is " + f"currently initialized for the '{runner_type}' runner. " + "Please initialize vLLM using `--task embed`, " + "`--task classify`, `--task score` etc.") raise ValueError(" ".join(messages)) if not self.llm_engine.model_config.is_cross_encoder: - raise ValueError("Your model does not support the cross encoding") + raise ValueError("Your model does not support cross encoding") tokenizer = self.llm_engine.get_tokenizer() diff --git a/vllm/entrypoints/openai/api_server.py b/vllm/entrypoints/openai/api_server.py index 0f93eb54111ad..a345f8caeeed2 100644 --- a/vllm/entrypoints/openai/api_server.py +++ b/vllm/entrypoints/openai/api_server.py @@ -573,7 +573,7 @@ def init_app_state( enable_auto_tools=args.enable_auto_tool_choice, tool_parser=args.tool_call_parser, enable_prompt_tokens_details=args.enable_prompt_tokens_details, - ) if model_config.task == "generate" else None + ) if model_config.runner_type == "generate" else None state.openai_serving_completion = OpenAIServingCompletion( engine_client, model_config, @@ -582,7 +582,7 @@ def init_app_state( prompt_adapters=args.prompt_adapters, request_logger=request_logger, return_tokens_as_token_ids=args.return_tokens_as_token_ids, - ) if model_config.task == "generate" else None + ) if model_config.runner_type == "generate" else None state.openai_serving_embedding = OpenAIServingEmbedding( engine_client, model_config, @@ -590,13 +590,13 @@ def init_app_state( request_logger=request_logger, chat_template=resolved_chat_template, chat_template_content_format=args.chat_template_content_format, - ) if model_config.task == "embedding" else None + ) if model_config.runner_type == "pooling" else None state.openai_serving_scores = OpenAIServingScores( engine_client, model_config, base_model_paths, request_logger=request_logger - ) if (model_config.task == "embedding" \ + ) if (model_config.runner_type == "pooling" \ and model_config.is_cross_encoder) else None state.openai_serving_tokenization = OpenAIServingTokenization( engine_client, diff --git a/vllm/entrypoints/openai/run_batch.py b/vllm/entrypoints/openai/run_batch.py index 00cdb3b6839f5..675daf54c0d0d 100644 --- a/vllm/entrypoints/openai/run_batch.py +++ b/vllm/entrypoints/openai/run_batch.py @@ -224,7 +224,7 @@ async def main(args): chat_template=None, chat_template_content_format="auto", enable_prompt_tokens_details=args.enable_prompt_tokens_details, - ) if model_config.task == "generate" else None + ) if model_config.runner_type == "generate" else None openai_serving_embedding = OpenAIServingEmbedding( engine, model_config, @@ -232,7 +232,7 @@ async def main(args): request_logger=request_logger, chat_template=None, chat_template_content_format="auto", - ) if model_config.task == "embedding" else None + ) if model_config.runner_type == "pooling" else None tracker = BatchProgressTracker() logger.info("Reading batch from %s...", args.input_file) diff --git a/vllm/model_executor/model_loader/utils.py b/vllm/model_executor/model_loader/utils.py index cfb89e0f336bc..f15e7176b3d50 100644 --- a/vllm/model_executor/model_loader/utils.py +++ b/vllm/model_executor/model_loader/utils.py @@ -35,7 +35,7 @@ def get_model_architecture( architectures = ["QuantMixtralForCausalLM"] model_cls, arch = ModelRegistry.resolve_model_cls(architectures) - if model_config.task == "embedding": + if model_config.runner_type == "pooling": model_cls = as_embedding_model(model_cls) return model_cls, arch diff --git a/vllm/v1/engine/core.py b/vllm/v1/engine/core.py index fdb241e6753fb..55a5c4dff3a5c 100644 --- a/vllm/v1/engine/core.py +++ b/vllm/v1/engine/core.py @@ -42,7 +42,7 @@ def __init__( executor_class: Type[Executor], usage_context: UsageContext, ): - assert vllm_config.model_config.task != "embedding" + assert vllm_config.model_config.runner_type != "pooling" logger.info("Initializing an LLM engine (v%s) with config: %s", VLLM_VERSION, vllm_config) diff --git a/vllm/worker/cpu_worker.py b/vllm/worker/cpu_worker.py index 4fad1a3f4caeb..ba3d4a130a80b 100644 --- a/vllm/worker/cpu_worker.py +++ b/vllm/worker/cpu_worker.py @@ -163,7 +163,7 @@ def __init__( not in ["medusa", "mlp_speculator", "eagle"]) \ else {"return_hidden_states": True} ModelRunnerClass: Type[CPUModelRunnerBase] = CPUModelRunner - if self.model_config.task == "embedding": + if self.model_config.runner_type == "pooling": ModelRunnerClass = CPUPoolingModelRunner elif self.model_config.is_encoder_decoder: ModelRunnerClass = CPUEncoderDecoderModelRunner diff --git a/vllm/worker/worker.py b/vllm/worker/worker.py index 094dd5a5d08b3..832b9903b7abc 100644 --- a/vllm/worker/worker.py +++ b/vllm/worker/worker.py @@ -75,7 +75,7 @@ def __init__( else {"return_hidden_states": True} ModelRunnerClass: Type[GPUModelRunnerBase] = ModelRunner - if model_config.task == "embedding": + if model_config.runner_type == "pooling": ModelRunnerClass = PoolingModelRunner elif self.model_config.is_encoder_decoder: ModelRunnerClass = EncoderDecoderModelRunner From cad5c0a6eda057eeece87a42fff49fef3e18a2ac Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Wed, 11 Dec 2024 21:36:27 +0800 Subject: [PATCH 116/733] [Doc] Update docs to refer to pooling models (#11093) Signed-off-by: DarkLight1337 --- docs/source/usage/faq.rst | 7 ++++++- vllm/attention/backends/placeholder_attn.py | 2 +- vllm/config.py | 8 ++++---- vllm/core/placeholder_block_space_manager.py | 2 +- vllm/engine/arg_utils.py | 4 ++-- vllm/engine/async_llm_engine.py | 2 +- vllm/engine/multiprocessing/client.py | 2 +- vllm/engine/protocol.py | 2 +- vllm/entrypoints/openai/serving_score.py | 2 +- vllm/sequence.py | 6 +++--- vllm/v1/engine/processor.py | 2 +- vllm/worker/cpu_worker.py | 2 +- vllm/worker/hpu_worker.py | 4 ++-- vllm/worker/worker.py | 2 +- 14 files changed, 26 insertions(+), 21 deletions(-) diff --git a/docs/source/usage/faq.rst b/docs/source/usage/faq.rst index ce327abd5fa20..d88da32092924 100644 --- a/docs/source/usage/faq.rst +++ b/docs/source/usage/faq.rst @@ -11,7 +11,12 @@ A: Assuming that you're referring to using OpenAI compatible server to serve mul Q: Which model to use for offline inference embedding? -A: If you want to use an embedding model, try: https://huggingface.co/intfloat/e5-mistral-7b-instruct. Instead models, such as Llama-3-8b, Mistral-7B-Instruct-v0.3, are generation models rather than an embedding model +A: You can try `e5-mistral-7b-instruct `__ and `BAAI/bge-base-en-v1.5 `__; +more are listed :ref:`here `. + +By extracting hidden states, vLLM can automatically convert text generation models like `Llama-3-8B `__, +`Mistral-7B-Instruct-v0.3 `__ into embedding models, +but they are expected be inferior to models that are specifically trained on embedding tasks. ---------------------------------------- diff --git a/vllm/attention/backends/placeholder_attn.py b/vllm/attention/backends/placeholder_attn.py index 658039bfc3365..534f79b3a60bf 100644 --- a/vllm/attention/backends/placeholder_attn.py +++ b/vllm/attention/backends/placeholder_attn.py @@ -14,7 +14,7 @@ from vllm.worker.model_runner import (ModelInputForGPUBuilder, ModelInputForGPUWithSamplingMetadata) -# Placeholder attention backend for models like Mamba and embedding models that +# Placeholder attention backend for models like Mamba and pooling models that # lack attention. diff --git a/vllm/config.py b/vllm/config.py index 2d9a76fe7ddb1..322c8f8990a40 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -152,7 +152,7 @@ class ModelConfig: this argument will be used to configure the neuron config that can not be gathered from the vllm arguments. override_pooler_config: Initialize non default pooling config or - override default pooling config for the embedding model. + override default pooling config for the pooling model. """ def __init__( @@ -576,7 +576,7 @@ def verify_async_output_proc(self, parallel_config, speculative_config, self.use_async_output_proc = False return - # Async postprocessor is not necessary with embedding mode + # Async postprocessor is not necessary for pooling models # since there is no token generation if self.runner_type == "pooling": self.use_async_output_proc = False @@ -1825,11 +1825,11 @@ class MultiModalConfig: @dataclass class PoolerConfig: - """Controls the behavior of output pooling in embedding models.""" + """Controls the behavior of output pooling in pooling models.""" pooling_type: Optional[str] = None """ - The pooling method of the embedding model. This should be a key in + The pooling method of the pooling model. This should be a key in :class:`vllm.model_executor.layers.pooler.PoolingType`. """ diff --git a/vllm/core/placeholder_block_space_manager.py b/vllm/core/placeholder_block_space_manager.py index 26d42b7f1790e..a47e594518534 100644 --- a/vllm/core/placeholder_block_space_manager.py +++ b/vllm/core/placeholder_block_space_manager.py @@ -8,7 +8,7 @@ class PlaceholderBlockSpaceManager(BlockSpaceManager): """A version of BlockSpaceManager for use in environments where block management is not required. - For example: embedding models or attention-free models like Mamba. + For example: pooling models or attention-free models like Mamba. This class provides the same interface as BlockSpaceManager, but its methods perform no actions or return simple values like True in specific diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index d485c2a9e7208..7337522bc9952 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -893,7 +893,7 @@ def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser: '--override-pooler-config', type=PoolerConfig.from_json, default=None, - help="Override or set the pooling method in the embedding model. " + help="Override or set the pooling method for pooling models. " "e.g. {\"pooling_type\": \"mean\", \"normalize\": false}.'") parser.add_argument('--compilation-config', @@ -1085,7 +1085,7 @@ def create_engine_config(self, "setting --max-model-len to a smaller value.", max_model_len) elif (self.enable_chunked_prefill and model_config.runner_type == "pooling"): - msg = "Chunked prefill is not supported for embedding models" + msg = "Chunked prefill is not supported for pooling models" raise ValueError(msg) diff --git a/vllm/engine/async_llm_engine.py b/vllm/engine/async_llm_engine.py index 60dccd7a0812c..32396fd10188d 100644 --- a/vllm/engine/async_llm_engine.py +++ b/vllm/engine/async_llm_engine.py @@ -1085,7 +1085,7 @@ async def encode( trace_headers: Optional[Mapping[str, str]] = None, priority: int = 0, ) -> AsyncGenerator[PoolingRequestOutput, None]: - """Generate outputs for a request from an embedding model. + """Generate outputs for a request from a pooling model. Generate outputs for a request. This method is a coroutine. It adds the request into the waiting queue of the LLMEngine and streams the outputs diff --git a/vllm/engine/multiprocessing/client.py b/vllm/engine/multiprocessing/client.py index a729023bc00bb..0a046c71e86e8 100644 --- a/vllm/engine/multiprocessing/client.py +++ b/vllm/engine/multiprocessing/client.py @@ -527,7 +527,7 @@ def encode( *, inputs: Optional[PromptType] = None # DEPRECATED ) -> AsyncGenerator[PoolingRequestOutput, None]: - """Generate outputs for a request from an embedding model. + """Generate outputs for a request from a pooling model. Generate outputs for a request. This method is a coroutine. It adds the request into the waiting queue of the LLMEngine and streams the outputs diff --git a/vllm/engine/protocol.py b/vllm/engine/protocol.py index 4079de7d36793..a066836b92708 100644 --- a/vllm/engine/protocol.py +++ b/vllm/engine/protocol.py @@ -209,7 +209,7 @@ def encode( trace_headers: Optional[Mapping[str, str]] = None, priority: int = 0, ) -> AsyncGenerator[PoolingRequestOutput, None]: - """Generate outputs for a request from an embedding model.""" + """Generate outputs for a request from a pooling model.""" ... @abstractmethod diff --git a/vllm/entrypoints/openai/serving_score.py b/vllm/entrypoints/openai/serving_score.py index fed06fa452955..4929e720c00e4 100644 --- a/vllm/entrypoints/openai/serving_score.py +++ b/vllm/entrypoints/openai/serving_score.py @@ -119,7 +119,7 @@ async def create_score( if prompt_adapter_request is not None: raise NotImplementedError("Prompt adapter is not supported " - "for embedding models") + "for scoring models") if isinstance(tokenizer, MistralTokenizer): raise ValueError( diff --git a/vllm/sequence.py b/vllm/sequence.py index 669124319c4f4..b0f3c1cc3609f 100644 --- a/vllm/sequence.py +++ b/vllm/sequence.py @@ -618,9 +618,9 @@ class SequenceGroup: arrival_time: The arrival time of the request. lora_request: LoRA request. embeddings: The embeddings vectors of the prompt of the sequence group - for an embedding model. + for a pooling model. pooling_params: The pooling parameters used to generate the pooling - for an embedding model. + for a pooling model. encoder_seq: Optional, the single encoder sequence. Should be None unless you are working with an encoder/decoder model. trace_headers: OpenTelemetry trace headers. @@ -1102,7 +1102,7 @@ class PoolerOutput( msgspec.Struct, omit_defaults=True, # type: ignore[call-arg] array_like=True): # type: ignore[call-arg] - """The output from a pooling operation in the embedding model.""" + """The output from a pooling operation in the pooling model.""" outputs: List[EmbeddingSequenceGroupOutput] # lazy import to avoid circular import diff --git a/vllm/v1/engine/processor.py b/vllm/v1/engine/processor.py index 120fc64969552..e0e525b30a767 100644 --- a/vllm/v1/engine/processor.py +++ b/vllm/v1/engine/processor.py @@ -59,7 +59,7 @@ def process_inputs( priority: int = 0, ) -> Tuple[DetokenizerRequest, EngineCoreRequest]: - # TODO(woosuk): Support embedding mode. + # TODO(woosuk): Support pooling models. # TODO(woosuk): Check max_logprobs # TODO(woosuk): Support encoder-decoder models. diff --git a/vllm/worker/cpu_worker.py b/vllm/worker/cpu_worker.py index ba3d4a130a80b..09758a5d9accf 100644 --- a/vllm/worker/cpu_worker.py +++ b/vllm/worker/cpu_worker.py @@ -178,7 +178,7 @@ def __init__( # Uninitialized cache engine. Will be initialized by # initialize_cache. self.cache_engine: List[CPUCacheEngine] - # Initialize cpu_cache as embedding models don't initialize kv_caches + # Initialize cpu_cache as pooling models don't initialize kv_caches self.cpu_cache: Optional[List[List[torch.Tensor]]] = None # Torch profiler. Enabled and configured through env vars: diff --git a/vllm/worker/hpu_worker.py b/vllm/worker/hpu_worker.py index 493f7a9fad098..cca7cd50bfc7b 100644 --- a/vllm/worker/hpu_worker.py +++ b/vllm/worker/hpu_worker.py @@ -65,8 +65,8 @@ def __init__( # Uninitialized cache engine. Will be initialized by # initialize_cache. self.cache_engine: List[HPUCacheEngine] - # Initialize gpu_cache as embedding models don't initialize kv_caches - self.hpu_cache: Optional[List[List[torch.tensor]]] = None + # Initialize gpu_cache as pooling models don't initialize kv_caches + self.hpu_cache: Optional[List[List[torch.Tensor]]] = None # Torch profiler. Enabled and configured through env vars: # VLLM_TORCH_PROFILER_DIR=/path/to/save/trace if envs.VLLM_TORCH_PROFILER_DIR: diff --git a/vllm/worker/worker.py b/vllm/worker/worker.py index 832b9903b7abc..a368bb9ee9a5b 100644 --- a/vllm/worker/worker.py +++ b/vllm/worker/worker.py @@ -91,7 +91,7 @@ def __init__( # Uninitialized cache engine. Will be initialized by # initialize_cache. self.cache_engine: List[CacheEngine] - # Initialize gpu_cache as embedding models don't initialize kv_caches + # Initialize gpu_cache as pooling models don't initialize kv_caches self.gpu_cache: Optional[List[List[torch.Tensor]]] = None self._seq_group_metadata_cache: Dict[str, SequenceGroupMetadata] = {} From b2f775456e4af7412308320a9c11e4dac3086205 Mon Sep 17 00:00:00 2001 From: hissu-hyvarinen Date: Wed, 11 Dec 2024 17:23:37 +0200 Subject: [PATCH 117/733] [CI/Build] Enable prefix caching test for AMD (#11098) Signed-off-by: Hissu Hyvarinen --- .buildkite/test-pipeline.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index 8f57006214c88..df4fa7a6ee9ba 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -201,7 +201,7 @@ steps: - python3 offline_profile.py --model facebook/opt-125m - label: Prefix Caching Test # 9min - #mirror_hardwares: [amd] + mirror_hardwares: [amd] source_file_dependencies: - vllm/ - tests/prefix_caching From fd22220687af5ccd89d9f8f2812069ef0422244c Mon Sep 17 00:00:00 2001 From: bingps <46775742+bingps@users.noreply.github.com> Date: Wed, 11 Dec 2024 23:43:24 +0800 Subject: [PATCH 118/733] [Doc] Installed version of llmcompressor for int8/fp8 quantization (#11103) Signed-off-by: Guangda Liu Co-authored-by: Guangda Liu --- docs/source/quantization/fp8.rst | 2 +- docs/source/quantization/int8.rst | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/docs/source/quantization/fp8.rst b/docs/source/quantization/fp8.rst index aacd07a34ad46..4dbf8e9d346e1 100644 --- a/docs/source/quantization/fp8.rst +++ b/docs/source/quantization/fp8.rst @@ -45,7 +45,7 @@ To produce performant FP8 quantized models with vLLM, you'll need to install the .. code-block:: console - $ pip install llmcompressor==0.1.0 + $ pip install llmcompressor Quantization Process -------------------- diff --git a/docs/source/quantization/int8.rst b/docs/source/quantization/int8.rst index 04fa308449507..aa5b251becb1c 100644 --- a/docs/source/quantization/int8.rst +++ b/docs/source/quantization/int8.rst @@ -19,7 +19,7 @@ To use INT8 quantization with vLLM, you'll need to install the `llm-compressor < .. code-block:: console - $ pip install llmcompressor==0.1.0 + $ pip install llmcompressor Quantization Process -------------------- @@ -142,4 +142,4 @@ Best Practices Troubleshooting and Support --------------------------- -If you encounter any issues or have feature requests, please open an issue on the ``vllm-project/llm-compressor`` GitHub repository. \ No newline at end of file +If you encounter any issues or have feature requests, please open an issue on the ``vllm-project/llm-compressor`` GitHub repository. From e8e6ebf064592bd26605cfecec54cc8712b56129 Mon Sep 17 00:00:00 2001 From: Rohan Potdar <66227218+Rohan138@users.noreply.github.com> Date: Wed, 11 Dec 2024 22:00:59 +0530 Subject: [PATCH 119/733] fix GemmTuner import in gradlib (#319) * fix GemmTuner import * fix GemmTuner import --- gradlib/gemm_tuner.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gradlib/gemm_tuner.py b/gradlib/gemm_tuner.py index 0c0b42ba48ade..182ced2b86d04 100644 --- a/gradlib/gemm_tuner.py +++ b/gradlib/gemm_tuner.py @@ -5,9 +5,9 @@ import torch # isort: split import pandas as pd +from GemmTuner import GemmTuner import vllm._gradlib_C # noqa: F401 -from gradlib.GemmTuner import GemmTuner torch.ops._gradlib_C.rocb_create_extension() torch.ops._gradlib_C.hipb_create_extension() From 91642db952458fbb6ae7c2d167757dc86b105991 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Wed, 11 Dec 2024 10:43:05 -0800 Subject: [PATCH 120/733] [torch.compile] use depyf to dump torch.compile internals (#10972) Signed-off-by: youkaichao --- requirements-common.txt | 1 + vllm/compilation/backends.py | 69 ++++++++++++++++++---------------- vllm/compilation/decorators.py | 2 +- vllm/compilation/monitor.py | 23 ++++++++++-- vllm/compilation/wrapper.py | 4 +- vllm/config.py | 6 ++- vllm/worker/model_runner.py | 3 +- 7 files changed, 66 insertions(+), 42 deletions(-) diff --git a/requirements-common.txt b/requirements-common.txt index 792cd58e80669..850b8f4101701 100644 --- a/requirements-common.txt +++ b/requirements-common.txt @@ -33,3 +33,4 @@ six>=1.16.0; python_version > '3.11' # transitive dependency of pandas that need setuptools>=74.1.1; python_version > '3.11' # Setuptools is used by triton, we need to ensure a modern version is installed for 3.12+ so that it does not try to import distutils, which was removed in 3.12 einops # Required for Qwen2-VL. compressed-tensors == 0.8.0 # required for compressed-tensors +depyf==0.18.0 # required for profiling and debugging torch.compile diff --git a/vllm/compilation/backends.py b/vllm/compilation/backends.py index f002a8ff905b1..09a3daa731829 100644 --- a/vllm/compilation/backends.py +++ b/vllm/compilation/backends.py @@ -9,7 +9,7 @@ import torch.fx as fx import vllm.envs as envs -from vllm.config import CompilationConfig +from vllm.config import CompilationConfig, VllmConfig from vllm.logger import init_logger from vllm.utils import weak_ref_tensors @@ -149,14 +149,15 @@ class PiecewiseCompileInterpreter(torch.fx.Interpreter): """ def __init__(self, module: torch.fx.GraphModule, - compile_submod_names: List[str], - compilation_configs: CompilationConfig, graph_pool): + compile_submod_names: List[str], vllm_config: VllmConfig, + graph_pool): super().__init__(module) from torch._guards import detect_fake_mode self.fake_mode = detect_fake_mode() self.compile_submod_names = compile_submod_names - self.compilation_configs = compilation_configs + self.compilation_config = vllm_config.compilation_config self.graph_pool = graph_pool + self.vllm_config = vllm_config def run(self, *args): fake_args = [ @@ -182,15 +183,15 @@ def call_module(self, target: torch.fx.node.Target, compiled_graph_for_general_shape = wrap_inductor( submod, args, - self.compilation_configs.inductor_compile_config, - self.compilation_configs, + self.compilation_config.inductor_compile_config, + self.compilation_config, graph_index=index, num_graphs=len(self.compile_submod_names), runtime_shape=None, - use_inductor=self.compilation_configs.use_inductor) + use_inductor=self.compilation_config.use_inductor) self.module.__dict__[target] = PiecewiseBackend( - submod, self.compilation_configs, self.graph_pool, index, + submod, self.vllm_config, self.graph_pool, index, len(self.compile_submod_names), sym_shape_indices, compiled_graph_for_general_shape) @@ -211,7 +212,8 @@ class VllmBackend: which handles the post-grad passes. """ - compilation_configs: CompilationConfig + vllm_config: VllmConfig + compilation_config: CompilationConfig graph_pool: Any _called: bool = False # the graph we compiled @@ -227,7 +229,7 @@ class VllmBackend: def __init__( self, - compilation_configs: CompilationConfig, + vllm_config: VllmConfig, ): global global_graph_pool if global_graph_pool is None: @@ -244,13 +246,14 @@ def __init__( self.sym_tensor_indices = [] self.input_buffers = [] - self.compilation_configs = compilation_configs + self.vllm_config = vllm_config + self.compilation_config = vllm_config.compilation_config # `torch.compile` is JIT compiled, so we don't need to # do anything here def configure_post_pass(self): - config = self.compilation_configs + config = self.compilation_config self.post_grad_pass_manager.configure(config.pass_config) # Post-grad custom passes are run using the post_grad_custom_post_pass @@ -271,7 +274,7 @@ def __call__(self, graph: fx.GraphModule, example_inputs) -> Callable: from .monitor import torch_compile_start_time dynamo_time = time.time() - torch_compile_start_time logger.info("Dynamo bytecode transform time: %.2f s", dynamo_time) - self.compilation_configs.compilation_time += dynamo_time + self.compilation_config.compilation_time += dynamo_time # we control the compilation process, each instance can only be # called once @@ -281,7 +284,7 @@ def __call__(self, graph: fx.GraphModule, example_inputs) -> Callable: self.configure_post_pass() self.split_gm, self.piecewise_graphs = split_graph( - graph, self.compilation_configs.splitting_ops) + graph, self.compilation_config.splitting_ops) from torch._dynamo.utils import lazy_format_graph_code logger.debug("%s", lazy_format_graph_code("before split", self.graph)) @@ -298,13 +301,13 @@ def __call__(self, graph: fx.GraphModule, example_inputs) -> Callable: # propagate the split graph to the piecewise backend, # compile submodules with symbolic shapes PiecewiseCompileInterpreter(self.split_gm, submod_names_to_compile, - self.compilation_configs, + self.vllm_config, self.graph_pool).run(*example_inputs) self._called = True - if not self.compilation_configs.use_cudagraph or \ - not self.compilation_configs.cudagraph_copy_inputs: + if not self.compilation_config.use_cudagraph or \ + not self.compilation_config.cudagraph_copy_inputs: return self.split_gm # if we need to copy input buffers for cudagraph @@ -364,10 +367,9 @@ class ConcreteSizeEntry: class PiecewiseBackend: - def __init__(self, graph: fx.GraphModule, - compilation_configs: CompilationConfig, graph_pool: Any, - piecewise_compile_index: int, total_piecewise_compiles: int, - sym_shape_indices: List[int], + def __init__(self, graph: fx.GraphModule, vllm_config: VllmConfig, + graph_pool: Any, piecewise_compile_index: int, + total_piecewise_compiles: int, sym_shape_indices: List[int], compiled_graph_for_general_shape: Callable): """ The backend for piecewise compilation. @@ -375,7 +377,7 @@ def __init__(self, graph: fx.GraphModule, We will compile `self.graph` once for the general shape, and then compile for different shapes specified in - `compilation_configs.compile_sizes`. + `compilation_config.compile_sizes`. Independently, we will capture cudagraph for different shapes. @@ -383,7 +385,8 @@ def __init__(self, graph: fx.GraphModule, compile it first, and then capture cudagraph. """ self.graph = graph - self.compilation_configs = compilation_configs + self.vllm_config = vllm_config + self.compilation_config = vllm_config.compilation_config self.graph_pool = graph_pool self.piecewise_compile_index = piecewise_compile_index self.total_piecewise_compiles = total_piecewise_compiles @@ -393,10 +396,10 @@ def __init__(self, graph: fx.GraphModule, piecewise_compile_index == total_piecewise_compiles - 1) self.compile_sizes: Set[int] = set( - self.compilation_configs.compile_sizes) + self.compilation_config.compile_sizes) self.capture_sizes: Set[int] = set( - self.compilation_configs.capture_sizes - ) if self.compilation_configs.use_cudagraph else set() + self.compilation_config.capture_sizes + ) if self.compilation_config.use_cudagraph else set() self.first_run_finished = False @@ -423,7 +426,7 @@ def __call__(self, *args) -> Any: self.first_run_finished = True # no specific sizes to compile if self.is_last_graph and not self.to_be_compiled_sizes: - end_monitoring_torch_compile(self.compilation_configs) + end_monitoring_torch_compile(self.vllm_config) return self.compiled_graph_for_general_shape(*args) runtime_shape = args[self.sym_shape_indices[0]] @@ -443,28 +446,28 @@ def __call__(self, *args) -> Any: entry.runnable = wrap_inductor( self.graph, args, - self.compilation_configs.inductor_compile_config, - self.compilation_configs, + self.compilation_config.inductor_compile_config, + self.compilation_config, graph_index=self.piecewise_compile_index, num_graphs=self.total_piecewise_compiles, runtime_shape=runtime_shape, - use_inductor=self.compilation_configs.use_inductor) + use_inductor=self.compilation_config.use_inductor) # finished compilations for all required shapes if self.is_last_graph and not self.to_be_compiled_sizes: - end_monitoring_torch_compile(self.compilation_configs) + end_monitoring_torch_compile(self.vllm_config) if not entry.use_cudagraph: return entry.runnable(*args) if entry.cudagraph is None: - if entry.num_finished_warmup < self.compilation_configs.cudagraph_num_of_warmups: # noqa + if entry.num_finished_warmup < self.compilation_config.cudagraph_num_of_warmups: # noqa entry.num_finished_warmup += 1 if self.is_first_graph: logger.debug( "Warming up %s/%s for shape %s", entry.num_finished_warmup, - self.compilation_configs.cudagraph_num_of_warmups, + self.compilation_config.cudagraph_num_of_warmups, runtime_shape) return entry.runnable(*args) diff --git a/vllm/compilation/decorators.py b/vllm/compilation/decorators.py index 938430fe2a501..805a217ee6ca1 100644 --- a/vllm/compilation/decorators.py +++ b/vllm/compilation/decorators.py @@ -185,7 +185,7 @@ def __call__(self, *args, **kwargs): "Unsupported dynamic dimensions" f" {dims} for argument {k} with type {type(arg)}.") # here, it is the starting point of the `torch.compile` process - start_monitoring_torch_compile(self.vllm_config.compilation_config) + start_monitoring_torch_compile(self.vllm_config) # if we don't use custom dispatcher, we can directly call the # compiled function and let torch.compile handle the dispatching, diff --git a/vllm/compilation/monitor.py b/vllm/compilation/monitor.py index 3348674b09af2..b97e40415b41b 100644 --- a/vllm/compilation/monitor.py +++ b/vllm/compilation/monitor.py @@ -1,19 +1,36 @@ +import os import time -from vllm.config import CompilationConfig, CompilationLevel +from vllm.config import CompilationConfig, CompilationLevel, VllmConfig from vllm.logger import init_logger logger = init_logger(__name__) +context_manager = None torch_compile_start_time: float = 0.0 -def start_monitoring_torch_compile(compilation_config: CompilationConfig): +def start_monitoring_torch_compile(vllm_config: VllmConfig): global torch_compile_start_time torch_compile_start_time = time.time() + compilation_config: CompilationConfig = vllm_config.compilation_config + if compilation_config.level == CompilationLevel.PIECEWISE and \ + compilation_config.debug_dump_path: + import depyf + path = os.path.join(compilation_config.debug_dump_path, + f"rank_{vllm_config.parallel_config.rank}") + global context_manager + context_manager = depyf.prepare_debug(path) + context_manager.__enter__() -def end_monitoring_torch_compile(compilation_config: CompilationConfig): + +def end_monitoring_torch_compile(vllm_config: VllmConfig): + compilation_config: CompilationConfig = vllm_config.compilation_config if compilation_config.level == CompilationLevel.PIECEWISE: logger.info("torch.compile takes %.2f s in total", compilation_config.compilation_time) + global context_manager + if context_manager is not None: + context_manager.__exit__(None, None, None) + context_manager = None diff --git a/vllm/compilation/wrapper.py b/vllm/compilation/wrapper.py index bc4d292fef402..c10241b483169 100644 --- a/vllm/compilation/wrapper.py +++ b/vllm/compilation/wrapper.py @@ -32,8 +32,8 @@ def __init__(self, # default compilation settings # compiling the forward method - backend = get_current_vllm_config( - ).compilation_config.init_backend() + vllm_config = get_current_vllm_config() + backend = vllm_config.compilation_config.init_backend(vllm_config) compiled_callable = torch.compile( self.forward, diff --git a/vllm/config.py b/vllm/config.py index 322c8f8990a40..7f9be5a3a98bc 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -2222,6 +2222,7 @@ class CompilationConfig(BaseModel): - 1: dynamo as is. - 2: dynamo once. - 3: piecewise compilation. + - debug_dump_path: the path to dump the debug information. - backend: the backend for compilation. It needs to be a string. - "" (empty string): use the default backend. - "eager"/"openxla"/...: use the specified backend registered in PyTorch. @@ -2289,6 +2290,7 @@ class CompilationConfig(BaseModel): certain small batchsizes, where inductor is good at optimizing. """ # noqa level: int = 0 + debug_dump_path: str = "" backend: str = "" custom_ops: List[str] = Field(default_factory=list) splitting_ops: List[str] = Field(default_factory=lambda: [ @@ -2394,7 +2396,7 @@ def model_post_init(self, __context: Any) -> None: self.static_forward_context = {} self.compilation_time = 0.0 - def init_backend(self) -> Union[str, Callable]: + def init_backend(self, vllm_config: "VllmConfig") -> Union[str, Callable]: if self.level == CompilationLevel.NO_COMPILATION: raise ValueError("No compilation level is set.") @@ -2413,7 +2415,7 @@ def init_backend(self) -> Union[str, Callable]: # merge with the config use_inductor assert self.level == CompilationLevel.PIECEWISE from vllm.compilation.backends import VllmBackend - return VllmBackend(self) + return VllmBackend(vllm_config) def init_with_cudagraph_sizes(self, sizes_to_specialize: List[int]): """To complete the initialization of config, diff --git a/vllm/worker/model_runner.py b/vllm/worker/model_runner.py index 551b84435fdc0..26fd486130ce6 100644 --- a/vllm/worker/model_runner.py +++ b/vllm/worker/model_runner.py @@ -1162,7 +1162,8 @@ def load_model(self) -> None: if self.vllm_config.compilation_config.level ==\ CompilationLevel.DYNAMO_AS_IS and supports_dynamo(): - backend = self.vllm_config.compilation_config.init_backend() + backend = self.vllm_config.compilation_config.init_backend( + self.vllm_config) self.model = torch.compile( self.model, fullgraph=envs.VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE, From 2bec3daf42ed8c1b67fc8b9fd3871118907b7a91 Mon Sep 17 00:00:00 2001 From: Gregory Shtrasberg <156009573+gshtras@users.noreply.github.com> Date: Wed, 11 Dec 2024 13:44:03 -0500 Subject: [PATCH 121/733] Storing the installed commit hashes and customizations in a file (#320) --- Dockerfile.base | 64 +++++++++++++++++++++++++++++++++++--------- Dockerfile.base_navi | 58 ++++++++++++++++++++++++++++++--------- 2 files changed, 98 insertions(+), 24 deletions(-) diff --git a/Dockerfile.base b/Dockerfile.base index fa7200b947fd0..c32677ed80b42 100644 --- a/Dockerfile.base +++ b/Dockerfile.base @@ -1,4 +1,17 @@ ARG BASE_IMAGE=rocm/dev-ubuntu-22.04:6.3-complete +ARG HIPBLASLT_BRANCH="507a649" +ARG LEGACY_HIPBLASLT_OPTION= +ARG RCCL_BRANCH="dfe4a3e" +ARG RCCL_REPO="https://github.com/ROCm/rccl" +ARG TRITON_BRANCH="e192dba" +ARG TRITON_REPO="https://github.com/triton-lang/triton.git" +ARG PYTORCH_BRANCH="8bc4033" +ARG PYTORCH_VISION_BRANCH="v0.19.1" +ARG PYTORCH_REPO="https://github.com/pytorch/pytorch.git" +ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git" +ARG FA_BRANCH="c555642" +ARG FA_REPO="https://github.com/ROCm/flash-attention.git" + FROM ${BASE_IMAGE} AS base ENV PATH=/opt/rocm/llvm/bin:$PATH @@ -29,9 +42,9 @@ RUN apt-get update -y \ RUN pip install -U packaging cmake ninja wheel setuptools pybind11 Cython FROM base AS build_hipblaslt -ARG HIPBLASLT_BRANCH="507a649" +ARG HIPBLASLT_BRANCH # Set to "--legacy_hipblas_direct" for ROCm<=6.2 -ARG LEGACY_HIPBLASLT_OPTION= +ARG LEGACY_HIPBLASLT_OPTION RUN git clone https://github.com/ROCm/hipBLASLt RUN cd hipBLASLt \ && git checkout ${HIPBLASLT_BRANCH} \ @@ -41,8 +54,8 @@ RUN cd hipBLASLt \ RUN mkdir -p /app/install && cp /app/hipBLASLt/build/release/*.deb /app/install FROM base AS build_rccl -ARG RCCL_BRANCH="dfe4a3e" -ARG RCCL_REPO="https://github.com/ROCm/rccl" +ARG RCCL_BRANCH +ARG RCCL_REPO RUN git clone ${RCCL_REPO} RUN cd rccl \ && git checkout ${RCCL_BRANCH} \ @@ -50,8 +63,8 @@ RUN cd rccl \ RUN mkdir -p /app/install && cp /app/rccl/build/release/*.deb /app/install FROM base AS build_triton -ARG TRITON_BRANCH="e192dba" -ARG TRITON_REPO="https://github.com/triton-lang/triton.git" +ARG TRITON_BRANCH +ARG TRITON_REPO RUN git clone ${TRITON_REPO} RUN cd triton \ && git checkout ${TRITON_BRANCH} \ @@ -65,12 +78,12 @@ RUN cd /opt/rocm/share/amd_smi \ RUN mkdir -p /app/install && cp /opt/rocm/share/amd_smi/dist/*.whl /app/install FROM base AS build_pytorch -ARG PYTORCH_BRANCH="8bc4033" -ARG PYTORCH_VISION_BRANCH="v0.19.1" -ARG PYTORCH_REPO="https://github.com/pytorch/pytorch.git" -ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git" -ARG FA_BRANCH="c555642" -ARG FA_REPO="https://github.com/ROCm/flash-attention.git" +ARG PYTORCH_BRANCH +ARG PYTORCH_VISION_BRANCH +ARG PYTORCH_REPO +ARG PYTORCH_VISION_REPO +ARG FA_BRANCH +ARG FA_REPO RUN git clone ${PYTORCH_REPO} pytorch RUN cd pytorch && git checkout ${PYTORCH_BRANCH} && \ pip install -r requirements.txt && git submodule update --init --recursive \ @@ -105,3 +118,30 @@ RUN --mount=type=bind,from=build_amdsmi,src=/app/install/,target=/install \ pip install /install/*.whl RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \ pip install /install/*.whl + +ARG BASE_IMAGE +ARG HIPBLASLT_BRANCH +ARG LEGACY_HIPBLASLT_OPTION +ARG RCCL_BRANCH +ARG RCCL_REPO +ARG TRITON_BRANCH +ARG TRITON_REPO +ARG PYTORCH_BRANCH +ARG PYTORCH_VISION_BRANCH +ARG PYTORCH_REPO +ARG PYTORCH_VISION_REPO +ARG FA_BRANCH +ARG FA_REPO +RUN echo "BASE_IMAGE: ${BASE_IMAGE}" > /app/versions.txt \ + && echo "HIPBLASLT_BRANCH: ${HIPBLASLT_BRANCH}" >> /app/versions.txt \ + && echo "LEGACY_HIPBLASLT_OPTION: ${LEGACY_HIPBLASLT_OPTION}" >> /app/versions.txt \ + && echo "RCCL_BRANCH: ${RCCL_BRANCH}" >> /app/versions.txt \ + && echo "RCCL_REPO: ${RCCL_REPO}" >> /app/versions.txt \ + && echo "TRITON_BRANCH: ${TRITON_BRANCH}" >> /app/versions.txt \ + && echo "TRITON_REPO: ${TRITON_REPO}" >> /app/versions.txt \ + && echo "PYTORCH_BRANCH: ${PYTORCH_BRANCH}" >> /app/versions.txt \ + && echo "PYTORCH_VISION_BRANCH: ${PYTORCH_VISION_BRANCH}" >> /app/versions.txt \ + && echo "PYTORCH_REPO: ${PYTORCH_REPO}" >> /app/versions.txt \ + && echo "PYTORCH_VISION_REPO: ${PYTORCH_VISION_REPO}" >> /app/versions.txt \ + && echo "FA_BRANCH: ${FA_BRANCH}" >> /app/versions.txt \ + && echo "FA_REPO: ${FA_REPO}" >> /app/versions.txt \ No newline at end of file diff --git a/Dockerfile.base_navi b/Dockerfile.base_navi index d9449843f1bfd..4041024189f5d 100644 --- a/Dockerfile.base_navi +++ b/Dockerfile.base_navi @@ -1,4 +1,15 @@ ARG BASE_IMAGE=rocm/dev-ubuntu-22.04:6.3-complete +ARG HIPBLASLT_BRANCH="d43d84a" +ARG LEGACY_HIPBLASLT_OPTION= +ARG RCCL_BRANCH="dfe4a3e" +ARG RCCL_REPO="https://github.com/ROCm/rccl" +ARG TRITON_BRANCH="e192dba" +ARG TRITON_REPO="https://github.com/triton-lang/triton.git" +ARG PYTORCH_BRANCH="8bc4033" +ARG PYTORCH_VISION_BRANCH="v0.19.1" +ARG PYTORCH_REPO="https://github.com/pytorch/pytorch.git" +ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git" + FROM ${BASE_IMAGE} AS base ENV PATH=/opt/rocm/llvm/bin:$PATH @@ -26,12 +37,12 @@ RUN apt-get update -y \ && curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION} \ && python3 --version && python3 -m pip --version -RUN pip install -U packaging cmake ninja wheel setuptools Cython +RUN pip install -U packaging cmake ninja wheel setuptools Cython pybind11 FROM base AS build_hipblaslt -ARG HIPBLASLT_BRANCH="d43d84a" +ARG HIPBLASLT_BRANCH # Set to "--legacy_hipblas_direct" for ROCm<=6.2 -ARG LEGACY_HIPBLASLT_OPTION= +ARG LEGACY_HIPBLASLT_OPTION RUN git clone https://github.com/ROCm/hipBLASLt RUN cd hipBLASLt \ && git checkout ${HIPBLASLT_BRANCH} \ @@ -41,8 +52,8 @@ RUN cd hipBLASLt \ RUN mkdir -p /app/install && cp /app/hipBLASLt/build/release/*.deb /app/install FROM base AS build_rccl -ARG RCCL_BRANCH="dfe4a3e" -ARG RCCL_REPO="https://github.com/ROCm/rccl" +ARG RCCL_BRANCH +ARG RCCL_REPO RUN git clone ${RCCL_REPO} RUN cd rccl \ && git checkout ${RCCL_BRANCH} \ @@ -50,8 +61,8 @@ RUN cd rccl \ RUN mkdir -p /app/install && cp /app/rccl/build/release/*.deb /app/install FROM base AS build_triton -ARG TRITON_BRANCH="release/3.1.x" -ARG TRITON_REPO="https://github.com/triton-lang/triton.git" +ARG TRITON_BRANCH +ARG TRITON_REPO RUN git clone ${TRITON_REPO} RUN cd triton \ && git checkout ${TRITON_BRANCH} \ @@ -65,10 +76,10 @@ RUN cd /opt/rocm/share/amd_smi \ RUN mkdir -p /app/install && cp /opt/rocm/share/amd_smi/dist/*.whl /app/install FROM base AS build_pytorch -ARG PYTORCH_BRANCH="8bc4033" -ARG PYTORCH_VISION_BRANCH="v0.19.1" -ARG PYTORCH_REPO="https://github.com/pytorch/pytorch.git" -ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git" +ARG PYTORCH_BRANCH +ARG PYTORCH_VISION_BRANCH +ARG PYTORCH_REPO +ARG PYTORCH_VISION_REPO RUN git clone ${PYTORCH_REPO} pytorch RUN cd pytorch && git checkout ${PYTORCH_BRANCH} && \ pip install -r requirements.txt && git submodule update --init --recursive \ @@ -96,4 +107,27 @@ RUN --mount=type=bind,from=build_triton,src=/app/install/,target=/install \ RUN --mount=type=bind,from=build_amdsmi,src=/app/install/,target=/install \ pip install /install/*.whl RUN --mount=type=bind,from=build_pytorch,src=/app/install/,target=/install \ - pip install /install/*.whl \ No newline at end of file + pip install /install/*.whl + +ARG BASE_IMAGE +ARG HIPBLASLT_BRANCH +ARG LEGACY_HIPBLASLT_OPTION +ARG RCCL_BRANCH +ARG RCCL_REPO +ARG TRITON_BRANCH +ARG TRITON_REPO +ARG PYTORCH_BRANCH +ARG PYTORCH_VISION_BRANCH +ARG PYTORCH_REPO +ARG PYTORCH_VISION_REPO +RUN echo "BASE_IMAGE: ${BASE_IMAGE}" > /app/versions.txt \ + && echo "HIPBLASLT_BRANCH: ${HIPBLASLT_BRANCH}" >> /app/versions.txt \ + && echo "LEGACY_HIPBLASLT_OPTION: ${LEGACY_HIPBLASLT_OPTION}" >> /app/versions.txt \ + && echo "RCCL_BRANCH: ${RCCL_BRANCH}" >> /app/versions.txt \ + && echo "RCCL_REPO: ${RCCL_REPO}" >> /app/versions.txt \ + && echo "TRITON_BRANCH: ${TRITON_BRANCH}" >> /app/versions.txt \ + && echo "TRITON_REPO: ${TRITON_REPO}" >> /app/versions.txt \ + && echo "PYTORCH_BRANCH: ${PYTORCH_BRANCH}" >> /app/versions.txt \ + && echo "PYTORCH_VISION_BRANCH: ${PYTORCH_VISION_BRANCH}" >> /app/versions.txt \ + && echo "PYTORCH_REPO: ${PYTORCH_REPO}" >> /app/versions.txt \ + && echo "PYTORCH_VISION_REPO: ${PYTORCH_VISION_REPO}" >> /app/versions.txt \ No newline at end of file From d643c2aba1cd5421200f3a3bad1813dd067233b4 Mon Sep 17 00:00:00 2001 From: Woosuk Kwon Date: Wed, 11 Dec 2024 10:49:23 -0800 Subject: [PATCH 122/733] [V1] Use input_ids as input for text-only models (#11032) Signed-off-by: Woosuk Kwon --- vllm/v1/worker/gpu_model_runner.py | 68 +++++++++++++++++++++--------- 1 file changed, 47 insertions(+), 21 deletions(-) diff --git a/vllm/v1/worker/gpu_model_runner.py b/vllm/v1/worker/gpu_model_runner.py index 8d9976ded7c5e..e75be21ef2d91 100644 --- a/vllm/v1/worker/gpu_model_runner.py +++ b/vllm/v1/worker/gpu_model_runner.py @@ -61,6 +61,7 @@ def __init__( self.kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[ cache_config.cache_dtype] + self.is_multimodal_model = model_config.is_multimodal_model self.sliding_window = model_config.get_sliding_window() self.block_size = cache_config.block_size self.max_model_len = model_config.max_model_len @@ -103,6 +104,11 @@ def __init__( # The batch sizes in the config are in descending order. self.cudagraph_batch_sizes = list( reversed(self.vllm_config.compilation_config.capture_sizes)) + + # Persistent buffers for CUDA graphs. + self.input_ids = torch.zeros(self.max_num_tokens, + dtype=torch.int32, + device=self.device) self.positions = torch.zeros(self.max_num_tokens, dtype=torch.int64, device=self.device) @@ -310,7 +316,8 @@ def _prepare_inputs(self, scheduler_output: "SchedulerOutput"): seq_start_loc_np[0] = 0 np.cumsum(seq_lens, out=seq_start_loc_np[1:]) - input_ids = input_ids.to(self.device, non_blocking=True) + self.input_ids[:total_num_scheduled_tokens].copy_(input_ids, + non_blocking=True) self.positions[:total_num_scheduled_tokens].copy_(positions, non_blocking=True) query_start_loc = query_start_loc.to(self.device, non_blocking=True) @@ -331,7 +338,7 @@ def _prepare_inputs(self, scheduler_output: "SchedulerOutput"): # token from the partial request. # TODO: Support prompt logprobs. logits_indices = query_start_loc[1:] - 1 - return input_ids, attn_metadata, logits_indices + return attn_metadata, logits_indices def _prepare_sampling( self, @@ -427,13 +434,15 @@ def execute_model( ) -> ModelRunnerOutput: self._update_states(scheduler_output) - # Run the encoder. - self._execute_encoder(scheduler_output) - encoder_outputs = self._gather_encoder_outputs(scheduler_output) + if self.is_multimodal_model: + # Run the multimodal encoder if any. + self._execute_encoder(scheduler_output) + encoder_outputs = self._gather_encoder_outputs(scheduler_output) + else: + encoder_outputs = [] # Prepare the decoder inputs. - input_ids, attn_metadata, logits_indices = self._prepare_inputs( - scheduler_output) + attn_metadata, logits_indices = self._prepare_inputs(scheduler_output) num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens if (self.use_cuda_graph and num_scheduled_tokens <= self.cudagraph_batch_sizes[-1]): @@ -444,29 +453,39 @@ def execute_model( else: # Eager mode. num_input_tokens = num_scheduled_tokens - attn_metadata.num_input_tokens = num_input_tokens - # Get the inputs embeds. - if encoder_outputs: - inputs_embeds = self.model.get_input_embeddings( - input_ids, encoder_outputs) + if self.is_multimodal_model: + # NOTE(woosuk): To unify token ids and soft tokens (vision + # embeddings), we always use embeddings (rather than token ids) + # as input to the multimodal model, even when the input is text. + input_ids = self.input_ids[:num_scheduled_tokens] + if encoder_outputs: + inputs_embeds = self.model.get_input_embeddings( + input_ids, encoder_outputs) + else: + inputs_embeds = self.model.get_input_embeddings(input_ids) + # TODO(woosuk): Avoid the copy. Optimize. + self.inputs_embeds[:num_scheduled_tokens].copy_(inputs_embeds) + inputs_embeds = self.inputs_embeds[:num_input_tokens] + input_ids = None else: - inputs_embeds = self.model.get_input_embeddings(input_ids) - # NOTE(woosuk): To unify token ids and soft tokens (vision embeddings), - # always use embeddings (rather than token ids) as input to the model. - # TODO(woosuk): Avoid the copy. Optimize. - self.inputs_embeds[:num_scheduled_tokens].copy_(inputs_embeds) + # For text-only models, we use token ids as input. + # While it is possible to use embeddings as input just like the + # multimodal models, it is not desirable for performance since + # then the embedding layer is not included in the CUDA graph. + input_ids = self.input_ids[:num_input_tokens] + inputs_embeds = None # Run the decoder. # Use persistent buffers for CUDA graphs. with set_forward_context(attn_metadata, self.vllm_config): hidden_states = self.model( - input_ids=None, + input_ids=input_ids, positions=self.positions[:num_input_tokens], kv_caches=self.kv_caches, attn_metadata=None, - inputs_embeds=self.inputs_embeds[:num_input_tokens], + inputs_embeds=inputs_embeds, ) hidden_states = hidden_states[:num_scheduled_tokens] hidden_states = hidden_states[logits_indices] @@ -534,13 +553,20 @@ def _dummy_run( num_tokens: int, kv_caches: List[torch.Tensor], ) -> torch.Tensor: + if self.is_multimodal_model: + input_ids = None + inputs_embeds = self.inputs_embeds[:num_tokens] + else: + input_ids = self.input_ids[:num_tokens] + inputs_embeds = None with set_forward_context(None, self.vllm_config): hidden_states = model( - input_ids=None, + input_ids=input_ids, positions=self.positions[:num_tokens], kv_caches=kv_caches, attn_metadata=None, - inputs_embeds=self.inputs_embeds[:num_tokens]) + inputs_embeds=inputs_embeds, + ) return hidden_states def profile_run(self) -> None: From 66aaa7722df3d7ef9e9bd2942cab5cd0d7473174 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Wed, 11 Dec 2024 10:59:50 -0800 Subject: [PATCH 123/733] [torch.compile] remove graph logging in ci (#11110) Signed-off-by: youkaichao --- vllm/compilation/backends.py | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/vllm/compilation/backends.py b/vllm/compilation/backends.py index 09a3daa731829..4a5dc337d01b8 100644 --- a/vllm/compilation/backends.py +++ b/vllm/compilation/backends.py @@ -287,9 +287,11 @@ def __call__(self, graph: fx.GraphModule, example_inputs) -> Callable: graph, self.compilation_config.splitting_ops) from torch._dynamo.utils import lazy_format_graph_code - logger.debug("%s", lazy_format_graph_code("before split", self.graph)) - logger.debug("%s", lazy_format_graph_code("after split", - self.split_gm)) + + # depyf will hook lazy_format_graph_code and dump the graph + # for debugging, no need to print the graph here + lazy_format_graph_code("before split", self.graph) + lazy_format_graph_code("after split", self.split_gm) compilation_counter.num_piecewise_graphs_seen += len( self.piecewise_graphs) From 72ff3a968682e6a3f7620ab59f2baf5e8eb2777b Mon Sep 17 00:00:00 2001 From: Rui Qiao <161574667+ruisearch42@users.noreply.github.com> Date: Wed, 11 Dec 2024 11:36:35 -0800 Subject: [PATCH 124/733] [core] Bump ray to use _overlap_gpu_communication in compiled graph tests (#10410) Signed-off-by: Rui Qiao Signed-off-by: Rui Qiao Co-authored-by: Rui Qiao --- requirements-test.in | 2 +- requirements-test.txt | 2 +- vllm/envs.py | 8 ++++++++ vllm/executor/ray_gpu_executor.py | 17 ++++++++++------- 4 files changed, 20 insertions(+), 9 deletions(-) diff --git a/requirements-test.in b/requirements-test.in index c0b228148ab31..57fddb416317e 100644 --- a/requirements-test.in +++ b/requirements-test.in @@ -13,7 +13,7 @@ einops # required for MPT, qwen-vl and Mamba httpx librosa # required for audio tests peft -ray[adag]==2.35 +ray[adag]==2.40.0 sentence-transformers # required for embedding tests soundfile # required for audio tests timm # required for internvl test diff --git a/requirements-test.txt b/requirements-test.txt index 8ceb705cdffd7..c786a1249bddb 100644 --- a/requirements-test.txt +++ b/requirements-test.txt @@ -410,7 +410,7 @@ pyyaml==6.0.2 # ray # timm # transformers -ray[adag]==2.35.0 +ray[adag]==2.40.0 # via -r requirements-test.in redis==5.2.0 # via tensorizer diff --git a/vllm/envs.py b/vllm/envs.py index be5d9985b63a4..bc8c1499e9534 100644 --- a/vllm/envs.py +++ b/vllm/envs.py @@ -45,6 +45,7 @@ VLLM_USE_RAY_SPMD_WORKER: bool = False VLLM_USE_RAY_COMPILED_DAG: bool = False VLLM_USE_RAY_COMPILED_DAG_NCCL_CHANNEL: bool = True + VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM: bool = True VLLM_WORKER_MULTIPROC_METHOD: str = "fork" VLLM_ASSETS_CACHE: str = os.path.join(VLLM_CACHE_ROOT, "assets") VLLM_IMAGE_FETCH_TIMEOUT: int = 5 @@ -337,6 +338,13 @@ def get_default_config_root(): lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG_NCCL_CHANNEL", "1")) ), + # If the env var is set, it enables GPU communication overlap in + # Ray's compiled DAG. This flag is ignored if + # VLLM_USE_RAY_COMPILED_DAG is not set. + "VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM": + lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM", "1")) + ), + # Use dedicated multiprocess context for workers. # Both spawn and fork work "VLLM_WORKER_MULTIPROC_METHOD": diff --git a/vllm/executor/ray_gpu_executor.py b/vllm/executor/ray_gpu_executor.py index 4263fb27265f6..4bf5cbbd18ffe 100644 --- a/vllm/executor/ray_gpu_executor.py +++ b/vllm/executor/ray_gpu_executor.py @@ -414,12 +414,10 @@ def _check_ray_adag_installation(self): import pkg_resources from packaging import version - required_version = version.parse("2.35") + required_version = version.parse("2.40") current_version = version.parse( pkg_resources.get_distribution("ray").version) - # TODO: update the constraint once we adapt to the backward - # incompatible API change from ray 2.36 - if current_version != required_version: + if current_version < required_version: raise ValueError(f"Ray version {required_version} is " f"required, but found {current_version}") @@ -445,6 +443,8 @@ def _compiled_ray_dag(self, enable_asyncio: bool): logger.info("VLLM_USE_RAY_COMPILED_DAG_NCCL_CHANNEL = %s", envs.VLLM_USE_RAY_COMPILED_DAG_NCCL_CHANNEL) + logger.info("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM = %s", + envs.VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM) with InputNode() as input_data: # Example DAG: PP=2, TP=4 # (ExecuteModelReq, None) -> 0 -> (ExecuteModelReq, IntermediateOutput) -> 4 -> SamplerOutput # noqa: E501 @@ -480,7 +480,10 @@ def _compiled_ray_dag(self, enable_asyncio: bool): forward_dag = MultiOutputNode(outputs) - return forward_dag.experimental_compile(enable_asyncio=enable_asyncio) + return forward_dag.experimental_compile( + enable_asyncio=enable_asyncio, + _overlap_gpu_communication=envs. + VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM) def __del__(self): self.shutdown() @@ -507,8 +510,8 @@ async def execute_model_async( serialized_data = self.input_encoder.encode(execute_model_req) dag_future = await self.forward_dag.execute_async(serialized_data) - outputs = await dag_future - return self.output_decoder.decode(outputs[0]) + output = await dag_future[0] + return self.output_decoder.decode(output) async def _driver_execute_model_async( self, From a1aaa748343eb57842b55c2db6dd05ae647c65b0 Mon Sep 17 00:00:00 2001 From: Gregory Shtrasberg <156009573+gshtras@users.noreply.github.com> Date: Wed, 11 Dec 2024 15:06:57 -0500 Subject: [PATCH 125/733] Option to override PYTORCH_ROCM_ARCH inherited from the base image (#321) --- Dockerfile.rocm | 3 +++ 1 file changed, 3 insertions(+) diff --git a/Dockerfile.rocm b/Dockerfile.rocm index b665bbd42709b..1f44958f5d1f1 100644 --- a/Dockerfile.rocm +++ b/Dockerfile.rocm @@ -7,6 +7,9 @@ ARG BASE_IMAGE=rocm/vllm-dev:base_ubuntu22.04_py3.12_ROCm6.3_hipblaslt0.12_torch FROM ${BASE_IMAGE} AS base +ARG ARG_PYTORCH_ROCM_ARCH +ENV PYTORCH_ROCM_ARCH=${ARG_PYTORCH_ROCM_ARCH:-${PYTORCH_ROCM_ARCH}} + # Install some basic utilities RUN apt-get update -q -y && apt-get install -q -y \ sqlite3 libsqlite3-dev libfmt-dev libmsgpack-dev libsuitesparse-dev From d1e21a979bba4712f48dac1bbf410e0b57c92e7a Mon Sep 17 00:00:00 2001 From: Cyrus Leung Date: Thu, 12 Dec 2024 06:18:16 +0800 Subject: [PATCH 126/733] [CI/Build] Split up VLM tests (#11083) Signed-off-by: DarkLight1337 --- .buildkite/test-pipeline.yaml | 32 ++++++--- pyproject.toml | 3 +- .../vision_language/test_models.py | 72 ++++++++++++------- tests/utils.py | 37 ++++++---- 4 files changed, 94 insertions(+), 50 deletions(-) diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index df4fa7a6ee9ba..aca505178df06 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -321,7 +321,7 @@ steps: ##### models test ##### -- label: Basic Models Test # 30min +- label: Basic Models Test # 24min source_file_dependencies: - vllm/ - tests/models @@ -331,7 +331,7 @@ steps: - pytest -v -s models/test_registry.py - pytest -v -s models/test_initialization.py -- label: Language Models Test (Standard) # 42min +- label: Language Models Test (Standard) # 32min #mirror_hardwares: [amd] source_file_dependencies: - vllm/ @@ -342,7 +342,7 @@ steps: - pytest -v -s models/decoder_only/language -m 'core_model or quant_model' - pytest -v -s models/embedding/language -m core_model -- label: Language Models Test (Extended) # 50min +- label: Language Models Test (Extended) # 1h10min optional: true source_file_dependencies: - vllm/ @@ -353,7 +353,7 @@ steps: - pytest -v -s models/decoder_only/language -m 'not core_model and not quant_model' - pytest -v -s models/embedding/language -m 'not core_model' -- label: Multi-Modal Models Test (Standard) # 26min +- label: Multi-Modal Models Test (Standard) # 28min #mirror_hardwares: [amd] source_file_dependencies: - vllm/ @@ -369,7 +369,7 @@ steps: - pytest -v -s models/encoder_decoder/language -m core_model - pytest -v -s models/encoder_decoder/vision_language -m core_model -- label: Multi-Modal Models Test (Extended) # 1h15m +- label: Multi-Modal Models Test (Extended) 1 # 1h16m optional: true source_file_dependencies: - vllm/ @@ -380,14 +380,24 @@ steps: commands: - pip install git+https://github.com/TIGER-AI-Lab/Mantis.git - pytest -v -s models/decoder_only/audio_language -m 'not core_model and not quant_model' + - pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=0) and not core_model and not quant_model' # HACK - run phi3v tests separately to sidestep this transformers bug # https://github.com/huggingface/transformers/issues/34307 - pytest -v -s models/decoder_only/vision_language/test_phi3v.py - - pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model and not quant_model' + - pytest -v -s --ignore models/decoder_only/vision_language/test_models.py --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model and not quant_model' - pytest -v -s models/embedding/vision_language -m 'not core_model' - pytest -v -s models/encoder_decoder/language -m 'not core_model' - pytest -v -s models/encoder_decoder/vision_language -m 'not core_model' +- label: Multi-Modal Models Test (Extended) 2 # 38m + optional: true + source_file_dependencies: + - vllm/ + - tests/models/decoder_only/vision_language + commands: + - pip install git+https://github.com/TIGER-AI-Lab/Mantis.git + - pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=1) and not core_model and not quant_model' + # This test is used only in PR development phase to test individual models and should never run on main - label: Custom Models Test optional: true @@ -446,11 +456,11 @@ steps: - pytest -v -s ./compile/test_basic_correctness.py - pytest -v -s ./compile/test_wrapper.py - VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep -q 'Same node test passed' - - TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m distributed_2_gpus + - TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)' # Avoid importing model tests that cause CUDA reinitialization error - - pytest models/encoder_decoder/language/test_bart.py -v -s -m distributed_2_gpus - - pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m distributed_2_gpus - - pytest models/decoder_only/vision_language/test_models.py -v -s -m distributed_2_gpus + - pytest models/encoder_decoder/language/test_bart.py -v -s -m 'distributed(num_gpus=2)' + - pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m 'distributed(num_gpus=2)' + - pytest models/decoder_only/vision_language/test_models.py -v -s -m 'distributed(num_gpus=2)' - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py - pip install -e ./plugins/vllm_add_dummy_model - pytest -v -s distributed/test_distributed_oot.py @@ -540,7 +550,7 @@ steps: # see https://github.com/vllm-project/vllm/pull/5689 for details - pytest -v -s distributed/test_custom_all_reduce.py - torchrun --nproc_per_node=2 distributed/test_ca_buffer_sharing.py - - TARGET_TEST_SUITE=A100 pytest basic_correctness/ -v -s -m distributed_2_gpus + - TARGET_TEST_SUITE=A100 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)' - pytest -v -s -x lora/test_mixtral.py - label: LM Eval Large Models # optional diff --git a/pyproject.toml b/pyproject.toml index 253b706a774a7..c5a14ecf5aea9 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -96,7 +96,8 @@ markers = [ "core_model: enable this model test in each PR instead of only nightly", "cpu_model: enable this model test in CPU tests", "quant_model: run this model test under Quantized category", - "distributed_2_gpus: run this test only in distributed tests for 2 GPUs", + "split: run this test as part of a split", + "distributed: run this test only in distributed GPU tests", "skip_v1: do not run this test with v1", "optional: optional tests that are automatically skipped, include --optional to run them", ] diff --git a/tests/models/decoder_only/vision_language/test_models.py b/tests/models/decoder_only/vision_language/test_models.py index ed8f34a677f84..3101d1d2ea831 100644 --- a/tests/models/decoder_only/vision_language/test_models.py +++ b/tests/models/decoder_only/vision_language/test_models.py @@ -1,7 +1,9 @@ """Common tests for testing .generate() functionality for single / multiple image, embedding, and video support for different VLMs in vLLM. """ +import math import os +from collections import defaultdict from pathlib import PosixPath from typing import Type @@ -10,11 +12,12 @@ from transformers.utils import is_flash_attn_2_available from vllm.platforms import current_platform -from vllm.utils import cuda_device_count_stateless, identity +from vllm.utils import identity from ....conftest import (IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets, _VideoAssets) -from ....utils import fork_new_process_for_each_test, large_gpu_mark +from ....utils import (fork_new_process_for_each_test, large_gpu_mark, + multi_gpu_marks) from ...utils import check_outputs_equal from .vlm_utils import custom_inputs, model_utils, runners from .vlm_utils.case_filtering import get_parametrized_options @@ -382,7 +385,7 @@ prompt_path_encoder=model_utils.qwen_prompt_path_encoder, ), ### Tensor parallel / multi-gpu broadcast tests - "broadcast-chameleon": VLMTestInfo( + "chameleon-broadcast": VLMTestInfo( models=["facebook/chameleon-7b"], prompt_formatter=lambda img_prompt: f"USER: {img_prompt}\nASSISTANT:", max_model_len=4096, @@ -393,43 +396,25 @@ vllm_output_post_proc = lambda vllm_output, model: vllm_output[:2], hf_output_post_proc = lambda hf_output, model: hf_output[:2], comparator=check_outputs_equal, - marks=[ - pytest.mark.distributed_2_gpus, - pytest.mark.skipif( - cuda_device_count_stateless() < 2, - reason="Need at least 2 GPUs to run the test.", - ), - ], + marks=multi_gpu_marks(num_gpus=2), **COMMON_BROADCAST_SETTINGS # type: ignore ), - "broadcast-llava": VLMTestInfo( + "llava-broadcast": VLMTestInfo( models=["llava-hf/llava-1.5-7b-hf"], prompt_formatter=lambda img_prompt: f"USER: {img_prompt}\nASSISTANT:", max_model_len=4096, auto_cls=AutoModelForVision2Seq, vllm_output_post_proc=model_utils.llava_image_vllm_to_hf_output, - marks=[ - pytest.mark.distributed_2_gpus, - pytest.mark.skipif( - cuda_device_count_stateless() < 2, - reason="Need at least 2 GPUs to run the test.", - ) - ], + marks=multi_gpu_marks(num_gpus=2), **COMMON_BROADCAST_SETTINGS # type: ignore ), - "broadcast-llava_next": VLMTestInfo( + "llava_next-broadcast": VLMTestInfo( models=["llava-hf/llava-v1.6-mistral-7b-hf"], prompt_formatter=lambda img_prompt: f"[INST] {img_prompt} [/INST]", max_model_len=10240, auto_cls=AutoModelForVision2Seq, vllm_output_post_proc=model_utils.llava_image_vllm_to_hf_output, - marks=[ - pytest.mark.distributed_2_gpus, - pytest.mark.skipif( - cuda_device_count_stateless() < 2, - reason="Need at least 2 GPUs to run the test.", - ) - ], + marks=multi_gpu_marks(num_gpus=2), **COMMON_BROADCAST_SETTINGS # type: ignore ), ### Custom input edge-cases for specific models @@ -468,6 +453,41 @@ # yapf: enable +def _mark_splits( + test_settings: dict[str, VLMTestInfo], + *, + num_groups: int, +) -> dict[str, VLMTestInfo]: + name_by_test_info_id = {id(v): k for k, v in test_settings.items()} + test_infos_by_model = defaultdict[str, list[VLMTestInfo]](list) + + for info in test_settings.values(): + for model in info.models: + test_infos_by_model[model].append(info) + + models = sorted(test_infos_by_model.keys()) + split_size = math.ceil(len(models) / num_groups) + + new_test_settings = dict[str, VLMTestInfo]() + + for i in range(num_groups): + models_in_group = models[i * split_size:(i + 1) * split_size] + + for model in models_in_group: + for info in test_infos_by_model[model]: + new_marks = (info.marks or []) + [pytest.mark.split(group=i)] + new_info = info._replace(marks=new_marks) + new_test_settings[name_by_test_info_id[id(info)]] = new_info + + missing_keys = test_settings.keys() - new_test_settings.keys() + assert not missing_keys, f"Missing keys: {missing_keys}" + + return new_test_settings + + +VLM_TEST_SETTINGS = _mark_splits(VLM_TEST_SETTINGS, num_groups=2) + + ### Test wrappers # Wrappers around the core test running func for: # - single image diff --git a/tests/utils.py b/tests/utils.py index a893667e144a6..afeb708f3bcdc 100644 --- a/tests/utils.py +++ b/tests/utils.py @@ -682,10 +682,12 @@ def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> None: def large_gpu_mark(min_gb: int) -> pytest.MarkDecorator: - """Gets a pytest skipif mark, which triggers ig the the device doesn't have - meet a minimum memory requirement in gb; can be leveraged via - @large_gpu_test to skip tests in environments without enough resources, or - called when filtering tests to run directly. + """ + Get a pytest mark, which skips the test if the GPU doesn't meet + a minimum memory requirement in GB. + + This can be leveraged via `@large_gpu_test` to skip tests in environments + without enough resources, or called when filtering tests to run directly. """ try: if current_platform.is_cpu(): @@ -712,26 +714,37 @@ def large_gpu_test(*, min_gb: int): Currently, the CI machine uses L4 GPU which has 24 GB VRAM. """ - test_skipif = large_gpu_mark(min_gb) + mark = large_gpu_mark(min_gb) def wrapper(f: Callable[_P, None]) -> Callable[_P, None]: - return test_skipif(f) + return mark(f) return wrapper -def multi_gpu_test(*, num_gpus: int): - """ - Decorate a test to be run only when multiple GPUs are available. - """ - test_selector = getattr(pytest.mark, f"distributed_{num_gpus}_gpus") +def multi_gpu_marks(*, num_gpus: int): + """Get a collection of pytest marks to apply for `@multi_gpu_test`.""" + test_selector = pytest.mark.distributed(num_gpus=num_gpus) test_skipif = pytest.mark.skipif( cuda_device_count_stateless() < num_gpus, reason=f"Need at least {num_gpus} GPUs to run the test.", ) + return [test_selector, test_skipif] + + +def multi_gpu_test(*, num_gpus: int): + """ + Decorate a test to be run only when multiple GPUs are available. + """ + marks = multi_gpu_marks(num_gpus=num_gpus) + def wrapper(f: Callable[_P, None]) -> Callable[_P, None]: - return test_selector(test_skipif(fork_new_process_for_each_test(f))) + func = fork_new_process_for_each_test(f) + for mark in reversed(marks): + func = mark(func) + + return func return wrapper From 452a723bf2e8410ee9b47f82f90c7ea48aa6d14f Mon Sep 17 00:00:00 2001 From: Tyler Michael Smith Date: Wed, 11 Dec 2024 18:34:54 -0500 Subject: [PATCH 127/733] [V1][Core] Remove should_shutdown to simplify core process termination (#11113) Signed-off-by: Tyler Michael Smith --- vllm/v1/engine/core.py | 13 ++----------- vllm/v1/engine/core_client.py | 6 ------ 2 files changed, 2 insertions(+), 17 deletions(-) diff --git a/vllm/v1/engine/core.py b/vllm/v1/engine/core.py index 55a5c4dff3a5c..a26ffe74a3ae8 100644 --- a/vllm/v1/engine/core.py +++ b/vllm/v1/engine/core.py @@ -5,7 +5,6 @@ import threading import time from multiprocessing.process import BaseProcess -from multiprocessing.sharedctypes import Synchronized from typing import List, Tuple, Type, Union import zmq @@ -133,13 +132,9 @@ def __init__( input_path: str, output_path: str, ready_path: str, - should_shutdown: Synchronized, ): super().__init__(vllm_config, executor_class, usage_context) - # Signal from main process to shutdown (multiprocessing.Value). - self.should_shutdown = should_shutdown - # Background Threads and Queues for IO. These enable us to # overlap ZMQ socket IO with GPU since they release the GIL, # and to overlap some serialization/deserialization with the @@ -195,7 +190,6 @@ def make_engine_core_process( input_path: str, output_path: str, ready_path: str, - should_shutdown: Synchronized, ) -> BaseProcess: # The current process might have CUDA context, # so we need to spawn a new process. @@ -210,7 +204,6 @@ def make_engine_core_process( "vllm_config": vllm_config, "executor_class": executor_class, "usage_context": usage_context, - "should_shutdown": should_shutdown } # Run EngineCore busy loop in background process. proc = context.Process(target=EngineCoreProc.run_engine_core, @@ -260,8 +253,8 @@ def signal_handler(signum, frame): def run_busy_loop(self): """Core busy loop of the EngineCore.""" - # Loop until we get a shutdown signal. - while not self.should_shutdown: + # Loop until process is sent a SIGINT or SIGTERM + while True: # 1) Poll the input queue until there is work to do. if not self.scheduler.has_unfinished_requests(): while True: @@ -272,8 +265,6 @@ def run_busy_loop(self): except queue.Empty: self._log_stats() logger.debug("EngineCore busy loop waiting.") - if self.should_shutdown: - return except BaseException: raise diff --git a/vllm/v1/engine/core_client.py b/vllm/v1/engine/core_client.py index 4d96b323d1662..1d5ddf4db4d7c 100644 --- a/vllm/v1/engine/core_client.py +++ b/vllm/v1/engine/core_client.py @@ -1,5 +1,4 @@ import atexit -import multiprocessing from typing import List, Union import msgspec @@ -149,21 +148,16 @@ def __init__( self.input_socket.bind(input_path) # Start EngineCore in background process. - self.should_shutdown = multiprocessing.Value('b', False, lock=False) self.proc = EngineCoreProc.make_engine_core_process( *args, input_path=input_path, output_path=output_path, ready_path=ready_path, - should_shutdown=self.should_shutdown, **kwargs, ) atexit.register(self.shutdown) def shutdown(self): - # Send shutdown signal to background process. - self.should_shutdown = True - # Shut down the zmq context. self.ctx.destroy(linger=0) From 4e116833686f3e0c0a223b05b5859ad76843a017 Mon Sep 17 00:00:00 2001 From: Alexander Matveev <59768536+alexm-neuralmagic@users.noreply.github.com> Date: Wed, 11 Dec 2024 19:55:30 -0500 Subject: [PATCH 128/733] [V1] VLM preprocessor hashing (#11020) Signed-off-by: Roger Wang Signed-off-by: Alexander Matveev Co-authored-by: Michael Goin Co-authored-by: Roger Wang --- examples/offline_inference_vision_language.py | 126 ++++++++++++-- requirements-common.txt | 1 + tests/v1/engine/test_engine_core.py | 1 + tests/v1/engine/test_engine_core_client.py | 1 + vllm/config.py | 10 +- vllm/engine/arg_utils.py | 8 + vllm/v1/engine/__init__.py | 3 +- vllm/v1/engine/core.py | 18 +- vllm/v1/engine/mm_input_mapper.py | 156 ++++++++++++++++-- vllm/v1/engine/processor.py | 35 ++-- vllm/v1/utils.py | 21 +++ 11 files changed, 332 insertions(+), 48 deletions(-) diff --git a/examples/offline_inference_vision_language.py b/examples/offline_inference_vision_language.py index c6a274ee5894b..5e210126dc8fe 100644 --- a/examples/offline_inference_vision_language.py +++ b/examples/offline_inference_vision_language.py @@ -5,6 +5,8 @@ For most models, the prompt format should follow corresponding examples on HuggingFace model repository. """ +import random + from transformers import AutoTokenizer from vllm import LLM, SamplingParams @@ -23,7 +25,9 @@ def run_llava(question: str, modality: str): prompt = f"USER: \n{question}\nASSISTANT:" - llm = LLM(model="llava-hf/llava-1.5-7b-hf", max_model_len=4096) + llm = LLM(model="llava-hf/llava-1.5-7b-hf", + max_model_len=4096, + mm_cache_preprocessor=args.mm_cache_preprocessor) stop_token_ids = None return llm, prompt, stop_token_ids @@ -33,7 +37,9 @@ def run_llava_next(question: str, modality: str): assert modality == "image" prompt = f"[INST] \n{question} [/INST]" - llm = LLM(model="llava-hf/llava-v1.6-mistral-7b-hf", max_model_len=8192) + llm = LLM(model="llava-hf/llava-v1.6-mistral-7b-hf", + max_model_len=8192, + mm_cache_preprocessor=args.mm_cache_preprocessor) stop_token_ids = None return llm, prompt, stop_token_ids @@ -44,7 +50,9 @@ def run_llava_next_video(question: str, modality: str): assert modality == "video" prompt = f"USER: %{&cm+k`e_!njG;!~Kj~)5V=A5hQ}SFX%1U4YvEsqL8=W@e$lYTk zQCE9F?arI!1S36GsXZg|RqlaLj}u@kq0{z2tPE1a%=vcufsqk<1hed5)Xmp7|x zn#*T#R|&JVFpkt^@I#rf7h`SrBLyOBjc(4$v<&$FX*I$sp@2hMIC zKXb=Mr~|$SG))i9=Wn1x?7L8g#(#2rzx3k04I3f) z24u96K6oaa6}nND@@o|NzL>L7aiQKa3}3|2SD{hDTt&kI#`MvKwD#Lq8*+RiX5d$6 zeaK9`g}?LQkN$9QKUuIpjwLpC8f?Ig-~S20BBcHTa4Id*zAVv3)blScEuAhYiBGYZ z=273|yI;;P4p{Uhnu15{M(kF~Luq%|k===DAVo>%W4_qPA%ywCYR;E3j#*$OoLRvq zj`g(pmRBABi)U&n^Kp{q&3LMfkq^20p{(bl!PN*!8+APequHf-1yo@v{LV(oK9(~vTv@aXbS6O#Y6gqkFUQfJz)JIjNJm-% z&MgU0GJ|-%)uEOnFKr}9O%{lBe;FXf+5vXCWQ;q&fC2-w96EzY!0sP0bSqPftJUxzjx0a_bl{9mo3E{o=F)Pd zrMS$Ioks}dyO0KP8u%fV@J`f3DpTy91Qp)}-@&q^1cVcij&qO#-D8yL()D|7<$KnQ zb%V~^q3))c?I)j@>}%#sd8e|i^NCqxmWtj$r}j7u5(;8WK!T_s>ODj!wE3fMsJ0Xf z$@cyF#l@k0!JDwlqW0uz?HxO}^4;E(Z2Db`xk^g{s|7oX8OExAiSgqW0emz<2JJ;L z&GGSPq6FuTJ#D-7FkW>u~$ysYAS@7 zl0ESEP8|k_!HEF7)d?7S@LO4cxl0Npx~y5@1Xj2?!zGOn{fwbsM+);DvD45@RC5zg z$~94E4?bS&y1z{ZUI7G3mnXz#WEQL0dftGLDcj)+D}mwODV@9hW59Sawnt?)$@aHI7^l!;ebn zCbCqSnKStK7S+!fr}AEc@2k4JvM>F(+wKXU_U`oZx>sWK390PfFbXg zT^RO5mKO*sPgjlPDsjt*0p!?KNRqCY_i}0sE!QgTx+mN`cKBRv@?{s7GLv0Sk;yJ0 z7O8D*ShSgd9n2W)U~Nfc3H*ZAKA@Y`!ttvOD`+ zbDCb}-V~?T{=Z81#p8c4Q%lYb^Pev0vzdt6ox#WE%WuJO)4u01U*1dXE#2?0`2Qlf-Q1mf<{*LKqnM(KVtBA-onT zk1qUCZ-;R6!IsNM=N+oQagN9KI_JLPXZA9(FM}gLYSiRMA&-xIZ~tf(^s;B>v)>U< z|K#2y_MBQzNJ{HI!tF9sdEKcCUybC*5GfgvsOF&Q0g_(_d3&wG0hxxlj`gJQ#oH{x zdnH_oYF)fJ;Q(3dj`h!b-zZTNfIN&mQ85Dvsj%gL5Nm9!3)}J*5FsJYed}xqvrauh z-mLc~F*lOrOex4&mkI0@zWP}&njAv_5cGMi;ecQCpECA{mu3m5L{zX?F;9)FE;vmJ94ls4JMbL3sh;jkn5 z|M`wpiX{Q;E-2m7x{YVc)+TXfYrForN##MWg19`W?-#+LkSwj9j-;_BX5^==?-WFM zvs@rmxPQO!jK4_t^Of`Qswt|b@f5f7vd1F!oL!522`XEgchXaVFPexI!nGNI>U$R# zjNmjm+VyztQ0>;m1I=qP=FP$B)*8M0Qq1EsblzgRkAIdtOk7{bz1p0)^<83e8?X?WM8`GltuLkdn|F3lr1nYTy$>_3MiRJj3x|p z97pa1x)zTP?->FLl?Hjqbq81Y)-rAR%_rJq39U)2{a~5xK(dsIITHTZt=RTD1DI%3 zXOcuuk?{-Cyv)VkqBm4jQ^?mDanW5G(gRrq69WO&e>(A(*aiul4pvvale4^+%2u6Cv%W;HZZ zYQp&)>hI$$9s?ja{J&JW24$2+;v@_b+e{=c#{;L3=l_il9sggbT0p*n)dET=?M@_H zS`WunP9cKIs(<8<>hc;S#<)xQv5+m?6Uoal1r4)`{@FvWN$SBXqVer`KF(o+6@@H_ zHs}EHv@5an3DZc+(sB1~fH}4xIknO3OtQ5;(IT09X%P98Ts68FLqPzFo(Gs)KfKa6zF6x!~- ztumhoH-ZKmQGh(40}`&D5gP~Qy(__tlAb`-j?%w4zgp)zJZbDD+&RG9d>{@LqO@bz z;TEuHfbOq`2bln3VbBF?p+lLR6w{t2Z=MVF;oTf zdEt_YvrXrUzr`4=opuhmSozMnV5{Uywgx1+nbpAXYIWVo(xI;pcijaM!iSI^!_tSm z-OwptH+gbwjJii&j>6xLkejUJHAg9L;lEktEcWAWEXR(U2>8U1RjVC9jjlzOTZ+57 z9Pg_2$xu%Tp$F7{qKUP?Ty9(L~oO@KLVXZoibkcA%0-e;=q7e>>TGK&~Pk&k( zHqEBon(Vz&eWcDO{DWbKbg)eOgQlIWijR3Wg7O1!j(qYAY9~vWY0PpjL(AE{84UQ! zD#~yFX@8zMr0dytK}Fc~GVNV>VkX~E<1*_=Qje=43&jQz>@K1RDyzf3jun+B7b0#U ze)xLB9%UV=TN2y(UKp11V1HX9-vg2>4M=bwwRB)ysRvgl*0~(ta%i+gAAQ*P4dbG( z&U}(rKFOkZcXRqEqAJmF!YSWmcfAmW)BT0U9VdbvJ&@~!aikA3Rp|Jh<%u5Z_vjfb zl!bJoYQi)dzgTW0ag~PR7TnumCgT`CbY`jN+XJb0-LYFqyxgOMNKpQMaycF^A4H5K zO5;3WNhCHJZ_kpM(I5zQymUUhGG*x>;HqNxWhq#xm3kns`rG#azZvBCgcCi9BYmmI z^(eOx7%0HxoPxHa1SglfqC?w^HV+52tu&%)&;XH&KsZW#bs`6kKfc-dqj3KU9R(b1GM)j)cU1NBBLKvp=-- zIG(b@tvzfJ(SsAjh_EkW$AGXsid4@u8#3DCrzpt+;UU2-nJ-u=%jbz%TIY}Z-Of}R zu9+cvG$MD3k)H0^a%7XD=#aD6LdzeDRo3g7*4!tC!fY64XEh5(U$FjM>vHHFb^eEo zU&!8--(Q=Oi*Bwwv?3ptzjjSj-!3>CX&E zkQaEgrQ96&Vh;KifI(a(43_%#!;#R*_hhC5*EsIdERvlstnc>ntN zzf;N=D*#N&b?ia37!wC3X%5sw+zF{q_IgkTM4kN%veMpPu( zzA=kMCK+@d6_w1#xnI4qxbIj#?48)R#4U!QfeZvirbA2^?cN!3_U(FlMj?shObd(> zVwe{30ce9W3ep^{K`*x|^0A628Us8Wt3gdevpnDZFGHTsrw>k%&X=^^PuXdc-0HD; zQ}Jd#QXKEfcaB5|WIaWffO-cah`+{B$cM;kfgZ6)BHaQosS#*mfa;2p^lq!X?Ry$^Hk~dpRIyl_QCojZCr5IQPm@K*(8lf3(j?o|A}13s z4-YT#Hh+KrO%D^*3r_A(I>T!%$!`N7UKJA5o9edd1lBi!@liD&#ncAh1=tV3B*10oLRN8NHKD@G z0<7HiR>QFNJPjv0BFxg0&~bRh=&^wza|#pXxos-In1)7C~O+&97&m5Z$5^N^9smd-dg&pwY2HX z=2r)=8Wz9vKOUHH3*I`9Da`g8m+EZbD8@PR6qBW|GzsXH4Yz zFYqX+zuG{CiZ4S#WVSF%4kY906K1TKnLZJCmy!73%*OzXE>XW)?{oC+7_G%mHL2MT z6V6#FT4#P1G&?Q;2aYMTqO#17SnHf?@UcSoc)u~#X0krZG(YY;skSGpfAhOTMH#^( zZTmy7*)2&wVETCAXANVk*fpq0LgpT%|0Lq>__j z%ARB@J7uzmBunMJG6Zr5}+jAKVoU72|IAAD3cd?9UzR#GT z&|6`PQ=y_)vOMA7>@WI(o&6i%Ci!I_Vy9R{dHSiwuerP3NC{m=UcED_>J$2%>ezA$ z23B?ozk;P$ElRomvO?{`feaMxg>7jyv8Mgu-jwYa>9h7a!|A* z=b^_@a_aQ&uM`yMx180ilsj}kYpI0o=;JU51mP zy}d=%5HVD6Z<}^jJE`HY%Vdi8f!X$^zQJ|TOJJbkxVHkG-NY^hw>{O_$h0~fs9Lb({?TIJL%+?KX@JFfVaDd5w4u#aGMiD*|a1C1FVUEEf z0)sV^xLRV zI2bNcL>*PP6~_h)+eROJ+5UC>1izclnkiRaYEgYsVQ5pn){=Y7W$n5jj2!bqj2w!t zf9c=j8)YvT!K1XnV#}HXJwUYrd(HzONcDGdpq~1im;#LmreiWOv;*J^w@9c%Gey2Z zY*lae@)U5c*x(6j0VWU!BrtR%ZX1lwjdw61S6>9i@5 z)`D)fo+*Yac(XSPZQG@V@U>B-aN+~a%bU)WT3*${ZDVJ8<&NlBD?fd6%h~kQ*S)uR z)ufkZKRT-T`Y{{t;Q9m%JNQ=GJ$mOxe`SuGGCe0sO5pekZVw(YC!uB{toj|0_pd=Z z9r`!Y6UHu6`CqDcj#wh{ue8*kFMXXv?uO)e4P9~t9!m5m)syU5#cpF ztlPFdgGfVpD(IM1C4Qd$^#J`k_k{z2Ux5CYlg^jr0hoR^(-P`FPj>{9V7{?8x0_N; zk7C~P%&)Y8F;Rk!KPNnLBHb4)j#i!!!=&98rFmd3Rk zJn4I5U&US|Oy-el$xIaq!mL6xM)w0;$JhtY0P`0N4^f3+b&soKx@;lplou!z3bJ$t z*xN^DmpQ*UbCAN7k4HWH z{7rausr~zl^IiTBZv7zCBl5f*RXU0lUDvRAm@Ex272VE^=#G;(OZo)0F8qai)=1Q| zo)6fqE-%Mgs&kwy6zoq-7HwWCr+RhZSArrr z(Q8+h=b@7UGJ4~0w)#HW7}`WNi}Js+J8SH+ce!Ih$W`V+sG%MlyH57i3lm5jR*zYi ziQ|HW)36G%birGcq!k@N3%B%{J~&*J(VNy|AL#9HF7LDy)<1ri2yavb_vOU)_Z*eh ziKuvCqzlM=pTC!HdiNmM$G|1IR$5Pei@T%ab^bf18?73Z!tIan2FN!_ECZ!AK`&58 zJM@Lj;1CVYZhjmMj_5dRJsgvTug0u|youos+TKOzWd-A?8iNkIkWX!`x+1$xEYYQL z$20@tt)gF(H#kmARFkg|_{#O*gD+Om6RNh_MxWcIyz8EA$H|AJ0&UChQZ-w*`eLYC zUXQzEGJKQRNo)W?K~VS9}Zq-|h zPp|492ysRr6ae&PBy_wv2D79f#z9JN#$@eiYrmIWU(TWX5(fGK`U8*}N?%v=`qg#s z3?6a~S)l;8+ZGcJyVE9-fKRoj<@NVhX5w9-xmKwDOxlR1P2?1*5ZA;-~!!)T0l7D_64OSn=ad zj+12IdjeJ2prSj$l=;@omWpRvEp#>B@5-kd7SHrUb1}!YpTLO2?LYp=`Bh_PRC^}a zmvc$e`yD6Eflb*3#P2jtn_Uc88dssJNregpIdE0QtU}(SgYenP^;xz@)4MD%Z;AsY zh+;R5JB2=l&_s{a3A_Sm2{145BLPcd2m)89#RgMPWUY?iAUja_M(CMJW(B%uze_32 z& z!!H<`H5pci!QGvKh4z=1!`tX*tImK4*)j({wjPGuyd~<5Zz)<)u5HRM>080CUhy(| zopT9|#LB4}Kr>YUmgaN7`+9tRDUuFUxE}aBl_2>5MsAiVYJ^YZN?;!KV_$f6_; zqA6*Bo)LA0OtXeAIRIyd1grWZsT3^lAI?RrAWNZ-kzmE)Dsp%4UOHy1f<9Vx z!Lk-8yq-SnR)d)Rb*JhdyN<4Yc;oz+1Pg7=!zYi5txX897jZ&&plJsQU6!@85o3>O z*0tzmEKQP#CdmWK8i~~+pdQEvIJk@ZcCn1uHJ5Gj;a*3u@c)( z;M-`8Ydl7}P|t*_Vtdr9ugZ9ruWgNB#NH}u#Eu#&bPTm?@e*}4E6^9^Up^kcFbQ4K zC-YHYJ?g#KOS2lJ2%J)I=8lkbua3fHd!qQUHKJL}HCC)}qsf-r`=st)`}FcyNqTv> z)+wM$c>lZq%=x$a%n+#ara?oil1=8gp5_84F_Tw)R%QXx?8gz+G3#-s(Wyd9|855; zDRtuSzp0E`x-IY-dlLZe_8sB)VpufmZbYpXQ^Q1!!{yKSCoJ8;d58-zp#sock?sq@ zdU=RlIs`0V2B^)XG2+>%&U-8k*nk#6@e6mZfVf%esW95YEAeBO=bcR>j9L#a-DG>- zt1rU#I!mt++MQxM&ll4Sa;`x?_XF~#POkd^2rb_aSo7Ya4zaJ9aM9|beQRRFJ8i-Z zhnUu;I!|&YLy}SxL|HjSf>czj`fTD;&f2?SLNK6mq~*r?3~u}7os%n;?o^qWRFg7R zt?j}sYHZpN%lpRhqpOKs>}J3jFOAe=@(r$@WVzFOsl@OXnCvdK>-12OV$GjFrRm?IHbJ|u&v99{u1HAhKU|UN z{oG1}uTJF6)0yn+4P~aM)W=b=5b!xGw3sTA(5ylM=A|`Fl>z`BJLr?JfvL_UN;!#9M3)6-|y46rW;}ia&z%ln_Mu1hT5RPr&yh5exipnG%rUucLmyK5nuC zr^(L6txV6&$FGDN+A!t$!mp2GZC>vp%b*ih-&Cv4>Drqn_mK;_P`-|(3?HBqE1M{O z*UF_^an32b6!-Mt^W0alAKgS3*RF4AI|H)UwU*vrbA6snXnf3j5d->B)jm@|KWYWH z091c?`Q@|P+GifE z544|Q)C%HpOR>XbSl=13!-7nGS4|G|xrW$j8%}tZFcwX7t1Ci@A;P##w4!ih%X2xg zkGw9}JV}4sDRqh{=Din94+Cmvpy>j+ip0sctPTnShQJ^~m&89};iYMFC(c7Wo|Lrt z&CT%r=Wl2uCRx{rNU zJj&?1a;L{hv#Unnu4aYUvjCg0pqc%%6M!&Q7vGHHdEr9@6-_%zh)~rbP?wO!KY=ow zOtISreKq$GWgZ=SYh8$+lCM)uygcYJMq(NutquVl=zN}w(zM!Hiht<8_o#nFYsK@f#U7|Mh zEq!Mt|Kyj6^urMQZa^e-L})wgF*$Fsh(_SJS_Yy|q@> zIcc|NWBko8PI0b*`;~6AN+_Lmd-NxV3vlgUAbp$y%M(b9L!chPR(t*%)yh2XWe^!^ zblV;mXO)1>Z^Ex_VXXyVjn10nwfDwm@d< z3swhmQBjMg*^qA0R|-t={yS=9Op?c24=`-n0~*-H}|6d#X4aum5*ACW2+NZ9I=-FSAx%>f9l7L!i>;cXflU%a^u&GqT~?uf*Kh zX&W= zQDe|?($bAe?{PjfrfWXkA>pVxR}sN&mx%MJYw0Q;mJPMLechJ@8aaQ|3Ihx*6R^_w zL}i&esYkMs0m=b!UVP42ykH6KN^^){cDC7#ok|69(hBB^B9rU+_BRPX>p`b)r~!~^ zzbX=7?7P7Z?H!-vnwlEYO8OqaX8AH-_>a_Z;kEJPXIcUml)MSj-C5WLif|~uMV3z;aIkdkk zc))N;VbP1Cn{Oxe?nv9Gre17lsN!B7wC4I|Onn_oxS8<)21#LVK$*G@$iXJaCn*5E z1Y4?gO-s*K=t~cIcHP}aBME>i;fzY-26LIGMN{#gjti>rZF+4F9ehtk|9pD*++CD< zP%xvK4WfTa>IKyrRJSUHCuZXd49?i_tXuZIAl2X{D;|s8A!}5`9J`A@X>fbIQ+`L? zM-odon(-Ch%#>s;YX_gbk15iBnaY4KV1blr5!&t`IqiPzB2C&u10cQ#_tb%Y2+j(-1+5&rFLe}WI5&h1lSmk|?{ zyQ|?kud;9`Xv0QBT*#Urz}5-?FUw!$v7g|1o%P67sP3t%{hz&ZZAH&-&3G2%n~KRh zv*J~Pz-KFE-l8Mt;|5>QidZ@01GY>RfJy}s3!5L-sxT3NPgAj|WjN#3jrsDTd#;&! zWR7&udwP0nw<_D2Wk;4baOGam0>=LcOi-=uGFDH`y!I)d$(=acRjH?+FU77e?H-mY zx103seKiPTYlqBIyMkOMH3F zpb_gYRoTRQSI$x~bi03*U~MkT9B_p-4)TO!Dj*4#VLF^?5r6q*IMG9VJZ}^C(qnfI zuH=eqd-y+l~#`=0E{WoCN8lK(q;$E3OX{^9I84m z+UI+)*{NM3QnJGC(?ey=Ndk$)%>k=)2Qz%`3=A_M_&l|F#bH;AwI#(Z`HjJb!`JjF zHycINOE13`s1|(RiF1J^X^w+{Mcnc--VnC7q=(;r^3q4|o|@k=%UXk!h8*EnpBqDs zWH$0lCV*2g%PuiliGV}8;srmT&-E(ylk-xLrXvZDu&(P{pXo=qpNjj?Q*~T3;_FcH zy{7XAj&0<&n;3GEVKNax5To6ape3+xyDXdI+FnBJnn45J)&NYz9l(qM`%q8NlHz+X zy`M8J^S7RJw2OJ9?R?&K-|N({Qx7jvWWJUw|LUP7?BwuCNg3;;!Nfg9#n&g*ZH_g_ zeij+nI2P}ASKc(^myTsh#&$9)u{P4!P&@LDZaiU*~WeVGVN zmwzH1Fy2Ka3Brw4MaXJ;NLbYL)0s=7;90KQTosyn(3 z0|1#XrjvFUHwF`<9N)dZtEBe5G$k%BbjvjH4ZzwJRY34M$+7pK-v%`Xgl4%t%_Bk= zBM)1<7ANeW8(gjGIfOm5@r?wJq=>c|De#Sj-$vatTq{0*B#wQ5#Yy(CHg))ug;{#Q z|DcXr))<_a<2qQ{w()5GJ-gBqCv;qlt)A$HCB2>D*LS)tV zec)+>2ZhCj(>21c6Bh(} zut0zsx*ci&T~r>R^yCVvb*)m5r@f19Di)5+A$n{V5SnS1 z;7*qCFk)xQ1dzdQU0NM-kMcmM<;!oBpy;`l|9J?=Es`&>+qw!2TOPX%rZL&lUFx3| z&1&#`dicS{hh zS+XCXX}2&48q-=Jp7L1nyfCLPyV|l8&6Yur15nPDM8FC;iylz=fI?zWjEjIn&IW?n z(C+sAj8;K2NDoaH{tC{RMJ#hWL|sQ>;TQVTV!>WKiU1b*kY)M7lq2OJ_ zIW81&)213^Irt-6IS>P zzIjhDwU-AG0mq?kbk-py)@RK}%c=bfyb9hN8G8f-P4!qlayW;9+SVX0skdG ztL?dvgRsdqbx;ib^)>;bT$serWIuYLL-!j1t=VFYjM-w=4;XAEh3jEckz2C8T!B0B_72Cg>=aGBOG{C} zwnW}7mxNk~IN*I$9zr43#F40|>kfr(C9JpL`0gR|lRkHrZ-b~BLUUXyoO7VVDT$`K z!r#D=&PTHnFm2*u2fwcp`V@#Lo`7Az0e(pz1z))*G@}^{U%f{SWXpW7BeGN;g3MGY z@`tRH=3-AsheQ`OsGOM9n~250)}|nMIS2i?TIY0)xkN~n=}gl6+XN^0$Hhn)8`Sc? z%Anp%u*{lhWk^i$U?(E-4&;elP(Lo_&uM`toO*|NKm+Ui!pPHDvI2>A2ZU2MIVX34 zJ=w?%kC+0b@_Ek>B=3jSpgs0>9(}s#yX1L~kN$DBQE)t?O{fo9$vDGzkPpE65m{oQ zRIPDKdM4H38O@q;9_Gm+2!EDPP`lPUieJ-dpX&VP$dQaK12?zy$w^hJFAwxW2eOa0 znCs^7{6mF|_y3tf1|e1>SIc-+PR}8W)<%u6O2sveI#RE>mb3%1H$gNd6v`W_1z#xl z+g4*9rWq{%px6c4U+iL3ec?nW|FDu$q_5jsgId1AtyxOx_?Z^_bkE6{Z5vN`_GrdX zKWMHJs$$&eI_RwV+Gl*wDJ3RETx|KWF1|P5FltqhX}6(DfLwHE7Yxmy{U$}nT`@N0 zp#O#ORy`vn&5~jeg^03ta)J};2hjoJa+!8t<8>yI^&Tc!CqMcaz41uGWf1)0i@z@O zIyt#QoiSQL;4_h6ZMoxBt`LOX{mymR1nbpts^_l3X1B7218<#fHRG|Ql;+u(5LbjaU* z3(mkYmx0azAkngGLLURG&LUkHn%~6udio*MDjbR~Sxf4^HBcA%6?ZhVFK8>O;7h-3 zJ245NOVOZ5%y$I5p3c3V^emfJil zyDOFX&Bt7<^(i=&_J578Y5~H)^e>1fZtWbGx@*uq>j$p9+*qMC-tP13yQuVxOfrD-=w3lO_S$F@sw+9i(HJ z7z{V-C_Rm^WssEe>vaz=tPm_y8+<(rzW&hDr z1ROFy+Oh>Kr`~T~97w19Xebx7%Gqka`nTFYW%1wt=7c)VS0oEK6N$fhhzop4osEQo z*zq>z888^6T~1g`5UZt|E|}FpB(2=+j}o?@eo>Aw2R|VMvZDOwCn%s zH8dcL-})V~3(0`G0AT$r zMNNRb)x&m((x)XEG{I0}7r#J(fUNR%JI*>dmt_K9N^>e0ztuxN*_8BdpZ+eX0}U~) zEBSF5Iq0+X(PL{smD?Ub%`qhQEQXef2#+sAa6WTf6X4@v3bkv$S)rP=Smpqy!hIfK zFp7ZlU$Ke|=szqMx`=7*WGVIVuwYOeC8q;sO*B>E9eTKyjIgy}yRl=7_w|>XxVT@7 z=j$&d^!F!^7#^gHT*v{V^N1PzIwzX;%fw3T6i%DexzQgLiCXRNEb+W;>>N{?JK0Qj zs`Qw}H;10F&)JXj%Q6|j0r?9}mro6s4Z6dB&Z#AcFO@5VE8~&5xBaGf(WOdxd4+9b z15fj8HKl~z%u$uun|LVdGY>%WZ{Dc-MD>}31+MqVrv4dz^S9D5Kl>V_XR;df2oQ~J zK%s*V%{J_HoPLRE61svO!UB$;?xnGFT)%*tla`|Zvd&LFG)nD})NjK{xc(3PUNYkc zQl-Gu+}?$MM_?#_fo3&djv~AO1)%njeGeK-3~~d+F*L_eU=sfRP%W_~v)g`4r18wP z{r}|DSR$)7-Pr;X5;ye|)o*A{lccbPMIbFFC%WQl;TA-Kui^A(bFAfnVlb*rPt4Bc z#6O*g{2PhNznV8fBZ6hgl0Y21;J}?0E2iw>80si?3lBNjr)bqPp0fqJUX7{Gp32=# z7S7QJ?$+~-KVs(o+5ayrg$R(&o8We?Hwi`qov|9JywH(T+0z<=u9bM!q}mXp)721l zak}r2+1_nV7v7tm16-HdEgZ<)&&uWBdf&n_`-XhcBf=iwy@Z)Y z8O_<4d)cIi8@_CxRwQNYrV^@~2A=}_p3=YSm;O6H|DS3CZvUMMF*E?NMBETQVdh$- z-Nb;MNupeXL|BH@CZz%YDev-iaLAyQijOFB$6MEdrY8fpYhA7yEv>f4mAkDmvmFVI z5-ofM=>m#UntwA36d|}+1-6KRCBu;=e|C-wJ;%j`)&TXCn9k`ub4TN{=y+6qavH%5fF4kHl4g+G)z$0eJ}VLt$PE5aPt zMbsTod#N3rJ(zO+e4wEH&)$jLY#EbNtL>VQ_0F3gI8E*p1H};2>h$APW42Sv* z?ZDtpcc`Kh4a@;;+2ngP`~mgD6N8zZVrLtR&!o;|ARv0boC^&DCCD?B4be-{KP*E^ zPgEODI5lKBWi$W5&;7U(WUXu0tVwN%{d8~MgMXg47IMckHQA+VahqAbi`)E{a`R7} z=3LkiM8o&l<&ZbjbFTs_0HY_c1C9|d?EGl8W8NmBG@;8!;&j#g+5y2!Lh_bG%b0kl z^#@n3S+-`oo8O2<)CS*8|E@d==kE~TfDtYpEKvhc9N7n5p4E&Hiqr&sS^Tdq+#D_E zqq|>RH@K@kwP#0LgQ<^z_s0-Q+(n^19SQUF)S?pmFI~APUH=B@`oC){+9ge-IX<9X zaA0d22IfhZuDhe9WV0(-fc|1dsJTiA-zEkTnEzkRBMfkH+*!bnb#O&05)|~|3HoSl z8<-(5Om`SCB1i<~QjPQ1OY8|Ke3raVtXXx4T)<^!W`^lX{J#|iaw5_HWF+|hcj-j_ zJJtK*-}>uAbbexQmQ9j>2HQql4rH|l^m!_iJZ+gG{%E$O>$g89y>IVDnn(;AGCJ_KbTY-Rt-%beNcEKExWCegj@$?h% zA_*W`I4O|1sRAI#aGbTj!o7f11?}nXk%z@ZG&}jIE7d5W`ePc*I>0U(!33qQmi@E{ zL~x7*kDqTI4*{}v8HnIXd_P{(HWFRnQR$*ojjXY1UH9JZtM2HC+qI(-&e767L-Bi0 zrC1zEy>tm93srC8Gy!SNuH6fYcRO;S$;yjpQ}EBHAma+nZosbwclrV3dgW6QSs{ky z99K#vRfr|u4bgizi08do;WkOJF^HAoLCd z!za;zH9CrL1x*Wd2f#>xkqocmbmDw|1cUW>0x+xqk}-Nf3WC=ruvce6vMf;V6U`EN8X>#ZuF2Mx5*b`%@KoBmvUr zFtBXciV`sKo{x(S7MXWDu|M83cB%?l8v(Xh8fxJKzxh^yY{VV0#XVfy!#@kf;yGND zWDb z`9q6+VN=(Xa;2K_;P(i|3Rr0X>ds`y!P}U|aNom@7s8a6LZgvzh1)%fv}4FV~J2k-fp?e1Uy{+D+y@Qn*R!@lppf&KSb{^gj3l?_t-xAXh=?JH*a#~q7V|8_?X z)&rv(0#z@HNMQv!cV;7~6RytPK zCFVFxRz7(CN-PhrxP+vXw2G>lx`w8nzJcMP!$#)EEiA39ZBCqVa&~cbbNBGQ;CInK zAn?-FYY~xA(bsR>iHlE2OiE74%D$hIoA=;herZ{GMP=3FCr@A0H#9aix3so(_w@Gl z<6ggcJ2E;pJ~25pJwsR^eqQ{twEXoOWqsqvCiN$LG{IIY_fjgTJJBPx4PT`{tT<5|?6c60y7Cm;aq^^rc>7XN7?EIBsUU6kTf(qpq zOMl_$KgLk(e~P2OGxT?Uc4i>_Y%Jh}u?az75auiFeD-S?VFF%n&&a}X?m)hlPIT-* zrnKf^fbtr>bbuPT19{;*k7ww4OyYk)24mA>(H4+{XUoo34Ikm3QlHZJahlD5*MRqy z=>NrspQ^vwrd_Kjjp0@QU$CEa96qvZrsIAAhgk~bVwYu?eQAu;bBE_=mWw%qMT14R z)maKSWd0|A2zw{U6m*i@fy7ouvkPvkc(^hPH&d8LzHc*jAa};Giy9p)zvjIH^%d`i z`OF&w+xfukK+R`k*Hd+;tC(+G@1TAR2fzWweJFrN$9s43At4GT35EuJR=?yKXDt1J4)S&zHmvf3})(wGtqEp7KD z$(!szil3tJIXe(uvti=UHg6SU3r;TWylE;%ga%NS7#wGqbPV7?&6G!daE7hD-GRi5 zvrR8!BxzQeuw_m3&qY*sW<&G_Gxo_21nEjwe=a{{5sjNMxxNEA>a+vFYB5D`mEq7o z#O!J7Sb{|i^@djeABHOXS2XP9svq{*|Hr}pNW@vwq7=%%8te~5q_V91a83KeP*(qn z1~)t4|%R`Aq+TC zHoSSWD_o{?66$*jYFQC|M0eOi zG)BEN1@d3DYoRHI^gCRPYxYat99NmDJCM6)K{Ar*%SWz>I#@vdtM}6_JCMu)6d8tM1o+vno09f(gRy-$zp`7bf< zK=#@HvjSBA+cD_K|0c!I+F+xuFj_kdk%MSirZDn7x_+tWl_73U4X8JGvg^@}qK0d3 zdyKs6+7Pd`Lyx`-0A9<+7*Bp>piI$Z7eV=GEFqCDno2dJEX5#{ZV?B4PragedIm@b zf0+H`^HA?e**V!f{yN>bTc>Zo*DP%mF=gVIysk70gdp&QAjpd9GB@MJ^vLny zZWMpGh878ETZm3P>FsC{89PVxd(~bi)eYU7G!>!7ate0w@zo=4-oI-^YjaV1i6RFJxjAk zumZPf3bs!GR3}=5?in<%D;{kba%|z}$%p#8m71~1q0%lXHv{2=A&Ea@L|M$Gy~1Yq^$^X+AMPzU|FzXm`o#k(f}Ds z4PiV&3Vf@Pt0En)`D&C=rjm}!)ANxWJujVG{xZj0DJFI=;l%qANmgsj-17P7Bf-Ml zv9mKX{bH6#H)7h^D>oq;9z7@NnT$5r{8Jm6403diAK>$y?^y`Zq`n<>qh!?T?!wTO zW?V|19If#97`(5|zGER+Y(r_Px`p1VwJk-nMZojs1y{Zk(HT^6jc0~;e#kH`8Jp{7 z<-yL!SMYp^zg0pdUUtEGNi&bGqQZ0mwPun;8FM-xOH!c-zyyH;BF6yW+jChJT@AMo zxJOv#zY$Cs3JNl@{qnKi=3YZB%WMYrIg^F)M3GSko5!z-ApBcfJk!t8^(Pu?g4kpt z><*0B-YhbxWqWb`@jf#vk7l_BVLx;tjO<_!XiR1>*`ra^5->yc`=sSY_Q96Vet&LN z0u1UjCe{_Y9DVWLlbg+UG3z+;ta5te8dd~5|5Tm@ynOzFG-!g@`HV!hq#pyG0V7tyIMNyM0-oQ@wIZ=ysSfB!SN0v+a;six*(GUMc`t(8^Jv`mrYsVzB}*IkJfooM7#4mL#a=9cg(j)gUO3~ zqS!ZxuCtH$iHF{EjkG-=E!_`ImWufyg)syyb|A{x-DoNY$k&e|BPO`W1luP-Sxi)R zz(ye;odVjb#{7_QbRHowNk^~6Oa|!a_xuUEfkf@|@o~?+bPDyZc)a&FZf>`4Urdx! z(7HeLjUFp7vOguuS}ln)hxg8?k{Ep%)n$u>1;Xp`D>h__d9IaeVy5s%z;z)5TeU0% z^z=+#4Qktg(3PH_cc1BB5I;D0d3iwgqS7m0#}pQbV7A^@aF+1XRYbuacnXw!5}yc{ zG&#JGOEHa4Ox51>7KAh3O*Uu|KhJfPhTZ8~vRJp3t*-ag2_Fq|kl4?-yw}md;E8dI zq$q~J4)x3t3p$TWW?J;!6WAa@Kqs?zZTe+jhw9ifGg&+G!0}fU`J8iCwd=p-)}0d4 zX0Lm`-(2}c!Xs7wB;FSgnbe;_)@wO*{Zv-z!HE{61yeLcv8B99{M%k zasOcJJuSDf>b>q+-?@+QF{z*D+m(!^wbxeaUTh6fBuACT-sFx$Q<%rHu7s$bA*o9{ z5DC=$W4IjbQUN6bc4r6TKg3gYM=wBNv$?>v5Z0itAtu$dbbV)L9Lj$S zdtPu>i?9nzI!Z$Uz6(2$3^N^oh^!V&(lh1qp+OTD?qyCZ4A1om&ki&vS(=@mcVuZsnQ)Z)2IOm*P) zLP0j(Za?!bbhowBFE%P&7cz0FPq2RWz+S6vZ2IX_ z)FKIBtMn5f;g$AM`(;r6CB8y~$dCNCd+(OSoUPuMEXp>h7l)jB7CO)(z=iDY5MacD zM)1m<`hnb>*>3eXIua%T<%lMFk#AVZ4ZozF2pD}}(WR>1B()!{%P&z$gliyFTPI$?w4wloM0z$f15fp6 z57~iK44#_dU7E#`9du_!PBY?B7h6GNDU#3ZUB}fd&sa_QwHXAZyR2)SQG1}6$8gKO z?2R_qe{Z4#-;_7hoPqGYk$|hTKx&}6x}fVBL1>yR9l8Ul3cAF2Jc|7czq|dQ>$zIB72DM*3gM*KU z*Wtu~DB3NA00q;(2B>q96vD~5QWwFP1t|xx;p9cdferAUCa{|~uL}2Gw$5_veO}^N zb-?$sRBaWt2_RLWx~w9qp-J-W$;xE4Zs?snxJYfj22VP|ej)X6@o30{G#>G}Ipc>c zK74+j&`3;9fZfnC8`T(kpA_#+qJ~!D5NPL&VNF%H{3z%WEyW5Gw9@T~85IQn3DL_4bf%0;=8{O&SEfvj+oX20=tq1ZpD4)hAw& znI(^-eI`~t-5Rwjn{s6$asvu4h!5-h3=oaaIw}I)L_7lH7Tdj!2e$&sn~P;f(+)g~ zm2iA^Q)m#i7uwXE$rOynQh`(|3$RoLP`}R`cEdRW4cWSxJayyxf~1gR%kc@Or#$U` z3VWDediogA_etThR||0rdv=!^VG&2NC4!69#=Kx0Qy~CepP5eIWjY$jR2|(+*U{E; z-cWkc8vAzjXK)=~YGBS?D}~GF_dYX7lWpUB@Y8+@OAI58(jt)`V8Tp;WxVhT9ZG&l z$jj6hGuqNEL zZ1m#xb$LT6`{|2Lk~2qiV~%Z|ZHPmbGbeT+GHbAly3>g`Sc667ef@_fa%EnZ>ZaN& zKk3-D4CQ@^yA`t?7ktA7w=zt*f|_BYh62|qtKaRtRpGLLuN8%Fs=VXIOw*G)$gVRB+CLn8 zjC~5Mf4n?gtJIirahAXDVRj{6d{mCDG1`3c6u$?o<-2x~?oEMzMJE*9`SdccXi7K_kn%NfkgDGO{nYE3Lu zYR)n+Jk{5HA~NgBiTT=(BYPPtj5{b$jAE{(m#t5>X-_Z`BF#l=S1EvGp}v86BrQS%Q)zQXE$rlP_IT~B78p~xln znBLMYVUD!k96Yuvr*@*q&qi(LLhiA;IDY3xltLV4sj79XPU`dew9v+1`DsukF{UU?>Kpl2a+@pdZh6!k!d z`!~~EH+U#Y)EA68Gf>&OU^|eDu$Y;Ss;2;S0gl6n;O0@ggCtzS{HlAZW_Yqz7Zo3A zBrGf{Wqt|Xt*mmr3tEM$uc8Z!P!BS)nR`JEl7jiCdZT)7EXG~wL!O(|Rleh~k&|Z> z=lJ^Te#hCdb54i2q{IyBTw(Ua*g))9N$?H+u?u3xZf8@N0kDhk>1Kj1T|9e%s}DN^ zr_LI7Xp!*=?S4$hKI%;+p`9b=TM{}~y<|~iErGy!okAID>dBpJY59OTlZOJ@Pb=U}^FEMFpR&8(QlvT+8O=d1(5kt(Twa4O~g6ID=-U!&e(R_pDmIF&RkvK*(?b^s4}2a zRb>~*9lI}0b}LI~X9TCaNW7BDeose z1oR4nPIk=b1c%OvUH5(Mc>bPq)Bfdytq9*9_zN^?n0A&qf)-$c#pbSK3S{gZ#C~!t zJ;;db4qexzEg3t}ovE|^ZS`1*@TZvl$DU5_xsWD@ZyY=GMJ)48Bja}aQQ8USI9#a1 zh&g9;F&z^f{-f1IWqub2lr;P`-*g0Ay5_8vlf`sHXW29*dy^nx_F&;THjvK2sDfS0 zjEREPTamP`R|455$>~4x!{YR1-18TLFuOG4n-aF<)psBxijZpP1ET{OPi+{xF&vCC zCQBf`p{mCfI9CmzdwoQja=-8;>ze4I7zK!K&QFV5U9w5DWic#DEu{=r+&q*ngr!~{ z4~B(grb)L;w^F!z>|<{9W9RJ?fAXH_31igU(8Z8)ta}>;fur2T~tdu+N`dnHd%owby?!pPc?v*q`s^wRgC1Nb{LNWJt6wlV_B66mjqa zDi|GGwEN}A1u_(8fSqWU%Y0I%ds6%X88xcD@u$Y$57RO&wBj@K zQ0H~;_-Hc zq+9(0fX>0>k?)~A@^4|gfm|)ohLB@tIG!8)ynAZ)lf&yRrQmb+hs1s^ioze0J}jEB zmCi*6b>5Ij*wn@bj5d6?b&r&-1f4D_jH}FimH_MiGny10=Kn z%5R7RSiH6aNyhUuZc@+*?I)ktPtAU>d%wZWe18hrOK5L8WlaM@Pc!Vuw*9|G)fI{! zGXKzF7Oh1Z!fG4AKeh{pL}a!^N6_1IL_j|SOy0&-@&5Kcf+_7 z`ogL&Y!_%F9%g%(vmV(~f}9|v#4IG-RCa%WztuFcAXS*JUEreq_(;gs5Sf?{#@h4c zuoswg)Fo_;fjE>aw0N{b5rFm@*{8NEMP2)%bzxlZ$@sXMA4l8)OK*6X(&C}u5E#nA zq8rzVC);DD)qEHaQ5W42Je0d%x50Ge+>=Wk3Y46=2k@228#N-(w$Yf48Q(Z?)_$Z!)_=->Oio~eelQk604rg|yCciomsVcbK3NY1PwRe|i^H5mD`2TrcjTLY6}uZh}_&n=B3 zKBk(V+Xp$97w?N_1`6fC42~RvOnwjiZXxQm7cA;1#EUu{;rQGB$HLF|;y=J5+yb$` z3+I2G>)-?ZLnd;-M~6|3y+|a4#h>Z&Cl2ukdAKIiwXQ~J9Ssw&F8^3QoLngO;P_i9 zc)*a-SNIKwV;=d#~8HmZXKsgtyEK&4zV%Xo1{PQDK3(KI&w6=dvEU;YeQA z(I-LL2RuVrEst38#l3MzyNEr%3{KF-Y$y5!t`{Zlt6j+r4!>WVCs!sg$%!2Kp>jLpxb9hJP zw|g^}!hxN6>wd->6Kkpi6#j84>t+?#UZ_UgMTKtZmRwIC3iFErMEyT;~5|o_x zwL_|fT)r>)wA-zOFV|Wk_ix>N_mb#k_%P;>q|4un`m>MKRgVacbt z+hK%hr2N+?BY3O{lu-Q!Q__(8v@v|UWryjvn)|GvWgLAMTij1qj61+qJ(N?PNS*eXo0wc!Te&rFpIRgdH0l(p;L@3j(TROV;iF4|AKWgbRSKyte|Q!nSa@Vl zq-wj;yenMfl8JRmNrZZ4N=TKQ`dwh?eqNfBGcf|V)s@OrZD|> z4o+-**rL13Lex?6H()5sAL_T`e3<~fc?WVErHTEATlt%N`Sp%eLUp-=zP1qCU{CU0 zSmUO9GVV6MGVGbtzGFFo5Wx&RIdRUW{c!DZ^ZQ!-&qijg-H9iQ&CYElXi>kU1WwsO zc|nllMLIqSHD73^%t%FY^aKX(EfSEI81^lEXHb_^Vy(#Ex!=jz;e#-jFT4oL+765YGOzbjFp&)iq(@d?4jmKcvRLc4RAgTlWPc5?Q@zNkkoEGG6a&j4RVYl z43Wxcd%;!YI8qTg2CrWt70?cUWpbkX;ru41PdtNMq)D3}jXWqAZq+doXyRJ)EHvFk-3X5*2p2z^EtcD@3vA+4pMgs+87 z-5BaZngPxfC2w>u^#&?sZS~qLTJTcdmV3go;~CQzPmgzS)^|V(%{laa}M&bO7SFKtn+(nbG3YL?r=-)o6=XQug^X3&2aaSG>h_2 z7Ml$cE_>a2P{2%G75iS*yv{fc6n7(@?9ULjxZ8B4j^Z+^@%Ykf+EErhY$v?GXjlTFwsDxi5z}R zSzoQEl2+e~;P=6PpBn2Q?h|`%Jrjc9qzKZ*WqNlYBJKL;XjVWNp(-AsRPhi+P-q{< ztm&>bhJAX`N0rRixAogFc)3+&9L?5jr4?Js?1CCN+Syme-SUTl zn-qJ`?B3=M35wXqZRhvt)gP<2otpBv+57?55ZQx6L#LpktR}Fu5-{Eo{U`W$L zzK4_Dpwm!7Vcv=}x%mum{V^bTbmN)HVIs+{7VkXre-TftZ#`3_i3*e4Yw_+7BdxfZ+LCb-r#?9BR?y}F81i}+>A>k7)Ppb z3U2>EebKV4Z$NFS??X+N?LhY1v8?DhSnPql6JZLv>_F~U0$j{DE;(R1;?{ZWT}>ty zHNP3Qbs{VVwUQGE-;SEl+F~sh+!^~Hm7<;x=n%H~anq(_^1xcc!P{y4kEvB3EG}tX zW$qr^fuP@D?a5{TI4nOXkn$0Xcl2RP>tUmGFz5RFA=|(A$wp>6Ud)UYIq1WOUeG0R z5lMz!9%3z9YZ28`!6id}F86D{9O{0$m^{xvNf=53o%Fo!ZIn>N6S^9x7VCgJMU9&N z>UNWy`Oy))?FZ2xj4vfOrMG-dLiYumKA<>DHkXR6ppG`UZsh2a_JfcC8^Sxef*jVJ znE>amd9WzaJM&|E@Y|D3=^HjIN~2fCs71eezjq+thLa<(8F2oFyd6kUq>pG3!K&%2 z&TeMThv&{k!%8zftqchV`1>_F7<>V`f(%*L7#KMf#k4JBih&WFL?Saos}l-XfZD4v zx*d;N6bunq`e9*#GRBfIARFzlAK^X_5IWc1fo$ny0Nf+TV5OQ`Tc5zbY!v9W!I-ivh0Mhi3fqCaxrXWnZyyWdox^?6APm9{u5zE-%u3)} z=CkIl459xheZ!l)Af_unBR901lEREa5#ZqR5{+73Xa`+(90;DTdqaOm^kY}%Y3hen z)Nv=*jhA3s%MOIe*Run$5}OyKE8;-_2So9HL-nm=*!9Gw#H-tirPxCJZ#e&FnSKLh zdf&9c7(FZ|MqdS`_8Y!oza#rJhF(G{`N&Lqj9H5M=b0J)E!F=`(-k3G1cFwv)EV7E zKiUzxaa;JXD*0Mc6~(hOU_1S<8e(UGI`jc?3hW9@Hj@eKc+~(LrWnn^wxSY3%+1@f zr>~^%hPgwi)%U;f}$lo*57Gy9wvp zlKf+Q_JB3<78qfd{T9982PmuVz6aM_mgovkb|A29B${CLkHaI9|Mn*l|0rPBZv4Y( z)WZAbq&($R{3H%^_@!T-!l`|=<8HMGMRiM~H?|DFGDZJ!lyGj?6HQL2qBHHbQSs2f zA3^?G&Le$6@ty`t;5ApNQUIKwtu{~1EjkF)Q_l3}`UsI>i5MM@SFa{YB6|>%0{h;C zgg^(i(jX^ToeYj>O)+Fkv8)X{kOV0Cat-6@To7EEDe^V%z!hp!heTUjf-cq3T{ZcU zpks=CaW$U&1U5e}xUCE416{yfum|z;)678mCD;ULJ^N`x7D#?ncR8pJF|g%V2whP3 zj}bxBdJLMD4d~AxsNov`Xs>bcIMCBLkd!`}HCt_E&fU-=`!dDU=(3;*TYM*=n8FfJ zdX5!c(;hg)#!Q{;27QdO4s1&k9E-5o278Cx7>3`0{)QMB!4cKf3H{;IA+ZA?D1?KK z$LXf^Pr;gDrti<96gucHe@6+ZE!j)~(8HB(l0j?b;mc&6D4VfrxfPnZ0d4=`I*RdP9x#?lv7Emn<+sA2-dlxwmeFx*reXl-^?yUj zZ)DSud3pO2^b73zGNvo@pDFpBY)s26$hTTu8Yup@u%=s{rS(A-jmm))GBHi>CdJJ&j@MRw!Jsc!^viz2(Wqzc33B%9;ngf!Amvl$byWl8Zg#6 zwcUr>Q_^bqzS8#z36OSTW3G(-qMXT~i&pHAFL@oc!lQK5^ zdYIMNV7U=u^)0q*90*BQ^*kZW zK0FXtYx4EMx!l>+Vj}O$IBbiDd}1l!YtcwvN+2nW{-8S^qY^fs3#~IG**sNCqk9s#+f9jl zQ5!WTX9#&l28|(yzG`~Stf=6s6MkYI{eWkHvIa3%z0#$A=p{xil6~f?$#CgWB12&O zfbH4y+Ln4gujJ|`#JR%Qo*_*Qp}2yNcE=JVUrr3 zcgwUK**7=k<@-RV<`K`H98}x4gX32YW1dxSMKh{F%)3K#l&OU!O@b2qIB^c}ru?+` z-gvRAO(Ny2kH?TpqnFb42i@->5r;lKQnK211}_@|U2_GXOC>*_=n$bFA65avDLtJx z&r(pgH#z(Is>vLK)v~ur-=DlATm3=o)3|N4TiV{ouOf{V9BcxRwZj%-?*hd7qJJ`v zB=11H7nl(n)L}W7dcs!)bH$LdB*Il#e&xULhZ08|q6Mc9fiMTVLR zxHM%hKzZFfKTd1YErZUldmrTyNO^5NwNxe$?juO~&g9jOBI{E313?slA-mK*m}JM^ z03-8gcz3SCoo_}RWr3o#U7SBNM#Qg-9DeQ0ay7q^b0WUK;L)< z7eH@PIY1=g5;wg?7Q`RVNm4$|6;=-LPJcJ7OMGE4B9m3ug+;)O>dqH`UgO2uqPk9C zFJXn5{qVZA@RWngH;tXmDKB4d@i`OcnPnRaQ@g8=XZv#vg&{6d zZ^9R?J7a~&y;nFjtI|N@j6n+^!~!YM1;O-d+JZ;Nv~$--m`o;Lw9eUU8)5{VfiIl) z4uctS#>?}E1U%8RaBl^<2c+v5c$_>}$b=P0rJ zr)=y%#F(R~djH!9l`!I(6yg|pBCll5YtTOo75;RlqG8hDoo~MS=K~?v6(h71HB`72 zV*14S4t`XBW@p^nAv0lO3QcWDx19KHlP}n4b&LNsb&&JZ+}RwPV+Geg3hei>nupG0 zQ!fJ53tLPmVjqx5!0i4$G3WoVDzL4haqxrC<~X!?UcRwbjfh zM(zh&Nq(iT4Ih~UZ5R^UO)`v)`l(4s#uuXi}!Dfpq7t%2Ap0)C`Xx$Z1?R77D zWq|-!7LHwv1`}f%4|Bjr9Uxtq@m_sdF=cnPY&k!E+wINMA%RcB=8xVeobJ3Qyq`_h zHJ3RBZ8VHG0nr8aC9v_plX{slR~S*dY$lquK`N3OFKtDiY|Awr{$lIScZ_cEj-(cd zGj}TflyW-sQ|9OitqmO2kx|>R>nrRwd6N z)$NV?DekW2qdvvA2LOL+5hK4nkhp~ujW%A8NN9wMbiYq8pZ?Y~>a&(4{7u1zFDpiF zp1)Qg{LYDYUYNR7Cs!FF7R=$z#DQCMcM1$XiZHCOJl6Q7I!Y|3#W#lQ;X%dESrDmb zsCcwghY%v1jHjzYIZf;g20I-N2$g{x3QWPA3v_p&+dgbN20aUiz)eZaCMFiM)(2A6j!kOqAo$HZeVpx2UF30l&$3A+@`+vAV9MxwCO>XoMhqm0z=XDubcuCY(iyD;q_^ds_ z3VVmie+*n=jlh?G?$G?to@-~WF;6(78P~x?xrFxz?*d(+SDqKxv`s!HC%;0yN=RMo9x6&}b$_RoeTLu|0;u&^tw}9bQLe zd8edFbgRXzFSklc9C?d*EsxdQz|lnqdh^g^C+O^eEvP$g(UD)ykP`{#r=u|oA9LS1 z>&r|idLKOQFH4MXc_2ubeH|gmxKdYFH?neeY zztm&p#2AooNJYQ_ z{63Wd1{sY^6(G_16&V||;$qM-_Staz{+pK<_OtcaY8~9`pz9c!HgWn%#NdYzsQWPd zK2i>pOl)L!XTYg+?&yK%iEwgqL zwmhWR;r**;CMawM1!BH*F(@H1rk#sC)SKUzo||1;V5f=mY;J0#9FSa4owxKlo*MWF zRh~|Ju{%nsTC`TSYHbtohN4An0PM+kh)Z{{{+OiF9mvTslPLZwtFgrrp=0_$#3XRC9Gdz0|$Z z9{DUY1E?;AL#Gl2b-x~9J#-aG(QeYAf;0_H(KM0TZ%hxq`5WF5f_Y<*QHR6Kg2yI<-Hg}bpWf&1FM(6u)G9HQ!K zn2Jl7j%15#*Pax|N4_n}NWw5YJqk~DrJ-aHds2x*D`jN=KD4NbO5laC##bja_KeJr zx+vpKw7zVmU%d+HUnV$K0bX}4ZuM0lCz+g-u$8GDQRA&9HWA zM<+LTofSb*1j3h9wFXjO}ZgmoD$9lg*(8NnS-E)2_2H(#1iYREmarW1V+TSTFdn?2#|0cIOrUwORPm%;Flk?af zLDoPhpNVNrMQ#~Ud-u@7E+t1>)Aw1{mJjQcZ64Of{$#u#?}@~;fn|gcDW*7bP+pNy zg$jnU!4WF;A5<@dXnvvMonAgVxc72W$H2Nok&6&c{%X-FE^BHEDN-)8`TKxL1f`i^ z-vd4=>f2dlI#DvJkCOWIDkC{a(R%QDxU`hCo_bnw97o6bGFGfU2`qU$MQW3s+H_OF zPEx^`Ic?w^d84;ke4;HXB`h=q98jw4&`raGv+e-dN1;|16*zjIoal)iV6zCPMZ^=5|=3aMKUjJv0~qojks=uE0MC6jcIFeu}2jm-VB zc@l9rnxnG9_sP_Kk!icTZ(ry>h}-uz=d4xnR$f1v?1~o-K=Tn9r3gVXSHGDO;2Owo zD2++!{osC7*kE{XuFHmQ;Z1g(lSt&0;zgG|aV#kjifxHnut0T85;g!kTSdTkhQ*n2 z00pIA4d)JEfs&h*fpbE`*ZPw~^^FUiU96o>ygQeEJecQ7-<2cmpQX|BU>}SjWvwrg zsaOx-$omho%a`@UT^-?f?WGVt;3&Zfq;hPztc;_nsI%^X_p-PLT(SrIpzD8*`9 z(M3@Ubs&t;vzLAr`jZz-u0B8APVH)AERhn)d}kUd%?T!c*I6Pm z$tAg;KK5gNnrmH%=}8gIp4xls6t{`M_&SDUNAp3LFz$l+#jfboh020zv-pKw9&)O; zeBO=?`c_B*Hkfj*pZmoX%!Se@II%5I%5vuHKEkzCRc0aglJ{S3lS!} ztrllFD-T>rpST?)v;0+&D=oJCg3zewHzHClnhQk3dE41a=?BOscZHNi-{{|E)Gu+b zB7j7?YbBj`#f{*^pY5F!um=PFJb=3WiaBvD^#(2x8>~A;Je}B$YJl~~4iN^O2z$mu zEKla2DtVi%9m=Bl^1afqVYPXu{M(Gns|wGcHnDfE zO@?*K)StT#Woewh%V}llRjsALVLhLbvvDXz;Qp4>@-eTsU*f}kOhIr-5j7c&EsSjZ zV}c&L_uos(!4jf5?5sUay$#2_tBpF|NGGAXF6=-S70}Ps827!wl8Uu>C5rE04gK&9 z=!*sii_2&Oq!X&^GImh}FTDd<5efvK1Ee+raB@#4zOi}5yb=M{L}L4q!}icrz1-no z6Rp~1m)wQ2@Y!mD+rQfcp-j5&8NOE$B$5um?KyTn~#%D;<2lbUq zDL@#lV4!^zRjjCX(XIsKD8?s%4e7}?qL1EUrKn5ulK{OOj8c_ z`!DDxq+X5U%)TCV>BFgfJ>0(OkK*}Zhf6q!!nAZr=M@c9ByK_Z^X*&}VI5 zZkI%3EMAhaDZw?HrUxD4NuevN3+^?mdvYR8u2{}jmp##Z+Zijs-S_L487xuLH>rLt z6fmbHYA|I1_svXBy8k%I1csc^f7m(_LaN#8Bl)aiy?ItS_}%L|G3UM3Z2An5jKgAE zhGZO-mr)7>Tir4JaAC015SuI=dXGH2V3l;1Vwi+5e)?4x6{$mwYxA_tY_Pn?7w;^S z=69FnXH&`pQ|Z=yH}tR0qo>WOmVguu4Ai=uQ9(69)cE0$_H*TcZtsjqKJxa{?mQ2h z_OTjO%eMR(i~WPj;YSzymHD44pXXc=qQXdtPno?}k>f^cJzZo~XeL~mq{nWMujx56 z7*rlG{N}-8OUTi__`3%LKOM?^f7Spad1ljU1xJ&{BZr_3YdFk|{8F#OHwq$P{954& zZPO6`U6ttvG#1oHwrW-JOBZ(EBh9ACQsz<8*mKaC6g;(W0vjwiHMG!#p1)<@pRb>r zx?pPTHH>WvQSpXdj$Pmo>2x{1>!(c@?le#J(kag$x`l_sDl+e(=F{?{k~-v>AMuU4 zU9IgBe&hk0h8A*DqhOrg%beD_(a;FV+L1Fn>5eKJ!gGp_`n)Zj^N>RrKyhisou*5V z2DFGn$yjJR)R#y)VJ{zzF>kaNw$wNFHa_LKr5vzVduf+gahCgqT+4VDt9w(qD==Hw z`OGQ7KJ1G`k{HF7nn-ExO~ohW=k@VToiJ>C zx$YV8*236s@0AcPR+nJ;oNwqCsNSJz|9RcMwRjK*A|=y|15xZ9+JScR_vW#?Jp(^@ z1sc5~T2UQ?8*QV<(PQ(=* z8f*7Iw_s{$m##c&_j5XBR`Oz&Uyju@Maj>wY&Yv>Z7{P73oe*AXew3!5l#!Cdwigu zDWUJB$YE3TYIJ)#Ktm3CWjW~iI(NapweY@j0rYKJ$e}%1`xBNVZe7!Oud}_3C?gMn zJ!TK}p@1&B4=RYKA0{_Uh{FZ-29a|!cJjj|i7xr;pUOLq?+@{;x_B|LQ&`wWdk_Jx zDS5q2WdOu?5X@n?oS72x{f$K2>>3|X8^#epvAbSYlbHB}q<<`FWXQQCQ{>~kjdH2t z0dAMYKI8&mOFh&9KL0Cf1(p?>J%N_o|#$j~fD zbjp#YgD3ADpVVqq+Hw{-|9H#p)>UwRt}yO)umk2)J-~)`?9!au%Yl`CL438`9}VC zN5I&+d1Qv6Kr{L%$!VCB`lcTCX>Mw>LbHg3tw}DlkHk;lz9iCRrN|q<{6A_w4=Y3m zpUUDpHP(pcpGt1HNvn3NY#aTYAK+rum^0SS|BbaS?a5h)3Ga6>B#(iz{Cc!k-E2Qt z`@c)JN~B9M8s~j=N*H%4Jp-{pS?Wm3f)xtxi`d+(?dNpd|6%XV!=e8F{?Umf`%c!W zD9KhKg=Q)t`AA8~(o_->vXe1W3Rwq*PsCIRS;kJt#8{F__T89K_GN~QH?wqJpYQpd zbKm#(`#IM+_ql)9xqjEV?mwnWbItOa_xtsFu8+s#sc0EK#&qF)!N{;Huy?HXaK3Pk z)Tgv`wbcmS@qXjn?Q_uBY_HS9G1)U?Ng@}vWX#zK0O){)V>&Ph_VeE`kM7ud)u%{` z3T^4SQctyz{uxi(3Y)VyUq7K9eeJy?sk@Fe_=$XNiBCUlHv%Gsvlgl9OBi2IIPId( za6d4;J6D=iM7ZV&pfV~v3iULa8J!KkaknPpFsjv>zOL)5{3>RjseKweNy}gzPP?S& z(uR@(G&yVqBd_%C(2={N-7zd7!TRT#aj8MIb#Y&9jkX@bf|Y{(QFX!CimS`rEQuGy z8$EfQeClk*o39YJ3+IX*>;(IKgq1C>$tXV=pd$qj$|BwPBHfz zPoKZ%2H6$6%N1u7_Ql7bbxo50@Z=qpY@6A72|vnkd0li>Y9stYf=M{)N;7imEhw5c z@_?-ds2CCVLcUoIV_OChyN9X^bx}gjcSjX-k8fA^%LJR>>+KGLrFqnR{tat-F&yPL zB73muFx10TgC3YRW08176jRW@e6=am}HOn7C#3 z%#2~30u07UA$lMmVug`+yCbfvK|APo`zJ!MZ8g>-&WESYKiaa3Pr6Sp6UN;xZup^A!NJP*t5e^hB4MY*J`Nv3I2#IwAh~)$N>}o* z`wh-0pz)*xiYT$vX|>Dpv`~Z|%fCM$6lFs5s&3RT|5))xe#9+t#b*i9>^0e^rKP{5 zzIKE;Kqo9o`B1wfff@io4vl~dmS6mnlFo{ zDa*&W7$=2}8n|R&xrkHQM5!i4%!CIskmUfC=qCnt;dddUv`bujr^{p9!ct$FyYG8; zPx@1V)D73aLwd0R|akDl;J3DIN~#&`3Hop*g+Nk|t|m%GXJ@=lE9wZ%2Quizh~ zDd?Qdp6u>`D`7vkz;|Gm(jd}r*ac0`Z6(5NbO(N|4A35!2bzumVqBa9C%UKx--5&P zvi1PpjcvexAm99Zl>GmjzeCw%*7G9d_8O>~ot2uCn%%^%Sr`9?Eq=CQ@4j;S0bu!@ z7x_T7WwlY5~pdLL(Z7zOwAy1~Fk_*qg5 z23hmLIqdVX1$`x%J|EXu`K^@G`k@!B@1@?bJ#zjR8=|9F67ql)J?#S$#FiGie)Dgb zpwr#ARt9#ClCf$(#^C|9jvCocSJ`7Zw|&1Sqdd)C&n3+jQR<4PoKNm!9;p^9cye|Z zS^LiMrLp#L7X@44XTePw0f!k#VRRT%$rE0MZBe)Ik;jZUWD}>zVqabLN}1t@PiXxR zZ)beY3p(m@@XOwP6{p*RQPrk-Z$n%-0usz)ca`?OPy9AGOS-P!N682h%T2#nR&kE+ z<7D&2fz^0^rbsiHW{Drx2mT(X$vGHeNU?q7Qamy)(B+Xv_H!IRwBvS^^ua?fy#)F9 zCy|eA#po>q;{P4&Lu}P%w3m?@o!L^Obf~N{$a0tgxPTeP`7@InaL`TOqm z!U;0Tt}gdLVf%Jk3ob|nZ|zxKVy+2r868W=Rl+)<6$$N45(5rgz44ffynk46_KDeV zMx0dUo#Ic;eGvwBnP@EtNvoVnf8@p4!`eq<G;KplLIJ-LpEx}gxq&+`i+R+nupQNBrHA2Y5x{^nSTFK?zEKvf5+-Ajh&2e&} zVxl(s*OqptqrCKo0k@h&>a@?-AC81CHZFU2B&lz1Qf9%uk0kOT6vxoY&`k3)Qej2eNCER|2*fU;9R39af4`A2J)Lox))83@_HJrPPCsG8{bz(av|ky4 zP9udG9NOaJ%{Cl*%5LEB1J`nz9Epb{-eKwW)gigX=IhZc8QU2lB*PvGD@GlO?d_oE zN0w?G^cLUqZ24sHDJe6B?8E6S8MUQA!iZf9Qlj{_Tt_5JfG%-nsPTM_w!(sL!C=U! zF{l;_bc=D{mv=;@Zr^;vGN7xr!yomr4A~V`+QOdxcd6&APaSJhsqf8ug19B`ZRdM4 z^4|2%8~nfWSxW3Qq#N!bN_Z6^fmWuaCW2D!nYf8z9uI2W9h3MMXzI_kSjiRDy*8hP z$X`70*<_k60f*(n>;?N@AMHU|-R-&U^OVq}GEbY&maZtzHjLR27#ndB)i|oA*{tk4 z#%zKJDPZHg#qhFU>1L9LXDRrWQ`UoBR3n4TdE1PvHT?d`O{RKh+RyZ3@CmIgN!M>b zxo1|l$+W*XHB1q-6ck02;z+Z!zX$k;wyw~w8++A_R{c5dHPCgS3G7LYtA^Vz*|OBt zC&1>h!l_mw5UIUhDy{Hci1p7^-LRrRZO!j_s~F3h3y3|x^`zA7?g7isn`;7NE^9g* zzJYuaQ<&3}eFE%-K-T#WVN7<=52(9^bFj(8qFcNpSbCAJvm-{UDwBEHx>;5IJzR#voBd>L&=^kRu{5G#rZVIkPOGG}=hK?O(Qwer>v)peXPP+rM{-p4aW16FX&0l=TSsJ+o(~v$ zjW+wQ<+Kp_u&zEpl#zF771Xq%=?Vy$K_W$|XG5EBLF}&D+q-EQ30b+8v%{ZSMUEMj zo)OG{c!mlxQnzl<7^wyY-O<%nEDaC<-%Ysf8+B@e|+dC6R(HN{9CnIH8U$o1jLIL+0*ch48c ztEYK(pD4g^VLl@(@k<|E!*0?9TBMa^oy}X*{T$VG`^s!CH(e7rPukrm-EQjpvS(@H zyAwo1Yl00#nsTFVl5nhp-dJcO97l6!xk90|53}sj#%r(cW{d~>N%#L+#4Z)_)P%oL zQP+8S!fV9v{U@%bhXh@yn&v}s>%i?Yr!7uvJ$9oy^Lw~tSO`F^Wk$(2XHtw8t%j25DIa&W=td`RA0>-t5gGDB3)VWd@{Nv^?zVaqTe} zqfsRa7^6F8$KA$x`JPQ7OX!tXsAB+7%ZstoG?##2MYIK zut9YR)G2sYAQQUxFdGlPsj4G#Lu7|%D0N@S+#~N_^G_8*Q?$C=*GI^-b^pUo{aZ}M zJ)zfzIeF@_^i|d)2~I;BYq7diy@R;6(`tKFW}U#J814CYg2bqASeA@6gG|9L%Q9s+ z{RrK!_(v=u`l*s?_SNWZ#LN1xb+xq_6wcE9t;fPkr?0DTA1T$L%8&>!v;*yW4sDv6 z7UM!iiY(AF!zT2tYb}Z_p5km$)VP(k%Ox}F%a0`t;JEq#bWzjcv!;dlKyhiwTj!py zLalzLiwniYXW$p!v){k|4eQ>hWwWj5gs)y^93il=BQzH5Dp1Jg+S+3^tB3nq>)E*i zOG%`HTzBM%3GBgDZ72%I*-iKjI~TPM+Aw5s>{@RbL&+_ZoylJP$Ue>)|Na{`yFJF? z9G;Tyi-|K_c@zkBZH419z*$r9=FS^g@*!IltL7qAKNu?#rtH_Q=B22~3=R_AZn zQ+Hs{V}a`3c^@RLgbpZXnuq@WS%%Wh|6bmIU%h|Yw*Sxfo>O&0Rg+y9pUX?Lgqh>Q zGN*JBUx2=67_db>AOey44Vz1v#8MooRvZVrujHy#mZ+Uq^luYC}uHLoN0Ty0%cUi~{m=~k$B#(DNw?un~z-cpj4 zO3h~0;V{B8;!WZx`6IE`Y^j?<7}cgMS&zOgt#BaEuji-x<}ajq-)yK#D80$SuNEaHVULZKYZuW+ebY=%F1AZ z?N{TOG#r{m{Qu%8_o;xamYR^4#u)(G(mH!#A{}{{JJ?oTEX@SF zt)h>IY#~t8NP8a55dy%P2z9Y4*1m@3X^trwq)=_4>+^mG;qaSMVkGBfL zQPDa5=D#v)=%3z8KsEr{S*jb*skg??o&CV|AJKL0BH-K9c5rUs|5bj=ZiD&vVqGxo ze`a`6GFqPAH!U^GQjntJM|u}qgDXO$ho;DkaRXWGFWr7@Rq=l2X(w#)+K<3*501V~ z!i{C9ue(ueSyChhFQiu#lG8GIl>U6R6f(AV=3<(a_xh~rN%uQwpD^KRJifGE+N*CV z>Mok3IQW6YFk;ss@2rkBP=3y~;zx*1UeM`8UO@Bj4kXJ#Gv4pcgTQ*y&g|> zHT6g-G~48){d59e_Qcdwr9jTY1NHS<#&xg*^D*uCYGP|BMv$dDxFMw9u6EBy`8&%v z@49uXL;c4c;p?crw)V`T%wXL?krsz_hxi) z-Ci%NzqiXZOt*#>{?b^0{nkSz%EU25zdQ2V*E-#6OEL(`8=@8(*eRYg@ZAqW#wfut z81*yL=2cx-K9t$p1&2F1Z?8Knss|p~b?8l>1HAfMFBTT1`c33@$9qf%k#-3+;>K8b zjItV;bDWMwJ%$8?P;eXtcO<-NKTDbp+%)>iTlZ|eA#c{5QObv`fCTG)*;TJ)zY1g=2X^SHCG+<%oS|EkLek#`I+Ue(is(nUz^ed)jqK8di1wAgWbN=z-e4E94% zL4j4*Ew%N&6x;lOIF-SXs4uIfr$0qo<{qrlcV8Qa46l#8Gesu$xjvS)+hepN=?vGC zKb_$fy0$Wrjpn%_T_l6xI2K~{Kva>Z(9cS9`IZ^k?*4Q~27cROkA5B7R@ zE((*`gW}`#k!jY*5gCRl-2_MKjzjEyk8gYMoNIwh+CG>SSbUdw=OlZ5bfirqsco%B z<@x@UTrMlAC1NFN`5KLz(EtH6AP~$z(-;hF(z) z@Ox9XQ{hIe2JiP@c0W~F2oi@6v=s&RuTn;#Ny_WK)l7@`Lqq3@KEiDw303W*1+~mQ zuy|QCSw%^IHg>ZUNG_wwe;~`NkhQ;K5jDG_;n*u_ZuH##8ovvdeGS zmG)qTLthmLWu>^r2PaP+ zJgITQzEdexzXLbwKV`MlN%LErUhS|FJ40FJzt$m9{o~Whw>uvb_DAV?t1mFj3@xw$$I8;=~lA&wm7cV{lI`V`1L$_!%G2z8+ImM)->z;7sTJGZxIj&A>)sVg z&&uku7TQqrmpPhxwbotQs&aKiqT)-(%D#L2Yy);C769qG7-dk{JC-%1S3F_y+TCA1 zY_Y`gj}JXNwF(qc>f@!qTvFo=;o&7n`ZYLdf8VZ;-73J0;45Th;gV<&5I@ee;+(Vq zIIeW&er(TW8lEGpiG%>g=fY)_9srEFaz5dI+5F>`ap09^tmCMq7(hHRYr#S%Kt*Tz z`Ho+CQtPOHeIEPI?>(*5Gfmi%*bv#KdR`%s*I?zpVT2IkFENy6$QYx8opO+t#k!0J zIuu8rJls|8foID)`Lv1vwNDS|5l#IX6h?t3Dk;*^%1hj@%rhPgq?OzrGVuD^y6eQs zExTtPDZBRdA8EI_gFlT}CCms|514fzp%WzP+xI~YB~81~8sAw*y$uhn5Y_s#KD>C9 z>CthiX#P5gS$4hyHst-n_G)_^;AqV*|AtY$q*teXqN2zmP`<_cC}-sk1N)tA{`csL zF=6G{aG&OT;yLR3Rb#Nt$QAiEIL$_6Y?>-WAsb~I(iri3HpDy(&}9Wm!+SAY^)#^$ zA%GAiSmdz_(*>AIzoP$5?%fIAii|}GA;jjev}b5*`mQX>S3^US_B?;Z;&a=(k_wQK zt}In(j21TC5!D@!;fHc8=+~cDgqp5is83uGWg2^F%I;Mx7Ct4UUh;5*U%eH5jcEZW zCET>HIF6ez^5viPQd!?@9xXdh}5 zn&cN44_0s?d=ZS6+jS9^`MjR558pRERL@O#)8s)PTE5KGchABQx|;!*l^ITRaGScE-?DipjP#=H*Mi;*y7N- zTasDWvCQNkQ@lJMLaSM8E@! zau@Kl;x0jdA_VQxXJ|{4n%XKZW|pShVNK#!hdzrm9JYx#nq=}|vV2;bFC^H$uMtUD z2&%CgCE^+Kp+D_^)G;+M_a+_6c^V5i!5tIVFY?Ho4ydw=W*M>HV%>b=vbFmWaF!rg^EnnQ@7Om*1{*N@*&AY;*02?)1B?tK7G90 zxomEJbQtUoiuSMwV}gcS&Y_94WFyk8dv4GZ3Av?t@7xW%zNcA8)G4baWaV8dwh^EB zL~y5*mpzzTEG>F5Qi!9>GN!FWQu#()a2K2UUq$?=bm8uD6UsK*^V-~j;xgx;_H;O_Y4*&{;C(WY z@;KOi^@+RRBVrG|{l`ozR2-b?$8;&}W*6vM@9*abpfAwyaV0Yf$KFkrJbM@} zGMb8GK4cI^AFzN0j~Iq9+Ts9)iqIdqfSe|iQYHzNBL)}qX-8u_#N>NZ*0h9s&3@tY z$)gKtqIZKdR3fN)X~z}$PkchA`c3{Dxb!{|OncI*W$L35gKtlU5rsT-j&7z59_Lg~ z{5w|YTEVZ2ga0Q3sC|%SMp+dcWjC}2Gq%x+MqMv#53q(GT@N5viF~y2!cB+6#KxEx z$iHE6uSBlDX?)C)6PbduMU?&um{Mzj>a7_|7yc2stz?7*-b~$xqxJ9_Y_WEN1o`Hls(9$y_zn9`2dzDptRt2lfF+$_ zaRY+UG_YIHu^M1&=D3IE2%wP=^%&y)4KwZlE`#Rk1*}^S@SD6e5l%D?z{{pSkNsnj zsQ+H%|C(2la}GOIjfWBMBB6sQ5F%rGP-S{w98^gnqYo@BMW{QEnkk@Y@r%cvSI61( zJvWyg@k#MWv3&LHIA7<{C!A8O3-Bdj6p<`GV*8ZBfGM ze<~qlaDNBv`P2V-C5FG9f|xZ4U^1yM8*c)YK~RLBAG0L%z@dMc)cwi>Rc_Ye3};aL zu|7=44}U;IHne=!zTPoia5~+DkjtV@EB1}A_oj!}3r%`YyqA9D7mq?kW))FeZ?5<%R+U{`74J;=9RDfrxq^7kcRM`hb9DQpARCMi z%VCgrinbBXW|-#We0*6rFw^rkLtmh}eYWl%KDiQK|G;i(^CNP2jDlL4rDsy}JCIxx zcdsnMWj55E?Hm%g=l%`^P{7-)DKNyFo->Pj({r|r~@#t3g%O~6?Cb| z1g|4D6+WVE_d0hOql@X7sne3)*A!1v%2B67n4H~_%oCm%J-T*GlTgSeRlAw3-CkjV zAW~MjLLOC>$ZdNN2hV$<3&oE=gIdFE3J*)}I=PLV2B0Zph6S_o2TC8bw?POF7a=DYS0r{X3vVJS+#UWZ(?bFeVsH)ds0hUr88~E~A`+jl0-~#!^ zmO74HAq6$uL9u!aV4*}w&Un4^VD97*deCD}%Gg-wf%y4F5BE=>T;k8Eh~GJya$A|5 zY<7&r)$x}@lpt{|Jvsb*0F0?hg##K$xH?FeLLlsv1q#|{_e6KmOYZXtkSFqc>fH4$ z-Yvamo?CC`5rqu7cG}v}2xh>~WKM0eB$!k9X7~=)btsr3KXKg=p5QQ8Ub2FYGO}bC z22?oic9OS5c7^8Ed2~f;yg5?%a6F~x1uz>2*?5i=rUgzj>B0_!k1+^bsikogjnC8A zGv!4^lbx^TE6F9T8I7P&c;3GHSwYA(sk4?p(|FGCf)f3~#VPy}ooOf{hiS#v*0yTP zqfg(CK<*5=B_e4bQa^iz_@d^_y#TUW*7O}7`EQpc?MWi(Ue^7N@L@|Vf=oM0hJ_ej z1X-CEz-U{=1Ws5@r^nx0(e{1eFgeP(qHr2tAA2ov;A3a!4DmifXp(iIzeyCby9|Bx z^m3Wz`xPdu*X5~GKdNZ{+So5yqBFsDT=X|AfS*nt@nImqzzSu!5Rx;mH`~pyY+yI)5g|3RWh_->WbK#f=3soY<*YZ>!Nt z>HztPW*|APNvW?ir>{{+v){I+VxF<;5vsrKbm;TC$-cC+0y2Ih9a2ngCZHSXAa-;5 ze#4{#z&He@ZWP^$vMpEqJ&!#xwnxg_UtH38$=`I-eyf{t zga&W^0MHmarr>;#zExj$q&7ml=Xzpkdnl z%Hj5_+s3;hjs60D+=t!`OyDZsrG!UfsuuAyW04WFkJtI>$6w@!5UG-6;haRKO$`*R z8sja|QnOwc8dOqz_N3f_Q$VmqEQ`6`uFVpAHiakojJk1l>(Mr+tlABE1^^ytRb)Xf zD979UEbVLHi38W}U+$+Q4++L|Ywea?sgxv!OqVqXUeo7?pX#?n*nM$5uPDFQ+936+S9zT z7%lWAD6J@RMQ!m}kKPX0W4^z0DV<(`kiQqef{U%2jLEJZr* zDa$H&3K@%)VC|rgJG}5~9zmx+U77v-of6{gK^x}?|EA1J=%>FSybq{i>sjQ=88|F{J{qJh$_Rb zp8dRWUqQ&lRjOS=(}9}T23Cx2`MdbhT4|2M?v}G0Cs)yT5g%u@(-tmXsjiYU`$nYw z#6l`Kwmgos$`W$`upUV)DHY^VDac>mND(5<#Pc_-)oy-5N*Q?+Ndag!nmK%1A0ADH z_E&?f40Q6Nfj4Sa!Oo3i;Ml3yA<#1*^wl5YUYFn~0Q|wuWFW5U3x$KLu8!jD$3cEX zmbe)wp@Xu?*VTnkXfrS>4C~<(R@8Js$^wDzPs}5?W2w@g)a`EZ%PL0ZBPGw zsnhBeysLvHZpGQ1H&x^_%8!B$`z&9k6_Ln7XuAhjS-dpzxr*4qjuu;W&byhVbMLhD z?5?DIIV$YG$#{Ag+idjO2c(+K766sJb3CDvL>D+Wa6G%|dZCNPQ_K@h?A5ERrul6r z{7&o?)hDq@lIU}oJPj>)z# z2_T^H53vrBFUT>M4$uxB%%T^yAh_tLmY+}?J;)0|T|E8$RaFF)I%ajCcD(aIr|8(n z>-)2BZpCrE6Vam+mpr|u0YbeQ)fhH4*3Eqltx-u=C4Dt?Y@p4gVih;4YWadS_=5LE zouDKJog40y{<-7Kq=iEG0MioFhLvm#WS*PDSCf}&r|XQkrGP2o4~G*yR-dAzSULdAWN{wK zFPg7Gj^6ctRa5KttSpv~FH-Tx$xtcoGJd|6hdRGuE#l~M(X&iE^N*U*gkpCpk`)FV@ zXG+V@^i-i~ra8L9|A*DE07H_UZpD%aYr*WJ2S@6XB^MEfv|_}8!N73q5pQj+)j&_z zdbjo4O1GYNUXA0q@Z`#7g=Zz$?_z-AtJx%v{Q%0}^XQEP8jyCcW?HfK(Aqkd$WuO} zyjQBBqiV@sOVedBM&|jW7h0>cvU5_(%&Hz%?2fq}w4Xbc>B5jHr*e`V9BTb5q zOg}{~$3Cgq^q(?`GgR~bW9w0um={l+$iH~p)8ZO7=>=V8d6TKf3Tk8*v-kj;?j+6h z1wGn?X8YJbXCg%XQrd}9<7CNP{K2MH$C;!={jk+u^} z>YOiN%psB@Wqcz|A0a>Zt93xvTo%4Rz{dS;taGv7Rn9F*iOQb}sE;^El@N)RpoqjW zi15I-&|?D2_fLyy0n)vi<7@57jlO5R_@$3_z>--NPD$sDZbkD3cd;J`&;CTkAYk3o zR>KI?NIoTf312ccKH=`$luY#nT)p{$w4(=_@(z5yct=wOO1X38eNUE|!wS|Lz9Zxr z6_`7bVPy(=`HYut#y3J}!L^Wg<6Y$|TG+}Z>kXBVnuK&gg$qTIxBWf{0npw$;{f|T zhd;!jYs#v{3P(4gO`9iZRJHe49V%@+b2ER}Va+%7+CR!8#KrkkVrrHzm+gN-$U(Ym zj{x1YX?*+YBkUeGy37c9YNjx(@Q;+!0t=SGf=A)+tM{Lb^KDt4g~1MoXAMp?@N{<* z#;iaH59%MYj6pWe$eD&D$)O^>XX&XOQ9tFJi-QUeW(IO`OB7#dh`6y8%52C~^q7JmR78_fk4B?j-ooYF!L&Z0UJ$7H{Yjy*@)n_bIDObAfWL5C znRyA*SqbQl(xCNi8Ry`vfmWrTrpuqcxsDj++PU^<=e_wM-udf}V9Zo2T)fefd3u;L zh_Ar4!XaC{D6*pO%)rmI_EW}I169L6)|DNf%FCuHx0rX1N`(yPUU}RUXF>R6hd4vS zHfuj2@*t-g90Ca~RwCCz{Dgccwk6mwp(kf|=e_qb?QyV-ixfO9`%#wAzdE}9u}J`m zX6l9Xou$t_^C-S%mNPk?E0a{*Q~bSUMxX!V!%v}C`hy71FuSnL2v9IT#V!LK2run8 zvZPjH7&QicG>o!*#;rW|^MuLQR*7>pzQ$|DJGl-zDR%GkS{bWEPC7ee44fC~uOV`GL}F01i`}~*9Cau%fGEER7ys3% zhZkF@&wJM$8tPkUXqa<>nX7bmIg-EZH_Ud=%^1QP;!V`>(Ddd~7-bO~p`;8w&Vxvl zJ2O0Ija1Rh+q-9ulH5d_O}bXwvP6zRe9;st}6nmYA?Idl+Ej*lS~E9cNryq z2o>z>f2#BaHmA98!QfD1lDTe>jJ3-TjoY`!Wn4}w&mO$+v@H)FoL4VAgJX&5w<{eU z#NICPq^v#-bS%MigN!u3x?5mgE^qve+xxzNt+Qv=g@p&^ap^m~rls&qQ5zMBd*dNB^$uRMRE2&yFctR%{6NgBnY!^+ZhJDdQn2tIY{A9OCqe)lkuJX0!b<6?7WUv@7pLe(kU?x z1$49eezhh`L+ieu*Is4WNPXi^Rjx1J^X|vp3}?Fypl@f_50M!Ml^M@~#f?V?u*>t2 z?mcMusr(iqf9Kk<&V1jrsWZyW!$!T=hV~Az{^XPZM?-!}{B`^4wghtz z=bHg`DVk{nc}_*fthzfLhz9ljAn_|hGLq*>y|rWv4Aq+9h_&B0w7%?_I#%ZlN|?N$;?|i0 zxo|$iqXB4AK7&2fkDTUUx97;;hz9_ZlsGIf-LdS;l$}Ra65FvcjG-p&J|hz^0EKBW zlYX9LvbSn|=jBZM&#yi{D_E?}yBA`|2n4@7XP%?oS54T1=^4EaM0$cHhiZ&l((Z@9 zfqm@U6L9H@-;Z62YDIFi@6*mW3X&ahgEX6toi&##gr9!(bqtG$k1 z*57(T;^ljJ<5op3`*D*fsQ6k#c}xwKSVH4T7rMb%E8IQX&NGK+hUiUeeC#{!g1dh> zvW{D}kYR-G5^GYg^k9bbAU?s$3FrxqBba7%l%LSB7YHAS$-d0PFYaGGB0yB zdhBg5-aMGscGOvx%;QUSgCL8_l3|4Prho0{XhY1FY>~@yKvmQESaD8;gcai$m0= zUPA8ktvj0!WZ#^RpdNb{oMw&mVTJvM?L7zJ(R8cImUN8d3U;!@NbZP|K za*EzXQ7ROPY}z~b?72Cys<=gs7^^ZC=SWI_8p)US`TeCmtaqm*7!k4RKgeTPMh9Sv z@8o=$Jjl*(()ojA@qMq7$;%VWi?74fMtnTHiESEdqOq`PFz+=37RUI)t^;P!XIO@! zK$OLLbc-9m_Q;Euw*44dTc7alSPdg>k=dE&vr;f!_;H4~i*<%+jBR!$PQBI8#)#}8 z-WGYh>C_xn=AU(0&@}6t&;wB&yFRx~7tZt~O>M*-036PA^<$AGl#zU{_l1 z!`VZHMQt-77A+}U+jfrv3K8xl%T%A|lc~)aw~oo5a-4xzUR}EB_tX0>(YMQ*cpe{b zfMSW}Fpkl8CKPk}9Eb@`dW+BWUm$X(t;Da7zfjm6A4*Y;eKSIS+#o+`r<6X5Wf z3EonH_ECBzU1kzGSzSX5c~bKlrw+V{WhP=mgOTb$?)?+UqAsAe_bVyS%s|7IO<+7B#rK$|TlB8(-cgZy%F<817y1msWDegCG}pIFwv ztOEJ3S953~QZh^q`?+aqHoO~TtpB_W&|LhNi$WOSKg7@ly^iqaZ%lkDxIzE4kh#CP zD5!Umm;d_~{omfA=|D2HcaMX%&S*S)^42|x z^7FAr2fqB-hIzqh29uF+kKxti#JB7W%n^4x@~$QWk7V8^nrh7MYcrP+9s!H-8o_1v z?|2o2=e5!5RJP8hK}}?V*}9pAgckhH zl+mZk>W_1>SJR`#($8M__3O^}(!mrY+MUoU0;$ZhB#o(rb}(2tpRp4#Djr*~Uo}a# zi8W?Rtu3)G=MY6brHx@X+jq|8?4Ettn2W95pw!hh=#+>4#n%@00cSPo+Y1g0zbzDy z`gH-oon`xwWDu~NDNV_o1F!;X*qeVs5C2#G|4(hh|5?c6-v26(oGXtVnONv@{6!&2 zv8}pA*ShU+w3*o+S63i5wo?g61cO>A!z$~Ii=J{^sHw~NW=U?@Irr%4Ty9^!)-^S)h`S5zJW^YI zz>1f#OY{J|g>mA$5sJP`wE}uX2|YloO$gW;>dGEM^@=3>lQTbA(RC^E56hUTin zZ>!`<9Vnlv_5y*;yT4dl|AvJ7m%q`x%n;6SwkA7$8O=>&Qh1}68?ERP)VGZpywMuf zd=8V%x8()sJP)H zb?y3uCt@${OFLG?L)=j}+eu^nk(!%H{L5*1j`MJvAqBPUQo=gJevdhf`BYo4_u)f2 zX+qnqzoh!m4;Rf2#>>kM%I&5-Wwkt37yJG94Ksscp=S(3cCj9D)Tb3M-FT|ReQ?{3 zrH+y%hdA(Q{%~VD*%E{71QDjn1v_zn1Q2TG-)4LV@WXp=~3uhmMCVz2xVP+i<&7Ehv(evZcI<(d1(OMkKBUCyo zXD-N}Om_Zb%q3!UL@>orsrj-w@&Xji*)0HsjJm!E{i1rA< zynaCV(M~yd8&P<^L)??IM^IWmiN9iNJ8by|SiNHdpx^{!My~p@MwR(1s?fMdNHPH_qhUW+mwlMWJn)sN z#O2_^kXf@@$i?5y3k#3QeQ(o;`5H7YdC~R6RUzef{t9$m6RX{aR9N^yD%;|mXrXm>?Tv|1Z&>K_e!)(DI7CvStW zDnhe8}`eLa>=<75=46461jz1Vy6EU#EXxSpfh2PN5n=2*jDkkb`o;$ws zcA6pXiaCITy8XLDfVqPiMAi&-pq{|1wI6{`B#%r}s&R=d<7rLt-!KPT;$T#=!sYqp z=t~Z=lB`!R(`4s({>Xh(+Mc}aW`eN^QRncB(Yrtrti*yd5nwhUPd?-kIK4GfLE}{C zdtUM!b)ERJxAqyRz>ZG5;Qh3xT(#hG--e6FaIeeHGw*S(-0y!$nwl?3i^p2$J&5(#tw&70OS+H_;qocRL*gb#0Q9{MhXLD-G!=F<&61D^l#FkIz*SO{W^tN|=<73<(S9bJYNmerD+tYap_O?bWLZ9c+-Up95;1^(r^6%Za ze7^aaA@63*Mn@^HQ$X%jw;Kh=tWF==aVS66`nCQj1iK_=p>VoBB49i~oOnIq4B zwk&s`id{`kWZJbLs0>P>yBQz^}1f zX63cX)=J~O4EK@qgzj#|5E&9t5-n1KK1xTQ4OebWlQFoubep?=a_xB38PLrrCnOW6 zMuB3-K{|+#^GPTHBTqHFJ!qRPHu2OaCt9&Cc#pR>wVZHG)Kg3~2?@nh{T)eXL4(=MJG@P~$n%>OJb;%Z43fcS6CPL)w$vq50 z0oKE6q>ln$_M$1b!7GD1yfg#xd{9%{lAeIA;l*~6di#X6eU|O{mwt)wNJ;8jySoG@%$lSpR#+rZ&ju# zHr-pRzbB-dee;@tm+ekDz)a)tg9P&s1?mR%khY<92i7l8;Jd~d)CU25a0Jo~A4RTQ zjR8#eLP)}-S2y8~X(UVcyVLMkGtbhH`_?(py0r7L(ZKwn2fkX5Gs1}_agHMFJmAIf zvKvI`fKQ9hn8j4vXOHYdbkp|~h@eSPGHL9!QaACv8@$!FFL}sgZ@Iwtq3=Msz40b} zh{HDm==^8c6&M4wDG|ydSmn2BuudA7xV*l0*UlfaVtCG4MNIj`AC;@_&k9bAt=BGx zF?rDzkUxmBDxu5F18BM4(njYZNWT>!m+{NqRQ6BDKV0ko6x9AyZ2nCr-Zz7Nk_}KM zu8Sb{lVKp}ZcAG^cTvNmrR8q&^Fy~&?Fn8lT%$2NZsetVsDGYSeycX>uvsA_(q{D( zS!I>j#07F?Mrk>_B7mU4y3ivHG#F^d?#iLF<%p5FBK~i$jhV^?9FBL13iN_5a{cf^ zPUT@l=sq1*WAcpSP#(qV>4VA0oAl%B%W@jWJ^AFgJALvk7@4LaYpePhQD+W~qRU{i zdK=g$m=jQM-`NTpZ!3Jb@=`ig#m~$&U=)*{4+@BSDv_k#iHewEd_QXPWtg2M7d_};eEZ!Dsm56T>0P1 z->TJ1=2F{g-)&q+j=a<}3*n}A={R%KL<5(beAGp{v%hVyr0V5xSb#NvP(Com}n*#Gxm4!-I$+slO zn_G7}YuD&~>32mP3n&I(j6b0stYiG3X$_HXjJv-SccFhah*$@S7rr=(rQp{O>68x8 zw(VUB4ms=aaq#$ji_P~FBqBfTI5zn}18})^H>+qFcTh-O6qOy4(W8R{YrKqu-=`{C zQj`}=x$BI;Fno(+u7x$sxqeDbjD`3M`R-E?UR13etaoH8$bkzf(EkJ@7jZM zR63peVt0wNv$wn2V6WV5!ScNi(qH&yDL3+Gim|C+2U<(Z!4pVvNPfNqS>pta%_1ip zOX4pgZn~{JcqNc`$=~&%m61|yKLgbakOe%5pe2GVbji#`r80x=Jg)jyMP&s+(Z?89 zc1-|H_7No^uXzk_XN!EiouA|tiBe1(U<1)!9{y#oMBOJAi$ojj`suzBR1>g)fviFC zw~%wMBUi&=a$k0ohBu{~T#;c9U=HVFZum|qFEtSKG4kBch%I^`h38WNwBie{=2!Ig zkU;D^dqH!hNnK^Eq+5N$&ufiRQ~PJrJYC-N-DVk{JJJ>s#+D)=S2bA4nHrT^&yYCW z#oYqCF6qQG;sC0D3!BlVu5K)&nip405YdyF;8qFsk%JoN+9}sQGB7 z39tPAbln>6_gzi=(l!Ff>_n}OHX@V4XPPO z>|O49f9$n;-MdXu!S~}LaqYNZpb<&RL%m1UNQ(?8j5$P+Jf)_%GDcnHhsZK^RwYIL z?wTfZPv@!~uf^o{ExF{M6nm_=Y?#^NW^WJK^LCI3q;w#y8|+EA(ay(hByQDI6B`KF z-^JEKJ_a{1FciNqwzVKx5Rq9gqUVoY4dQs(d*w50&-#(p*iRHBn zSm7QH6#3LX5IV;H2r#_N`<vlu`QOf25(xw8+rZ>7Y@53!h8kIl>yI{Z$xQrgmU6(yBY+je>TVpR$WA+xEp{FiJoy*P15qfvj zO?d#Te>oOKG*jf=TX*v$*_?R>=Wv+yhFpTzEYUt z3UBId<8migm0hu#*Fxg&dq0ue=+&@Rxu3flE@qB1Jfor-seB~DdRVvCvcGbRSO+|Q4*jOP$~)0_tYVMV z%a}h$jL5CQh|L#QA%iM6agv~`46wIp!Y_Q^!0qF$#kKxP7?xETq0HarKIPoJuJ(Tp?_%{QAG%ix{){;t`VC5UMp5Iw=UpGM#4#9Iuak;RSWxWDSaMg*kTj0&EQ-^wmE4>-^WQ1PQLhOi|@dfKz>?qU1l- zZ$E&E+7Bd#-k$zGsMa8F|#6a1re-+uIH8xG`e|>wTo%I z%Z`zbFG}Eha?@)_E*y^Fu0J|1GE`R2<%3UTVY(co>6yVArk-J#EvvhZcJJ=-@SsW2 zg+4S1trI$)94}abyV*8uGX)F{SqCv+40io2aAW!j?;l7V!~-Qf+~7H1soll8gLX6G zIxihemD<9&cDuh_p8w7pdmtl&phV$+h3Q|(%K}|3J`^XmpvCU_m7dN7CprNp7yLH>t&x{hyK9KGJ$YhbQ? zUmSVxDNpaCWm}i50E?hC_>}lQlR5%C8VBJ$tgGxmfO&gynbb}#D5FvPGUW!HGdRPEDEDHhpP~0r6kpZ=k|xHN!wo8i@ib(iWUnf}#rTp~sd z)+KLc-*zR@_~1dNysSj{7t^G3ZB6fvO7}Y5YaU*`=JMGs*k?kxhg=;@8>+aE+UG{1 zh2RRzL-e+g%+zbRJKyzrl$)o`*hs}M+ii)HO_Dy$JER9_Q{OBLcnJFr@rJ~{XCt%u z+7r0i+-ltWr8-Yob!{A-TtB#Lam6G8BRvAAoe9@>wkr1XF(#Bneu}O4jy?9m(j;z+ zyxi7-Shp1tJYzPg^j5^`j_>O|5bi$hmV%(=}InbjN| z;W`kU{7Sc>PO|n)t*Aw)dE1{E4BR|uNAwdC2@R}E} z*%*FXLnjea3+l3a_3?BbnXD{rl&W9HDJ1^>JcJ(Sr215W_{fJTG9NcY8(v#%)*uvFp4is8x8t4n&8_GC*2q5ax9LF@ zh)`zfNakDEIxAokCsj|~ahxc4eYR-QoPZ6uiY=W%yL?5Fyp>w|!@0Ng&agHD57VD5 zeF^MaZmpILvcR(n{o;0je&1XWI{Qc{F5yJw<)Uw*TuFIpM#%cc1AX|1pWWwrSZ&vz z=+to@rxLUX*UVw1K8icb%&nC^(`BDfEvr|wQ@33JU4x(i{q>8tw?4eG`3OkUtmZ@< zQRyC7=^Ky53_`=dlNFmBbhqVdejHRxee<6w6G)x-BQTw~HQs82<|LDF?kf1zJo$82 zxm{*c=EaMHHx|ZE?0;%D(-IRsV+05y0$dqa0)ORZ_{`Xb2rrcp+=Bvp&UHMi9vRWY->sIZz0U1cK)K zUm_@hijU9S;tX6=4LHL| z);p_*7lD;cbq9BHR13HAx461VE&}C`O~u%`4`UY`K3bdvz^`{&>@CVnkS7P-K_8)=g4HtH zv(PxZxC-0UY&oj!0lypSa{^nerOH8$16mz708bnE3mM3qH}xS^9O*@@W?y+< zWL57S_A)TkR*8RivtjF}K2#kiboofil@ylT53biZ@aC%b zwn84@v2`PK)nr`pRU4< zoH8IS9y-T)3(SPo$A}H)y#1hRXP!HN#@4Q+dKPqROg|kTwWLfP|1?)&a)d8X6|qSw zzZ^quf4S}SH!wUwpbz>No4~*PpU4Y>D`CKQY>9e)%$~mnw{fzpIJ7pAiyPN9`EWCe zS#i+(!1jSPq6#!2Z+yB-YW!0Yc(UyK^U4pX1nsdl1)@3_O)jWQ{w&0zq`3;iTu{Y1 zX{uPcJ>Yz4ofJMSjYE4_F2l>l`}ljOr1^C?Hy4}Ly_=L@b7Q6_N_*k>oBE1PP2B!{ z0Nv9DP|N%vf>+?m6c4c_#!OqxCD@J?557tJ3mR`8aG5iab*DT#u=}tr9jYi^X?`f_ zo?`0nvu@jUF>7NU-g`VUJotMM=_SzLR0Hngr?K~==m64m1|3>2#cAp(w;#{u`Uv~m zym;<$&EvSmiA^T4a;Fbn`AkgqS+EUn%UOO-6u6ZQ9zeF@{|XPQe*!!DKeg*uF+%^u zL8AS{6MM9a;6n-5iJ?-+i1L&O|AEwf*AEiE*D!fyKI;>DnoFu$F}fpAwGeb26g6`a zz-Hpk?Wt6zH((`Ju+R`(Q%m3T1cPFxSbs z3nGnqJ}}#Bpa|R30X?wrW6edhuU%<}!V8(tHd#7Bf$#J~uG(>XA-av*+Jjs%XSf}BBKhV*j2-vLWND*uR<|{o_nkJ+$O?B~on^J|MvYYW@zl<5 zXT@ZFBcu%OX*jLQ5W{|xng!UrAP#$7Q~~i3j#p2Z@l+9YWd;aBujC0 zbsyN$g}{yh;%UD`IoL6cm9J+!4DVerC4ZO{XusKQ$6XTqG|Um ziaHW+HM8d>`> zO+R>mM!pmMZ96HGQavV&tR9tq&y$-QiFQTtY~3CILHxNy^Cb73xHyXc!LuVtowJNwl$zdCc@ONL+kY2t|E~M` z+ivV%`Tf_<_R1Z~e=fZ9`rhKt@(bb{cn0xjL(OLbctM>v`y?2-%6!x(F$hKYy=Jck z|3AFd{jYFve+?M=xBZ{Ze?7eV+%DQ+p|1kC@1tsyM|cbWGjspzm}XwOI#)RB2hWr9 zu1Kafy732(xt29+5_KO(cQa&n2L=IzZBx4oVglf47$d=IYx92mgYFh95HT>KB7%)l#z$4Wdu{-G_u0ABC^ zmznrpGYUFF|DILRN4u0Ca(LIAyzP@!eNVT0p`>Bp%i|25h-4Ugb1;UC$Kp0Dx}|IH z8--t-4l*=x$7>@qcmfGV7_dLqjv`6%h{aow5R#tVh5Q-z`vb*+G;Xx{SSVNQE;x_8 z1^-mM*zyqYTSbGX>shF?i48LP8vLpMNM~pW`bq4{A>=~@Y(0%*#~30~&)Q6Svh~T_ zbs+XJQJ~j?9Hv73KXRDR@}CygQ(w7~(3s6@Xx@ki6K07@BG8wx@GcY1He9U;TWPWV zXVxMMT6t^UfLJOHz6|0N2cV+UB)V#4*Z=6kG1mirM!HzE8%crMlZI)83Y;H$uy>@P z=Ot~bDm4P7qnkdpb?-4j57fqC^sGYM6VDggHoFNG#wjCGl07~p{nD%ES6s(eBwT}gF)-OITI z525!HSZQm>1thNj*thC`d5+=kAn4~%@UEh)n@{ihQW5lK*L3aUUG;Y_UkT&^4z{!H ztJsdP3B&v})&_POPm-%U7fX+GO?WqAOgy?}U$RIY4nE|`wG8$GkX}MCVUg;Is?_mh z2j>Du!$fEY0OSDGE_T{lGPe=pho%Qd2?5^3Wqy#T^=WXA+*9rRFV@1U-|%KiDp1^` zI?k+lXiD?TnZTdV2E$*{tiQ+4Ket}ANw&d_fW>qYbbRr9kc&IaR!#j3N|2wo{NWbN zB|yL5uaiaoC+hu#slOHe`bY2ke+h~Gzq>JW!Pejg^sI`h5-caSeIMa65|-nPr1Kw5 zpvdaLB{yGT;>W&u$o8E=+@e_wy)w2k=+}->+ITA<|A_mptQ92dHb~3tkdC;1*%e|H zVbgb0!WQ=7?kXu%ke-SsCu>}=&$Co~Kwx9mw$P-sQ{M6Ep#$?Cf2U*8B z*h(32W3xUKhXouZpBO_fbP}Bkv$jJb3G!D-+2Jd8OpuWVd1Kme`Qk}FZ_%4aC+i%v zdd-vY=q^+owUn8Avww8qV&!>@nD{UO>!lm{tcHrjtyiro%s)=Nl3O-!$VR|B`Y71( zmbyLwrir@U0BzHZ;=0+RhfpPDk4k2XdUrn@F}^FJhP|-zq6S4b1)9!U_b-cc#o%3} zS!>zSvj=c(h7Fap)Cz%)OqtY5GXKF9oB~w47E^~aXq>^- z07MIRIkM09D6xPTit>lAH26|`e=s+UKNzB$x`O8K6sU~}aULP39;3Cu)>wpNdsOD9 zMjvMi{`<}U^rJy`cm9cqUIPbp54a)LmP>1#+GoR(9e@@^#pWA9@q+Y_KtIKSEM>RT zeL<)JAJ#lMa5 z?=2zukj|ci$TJ||2##f$cX!nww%i#hd10EQdf8SJ9oL4PG(1>v**0)m`MV?29Zb== z0G(pS>m(NFJyxI86Mn;OMQ!$2Z+9W-mQe}4A$#}1V8`s_jY)NZO?U1;&Xy0=TypYr zZa@Vg1RxiP$AP^UCXZDh>kVYPH>NXnB9%2vD3+DD(-U4g7N9Wf%oq|ZI2d^d#zLt0SrYqrWFXm;&356$ z#X<_ACHX-#^0&*AZZH*7PNI$WBnKdH!gU13|ZJ^7R=e(}mG=-AE@VPx5 zm7`~dsXU!EClmm{NNA9VkM||(&U;rcoxNwQT%T=xmbf>jZ|ffAv_9}?`jiZkqJM2Y zS*WiHFe!-3MhTRzpXqWnVa25o|1bU&W3#}_PUa4k0^400Q;mV5ihRxG5~NHr(9WmG zchd4^_?zArTh9zUp1Zkfr^dAg@q0)$0%&j)w%6kZGs!Ucb3IJ0)Yrj-xjrrlI5D=P zV+-2x@JpfdH5@+9%sw8Uzw6Nn?gj-yGEC`|PDt4O) zP2yCEe&IW+SgrT$vlopkvHT%tQ+!LR&t?y`f=_>xaR05x92>X2xe|X=Sx8K7 zJNA^#m_wN_P>|hWP6a%>g5v5=*Gf6@m2xwk*hd(#2jbWoo%qg8dBvH@Z7sg;*|#^} z+aJ9_Za;UnPnnG4g-yntgT8x)IvBi*INR}k=tPbh<=fV1f4}au6sD3F)%J>_an7Oh zH*v}(D@K5X;DXuPaijdqSj0#C;)t=poV&-ROAIriw_9Z-Z(2VI5}?|NvHPKF(MnaA z%(RBb$nEgXzD9Rr5O~5iMYH3`kim?hZ)T>|zMh5d?;H27coRw*myRl~+Gz!)uPldE z*MF=GO-||sx%t`1e~H@F|7UXd9|fU*bnG8IFvU+SF?)MFAmH1nvUCr5?S$aP06k8^ zq8Q^_g$VoIN5;8aR<7zEex(KhB!nnVtc>Rvs_(sS-?lmumyDmd&0V+sOTam>56H2c zuRoHdjbrQeuPC2y+);oN!M(e%9gv95Uz00twMR<@d{2mpcXq+Oukh2bGz#2P_1~v0 z7eUpkj_`2MCY)N%_ZE&gS=i?Z90g7#G9_ud$w+yjabq$r{;mbTyOBlDcQdtG=H{7F z&gX;Tk5#9ymH33qqt0F1VYt#`f3(g)=8OCGZcXQy z#iuC|<82$$v5EQ7A2o;*tuV2bA z@_mbAWH(eXTHWS7uYu2#Y3x$kPQr5_3HB8KQzmy!Ds1Vxedu7koB!+2gpsFT=3GXg z)%zV@*|1HfZjT#?Vrl>ZbMEEkzfc3_Cpl9^(gQ4E5E%2t6mXvJfM1XieDJY=LlJgv z=0Y>?ZP%8WhIL`q+QdW=RZn-?7Y4KMavmT(@IbtH%^XHymbkeR5pc=Y5MV|g$~D95`MMOB ziic)SCrFgGel@so{Og4yk)L*&NVmirqSw4!4?8lq(49jvz?aIw^x-yT z36RJ*oT%)o@kxekJoA1G`)}5(xwv+od3C=r&%|*=IFW9GmBzFn3lthqj|ifeU1+NXYhXR7 zwiONrmZIV*>1{@@UTkjMc92foH{h=4b^Oy#vsfh_T~*{+10GBZu8#2ErviBfDob%~D@gu3jDiuv7LFWxRuSKtcVr2$dv5{AkFP(%|% z)xQKK=!EO~lZwR8Ixc8@vBe}$IKKRlNDudB)Y zZB4^p&heLkL$37TGtLTx#z-ZrzhH zTF`asYFPUF`|jiOal9?E7b5R>FI+@Y53x3}*Kl$?G%BERql}5rFmFEPbTrneG!SXq zRjvEz;kdz_%_sJMM9*WWfnG+c)^4`W&CmyD%6=xN?iw=J32@`|nX&pG4U{-JVotI8C@l1EfA@N*1ZYu?n>=trTnCr&&hZXfIe2 zNn?&2b$)sF@jl#6szcABrl?}ZdtNee6{Z%+gW1Myks?w&lP}mek=!vdCr4*SzmZ#C zH23)W&Ag9^S&IJrHP`DEsFMWU3E0F)pafoKiNfvY7_zxzxvI9iKXm8$@c2BEFT_#B zDGAD(?_Iv3grTkCu@VlPHQE+4SbZBu$AzZQu^|P-^>)L<4vnub)Lt)^@R0xb%+rKs`eV?t%-Sc9Ah_rF~L6h@= zd{$ZX6c7h!KO|{0#SvY_UWTd<5^j71qQ=O9y!Hm!-9T2j!>$c8e5!~sopWC86{^Ku4^78yP+#V zE!)*X$Ry`NeHF_+_Uk9)MC$E%F1?rtVon3C0A)^ErI-sr+F-rgIqr6P1A*t``--AN z=Nx9LNNFj{4hL5~rW@kZtH-Tv-Ac8Ux+X9tZvnTy|LT9Avi_G!+i%}17CH`Xfp1qE zND~;?NVSwMjU=T})3TP5p&J&5*FW`j9I!sTyI7eXI$o4Q7J*eDsw((?&Xfs%FHe>} zT8bk*PK%_xOutajv9V>0YT(3TJwjZM*}y|iy?;<_w&BU4=Qo4n-W!0uKIi~YkawnL zvQDBGeyU~Ps&SJ+phDOPdYoCQJ>G51?T`o#b2eI*d-LS04ILvE4Q?wAdAF-aH_{tx zY3p1uymYfj9fzpY!K0TiJA0JvC@v~Kyv;H-I{Z<_nR28W$-= zq=JXan$$0H42gSeBlYW`cX<%e^w6)gf*Z^}xTM|WcJrXtG0DL&j<%)Ex{n4fVd*{3 zVI!6_ca-?Sm)bh!R)HeD&TGnbphHM(eiHJqlLPQ9(RijEc6k9H%)~{)C_OemOsa=DY`0CQ`RKMHjpu7-j z3rbluirl(FphWzG$Bgq!X%WEwC zkV2^27!oyw2Qn|Kp=vaN^m1^ta+DXY9~ZVG0X7w>X4nN|&^cG&_6(7-VM3O#n#+z@ z#8Rr$O0-uIR%E7I|HJfw?n8?@Q;0v=SCXID^I>gL%YS?2zyEHjQ+w}L zi2cDO{q~|I4mrW@1+J~wAT6XcHb^+Yqf@UDOZ#%fs}{Xm0x-KuK_Bgu_Xj8aAOeV`bt6#H1O(#LCd&W zSi;T1Jp8z+S6xw}kSedd>e?pNN82{*td07?15k_uSf(Q^$C3%y*a1011H{9@wUwfD z%4%slTa&$a%ij}5W6w)}i#1+;9&P6Dk&rQ+DEr(!)#YjD`GNCwkL`x4g0xe^_la%V zWVrq<5BSHs8s8Uoq2R4)qRGWesX0O6iaFsw^Y=r)#?#nnfm`v(8Nk&r=A5;qCq0uv zDs&uRAOBl2-QWD4axRT~(i+F{12E5&^^5C&jmX`TtPjqU&c7T4RnHLTpAdP#I4FG~ zEYfmp=J`;4G`1{25bZIei*RCdl>y>&r5@UTcGbUOkG}`t^0t9>Ap2r7R|NT~**1OUg|Y?${U{cex2Y4H1nDEo0M`3FDL>c`)aq6bH}I2` zzh4RGVFP62qq_uB1h6jf{AspbIY)pw2!@C`dlSTsV$~9sMgYPEfgb>^ZU&CKV;U@H zH6VLVK>Ko8r2vnz2-WE$=|(?zR+2;fI3(3Fg?j^sR}pb zG3lV(WzJ}SK%u2P-q7kDJ)cZDX@t9Lu9{bhIm+xnW(_JYzwAVk-XQ5V(16B$)?G~7 zif0{BsJd=+53GM@!F-#G0c%UPQ@K)~@bEn4^|}L8J@NH6`m;~HGlb=HT+&}Pj(S@f8UCx}Q62xzqyFy@ zLyjDYYONAuH)FuVgKmW#gt+S^7`pbHScvp^Fe)#EL|uQUE5M2IYD|x1cV5TTH92#n zq*Sn%{H*Kk#*-(`0c2bzs=%b)bEu2?yadc#B)91eZ=YtuSu+wkJbaJ7zT(O9EVNfMeXkRpd0VWoG>^PDZ`11g zFTau;5g9x#mX=5Lv^It1j@XMF$&_2na^YDMZ6dZzU|j)TUIb^<;E-(roSj)XS&NO3 zQr3=^;cS;XNQ`ssoR! zPDX?w=K(~*#|#X(t&lkp)i}|;7Kc;N86EfDjR>vzK-ivlX2MwEUWq-ivj?Ni?IL_Y zRO5&ENv}W9`N?guiG2H zaqP{4OiK4ePr&Ul|1DVo`V6Obc59`0gi_gy3hFbfxD7dP>o_&7B*%T2mQifYoiEv~ zX~<-iU%|?M8wQUB3WIq0pMd}KhlcO}xB$H?a75iJ8T!Mp+vA?%s3F(8?y-Ie5;nJT zHXaKuD|`G_ziIWogKzMS$S52gShjWhmx=luEin;ZAef(Erec$^!LkxooF|@WIx#I zSMkp9e@Q*-EHkdTs}t7|BDS2uIs}1PKzc?fyxQqXTx+0#zD~1z;W1*sq8;TojO#%eZDy@P9l?z`o4$^Y!0J0Q{xq)~}DVg+L|hIy51E!JHEYY6`SPznAT6{n`oNHD z(Atc~HQxQ)`mOy9I@pp!t#(C5T~?Veh90T1S2qxjx};X-ZL~bOe?ZpFx0`$9XCox) z6)y}bc>IDcI5CWxn`s)_u69sAWaMktq4~}&W{x3;my%wr5<7hD3eQ&j@DHAT7I%Fk zOAIqCt5pg+)6G#I%{SQ{TgZFycCg~fLOp`$;_HNRW+>`Dxn;AhZ`_1xGKO3W_i;B^ z(NUpnKPUG$u3zk2H}o!r;{}^!?z_zA&cD=_oS|))ULc?H zNKg08$O(pEO%ZBPDkSZE^J95w6`b-RluGo_n~(f@xTDrLke+G-WoJ0qKFI#k#xtdm ztV^%eb&01$$7go+ok=}pfig{&qF-mo`}F{+zqyjk)=?)%6Dm}4z*-gl@TXwz@2x>c{XxN#sU;{ zu9!_`Zb&l*h3P~VA}F3LAl6WQ#>f3O^F2eh*ozJ{;7{LozFxdZci2Q~sBW|Tsrqjh z^WaEebKSI5Auu@MnjC-?H?$Z1LM#mJWM&p{z^~WxHMcfZuCQ>Yh8s zALHAmsLAJzZ56Mb336LJ$~*^6uS z%ao-t(>TEp={YigsdiSm)pZdP77y=;3eI7gtdPOM=55B za7T5t0EW_(11LK#{+>Lr`>sxp0*>1$x?2nXU`p&L(C4InbF~lqXd7`T07G${8!wf! zy4Y)Klp=o4Ae)iE7Ej}@TOgV7Hzdvx#>>D%=E0V8p+^ZtQUT-Rb_0n{XN#laPrWs0 z-{CBIjOS`pv&a;o#ykvzfII0QYH`=Jp2YX3$99U(&f~f3TUm$D zUE`>#3MBIh%#%7q=C3Lv!lwdupd+52&#Ce+lZzC8II~8HF)3snsQlgPWo~}(rEPcg zl_vSLKURcDID6kUrv$Ukz#_~cP9j$l(*p@dYv83_!!SD(ZrfdS-{W=Tt5@ZyPpm|v z^kZ^3OPuf=(6WXJ^j2b_1XUSSjyipvzUZwRhuLmpiss7VA>$wQ7S=$EZKL*CRV>PP zj+RYxH&%HfP~?Pea%#BJ+Fv&GzsJx29kSs+38ve!yHG{fxGS^gyC1orpfD;U(e;_U zS3~fw=g~YCI&oE^tL|2+b3T9q8vz7Z>@7=GrVM^2o>37RLi#AolveQ6wIuj(1?`U4 zn(c2}rS!r^&dahDb12{rn62fQ4nk3AU7#KF3iwUU_1uNRSMhs3FeDmet{)hc?2^36 zn7#*nGM<1QyxH%}|E&F)%Fj%Uev)_}w+6GliDeStMyP~a8Lz&V4-ur{@`#p?Uz@bw z-~S-|()Fcreq?ghxz%O+;5|KkSDkd;?iL4yX};~?qww6}&SxMsB8D7<)&vOq)yZnY zNm~Q0T=yvhjc}_1ZuXI2(D>j}gni6;~dY7~+eQ|!o-o{BpI->^2MzS)n z2+54My4QA9YUd)ncZpo~tkV?7d=~3ARCXm?Iaj{Gc*lRIy7;;@CnCSWBxU+^>OBKp zP6|ZAA@cdDcAiRLKm`MI$L+!rTq~b;Ug{Qw^8Gz0>=oFnEm1;7 z;iy~2q1Ds$fF=@dE0QfgDslPcvX=>x=6;qW+FNxUD z{s2*ctgX-;CsyG%PgknY+upvQYN{xWsk(oaY4|F?)*&)fC^Kl4BtFXX#tk3ctpydQ zf3iXxU0y%Dy4ghDV_);9s_Z@6HW~{6i!e}JtX2hboCau?1t%RM#meqSuF<>g9WYDV zF!q{$t#tO2X)7}RLGfV?1s!UY$ZFClEdQV(@JiKRAVx1}+j3BaB55 zJZS5St3|NA$&U*Br&o2d4Z(J*vS|0^&c!{m6CSGkBWi_AF4^YEc-IG=Bflh=ztYsO z&;7N_g20B}zp)V`QU#!tnOsXJ@JQ$%BO^F^BQ~@oNP<8=hJ$yRKY)O=`#D5pDWSnL z;+4n?3x;#}6&=(A_GQ1cX-mOCtMPq~g%2K_b1!>|Ew4-D+yu$SCbmAvE222bNcz|e zl5B`5J!>=O$=1e>(Ky>Ye+trsidg>OkwT8uK_bu;8FCR}Yv0Af9sG0gUc`+c{{eUS z0WZM3gxE3nk9$&BI0}}!v7wzhY8QxW-!#U?t9x+LWlHKXYEbPXF3_{=Y~Xev;G5qO zj2sA@pn4;BBW!9|$*=)%7grqi0_OQ^yCxrBA1{WqMYQDh5YzJL`g_(!Yhuwn7W^Ne zYIRVujKlOg>|iKRUa+jD_OmrO=?2p5R|@pV$YZ|eNcR$>pS7KM)n?IrD*FtPUl1QF|w8jMLH~hVFWfHW`wiu->wra_79^nM7KoN3Mh6yj@|Hh-aG9$iYqA$2l#L>Qq)X z^L(s6f-C67@<(6!iY>UVaHnkssX7%<4RimwmqNV1lV9U-r?B;mVKlw?aDmv{Y?hQ=E=VrvFqE zBt1sGpQIoe>XvZlm|zmBUUqNA`5nPleb-LB`m)aJpxNRzb@gASQ`N1#~?qp6zs;j4rekcUo>UTc}k$)uXCSscZyYeXB_*e zn{rr|9TMpS(ce~TfOmTbh%(x#J!1q|Q8p{EFnW*w90IMP~@q8m>} zKU;Ws#Jc22iTiLS#SGl@8rYn*8D6r0vq5Gfi7u`m-PxU!U=|yA+saj?KF7Uequ~qd za9rtC)h+Pqmx&yuRIIb~f}I87C<#BH#$89Iy8*45Ofn5@1RDxf&H-KW2;`vVE<)_? zpo0qzS9Y9@5|GBh&p(PS<%(Jx?@`_X`md)%nngkx!|)dF1`T@a_s}^icYA)#eyX^YiJ+BNQ|S^w{WmH<~oXglTd9hOMLF#9)eLSeIXM&{%usFy*s5IIu*a5 z-NTxe4ME%oC%*U^@Yw#r6>a{}y~F^d@Di{uk=;f|KJ*dU3OB3>tDpGdo>5*=UgEXw zAd|kwPyUYf`Zvk3<~-|pz8R>n?O<2B^jKaYBa|##>^jyiguc^5)08p(UU$>3R&wGQ z_uhsRRXnkLkg|gU;FEz6m5<8U(ZfEMm{~*X9~`yt<{;FZ@BxQyhr;rjA2SCX9VZ@L z`c%<$D128>xfggl4JL~;V8ie9=^!Z~B$ZRe!R-C}_9LTxl+P)1vfd~lruM%xIHpp2 z_tsYo#m>&|yq$@YlT@vcVt%6(&)Y|7tIlo!kvcz*O?FV#!i5a8Qn|!jJO6y`_J@!V zMm9i_F8iEL7&C})9wTm;>J->pFe~s>5N&bitOdV*yVc!3A0sj9w);lfaxsthd~6i0 z`i~MudFU}tGKLSGFdn~D1*Sh-Yf{O0`c!gc>aoMIrH%(fW!~H8qHK)h zi-d5t7YVz{1)|5nvOCv&Ve92|vlARtu-P z%B^!_T3Y6-L%O|F&|#+el| zq6;&pH_u8~_Pb68`iOn7A8Ee%*ihc-Ky%|N$5Z(fMcy~5pg%t0IXKHyJ6w0;UH+yM!gmad%bG-7GoLSn|7v zEp)y|dc6_vnIZJZD-#mk^9nD^6_TfTS}$H4<0>XS!_+#YqrI7mv=T-V)1eHwZcgS+ zGNalQ_SYRBtJPOe4=|Rono}~1Oc;)|;CULp!}s?6ly^;i9>YFsFvtAVllfO~-Td@X zLNVENJ~kAqO?nTdUZ*>8cRgpBx#!ZX;gf!j^ab!XngHy>o0Xw zNVD+;%31qDBlfNA=ETr_bfu-QN6CLYJN@q$!3YurAhvoK)rn)O5U81X*MRD+*bs&D z%;;Xm!@F6tRP8Szxgv{|=rV=c(oVgatoH{pbT2(#mO9DL^Mmj&1je|MSTg9m(=NlK zxqO@$_6`;=w&jGsFfcmnB8f9`9R@Gx3noY=wk=z3(Lo5ce%5RHI6pmQ&LVZEVS4?P z>{-sB7BwGpEYW8$O#bhBdU;(K1|L~c8LV;qtAw49mo0PI$k$?4sI(~j&3#kpgXK1- zq`6QU>&M@L8XVx@1z?>KYjlEjr$;Jmzzkgc6?%?$H}MDw|} zShwr@FH*H-Yeei}r@5s6k7R!-zyN|$%~h-7{p`5njW0a`@+-ktx#p4=NesQ72>+4N~VE*7n(KWzww~ z-;&yZb5#^LHo4@6U><}mcTRXnD%+qB-?KXB3BRz9PPsG!R! zbvnhVX3Mc;m`-hNj?H6hhRb3|*_38c<&;~Vt*S|>2a@}g29qD@cZ3Dq2|LBwLjay= zFE!BjIJKaDgqzgbH1DXs_8B4KFBmD)krVdn2LJfYd&o+^mDTt1?Jm&wBX8tK+FN5) zOMpRius+p{WfrW?xX8(ALa;2@rvt8Qx60nxdfeHi;Gcr~{Tjh2Nb?kWIOugKke}(q z*bDHKAdzeWL@<+M#8=PHGGSz@;LKceE2p0-_#@5sgAI4kJDBvf+)#k~qJ&1^^21r` z%vFXzCq@?*O^~D9VW!jToQ5%q%=bMX(zW$IpB2(fmN{?Fz40C9Yo8{M+&GQ5uipIe z{h>`lI%v23CwSWbh+_7?{O|uQ&g}n~^5egI@|MF2Xjtu#Wad+Vrt%md5rHJOnt81F zLJ?bv>7!YmPfxmDh9$hl4y?olVk1B_t>R0tpXZm zh~+{VYgcC)DboHxtS-s?4(PMq@acZPZXKX(-{0eSaF70XGys2XXLAz$lg1x2JO}Y& zdNZTw3lEgCyJBnVrMr)p;Sf-rmAR?PzRb-_If1I>OS|QW7nkq2+M`R%7D+;&ca9OD z%|$(C%ir3W`DQ+lPP{rXx&QC^?(`e?{JeKzJG=pDUhF@T=CQ^(!c0Cs>Lc)shMYnp zIl6TxSAS?NcPA_|G0p82Gj{oWT@*Fr>eB~4wV(Hdk$Jv^BF71CGI(`v4~%AO#uC29 zTyBSo;-N^qKw3NFar*{>cr7Er&+GpC2Uw(6`PXwr-%p=VoP+QpbeVh%Bt3{K2!8A~ zrx+fAQ3b~U9K$F_%7ZW?ol1n&#@w@zL{*#W@2Z-ctdmQsh26m3)gDLAXfL%>svFf4l_M8I^th@O}qH3i+e66KEynnh0sjtx+I=5b$z}*^0DG zigyedC!rtfwd}3AjsyKEB_Ak32o}{(VuG54$+xBUp;|kA#$~PjP za7-lxTW7imyk0|ez07v7&mE}FLGUvZe|9S9WSUBLmwVK~eKU`EY&9MUDRNX4xTK?I zh0oX9x=Kr9oM4u*U<=S{{VqZr*SLb7SVuQAPrw20iA~;Q%klK0ZUI7umbdS+%y!Q7 zS(le1tEeTAd8@5VVkck#)0i~8fY8_RU1}?g%HmETX*O7L^bLNH!uiw^s%h$;H}-n% zk-zjfIHT-cyXDKsTLh)FNX0=sC1$L)$ACC!e8oUoM}Az;n5pb_<3}} z2P58i`XE6LMh++bjB*7xhW4PJ@8yf}??Zx0|C74@d)K?(ab9OTG=1Y$dhXMRE$~wQ zofl(a$re-Tydgo?ZxM;diuybK`aXcds|Lqiiv4|Rbe`d%SeIc84xmt$G^wyLqqO+oEh4zB6L(9qF>+62q=HQwPtQ-j6I*MzG3a=22iRMul7RQh zM~rHY^#K~C_hZJug8E_j{;OSXai8vPpT!t;q)Y$Su=2j(x^pRY$<7kTMsh0g+tIr? zSy9vn6vNFL#5N;)DX|;#VrAXgB-_*zGZ}h!2mU$F$!lYGeHwe9=GM{re2k# zaEaGXTp;**{Ja)@Iv-2B-*KGX$lrl!1+&xT9@Pbe-#U0rjxQ!`t98->%l?7tNdK3`IUa zp6?!oY{q?|n91-xynos6(-)X70VRV`wPfAIbm8|8vKNPen>*thqbo(wi9Mxs6;%+)S29X;q;vFDeQ z=&XZ@@YLIi9z5}n(^U$2WX~}+&cu@@W*LJOOzQ0Oq)3GWOs`p7R5n`@i?V8h=XHA_ zbpiV_m%k6^z7~YmKM800u?seWsz_^AM-Vit;BpV1CwFHhuQKe6bIVf!~j*@ zC|fgg!_0V@%ZEREyl|1>d-Nlh7v|AFDMG^Pe2;l4qvi!^e{f0L0n zr^_wD-s!PFX?*_7Td=I2gl-4bza|kDGPs0sYj_R!1S@4^JagUd0^Ot>uRO30+XYkx z7b-jl&s+Bf_;B(Ctp>{nOK;!Uxzi^t$#76L5a!-w$_mExZD}t>sZhHL7t)Xjk^H*w z@89MJcD~RUDySV2FOwWgwA^NXyYZBgTRgjl0`R07bxUnzs^9sB23mij7FxJ?S~*uF zaptS5iA=_WEL-h^v}BdjlTWLWFJ2SN)o1&O8;tXG=n{aUY_4IJAmH(=eJtJ^5WpiU}O$SHHaXVWMLN{{F6s&dIqK2Dv! zdSa9D=!^OYmRv?Gcmk8c-f7Av@DUFW1bZ47}JzlT(v*J6t1ZrrYnh z!neo%fRPhOb%+jB^y3aF?IMt^xP2vVw!g(ZmbkDq=R!9LKjmb6SBSHG^js;~-&bTu ztjhR0a}jLSwoF&L;*5FM6Cgka7Ej@<56n!OXwB66i}Q9YRI9gNvBwH^p+v?b|C1sA z?R@1XHbyRIU#~yPA~5h5*6y-HJogI;ijn3HleV!BgE-0%WHTe!u7yqu4gTz%D@B(A ztzNxM?etAm_Dw8+A8gLXqp1RvrjS37{bzvGJRNI5MaI&X*^l;e8#~y)P6bx~6FBC< zSO+dHR|vz4J~6`8X1k8vW9!W%Y?~^t0se|M!p%+AQ_r?u?BLB%g6!Jw03L-c4>~Q| zbM*HJ3pR@{}2#@%bueB0dAb7D%y{b{;!W&ZqS7`eG2w5XjFL#h~C>YqKsLWMUy zpeMl*q8{-+yI%{(Yb)LV%twmzb4{jM*$oSD>W4;jpG*6f9WpN{tJJvE0$HIX>PlZR zciwS@7o5f=zTdrCG~z1lJN*Zu{dK-=hLiU&7fgP-xD<^VSnF7%<&gE|D{rCeZMR7y9Fxu{u@9Cqd~n5yl- zmT?k?{aFRr85T)(H^6_n0is6&bW!dPBo~{+hHOP;F{8j!m||Nru|Mk)2(+gl4Ws}R zX!I)rIfJk|*-2uaLx5;VupTfLNt;VRmuDcKI!0IpulI7k%?HL7!_9WJT|kkSJLR=I@CRsJ(Pc^%!~To?{G_I1 zEvjvYI1L-z5Ey68ofWXmW?)&r2DlZ3%?;)s$VU+n&TcGwZ$4MR z15o>z;Lh>#o+J^ht1z@H!wu1>pIun;mU(w;(XMHKuJTEh6^D%@ht-8Vx0PGpY;3Ii zRrD{zhnwvGZvym>A%%_V|ACkQ#1oTeUE~;DIul4?bkg1}Ot#FPt}#ZC0L6N8e_ikQmzhXwe~vj=qwm1>)6UfMclrPQAl z^|nh%-#_*~^gl-)Npm1?L>L(YS^wSkbd^Z1_|=Zr^FSqs{~9pHtPPAkSl2v4)r*UB z|4r0u-JHH0V(p^hm)2WhT#xZtkHz<=lE(6mmPIgpe$=myEoFNA)&EcdTV6A;tv97( zRxFuFN?crX2)VpIxV>cJ%MYiQyS{rHu`F*7#Q!ii43it-`>hGEY_v;+ab7Zj@1PhD z8<BjN1(ke(_RM?`%E0?B3+)uZb*uH1V#9L(Y=F!-mr(DalYnepL zr4eB3S@Bt7vzHDBUdII#67%rS)+8d%GI5w`*{UEhs+(Xw?Nzt!$J)h%6OyDXOhEUi zt^!PgjqR*Y{;DB^$VtN}1&_@-w81A887{HifVgGSY^@&s`}=YF0$!p1uGDegb2^ZC zYo!$77gb`(yULcCsvApF^vAQyt;+(zRSX}bH0BW6fUcPoy|#1ss{MG=nKyJp>F)<_ z9B(1+^jVC@#0*%cAb&`Kj(*r5h?^i`0>(H^gSQCZKON9)@cA23rzN~{A;^2kxpwY~ z5HG&ND_^aoBQ(Zb;_TI{KzAccDWz@i1@-M#!&OJgYHzz$zVe*sdz7;S6o8+@pK}Ed zgI8xqB`1}=H;yo|O5R!QRfaYnd74o@)@11&G~xdK{pOv-sje))ZbT-ZbW#XL7c)eH zV#x(q$r|W5SSqhPJUFEB%?WMJtj;yboSAf>SYI$Oji?{K9e?C0R#=(ms=pRWNu3K%okZ>e6e@1NqAy zp@kvSMf>hAG+ee(y=;H~-A)KkFvJ1=-y4poe+u0V%GCddT?+nt{qP%){>k`3m+uuQ zrGim80%saKac!TIp{zsK9JnvnW4WhFwm1OYH$s>@j0YX|$}0ufd6FaUyFeK1&%blc z4W>F*Ae80Y!4lwp1a6ifHRXTlU`v~hIXQUceb7P>Z+F%8qDY01*XmQIZ}=!*VklNv zavqj;6}AtJ31p$#awj}bqJ?L?X>dwO1-L>;!7o84+?J|Q;_SO@P8_Zu%RGc#Dhpuk z!?bWAOhbx<3&rCep|;6d_f2&b@>(&=ob;?K!+qk3VPmOFGvyA`qOYpsO!L9 zPi^x{>b+QZ(l{KfHpNY6i{pNvA4{+Rkl>md4h7le-3}nuwf9YPQCQkV{GdgScTqaG`)zgE{hW|bL+nnE zBa<6i7~3O9*EGd_%Ri!DQu@c!829N#OZm_xyYgS&06VI=M6L|~c>ThUHu=&x-9uV} zS&zF8MmmsQB%SML;#fjlkkQC;#h8ZV{&vIbr&lk~B>GTWJ&N}x# z<@qf&R?M`B9z$5%x9h$0?fnVcUGm~FS2q9V1k6JYOV+^TA)|mEbd}aOl~Yvy#XI1c zf1m9JymI8wZRwh+vZjHyqjzOOyI0pj+hRF;^P&T4}rxc=L`}Z;8hJ9#R~smG1-ZH|I0_qx4oB^p6~EtdolTFRg4%WtQftMSyyCIFcW%B z^*}@Q*|}ObYmYsSA2X!RN(sy6NV`cJIaJ!f(*wn3u%IP!H}??&BY& z_W4*!lyy?SKHGZ-CH^W#Fbj;;HFYobR*c)_@f~SIaYPzj{6UkEJ_SWUda+*wZx#N-wvS}?1u=qWb zXA(y#w%&Tk=Hpi-L(jKMmtN`#EQPSYyy}h+=^w{dW0#6)a*S$PdQmvn*j>Gp=rOkK zch8v|q;-k)qpmEJk2k$fFn!b7V&PnB^Dc=sWAUeZ>;-dWG5v`5`b+&R9cCvs2D)3f zWHNWJvy*WeQua%Jz&ny=NxI27>mZHD6P*JQ7xHm|_f}y5a!bwzYaYBSH+q90g}$0c zn$J-hu|Kh{&f&9f9{5g3JX)>UKmH@ydSxc)$TURy79w~6o_f5dS}<305mu48M5TyK zq@u=I_5+79KT3(dIp!!gnQL$=O|$dbVjs)YPc70-$J=H2#aIv>!3bf(>2>6QKaiz4 zy2^!+Wq!{e}=)@^7xrN-b5;h(~t5?@|KkpvJs1029-(J`DH=O9Ey>EY+9DLm7keyRE z)9iL}tW+=5?n-m>uwv8Tvu51#+%rO&%+F82rg>a0IR%lgduc|hK^`=1-hrl#IOMW# zhY(#?ioeog;Y!L!wH^!p{WQ~kV)M3u)0GwxG(MYK-h z>2qCqo~gGPof?2C`f{MP+^?oC$8l_}1JMIzOSD}chPlFI*TbQNe?Bv{8*`aYq$H-f!6!bRt z0ZG@-v#KnEGR>sZPwVrX{)aBb^)|1G1OIUO_^Zss!v<}I7I0|#4)WET1eONKmgkS+ zhzo4+m+&#*!ZFKj!7?24|3C&^5H%w!`^?$y4;69{)#0&oO@4kpZsY{dl|JI(Tkq@r z{SB{Pb-B&2_?oX!eG|ao!aca%pl1l9Rvvi4ziHUC$* zlHx6&#^kWo>898d!C!X2DdS27miU;Xpne52k|=(#>T-&pXJ0p0fq_W$Z^D+*Kg6*BQ?Sy#|mTg z3bPrtV`GRrHuqCB-@8^>J&pgZ#gEF>`&-yaV|;^;J24FCD(wjZ3n5U+1OVL~w609>L^S&u9w*Kb3PQnOrqn6wBq@*n^_x08-b2J}|7c&JD26om- zPqIT9DJI}8*rgno=V8Z;V_90~TF2jT{wP!?l^r8jl%47)qXwCccZef_oAw4)$PI4s zuo?MAdU`*@fP}r9E8bP)e0JuwUnY-5VXW8q(S-2I)S~S_At^Asvd`pKznh|{ukZZE zyjw6R%*>w*t#Yi79F*^Q{xcvUNFU+~q(vYl>&!Ti^wJ24vkczB0AU@VGd@e=1ATsy zx+1C5bbG*de+F&{5f25u;1*ICSA%BR)*mgkqD7#K*l>Hk>MlCQZ|DaJG(LNRXxxYF z{WN}NUn(Sjp?{*)XED@RLt()01U|zgA`cJa6vMpxCvXgt#sPnkc!T!A;K%LvdJEiT zjZ3q0DuUmZcUqN}wVl7M;G~^Z=RFfo^J!+CT)AouJHp%>LyPu3=T8mVw=Qb><2QW^#Ha3W-IbdT69|res(j-jQ zRG}Q8Yvq?tED-%Xr|pvpoTvNUZdW!bgi`Wuj|iny;$Aoe>eNf?Z5^Qb&5E?aiM%tI zIC?JmcbR1UOs?o8rwERJBAVJM{dy+M)ivOb>wXE>{fUQ%+pau$P_#2+a=WK#qj^py zB3cyN)3+tXd5+`$Tvlgr38MP};qLjGHcKDD>7RBeO2Ia3o8`*0k8Nq=vI(A~30}s1 zPMwL^G|{;^w(cB^1I(kb5bhjX+K`OQwo+ zUOP{~^g0ibhczb^D!wEZt&|f_Y*mlcS=i=Fq6Nv=IH&+dnb;LV8|#pTMc+!^R#u2G z4djQdcN3cpS?YG61ml5Se$16vkxIgnzrmOXH`?WGuY0eO({oY+j-NG#Rs}j?rxZ?`t^|6<@m~Cg(R}P!SyqI z-h9vfPdl||Ep#yDdFCynu;d)@%XZq#!_=jRnQU=uXDEa#WYr31+UE#0uhvlQwepOe z>@P_u8Y`%Zdpjqjm?#hmpi$6WTuHP%?YqftrsYhTdMnZV{iJY4ikn1wlgofhgbid1 z=-LEZjvY*l~cJ)=W2UI&gld2FFipBUb_3w!YW zp6ko*K%-RT#M`_NeHZ_);@tn-Z1SH)&i~&Co8x}kaRnPOn4@TWP6q7ecsCLijS%IF zUVj$&JMp?=t4&S21^W$54hb@r@=*yjxBcD%5KQB_Y@F*9;A zF6Gy?;WnoBU~QXOcIoXiQ+X3x)j*snBUXI@e&WB7J=KqITpiTyeeio-?yVQ4=K7FP z;@gVyV;L$D((7ev+#p@p1ac;mdIc;?;hfiK6?%{4m=W~Ne2z5!d0T3gW&~%}v1_00 zw|6?5Ij4WG4AZ24FYGuohrBARxV6UspQ<}NDm;Afi@C$ujU>(V$jg!Q;RZGZo<#e` zTMET_&K(bssy)`cF^adAdXtfxd7N^zDJ{;9(^O3uFQFubp|8wh9~1c5(83$@IXh`N zFUD$zZuGG}6yo8>k10vgAt~F&r!Adj*9qfQ*P1|Y&m*`J+9DqM$sWXl_2%jg zm3v36)$%|2yiiNsMGjmm6ASXRJu7);a@T<`7UH-|p+^z@+U&hS3@HwnvEGQVGFA{~ z;+h)zG+1{!gw3wJ__kpCsrSv*3DN~53VCPG`BMju$cPt?T7)*;lla1IY0!8GEL1ER zbu^aqH-wOOiIK{pFZXX>V zwcV?0tnl#H{vDsyeY_Wy?&*{k?N7R`zT(6%iv_y>CfaeZaT zSwt*%H*m7Yf>OI+u-XONzNUvpu$j1$gdL{Cl!``;v2CASPvux8cSyk=MCjZ1Fy`;i z!HP<>#e%W6gxqsOxU%0`WmbF5_Py(uQB?GOoIX2jyJ&LYtC67>qhA!^G~U+L?{l!d zDVa~>)WRv;oC}4KPD8d_bBn<5=YGtsa%d;x(0I&0f2@jf=Mo2OdWa?j_jaE_mcYD|_N@dtQ%~)rrr|ImuhzV4wQ_g{#2gt!t0nJZKNj#j-!pcS_%XURDKq}(+m6r>RFK;P znT(#xSv;NJ4@5!F{l`PqcQg-Ed-f^wz${KW*t_3mRGX{F3~39J@;j_^_RaLUPNdxz zqhgV1h#z26iQBc_5aJ|b-EdLRishv!H<4DV9A%?j5GsP`&r?6msC9S{QuL@!IQ7#R zWMiOZl;XALxcc6+GgG$8O*M{>Zyk}p z2C?jM<@?PUSRr)4!VS7wp-lbN4z4P_^nQ{A+p4jOUf!%>w$rKE&9){z$OTf_Hdh1@ zQk9l?@h&8BDz~T2ikkzZH?2#Ve(+J1OSm8}q0dsUboSrotJ9;~aYqz%;7rvuY{lCl zD(pStV^;_C-X?y8krKebYM1vte=z@IY&?he4=)0uc8z?T)SZB# zpHikwMQ*cP{L&bzoc?-x;eJ@Z*Y?!6#=Fdwuxe}^c!w`yTg;8lvao0q`n^ApJ-Q)Y zf*mH}gxbB=CQ9SBX9vC(3ptzFx5@R}*YgnfNuYu+X;@nt`zar2P>j6*nrb|_xyRgH zq~dFszG*Q|Ho?o-!o8X#6pU}X#`Kuo^*zw>R)V&-cXe+O713iENj0(rYP{I0TqYXWr*e!fH)5;}4BYNe3`{VwZrb=duitHH7SI8oKLRike%u`9HxNNt-P>uBb+ z9?qL(X^pzPT{v$laC%~*bWF(9C?Y-ukt0O{=Z(o##=E2?80|c4!m`~UAwDjGj_Qzc zq2Uvs4;|JB#NTRYNcxfRK0z-16VV_{bPn#0rg%Y7E>QR9KD+*Y3W&&qr)JKui7V zZV=21=?pk&N&I2SoBQp|tY%G=9A<=*MIgr`Xcqv=?Xrm~V5Sf*5a@!Rl+&EYHjoC- zd-mQ1h`}2&j(c`}`R0px24SYa$e^2Cji6o$BxvT(W9`eKiL4payJ<6`pS%U>2|)B&G_g<+?Uvlx?#+g6?&jJ3^OV zT`(vZ(iNgAZR|mR>3GK32_ZYI=_6ucv}=DLn?~4iZEmkPcI!Nn(SSFLCM1ZM4fQfo zKA{0dG8K!%jvrtC12NabYGG-X%S;uEdU`K+R~K!J;+52u8^aY&va4?BOq=0&mFcpu zT0bsxKAU2$kADm8#x2y@4V49i>dac<r{j zG9&P+XpM}m>#9h}AB)z6T0&e;4sphABf6ZRot>qgv%@#H5=I@F1wy@CU1lar4Ks-0 z0c6n!^q`sF={p!@ULL;M)qST28TyXpWh$3;x7A?I-v6jGd*WuU8D5=%4o9%}k5Yc;K%GkxVAw%6(z?n+Bb5vChRJ@B zc9IEeJQs7<*LV2mR&4;gKH$ngpocG0;4LU=W~0^D@^$q-XQpw$e&V)iMErTKY0_uI zq|f4?PUnQ(bfJ>sV1h=1^tPGAW?B%%D|)!enBpW;O+7ta0oU1;iG=i+9sbR~Kb%K= zVXSDKfRe{yI~n30z2hu>V%O{#bqvQGY9rB5on`NWcYJr6r8S;niO=OyDk}g&a8rfj#7}?YPVjZ3wC$vqX#DjmpBH{N{U?QE(+HA$fAjN7E8-<|cj-9tx18*in%C2}G z|Nf)W_6IOGoBNvNrdQVB$PQw5%)$XcrCkTWJDU9HMmI>)6Txw9Lq*wlQWq$#V^=em zf>-f@9-4bJbK5>mu2AsPoCx#<`g5>Xhi8$3$G8IKGmdNU7=WeImiXCLp8_Ci18bkG zyMta?oYU~R-X{BILnZZlO4FlQPC6$a>mm}4t?v3*rp@r9M^qCL5!KclHE!qRSs$Y;^VzUa`valsvlP*4oOerr0&lDzD2sa(FbNm?Wl)>7KYXim>+{?> zt1D3%>|Kic^TT-d*(V(-P(7jN?WUa?Sc9jcpS)kWaMn1L4J#ArfNrm&qKd&=bQkL( z*#D^R#_r5^Vqn5dueBaMxbc|jD{Hy4wQZkT#Ee@X`}6f&zoqiRVH~@S;HpjRn(3m7 z&~c1X&a367141y-CMn66eud17>d$PJ{cF;C8lIi!%Q}#F_Hv_Z%dDkbH9v84!;i!KP{1$vFF>SuSL%;^6sM}m@kNm zq)38Wu1Ijcb#5n^PMxo3B^=j{;T^JB`1(6m=ybUbR51VfC5qwH)xADnMp$+)L`>5L32?yLnaG?OTXLm|oZ`H| zi`5JPCKoE05xE67K$EWbJy8D1EIv8!y8X#36WUyH9%vipZ%{nP#ElgW{FPVC6MO` zn-;=doJ8(!kXF_-W0>=VmECm!U+2M&fLzb}M;+wYTw}+j5I^l* zEC1Y#;b5-|m7w{SIKYU=;vYstXcbxz!;Y)~EEEd(C>1#n6J9LX;|U!cdR zmyTx%wEyt>q}V2wK2Gg&c9?o<>vQoV<{lT+>?<}pUm|CJN3q;7oi`MRjP&XH=Z134 zhRcjh_YM7O_>sI+DHswF7Nh7sWv18_e$m8rGL4F@%E@GTEd&v3Ygn#`;FI^fH8V!L zPSI*=+LMdBSCt#;8}GW^MWo!0=WpGYn~iVGOAWvHD+nfSvKQ0&7kq^p?+Zu@M^s>A z*}ME`jdsK3HS&twJ(GqLdKVxhlT8;>&tCb#14>;#pjmjvNKcMBm!Csp47HQ0pk297 zxck8uRP{t+6pjpP1?x(DgN z<=3et_x)IhaHs~`l)R{Eyo5H*i*&6TsqS3eUmtd^qW+3cPx6y;ONp&IbG>uwE4y7* z^=EP;31pmTaMEd7R|iT0t&0+w*AGnfeE22T1-(^>^Vs*eFXCpPb%=*joZ8@yR=j}F z-NvLi1yDK+PY({EOczl4Cl=fBJLw`%^x%r!Uz@JD1-bbYRG*Vz$CW6fPTo0rchzBk zviQw?oON@P3z|O8>{6yFIG22Dq7jympsVf0d`&SlwsvB6hmi z*o{;WcFM{hSiT3}(j{L%;^r$9v)`64{eXZOIcZ2%_5OJ+j2d&1aSVhi1~ay09|tfX z-{^JWWq28np=6kOZLBA{5J&1aZ@msias}aeUHe!#A?K#n!Wlzndq zTXOv-o+edpD9gE%mwRwQ3TB8m=8cB0HR=ha~I3Nk}?4!<6+gBb#0rH@^?{>8erouKdRQ{y0`Cm^zq}p z0L9qV)kCb@EIgC~v&Qe_PJ;>y%md0)UG6|ltj+{x6==8QhRfbDz{a32_*OnI$(8&@ zv2#PJWG9y%zrT}Z<39D|nT+}VI(gO&kbd1Gkh2k0HN9+;G0dT>!OuGeZYT-PkOcA< zvtOjWmWeiZ-^VA@Vt>>06L)VC#ib2asZA|r?LZ%-OM-^=j+ab*dQfLBzuOqf$P{~v zoGamEIkSn=+X1h+zCfF=)ctwjcuYaYAqdsBS#C>|^8!nLjR4k10W{oM=x*38&?($m z-T3SE2kvks6TP9}FSNb!=P>VsRd)T!l&MzLS!v#%1H{la0NPRjGoyq%a)F^eevILm z+iGxrpgySsCXIqsytY+56gYppqkPI*_s(7oH=d{OR=WGKZCP04GO>~xki=9|pr%s)ByxTOnK!rlcQzYE-xDck%47s|>8T z>uYdhbDz&x(Z%*le5IJr02dBps?;s{?K#UbVk>{uwO(ft-_!!C#PFPw==sb#3#Uw_ zV|S{fiq~-jWIJAl3)+ZPNuBB1G(QSoB-@cUI%c58$%!VPc^~o3ik<#lps6jhB%IBvf|eA2EYx%|MJBBrPye!R2A$OlooR3L{G z61$41(FcGZZN^uoOgZKYwmL9EDjIzl*IDdyZ)u>x=#H*$$3aoL^h{dc_oEbOT6w{;yikgB2ABiKaNOZTC|S6A5ZUYGHs{uv5L`^Gf|~R~ZZY zijl~6wX-GAT3rW99s5KSrHi95_E%sj!Vvs{(kRe4=voM(nvW~K%$1n?11YJ&zLbX% z1vlZuY;~Z~u+NO{!c9Ul!T{hO6jEE0m_8yMNn6G^A}CV|fP6&&HbNwPdCW4!9%k8@ zW7L7(5=H|%K*a#LB|8Gs28eSUU{?HrSk|ykVP`G^?Iz2uMu*L>K$dK>gb* z&a}fMVZRszAp3Nf^j90&!SfHqK!m!3T|~Vg!2}23e{;=$`)mtT#7|Qo0``?R`MA?oYh{V4tR7F@?KIeJ~`xmTQY9+Vk|4FdKv42Cw#|Y=zF$!bZ_CT}hpDy@s zW49iNTYbg-is-=%kIm#hS(k%KV_Ux1S)d@A+d2i{3CRSo!INQJ!Sy8Wxst7ys5z;c zD8H>c{|n#BUkD&PH7+&G9Xcez?gMk|-&{AJE4j?x2Tp#lKM*i?X^2wn$`z0TzZvpp<(6 z+Ye|jShmz6l$~xlyogl|aSVbLo>Sj^{x3hl)+8}c3UaYrurQDbU}}ATXHw*}X+~_T z=jhlVK9l~%2VgT`NLoH2R>4C-!J57W7WG3m>jtDAg;Dwb`P5kMU9e#MtIvQYXApNc zI3MSNawm8|?NQjKT2k>S_Y&j%Z|wP}4y*eA`Xm2pC_^vStwjCbVf&ZE#zx4)$g|A~ zrU5=4G<9dw_{q-f<`~7VR(GC>uzu9#ffuVCjG>tcr13h2h^Vxv2zd4JRIW4Aqqu{j zdj^UzyM4yN^s+DJ(yO4wm<-9%py&}Re9>BjIhvOx3ch&>d#j(Rib*j3xl}XTXzX^m z;sP-;!dEz>$|Zj1YH6Y1kt?Xo&sW?x?n{r6MjqYztBUhaw1+ zfBsz?Y~bdwjKj4GAn^$&{LMRsysfS((WM^O{K_2B(>y%q2bzX^2=4^Ax0^f)Eon~N z-G=n^=i6#YvY6fT*$w+{frRsP6Vejln=x?M)x)<)Ns zR4X=$*X~0ttuXGb`_VfPpNP4Mlu4YfvjpPMryl%305Z@s}pbGryNgeU;O z)D{Tt>d4tQP_Ap$1f@`|TXhb7E>VYTWhb9}8Tc;3VJ~EF>e1n`(RKDZ__;%vqoyn) zObek}yGuI(Z7!SkzRV(5iC?#5lKJRur5V`FM z?{@dX=amvk4R3L6xsMURy5}{PW`h(CVnlGV@cZ3C>yax<^mMp}iqKg0mtIHq-MeZ% z*F3U#exfd+-rUO9ly9!*H|jPMurziY#5Z!1O;p*pIB%-&45D3V%CnaSjSwEUu>;FN5al16mMu*Bg&P4@vxyLGsAK%4}1OWTnOA_=R`UkG?_F z>G%Z{Q(eCUHU6_5T7zg8*~c`yFw|r|^Ss%ND>3AL!}XoVF(<>f2G5>4AL_N3V3lWe zIziPKh;3NU=SdTLx%~AshpuUvA@ZmZywv?6UljY~t-wx0rvwK(b>R;m0@Q3JRQ!^A zKX%T2nK2o=?r#s(iuzq6!8E1^&DK$8Si-+BP|h3t3HB`-u0xv-U*qC3D#TrQ+QNEERit6*6RsW^FJC9%tHnWVsJxZ|1 z5$hOt;ju93^8F1XlkE?uv+&c~>)=)6H@Z=x<6%NiOw+!Nbwhc<&=IPSgIenLPs|$D zZDhk0Tx`>I@^zGR)llip+M}l!44qRcSuSBEI;T^0E7M(FWTDRj1c~a(`--R>^ca~y z3~9xm01`B}SXz$m2Gqhbau?@i}vdS5Mc?NwI1ZhJb!3t80NaK`+dEa*K#`TsILA*(ZpWq+*Dl&Pe-uTJX}w{WMD=c-nk-K~9Qz120bj_*C;jVzzy-n(b>6g@13eIj7Ya>2HzQTl$KRxT-^D7q8q(& zNYO$x{ZaIco|_M59=#)h&_hcwu7jSE-5akLPmHS%WmO*Yoa6VCB`kwp`e}=zEAd?) z3V5ZJ+{WH&H)rt6HJFHAiv3$J;m@PmDwrh@JtP2Jn^d1$g-TYBy-DkfXcWwY->P?v ziv@;2Cjq-lyUwpS7N8Di)$2QEVY)H58<$pZ$Y(ampwFyo$MatQ%I}loqZyU1)5l`7(avF9^#`z_|?oKull> zle;s1U?0G%ZM&$uy0t{_MVIZU5)GCSa6YkkPlL`C7HWL}Y=-;bZ*WB`-q-DG$B#!i zS;{_%hwTnlwr!mD?Q$M-^zHDkTmg=ETO+_fZd)G-0Ufn#kr?Qm044w|$OeS3es7eZ3tfJ5AE&8& zqVrLHHA>YNZweW>ZNh*nU`{yLTj1(OghPAGA5n@HdFe*2hUF_YQMh-FXHGcb1AIC{ z3~Y?2Ws>p@Qc?dD`RI#k6N~y-naXPIRse%AtV8e9WeSX zSn%XZM2?=iqooYapesr14Vxn$5P$CSOeD=lBYyb@+8B~1C7q%7{>&);0-QmeyTXic zUyRhzYV=Fxlff<>^_TN^%jQvW^63^lk{`;Jv>?0tqGe|qrmii_7b)PynRZ}E3RbgK z7JWgbHicB0{qh6+qlkNr-8~nsR?@h&oK`Z&Pu?}0(GZ?AvHb0G_fg1}f{$l&+?Z2% z4(r-X-u1#cA#hzas87#90!Q0$yT?@QP}GmkVa9M`o7GmAZk?}^oEkSA)d3Jw!N^@cT``*mU~1* zfb02uT&OP&UnZ1J)=$OU#|c2}o;$%?53RZIQhX;B^RD@Ia$rwX+L4SvF|_>+ zE03v-63vyx-asVX<6Novu&JA#Q6muCg$bw)OXmurEs?H=wA2-1Tfs3>cKkg*{X#2N z%#eG2M#Guk$HM?T%infdjb^|Was-L=weQ$(%cNzNf#b+>GFXni3)sycx!q^Cj{!&6 zze(%;m(H+uGl1Ju%-9^pUc-&%9Cw_$m1Sr`cO+!egI!u2c1b5KRfMz|Xu#`guJ+37 zUsXA8x;S9-ZqQH8CC*@)GK4OGHg#Ai;G8!a(BrJZO-g7I9SR1d> zy){vVo5AG$;rj#P84FkyI6+f=dJ3J$5cO`x= zd8f1(wPVK)GN(Q~uWETpQ!C5bFdqRat+W9}cd&9y*@iwpklQza4wIuyd0lR z?y!`kZk*g!*9TH8zUy0->>i}-FBkwf@y+_V`s>9_J8E#E?aEUY$LwNVCHdW6D}S#X zvgP1}>_X@FNU8NbpGIh*;BoT~{ za^JKQSLWe+yI|^NQ=F2wC2N8O`4r8xZ>*PM7s0$w20Cmb)S7p)USwq3cmN)#XcnPz zJB@Y)j{4m3@4f2iCq_6g#Ch=2b9^4(#;8f>N=04BKh}C;KmXD8;%xLi(7Q5+t%7#& zUvS;=IO4x2#=qwJ{Xg343^%LC=11NjZU?N2uF9peK0rSLaD*)c#{FapH{E(%lnqs%ip?ZptfGgrrR%tGSw%j1nP zK`FgRB(i~7?c%tD# zxK<QVBsK-jcWSNwU=LP}hI)3cJ6d{oSCcUqnJjT?1-V^(r?}f9sQ0(>6 z+1()^|J-JzH>}V~HeVi_H?JxaU@Zv$Y_@o6>k!k11w19Pu$B15Rmz0;a;x)R`bY<2 zw}p?_TgCS2k6-2njjcFW+hPSNj!vepCe4dblTQV*6)ziP&wRq#R$ja>`p(FOMqq$Z1qB&N z1aIWl@^}M4nuPcVOf5$RN;qJureqI|Dh|D?w00m~7iSc&PuEx!!9dM=Lh5Vi6u1+n~11<<_jyQbV=3!Prx|7b@vO&x8Echj#3*ft3e^ z$Ve6(J!^MdzlOHT5Qk>Aj4>V9%I6~;R3*ru3zR6u0VQ+wx(g}VHdg203~#&rie*lX zu^%6}`G)XFdu?*PEIdEZcl|qaM?V%7iUec%GS}tBIxvkVn31WOQOI_?dTn?AcJItx zV@(ZLrAI#1*04s6u0NXfR-I0Dz7NR%%VaD82`SjNA_O4+cC(8BgU~C>)u9QwT!`sm z_xm7rcu8egC+2v&K2GM93Bvtcia(yd9(qt>5o?eugaUvuxM)C$+7v5uk??LDDmq&m zKSnXBqdB!5Psse%=clF;E}!`3V_Egd zjWHK{R&=8>_=E6do_4I%{N&LALzj}P?ngF#lXR*bN=ozn8L>(dFG7S(1zuRG0ccT# z*B3nL$vu3h#weD}OQ$s5??S+IKe;&$Hp_dJ_)jhH`!h!OW;ou>Fn4)&`c~5J`=$L` zUuw@iLN-=j?0Q~O+Fr-(p44kY#35>sZOB+64RBt$gBx0n4n689v!Y8@Cj?Eg#40%> zgT#wO=?Q*!eoC5(8FncnLeFLX;$d8&Wyb&NgVa)}8ssJ`tH$bqDp`0Nug87$27=G+ z{?0>FqJ_pskz_s_gOLRvQPcG2zd1_4z*&MRT+t5hJ$!p#63|RMvV2AlFWG1otSjl(nL~bJW%|8u=MTkTjgCy`>KgGBBAJGfj{Z9{wIg-!PFc8&6ut z_?9jt9-9?-@PrfR&i0MP-f7*I@XY20@?q z!3n2=W_R=Hpx!G|H_R{RLxLIfKzLT$!PcU!2>bYIFK|5&oi3E6or zyxCqdyoc+Ja#q$kFPm`1IZu_BHA;V97_Qi+fUMYn#!o^fHXjYHs-DXc>epDy&bfUi zP*bPSY|FaFGkH2pEgBq4q0K^2%9JuwBzLN`m=fhjhRYSsCIy(L23CCcT5bA<>e4el zUc6et<~Q*tYa~r_LayK{4MIM*>A@+C6nYeBkA6uSaDeXHq@n^0o(TmKWIP?Wx@GLv zG^P;z?s7Y5)lW&ed=7;fnfYUPD>;#7_76N^aqq$tx!hlOkY3F|U5by+h<@J)^9MdQ?_1dhG@^ z`7A|QQdxIa5R@c8*nM)6A-AC2^l?gNyW1_;9(Ot2^c&Vd$RtPVN$Dk9;>1egt{rNd zyZ_XBUf>UbGesXwH7%~9cd+nm1qa6&!&tOq{drZ``fO+O@T9X!qD;z`-(w{#erXQ{$PL$Jl&m@n#m>d$GK;GTXHK#1T_dNZ`=P>nS|OG-kyV4ecF$ zx}VmUba!DAgRIXK9uG8XO2YgCs}X(}+xkZ@)p%vZ7HZ#;LHm8lx@ebSjWAAejMlV# z^P|h2w^cbQ@4a^TX^?2$QD*M0X}cFyok?$N2bHA2k6Jfyg7Dfs2$1GZG- zM-wKFpTH44&j9E5zHmGV5F==&KqL$$a0~{1NbsZ*!QJ}gtHEx4p4`gLU0g){J}F$e zAq-^RJ6MrM`yS@PnstLE?C%6_1Y+dhXPjB>>dd~qRU~s)E}e)rW<5fZ=z7U`QZ$xk4v&qOK(d}U3Zr5`SQ7c9rPFMSSecpj z`*}<#>@3f`^YgbJSwMVPC*etH-scHgZ9q3Qos1hT-;wpa@q^3WQh^$gUy6#!hy9W@zk(BV2W+PY5;T#vA-ptFCSiLCQ6TzsIga0c z6K3}C=bJRK6UV~{HY(djm@=S^r_x#rjy_^5aWk+6N0ilLp9HV5_6hM2M-F21Ki}eK z6TwSiuVts~0@1LF&eMSt&`3b*N`7IUd@&bSPxkuh5^=dcLN|B)F!j+jc}H&H9^6PC z4aF8xr5PnlwBn_jg@ebvcPi{5Mx*Y|-gtYW*Wr741m^1Vf;+c&sBo=+jb}<^lGm9s zNRocs*JdFmoc`rvAJd}IDzvDZpmdGD;aWaNxj|^((y518A3#w1_ zsolG#MtyiVSY~AWkIs-MY&4(Ta)E{;D@UU(r6M#KmrJ}tGL*u29x3{#E6NcD!j7K; zy@!XNpR$>`n}T=KKX}?58C*E#ma2g7Q=Zrh_AA;8>`ZyqE6@u4w$5;AWWB_?5o27) z=*d0JRdpkk?z6#%Mox0Gs>%K5j|x<@HC!4bWAs2^H{aIL!)w8L#%!X4gNb+92I# z;=x-*0hcgd&^U*U>X9_s_*3G>ShF!aagryC$2>4jH90iR-yBvdF&^joSNm*KUH8d$ zrEZ3sU_8)Z%_CwxbM`~jLQHRN6}*k*Pg+iHG(jEz93!58ygL7tXT)ewk8BgQSjY6* zQ#1jjj300a}EQ*WAt1$k^$r#B?ABz*(m6~>3h4Zo9XLtoH0q>ErCm4Pn zB>JAHogS0?BMQT%d1V!Y8qGwRdQa-gtspMGMXPPiVIrc>?D~IY02OvK-veRiOq8WM z{~28)bng!o;rv}G@T%@FQ&5(GFqJdNNCWDC!{^!E3S+Bm5p%RUEaA-7?#0|2S@Vu3 zvTIPQTpa{ytr{5yF7Loz(13XIw{r^)Bq6Va>UAP2mXc@-Y(5}EKRQEqTU^FD66eph zuQcaRIhlMNzfkGI8c3G(TM_JID&SuexuCvwgfLSgpLvSrG=Ov;TT5@wzwQtJo;5bF zo2HDsWy)>$0|D~ms4*D$H)2u)QYWViz6x$I!S|PjOR{t~4Hq1gB40UuZvKXSAnb^3J7S_n)e#V@bjq_}XVH5-FJumhrwgjsHBYC73zH2Nxr~ipgwL~hjM!bB}@bI>n zS0{L6Mw&84e#BJV$8}S1{06x;z*ucgX37NP$plAl#51%GXpeTmccBHK<0Pyk^U_G8 zOsnB(L**iZAF8m7V==?yN5qi;S(n&` zO8Ute35LXF;f+UQef*T0-C8S;l27vN$g?pJA`I(h7kM2!QZ|cqnP?4ScnBQc5ILB0 zHDOrV!{AB~PbxASUNOrQGng`?T9rb!HqdqwULrWYx5Jo7t$!yjoTPU;gmO3}Xhcx+ zq>@*~M|1R7q?YM13cyVM=D=YHffz}siHsYqXdjUi8vI4vGfxjL^)WqF?Q^*WTX;1( zq>x|eaJ#hVoxo)G3pQW*;f1>CZ@udGKT!W%6SDnD{ZsW9tJ46Xo4eGN9s8XiqcR)M zj2Xd_%8{^N*cd&y+&hdg(|8CYb#T%ImjDQ!sP_}OnjK0>ax==iwBQGEdvGqv+C%Ii zr1&2RI>3(N$M6E=8{-Y+PZniQK;cE>!ER@okmW>=F_P6Il;7>Lt8X_P75tM{)YLRS z+}H4s3;%#AKZo4K9>CMi!orc|xK1a2P=9pp8_IT|+hhk}3rwzi`erd4?abLd0`BOp z+K08@@&ZXB_9seDF#wP%A_3x|;0f8_cFOLU6rh{6WA}`EMA}ylqV2o{D~R8G`CMx> z`!o&i9DaAHh1%Lao3tp7IOSQgww96UVpR0{!$U_$(}CWD4^)->5-YR}IbPh%X=~<& z2Dh*dOl|1VJM>;CgjP%-3RkiC^a~oSxy(CXZWK3eudff5M<3!{87+I}Vt5&Z7eINA zMpi8^+ENf;M8VG<++NnN+snVe4;)3Q$Jk?EPwJL@v^Ut7qV|w?yX8a6hwihEd&|J! zJkro>3KrWeQ9-W>3ovkUGaK5~R6>1RtlRjZ;El>p%lF*E1i$#Xg;gH*&ObtM5zc5h zR|=FdiJc4mbdLxMJ)nHcdW<;$1x-nGG&ng>F40Z1{a<@5ymF9k*Q)W83|Bn$qj9Bf zo6c#}dEo0@67T-U6*g%u3*T8&sE2(A_aZ3YIL51VpQxda?iwk5FPjKcGF8No&zG20F^aUTW z#`P@!hP}06?FV0f(2ADgmI;4e5PmVCU$X*n(j6DZ)@M&z&~SvYqIN_Kmaj30u6F5* zVa6~l=5E#2zPBIZG$i!SJ9et=d?Ne4;^FO*nrd7)76ldxFZP?`CO?2pYfK$_UJN}t zHIV;wS*O@Bz{!E93Ut0IMd~?d0u6_jE@7O$Z}TTyD_cJf>fnjQ1AW(#UT^lDRP-R&S{96)yb>Vx z0b1x-307>~Lr9z&MCoP@9Q4(YupNA85p?%jVr?|{zEf8FkG#y_DC1JV?*bmw0Dz55 z$dxigQBrm?EosQ)DxG1Yy`Gn=kEM4u`g?2&KDm-%U=Xuf!IO6KU~J-B$0n;RYxx4q zuk&|tpa0MdY3EVVlRKf|Vs;;#uTg?bjL%W0edyYx7Cor^RhMFAZ+9mlZZ>1*sr0_3 z;ZgSaBhxpU#u-;wC2SGQH@R(i(8<}+P*vAoO0@oZH_3*}>-AjFo3H#&Y`^;oX<9zJ z9h_&Q_x=il7(*0h!|G1XIM3 zvfhpuMX`70O(BzWB@TVch|Dv)xAJ5JUEc7$oFHI+H00(Dv0VX1ZTNE-dGU7%G(zpE}r6?`8L8LMz|rf+{cKK|6o2C%2j`w=De&t>^pGx*{5{mAD; z9-t1&hCxwueq*3!ZU*LviAJLHn1h#(aneH{A9?TTozO@Sc;9!JH}H72N%-y)7#5Cj;SGKa@e||M6`Hm$xeC(;2OozUR`+MK>s3 zQ7QfLYGm6{IAZ}qZ8<`bokZBL377-TEfLMHqq%^Qr7H=KBggr}&fK|iz%>apW_-=| z3V%MVP0EDRF7fZBbe=p z-aecYskBQdcx=jL%^|+T?M_Wbs?%GY8yD^P7OH>?o?@9S!L#D>-oi_6*WwS`a-6rD z0gmA=j3g+XgpJ-Kv6!@_VP4Mkgy_L&wJG;>M$_Zn0!Yt8c0ZC0%z2Hj!4-FzDZDHg zQkZ6(O7vX>&T&ubuOezvm||RHJX6#Z`HRTOREV~XmgC5cjv&*7_g93%xOXAFch2AL zmq}^#1D28>kne#eVif403bGzEcW)`970&!*3k~L1ZdtvyK>6DC`30y*ZL^AdI&)2b z`}^9n+e00ZYUh3L+;J-ubG`W=I=&6bKmXtARs0wIjQ>XvukVuFPJC%JyEPUR>-_>> zbNkZE+9X$F$!kgPcDBmEJx72QvN1iExqF$h3yPD^CLneg!rp$cFmmk*zp>(4Zu@C^ zX*%uR8ZOxoOs%-NK`_>brm~z|NIcQkQ=in`SDC3ess!J-t{~tyD9KfbX#;(Mz5#4& z9g${(=kmI3OS>~mXx^5yWbcTLL0^9}>aFB9v+V{C7r+p?CAY)H+24U)7Ec6%l!4@t zCR5noh;oa-K6GAMLkPMxa=C`Sqp-x2zoxgUqN<_B?IC5~c<^Z+jU3V69GCCmnbCLq z)~A1SeDUJ%Ao8*$p}{VU9F#y_hRto}G)*0;4V5@sUt{5`!)Q41NIK}6gSLXoWwpex z?V5=6K1j)SQE!HH7+N2~ zzD1igqN04b=I$AOIdvy?^Fhof*2X23+Sb-S1^kO+%$a7O6r*Mf64>+aS#K#7G3;Fp z*qD^5k-AmNs>znKPOIUwjqJc(K`toI&o6zy?lIzn1S$AL5CU-Hr`iy5=#x|KM$(W3 z!*@j2%WeRLGWm=Tz_ysxrUNsYOsW9IelaT5{nl__`l?c)k zIQj-F(@^>q^DN{?x0wqlv1>%X{n#PKr7X99i z4tr?xWlwV?3qWm1&yE#!!Xu5upbh#gxu%2H=m3=Qbr9Jw^lJk1_!W|atFw&kIEw}57 zdceeK$a|9T#w#mn(l9&ZkoUP#`3U`dl7pg6LbX-i#-&< zAOe186;2TAGoBQRn$9#HE-4yS623aWb68>iQ8=d+2Ttbk#cFJDIlW*@Y&~m^fGZNHkl1p*|z#{*F99b%@;^-R0*c{q)q6QNxz^T$L5K z6EPRoC8(}juE8mkOy=(0EzSoZLBHcgNmzHgex`N-*0pT4M59W4{B_9r{0^5RZ3p^q zexP0};vWtLswD@&RPYun6|)T@v|yzVz8GAyb|GXn|@##3cUw%nKzXMR=$MuT}~1nBhDwB_)moE=%N%xv;O zBAfOb+`k{<>!XnNWA9o1n7fKW9}B}(Rl!-POW&GGiNT|`;9=NuR5IFxk`iU4POG90 zeRbFvI^=lztIi0lUM+W7vBHU`Zq}V!zyzXL@rC>$%Z>Ht1jqH@f%-(2J&o za%to3{6$?~S1d}}U(eq`ipvl7)Wj-uNJt*){_e(OaQQJ3!4wMrLbrtuf+4LP2@CBv z0~AyUezCDXz|kO7X?${SwW;LezBNZBpR|rkBdV6q3tTN^1#k0CIoUEyKuZ_kg}19h zx#Z(6T||+Xu%!TN(=p1~r#gruS6((+c^T|7OmH7CA5coYA#`CMn~uxFlZtXVjrL)N z;O~PvG{W#aB{!Pr8nJnUX z6H)k-i3cv&ku6L$>$zUX{WW6JI#K__YGsOz>NBJ^#(~!xtGS8o(iko7fLF|nbYZ12 z{lFuAOlY%p?a7k2qeF~E)zC+b=au$r8N?e$8X`JQ8cTCzkoIhCQS7MNbP6azy|xZv z`ium>Y8Y;Ri}~V!WZ>ch)HJ@&2L|p5eRsjx%<}_h)O2dw!Egz8#U<9*8Y&_SB$1$c zy$)S3!hEVHv`$Eq(??=l*dP0uNT1TNxyyEesp#qzr*T7Do$ZQ}4+ScGBwM{xF0z`i zw-94iWYc0=KI085YtRZ5gL$;Hd9S>ePBx~`-#8%K6dNn;1SY=->^!aXH=6WKPwH$st!epxj*V()}H*VN!uyWZ_Ac|Cro z0-tfQ>-3~_c*_=!@g0)hvI%x$5FppBP(_xxP6Nsp%7S6*Pb(Gw(S%x?36~I$0$Jd)t^XLX0&SErddy+4uZBm*x60J0> zey!n%uS;EXW45*NN`>W<CS$s7q4RH*e6pStZyT#IYbUPZwe|w>1ze zZpcZ$1$otfj@zHNBlE4tu@=D}z1}xddb6a$KYy0NPx^A+8fx&s4!)P;+B%5&f|q4t zf#P~Upx)tKvBLAs$D3)~{u=Gi@7qP(#n(m8_kD_=$f6qd#*rQx`ZdPuJ#UClK8>K+ zP$d|ePzt$^2N^64P)qNO4!c{)65&Vw^8Q>iL3CHB1OT_=6=|veT(>V)8g0bx*4$o>B&Bmf1kWP*Sk+{Nh`}F z?rGiuOrg9Ob*ws!CR%-%y^ksT9x?<((nebpS=O;**1l>8Rh0a7|2fxNJ`|WjAAVLF zrXHxW5FzB~i0j>a4?ns9FVkyB#pTi*5K?G8x~ZHicPQM&tj*&^HCgJ%zOW!LP_|Yr&EH~PR+x%O7x!NUMp&#(6QROz?20W zI>M3tJ+}fEK1jZmTN9b zy?FWt2$2;;{d18afc8H6 z3kMqfq_OB^6ttf@v-SdjjO(CCij+^2Va8D5c#0FrN#D|9_aZ?N=k9cUSb>I$ z!L6N!C0ZB?>!re9-ORk{dHf3B9F_!Li*wC(bR3*=G_#gw`PlZiNO$3d%<$&*?04GE zf<&r!`pLedG9xKj_$b*cu63KU|2a`cY+CX4FOb+ig#Q2yKb~UjhYM&f(Elj51fn3# zWyo$ZED}$74Bg9GV$Hzd3-Ssrbq9oj4Y9B%O(Z4gguJWXOyR4@XM< ziq$3Z2fzAYjW}0Ud$r*G2Q9+7y^WOQ_0%xe)@_xA=LXXrTRgsS*^NN^B-nAl&wJtE z9hIAR<1S4A%uMnMhwwXKUu{O}te1C!Z^O3ks#KRg0d7YprhJM?b@Gt2N4Znq zOsQedY;EfE@!==yn?hlBz^~p`7S@`h%u4$ct_7H84fkO}^Ug+e)~n(Gk&NJjx5Cpx z#O%_}D}3abO;%%!kceP8V~`aB`d8d|#Q^W{Pl)$7lZON|)(~ z*%^seA}4ziUj!YRm&2ABnbRT5`cDGn% zcUs$3&iw+d`1|b)XAvN$Q8RU1cRFnxj5DT+RdQVFO_PbX%}G{ri^hq$4$MKw5rEtk zG9qabw*A+J(WsZulA7f8A+$k}?491LkFJ^%o<+3njOUd*Yo}sZC@CF%7;zKpf*Q^2 z!tchrz#fe0F-5t~Gz>FcNuR9PBGQs;R&hoXu7k>+;n`Fz?b<*i#8X{S%ctM# zgoic<@F?a?=;H=8b^%k8bL8B_dLAkl&chfh5$ybV*>+Ha*(2JD3a$BU9UgIn8kuq4 z%rm7E&e1Fi^-|!`Mu^~qGpit-{CTM4ZURwvWRdQiXOVeLUi!{6bPJ_g%}tPH_tUzs z&lZLbV!Z`iG1Qm@8QX>ncUB$1h(T&oHt%)7F!+ep{N@^!IQsQGt^GFfW=)OLcf+!t zS{&ETd5jX+T~{Xhz)|VN=pVpNft%++^CYoj>{r}7%yh!~BinRm$`O*uR{x&d31%d8 z0w}J~z1X~kTjES#2vG>@a;=ZoD}|fp_5-g5l1}Xy#{kW46^p*J%TVFt5)Jeq~Z z+o~n@+{%0%Qm&Eebyvy$La%_LPn(^TE3p5(cIlHNNuuq!KP4w+%X~h|Et{gwWnDXP zP@{1~&iZ-($JdJ7^55^LE4d_|XP}Ud?34bh32ks0yqCr}l4941-HDc@C&jcbZ(}Nt zDAPV}rZ8?E>#D$FJ+as$-9YJ=-#`o2ae;<2WP;vEr^`%JfNdKCQZT>4^`nbC0{n%E`-yApK2}DU>0ODG2 zweT;QcXhmAURqRBF=W4k%W3@doD3nn;dVP!x?M=Es*V+oz1h<&4rP;)av$UmGUX|P z76DF3^Y=N9R*rFB_VSl2J3VC2X>apM;7@7@F33~+eyGG{W1bbRQw)!USI4y50!gyU zUX~u1tJE@2p=fs|R|3-1x2<1k4q?7=QH?&*RBe}aq)XKD%`gVJaH~<80$c0>)N$i*bXG5QvHbh$<`7A zgzwhPj7Xm#9S5HYVq8%K`TprU@@ZE(A3X>_EV!p==a%lZd%0+30W~^~z4KF$ z=iR=PF-N`S#bymCk}515eNv&NH}z+4_i=>k797mdQh+>mi9eyb9!Y@3$Vt#Z^i{Gz zZ&5WmM2J^A<{uDZcno0Un`# z+u z<w&ZZ9?>bF`9J|Yf=3mG=1*)3-kZgG2NX(VAuMer(AhwXzhrDmQSCkfju_JrA} zZ@`wmVMF`wl=Sx}VKwr(8bE@I$O2qu(sN|FGS!x%-@Fg)Kx>DK5Ks)$;mY1Ol?y%B zI5^UJe0zRGofSj3blS~G%GmW|cd!AJ7+~1s?9s{qWxZu97#w8#{d#%D`Q84Zvw=69 z&AbIaFMhs#I9N9=tQI<(ZQg$ z`Rf(I{EuY^%Z*FwPCR(#avL?K0jZfb0GeC}w!Ekd8`G>>`Na^fmzaiv%u(tt&4Y`x zLp~=5mx|&|`71e96Vv(n5~DjYEoeCCJn}MmAYGp=Bedoh`7&C-y9+1kZ@ydC(h1^z zD#j$wMBbdxeeaT1C%J=0nb-olm z(RV87@HwHB(_-LOWB5y~1$qRwH30|hk7?J~4Jg3xaY?^Y_An)qmJO|52OBuw)H+>p zWMg_z*Xo+B@=|fMO(ZvSc#8{E^~CMJaLHq{R5iDkIOcxmeFHE1b=5{vCwvdekCyL` zic8??bxug*(WNgHgM$EMpAmPx_DpA05!ySF2kwI|WI-!7L_A$*ye8tSmu3RrhO5ch zut#0`1#`_g*YAc>X+`86*>tz5py*~*cUn_ZZd_&Yafh9ST@a-yYX2o~zlV}s$!g87 z)qQ;4`Q(?ECtZ&gIq{ymD-+uj0G#xS)THe8eu0wNk)Vb)6A^+zA`^{ezLynuZZb$Zb>uxR46jBlE0 zn`wT=4G!ExJSjQ1e7O^!gcn^SLI;u5)K@))!345c>|iq-@|?|};UnXSe41?O;=Z*3 z`a|hw5;tu#K_!idWCO*`h*?bkopf81;@|^5=f^nIS_wB;`P0eW)O_1?rxbva`mFcgvJL*@ z;P>DCz;J+ssTaGFD4nt;`=_)l^18>O4`QcfQNV?HaD$I21ZK(^zd2?k_23Kx$N=DO zzOHRiKx*3+k@oQQlBNM4Bh?ls(!c1#1*nTt_Kb&k5CKgh;#JjDzI(W zSWP};+ANiyHo+al!OUnrFpwFm8)`UpI!-mr^%9pCmhX9YZprYkU-PDZ=aUJ!Dk}|| z;EEU<|J{29Xr+Hu9QeD>VHsEt+flPNc;zIXHr^qpI#l{=!$>N)w7s)h&2v{t=cmZx zg7ZrpOnT0~& zrRorT*z?$r;v?cJ@=2Vb*|DoKu*bKJZoGVT{+!)?LA9TMhUBEeEGHtBvSo%=0Xx(P zlDnKX*mW!kpTJh?<+?T+e9H8(#mrHjX|K^?msm>7rQ@8q`K7L|-ZSMf)`Qor?%%(A z!@`J3Eb(TSb*8_WnjQuc~ z*ml(q?GXic72_+Ai8V8 zujiL0#6-niTEsS#X;{)92s(7AFVV+nANx!Fj@5H-*Q>92~mJfX;!+#blkcVwWy*a7b>eQF+-&x&0C_;{HR5 z#RDF%e~4HAHh%r@ea%CH{TDFxmSyNDihVB94|pEqBk{keC}i_76f+XwK^L;H@+TzR z|2Pr+^T&@h?1sQx?lLGzUyNA%qo?tK<}h$V?nUT<(D)MA51_(;0D}gv$DQC0_xt_; z^V)1ijCRwjV<&COUQPt;(34!1KgjcxOSbfwn71bLYzl+SdXFV#->XLhy@iODU`sE& zP#alRgCg;uM5*Bmz|zEAsEIpMtxZBxYp$cF#tggI74y+=3O(-qczz_c#L*qpm#3>CSnm_b`3s-iU1`;8pgIL zK~xUp+t7i>F=4-9!L{5ap{>*Pzk2L3On`TyXpvffx#z>2lkcKml&BY*3B<}LVTw|POa z4bU|Cs|9;K0~Qff?5)<<;$CI5`MAgrPD|Y~5*}>fz>W{Y#~wFmg4I0djw7HRU};vw z@qA#-H-R7%TCtGIQXLs9FyD;&wx({-Hg@;x;D(6KVef$Y)=`DSaN`2Ig1>r`{{t5x zpDhD6=k}vO%MjpTY}q15;LJy6jKV`7jo$SQ?NM9V`pa)%9t~pi`2$_X-yGyzrjj>e zV}A`5<8dey>j0emnV z+g=E)EM2;1H_MHrod#FR^c{Jmi&)c_a;w7d@SKBePNvcER~FB3BQkbx&_*D^zKyt+ zfZAn3L5xM()BC8L?@srs_R?V;+Qjj937;{&zUp}aps(ZlIP~6-l}^lP>{qFEBO53R zESuXSieADYBMxk<3R)~+>je6g`n1LC(MX;Ll{bP{QB_CArMbHm^y6Ub=uUl}UqAt6 z0VHr4O^`4hG!uPb<1w8sWFXGZ|JHFs{auelW??X9f^g)XZW+fZNggljD(90-72XS* z6STf5vvybnTeyk_Yl8{RHA{S1e5|wwlkO$^ywX#j(FF}zxMO%<`ejarn2 zK-yA1H*xhNtJwSCC`si}2>a(8a!?mNvSrF9z{_)~AunKpn894wUAT-x!7Y{K5*N`` z@+`t48eB+mGPwnH3HvwYL-<=ws0Wy1`=D40*ad08Mf%pM-H`IlC0Dr#} zPPQFG5QOQh=Ok+*$81Rpl5W?F`D%J+PI)QR!j?xOAuhIHFW9uGx#qpqbOM#rm28{T zEMLPV!A6W6s`A!6+WnyZG|!fS<NJSZw?Jd#pHwgYznAC#3*`0h zbbS8d|9+r7esd`Jf;z$(CoMjq#G?!uk;H*JtCt}o!nPGFxX z{}tcu5(@)<^S`IZoq+%T`u~E)$G;qlf1%g(-+InYj6&SlrpyXT*ckD;YL|kY-kG~L zsWEHJRrR;s{D0$-i^lVxDnr?kg8uW0^#yZu+BkIk{o=Ck11uaq;D|aWQUH)vIo{kO&`h%N9Bs2`0TI zmS*j-|BJo%j%sq-^Tt6yq=`zG5)}{-5D}Cj64XNz5fPClL`0f^h)9!=AV`raD4?M9 zrU;QPMMAGC(wmS1(jy5aJd$$W?Ong${O&#H{@!`#&a9ca@0vectR+c!o}K;dZ~K(S zfLTSK?Yj?DxDeBNZ6kKK<}6I!!@imd(SOCbc0*vC$Jq0Wghr0S{*pW=O5?_#F(0eM zqM-{o5c_lu$E^%ES@qE%^ilS&tr~;)DAIwY9|lz>kW7!>rh-Xy4i6E>+_w#?Fhl88 zk$>`+BOaq`fONtcY8WFF?Qw=7P3;+|nx&nj>(|D#wK6pa2~Uj)pB+nEPi5BdoY;S( zS1jj)rKNqd1R=~9{ih{r#DN@|E)vY-!ceve33X(rS&de7jIK1f_KC7g`Eb<~ZWlsF zt>sY5Rn0>Q+!ar|n@>K~J2V#(wnzu3PnaTjs()+JS;mpg5EK1OE>N(tj}Lh2m{Kk( zobs~jIyhe{-V{OL+ikWF(UVarc6B?z9QIAG$bXbC;acL4JJ{sJabR=k0p5lLA9t57 z24{mi!ydzhtL%?>yz#!fkkJybEmHfe8^vf})#xd|mlWQ5h=rSmU>-TkcmiKM57mO= z{wzpq%)4nE0}K{(1jupdzXj6{puYllMj+oB40cc6|GfOy$~1zdxDT-1YZs+}zmFD0 z<3i1v4;tSG<(e-WSv-QQhOn$?JbWV z+?4{&mbZ-YS1T{TZ5Q8C)2`Q!mgB6upPf6&nPAlI{7XbrVxQspV;#Rp;Gx_bH0)1> z>*%fTa?HnyU;hwD3Pb-fAl!dzSE*k>xPNb``0MxoSBH%#xXI)R59~IkbcKhq zFo@e3nQLqYRE)>yZGL)@&gZvDl%LU(WRV`f3~ z5gT?3zv;D!S?IxPuKgv@nD;1M$w_wEllMl4RqufLHF)&{?9ZREOq$S3UvM&UO&f5X|~_Eq>UH`e;UB0}Y3R7V^A@X=eQxwcef%k$1V(Y^_?y+#!IG>H@-*08vQhRg;F19`0G8~ zrVE0DtcNT>W&JRyE5Zl^?H##}HQ~5Gk7g+ev#L8|b8}oWlcIKZa}s@rR{cx7JW-}A zh)N8g@iDno#YW-y9GGBP)4sq1bXTTOQJYCt<)xdb_sg~)zHKBo>iD=wX?_lY(e?nz zNhCi_a_SEDz%Maf6lDlty!p}$ zj%{hI`h01alxx9Nf+K*F$wi~d+cl#&>2hRh7MewL{3$8YBNpbK*~$mH+ByxB85hf;%B5)TlY{pP4aonBq`Cr_?Rd z#+I_K!ttk0u!cHrxwzT5t|RF?S7S`&@;Gv!oB|MBRMBp*@l<0ZNORd^puTs=v$aps z9Rbp%!=k4Q(*B+(E36P}>fRX2TP|=^yPQpETVvH3lp;A56ilZFe7us$EskH(<)C}k ziw+%Xd~Qqt0ym-lPt;?9mEU2fLE$qS>tSEGF%zdY3`zF1BS>~ewXT3YQj(GVKy%AW z`%;hlJ#0hc&<~&WZ?>0o-JCC<=xgcR0}P2MV#uQyJ{aDcn{*d7G=TWr^^00K4sFrI znO`S?%+eZ@`xFKqoo06x%gvOrkIy1Mwd?4jI@31oFUmGwHCy{=A~emA9*fY_)U}a( zQdk!Dw}ZsZzd1M+4rf04zfD{JpX`|Y2{O*`+)c5+Y{utfI;tE))=hcDe(uTA-sAI+ zKfh^y)Z9B)c7Hcvs2I}>QWCi$`hkWPL`48e8V&Yu3!|<{8EFZ55JONuyetSmD)DOv zjwcb|!V^z5Vgut#)U{(mb;g}jCPG<#A~xVTDt{Uu)zxP5k)vW92i6+R3T&3umQ*CC zQ?)7om3ekDw+D?jaD);_hSeH838fnWtG$IG-@(J+5BNF`Ghq6jS0@d<8lu zSe%j#&RkFFr;CSx+xhnKQK`2KWwZSB$;4Sx`{%Rc-)>1Lm6 zURpxbKe)n)pT_`kvG3p@fT3{Cw^731M9X;IMI-g!J?*Q_0icd0`@31cAUQS(3L+J?vA>pXIxku~rOvRWi%O1O2_t0CSWf^2Tv!D) z2zyht_nFp*q8We*lIw8YPWdpiztGM&5ud#DLR$l-W17H$DnVsk+*k&D%4IgP2p6l>V4a9M@E=n&=6$;$&f~nZEU-Gv_y! z5a*ERC?Q#GfST-ZX82Zcw7Q96?9!1~@oD9+b(UXt8{Oc=Tg^q$g}s^jYZDvHKDh`G zF*Ptl{FA;+Q(PC0sUBQcnkTq+v2F%#`%Y@ z5{-`EOdw9QT&>f4BPS}W_o=gBwJ~yFXNUEyg5po-LAVzf=ciE{C|wCU9yBZFQ05`X z!ZANEVcUcp6^WF4Ymy(5+S?wT%p`hv7<#<9D|x9rDDJxK8NCkFTXf4&uoAC-OzqpJahBIZ@!^6&&yXXpR(}Rn|0cfw0uE2 z_iRy-(nh6$9TiFUWIRXTHJhMOZ;^!)bEX&3!l&#M`5Zzn^F%d)-N=K8qY_(=?CTXNz zsn8dy{AA%T8N(K5wa`T}p-Fha%RyCGOErY7QHMRG&VF6fam<@pDk**YvTAkZdYE`bU$ES5QTJ`*D5 zVP>&RZaI+K6@$+^cgJBD;{#Hh($_u%AHGXJua4Q@@$L)Leh$N%c9`A3cz<@%;kv6B z=DQbE8rmMkOF5es-v}!R?7M7Vvs3*_BnfjvX;ETtc(&$}6?fWQWt;3fT_#s$PImJc zM1+Fd&BG8@h;r?T5V+JU=$I^!z~T#WqK!f1m<`iWnb>Au_jo03)7Oo@mz7q=icfs2%;Ds?_$u|Qw0PDxWg~K*=x+UE{FmaaHo$Ssp~HCBB*$#d0+l*=(7Bj` z$cy!W-9`6bD&&WmsblsrZ2b7WMVcVi`S)Lh7sCh!XrN(rXQ zGYXL=6y5dTSu886D47wZ=K>@@GIEZ|ATRT}e*ad!@F3{`cdfa(&iUBt$ZWI$P6Ce4 zg&out11Gc%^B}6_q42Yu&jfxkYo3y+sp#Y47V)1nuHI4*COER4P?>r3L2e3GA)k17 zN>pZto9O_kC+3Ne7C&Bdb07`SC9Ao~-jFeu{O}GyLO3sdsHu5j-6@+D zG8`r|8Ih)wc`s06Q;6iiLP<@cNH^QcwR`h(?S73JpIR1fy5osHN)XoXrD{qa!KMIT zHvZKRqW5F$d)K!9gC1ysMq}bjIv75QHH2UL5R^OOQl}wMy*iZ-Z#*9>p%Fl+(y5UOn?)Pk9js~74ZaKYQT7BcsiDE3ydW0`q+!j!a>Sb z&4Bm+Bn!-)Vlp~2l?Eb9XQxHlu#SU%W)(KJKNA%hO*5)us>^KtBOku`=N9v{^jD+C zm$M57!b=Do`t~?IAoy#}!pSno}e@+j-pe!r{`V3FzIiG)go3GN|5}NSBXV;Sjut;43}>y^#fZO-sz+3!Z%KU zgsfN^8FV8q>?{!9>7m`Fp92aKE*SvOfvvg|ivSfj=aw8fD#2?<%)6BH2j-fiujHI{ ziZx$BtyeQX*bAiYN65 zz67FbcZlMrPsMWlZncP{fvDG63XIGDnz~(}+v-22Zuj3>*ZrTY?)Xpb>ci7iCg7ic zbyYb~j7qp$hz)yu&a$o)6jBJ9>pIzkB%PIfseb9!_J^gYrm@*=`T;D7bC#bJx)VhQ zJ>1sKF*et-0cWRLG7vU-gehn-7`}DyIyC+l93+_Au^?H&XR9)vH9FF6G5bUidz(a; z_q(H1zgC;T4g~rKCny8>;O5|rt#M0h{h4f_m@RZGpBEO(RH7rmkzWdI5IC!06Jb-- z;HYM)BNW}t2h*+{lbKjopIlr0d%OVx=lHNMl_Js@whBp4lj`oNA?h}--!BSz9r==S zy@;Ta0INW+*5dmku@xE->c6u{*$18+GaJO24EwPb82c1W>VL;h6e`ZWn|r%@;CUSH z9GMl!uer9s6VMVM6lc!}Gb&{uJ?yRrIACiPUmHEwSXcebl5%#MxN1FTA|g-G>#g8< z(z$e^;eNIgbtdL6k6s<*OvVw+NTwh!qEglpblAv!_}ZYnSqI{C46e-hu9hurgLH%t+S6ls!~H^p1SL0z}0*J;<|mA2M(4C|7SDj7r<* zX)tKwnF~{W&ew8K5B_mHxIoZAqQO%Ho|OeD8m?;4Y=AuOYX~6FICe3jJ-w>?4HFGCrKx zf}S*?ssK-|UpYu2WC||Eunq131rsvPxK%6Lk!q5D@*n&n8uEJHE~;~jmULnvA!W;u zE|f=Q!-B8-F|%)$Q2TgGaFA|JSlJq_(sDj?IC)t!Kei{OS?S3UBa}0(OmI^OsH!3= z;?sXfOu>4(I^f}OvYiKdf(aA!$MDoT;j{ z-srZ2&(C(I&R&H}f=a`CB9_Vh6THz7@O=40(bZ#N>hMTF)~8FBh%=n5hSrYM)eO7p z-P&-B{gUkJByjOPCN;Xraf6$zxD#0Qk&KCW=S4rQa`Ta=V*-1Ev89cEsTJ;|vSDXGbW~+kl4gLsG>lTEdqN%sfl=*~??dfz-=a30g}>(Scje{m z6Lbqt2)+I`>v+j^#Vn5tM8w`3y*1SOh^l0**0;U+&&FB!(10;g%Nd2nm*T3j!gNe& z8gzTcOTfNElT2cZbu@?{b$7m%r3kg?UVGo8K42oyo|l$#%j%|v0z2Ez1Zdj<3O!h_ zCCF;F6h;K{z7e*%DP@ZyPjO4zPoJ#12<3M&}em|&Bzy>Y3vTJQB%yV#dfHeMGhHuYK@@3Zvs63nDxX&Qlv zOzr^UniPZ}WOeaRm^Ej@hLn#VK^zE7SXzB-=E9>CfA{IB&Y#g@mim4&EFJr6`4h>rgA@&|@l7(o}ZFJ6&#ci=GN_xPg_!!Z%f7glCRcdm#2f7S?XkF1N~~QsGtV zZY`gT@FiU4k-OgOpbZ7DEOva;O6*M>zX?hf5jjf8Hp!2y(u(EM(RyPo&UczmmB1W* z>C$_-;@x?@BY{&T^(UM~<5Oz+dqCB@LUjjg)QoPCYqSG9IRa5J7OIYjb6};MU92Bk zJK9)V8R*P*OXrPjM`KdcCoaJsQQz4$=d8B8_4lSuE{DIMn=`G&eM%cz6MIwx30sQtAx#C7m`yTA=9@gsC! zm!CO?)#pzr!*O3=G?usd``Iic;yk{0tFe5R?QqGv96Pr@u zs%Si@tyr2gkhdUrJVFZ9ul<{@4AA_9i7sU-hF?g1P|X}n_>?50pcGe}ST%P$ZkFv8 z+XAi%)6x$Pm@P(T<0*=`Dft0zkFEkzo#I#f1gToMl13eS^T6|T%|v14%wd!8los|x zC1DO&;#j@>gP{*M=!cJDL@%_NXw8Tg`zEt3^vq$`on#JYUArMBY1 z>rzi;(zot;ccIgLz49C;ytkPP?g#A)qw*)+(gTmo^oo**oXH1dxv|-$+zOq-!^c6W z`%6B!3ky6YKiUd@MYrhw(A8LC?|Mg;9hkf43GbBVizEg7 zl+#<;IoRCr*VL2`unEI{cm=M_!jD|DTnK!fk zEIDDd1^O9(PoRPY{oh`}_+On${97g&|HUJ?4G?BHby`ZkfjU*8+RmH*Q|j1yU|Xw+ zms0FU>F3K&*LbF0UWY51lu8TBPBaMKnPV-O`HKyoct-k`urXd9I#?F`oOEqu{T86aSar zG!HRBTcf30+a-_s1jHoq;luXLhVV$ti0A|Mp8~JP-0@}esK~uTw_Zuf^GD+=4)8&&`gd(Mn$$gHn7L6`2=EBY17*OfO|dcV9$yJK|!cNRbCCu*reG>L0(CWCzt=hCiS%}sNPZ1g$| z@K$T8-13+&xJhx~j8vP48kj_{2GA5Blgkvdgt@Qa43-%=?$*Y-JT3A z2`)zMe|ztPOlWIC)g$T6i+~@%NI`q@Pgc&tN#cOO0TV&Npy1X4x=ymDUqh_DEs^L# zyC&uLZZw+uM51Ork$AG?=pMzS7~+GhsUm68?1WcE6Zseuqjz&_QM-u|lSpJrpv4U^h^!ahA@HN`BrGP#q0N^2h| zC-&2>LLER7>J2Oc=~Q^b7K$;M8sPhpDEqNj@9R5rPMdExWRkSgOdGTo9_`R*$DuxI z0Rq|(nrGWoAFMfZDTswjV(zpR= zOvKN3`b>u#4b`UHuh*(6`8s?Sz1p)&;HB6Fg`3&<{h11xa43bmMlb}~AVCSrDzgp@ zHaXD6Iaw|KxF+iJbHYBgr#z~JYxh0Y!3Z~=h~^KJqYf|ws^M|kjrH~Gr64`!PrIHJCGpeJ7C*AG4Hmq}2=H7DZXr)r} zgz<@^r(Uvta&9fZ(tLZbW{H$M^ayXpHtl|0N^R7$>g85n)zId6*@BV7k7ct4-ec`z zpr-LVcj~9Ccb>}X5V($#XBJhDypV9(g+Q%|Pd@Zg3>1>~N$&2&%Bi2O@M8^X&r&%` z42fZP;8hxQVHE<9dx0hr!a<_4?V#9jNiyo%n1;>NF4T?v2O4}+v2G<) zhxrZu4!B@oNegW6DXa(tYugCKSPyv?eyAKMElim4SjxNcj!Wi4yjXuP&%U~4Jxnh= zI;*ye)In3b5$H{XlibMx=Lb-dfl=4r50u@lGWA>Al9Vz%NB@xDXi%HL_h`bL{zhW= z;${77g?S&6;V#9Pel$qOa1_qfj}#38rWLn4@W?`!EvEeqhNMn2Q5fWk@5tBnyuu98r0D&f1@ArD>1;GV<_PeXc;6@vB%*#P9&cuGPaw_0*3EdA9}2&nOzt}ST=|Th zePoQ1arwPVH?#e39H_hb+NkJe`OcDqh!?;N9II#K{y;lhd&}yoRSrl~cvG89g3h-Z z>!hGHek=rb&Qw#<05;eU2|#m&V26Q;w37HFd#n5#oH}`n4~kQja?u z&G|~d;V>7hm1ZH-&=YB=0>_B`32=P%L()PQjI$_=ZthG@of)JK&TRSdXi=9hQTjbj z{N}`Cu>9eH)dA@+)tJk<^+x`1lpE$1XsRYoo@v8YsH~2G({$3X!~g#BX$QedQva#Oo{Px^EOYBZx`apWs1f`JQq8M9VxW<2ANV*C5E-NWil7^D*DUK~ zWD-Zy6*sb|ssI;pgzgTN5OEU$)HL#K6dRO>FIM(0D^>bo`Xej2$iYW)q-sj!`}BH> zr^M!>&xUJrBBUTk0y4YH>7C&;Rl4HPaaapV4p2zV(4}{hZEenReC+EuI4Kx06Py+X z*BatZTGO+ee?v_IcGn}r8Y03}|Fr=B6+v@_0DnzOOEHGs>#f8{ z1o;|z0#0m&vf8CYKaA#)(T_K2pD(XF!(s-94>wLVy{C@wJul_Y> zXNfQpAQB+eAT@AGPI5YoG6x7S!5i+QllF|~ruWkL-&PcqU&%Xj<76A5y|r553f28>|Ah=b5^L zy2sEh$|yd%@mF;_Z@%%BOj)ulsVT+fZ4K4@a{!N$YJ}yLXkANIz2-$lS<7|bAfdiD zG!=>lH4d^Ohj%sYf!t>^>b$nl(N=>?lQKT7gGyuj+MS(U9QLuZ&ruu}5b;>DIsebI znDK39*I5%l#jdbgP4N)3uO5Gz8*{8(24sf=2gj41 z%03DGaOIvq7pLQm@t$Jyv~TVgHIm^)S-S&WhFVbkgGkAnzPq2fay)kx{dq_)d{gL2 z!0#-w$NHI#`G64<@$e5Mt_}H3{(r32`EReg_iw3X{r$by}jH_+H&C{jSy zSO=m60ZO4{wa>tS+N@(xX%&1@j*!orsvGcwq+^=D@St9w$^FA{p~qjk&nd3>Oj;3F zG*u0ILHqg7q^%GkGHey}%Q^NyHZ(7{hiOsxiaN4uJC;jhqR|E)e=|tCEYUwpF)U87 zXZPBc@3GJ}F>ahZZM`Y^)t~CM$$Evk)p^9yWqfEsV)hc`$8qZRZ3mfwweQ2yGoEM zu%e{spuUR?VH7a6Aq)Z5&L1VBanPka+l+X7V0CuCns)!KWHPlZ>tr`pg%hYO;&x*l zare^(;GmdgFe|H{mpnTkb|z5JneF0@4;LPF z!-^f?5EuCjvF43e8Pb&OA4}w!I$6rsnd8LQ{-*K=VVbLXRh#?sdFqhkOc#-#Q~+e3 zWXTx%zNxO6eT;;%A9P1T>18qGIq!!@X`X54=U2^qPTb_|)si_D$|5J}K@GrjlJ=9~ z)Nry_DgfelXuC!eX?&%h-Z=URuIoL+^vvgbcB-XF1LS|##payZw0fYgYkavibi zTA%7Ky;J_tnj#+4DDVI;r8Zaw_{BLOQ*7{{cu;=~*8mwGnCQ&uXNM+z2n+$n?&e)u zVn$yGoi+hZ^O#{;;%?~TT5D8unyvG@^ux8ng)O-jUUTv+hTmuJHnWKP#92EPL4G@i9e(`-$(p8QSE+RMOI6tfa;K2*g(m}MD{WG5_- z&YzBPbJ3&ph{v6*Ncts+D%ufb7KL?93`HFn_(6vgyxA9R{StDHeD>q0$zu2Uve+`* zEyUvWj!j-?m*$%{rrqx2^iD>tm?2%zm#QwdQUb-oAo=vVen^4s(61X~c3y1vC3;!0 zF~>U)6+1;?jj%G0bnhoyua6I|nGeKPM-0C&>AQ2=zU&-f&Dz^%yMkNp^~ zrWE0Zf=P$vgKCYbB5JM4CU@5P-raIx&yfzZ5}ZDR`wrRBAHRfx$=F{Lg7FdntESAf zQD2OBA{8Ae$$jTXbrehQ4DkfpmEWw?KbvcI7t7W zbVzAH`ft0+7JZP%!a9{NPAR+l$=2llR_dklEmPg;`%7tAjS_jd0%kHX8o`YcMcNJ> z9%xbs3^1h#6*Q=|2^V-s_I7?caq)>DNrq*w>MQ<>*gWJ}GJoV6Y0GTyA`l$^T<~HD zpFBCKnXafeMSnh?=NbHk6wZ_BV{Cyw{B0dR+0}`yOnby+^LWM_Rhw$VOIli791&jD zDv12;qpr2VK82?W%U@1NU%8QDDT9)R_&b=wj0CI)SY*Im`DM}_w?V&3mTR}avN)Oe z=(wMCH6d>)`h|8xL2u<}Z@wBHPk6(z2oW|-X2P1%>Xx|H1CoL059J^Gx|FUK2Tt=_ zI_vBU*#o}+P`GRVBN(?|5d9pvuO(eBYVAj)Y~9f6;o6i))%eBGS&4m`MVhBa9>1hd z-e9&nC@~t)_&m@UYh6ORYDDUYJNpo59}T{YJyF^6@$zLPJIjiOq)whwuavXWwPx8u zd{qIBlIo*a%C9j`6s5KqCW;SHBzCo#u|bLFC}k4y(-3Zm&eWv@$r2^Cy z6L~za@O*&g2!yxQ&lC~u*)CR94Eq(vZ}Ai#zLvg}+kHVXlxLN9D!^4t^X*ln1{8Ao z%{z~0ZvK2hL`5I>w_m)z_5`z>+n3aYuPEQ2v5XRz7#MVVjS$fu zwdZM|^AoCwGU5Tc1q@-mu@i>Gg;n^hSp;?$(kVX>D5wc~X0>HXeSJ_jI%}S}a837$ zOEv6cwBEbhPrIK~x*?h@&9LYe3n0@B8hBOStEb?r8?;l4sour#iU7%n{cs~W6)LiSOjpP8-`izjl91FknSF2gqX3*}#qniP~ zSP4cl$wxX-46+D8r>NxTw!X{BvDU|BV-2d551JkwZ~P~5cEEqAYFyb>`L2n&zP;Ev=c|U7`ECqt1EoRs zL>@*W-69V)f+b%^JVDg(w=8G_U@3p#`Joo!`Z<-RHjCkdM8%i!mHesK9vg@R_R_ye z99+iYqdmBR&DH+=CsxW7la7LDw&dfKemu(#HzSZ-8-Y~Cd-G31W-YdUHAw~I*$Fd) zUu45XpZj0a6GUC>=Y=k`X7ZFjyF^C4^eC|Vte$pK-<|t>qI#Ea-5wUDuGF)p`-@y& z++aF01;DoOA$wEDAPU(DSY($FF^|WXaumOXSe;Wo9;NYe#-k5N#@mWY{p-eo4Jpo- zMV%x_vzxB?uGXvxyEYiBt~UJ|BSR<1mvUsGJ>8j9(@=V2IreQDcs?Ze>kPAs=6k+1 z>Ytv-N@Lq>BWkpIN8m&@Z

yn&*GOnKZ7BR@s!ALd*?a`n&nK6-VldNYwNP_d0E z2s-NmdV@;u)XfwKG>$4RzS^`yZ7Qju$3^c2&OdjzK8}(?eYu3C?2XUZr3xsH4Yo`x zO9Hk!q+L6JzMl;*7p=0lPx<5qfiW^X-g|*PVBcN;E`1?}m~9|uGgXQg#5P~2yon10 z3Y#q;hUf38$-J=e0Ch$Dw8X12)z9aOe?2iJffDqSBkE^(68DO7V5qlK7e_PClLdOE zT?P_%pEz@6$=zF#qrY1PlJAdcRCA@-pt?|}8-|sM16iFK2`ZWTb|JL~gWnl`f*+Tt zc)ai`&WaQtRMtTDCTPUy2si?@xJ>aO?@d1Cn|8{&!MB5heeUdP`+iu|Oo>J0?g>tz zrQhb}MmkS>Ma$=NNOp%u<@ALS~Z^*OL{k{#h?2~Pb&aPmpoK_ zsQF|NviYUSMTlBmqM?}`ucVqWTLU(XLxS<93qgkzPO z!M#PRWz`#IBrWgF*sW` z^Ed~az=;(dh~hvGG}8ejsFgbVJ4-xZtL!7wxq*_>BM8i!BS@f?bg+au615(?++Vky z$zLF^1bAwx1XN<8SJ1Etc#Z&@8F_#s2&TH5}S`+8i%kOP8ya#bB1Qd>_=B6k~rT$7dp7^jfx0BqwAyRz2uTdo!tr^ z*<3W`DY_)#YE!S_fe$K%-*hNU~?|hkm+9o7xw0wxow(iEiaR=u8XW!I_lRx2F zRyO7U@TfIn_9H4$Pbb&FvmoK-z*}QEv$q`0mj`xHp-%&sjP4`BtUEv7ZZr8h8EJmq z%s%2;JWRr`!D72~trt@yVAp0Wq=8{_ags%B5<9fbT0W|^@ARIgVky@u zJ<8S?^D&gU@OxYP*({VsLSDo>Huirh0A~OuaD|E)b|J&)2P_D>)f6zH`sCpPoC0{$ zHNxNJb8-}Xd?jsKdFZFPygwV8q{qtIIE}fd;T^hl9&~lR5}{)naRRf5jurly#q@ho zJpinBe=5wq#_)UcZ?giu4Hax&8=NoD57k4&jmXp#?;JPb_v7P}2Ic3x@5Tz68-#Ng z$Lx9wgdkZIFE;K#^(iRj_?*kC<6!7Lul~Oewf`uk{GUdg>tE~N{-6B*|F%&3|60xe z|NivVRR^kC8UU$=Q2<0YHv3b5{2x776qf86K+j&oM-8=S?VyJ}wsWx@VC+7=_De{I z|Nj%x`9Bh@7FyUwuU~x!#6Ek?7<;U;t^U?Z-jsC_V8jl=KM64T!BsskggBW!*HeI& zb;vF3(_>658o%ZJ^P+bsdNsuzu@f+=_;Xh_|NrRa{L|~@{Lu_o2%lB8Mmj~d0z&0t zME*%N>f_P8uR3ys40M%)y{1x^%rV1*DxYO4RQE*ZDYbLc^@p(ddO*fZ@VrF{XoZbC z5t)^Q_;X0oX(siIm$pZSKP_22VCITu3*zM?(L+h$=GsrA+6NED2EztQh3G4wvA=}9 zi`zMYh{=Kk+=0-}06-lVf_~3p3+fmeZ(8&_i+~N|PT~gUBY(1e;$m(L(+?yySk)*>Pr!;!mI$6&8US1zw-q zbO94;+z1@JB{q$pB0x2y#1}NZM0-0G>7^I7(Pl*-+k1zdN?q?HTGU@qJ7Zvd%xg0D zMj{lVL7MuV#ejzb`YyY?;81!C1>m)|sa=$=NI!lK2x!i%P}D33PkFd|u6dSyuSlOE z&NwT`+&Ad9Od3vcmS*=c90j?XHtp+ulk%USt;WvDD1v)pCoQOAkR*+t*>VXfkWJUD zAI31{kiQK-fPN4`mn~ze`+@yQp2u#5^>sDLr_*oT+VkyZR0sOL5WSB67q}?uE39In zl>x`su5N)(#Q_XAjC;xMb6G}_iMycuV0nOdL#oRyV;7lps@b3KL$})S=h#g6KfJo~ zm<0qAW=iu1Qnq3AYrnHJXP7aM{+$K;!yihd3l~urql2C?n{h&6D#{hXR-XL&Jjo#} zD~JL>4#Yw7Yt5h$fNf(qb-=g|k35hJZVkXrppKGjqrLbdt8)=fx|W~VU+rdD^^>(@ zzt`Ja%RRi1FO!x1%61xt8qgQY{zZe@^~ZnzTXBQze~e}HKO!*y?Al>}I16F@MRW-P zLEEk{v`g0RJ2A)AUwh1A!oAi=uori4*-X?Jy%xLA*&B$NXf=_jJ&FYd9=-`U$?-E% zu&W;f;ozwFi0T{brif4uFFyRh9|24O5!wL}f^%1Y>GjVogER8*>eg+)c!2`^9{xJh+!UCQQeYW`_(w zgfV%bBJvm>@ub?`ti9<_xY2MUJmge$1T+3N>Bz^eX50~V_wswi#)ro=#kz33EVl&b zxL*$W;5HXe$xsi(C|H`Duv`v&*Lxs_0t-b{!CNttt}OxReY*Sz-JAlOJ83)W&vZ=r zcN{X*?7n25V2?=J!jpo8~Z)E@_>6uHh^3h2thqGb$8plj{wA#4|(sP4A-4g z*vGn}!z%4g-jm1knlh)IpTUCK<;%l@CRs2O_4EgfEZ~XZh>b;4^^ssgRb=v(y3W6i zN&6`gh$FzT56tyL-pqnU)B95%6~y>!)cE4xCO7|}9PZcu(f<1<*Z%v%PJ#7is^x`?OJc zGWW*iWMtNZ&k=kbEk)N~Xz!Utx#($L{w zUd2sd{Ou0g->5+}+In-E3;Ck-;BJ~}{r)P4-y%kL!;hu*aJmTr4ZZ8=U)bw25E`#v z)GEn6YyYebCQ`+RzGfGKU99&iEnPP`b60xKAceIHeuDT8HGtdIqzwI$WvTQbR)d+a;V&%hWyuWn3PrmAJksYihu6S~OLYMdnIR0X!eBbp&aJ zvkNKkc z{Y{;W^rqe8fq8h&*i~IN=CH0J6iYw|o#S>(-&jt4_@yAnbk9+Xy}88>hUlm2zHwc( z*|H@#_#H$-R#j2+wB5xKrYK#i4xrtpVuPO9+V9;F93?r+c&@)I+hyp>a}?j=jC;k) zipYYIFQX^Ahz=QmAbpkbu4*kp1kKuX5bD=^Ka@>=y)xC|6I^oP=#n3sv%7SMM>O-& z$;ev^5(?dg-=pUJO+Bc7V>L@mVLR@gYZYL&KD4e2NDpCbs4p{TL90;~))jfh#)AFvIDmVQY&_qL&hfl+x31fGe@X_llp z*c#%f&n)^eiUE==YEc4sWd2l#{_U~+A60Yy51acxH_rm7F!>hH=qtyy;CB3LF*r$0 zC$muW&?)9MU|Thdw5Ny=w%Z`550v?aBDbVZ{+(mn=2MC=z1zP1H%i9byR|8LuqJgY`~w*IUeW3lF;=S(xoCe)6#zUym#`&8q;J?VD2nTFgj?rP;Oi4hy4aiIT_vlQTYReoERs#xTPDQ9-F46{YdcaKf z!V&rFr|ai))SWAn_tgC+yPH!XENH2DA@`RxE}p0&JjqV6B6;8wxq2GJ$lGDcYbPS= z=IJMTi^UDT-9NX;cL<(culREfFrUJ%0@9Bq(&vrrb_Z}+;E!{VyC6Xh3~rrth`#uW zKZ(?R?TjI>boX7uk78JSDC#gJq>73KEq71cq?|*-LcmMD+St@D-{!nvb*I;}#qaN7 zVauFuhUYAAc<=iqZ%B{}Y_uen!Y;YRl*BeH9zJG$o9$!gNo^~_J2csIjV^$(+NaTR z)|+US@I5y5nFA%B9TsQk8~_hIAvQ%=AkBZrKO%JQhud4)bJvn>xMQjI+RH1wp>Iw)(sR z-O&iSQ_!8}>RvJy?z+2&f4lD~Dflg4l6m8mymT@LYTg!r5d0Nu`b?@GKWNp9rAIv2 z^W@;;I1aY=c%V+^0W@DwN1^oIMWi$%uIbE5K(_e+owI8!8|Q82JOPE6=Z)5)RD)Rrs8ic}jitL92#jwojFNDK=T0d`hN zlLoX#fl*P61f(XvI)Ze3gc>8HjoH7xH4Vi!;NH)@ zkpuGFor#bNmL3lHyxuew2Y%2bz#uBN)^+shMh~UR*a(jLf>vK%6ZDUdPJP(RAq(P& z10MlBX$A6!IJg^JklB|moVy-4)>0$JH+P^FY*5Bhgu(Tsh;=s+kUYUl&ZK1!joG^pV+A*(Y;9)dbTPx=4 ztr(_W$qoZN_#@cw3Qerw4_g+XmvGjYIqp#Szl*%Ou_lSM0kHXcc^4>+Xs_7T1K-Je zHl+os6#B?EDp}4EC2EtAuC2bYhQ-XOM{GHzJWM&)e)DjSv{%v zKe%#n%FSYa3T*N35Iro~aO*7Ppm!gL-P~`3(gv-3_?6#T%8pj+fGqA14{T>U_IH+Z zf;+6`KqZqU_y4g5_>cJcZ?X{+lBnp|6;ydbU$Un;n@b*}GtzV%DgRY^qZ%i$blNy> zK6u0*VVLNn)lN+*wwBu2_@zb^mG5&}G*ECPWp z9Ee}+k>uY@k5>X#-ZA@(^%~pf0cARkx4mjN_6FgdGN%>WtGyx3HRhh5MQe$dpd7za zqqm=8^8*8Hum`+u5FB`pCNf_AV3Fby)ns9G=3-gxn0rq!5>MI4#1gP=h&U>eCkMImWkHpdfKD z7n@~==0Uf7X;MRLSW|w{tneS4IsC`%R&3)2cFWCAsb7qE>g2Yu=WdkHeg1K3UAqP}N65Z!!Y+Dj&MSJn23+UcI29?rP^-7E}dE|yK4$pw&s9ET~=ccBPc zP~Z>!Bx|GeqY;JfCf$<_fiKE99WI+mOWYd9lF#?O_IE!@*(Nzs7VI|m5{ud?HplV1 z-oS2GKaOJ^($rc2p@;(9Ksa|6uI)Tkd^M`$gU9Th1P4I$saSDQ!O+_uJ|xJnzuIg4 zs0VLFJP0B}1MGb&<^cZ_lnnH8R>8u3<5Z&fa>d+RPfo6rdrulQ&uU8e*h_(R+6_2+ zE#ePi`$;_DWJyi`gj4za7BMrOl?LA!^c{Yc1@x7(QHo%9Jw`Rp?0S47aA7toRNcDY zpowz)wP)kLkGEe3Kh@3W{^{EZBikb&>9t4mseDeY z>k&P7PcOtQ=}3dG(i(i`Wk}qWE{&+%4$GByy6HS5{c2vN;o0%^kd3jAA!-EpxGz95?)C0Ouu!{y=#4+`<%7*@9cZ-K6n3Nlt_~I zopWZ+=NZo!s-3vomNQ*=@Rp_0ExWv-hF2 z(4?RxL+C9jXWQc{b_zsgztOLyDSWVK&_x*cf{jTGT zHC~?yym#y>^;5g$wHHakNfh`qHQ1bH%D*gG=uUo#>avQf#r1 z8h4VPGhqU;Kqf2km%fsgjN6y2Cqqrz7Z^Yk-2c&x=LZ(${Y+>A#^QSb=CK@lN-?DI zrcYo}Fjs)fov@};o4ItEAKYbtt#3zh2`Tb2eXm;Don8F$3U~{F!7QdX$Wx>JK&V%b ztjwbtw&jSSd};Z~!}^3B<6mnZ9B`mxRqy59vb$y^4%h?S8X$eu_J_}hQbJizi{{pG z;EQ!P1k1c`KMBSxvjsu9n!^y5X$fq~iE`Y${Z8zH(vOli)@Pr=!Yqc8qLc1AahvJ1 zMI0x=q1|x|k;6?_VV2CNrdu_)2(6Auj6>-8^MOI7f{dSRHyf_0gC2Km8v%{jcT@9c zC?AHevUV_F6#KXfR_Da`bqNhQtA;2=vx}**^V@L0*IzAu4Ak%%2|ih7b&eT5UYAZh zOO{ko;eE#5i2!Exz_5OQJ%V-E*o(f5nbz-hGAsnRmDjPKY-oEX*N3A4&j2!N{g>*- zFXOi4hPU!+Jx4`;qJ9- zFh1~+4Z%zBM>%*sa_B$Y3=t_l&E}YNmYocXdsmyRcrGV(X9&RZy zFtm|SdfSBN#pd)0Tb`MMQUKS&S3~i|A;dy>f(1k!Ai|A9z(nDFYBDwe z4rvH2@X_ICk+V}x?%NwET5*qC6AM)7?z!75tLXdK6W&?hrYmOBKi3|ZO3XWyUF<%! zPk(tmqoeaG5NoAB=ye{RS%=lYONAD2p>zk7F%`3*^%@FbZ719|_U%%M(;st0XilB! zdwZs#@0AU^R8{3xnadM4C$n`BJBPvcWe+?WBv2~V%u=)*tE}B>AX(5463fwrUy+zlieR~nAmac>{V?H!jLARq}0W#>pabt=X%`%ZI z255A~=LU=eXcl8{)wg!0yV!e|;-t0JrS@;=e42BR)lgljvAX=ABHSgyWc6m4^v!c7 ziko3tv$#3Tf*V*pa0)OHCJIGirA#?;$B-*6upRo3BMjQgzg-W%P+M^`-krzb`(#k0 zX<60QQtK^s1$N-jxsUFL3BrA_ac~~YRd^(VQe3A&y+~ax;&Y64j&sZyaTw~w`5`Nb z&ue$bnCRA)9v0_@Y5kgVUUL}~7bSC^gL0Ed%hP;KvKL}l^c3y8IXrgh-o&TijW4czA4-P)?J7&U5f$4EM}u-Y-2wMUYm7fPc=``%mGSS^ zuCl*9^x6ZD1t15cf|-|Av zKEsigk@5DJn*DvZ$&u=NIw{wgUbd{)4YAnlRA?uH@z9LGOl5)MQ{UJaa(Kb!F#i*| z3M+TsJ>U9+&8AqgAbaP`1ys;*3h)pw0-v1)CwU@(v7BCpB82i&%+YW=8;2IG~))!+1VRY?F2 zQCbwUO&@aus%Cngn~l_?o!I(Vyk*k8+^CPUN55NhOMO(R;H~$1o=$IS=6i0=1DFoF zKuLy~9EF3PU80l|0v&11W?h52l8=yx@c2_YOnsyu~_@E zA;Q5x&9-*Ck7FrZmUh}|*ygSzIIp=8@(N-HLz*i8bmHl5nc76|`rbv6AEU1L%1<8S zw~J3~1||tNiM!)J(Cw)rC+1UQFn<{Z(1G-?gT>T+UNEPRdCDYDrh2Rx{_a)^}-v53nh zE7-dI3PX&}-;5Gg6Ha^se+Q62@GhW*f3;;&ERtlV>{X?m)2baW{t!$rCtj_u9}`Mhx{+H31x$kLh`!YgsaumFPU{yVS)4 zzP$f;*X2n@26yiNwIaqNxhT}=_<_YelHF0PwI8wQVSzj9V)UtrH5hZ{ekgQ^Izzx=zS-L!I z)TB0y&u>^#C^&ovjA>LKs|US1K>-xzc0psP-uaWv{QQ=@S6&J`=%*77G<{OM5N=?? zhNkx*qLRVZFAiSPgnaTgn}Z1q)>M@dV>Ts7oOMN$;w?7?AGrf;{u@Ci99E2dP7GNM zvP%H;67GeFMQ^_d6DUSD-)uHNFRAW(#pDuE-YQpWC#*i$i5LmKc+n3`Pn@$LGzM(L z?e&L~31`2(xbwc^+W1v9dn*4+ZqTgJ12gQv5)`1Cd=4Sts~X3polNd~qq!5v{#;w4 z!4kK`o>R6TP?}! z)o?7?bXgV7*p6tISABwQ3m7q^#SUEDWtHwV@uTngMi8bSC#oE}{ou%5E;DU*KmdFS zJ)T%^4%oWy4p~dgN7^Rl+^D;IOF)G~lpW2LJxb`MI^_wbsgyvmV_s?3fKQafn=2z1 zRT=L(N}y)i`MDjOg*?a9ad0m#kmVnfgdl@j7SC(qjK~Cm__QHU_rB8FaW6+K zzeC#n>@{*z*Up^+qta}2Aa0|afk&X!HD9aF%=*%6fmqC*7#&4f-ENy$3ZAXqqTsnxB0s*;U4e5hT|dGe1OypTKW z;^%~VC-16$%U&@wmwlrn6s$NUu=00(DQzNQ;xii*kuE-Nl83$peAV7&lrYN3+bKG9 zSM7cdi`OtST0{bt2W~bFFci1HgJ=hE=w?+6ZLkK&}pLuB74P5Y%wTR;PKOt6iHF$>u2u7N^-Az-yzrnq*9G3J( z9T(rwD&g1XxwRDE>uucuQ+vH=?6E2O{1!ahw`*vLC8$hofP?jY6~=|!e@UPLE(A&7 zDOxgz3f&n)3O`hK7G5*j@)GpY+w&`|qVBl+iv|`IiJX}K2zJ|vgQR+s!)&+2153}n zWBYpgyiOAtSUnvAT{Tt~{J;w5&2*1dhHB{UtnLQotlcsJ45c)e1J=i%%}e+bqim$o zyJc6NCc{|*;4F;_?Yv1N#E0j!B6j4Ys}~^$&zwIrNoLA>3vSzQN(uLP!h(7Zz!Idj z7&0Z`z5RNUu7ZntyQUy~2#e3k$bZHBnnPU)Q9g+KVr+;S>>dY|^(Z4ulbWgMWECiU zdX=yrR;qEdkvUwEap3f%++tE|be}TzC`ekf7z%W0^v4Evi_|6rA7f8`45v_;H|;%9 zw0br5+vWNKTZ&55z5|8Nrw0ro+4&}2aPsVP$#2vP|CY`DHqQD}+y!UD5WizLECq1P z6qX=}Oe*Tp&@OtjPb`BW`lnwX9*nD&jxLduL5xLx81?m8Fa8h&{T<3x`x}QH+kQF_G)wxNS?+5l#+CKQ)go%O8Hb!BmF{{67WXuIi>EOF%by3$? znvv3nxqyJQa-!Z|q~ye40gmAN!9V*spUc9{rq7%Ay9;>yrT1(xeaLY==lbItbL9Z!;(@lL=tRs|E~fyWNG-5O)ifmwayX*JdM1pU)AZ` z9vCWq8U9YkY;bMaxS{?S^E6aLks)T{7DR*qF^Q6qHnCuiw>OrFaQ~`aO-`2@eQt4H z&`kaCS!h4yaVwl3kV}vGj!XAxp%iE#<*fGX0mJvpqA^JaoX($_*TG$3JO-6}GqBa) z#!UbCRaYQM5g0d8ArAs%WW`GHC1F{@;Do_l!M>y3uzlq71LW)o*Zd)-9dwXx&fsO{ zl!xsTip&=5soUkL^X2Z0#L07o5vY9E!3$nQAr2pwejSu{A#b>4Lg3JthGvCgjKr)j z^4%%J`vPAQBX8MpsV{T?=APlCRP3LICU+89xj5Od&N}e^e&u^QdjL_3(;3-2HDOkq z<|P@grQuPUbISUJo2{Sl-Zax&{+CYKoKfMZKxQVxFA|3NCJa--&0T@$q|}(T91%tf z-EQS*Ro3)k`*np~9!~@-HlC7lh99%|2Fb@oU?PwStq^i6^rv z!7Ypj7BaH;Q`3vv zYu~pCz?^vEZ}*)4klgOyEf3wYAJcExJ-E^Xc5475r*qc=pabaKezI-etSy;#N30!R z)n}|?nt(OdWYZ!jTw$nKR`%jt%Y@Ln=PXwF1`&Q|8GZ#MvryR}FUubjpcS1{7K#HU zUzKJAC#&DsF|!b|XNmjgn=}=Enj8tEj*W#~s$87}{Wh2iPAeUB1d1Orp&!OHg|dVh z#?Tb02;LSh%24aq6o}2|$>!MWcX<6Z@q`lp{uQnH3v?I2#R8m~ zsPoV|t(BS6AcBYZTHFN@VspBXlUH%%nD5Kk;80T*u*#WD3Y{e z%tx5ZI|4>%NQ!1Mv88b1(CUmqVZc;;Ss8k~HYgDBwd+^+Sv3MG>?hkhl~ycMxw`0e zzN2oCAHCa|_U+EiWW}Pqkx6tBs}n&viGTs~M`!ys`z;I=Y;VIh^R&Q-H%RiCZ#$zs z+v?vx>iycnGWS29Vxg_y-so8b zk5QQ`Y8&APSGM+-)#v>@UM3u1ZW*RdMfGklkyFWqges4 z#4N)2<#1t|Tv+0a{XnQ6dYZa5_R$MuY=n$WbX$gm#Q2_=XEB%R)%OVF9~)dgkO?~^s}v*6V4U&1Z#yn+JSKJ0ZGJhr=vj_Sdw9qN@;lQ?ZOdO(HmTO^{|+5CMT z6lWXlLSc?d(wx*AWDa6^D@OK1E*_;&Yr2RMe+?^tOAU4CJcE0c zpCT8AqPzmzaC`W-1I)|^tGvSuDiR>*Q0$zQCihAMMWB4pq-yI6zd_h_d7XBH za{Ks->5Xf1Ro6ASwunEF)3#T86-(Z)o+c^CxJ%dw0)GMlZQ#Ex5owFZQpZR zd-{g;X~UCg5@FATIywVbg6?25(V01AR{5CfxNMsp*`!JM5a%WKK_NzA zXbiOl%g@AZiX-s%MY%{ z*(@U)_hiHcCv-5Ccyegs16VWRpllTNgAq=RX-Xui%o|eYP9{G{R9DIGl&XSoM9x z^E3u1eVmdFrp=^|XMrSL15S+1)*G5Io}yLXxSiwCEhdVJAGV;7DhQJ zT)30&m?=)+54t{eN3ZKp7)N9q`o+luFm(t{lK^B0`PcSrC|Qbm>Tg*p{}S6o>;(JY zC7%DxzqyG*3|WxX{)t{{$T|oh-nCBn-IB(ozjPgKFb-fu7Xck>7G~E0N$nswSaNw zLlraZkDu8X;7pJ95O-klgisEiIPcN=M2Idlt55GoM1kG-&wAZID!Bjf{=fU||BzVx z->o12UmT0CbP#Um@ab#a8GuW#2?_d?K`qBhBMkanZk`=E5%u-dIbups!^PINJE}aV zY$oaj6MQP(y}czXo6=8qhcTZvutWAFyL^gzGmEch-_llJ;jy-eXCr41OFX?U2dM{@ zj=bR+J+@6`3)aYVu(an;y35wI4hVF&5TF#?)-(HMlDD3Dh_4`S!_Ny1g_71=8vw`bK9LC&0?qR7x5QJ$D@Wj`a0^?mnKBN3}Q zxzrRxO+lj>x2hIG9C{06ORP5`VVf5ua4ik;y}OsM29FtVR+Lw!Dpj_LT{tPJ_(YXM zxmIn@^^VMp%^NVa`gyQqt(&o67nne790>&~aInU@SUG#uX#>A|wvdBGweLq?4nc1V zm*)US^9b0+t6W(fFd+uOM>y9Zx!1GqFyQd%VN>S&lTG;COy77_T%Do$w7-@gDc0cT z;|$@?X;#~|YP){e{-BC3gK0VoEGhxj)sYf9|D7&_5{E{}FagknwDbkdecQK}VT;OX zlhrj@K9>BMk^+jU(G}<7PrS*snnV0i=v{@>!DR?CAJ>_I3{Aw%+kH1>^~Q&S7}S{; z@U+5d>9;3eC;S+=5T)G|io09PHhrj+2G|lMeCV-kHfVnY@QU0RD2IzfaV_}!S?IKh z<5H%l=A4gMXIp%q=g+-R8+7()+P&ILg(7qkYGZ@`5(IQt0HoYJH;)hm7)J7k=+AHc zKw5vitalmqlvOfFglr-CPc_+Dkr+>L+e?=g98lDmqSrvxAKH> z`# zaqo;wOX@$j04D;_N6vZdYy_4TK`~NTHxzaT_$tSDoXpfc%>o6T8ysnao9w^P)gAC( zxDmEp-T{iHH33t?ZTIwcLzu>a%x61YwYgXZDo?VqZ$COkd)h6>Cv{GnM+`*0mr(Br6_pKz^(vz-!pXX0rv;So*9XAnr>{ z&c3`Xlz4BvpAs%LK5&CAiKFrWk}T^{030-BKvd01YOs|Hop8^k3bilq+xhv!R8ok9 z$i{6Ge}fW#%P`knC!^;&(d*D0>j?8Ot2*l&Wu0+rFJ^9Bi^=IQ%}v%!17XfI1~fp9 z7>1O5Uiovv7R(Ti-@?~{Yjk~Pwl=`yWu1B&0B{+#AIz32L)}-PIGMhmVS?DX{hlpp zZqN4?ul@JVKI(D}3J>hX+IYXH*EdG1|hZH^tKIM?h&dh0#2x>}uv-HrFJ2G(5jZHD_qoc#p>9bOUxWC8IP z!_(%wVFL5E?mh!leCMO{33>{3N8h#`Njj*qGi&wri2~#8HaEXIE>B-S8k9u1l-dvi zoLDjQN-t2ZfG;cX2IWq9fK9UaJS?Yt+;Pl*Yu}T-oB@sZsqrhd_=aCe1szGpVF0*5 z%yu$Yh5U+V&E>wuCG6vg`SBoB;{oo0Qu_|hcclgcvf5vH=G;P?F_22hyviGJPuk@r z(N1Ww9)E^X5oDlYx#X11Nk7&*icgID<~%2$dbegJI@aVSDo-4=2A-Q(Zxu>_QLYNL zVB+Btmot_(`_A>eZR>lw+~xIhR^%X`Vd37uc&6Q#^n1Pq+_Cu!xoV-M_Y$#d-`_vD za&Iy)(?4!)gKAIaZVrep9kQo7wPtz6k_SNNzg6;UH>)d}CCVxtQ84Y|4H=l4rp;=x z6FGHZ2M7o*Q(E2in9u4EFCY`!Y(!a0V4<5*X@}Oj!uY`(ILa#(ambLq6Lk_`;k95q z-i$I_nH8pbuc7O%)s&$@7SFVChZW5vV(Zw%hY!|4Jm0?aD5c369^S4Pd}@Dy1TvbO z+PVb#*0!6up&_d-jmEa|tbQo5^?ju>R?E`;tPZ8}wP^R`B z(WPCNRD4S;9ioi4t2ZjiA#*kCWX7U7(BItonKi6EtZsK>$hP1Y7cv!P_R`8A)w38s``V!Pf@0)i z>y1cZX_p&Eu75Atd>3RZy^+e|v8Ai9zM_r57zMi`JKD1adP9mlTJbNjJ`rKBo%83D zx7bnNUb!srz5R{R5xiddw;%Z=@3y0-LTxjBL+ouA@)ORyn7_9K!FqsQEa2$LAj7-b z8U(&+RJf_1xZ_n(SN7m?l=l2)$ z22z?vvyd{ZBTr$hIxxhm&VvrFRgu_9n;wwkw1fJDMNx=8K-Wlrmt6fP)FS+!ksYEy z5VqSNWS{OJRGQ}caOKCJp1B1V!u-{t3C#yKu=j-JXlxYBUIa4(8hn(D|3AE+zvlq` z`QPeYpxiN;e-4m_?&kn4)qxT?*f;Jy08&8rQ<&*PSsdNqB?mAMRT%Q%y7nBW2r=&! zfvDSVvkkNJ3=<7Ld6uwzpTGu~z-qnN)up#i%Uch?e*U}dO8zGYqxUUKp`$E2mH^n; z@-RfeZ=(|CE2w3}0I(y&`SrELu8b>F?32u80OCASQ$A2EJ!@-rXzWtbNGE?WQBQl^ zd|HjeDg6m)%1JQqxZ9W<2=Q+(Y2sE3EzqD)-?GsFm;*iUSv>?O0K~WVz}v*Fpg=5{ z=fTXwQpT~M>Bit^%;k&NsSz`+qEm}#EF%OmBogonL~KF>2kNlMQ@(cNGvlckTIlk3 zy4mDql_5fNqapYElH^|+wV_17jM0iQ&S`|<9VVVZwZt94Ms+3y-cBF3K22~rcZB!y zx%A*nT~nmxiuuWM?H!#c5cCTDfUW~}AC7K?A=P78ws|aACuNG2oJvap7Y#U1j7;Yi z?&PHXV*6GRaRF(967Uh~Fr(>Cm?lGWDRd9!y?G*?A5u6Kzz!i=`g{Zm>MN>7j-Bw~ z=e0aDnN*VwGfn!QD1uYW+7SBd1z9oRk4arj8Q1~{$79!ivTbNq2A4^yc4Ye9uyto$ zzH;_bR?Q{{{W7aNB7G zWK*1d$n4P3kTTlQ{9r@tpSsYpSQ$A!)ux%r538%oLj?|kn>qP}GOMOkyeP@@<@-?j z5tLgURPcKCB}@gK=9zcytd+=JM;?vS?=@R9L+>sU{bVeHKy@r&KJX>F1y<%+F#r7p z6on9J^0|o#*ZN*5k<`v|ykC-0YR&b9C^t%Xn(F%NaHT>R!1tSB42eMy#7qO4j`tG75FlBff-!$t`Lk;0b<)$HJX`#nvODQi zg4bdN8gx-?#V*G$-GPJIB;_#8&pH97!k^b>$wTZFp%hGc976)vylFMRhi=4RgAyq# zjhnQJd<2r*jui=ZAkib>w!MoJb>43;`oI?Modd=xH<*F5&(PIeL2SVO=S8{Hv7$F^y)tc z`u<5L`=?e&V%_qQKq$$3>BZ&VIQvZyv{O=4vu7_h8 zvB6#I0AcI){k8FNL};M)UtEkC036-FwD#gSF5yhYIfuFXRY6m zw}z@3DJ0zacH3O}?l+fV7*@=QIK?neC3`Vhvb(fNJpso2} zGmr3E%YuJxSamAP^jJ?xV1URYu7?5Ggn63K@K3f|&L99$0fD+u-mf1m-Kb@tZ*)19 zWuG^<@0a(W*^^pWT?k}P4`cNaDsmX21?1w_;AA?TjgUiknCn!ev^cq#C>iJ63Sgx1 zj^!wYj`>sx8Xj}e;(Nbvs~=8U#mK;?I~oiyM2Spr2&|=-V45zVRgncp>L^`zuotzG z@Uc%{9ik07RvDuo?A1HG6F)sY*mmxm9ghO%$-iB^{8zVBz>bA>VHZN^u4r(%@2WsI zJQX-YG#5*f!E8PL`U+MIy&EwcMhlnAZ?B06<$B~L`%I~AVU#~9aQTJ*ewcaJ;ty;V zVi-6F2;{Rqg0n6Ug46ZUjR*Ght>;#9@{l_ zYQb-Ho~Tq|jEH<(;VtOwN!Oed#&wcVtUPajg94Jp(ojF#U8K~2t$S?lD$%_sOzz#b z=2t3_IR_Cbju?u|QrvpD9?ChIh-q_4y?sx@H$V>W&E;q8a>);SMSJmFUM2BqTPRT| zUBwT1|60FVVPEPRGuU{_aXa*ge%<0cS&xb}aU5LW+hFd^*yFB8K5G9mn% z2_cF~cSd(**)O=!b)hAi-@p>$SQWK6G4#dbkApW|Dq1}q57hY&4f)jz>L3!Z;0Ob> zr3xX2D3JTfGPA*t1v&iwSdtKhS?6q#1N?I_1=Gv;X3i7(3vZs?yt-4~!wbIJDrmpR zy`U6IKR5&gx?88_i+o-nkStZ<^2CUcag%L|BARPyd6O`8OlD8$!dOfv`T#1JSq%5@ z!mALuO($=*<@Xfe!(3 z&!ZRg#t$idxw_o`F=M{Pf8G5NSHoUP>Ou$+KAcIbhBN>R9e5+YtcTV~@H-8P_S=w| z2dRQ(o^QtSqqBQT+c$fNRWZ+DK8=sibNss_tNmz%6gc3OCV`fVKr9Q8v7&~p_?dAN z>eM`5BV)?4PF*fF{_5qpPv45}j&hy$VOJilZkBtYikE130I^d;ok3s7#FhqG#L&7k zMc_@D?JH#B*=VcEINNH_md$08cJVxpX9^=P<=giaZT(U|$55}Y8uWE;KjjcK zXqBHTTRVXD20e)p3wNkiBv_QW@*H+sgD^uBo7yrc0v#k*4pb}zc{`rFovCMK>f`7C zf~`>A<=Qm*!Z@oBA<+QzDync|4oi^=P~#MR`{e9>)dLs$Ock{5XpkhgL^z&~?ZtZp ze1Dv(y6B;>-Sw_^;qqWwK@`>(4ygz&^i#daDlPW0&N*#Mw=pt{3n8B-D3ck5h2G9z zwteq-sO){@?lGCN_w1*W`TuQt!;1`17I{0SP z#oe`VCThomXYKO2iJ0*K9XSr;H<3?A6EZ(_+0kg`O98-h47+jG$NXGCXUW>oMi(ub z`4F_H#=f7L|MVISdM7ep)H#st;~UufJgJiL; zVtXNQS)@pQkRirL>x8Hi*tnchp*EqRmR5ykC%CjJBHv}N6X|7{&TQpOCExUf+U1mO zu&FaUb?l7Z!tp|6Kv!F#eP%wa$Qf#BCX{`BO%#$vV(lWhTeFq>m*(SQi}n^EG-GUy5UZt6SjLYwI0w9c(pN?ct&F>eiU2}>-x5g0aA7OO zkSx%JLx?g?_n9k01AR@|>OH1MG;;gK)_9a3sPruqJv&o=mJx@4Jh^B2)|YL#8rC38 z1mlCj`?7e&^8pM9^h#ZF?hGADdopR)1VILhv$94wWvCZMZ>@Ox_;ZrR<%QhTso1n6`)|K<{7H%4OB4db*dtxs2e@& zE3!I+;+_awEld^Nt9#{!j;Euw{48g@t5r2uD(WCv*8l3@YCa;8B}l<7qyw0>$^$~oPQhE13HRykkwXLkrblb51<5T?95t5aiXiMjA(;ZV!Fk|{$Lj}U1= z9zLwqPLM#wm@86otyn37Z&u>w(^ypDHt9E-H%g2+l&ke*z4~9@v_<4r z@S69!zMNtl@uNtxk_j{r*ES1)L>uVU<41^EOd0F~pefy!0h#u3^uPuvRwG%#VSoG; z0-%7m08r2IT{6Lx4PK|(vUVFl;E=Oiq8|XW%>}ZwbgRFEgf z{`RT-Au!G{oS!fs_b*87H%tMJt{xDr5R@k3ZSYPW@yv z9~_4b&(%NxR1lUyZ3O^ADDxSH5{+Tm5;>rBaj%c;;D(uzYbdc63qpC z73W!PnDRlKnHJ5rzr1S)N{xz*XJ@tcvUYg~dE37!U9)xax@U-4%=Nr%s;ZK})cxZQ z=O`sCK`qLUJ7J)F+CGR@a&@u9|743qS&))F4tz66E%#Z+;%V0&okzcN-XkX?^*QII zLCaL{YsY<~8WB9%+!-1L@0mMKo;4S*ul`o2^>WrQF1SkK-Nz}Z4&5!j;SKj!n*Ywf zU(o*dV))X3Lp;A{mE&T9>WhDdkNQvlj;m8DW|Al8SMv|IqQ8fac?1Xk?o$6TyZKEU zf`k&YvHTJS>T?=3=V4^qbtiLkic-S10R2Lq(@(an>%8hJ&^RFHCr-w9EeKHfTHfh@ z#gZeoeBS4m)OW>^dTabi^%TA?+7--QG`iVb>SjFSFg3Hu(Xz+(i}K*rzK#=ymwvc& z?FV}LAu*>Zi*<(h3TxZBmq*`Sft7o;#Jj~3Wm+>hQgT*C@O8d!;B7X*5ig4}Q9Bqx zKZrc#n0^g*>FHwJr=-ainaG9g`VS|#=e~ys+#PN<>R%!=}W>2+oN1KZ?JgIy(J08U55Fe+1e}?CP>63|zWd8_i`xQKu9~_()=oPR^F(0 zbzP};>&=UTI*h$HFYza^fqf%70~ps!8Nxu16cbQs9ay820rT*qF@aT6uq^(IBis~- z0SEkEI0#I-;EpgR)o@Boo@^H@HSnYB_3B5E;}D1kbX-5 z-QNXayFmm@^MCOt&ZGQXRoECEY(+S`_Lk?%YV-jC6y)UIPfE_#9V_R(w%l< zudnCxD^8D7_j^q7(9+u3Mun=b2~BTFV2JdAkQg|2va00j%+;Ai4AH#g+I&C5M&Z$S zsED2)Zij2G6TX{|y#iQhFt}3>{fiwFh>_wS`<_0^XLV4NbFOrx-`%Zs-JsD(HkPcA z(g>?BcOuroDM#%gRma!-JxCmF5lS?Cx{PVX+Voz%l`6IKBKNKjjK+iz0z=qpVxR=A zRk1W;Le6hG%cwZJ<|}heJIE;E)4`-I++qh;TsQ$7JjO`8VMTD>bVSAkyp!F>8$nf&B z#~Ht<{hTB)bU)Z#Z&3E~Ls;!Xn0HS2X{mMb&N;L>MJ3i*k*ZvAq2STVcfQ9DCkRzL zMrvXM)1Cx>ENKB#AMK4H-gA1bP1TAHDGIV-F|sn_E7UX9*w}+sm^~@%#bhu^(Sbk* zB7JZayCpa=^}g29V#%c$!sC?kTTGb&j9=GKOG`!$UVay-Hy834a;|9V)1}e_r*-?- zvyGinkZ~+tP#EK^p}hH`Prw_J?(4eTRlJQXITm*R2|K;KT5B}eo!d;k9i<0;OA#z* zIPyTDH@0l*c2L3znZ(0E*Knqf9<3~7M@P1SYIGcim=01P1n6`4QIaThD^pOBxftzZ z_ys=q!Vf2Be1iM#Tn@#p3sM-2D^{w+GIJR+3WsV(<_8Hrt{!mpL&Z|$(tFq2_1cgP z6<`6Xft4U!E^$Z8+<5r2CuhlUu;0ZwnZUtM?<4AwU-d@v(J9k}clPsIq#jietu-5V3o6fW%YS2s zLPNku9RV+wasPhRRD-Ahpe4jBdbt8elGo-f-xoLC5_I0T4-Srm(#-$s7c+d0`70vGl% z;8fsGF$)+9UPOC2H&hs*FkP_Mlv(#O=Rocw?WLF z@&*E_WcmvNLb&N_`*A(2NL<6v43J8CPDCEdoXFtpJSdhl1H0!US| zl`vA)1QXC~&_ZcJuRUKBS7z}iE7#{fRUXs$$rf@InXzU2$3uJeU$kMn*nr@+6j%IK z>s{hozYn`MwCZcqrjBWWy~UQsE!5IY(0F5ml2;7Aet(r(%6!krmCeg}p5{+q%`AW3 zW>H;PV?CLA&7n#is17#=8pN3Q;Q_EAGOY$efHq=6M6UM%fr4ogOTrd=w+uRzYFmDN z9V&C7`UK16Qf|xEtFau*1QIvSek6}ZrpRI|a3ELkCh#%DdMoPJfto{>X6&9Pn~|oc zC~{>`(!{^NM2!1VeCi&zqcNU^n~(437wmR)W;tv1U5qHT30Z~b8LLx#Pl55PMjfPT zF+}4?h6{X@^p>oUrMA?h@JV@rp4HlD71}ZBC46>on37*lP32+XkQ1aw=PVZmB0T73 ztgk?AacU`!AQmjN0~Nx|1&3X{v_P{frrCl-qqODU7OqtY<2aT*WTksM-CLPh=^^{t z|A;-es`9M9jGIe+?K#Zd{@{hr#ptY)h!|t1Hm#9p7VkkSb^@J9--|jOM=WVxirEBT zrerm4?TSG zGjLUbHJd!%BkJCl>vC3q0d`VmVX^ZA>b=doc2}$09SiuR7Y-S`C!<51Y}`U@7pwd# zx4IjS9A3MZ!14wytmDD$IRY1~xcLkDDDNJY9*~?Z?){D}i`wisSoUqPqNCO~)AQbp za{OUWe&14dS>ami?X{wHMG*p&!z|t^vY!cyhx7(bAjp^dMp(6*3(y@CU!NV~;FrYr zSIo|I7ju!eXH8h&j?pd5@MORCeAcsn_lCpqmwBFJ3q6`qDasn|1CBMDQ}n|OLPZ#sp;hQN9w)}+iS7? zrdthTH6)LfmR3i;@b%U@uQRqm$y>0Is+{0{RL!1>w;vLMQJS$_I>4dEFb=yKC7m_o z?T{CuIJS^a58qjE=CfnPgVdrqsya(h2@oQzP~db2p9HYPndN4zpYQMgqpT71l5to= zJjzEzxyLO{{h8$1@h1iiA`fN`6hOcZ{cnGQ{!OQ8@yy?QQ`~%uQ`PUx)hVd#RMm_*-A79%;5}f%EC||;~?2@OZ$xz6DG+=$5qsV*jtQ@ zh^fuD%z_di+^-xG5JZ|x>vYp>ChSw;g5_(Eck5lBNY>ps68N;Xm@5!>bh&FgC}9J1 z`hon8gmV>eyb6iT!y`Zo*nVy_`x+Og?tXu4%M-L1`{rTb-+_!~@vVS4^rLh`So-6U+yJ0hq5Q;nj(R99a#`P%oxk`Ww0Gwa#Y@ zAmK(QuuuzF;uH*0GA|1N?hyK^;>bIT592TP*6F-*t&QP7`%0MY(8B&EBbKuSh7#yC zpIL&_gJ2{?d%$*{$z=~;p)KPdOKsc5)O82`AG4$Q>PBF_~pA#QF*o z*k|^BAvpvleLM)&EYwMVyl<=34#a)><|Q0C03>VYkoRDm4BqZW6_mQVaWH+V4SeOov7Cz-VjQ+YGQQ{wTAx|V+HbGe zyOCb`=#6p)&)5^ooj=(eb=t)iXgKjZ6QBfXxZbk<;q*OV%Td96p-Fmkn*%Z@u3=Wo=G{GHxIDv!D(lO7 zt*<3LZrqk#Yx*8GPL!Q`R^W}H_%1PoamP}4DlqJGSs!Dr5w21lOHEsnJnIrazO$m6 zSOLRs!WDuvOTc@}jX{*l^I^V=N5&%dJh>tGeQ2A6!jH*OEB&JaAJb9bW9Zl^9wTV(c1K{c#F#H}3p?4TmA&|&i?_@=&VeNktP%}SW@-lu86lK? z$9FHf`er2K>`8b3TYG072xY%FeBDT7N!holtcC2m3@s$pv?yg4LSjyw5q^_vt>*d!P3`?|I(y+<#c+=W@+8zwNvH zzTeL`lKk2VMBsoG8rsV)2wYNHAzQc|_Z~EI-W}(}7OT68we7`>Ct*ltOWe=71SvNm z7tc3BQGU?56QidcgU4Jxk8CxSN*s9YbBGQEk|T^WFpa^B4b9-}W3>_K3RYF<`k=xrF09mEUxyYWGz;E7P64kqKSoo=SiH; zMXi{BObYzkSEu)UWIxPU1%IC>OM|MEL)!=05Qfh=WTB8|rFR}y$Bw=ix?jrV!ja{| z#M4xRs)J`WsBp#9xKK;w7)e_oZ#IzmM`f9pXNF*hpa&Bws_L2K10>B-nSN`ocJG?0 zon8;R39Symg~3Y-KNEu?@X<5Ty6!uVQ}-Uz-=%Lwx_-*HnUkx+wVXS8ErSUl^-cF3=DM7Z;dkrL(=C+XPXxWi{YV;XHR zo@v8zN==zBd|GuTk8U-tuj^AdCi^l(K1@jbUV9#T9he1oo`LlNtg+yRt7X!FQEP8w zqPo+3&H&z5)Gxy>dao?S{g!ATs>^8%Jp?L`plbzyGKp?u@b zj+BdNSbRmX{YYm4Ip)Co*@l61(rnBk)RjWutorcK;hl4qU+A+d%4p20Pc*++0B+y< zYSbGr?eb_QVy^43GGusn(#53k7FF@CxTLS9VHU$*HpzB9U3^<;D;EP;z?Ba*3bl*% zO~^~*l(6?%Z#5qg3Jcp~!bw@_j>hNuq|GO@o_gRMKrI0i+nvC7jG*3d6*<(cr80}- zE}v~Voxs!aK^+m_!GSPT{Y<9wfREqpWJfYXLJ9%}{?gM?VCQ`z^7+Yw^MWTyGHC^O znM(|7<4p~+c-kux!5p!tmui^Jz*>H0s)}nf^>7%Y)(R^sIO&DMboa2a@YIDz--#Yv z2}LIVJ8Y)IXvh8DQhihmcV|cD}Fb>A^5soMo{VO|*cjc(vzU zhBDMh#@Zwh?j)FviGFqt4&p!F%I9{c-0@5ItX&TmAgiBq2iwIorcuq(RGKWE5>wIC z$!{<+>2ZC--epffZ3m# zV;W^vK_EGxfpB>4&V&-Iv`(d;9-PhN+d@XifX_Nb52`zOV=z^=5y@(GeE!8t*V~Vu zHMVbJ9c)W;(Qoa_WP(Zo8f3m%0DauoYeVou4r5Kx|a=%_>@ zVMO(#ydtyImM3}zc!75DK-};wC%`Ff(5cqq zgByr|B>T^pPfO!VbUmxVrPwq;I-kdEe$DJS%?d2ezvSKjYv}2zaJ)Pvn_ltF5y<+S zgbk-{Ck0PihntWr?%97(Hzz9yL=+Ec^zWWSR&$>A_2+kt=zp^!VTkx zs{jqiDnCHGU*C~jH4$?^?IcOykw26BrJTFY)l{2VR>{hsrNh_bwUG)hPG(Jh;lV4l zGdQ7h;0+fbwFyLoUwUOo{#BrpdeaZQUq2o1QJhz&bw)eF`Tlcc1GTz)ze-1mKP3*z z8IKzR_zqK23V^pYJ|DKCsX%v0i(s+&nMBCO!(S?R?{kTy$Y@<$&arx!gHJ%>FPxZ? znY5iQyNhsoo%yLgWni$6A$l(4QG43x{FkY~aDYnY;3rG0Q$jw#oj{I!C z);+D8)7P)a@@ryIyURPWkuRqgE5N#y9eL9eEGnfK&_zPDi137hdeT6UOh@XU^WU15 zKRd=>RIkR3(8RvLa!y&AtuD(urX(Sdq>dM?fp1H?^L3QfQrIA_yV5yDy_ z`r?Jqu4dwdn@0|hkB`{x7lE-XQsSk7g>MrA?9089SUfvw)c4JOS-g4pd`ZUgaLF?_ z#u4*piaQ6o5wGZ<>4`W`q9`Q?asx^PUKPPp6^h<9lcFVggltfJ^9z>?;w9Vreu0q* zL>WFfS5iN;QkMe)2f>XN7`G80g7h@;4v9*+`q7)`&IN&&bC}^2KVn4&&O6U2QJPpE z?ck#FJV({IudpMOw~W>OJ&kR0EE-ekL)%#}DY&3AAuglDLkoaz5~}OOC%CvZtWXkO zTjzB=Xm!{`jO){8d-m!MrahJ$RTNpErnoG{VoG6mmw=n~aGL>l6_An0TvSN2ZbntM zTeFG3_Jx6ofnx`XS>hW)uf_So_nbbp&~LK+xc+j|Z8s~6ymCLE8OlPGw{te4AZ6{z zW-IkPrtx&W0Qy}fH%R?)sO(vy*$^<%BE^-NZUzY=?yvR$ochD5*a7V+|8TuSzQ@fM z4_=pla}7QY+^6MALBQI_Fa;>ni|V)7256GvTII<(sGD|-&s85~L=p?tPmki8Ip~i& zw=%68a@0gSsGcxsvd~CQ zY{}R`&t|Zo>cPZzS4n9`%ag>@pvVD#b`4Rlb|qai=S}sLY;nm%R;`J zi+!0|=kq8L{u{Y3Sd-fAo|aF%GdznDmuHJS8?Hd`x5X1N?<$PnlW)T_ctUJ7$Z@ot zf|H2WrMmz+ST6{@ZMEa9-vd>yw=smtS|R0C1KCv`$K@Ekj=p@?B-l(ZOAE(!zZ$YM{9SJjg#Y5$}-w85|zu$!0CvpFkS-6N$`h$fen`+~5?}Ios{B_JGw)x3a0u zU0A2=?y1LI!8lj`N2kmuXH6~ik?J-%Zt98X<0HD)N{%Y za~|+_e#;0}eNNlC3iq$mcs5%j+Z+hLG~l_nysWJ6a;ooFFR?R6#f%<3O51YY@Qp0f z7F#Q-0^?)mPZ$rSkjhLL<_gid&WIp>Xm0UC-)YS3n7PU`g1SDovK(K(8)_U ziF3WAnX^0W1br5iKElxi*PHD)Zz(a+B6;e|a~zP&TLoK`AYE9?)-S~dFmyMb<;cQaq_^S~U-KOX9zAM%8rROO z7UD?Yl%cUFwJqnX9fYOa?)6Ak*y1cu>s@2$A5okr=ELQ*|xx z4x{YnbD}-lhdUQjUpg+)&bNg+e-yptB$$HFfr6anZl;II1W>#C31`YNS5S^8OOKv# zTwJ;jR3lgA%?oQdV8T<9`txFF9#mw&)w+xKLj|-fJ>o~b5->ee9g{&O67^ZIO0qBfqnV;IVndUt!l~>#Z`EZ?@tz(k$YqB3Pd}~>+4)gPK7t{upAXpab`PqXTxA2w}%D22mJXRxQUGZfv*S6fJ*DVhu0T3 zldTY?I%aeMU@8LZ820*OLZfvnpCG)U7;n?4B{<{0N* z;vRgEqwCO)h6XXfc3&0+$%-M5K^I2)U71;^SG1WsE0uA^49@9ZqN?5DSnynx+;~A} zQp`dEK0ZAL$#CbVsG{}+_)eHtVHCMj2#SY{)W&x_do9_hBg9jQ3oOU{gn~8q7U^z{ zalCwQ^m6g*IxnWtto_jvx`P(L;)T(Uc#}Xkp4D{;#kgSc%q^Vp?AEiRtUlY+s#p$o zYKh&fLP}-;S6KKO?eKue2PGCp3$EOTT(j|Du}*?=ePQ^O@`Lom_&zD_hYRwXV&J$k z(*^WH6MD?Dvk)anVS}FBI3O%AOg**PZ1(=xxvvpgLSEgYLgOw>Q?^J*u8Jm*(<0y_ z2v83}YugUd;(umxLxBp2cdCMT`0Woob6|Z1j6KlWMULLg3oN zucgyZ^L3M%Y~x42gR$Iv9PKAkogZKc`Y>MK42gu%_VWbSizQq(d%b>dO*quZh;X-V zXW##wvKi;B{Q-AWbmyVs%6b#(j+4 zt+y?g*LhrMxn;Hc5o+XMsX5`>9Kkd?uPMnv;gq@hs*wX5VQJ&(dv^=Ueu;Z`X`3iY zwCn>e5FnTuPns~;HK=Il&Mhe>TqHW}xHUHZL8j$ddA*i!Auci)&z zHjC-WFg7N;v|EZz4vDWyr`g zgp@5dHVQBKCz)rCBQ{KQSIP?{p4-BkbD~I?B0f3Y_8(+S%38m{7stHM4dlyA{+sXeKJOu z=pIR4qTSiWsBNXq7~cLqxA8wuV}9>XG!y9IzsK#Taf6Qidx1rKpxpLfgUGm%AeQ(3 z`$r5~<|fyz2VHX@h*G!@K9&g9T}eXP46r(WSbCIsV;%H1omV1}s_@x#xg7?`{+^D1 zBK!M0k>n|t>u{8LdSv}B@VJKXD_!mscL*mv@*p|4XXMgV%Uc;IDUY67DktCm4WT_U(S3s#)@-61lg5^h2JFLf+V*01_(O(?@s-yDAFmfq93B|cH%1M zU8AOCS=VuUFB_Q@QW_yFf($cPR^E1nEKeuH!U_bl zn8g&5rs@JpIRZ$%JPFt|+nP;&-EjDgibv%X4z|o1onL;8?p6+Ikx~#)jyJg$K^jP7 zi$*T=A!-J4Dv#7>45&SbG!5dOc_n&ySG1R{;$-(HC5jZ3L*C91Xm5!Nt=~BqaLj4N z?)2*q9$!;0F*UgP$Vl(r5~r*wzXFPi39B)^TQ-5k6Co^?l3frysC--D#E3 zfzFY-C%oHYe8_@^F9xMaM4DfI^7;#fw)YfRwZ2~Xo4pi=4r~YRm&5U^(J7$v@YCJ` zb7l|ycBUiceIyNt@-Xlf5(!W(U(iArf{^Rqw76mHFY96Fr{LJbrBoNYSXkNT_%0wQ zxM+4eULa-1abfY4mD1RP8-@nqEMk5Z>KG6jr=5T13!JDz>fHTV5W)H-$u9`?jo!bA zgJc1{`9?EkZ)TevKSK%{piUID0(gIl@(2psrklimb#U*{Z6go&Yj;~KisYM)h}Xa3 zD4cb^bl&r4HH?kD`sCiTs=`A^9u9r#D{&i)G;%R)5(Ws=1PxQNL+C0-tA?D zdyz>*PLAEnEK9Ogr9aVUo8SqrvA7$cRxs8*0pDd~)h+RCN0p*Rr;u~9rvO~#U69JC zZialGgUdqTOFTuD^33c$T@kAaRg=>Qhz0~Jt_2Z|U&{6uYOE>Hasirg0WmP%XO0vX?7xvUU=o$9R??($6yCNB|t4_4AnQG6qDyh z=)Lti>yw*ni|JF_&M_&04)Y*{f-#?$wF%LT>UW8@4NA#nbi=mka~0AqL3u?N>z~#O z_c#S_E$i#se*o+0X{qP$YHRcou5#yQQ|yB-F%1(ZAdnL1TnCG;p@VwCoPLv8nH)tu zH3sE0*zO_4R*+WON4F*j0oVxV{Jj{Br`2bB%=lYaiHm#UjfSO88MPN^01zu~yaJpu z3D*mnlJzKd5bq@R-oWO?S01jPqO7buw5{|cW$`ZFW)V$yZ?bF|IrGv_%=)@_n%5cp zNO8%i?HyuPf(wxjN|P@DzL)UK&74UM9{aL zGxP(fi(@=1EI<-{#C_RUzvXA9m*?{^vtt*rQye(#7C`*W@V1HWlm)Z0oev zX8K^WsLqqfo)Cq2BjonZtex97_{&yl@)Vr;hw`qQCtme>7orvy7AIU?f}MH9;$PuA zJ5l>hSo|zH$I1Xvk}8Mpz=xGRL%(NmSCIPLdy53!m^;Y6`&((RCgUGT9_mVX$|uIT z%0F^=m(aOL|2FHlRVVc;mD4qcE4wak4338rEvS;9C}x=nG?edNb2dPyhqkq{ik&5f z@4AVj3&l+#S#wymqbO`-Z~McpyVeQv8>>+3IIuT$!AMyfh`2K3A}_A#ti6_D4B%%x zmI<}}`N^LhnYYa~87*vJXTE;x5=CIWO!hN?52C5N4l>C~KQ>yDO}=-0=r!K)TJcpO z!}qVoA3`+uIe-)?8w7AFHNtYhKB$jCwZSw;cp-1q1dQK1QW>tC{@h{_R-?_vpOlA_+b;RH#_63yDN2I_#$mLJw2|y8?i zTh1YY^n*ROd#XCPhxb*rC1&zXX=FQ2sA6sZOIbDU{!tanqi_O(fb z3)D6@7%afP26`|FJnvjXsN2heRb}N?{&F(O6QAFRKNVZ_4S3mb-3p8R=4}buRt8KK zrPYVdqVW|t-hC2ni^u6Q^v4*-xS;~d@xBT!I0a2gF9?q{yp1 zk%^UaOm5uX!k>f~hd058-V#>rIO;iEZ-YwitGiBKPrfj;+>*joZ#p84%=@I4?um1j{Qz-3})_o+89O2u0bSk$gA^vA&@ znkWP#Wl{o2Zje98@o*)H66v{!?aF()7hZ0A?8>7J*_7J~?jH*|Po6(pG^dz$Aj#K0 z=ac-8;|c#W&~TE$E>4zZ;AqP5gEtyD>UgNF@bepYe=EpP%(2l@8!(+jF?4~7{=u2{ z?z`XZcE44(#rZdg&s$r6qXPMVo&5AyTlN>%zQO{>VFxdKzRvD_t>rJw@*U#E-#seW zR}KG>FIW(qbYqN`vvm@L+pu9~@uRqaTVoq+R)8_4&Nzf)#{J#;drUUp3+J?tAmvXj zAA^%+gxE;`5`2`u`Ay&k{Tk``fAadDhJ*aaVOrQ}o^KIiC`{u?oI`hvtsWUk+lgzH zU>`IPp&c8LA@dIg8|*%MyD-VH5QjWC!s+Kv78g}Xz{sFwttSaPvtGIlf4kX9)iWO0!?e3 z_?d})wkAJuyvxKK9N%h~xyinKk>F&OcCR?tx0~-sxObEva{o4)w~w7H$Y;RN#)1(& ziyp?j3~#dIMfot;<8tf*j399`TdU%sSEuZFf&9_;f3Xf$)p=#q6Bm3)1EBcEin#ew_ zyPK6x#5GmJAqxXekPR>WGgEyU&F$ViV-Os99Ne|S7g#dL@RR*24|37&0zm7=vK@66 z*B1B7>p6el^{&iVstuO5igc;J7{`Vk2_u`y1x` z;;oqec=SJd{oi21cxC9lstV-)NjGz>wI|Lp@fVXE0a-|Vzq}U={#f2W+{ymfnf{ju z_+wN3-xGcRttL!$q4lu1Tda=JU=XQr`}42`@z)ZykD>A~S! zZyor8_&a2u0EK?mH9PV!{N1h}vd$Se%-@31vv_{~e?|-aVRg{&tiS&$fB(IR`l0^- DLO^x_ literal 0 HcmV?d00001 diff --git a/docs/source/index.rst b/docs/source/index.rst index 8ac09f6988893..fd741ea5e9766 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -114,6 +114,7 @@ Documentation usage/engine_args usage/env_vars usage/usage_stats + usage/disagg_prefill .. toctree:: :maxdepth: 1 diff --git a/docs/source/usage/disagg_prefill.rst b/docs/source/usage/disagg_prefill.rst new file mode 100644 index 0000000000000..9fe714b4fd856 --- /dev/null +++ b/docs/source/usage/disagg_prefill.rst @@ -0,0 +1,69 @@ +.. _disagg_prefill: + +Disaggregated prefilling (experimental) +======================================= + +This page introduces you the disaggregated prefilling feature in vLLM. This feature is experimental and subject to change. + +Why disaggregated prefilling? +----------------------------- + +Two main reasons: + +* **Tuning time-to-first-token (TTFT) and inter-token-latency (ITL) separately**. Disaggregated prefilling put prefill and decode phase of LLM inference inside different vLLM instances. This gives you the flexibility to assign different parallel strategies (e.g. ``tp`` and ``pp``) to tune TTFT without affecting ITL, or to tune ITL without affecting TTFT. +* **Controlling tail ITL**. Without disaggregated prefilling, vLLM may insert some prefill jobs during the decoding of one request. This results in higher tail latency. Disaggregated prefilling helps you solve this issue and control tail ITL. Chunked prefill with a proper chunk size also can achieve the same goal, but in practice it's hard to figure out the correct chunk size value. So disaggregated prefilling is a much more reliable way to control tail ITL. + +.. note:: + Disaggregated prefill DOES NOT improve throughput. + +Usage example +------------- + +Please refer to ``examples/disaggregated_prefill.sh`` for the example usage of disaggregated prefilling. + + +Benchmarks +---------- + +Please refer to ``benchmarks/disagg_benchmarks/`` for disaggregated prefilling benchmarks. + + +Development +----------- + +We implement disaggregated prefilling by running 2 vLLM instances. One for prefill (we call it prefill instance) and one for decode (we call it decode instance), and then use a connector to transfer the prefill KV caches and results from prefill instance to decode instance. + +All disaggregated prefilling implementation is under ``vllm/distributed/kv_transfer``. + +Key abstractions for disaggregated prefilling: + +* **Connector**: Connector allows **kv consumer** to retrieve the KV caches of a batch of request from **kv producer**. +* **LookupBuffer**: LookupBuffer provides two API: ``insert`` KV cache and ``drop_select`` KV cache. The semantics of ``insert`` and ``drop_select`` are similar to SQL, where ``insert`` inserts a KV cache into the buffer, and ``drop_select`` returns the KV cache that matches the given condition and drop it from the buffer. +* **Pipe**: A single-direction FIFO pipe for tensor transmission. It supports ``send_tensor`` and ``recv_tensor``. + +.. note:: + ``insert`` is non-blocking operation but ``drop_select`` is blocking operation. + +Here is a figure illustrating how the above 3 abstractions are organized: + +.. image:: /assets/usage/disagg_prefill/abstraction.jpg + :alt: Disaggregated prefilling abstractions + +The workflow of disaggregated prefilling is as follows: + +.. image:: /assets/usage/disagg_prefill/overview.jpg + :alt: Disaggregated prefilling workflow + +The ``buffer`` corresponds to ``insert`` API in LookupBuffer, and the ``drop_select`` corresponds to ``drop_select`` API in LookupBuffer. + + +Third-party contributions +------------------------- + +Disaggregated prefilling is highly related to infrastructure, so vLLM relies on third-party connectors for production-level disaggregated prefilling (and vLLM team will actively review and merge new PRs for third-party connectors). + +We recommend three ways of implementations: + +* **Fully-customized connector**: Implement your own ``Connector``, and call third-party libraries to send and receive KV caches, and many many more (like editing vLLM's model input to perform customized prefilling, etc). This approach gives you the most control, but at the risk of being incompatible with future vLLM versions. +* **Database-like connector**: Implement your own ``LookupBuffer`` and support the ``insert`` and ``drop_select`` APIs just like SQL. +* **Distributed P2P connector**: Implement your own ``Pipe`` and support the ``send_tensor`` and ``recv_tensor`` APIs, just like `torch.distributed`. From d263bd9df7b2f5586910e5d006a11ff11ba7c310 Mon Sep 17 00:00:00 2001 From: shangmingc Date: Mon, 16 Dec 2024 05:28:18 +0800 Subject: [PATCH 181/733] [Core] Support disaggregated prefill with Mooncake Transfer Engine (#10884) Signed-off-by: Shangming Cai --- vllm/config.py | 7 +- .../kv_transfer/kv_connector/factory.py | 3 +- .../kv_connector/simple_connector.py | 101 +++++-- .../kv_transfer/kv_pipe/mooncake_pipe.py | 272 ++++++++++++++++++ 4 files changed, 352 insertions(+), 31 deletions(-) create mode 100644 vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py diff --git a/vllm/config.py b/vllm/config.py index 37d062f7eb079..fce8011be4015 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -2171,13 +2171,14 @@ def from_cli(cls, cli_value: str) -> "KVTransferConfig": return KVTransferConfig.model_validate_json(cli_value) def model_post_init(self, __context: Any) -> None: + supported_kv_connector = ["PyNcclConnector", "MooncakeConnector"] if all([ - self.kv_connector is not None, - self.kv_connector != "PyNcclConnector" + self.kv_connector is not None, self.kv_connector + not in supported_kv_connector ]): raise ValueError(f"Unsupported kv_connector: {self.kv_connector}. " f"Supported connectors are " - f"`PyNcclConnector`.") + f"{supported_kv_connector}.") if self.kv_role is not None and self.kv_role not in [ "kv_producer", "kv_consumer", "kv_both" diff --git a/vllm/distributed/kv_transfer/kv_connector/factory.py b/vllm/distributed/kv_transfer/kv_connector/factory.py index 015f892cec933..3e2bb436d24b5 100644 --- a/vllm/distributed/kv_transfer/kv_connector/factory.py +++ b/vllm/distributed/kv_transfer/kv_connector/factory.py @@ -11,7 +11,8 @@ class KVConnectorFactory: @staticmethod def create_connector(rank: int, local_rank: int, config: "VllmConfig") -> KVConnectorBase: - if config.kv_transfer_config.kv_connector == 'PyNcclConnector': + supported_kv_connector = ["PyNcclConnector", "MooncakeConnector"] + if config.kv_transfer_config.kv_connector in supported_kv_connector: from .simple_connector import SimpleConnector return SimpleConnector(rank, local_rank, config) else: diff --git a/vllm/distributed/kv_transfer/kv_connector/simple_connector.py b/vllm/distributed/kv_transfer/kv_connector/simple_connector.py index bf4f40ca94e29..4ace03ff1184e 100644 --- a/vllm/distributed/kv_transfer/kv_connector/simple_connector.py +++ b/vllm/distributed/kv_transfer/kv_connector/simple_connector.py @@ -2,7 +2,8 @@ Simple KV Cache Connector for Distributed Machine Learning Inference The SimpleConnector transfers KV caches between prefill vLLM worker (KV cache -producer) and decode vLLM worker (KV cache consumer) using PyNcclPipe. +producer) and decode vLLM worker (KV cache consumer) using PyNcclPipe or +MooncakePipe. But the logic can be extended to support other pipe and lookup buffer. """ @@ -15,7 +16,6 @@ from vllm.distributed.kv_transfer.kv_connector.base import KVConnectorBase from vllm.distributed.kv_transfer.kv_lookup_buffer.simple_buffer import ( SimpleBuffer) -from vllm.distributed.kv_transfer.kv_pipe.pynccl_pipe import PyNcclPipe from vllm.logger import init_logger from vllm.sequence import IntermediateTensors @@ -36,7 +36,27 @@ def __init__( self.config = config.kv_transfer_config - logger.info("Initializing PyNcclConfig under kv_transfer_config %s", + if self.config.kv_connector == "PyNcclConnector": + from vllm.distributed.kv_transfer.kv_pipe.pynccl_pipe import ( + PyNcclPipe) + logger.info( + "Initializing PyNcclConfig under kv_transfer_config %s", + self.config) + elif self.config.kv_connector == "MooncakeConnector": + # Check if MOONCAKE_CONFIG_PATH is set + import os + use_mooncake_distributed_pipe = os.getenv( + 'MOONCAKE_CONFIG_PATH') is not None + + if not use_mooncake_distributed_pipe: + raise ValueError( + "To use MooncakeConnector, you need to pass the ENV: " + "'MOONCAKE_CONFIG_PATH=/path/to/mooncake_config.json'.") + else: + from vllm.distributed.kv_transfer.kv_pipe.mooncake_pipe import ( # noqa: E501 + MooncakePipe) + logger.info( + "Initializing MooncakeConfig under kv_transfer_config %s", self.config) self.lookup_buffer_size = self.config.kv_buffer_size @@ -44,6 +64,11 @@ def __init__( self.producer_buffer: Optional[SimpleBuffer] = None self.consumer_buffer: Optional[SimpleBuffer] = None + self.producer_data_pipe: Union[PyNcclPipe, MooncakePipe] + self.consumer_data_pipe: Union[PyNcclPipe, MooncakePipe] + self.producer_signal_pipe: Union[PyNcclPipe, MooncakePipe] + self.consumer_signal_pipe: Union[PyNcclPipe, MooncakePipe] + # 2 pipes for every rank in the world port_offset_base = 2 * rank @@ -51,17 +76,26 @@ def __init__( # and the decode vLLM only uses recv pipe if self.config.is_kv_producer: - self.producer_data_pipe = PyNcclPipe( - local_rank=local_rank, - config=self.config, - port_offset=port_offset_base, - ) - self.producer_signal_pipe = PyNcclPipe( - local_rank=local_rank, - config=self.config, - port_offset=port_offset_base + 1, - device="cpu", - ) + if self.config.kv_connector == "PyNcclConnector": + self.producer_data_pipe = PyNcclPipe( + local_rank=local_rank, + config=self.config, + port_offset=port_offset_base, + ) + self.producer_signal_pipe = PyNcclPipe( + local_rank=local_rank, + config=self.config, + port_offset=port_offset_base + 1, + device="cpu", + ) + elif self.config.kv_connector == "MooncakeConnector": + self.producer_data_pipe = MooncakePipe( + local_rank=local_rank, + config=self.config, + ) + # We only need to initialize MooncakePipe once + self.producer_signal_pipe = self.producer_data_pipe + self.producer_buffer = SimpleBuffer(self.producer_signal_pipe, self.producer_data_pipe, self.config.kv_buffer_size) @@ -70,17 +104,25 @@ def __init__( # the current vLLM instance is KV consumer, so it needs to connect # its recv pipe to the send pipe of KV producder - self.consumer_data_pipe = PyNcclPipe( - local_rank=local_rank, - config=self.config, - port_offset=port_offset_base, - ) - self.consumer_signal_pipe = PyNcclPipe( - local_rank=local_rank, - config=self.config, - port_offset=port_offset_base + 1, - device="cpu", - ) + if self.config.kv_connector == "PyNcclConnector": + self.consumer_data_pipe = PyNcclPipe( + local_rank=local_rank, + config=self.config, + port_offset=port_offset_base, + ) + self.consumer_signal_pipe = PyNcclPipe( + local_rank=local_rank, + config=self.config, + port_offset=port_offset_base + 1, + device="cpu", + ) + elif self.config.kv_connector == "MooncakeConnector": + self.consumer_data_pipe = MooncakePipe( + local_rank=local_rank, + config=self.config, + ) + self.consumer_signal_pipe = self.consumer_data_pipe + self.consumer_buffer = SimpleBuffer( self.consumer_signal_pipe, self.consumer_data_pipe, @@ -260,6 +302,11 @@ def recv_kv_caches_and_hidden_states( def close(self): self.producer_data_pipe.close() - self.producer_signal_pipe.close() self.consumer_data_pipe.close() - self.consumer_signal_pipe.close() + if self.config.kv_connector == "PyNcclConnector": + self.producer_signal_pipe.close() + self.consumer_signal_pipe.close() + elif self.config.kv_connector == "MooncakeConnector": + # MooncakePipe reuses data_pipe for signal_pipe, so we only have to + # close the data_pipe. + pass diff --git a/vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py b/vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py new file mode 100644 index 0000000000000..8e4358672b74d --- /dev/null +++ b/vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py @@ -0,0 +1,272 @@ +import json +import os +import pickle +from concurrent.futures import ThreadPoolExecutor +from dataclasses import dataclass +from typing import Optional, Union + +import torch +import zmq + +from vllm.config import KVTransferConfig +from vllm.distributed.kv_transfer.kv_pipe.base import KVPipeBase +from vllm.logger import init_logger + +logger = init_logger(__name__) +NONE_INT = -150886311 + + +@dataclass +class MooncakeTransferEngineConfig: + prefill_url: str + decode_url: str + metadata_backend: Union[str, None] + metadata_server: str + protocol: str + device_name: str + + @staticmethod + def from_file(file_path: str) -> 'MooncakeTransferEngineConfig': + """Load the config from a JSON file.""" + with open(file_path) as fin: + config = json.load(fin) + return MooncakeTransferEngineConfig( + prefill_url=config.get("prefill_url"), + decode_url=config.get("decode_url"), + metadata_backend=config.get("metadata_backend", None), + metadata_server=config.get("metadata_server"), + protocol=config.get("protocol", "tcp"), + device_name=config.get("device_name", ""), + ) + + @staticmethod + def load_from_env() -> 'MooncakeTransferEngineConfig': + """Load config from a file specified in the environment variable.""" + config_file_path = os.getenv('MOONCAKE_CONFIG_PATH') + if config_file_path is None: + raise ValueError( + "The environment variable 'MOONCAKE_CONFIG_PATH' is not set.") + return MooncakeTransferEngineConfig.from_file(config_file_path) + + +class MooncakeTransferEngine: + """Handles the transfer of data using mooncake_vllm_adaptor and ZeroMQ.""" + + def __init__(self, kv_rank: int, local_rank: int): + try: + import mooncake_vllm_adaptor as mva + except ImportError as e: + raise ImportError( + "Please install mooncake by following the instructions at " + "https://github.com/kvcache-ai/Mooncake/blob/main/doc/en/build.md " # noqa: E501 + "to run vLLM with MooncakeConnector.") from e + + self.engine = mva.mooncake_vllm_adaptor() + self.local_rank = local_rank + + try: + self.config = MooncakeTransferEngineConfig.load_from_env() + logger.info("Mooncake Configuration loaded successfully.") + except ValueError as e: + logger.error(e) + raise + except Exception as exc: + logger.error( + "An error occurred while loading the configuration: %s", exc) + raise + prefill_host, base_prefill_port = self.config.prefill_url.split(':') + decode_host, base_decode_port = self.config.decode_url.split(':') + + # Avoid ports conflict when running prefill and decode on the same node + if prefill_host == decode_host and \ + base_prefill_port == base_decode_port: + base_decode_port = str(int(base_decode_port) + 100) + + prefill_port = int(base_prefill_port) + self.local_rank + decode_port = int(base_decode_port) + self.local_rank + self.prefill_url = ':'.join([prefill_host, str(prefill_port)]) + self.decode_url = ':'.join([decode_host, str(decode_port)]) + + self.initialize(self.prefill_url if kv_rank == 0 else self.decode_url, + self.config.metadata_server, self.config.protocol, + self.config.device_name, self.config.metadata_backend) + + self.remote_url = (self.decode_url + if kv_rank == 0 else self.prefill_url) + + # Initialize ZeroMQ context and sockets + self.context = zmq.Context() # type: ignore[attr-defined] + self.sender_socket = self.context.socket(zmq.constants.PUSH) + self.receiver_socket = self.context.socket(zmq.constants.PULL) + self.sender_ack = self.context.socket(zmq.constants.PULL) + self.receiver_ack = self.context.socket(zmq.constants.PUSH) + + self.buffer_cleaner = ThreadPoolExecutor(max_workers=1) + self._setup_metadata_sockets(kv_rank, prefill_host, base_prefill_port, + decode_host, base_decode_port) + + def _setup_metadata_sockets(self, kv_rank: int, p_host: str, p_port: str, + d_host: str, d_port: str) -> None: + """Set up ZeroMQ sockets for sending and receiving data.""" + # Offsets < 8 are left for initialization in case tp and pp are enabled + p_rank_offset = int(p_port) + 8 + self.local_rank * 2 + d_rank_offset = int(d_port) + 8 + self.local_rank * 2 + if kv_rank == 0: + self.sender_socket.bind(f"tcp://*:{p_rank_offset + 1}") + self.receiver_socket.connect(f"tcp://{d_host}:{d_rank_offset + 1}") + self.sender_ack.connect(f"tcp://{d_host}:{d_rank_offset + 2}") + self.receiver_ack.bind(f"tcp://*:{p_rank_offset + 2}") + else: + self.receiver_socket.connect(f"tcp://{p_host}:{p_rank_offset + 1}") + self.sender_socket.bind(f"tcp://*:{d_rank_offset + 1}") + self.receiver_ack.bind(f"tcp://*:{d_rank_offset + 2}") + self.sender_ack.connect(f"tcp://{p_host}:{p_rank_offset + 2}") + + def initialize(self, local_hostname: str, metadata_server: str, + protocol: str, device_name: str, + metadata_backend: Union[str, None]) -> None: + """Initialize the mooncake instance.""" + if metadata_backend is None: + self.engine.initialize(local_hostname, metadata_server, protocol, + device_name) + else: + supported_backend = ["etcd", "redis"] + metadata_backend = metadata_backend.lower() + if metadata_backend not in supported_backend: + raise ValueError( + "Mooncake Configuration error. `metadata_backend`" + f"should be one of {supported_backend}.") + + self.engine.initializeExt(local_hostname, metadata_server, + protocol, device_name, metadata_backend) + + def allocate_managed_buffer(self, length: int) -> int: + """Allocate a managed buffer of the specified length.""" + ret = self.engine.allocateManagedBuffer(length) + if ret <= 0: + logger.error("Allocation Return Error") + raise Exception("Allocation Return Error") + return ret + + def free_managed_buffer(self, buffer: int, length: int) -> int: + """Free a previously allocated managed buffer.""" + return self.engine.freeManagedBuffer(buffer, length) + + def transfer_sync(self, buffer: int, peer_buffer_address: int, + length: int) -> int: + """Synchronously transfer data to the specified address.""" + ret = self.engine.transferSync(self.remote_url, buffer, + peer_buffer_address, length) + if ret < 0: + logger.error("Transfer Return Error") + raise Exception("Transfer Return Error") + return ret + + def write_bytes_to_buffer(self, buffer: int, user_data: bytes, + length: int) -> int: + """Write bytes to the allocated buffer.""" + return self.engine.writeBytesToBuffer(buffer, user_data, length) + + def read_bytes_from_buffer(self, buffer: int, length: int) -> bytes: + """Read bytes from the allocated buffer.""" + return self.engine.readBytesFromBuffer(buffer, length) + + def wait_for_ack(self, src_ptr: int, length: int) -> None: + """Asynchronously wait for ACK from the receiver.""" + ack = self.sender_ack.recv_pyobj() + if ack != b'ACK': + logger.error("Failed to receive ACK from the receiver") + + self.free_managed_buffer(src_ptr, length) + + def send_bytes(self, user_data: bytes) -> None: + """Send bytes to the remote process.""" + length = len(user_data) + src_ptr = self.allocate_managed_buffer(length) + self.write_bytes_to_buffer(src_ptr, user_data, length) + self.sender_socket.send_pyobj((src_ptr, length)) + self.buffer_cleaner.submit(self.wait_for_ack, src_ptr, length) + + def recv_bytes(self) -> bytes: + """Receive bytes from the remote process.""" + src_ptr, length = self.receiver_socket.recv_pyobj() + dst_ptr = self.allocate_managed_buffer(length) + self.transfer_sync(dst_ptr, src_ptr, length) + ret = self.read_bytes_from_buffer(dst_ptr, length) + + # Buffer cleanup + self.receiver_ack.send_pyobj(b'ACK') + self.free_managed_buffer(dst_ptr, length) + + return ret + + +class MooncakePipe(KVPipeBase): + """MooncakeTransferEngine based Pipe implementation.""" + + def __init__(self, + local_rank: int, + config: KVTransferConfig, + device: Optional[str] = None): + """Initialize the mooncake pipe and set related parameters.""" + self.config = config + self.local_rank = local_rank + self.kv_rank = self.config.kv_rank + if device is None: + self.device = self._select_device(self.config.kv_buffer_device) + else: + self.device = self._select_device(device) + + self.transfer_engine = MooncakeTransferEngine(self.kv_rank, + self.local_rank) + self.transport_thread: Optional[ThreadPoolExecutor] = None + self.none_tensor = torch.tensor([NONE_INT], device=self.device) + + def _select_device(self, device: str) -> torch.device: + """Select available device (CUDA or CPU).""" + logger.info("Selecting device: %s", device) + if device == "cuda": + return torch.device(f"cuda:{self.local_rank}") + else: + return torch.device("cpu") + + def tensor_hash(self, tensor: torch.Tensor) -> int: + """Calculate the hash value of the tensor.""" + return hash(tensor.data_ptr()) + + def _send_impl(self, tensor: torch.Tensor) -> None: + """Implement the tensor sending logic.""" + value_bytes = pickle.dumps(tensor) + self.transfer_engine.send_bytes(value_bytes) + + def _recv_impl(self) -> torch.Tensor: + """Implement the tensor receiving logic.""" + data = self.transfer_engine.recv_bytes() + return pickle.loads(data) + + def send_tensor(self, tensor: Optional[torch.Tensor]) -> None: + """Send tensor to the target process.""" + if self.transport_thread is None: + self.transport_thread = ThreadPoolExecutor(max_workers=1) + tensor = tensor if tensor is not None else self.none_tensor + assert (len(tensor.shape) > 0) + self.transport_thread.submit(self._send_impl, tensor) + + def recv_tensor(self) -> Optional[torch.Tensor]: + """Receive tensor from other processes.""" + if self.transport_thread is None: + self.transport_thread = ThreadPoolExecutor(max_workers=1) + tensor = self.transport_thread.submit(self._recv_impl).result() + if tensor.numel() == 1 and tensor.item() == NONE_INT: + return None + else: + return tensor + + def close(self) -> None: + """Cleanup logic when closing the pipe.""" + self.transfer_engine.sender_socket.close() + self.transfer_engine.receiver_socket.close() + self.transfer_engine.sender_ack.close() + self.transfer_engine.receiver_ack.close() + self.transfer_engine.context.term() # Terminate the ZMQ context + logger.info("Closed the transfer engine and cleaned up resources.") From 25ebed2f8ca6d747d63f2be9ede023c561851ac8 Mon Sep 17 00:00:00 2001 From: Woosuk Kwon Date: Sun, 15 Dec 2024 13:33:00 -0800 Subject: [PATCH 182/733] [V1][Minor] Cache np arange to reduce input preparation overhead (#11214) Signed-off-by: Woosuk Kwon --- vllm/v1/worker/gpu_model_runner.py | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/vllm/v1/worker/gpu_model_runner.py b/vllm/v1/worker/gpu_model_runner.py index abcd4b007a326..67166fb05085c 100644 --- a/vllm/v1/worker/gpu_model_runner.py +++ b/vllm/v1/worker/gpu_model_runner.py @@ -118,6 +118,12 @@ def __init__( dtype=self.dtype, device=self.device) + # OPTIMIZATION: Cache the tensors rather than creating them every step. + self.arange_np = np.arange(max(self.max_num_reqs, self.max_model_len), + dtype=np.int32) + # NOTE(woosuk): These tensors are "stateless", i.e., they are literally + # a faster version of creating a new tensor every time. Thus, we should + # not make any assumptions about the values in these tensors. self.input_ids_cpu = torch.zeros(self.max_num_tokens, dtype=torch.int32, device="cpu", @@ -269,11 +275,13 @@ def _prepare_inputs(self, scheduler_output: "SchedulerOutput"): # Get request indices. # E.g., [2, 5, 3] -> [0, 0, 1, 1, 1, 1, 1, 2, 2, 2] - req_indices = np.repeat(np.arange(num_reqs), num_scheduled_tokens) + req_indices = np.repeat(self.arange_np[:num_reqs], + num_scheduled_tokens) # Get batched arange. # E.g., [2, 5, 3] -> [0, 1, 0, 1, 2, 3, 4, 0, 1, 2] - arange = np.concatenate([np.arange(n) for n in num_scheduled_tokens]) + arange = np.concatenate( + [self.arange_np[:n] for n in num_scheduled_tokens]) # Get positions. positions_np = self.positions_np[:total_num_scheduled_tokens] From da6f40924609e084ced486cae5b4ddf97133acd9 Mon Sep 17 00:00:00 2001 From: AlexHe99 Date: Mon, 16 Dec 2024 08:33:58 +0800 Subject: [PATCH 183/733] Update deploying_with_k8s.rst (#10922) --- docs/source/serving/deploying_with_k8s.rst | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/docs/source/serving/deploying_with_k8s.rst b/docs/source/serving/deploying_with_k8s.rst index 7dc076dc709df..cc3606f0df851 100644 --- a/docs/source/serving/deploying_with_k8s.rst +++ b/docs/source/serving/deploying_with_k8s.rst @@ -162,7 +162,7 @@ To test the deployment, run the following ``curl`` command: curl http://mistral-7b.default.svc.cluster.local/v1/completions \ -H "Content-Type: application/json" \ -d '{ - "model": "facebook/opt-125m", + "model": "mistralai/Mistral-7B-Instruct-v0.3", "prompt": "San Francisco is a", "max_tokens": 7, "temperature": 0 @@ -172,4 +172,4 @@ If the service is correctly deployed, you should receive a response from the vLL Conclusion ---------- -Deploying vLLM with Kubernetes allows for efficient scaling and management of ML models leveraging GPU resources. By following the steps outlined above, you should be able to set up and test a vLLM deployment within your Kubernetes cluster. If you encounter any issues or have suggestions, please feel free to contribute to the documentation. \ No newline at end of file +Deploying vLLM with Kubernetes allows for efficient scaling and management of ML models leveraging GPU resources. By following the steps outlined above, you should be able to set up and test a vLLM deployment within your Kubernetes cluster. If you encounter any issues or have suggestions, please feel free to contribute to the documentation. From 69ba344de8683ec4d3d42d11ae4e147a2a302da8 Mon Sep 17 00:00:00 2001 From: chenqianfzh <51831990+chenqianfzh@users.noreply.github.com> Date: Sun, 15 Dec 2024 16:38:40 -0800 Subject: [PATCH 184/733] [Bugfix] Fix block size validation (#10938) --- vllm/engine/arg_utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index 5a73c6ee02e0c..0aa367a173b6c 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -425,7 +425,7 @@ def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser: parser.add_argument('--block-size', type=int, default=EngineArgs.block_size, - choices=[8, 16, 32, 64, 128], + choices=[8, 16, 32], help='Token block size for contiguous chunks of ' 'tokens. This is ignored on neuron devices and ' 'set to max-model-len') From 17138af7c45eba3aba3e9b84a3852b4ba81e460f Mon Sep 17 00:00:00 2001 From: yansh97 Date: Mon, 16 Dec 2024 16:15:40 +0800 Subject: [PATCH 185/733] [Bugfix] Fix the default value for temperature in ChatCompletionRequest (#11219) --- vllm/entrypoints/openai/protocol.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/vllm/entrypoints/openai/protocol.py b/vllm/entrypoints/openai/protocol.py index dfb7c977dbd43..6ed7c2e9dcd6b 100644 --- a/vllm/entrypoints/openai/protocol.py +++ b/vllm/entrypoints/openai/protocol.py @@ -211,7 +211,7 @@ class ChatCompletionRequest(OpenAIBaseModel): stop: Optional[Union[str, List[str]]] = Field(default_factory=list) stream: Optional[bool] = False stream_options: Optional[StreamOptions] = None - temperature: Optional[float] = 0.7 + temperature: Optional[float] = 1.0 top_p: Optional[float] = 1.0 tools: Optional[List[ChatCompletionToolsParam]] = None tool_choice: Optional[Union[Literal["none"], Literal["auto"], From b3b1526f03906c935e6ef80a2cdc971a65fdf7e2 Mon Sep 17 00:00:00 2001 From: cennn <61925104+cennn@users.noreply.github.com> Date: Mon, 16 Dec 2024 17:20:49 +0800 Subject: [PATCH 186/733] WIP: [CI/Build] simplify Dockerfile build for ARM64 / GH200 (#11212) Signed-off-by: drikster80 Co-authored-by: drikster80 --- Dockerfile | 40 +++++++++++++++---- docs/source/serving/deploying_with_docker.rst | 26 ++++++++++++ requirements-build.txt | 2 +- requirements-cuda-arm64.txt | 3 ++ requirements-cuda.txt | 4 +- 5 files changed, 64 insertions(+), 11 deletions(-) create mode 100644 requirements-cuda-arm64.txt diff --git a/Dockerfile b/Dockerfile index c1b6e1bbfe354..123703848749c 100644 --- a/Dockerfile +++ b/Dockerfile @@ -11,6 +11,7 @@ ARG CUDA_VERSION=12.4.1 FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base ARG CUDA_VERSION=12.4.1 ARG PYTHON_VERSION=3.12 +ARG TARGETPLATFORM ENV DEBIAN_FRONTEND=noninteractive # Install Python and other dependencies @@ -46,9 +47,14 @@ WORKDIR /workspace # install build and runtime dependencies COPY requirements-common.txt requirements-common.txt COPY requirements-cuda.txt requirements-cuda.txt +COPY requirements-cuda-arm64.txt requirements-cuda-arm64.txt RUN --mount=type=cache,target=/root/.cache/pip \ python3 -m pip install -r requirements-cuda.txt +RUN --mount=type=cache,target=/root/.cache/pip \ + if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \ + python3 -m pip install -r requirements-cuda-arm64.txt; \ + fi # cuda arch list used by torch # can be useful for both `dev` and `test` @@ -63,6 +69,7 @@ ENV VLLM_FA_CMAKE_GPU_ARCHES=${vllm_fa_cmake_gpu_arches} #################### WHEEL BUILD IMAGE #################### FROM base AS build +ARG TARGETPLATFORM # install build dependencies COPY requirements-build.txt requirements-build.txt @@ -70,6 +77,11 @@ COPY requirements-build.txt requirements-build.txt RUN --mount=type=cache,target=/root/.cache/pip \ python3 -m pip install -r requirements-build.txt +RUN --mount=type=cache,target=/root/.cache/pip \ + if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \ + python3 -m pip install -r requirements-cuda-arm64.txt; \ + fi + COPY . . ARG GIT_REPO_CHECK=0 RUN --mount=type=bind,source=.git,target=.git \ @@ -134,8 +146,8 @@ COPY requirements-test.txt requirements-test.txt COPY requirements-dev.txt requirements-dev.txt RUN --mount=type=cache,target=/root/.cache/pip \ python3 -m pip install -r requirements-dev.txt - #################### DEV IMAGE #################### + #################### vLLM installation IMAGE #################### # image with vLLM installed FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu22.04 AS vllm-base @@ -143,6 +155,9 @@ ARG CUDA_VERSION=12.4.1 ARG PYTHON_VERSION=3.12 WORKDIR /vllm-workspace ENV DEBIAN_FRONTEND=noninteractive +ARG TARGETPLATFORM + +COPY requirements-cuda-arm64.txt requirements-cuda-arm64.txt RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \ echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment @@ -168,18 +183,25 @@ RUN echo 'tzdata tzdata/Areas select America' | debconf-set-selections \ # or future versions of triton. RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/ -# install vllm wheel first, so that torch etc will be installed +# Install vllm wheel first, so that torch etc will be installed. RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \ --mount=type=cache,target=/root/.cache/pip \ python3 -m pip install dist/*.whl --verbose RUN --mount=type=cache,target=/root/.cache/pip \ - . /etc/environment && \ - python3 -m pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.6/flashinfer-0.1.6+cu121torch2.4-cp${PYTHON_VERSION_STR}-cp${PYTHON_VERSION_STR}-linux_x86_64.whl + if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \ + pip uninstall -y torch && \ + python3 -m pip install -r requirements-cuda-arm64.txt; \ + fi + +RUN --mount=type=cache,target=/root/.cache/pip \ +. /etc/environment && \ +if [ "$TARGETPLATFORM" != "linux/arm64" ]; then \ + python3 -m pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.6/flashinfer-0.1.6+cu121torch2.4-cp${PYTHON_VERSION_STR}-cp${PYTHON_VERSION_STR}-linux_x86_64.whl; \ +fi COPY examples examples #################### vLLM installation IMAGE #################### - #################### TEST IMAGE #################### # image to run unit testing suite # note that this uses vllm installed by `pip` @@ -209,7 +231,6 @@ COPY vllm/v1 /usr/local/lib/python3.12/dist-packages/vllm/v1 RUN mkdir test_docs RUN mv docs test_docs/ RUN mv vllm test_docs/ - #################### TEST IMAGE #################### #################### OPENAI API SERVER #################### @@ -218,8 +239,11 @@ FROM vllm-base AS vllm-openai # install additional dependencies for openai api server RUN --mount=type=cache,target=/root/.cache/pip \ - pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.45.0' timm==0.9.10 - + if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \ + pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.42.0' 'timm==0.9.10'; \ + else \ + pip install accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.45.0' 'timm==0.9.10'; \ + fi ENV VLLM_USAGE_SOURCE production-docker-image ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"] diff --git a/docs/source/serving/deploying_with_docker.rst b/docs/source/serving/deploying_with_docker.rst index 14d94b09e9b9c..11a9f12fd17cd 100644 --- a/docs/source/serving/deploying_with_docker.rst +++ b/docs/source/serving/deploying_with_docker.rst @@ -37,6 +37,32 @@ You can build and run vLLM from source via the provided `Dockerfile =61 setuptools-scm>=8 -torch==2.5.1 +torch==2.5.1; platform_machine != 'aarch64' wheel jinja2 diff --git a/requirements-cuda-arm64.txt b/requirements-cuda-arm64.txt new file mode 100644 index 0000000000000..bbcb5cb7012ce --- /dev/null +++ b/requirements-cuda-arm64.txt @@ -0,0 +1,3 @@ +--index-url https://download.pytorch.org/whl/nightly/cu124 +torchvision==0.22.0.dev20241215; platform_machine == 'aarch64' +torch==2.6.0.dev20241210+cu124; platform_machine == 'aarch64' diff --git a/requirements-cuda.txt b/requirements-cuda.txt index 058ab7c1ee9df..5d4dee8c7129a 100644 --- a/requirements-cuda.txt +++ b/requirements-cuda.txt @@ -4,7 +4,7 @@ # Dependencies for NVIDIA GPUs ray >= 2.9 nvidia-ml-py >= 12.560.30 # for pynvml package -torch == 2.5.1 +torch == 2.5.1; platform_machine != 'aarch64' # These must be updated alongside torch -torchvision == 0.20.1 # Required for phi3v processor. See https://github.com/pytorch/vision?tab=readme-ov-file#installation for corresponding version +torchvision == 0.20.1; platform_machine != 'aarch64' # Required for phi3v processor. See https://github.com/pytorch/vision?tab=readme-ov-file#installation for corresponding version xformers == 0.0.28.post3; platform_system == 'Linux' and platform_machine == 'x86_64' # Requires PyTorch 2.5.1 From bddbbcb132429084ede62855bcd6a1023a3645c1 Mon Sep 17 00:00:00 2001 From: Jani Monoses Date: Mon, 16 Dec 2024 11:56:19 +0200 Subject: [PATCH 187/733] [Model] Support Cohere2ForCausalLM (Cohere R7B) (#11203) --- docs/source/models/supported_models.rst | 4 ++-- tests/models/registry.py | 2 ++ tests/models/test_initialization.py | 4 ++++ vllm/model_executor/models/commandr.py | 19 +++++++++++++++++-- vllm/model_executor/models/registry.py | 1 + 5 files changed, 26 insertions(+), 4 deletions(-) diff --git a/docs/source/models/supported_models.rst b/docs/source/models/supported_models.rst index cae4a88de1638..3bef3f3226062 100644 --- a/docs/source/models/supported_models.rst +++ b/docs/source/models/supported_models.rst @@ -118,9 +118,9 @@ Text Generation (``--task generate``) - :code:`THUDM/chatglm2-6b`, :code:`THUDM/chatglm3-6b`, etc. - ✅︎ - ✅︎ - * - :code:`CohereForCausalLM` + * - :code:`CohereForCausalLM`,:code:`Cohere2ForCausalLM` - Command-R - - :code:`CohereForAI/c4ai-command-r-v01`, etc. + - :code:`CohereForAI/c4ai-command-r-v01`, :code:`CohereForAI/c4ai-command-r7b-12-2024`, etc. - ✅︎ - ✅︎ * - :code:`DbrxForCausalLM` diff --git a/tests/models/registry.py b/tests/models/registry.py index 6a8b1742ceae3..fac8c4b2e9b19 100644 --- a/tests/models/registry.py +++ b/tests/models/registry.py @@ -53,6 +53,8 @@ class _HfExamplesInfo: # ChatGLMModel supports multimodal "CohereForCausalLM": _HfExamplesInfo("CohereForAI/c4ai-command-r-v01", trust_remote_code=True), + "Cohere2ForCausalLM": _HfExamplesInfo("CohereForAI/c4ai-command-r7b-12-2024", # noqa: E501 + trust_remote_code=True), "DbrxForCausalLM": _HfExamplesInfo("databricks/dbrx-instruct"), "DeciLMForCausalLM": _HfExamplesInfo("Deci/DeciLM-7B-instruct", trust_remote_code=True), diff --git a/tests/models/test_initialization.py b/tests/models/test_initialization.py index 3b728f2744fca..a4eea7f035c91 100644 --- a/tests/models/test_initialization.py +++ b/tests/models/test_initialization.py @@ -1,6 +1,7 @@ from unittest.mock import patch import pytest +import transformers from transformers import PretrainedConfig from vllm import LLM @@ -11,6 +12,9 @@ @pytest.mark.parametrize("model_arch", HF_EXAMPLE_MODELS.get_supported_archs()) def test_can_initialize(model_arch): model_info = HF_EXAMPLE_MODELS.get_hf_info(model_arch) + if (model_arch == "Cohere2ForCausalLM" + and transformers.__version__ < "4.48.0"): + pytest.skip(reason="Model introduced in HF >= 4.48.0") if not model_info.is_available_online: pytest.skip("Model is not available online") diff --git a/vllm/model_executor/models/commandr.py b/vllm/model_executor/models/commandr.py index 85e24ca660686..c846e42f1b0c3 100644 --- a/vllm/model_executor/models/commandr.py +++ b/vllm/model_executor/models/commandr.py @@ -48,7 +48,7 @@ from vllm.sequence import IntermediateTensors from .interfaces import SupportsLoRA, SupportsPP -from .utils import (is_pp_missing_parameter, +from .utils import (extract_layer_index, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix) @@ -171,12 +171,26 @@ def __init__( rope_scaling=self.rope_scaling, is_neox_style=False, ) + + sliding_window = getattr(config, "sliding_window", None) + # Model v2 has sliding windows, v1 does not + self.v1 = sliding_window is None + + layer_idx = extract_layer_index(prefix) + layer_has_sliding_window = ( + getattr(config, "sliding_window_pattern", False) + and (layer_idx + 1) % self.config.sliding_window_pattern != 0) + + self.sliding_window = (sliding_window + if layer_has_sliding_window else None) + self.attn = Attention(self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config, + per_layer_sliding_window=self.sliding_window, prefix=f"{prefix}.attn") if self.use_qk_norm: self.q_norm = LayerNorm(param_shape=(self.num_heads, @@ -206,7 +220,8 @@ def forward( q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) if self.use_qk_norm: q, k = self._apply_qk_norm(q, k) - q, k = self.rotary_emb(positions, q, k) + if self.v1 or self.sliding_window: + q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, kv_cache, attn_metadata) output, _ = self.o_proj(attn_output) return output diff --git a/vllm/model_executor/models/registry.py b/vllm/model_executor/models/registry.py index 4e77746f312e3..68a2467a813a1 100644 --- a/vllm/model_executor/models/registry.py +++ b/vllm/model_executor/models/registry.py @@ -41,6 +41,7 @@ "BloomForCausalLM": ("bloom", "BloomForCausalLM"), # ChatGLMModel supports multimodal "CohereForCausalLM": ("commandr", "CohereForCausalLM"), + "Cohere2ForCausalLM": ("commandr", "CohereForCausalLM"), "DbrxForCausalLM": ("dbrx", "DbrxForCausalLM"), "DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"), "DeepseekForCausalLM": ("deepseek", "DeepseekForCausalLM"), From d927dbcd889fb2476cb61ea477ff51e5dd9e1ae3 Mon Sep 17 00:00:00 2001 From: Isotr0py Date: Mon, 16 Dec 2024 18:09:53 +0800 Subject: [PATCH 188/733] [Model] Refactor Ultravox to use merged input processor (#11198) Signed-off-by: Isotr0py <2037008807@qq.com> Co-authored-by: Cyrus Leung --- examples/offline_inference_audio_language.py | 10 +- tests/distributed/test_pipeline_parallel.py | 2 +- tests/entrypoints/openai/test_audio.py | 1 + .../audio_language/test_ultravox.py | 5 +- vllm/entrypoints/chat_utils.py | 2 +- vllm/model_executor/models/ultravox.py | 244 ++++++++---------- vllm/multimodal/processing.py | 19 +- 7 files changed, 129 insertions(+), 154 deletions(-) diff --git a/examples/offline_inference_audio_language.py b/examples/offline_inference_audio_language.py index 050b791b62adb..68b786961b14a 100644 --- a/examples/offline_inference_audio_language.py +++ b/examples/offline_inference_audio_language.py @@ -25,16 +25,16 @@ def run_ultravox(question: str, audio_count: int): tokenizer = AutoTokenizer.from_pretrained(model_name) messages = [{ - 'role': - 'user', - 'content': - "<|reserved_special_token_0|>\n" * audio_count + question + 'role': 'user', + 'content': "<|audio|>\n" * audio_count + question }] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) - llm = LLM(model=model_name, limit_mm_per_prompt={"audio": audio_count}) + llm = LLM(model=model_name, + trust_remote_code=True, + limit_mm_per_prompt={"audio": audio_count}) stop_token_ids = None return llm, prompt, stop_token_ids diff --git a/tests/distributed/test_pipeline_parallel.py b/tests/distributed/test_pipeline_parallel.py index 85d408efafe96..ddbf40f089407 100644 --- a/tests/distributed/test_pipeline_parallel.py +++ b/tests/distributed/test_pipeline_parallel.py @@ -214,7 +214,7 @@ def iter_params(self, model_name: str): "Qwen/Qwen-VL-Chat": PPTestSettings.fast(trust_remote_code=True), "Qwen/Qwen2-Audio-7B-Instruct": PPTestSettings.fast(), "Qwen/Qwen2-VL-2B-Instruct": PPTestSettings.fast(), - "fixie-ai/ultravox-v0_3": PPTestSettings.fast(), + "fixie-ai/ultravox-v0_3": PPTestSettings.fast(trust_remote_code=True), # [Encoder-decoder] # TODO: Implement PP # "meta-llama/Llama-3.2-11B-Vision-Instruct": PPTestSettings.fast(), diff --git a/tests/entrypoints/openai/test_audio.py b/tests/entrypoints/openai/test_audio.py index a74109e2f5120..b579dcbb5c402 100644 --- a/tests/entrypoints/openai/test_audio.py +++ b/tests/entrypoints/openai/test_audio.py @@ -25,6 +25,7 @@ def server(): "--max-num-seqs", "5", "--enforce-eager", + "--trust-remote-code", ] with RemoteOpenAIServer(MODEL_NAME, args) as remote_server: diff --git a/tests/models/decoder_only/audio_language/test_ultravox.py b/tests/models/decoder_only/audio_language/test_ultravox.py index e100c6b9bb906..c548cfdf53414 100644 --- a/tests/models/decoder_only/audio_language/test_ultravox.py +++ b/tests/models/decoder_only/audio_language/test_ultravox.py @@ -16,7 +16,7 @@ AudioTuple = Tuple[np.ndarray, int] -VLLM_PLACEHOLDER = "<|reserved_special_token_0|>" +VLLM_PLACEHOLDER = "<|audio|>" HF_PLACEHOLDER = "<|audio|>" CHUNKED_PREFILL_KWARGS = { @@ -46,7 +46,8 @@ def audio(request): def server(request, audio_assets): args = [ "--dtype=bfloat16", "--max-model-len=4096", "--enforce-eager", - f"--limit-mm-per-prompt=audio={len(audio_assets)}" + f"--limit-mm-per-prompt=audio={len(audio_assets)}", + "--trust-remote-code" ] + [ f"--{key.replace('_','-')}={value}" for key, value in request.param.items() diff --git a/vllm/entrypoints/chat_utils.py b/vllm/entrypoints/chat_utils.py index c2054dcbfce0e..aaa5cd759366a 100644 --- a/vllm/entrypoints/chat_utils.py +++ b/vllm/entrypoints/chat_utils.py @@ -418,7 +418,7 @@ def _placeholder_str(self, modality: ModalityStr, raise TypeError(f"Unknown {modality} model type: {model_type}") elif modality == "audio": if model_type == "ultravox": - return "<|reserved_special_token_0|>" + return "<|audio|>" if model_type == "qwen2_audio": return (f"Audio {current_count}: " f"<|audio_bos|><|AUDIO|><|audio_eos|>") diff --git a/vllm/model_executor/models/ultravox.py b/vllm/model_executor/models/ultravox.py index ea1e5401d42c0..ebaa8a4c4f38a 100644 --- a/vllm/model_executor/models/ultravox.py +++ b/vllm/model_executor/models/ultravox.py @@ -3,41 +3,39 @@ import math from functools import cached_property, lru_cache -from typing import (Iterable, List, Literal, Mapping, Optional, Set, Tuple, - TypedDict, Union, cast) +from typing import (Any, Dict, Iterable, List, Literal, Mapping, Optional, Set, + Tuple, TypedDict, Union) import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import functional as F +from transformers import BatchFeature from transformers.models.whisper import WhisperFeatureExtractor from transformers.models.whisper.modeling_whisper import WhisperEncoder from vllm.attention import AttentionMetadata from vllm.config import VllmConfig -from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, DummyData, - InputContext, token_inputs) +from vllm.inputs import InputContext from vllm.model_executor.layers.activation import SiluAndMul, get_act_fn from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler from vllm.model_executor.model_loader.loader import DefaultModelLoader from vllm.model_executor.sampling_metadata import SamplingMetadata -from vllm.multimodal import (MULTIMODAL_REGISTRY, MultiModalKwargs, - NestedTensors) -from vllm.multimodal.utils import (cached_get_tokenizer, - consecutive_placeholder_ranges, - repeat_and_pad_placeholder_tokens) -from vllm.sequence import IntermediateTensors, SequenceData +from vllm.multimodal import MULTIMODAL_REGISTRY, NestedTensors +from vllm.multimodal.processing import (BaseMultiModalProcessor, + MultiModalDataDict, + MultiModalDataItems, ProcessorInputs, + PromptReplacement) +from vllm.sequence import IntermediateTensors from vllm.transformers_utils.configs.ultravox import UltravoxConfig -from vllm.utils import is_list_of from .interfaces import SupportsMultiModal, SupportsPP from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn, init_vllm_registered_model, maybe_prefix, merge_multimodal_embeddings_from_map) -_AUDIO_PLACEHOLDER_TOKEN = 128002 _AUDIO_TOKENS_PER_SECOND = 6.25 @@ -72,64 +70,18 @@ def get_ultravox_max_audio_tokens(ctx: InputContext): return math.ceil(feature_extractor.chunk_length * _AUDIO_TOKENS_PER_SECOND) -def dummy_seq_data_for_ultravox( - ctx: InputContext, - seq_len: int, - audio_count: int, -): - audio_length = min(get_ultravox_max_audio_tokens(ctx), - seq_len // audio_count) +class UltravoxMultiModalProcessor(BaseMultiModalProcessor): - return SequenceData.from_prompt_token_counts( - (_AUDIO_PLACEHOLDER_TOKEN, audio_length * audio_count), - (0, seq_len - audio_length * audio_count)), { - "audio": - consecutive_placeholder_ranges(num_items=audio_count, - item_size=audio_length) - } - - -def dummy_audio_for_ultravox( - ctx: InputContext, - audio_count: int, -): - feature_extractor = whisper_feature_extractor(ctx) - audio_and_sr = (np.array([0.0] * feature_extractor.chunk_length), 1) - return {"audio": [audio_and_sr] * audio_count} - - -def dummy_data_for_ultravox( - ctx: InputContext, - seq_len: int, - mm_counts: Mapping[str, int], -): - audio_count = mm_counts["audio"] - seq_data, ranges = dummy_seq_data_for_ultravox(ctx, seq_len, audio_count) - mm_dict = dummy_audio_for_ultravox(ctx, audio_count) - - return DummyData(seq_data, mm_dict, ranges) - - -def input_mapper_for_ultravox(ctx: InputContext, data: object): - if not isinstance(data, list): - data = [data] - - if len(data) == 0: - return MultiModalKwargs() - - # If the audio inputs are embeddings, no need for preprocessing - if is_list_of(data, torch.Tensor, check="all"): - return MultiModalKwargs({"audio_embeds": data}) - - audio_features = [] - for audio_input in data: - if not isinstance(audio_input, tuple): - raise NotImplementedError( - f"Unsupported data type: {type(audio_input)}") - - (audio, sr) = cast(Tuple[np.ndarray, Union[float, int]], audio_input) - feature_extractor = whisper_feature_extractor(ctx) + def _get_feature_extractor(self) -> WhisperFeatureExtractor: + return self._get_hf_processor().audio_processor.feature_extractor + def _resample_audio( + self, + audio: np.ndarray, + sr: int, + ) -> Dict[str, Union[np.ndarray, int]]: + # resample audio to the model's sampling rate + feature_extractor = self._get_feature_extractor() if sr != feature_extractor.sampling_rate: try: import librosa @@ -140,78 +92,92 @@ def input_mapper_for_ultravox(ctx: InputContext, data: object): orig_sr=sr, target_sr=feature_extractor.sampling_rate) sr = feature_extractor.sampling_rate + return {"audio": audio, "sampling_rate": sr} - minimum_audio_length = feature_extractor.n_fft // 2 + 1 - if len(audio) < minimum_audio_length: - # Not enough audio; pad it. - audio = np.pad(audio, (0, minimum_audio_length - len(audio))) - - single_audio_features = feature_extractor( - audio, sampling_rate=sr, padding="longest", - return_tensors="pt")["input_features"] - - # Remove the batch dimension because we're wrapping it in a list. - audio_features.append(single_audio_features.squeeze(0)) - - return MultiModalKwargs({"audio_features": audio_features}) - - -def input_processor_for_ultravox(ctx: InputContext, inputs: DecoderOnlyInputs): - multi_modal_data = inputs.get("multi_modal_data") - if multi_modal_data is None or "audio" not in multi_modal_data: - return inputs + def _apply_hf_processor( + self, + prompt: str, + mm_data: MultiModalDataDict, + mm_processor_kwargs: Mapping[str, object], + ) -> BatchFeature: + if not mm_data or not mm_data.get("audio", None): + return super()._apply_hf_processor(prompt, mm_data, + mm_processor_kwargs) + + audio_data = mm_data["audio"] + if not isinstance(audio_data, list): + audio_data = [audio_data] + + # Ultravox processor doesn't support multiple inputs, + # therefore we need to input text and audio one by one + tokenizer = self._get_tokenizer() + audio_features, audio_token_len = [], [] + processed_inputs = {} + for audio, sr in audio_data: + data = self._resample_audio(audio, sr) + processed_inputs = super()._apply_hf_processor( + prompt, data, mm_processor_kwargs) + prompt = tokenizer.decode(processed_inputs["input_ids"][0], + skip_special_tokens=False) + audio_features.append( + processed_inputs.pop("audio_values").squeeze(0)) + audio_token_len.append( + processed_inputs.pop("audio_token_len").item()) + + return dict( + **processed_inputs, + audio_features=audio_features, + audio_token_len=audio_token_len, + ) - if "multi_modal_placeholders" in inputs and "audio" in inputs[ - "multi_modal_placeholders"]: - # The inputs already have placeholders. - return inputs + def _get_processor_data( + self, + mm_data: MultiModalDataDict, + ) -> Tuple[Dict[str, Any], Dict[str, Any]]: + # Ultravox uses "audio" instead of "audios" as calling keyword + processor_data, passthrough_data = super()._get_processor_data(mm_data) + if "audios" in processor_data: + processor_data["audio"] = processor_data.pop("audios") + return processor_data, passthrough_data + + def _get_prompt_replacements( + self, + mm_items: MultiModalDataItems, + hf_inputs: BatchFeature, + mm_processor_kwargs: Mapping[str, object], + ) -> list[PromptReplacement]: + hf_processor = self._get_hf_processor() + placeholder = hf_processor.audio_token_replacement + + def get_replacement_ultravox(item_idx: int): + audio_token_len = hf_inputs["audio_token_len"][item_idx] + return placeholder * audio_token_len + + return [ + PromptReplacement( + modality="audio", + target="<|audio|>", + replacement=get_replacement_ultravox, + ) + ] - feature_extractor = whisper_feature_extractor(ctx) - audios = multi_modal_data["audio"] - if not isinstance(audios, list): - audios = [audios] - - audio_token_counts = [] - for audio in audios: - if isinstance(audio, torch.Tensor): - audio_num_tokens = audio.shape[1] - audio_token_counts.append(audio_num_tokens) - else: - audio_data, sample_rate = audio - audio_length = audio_data.shape[0] - if sample_rate != feature_extractor.sampling_rate: - # Account for resampling. - adjustment = feature_extractor.sampling_rate / sample_rate - audio_length = math.ceil(adjustment * audio_length) - - feature_extractor_output_length = math.ceil( - (audio_length - (feature_extractor.hop_length - 1)) / - feature_extractor.hop_length) - - uv_config = ctx.get_hf_config(UltravoxConfig) - audio_num_tokens = min( - max( - 1, - math.ceil(feature_extractor_output_length / - (uv_config.stack_factor * 2))), - get_ultravox_max_audio_tokens(ctx)) - audio_token_counts.append(audio_num_tokens) - - tokenizer = cached_get_tokenizer(ctx.model_config.tokenizer) - - new_prompt, new_token_ids, ranges = repeat_and_pad_placeholder_tokens( - tokenizer, - inputs.get("prompt"), - inputs["prompt_token_ids"], - placeholder_token_id=_AUDIO_PLACEHOLDER_TOKEN, - repeat_count=audio_token_counts, - ) - - # NOTE: Create a defensive copy of the original inputs - return token_inputs(prompt_token_ids=new_token_ids, - prompt=new_prompt, - multi_modal_data=multi_modal_data, - multi_modal_placeholders={"audio": ranges}) + def _get_dummy_mm_inputs( + self, + mm_counts: Mapping[str, int], + ) -> ProcessorInputs: + feature_extractor = self._get_feature_extractor() + sampling_rate = feature_extractor.sampling_rate + audio_len = feature_extractor.chunk_length * sampling_rate + + audio_count = mm_counts["audio"] + audio = np.zeros(audio_len) + data = {"audio": [(audio, sampling_rate)] * audio_count} + + return ProcessorInputs( + prompt_text="<|audio|>" * audio_count, + mm_data=data, + mm_processor_kwargs={}, + ) class StackAudioFrames(nn.Module): @@ -332,11 +298,9 @@ def forward( return hidden_states -@MULTIMODAL_REGISTRY.register_input_mapper("audio", input_mapper_for_ultravox) @MULTIMODAL_REGISTRY.register_max_multimodal_tokens( "audio", get_ultravox_max_audio_tokens) -@INPUT_REGISTRY.register_dummy_data(dummy_data_for_ultravox) -@INPUT_REGISTRY.register_input_processor(input_processor_for_ultravox) +@MULTIMODAL_REGISTRY.register_processor(UltravoxMultiModalProcessor) class UltravoxModel(nn.Module, SupportsMultiModal, SupportsPP): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): diff --git a/vllm/multimodal/processing.py b/vllm/multimodal/processing.py index ce6bec1d49aac..339e193eefe20 100644 --- a/vllm/multimodal/processing.py +++ b/vllm/multimodal/processing.py @@ -594,14 +594,10 @@ def _find_placeholders( return list( iter_placeholders(all_prompt_repls, new_token_ids, mm_item_counts)) - def _apply_hf_processor( + def _get_processor_data( self, - prompt: str, mm_data: MultiModalDataDict, - mm_processor_kwargs: Mapping[str, object], ) -> BatchFeature: - hf_processor = self._get_hf_processor(**mm_processor_kwargs) - processor_data = dict[str, Any]() passthrough_data = dict[str, Any]() for k, v in mm_data.items(): @@ -619,6 +615,19 @@ def _apply_hf_processor( processor_data[f"{k}s"] = v else: processor_data[k] = v + return processor_data, passthrough_data + + def _apply_hf_processor( + self, + prompt: str, + mm_data: MultiModalDataDict, + mm_processor_kwargs: Mapping[str, object], + ) -> BatchFeature: + # some mm_processor_kwargs may be used in processor initialization + # instead of processor call + hf_processor = self._get_hf_processor(**mm_processor_kwargs) + + processor_data, passthrough_data = self._get_processor_data(mm_data) assert callable(hf_processor) mm_processor_kwargs = self.ctx.resolve_hf_processor_call_kwargs( From 2ca830dbaa1a7c30b8ff4d7c860c63f87dc18be3 Mon Sep 17 00:00:00 2001 From: Isotr0py Date: Mon, 16 Dec 2024 19:23:33 +0800 Subject: [PATCH 189/733] [Doc] Reorder vision language examples in alphabet order (#11228) Signed-off-by: Isotr0py <2037008807@qq.com> --- examples/offline_inference_vision_language.py | 486 +++++++++--------- ...e_inference_vision_language_multi_image.py | 288 +++++------ 2 files changed, 387 insertions(+), 387 deletions(-) diff --git a/examples/offline_inference_vision_language.py b/examples/offline_inference_vision_language.py index 7bc43242b717e..6d0495fdd4054 100644 --- a/examples/offline_inference_vision_language.py +++ b/examples/offline_inference_vision_language.py @@ -19,6 +19,159 @@ # Unless specified, these settings have been tested to work on a single L4. +# Aria +def run_aria(question: str, modality: str): + assert modality == "image" + model_name = "rhymes-ai/Aria" + + llm = LLM(model=model_name, + tokenizer_mode="slow", + trust_remote_code=True, + dtype="bfloat16", + mm_cache_preprocessor=args.mm_cache_preprocessor) + + prompt = (f"<|im_start|>user\n<|img|>\n{question}" + "<|im_end|>\n<|im_start|>assistant\n") + + stop_token_ids = [93532, 93653, 944, 93421, 1019, 93653, 93519] + return llm, prompt, stop_token_ids + + +# BLIP-2 +def run_blip2(question: str, modality: str): + assert modality == "image" + + # BLIP-2 prompt format is inaccurate on HuggingFace model repository. + # See https://huggingface.co/Salesforce/blip2-opt-2.7b/discussions/15#64ff02f3f8cf9e4f5b038262 #noqa + prompt = f"Question: {question} Answer:" + llm = LLM(model="Salesforce/blip2-opt-2.7b", + mm_cache_preprocessor=args.mm_cache_preprocessor) + stop_token_ids = None + return llm, prompt, stop_token_ids + + +# Chameleon +def run_chameleon(question: str, modality: str): + assert modality == "image" + + prompt = f"{question}" + llm = LLM(model="facebook/chameleon-7b", + max_model_len=4096, + mm_cache_preprocessor=args.mm_cache_preprocessor) + stop_token_ids = None + return llm, prompt, stop_token_ids + + +# Fuyu +def run_fuyu(question: str, modality: str): + assert modality == "image" + + prompt = f"{question}\n" + llm = LLM(model="adept/fuyu-8b", + max_model_len=2048, + max_num_seqs=2, + mm_cache_preprocessor=args.mm_cache_preprocessor) + stop_token_ids = None + return llm, prompt, stop_token_ids + + +# GLM-4v +def run_glm4v(question: str, modality: str): + assert modality == "image" + model_name = "THUDM/glm-4v-9b" + + llm = LLM(model=model_name, + max_model_len=2048, + max_num_seqs=2, + trust_remote_code=True, + enforce_eager=True, + mm_cache_preprocessor=args.mm_cache_preprocessor) + prompt = question + stop_token_ids = [151329, 151336, 151338] + return llm, prompt, stop_token_ids + + +# H2OVL-Mississippi +def run_h2ovl(question: str, modality: str): + assert modality == "image" + + model_name = "h2oai/h2ovl-mississippi-2b" + + llm = LLM( + model=model_name, + trust_remote_code=True, + max_model_len=8192, + mm_cache_preprocessor=args.mm_cache_preprocessor, + ) + + tokenizer = AutoTokenizer.from_pretrained(model_name, + trust_remote_code=True) + messages = [{'role': 'user', 'content': f"\n{question}"}] + prompt = tokenizer.apply_chat_template(messages, + tokenize=False, + add_generation_prompt=True) + + # Stop tokens for H2OVL-Mississippi + # https://huggingface.co/h2oai/h2ovl-mississippi-2b + stop_token_ids = [tokenizer.eos_token_id] + return llm, prompt, stop_token_ids + + +# Idefics3-8B-Llama3 +def run_idefics3(question: str, modality: str): + assert modality == "image" + model_name = "HuggingFaceM4/Idefics3-8B-Llama3" + + llm = LLM( + model=model_name, + max_model_len=8192, + max_num_seqs=2, + enforce_eager=True, + # if you are running out of memory, you can reduce the "longest_edge". + # see: https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3#model-optimizations + mm_processor_kwargs={ + "size": { + "longest_edge": 3 * 364 + }, + }, + mm_cache_preprocessor=args.mm_cache_preprocessor, + ) + prompt = ( + f"<|begin_of_text|>User:{question}\nAssistant:" + ) + stop_token_ids = None + return llm, prompt, stop_token_ids + + +# InternVL +def run_internvl(question: str, modality: str): + assert modality == "image" + + model_name = "OpenGVLab/InternVL2-2B" + + llm = LLM( + model=model_name, + trust_remote_code=True, + max_model_len=4096, + mm_cache_preprocessor=args.mm_cache_preprocessor, + ) + + tokenizer = AutoTokenizer.from_pretrained(model_name, + trust_remote_code=True) + messages = [{'role': 'user', 'content': f"\n{question}"}] + prompt = tokenizer.apply_chat_template(messages, + tokenize=False, + add_generation_prompt=True) + + # Stop tokens for InternVL + # models variants may have different stop tokens + # please refer to the model card for the correct "stop words": + # https://huggingface.co/OpenGVLab/InternVL2-2B/blob/main/conversation.py + stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|end|>"] + stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens] + return llm, prompt, stop_token_ids + + # LLaVA-1.5 def run_llava(question: str, modality: str): assert modality == "image" @@ -75,83 +228,20 @@ def run_llava_onevision(question: str, modality: str): return llm, prompt, stop_token_ids -# Fuyu -def run_fuyu(question: str, modality: str): - assert modality == "image" - - prompt = f"{question}\n" - llm = LLM(model="adept/fuyu-8b", - max_model_len=2048, - max_num_seqs=2, - mm_cache_preprocessor=args.mm_cache_preprocessor) - stop_token_ids = None - return llm, prompt, stop_token_ids - - -# Phi-3-Vision -def run_phi3v(question: str, modality: str): +# Mantis +def run_mantis(question: str, modality: str): assert modality == "image" - prompt = f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n" + llama3_template = '<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n' # noqa: E501 + prompt = llama3_template.format(f"{question}\n") - # num_crops is an override kwarg to the multimodal image processor; - # For some models, e.g., Phi-3.5-vision-instruct, it is recommended - # to use 16 for single frame scenarios, and 4 for multi-frame. - # - # Generally speaking, a larger value for num_crops results in more - # tokens per image instance, because it may scale the image more in - # the image preprocessing. Some references in the model docs and the - # formula for image tokens after the preprocessing - # transform can be found below. - # - # https://huggingface.co/microsoft/Phi-3.5-vision-instruct#loading-the-model-locally - # https://huggingface.co/microsoft/Phi-3.5-vision-instruct/blob/main/processing_phi3_v.py#L194 llm = LLM( - model="microsoft/Phi-3.5-vision-instruct", - trust_remote_code=True, + model="TIGER-Lab/Mantis-8B-siglip-llama3", max_model_len=4096, - max_num_seqs=2, - # Note - mm_processor_kwargs can also be passed to generate/chat calls - mm_processor_kwargs={"num_crops": 16}, + hf_overrides={"architectures": ["MantisForConditionalGeneration"]}, mm_cache_preprocessor=args.mm_cache_preprocessor, ) - stop_token_ids = None - return llm, prompt, stop_token_ids - - -# PaliGemma -def run_paligemma(question: str, modality: str): - assert modality == "image" - - # PaliGemma has special prompt format for VQA - prompt = "caption en" - llm = LLM(model="google/paligemma-3b-mix-224", - mm_cache_preprocessor=args.mm_cache_preprocessor) - stop_token_ids = None - return llm, prompt, stop_token_ids - - -# PaliGemma 2 -def run_paligemma2(question: str, modality: str): - assert modality == "image" - - # PaliGemma 2 has special prompt format for VQA - prompt = "caption en" - llm = LLM(model="google/paligemma2-3b-ft-docci-448", - mm_cache_preprocessor=args.mm_cache_preprocessor) - stop_token_ids = None - return llm, prompt, stop_token_ids - - -# Chameleon -def run_chameleon(question: str, modality: str): - assert modality == "image" - - prompt = f"{question}" - llm = LLM(model="facebook/chameleon-7b", - max_model_len=4096, - mm_cache_preprocessor=args.mm_cache_preprocessor) - stop_token_ids = None + stop_token_ids = [128009] return llm, prompt, stop_token_ids @@ -199,58 +289,45 @@ def run_minicpmv(question: str, modality: str): return llm, prompt, stop_token_ids -# H2OVL-Mississippi -def run_h2ovl(question: str, modality: str): +# LLama 3.2 +def run_mllama(question: str, modality: str): assert modality == "image" - model_name = "h2oai/h2ovl-mississippi-2b" + model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct" + # Note: The default setting of max_num_seqs (256) and + # max_model_len (131072) for this model may cause OOM. + # You may lower either to run this example on lower-end GPUs. + + # The configuration below has been confirmed to launch on a single L40 GPU. llm = LLM( model=model_name, - trust_remote_code=True, - max_model_len=8192, + max_model_len=4096, + max_num_seqs=16, + enforce_eager=True, mm_cache_preprocessor=args.mm_cache_preprocessor, ) - tokenizer = AutoTokenizer.from_pretrained(model_name, - trust_remote_code=True) - messages = [{'role': 'user', 'content': f"\n{question}"}] - prompt = tokenizer.apply_chat_template(messages, - tokenize=False, - add_generation_prompt=True) - - # Stop tokens for H2OVL-Mississippi - # https://huggingface.co/h2oai/h2ovl-mississippi-2b - stop_token_ids = [tokenizer.eos_token_id] + prompt = f"<|image|><|begin_of_text|>{question}" + stop_token_ids = None return llm, prompt, stop_token_ids -# InternVL -def run_internvl(question: str, modality: str): +# Molmo +def run_molmo(question, modality): assert modality == "image" - model_name = "OpenGVLab/InternVL2-2B" + model_name = "allenai/Molmo-7B-D-0924" llm = LLM( model=model_name, trust_remote_code=True, - max_model_len=4096, + dtype="bfloat16", mm_cache_preprocessor=args.mm_cache_preprocessor, ) - tokenizer = AutoTokenizer.from_pretrained(model_name, - trust_remote_code=True) - messages = [{'role': 'user', 'content': f"\n{question}"}] - prompt = tokenizer.apply_chat_template(messages, - tokenize=False, - add_generation_prompt=True) - - # Stop tokens for InternVL - # models variants may have different stop tokens - # please refer to the model card for the correct "stop words": - # https://huggingface.co/OpenGVLab/InternVL2-2B/blob/main/conversation.py - stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|end|>"] - stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens] + prompt = question + stop_token_ids = None return llm, prompt, stop_token_ids @@ -279,58 +356,57 @@ def run_nvlm_d(question: str, modality: str): return llm, prompt, stop_token_ids -# BLIP-2 -def run_blip2(question: str, modality: str): +# PaliGemma +def run_paligemma(question: str, modality: str): assert modality == "image" - # BLIP-2 prompt format is inaccurate on HuggingFace model repository. - # See https://huggingface.co/Salesforce/blip2-opt-2.7b/discussions/15#64ff02f3f8cf9e4f5b038262 #noqa - prompt = f"Question: {question} Answer:" - llm = LLM(model="Salesforce/blip2-opt-2.7b", + # PaliGemma has special prompt format for VQA + prompt = "caption en" + llm = LLM(model="google/paligemma-3b-mix-224", mm_cache_preprocessor=args.mm_cache_preprocessor) stop_token_ids = None return llm, prompt, stop_token_ids -# Qwen -def run_qwen_vl(question: str, modality: str): +# PaliGemma 2 +def run_paligemma2(question: str, modality: str): assert modality == "image" - llm = LLM( - model="Qwen/Qwen-VL", - trust_remote_code=True, - max_model_len=1024, - max_num_seqs=2, - mm_cache_preprocessor=args.mm_cache_preprocessor, - ) - - prompt = f"{question}Picture 1: \n" + # PaliGemma 2 has special prompt format for VQA + prompt = "caption en" + llm = LLM(model="google/paligemma2-3b-ft-docci-448", + mm_cache_preprocessor=args.mm_cache_preprocessor) stop_token_ids = None return llm, prompt, stop_token_ids -# Qwen2-VL -def run_qwen2_vl(question: str, modality: str): +# Phi-3-Vision +def run_phi3v(question: str, modality: str): assert modality == "image" - model_name = "Qwen/Qwen2-VL-7B-Instruct" + prompt = f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n" + # num_crops is an override kwarg to the multimodal image processor; + # For some models, e.g., Phi-3.5-vision-instruct, it is recommended + # to use 16 for single frame scenarios, and 4 for multi-frame. + # + # Generally speaking, a larger value for num_crops results in more + # tokens per image instance, because it may scale the image more in + # the image preprocessing. Some references in the model docs and the + # formula for image tokens after the preprocessing + # transform can be found below. + # + # https://huggingface.co/microsoft/Phi-3.5-vision-instruct#loading-the-model-locally + # https://huggingface.co/microsoft/Phi-3.5-vision-instruct/blob/main/processing_phi3_v.py#L194 llm = LLM( - model=model_name, + model="microsoft/Phi-3.5-vision-instruct", + trust_remote_code=True, max_model_len=4096, - max_num_seqs=5, + max_num_seqs=2, # Note - mm_processor_kwargs can also be passed to generate/chat calls - mm_processor_kwargs={ - "min_pixels": 28 * 28, - "max_pixels": 1280 * 28 * 28, - }, + mm_processor_kwargs={"num_crops": 16}, mm_cache_preprocessor=args.mm_cache_preprocessor, ) - - prompt = ("<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n" - "<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>" - f"{question}<|im_end|>\n" - "<|im_start|>assistant\n") stop_token_ids = None return llm, prompt, stop_token_ids @@ -352,149 +428,73 @@ def run_pixtral_hf(question: str, modality: str): return llm, prompt, stop_token_ids -# LLama 3.2 -def run_mllama(question: str, modality: str): - assert modality == "image" - - model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct" - - # Note: The default setting of max_num_seqs (256) and - # max_model_len (131072) for this model may cause OOM. - # You may lower either to run this example on lower-end GPUs. - - # The configuration below has been confirmed to launch on a single L40 GPU. - llm = LLM( - model=model_name, - max_model_len=4096, - max_num_seqs=16, - enforce_eager=True, - mm_cache_preprocessor=args.mm_cache_preprocessor, - ) - - prompt = f"<|image|><|begin_of_text|>{question}" - stop_token_ids = None - return llm, prompt, stop_token_ids - - -# Molmo -def run_molmo(question, modality): +# Qwen +def run_qwen_vl(question: str, modality: str): assert modality == "image" - model_name = "allenai/Molmo-7B-D-0924" - llm = LLM( - model=model_name, + model="Qwen/Qwen-VL", trust_remote_code=True, - dtype="bfloat16", + max_model_len=1024, + max_num_seqs=2, mm_cache_preprocessor=args.mm_cache_preprocessor, ) - prompt = question + prompt = f"{question}Picture 1: \n" stop_token_ids = None return llm, prompt, stop_token_ids -# GLM-4v -def run_glm4v(question: str, modality: str): +# Qwen2-VL +def run_qwen2_vl(question: str, modality: str): assert modality == "image" - model_name = "THUDM/glm-4v-9b" - llm = LLM(model=model_name, - max_model_len=2048, - max_num_seqs=2, - trust_remote_code=True, - enforce_eager=True, - mm_cache_preprocessor=args.mm_cache_preprocessor) - prompt = question - stop_token_ids = [151329, 151336, 151338] - return llm, prompt, stop_token_ids - - -# Idefics3-8B-Llama3 -def run_idefics3(question: str, modality: str): - assert modality == "image" - model_name = "HuggingFaceM4/Idefics3-8B-Llama3" + model_name = "Qwen/Qwen2-VL-7B-Instruct" llm = LLM( model=model_name, - max_model_len=8192, - max_num_seqs=2, - enforce_eager=True, - # if you are running out of memory, you can reduce the "longest_edge". - # see: https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3#model-optimizations + max_model_len=4096, + max_num_seqs=5, + # Note - mm_processor_kwargs can also be passed to generate/chat calls mm_processor_kwargs={ - "size": { - "longest_edge": 3 * 364 - }, + "min_pixels": 28 * 28, + "max_pixels": 1280 * 28 * 28, }, mm_cache_preprocessor=args.mm_cache_preprocessor, ) - prompt = ( - f"<|begin_of_text|>User:{question}\nAssistant:" - ) - stop_token_ids = None - return llm, prompt, stop_token_ids - -# Aria -def run_aria(question: str, modality: str): - assert modality == "image" - model_name = "rhymes-ai/Aria" - - llm = LLM(model=model_name, - tokenizer_mode="slow", - trust_remote_code=True, - dtype="bfloat16", - mm_cache_preprocessor=args.mm_cache_preprocessor) - - prompt = (f"<|im_start|>user\n<|img|>\n{question}" - "<|im_end|>\n<|im_start|>assistant\n") - - stop_token_ids = [93532, 93653, 944, 93421, 1019, 93653, 93519] - return llm, prompt, stop_token_ids - - -# Mantis -def run_mantis(question: str, modality: str): - assert modality == "image" - - llama3_template = '<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n' # noqa: E501 - prompt = llama3_template.format(f"{question}\n") - - llm = LLM( - model="TIGER-Lab/Mantis-8B-siglip-llama3", - max_model_len=4096, - hf_overrides={"architectures": ["MantisForConditionalGeneration"]}, - mm_cache_preprocessor=args.mm_cache_preprocessor, - ) - stop_token_ids = [128009] + prompt = ("<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n" + "<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>" + f"{question}<|im_end|>\n" + "<|im_start|>assistant\n") + stop_token_ids = None return llm, prompt, stop_token_ids model_example_map = { + "aria": run_aria, + "blip-2": run_blip2, + "chameleon": run_chameleon, + "fuyu": run_fuyu, + "glm4v": run_glm4v, + "h2ovl_chat": run_h2ovl, + "idefics3": run_idefics3, + "internvl_chat": run_internvl, "llava": run_llava, "llava-next": run_llava_next, "llava-next-video": run_llava_next_video, "llava-onevision": run_llava_onevision, - "fuyu": run_fuyu, - "phi3_v": run_phi3v, - "paligemma": run_paligemma, - "paligemma2": run_paligemma2, - "chameleon": run_chameleon, + "mantis": run_mantis, "minicpmv": run_minicpmv, - "blip-2": run_blip2, - "h2ovl_chat": run_h2ovl, - "internvl_chat": run_internvl, + "mllama": run_mllama, + "molmo": run_molmo, "NVLM_D": run_nvlm_d, + "paligemma": run_paligemma, + "paligemma2": run_paligemma2, + "phi3_v": run_phi3v, + "pixtral_hf": run_pixtral_hf, "qwen_vl": run_qwen_vl, "qwen2_vl": run_qwen2_vl, - "pixtral_hf": run_pixtral_hf, - "mllama": run_mllama, - "molmo": run_molmo, - "glm4v": run_glm4v, - "idefics3": run_idefics3, - "aria": run_aria, - "mantis": run_mantis, } diff --git a/examples/offline_inference_vision_language_multi_image.py b/examples/offline_inference_vision_language_multi_image.py index 928bbef54eab7..6af8d7768e75d 100644 --- a/examples/offline_inference_vision_language_multi_image.py +++ b/examples/offline_inference_vision_language_multi_image.py @@ -33,78 +33,23 @@ class ModelRequestData(NamedTuple): # Unless specified, these settings have been tested to work on a single L4. -def load_qwenvl_chat(question: str, image_urls: List[str]) -> ModelRequestData: - model_name = "Qwen/Qwen-VL-Chat" - llm = LLM( - model=model_name, - trust_remote_code=True, - max_model_len=1024, - max_num_seqs=2, - limit_mm_per_prompt={"image": len(image_urls)}, - ) - placeholders = "".join(f"Picture {i}: \n" - for i, _ in enumerate(image_urls, start=1)) - - # This model does not have a chat_template attribute on its tokenizer, - # so we need to explicitly pass it. We use ChatML since it's used in the - # generation utils of the model: - # https://huggingface.co/Qwen/Qwen-VL-Chat/blob/main/qwen_generation_utils.py#L265 - tokenizer = AutoTokenizer.from_pretrained(model_name, - trust_remote_code=True) - - # Copied from: https://huggingface.co/docs/transformers/main/en/chat_templating - chat_template = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" # noqa: E501 - - messages = [{'role': 'user', 'content': f"{placeholders}\n{question}"}] - prompt = tokenizer.apply_chat_template(messages, - tokenize=False, - add_generation_prompt=True, - chat_template=chat_template) - - stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>"] - stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens] - return ModelRequestData( - llm=llm, - prompt=prompt, - stop_token_ids=stop_token_ids, - image_data=[fetch_image(url) for url in image_urls], - chat_template=chat_template, - ) - - -def load_phi3v(question: str, image_urls: List[str]) -> ModelRequestData: - # num_crops is an override kwarg to the multimodal image processor; - # For some models, e.g., Phi-3.5-vision-instruct, it is recommended - # to use 16 for single frame scenarios, and 4 for multi-frame. - # - # Generally speaking, a larger value for num_crops results in more - # tokens per image instance, because it may scale the image more in - # the image preprocessing. Some references in the model docs and the - # formula for image tokens after the preprocessing - # transform can be found below. - # - # https://huggingface.co/microsoft/Phi-3.5-vision-instruct#loading-the-model-locally - # https://huggingface.co/microsoft/Phi-3.5-vision-instruct/blob/main/processing_phi3_v.py#L194 - llm = LLM( - model="microsoft/Phi-3.5-vision-instruct", - trust_remote_code=True, - max_model_len=4096, - max_num_seqs=2, - limit_mm_per_prompt={"image": len(image_urls)}, - mm_processor_kwargs={"num_crops": 4}, - ) - placeholders = "\n".join(f"<|image_{i}|>" - for i, _ in enumerate(image_urls, start=1)) - prompt = f"<|user|>\n{placeholders}\n{question}<|end|>\n<|assistant|>\n" - stop_token_ids = None - +def load_aria(question, image_urls: List[str]) -> ModelRequestData: + model_name = "rhymes-ai/Aria" + llm = LLM(model=model_name, + tokenizer_mode="slow", + trust_remote_code=True, + dtype="bfloat16", + limit_mm_per_prompt={"image": len(image_urls)}) + placeholders = "<|img|>\n" * len(image_urls) + prompt = (f"<|im_start|>user\n{placeholders}{question}<|im_end|>\n" + "<|im_start|>assistant\n") + stop_token_ids = [93532, 93653, 944, 93421, 1019, 93653, 93519] return ModelRequestData( llm=llm, prompt=prompt, stop_token_ids=stop_token_ids, image_data=[fetch_image(url) for url in image_urls], - chat_template=None, - ) + chat_template=None) def load_h2onvl(question: str, image_urls: List[str]) -> ModelRequestData: @@ -141,6 +86,37 @@ def load_h2onvl(question: str, image_urls: List[str]) -> ModelRequestData: ) +def load_idefics3(question, image_urls: List[str]) -> ModelRequestData: + model_name = "HuggingFaceM4/Idefics3-8B-Llama3" + + # The configuration below has been confirmed to launch on a single L40 GPU. + llm = LLM( + model=model_name, + max_model_len=8192, + max_num_seqs=16, + enforce_eager=True, + limit_mm_per_prompt={"image": len(image_urls)}, + # if you are running out of memory, you can reduce the "longest_edge". + # see: https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3#model-optimizations + mm_processor_kwargs={ + "size": { + "longest_edge": 2 * 364 + }, + }, + ) + + placeholders = "\n".join(f"Image-{i}: \n" + for i, _ in enumerate(image_urls, start=1)) + prompt = f"<|begin_of_text|>User:{placeholders}\n{question}\nAssistant:" # noqa: E501 + return ModelRequestData( + llm=llm, + prompt=prompt, + stop_token_ids=None, + image_data=[fetch_image(url) for url in image_urls], + chat_template=None, + ) + + def load_internvl(question: str, image_urls: List[str]) -> ModelRequestData: model_name = "OpenGVLab/InternVL2-2B" @@ -178,6 +154,28 @@ def load_internvl(question: str, image_urls: List[str]) -> ModelRequestData: ) +def load_mllama(question, image_urls: List[str]) -> ModelRequestData: + model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct" + + # The configuration below has been confirmed to launch on a single L40 GPU. + llm = LLM( + model=model_name, + max_model_len=4096, + max_num_seqs=16, + enforce_eager=True, + limit_mm_per_prompt={"image": len(image_urls)}, + ) + + prompt = f"<|image|><|image|><|begin_of_text|>{question}" + return ModelRequestData( + llm=llm, + prompt=prompt, + stop_token_ids=None, + image_data=[fetch_image(url) for url in image_urls], + chat_template=None, + ) + + def load_nvlm_d(question: str, image_urls: List[str]): model_name = "nvidia/NVLM-D-72B" @@ -211,6 +209,80 @@ def load_nvlm_d(question: str, image_urls: List[str]): ) +def load_phi3v(question: str, image_urls: List[str]) -> ModelRequestData: + # num_crops is an override kwarg to the multimodal image processor; + # For some models, e.g., Phi-3.5-vision-instruct, it is recommended + # to use 16 for single frame scenarios, and 4 for multi-frame. + # + # Generally speaking, a larger value for num_crops results in more + # tokens per image instance, because it may scale the image more in + # the image preprocessing. Some references in the model docs and the + # formula for image tokens after the preprocessing + # transform can be found below. + # + # https://huggingface.co/microsoft/Phi-3.5-vision-instruct#loading-the-model-locally + # https://huggingface.co/microsoft/Phi-3.5-vision-instruct/blob/main/processing_phi3_v.py#L194 + llm = LLM( + model="microsoft/Phi-3.5-vision-instruct", + trust_remote_code=True, + max_model_len=4096, + max_num_seqs=2, + limit_mm_per_prompt={"image": len(image_urls)}, + mm_processor_kwargs={"num_crops": 4}, + ) + placeholders = "\n".join(f"<|image_{i}|>" + for i, _ in enumerate(image_urls, start=1)) + prompt = f"<|user|>\n{placeholders}\n{question}<|end|>\n<|assistant|>\n" + stop_token_ids = None + + return ModelRequestData( + llm=llm, + prompt=prompt, + stop_token_ids=stop_token_ids, + image_data=[fetch_image(url) for url in image_urls], + chat_template=None, + ) + + +def load_qwenvl_chat(question: str, image_urls: List[str]) -> ModelRequestData: + model_name = "Qwen/Qwen-VL-Chat" + llm = LLM( + model=model_name, + trust_remote_code=True, + max_model_len=1024, + max_num_seqs=2, + limit_mm_per_prompt={"image": len(image_urls)}, + ) + placeholders = "".join(f"Picture {i}: \n" + for i, _ in enumerate(image_urls, start=1)) + + # This model does not have a chat_template attribute on its tokenizer, + # so we need to explicitly pass it. We use ChatML since it's used in the + # generation utils of the model: + # https://huggingface.co/Qwen/Qwen-VL-Chat/blob/main/qwen_generation_utils.py#L265 + tokenizer = AutoTokenizer.from_pretrained(model_name, + trust_remote_code=True) + + # Copied from: https://huggingface.co/docs/transformers/main/en/chat_templating + chat_template = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" # noqa: E501 + + messages = [{'role': 'user', 'content': f"{placeholders}\n{question}"}] + prompt = tokenizer.apply_chat_template(messages, + tokenize=False, + add_generation_prompt=True, + chat_template=chat_template) + + stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>"] + stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens] + return ModelRequestData( + llm=llm, + prompt=prompt, + stop_token_ids=stop_token_ids, + image_data=[fetch_image(url) for url in image_urls], + chat_template=chat_template, + ) + + def load_qwen2_vl(question, image_urls: List[str]) -> ModelRequestData: try: from qwen_vl_utils import process_vision_info @@ -268,88 +340,16 @@ def load_qwen2_vl(question, image_urls: List[str]) -> ModelRequestData: ) -def load_mllama(question, image_urls: List[str]) -> ModelRequestData: - model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct" - - # The configuration below has been confirmed to launch on a single L40 GPU. - llm = LLM( - model=model_name, - max_model_len=4096, - max_num_seqs=16, - enforce_eager=True, - limit_mm_per_prompt={"image": len(image_urls)}, - ) - - prompt = f"<|image|><|image|><|begin_of_text|>{question}" - return ModelRequestData( - llm=llm, - prompt=prompt, - stop_token_ids=None, - image_data=[fetch_image(url) for url in image_urls], - chat_template=None, - ) - - -def load_idefics3(question, image_urls: List[str]) -> ModelRequestData: - model_name = "HuggingFaceM4/Idefics3-8B-Llama3" - - # The configuration below has been confirmed to launch on a single L40 GPU. - llm = LLM( - model=model_name, - max_model_len=8192, - max_num_seqs=16, - enforce_eager=True, - limit_mm_per_prompt={"image": len(image_urls)}, - # if you are running out of memory, you can reduce the "longest_edge". - # see: https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3#model-optimizations - mm_processor_kwargs={ - "size": { - "longest_edge": 2 * 364 - }, - }, - ) - - placeholders = "\n".join(f"Image-{i}: \n" - for i, _ in enumerate(image_urls, start=1)) - prompt = f"<|begin_of_text|>User:{placeholders}\n{question}\nAssistant:" # noqa: E501 - return ModelRequestData( - llm=llm, - prompt=prompt, - stop_token_ids=None, - image_data=[fetch_image(url) for url in image_urls], - chat_template=None, - ) - - -def load_aria(question, image_urls: List[str]) -> ModelRequestData: - model_name = "rhymes-ai/Aria" - llm = LLM(model=model_name, - tokenizer_mode="slow", - trust_remote_code=True, - dtype="bfloat16", - limit_mm_per_prompt={"image": len(image_urls)}) - placeholders = "<|img|>\n" * len(image_urls) - prompt = (f"<|im_start|>user\n{placeholders}{question}<|im_end|>\n" - "<|im_start|>assistant\n") - stop_token_ids = [93532, 93653, 944, 93421, 1019, 93653, 93519] - return ModelRequestData( - llm=llm, - prompt=prompt, - stop_token_ids=stop_token_ids, - image_data=[fetch_image(url) for url in image_urls], - chat_template=None) - - model_example_map = { - "phi3_v": load_phi3v, + "aria": load_aria, "h2ovl_chat": load_h2onvl, + "idefics3": load_idefics3, "internvl_chat": load_internvl, + "mllama": load_mllama, "NVLM_D": load_nvlm_d, - "qwen2_vl": load_qwen2_vl, + "phi3_v": load_phi3v, "qwen_vl_chat": load_qwenvl_chat, - "mllama": load_mllama, - "idefics3": load_idefics3, - "aria": load_aria, + "qwen2_vl": load_qwen2_vl, } From 78440dc237abf3dc60eb568169628d354286cdc1 Mon Sep 17 00:00:00 2001 From: Gregory Shtrasberg Date: Mon, 16 Dec 2024 17:41:57 +0000 Subject: [PATCH 190/733] Deprecating sync_openai --- vllm/__init__.py | 2 - vllm/config.py | 2 +- vllm/entrypoints/fast_sync_llm.py | 127 ------- vllm/entrypoints/sync_openai/api_server.py | 415 --------------------- 4 files changed, 1 insertion(+), 545 deletions(-) delete mode 100644 vllm/entrypoints/fast_sync_llm.py delete mode 100644 vllm/entrypoints/sync_openai/api_server.py diff --git a/vllm/__init__.py b/vllm/__init__.py index 07c75c201d016..45252b93e3d54 100644 --- a/vllm/__init__.py +++ b/vllm/__init__.py @@ -3,7 +3,6 @@ from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs from vllm.engine.async_llm_engine import AsyncLLMEngine from vllm.engine.llm_engine import LLMEngine -from vllm.entrypoints.fast_sync_llm import FastSyncLLM from vllm.entrypoints.llm import LLM from vllm.executor.ray_utils import initialize_ray_cluster from vllm.inputs import PromptType, TextPrompt, TokensPrompt @@ -22,7 +21,6 @@ "__version__", "__version_tuple__", "LLM", - "FastSyncLLM", "ModelRegistry", "PromptType", "TextPrompt", diff --git a/vllm/config.py b/vllm/config.py index edb42754ca839..d695fbc196dc6 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -28,7 +28,7 @@ get_hf_text_config, get_pooling_config, get_sentence_transformer_tokenizer_config, is_encoder_decoder, uses_mrope) from vllm.utils import (GiB_bytes, LayerBlockType, cuda_device_count_stateless, - is_mi250, is_navi, get_cpu_memory, print_warning_once, + get_cpu_memory, is_mi250, is_navi, print_warning_once, random_uuid, resolve_obj_by_qualname) if TYPE_CHECKING: diff --git a/vllm/entrypoints/fast_sync_llm.py b/vllm/entrypoints/fast_sync_llm.py deleted file mode 100644 index eb36d124a89fa..0000000000000 --- a/vllm/entrypoints/fast_sync_llm.py +++ /dev/null @@ -1,127 +0,0 @@ -import multiprocessing as mp -from queue import Empty -from typing import Union - -import vllm.envs as envs -from vllm.distributed.communication_op import broadcast_tensor_dict -from vllm.engine.arg_utils import EngineArgs -from vllm.engine.llm_engine import LLMEngine -from vllm.executor.multiproc_gpu_executor import MultiprocessingGPUExecutor -from vllm.executor.ray_gpu_executor import RayGPUExecutor -from vllm.inputs import PromptType, TokensPrompt -from vllm.logger import init_logger -from vllm.pooling_params import PoolingParams -from vllm.sampling_params import SamplingParams -from vllm.usage.usage_lib import UsageContext -from vllm.utils import Counter - -logger = init_logger(__name__) - - -class FastSyncLLM: - - def __init__( - self, - engine_args: EngineArgs, - input_queue: mp.Queue, - result_queue: mp.Queue, - **kwargs, - ) -> None: - if "disable_log_stats" not in kwargs: - kwargs["disable_log_stats"] = True - self.engine_args = engine_args - self.request_counter = Counter() - - self.input_queue = input_queue - self.result_queue = result_queue - self.finish = False - self.need_restart = False - self.llm_engine: LLMEngine - - def _add_request( - self, - inputs: PromptType, - params: Union[SamplingParams, PoolingParams], - request_id: str, - ) -> None: - if isinstance(inputs, list): - inputs = TokensPrompt(prompt_token_ids=inputs) - self.llm_engine.add_request(request_id, inputs, params) - - def _poll_requests(self): - while True: - if not self.llm_engine.has_unfinished_requests(): - logger.info("No unfinished requests. Waiting...") - (request_id, prompt, sampling_params) = self.input_queue.get() - if self.need_restart and isinstance( - self.llm_engine.model_executor, - MultiprocessingGPUExecutor): - logger.info("Restarting worker loops") - for worker in self.llm_engine.model_executor.workers: - worker.execute_method("start_worker_execution_loop") - self.need_restart = False - - else: - try: - (request_id, prompt, - sampling_params) = self.input_queue.get_nowait() - except Empty: - break - self._add_request(prompt, sampling_params, request_id) - - def run_engine(self): - self.llm_engine = LLMEngine.from_engine_args( - self.engine_args, usage_context=UsageContext.LLM_CLASS) - assert not isinstance( - self.llm_engine.model_executor, - RayGPUExecutor), "Ray is not supported in sync openai mode" - - self.result_queue.put(("Ready", None, None)) - prompt_lens = {} - tokens = {} # type: ignore - log_interval = 100 - poll_interval = envs.VLLM_SYNC_SERVER_ENGINE_STEPS_BETWEEN_POLLS - try: - while True: - poll_interval -= 1 - if (self.input_queue.qsize() >= - envs.VLLM_SYNC_SERVER_ACCUM_REQUESTS - or poll_interval <= 0 - or not self.llm_engine.has_unfinished_requests()): - self._poll_requests() - poll_interval = \ - envs.VLLM_SYNC_SERVER_ENGINE_STEPS_BETWEEN_POLLS - step_outputs = self.llm_engine.step() - log_interval -= 1 - if log_interval == 0: - log_interval = 100 - logger.info("Step finished. Unfinished requests: %d", - self.llm_engine.get_num_unfinished_requests()) - if not self.llm_engine.has_unfinished_requests(): - logger.info("Broadcast stop") - broadcast_tensor_dict({}, src=0) - self.need_restart = True - for output in step_outputs: - assert len(output.outputs) == 1 # type: ignore - first_out = output.outputs[0] # type: ignore - stats = None - result = first_out.text - tokens[output.request_id] = tokens.get( - output.request_id, 0) + len(first_out.token_ids) - if output.prompt_token_ids is not None: - prompt_lens[output.request_id] = len( - output.prompt_token_ids) - if output.finished: - assert output.request_id in prompt_lens - stats = { - "prompt": prompt_lens[output.request_id], - "tokens": tokens[output.request_id], - "finish_reason": first_out.finish_reason, - "stop_reason": first_out.stop_reason, - } - del prompt_lens[output.request_id] - self.result_queue.put_nowait( - (output.request_id, result, stats)) - except Exception as e: - logger.error("Error in run_engine: %s", e) - raise e diff --git a/vllm/entrypoints/sync_openai/api_server.py b/vllm/entrypoints/sync_openai/api_server.py deleted file mode 100644 index bb2bc9a885285..0000000000000 --- a/vllm/entrypoints/sync_openai/api_server.py +++ /dev/null @@ -1,415 +0,0 @@ -import asyncio -import multiprocessing -import re -import threading -import time -from contextlib import asynccontextmanager -from http import HTTPStatus -from typing import Dict, List, Optional, Union - -import uvicorn -from fastapi import FastAPI, Request -from fastapi.middleware.cors import CORSMiddleware -from fastapi.responses import JSONResponse, StreamingResponse -from fastapi.routing import Mount -from prometheus_client import make_asgi_app - -import vllm -import vllm.envs as envs -from vllm import FastSyncLLM as LLM -from vllm.config import VllmConfig -from vllm.engine.arg_utils import EngineArgs -from vllm.entrypoints.chat_utils import (MultiModalItemTracker, - _parse_chat_message_content, - load_chat_template, - resolve_chat_template_content_format) -from vllm.entrypoints.openai.cli_args import make_arg_parser -from vllm.entrypoints.openai.protocol import ( - ChatCompletionRequest, ChatCompletionResponse, - ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice, - ChatCompletionStreamResponse, ChatMessage, CompletionRequest, - CompletionResponse, CompletionResponseChoice, - CompletionResponseStreamChoice, CompletionStreamResponse, DeltaMessage, - ErrorResponse, ModelCard, ModelList, ModelPermission, UsageInfo) -from vllm.entrypoints.openai.serving_chat import ConversationMessage -from vllm.logger import init_logger -from vllm.transformers_utils.tokenizer import get_tokenizer -from vllm.utils import FlexibleArgumentParser, random_uuid - -mp = multiprocessing.get_context(envs.VLLM_WORKER_MULTIPROC_METHOD) - -logger = init_logger("api_server.py") - - -def put_in_queue(queue, item, loop): - try: - asyncio.run_coroutine_threadsafe(queue.put(item), loop) - except Exception as e: - logger.error("Exception in put_in_queue: %s", e) - raise e - - -class BackgroundRunner: - - def __init__(self): - self.value = 0 - self.engine_args: EngineArgs - self.engine_config: VllmConfig - self.input_queue: multiprocessing.Queue = mp.Queue() - self.result_queue: multiprocessing.Queue = mp.Queue() - self.result_queues: Dict[str, asyncio.Queue] = {} - self.t: threading.Thread = threading.Thread(target=self.thread_proc) - self.loop = None - self.llm: LLM - self.proc: multiprocessing.Process - self.tokenizer = None - self.response_role: str - self.chat_template: Optional[str] - self.chat_template_content_format = "auto" - - def set_response_role(self, role): - self.response_role = role - - def set_engine_args(self, engine_args): - self.engine_args = engine_args - - def add_result_queue(self, id, queue): - self.result_queues[id] = queue - - def remove_result_queues(self, ids): - for id in ids: - assert id in self.result_queues - del self.result_queues[id] - logger.debug("Removed result queue from %d ids. %d remaining", - len(ids), len(self.result_queues)) - - def thread_proc(self): - while True: - req_id, result, stats = self.result_queue.get() - put_in_queue(self.result_queues[req_id], (req_id, result, stats), - self.loop) - - async def run_main(self): - self.llm = LLM( - engine_args=self.engine_args, - input_queue=self.input_queue, - result_queue=self.result_queue, - ) - - self.loop = asyncio.get_event_loop() - self.proc = mp.Process( # type: ignore[attr-defined] - target=self.llm.run_engine) - self.t.start() - self.proc.start() - - async def add_request(self, prompt, sampling_params): - result_queue: asyncio.Queue = asyncio.Queue() - ids = [] - if isinstance(prompt, str) or (isinstance(prompt, list) - and isinstance(prompt[0], int)): - prompt = [prompt] - for p in prompt: - id = random_uuid() - self.add_result_queue(id, result_queue) - self.input_queue.put_nowait((id, p, sampling_params)) - ids.append(id) - return ids, result_queue - - -runner = BackgroundRunner() - - -@asynccontextmanager -async def lifespan(app: FastAPI): - runner.result_queues["Ready"] = asyncio.Queue() - asyncio.create_task(runner.run_main()) - await runner.result_queues["Ready"].get() - del runner.result_queues["Ready"] - runner.engine_config = runner.engine_args.create_engine_config() - - tokenizer = get_tokenizer( - engine_args.tokenizer, - tokenizer_mode=engine_args.tokenizer_mode, - tokenizer_revision=engine_args.tokenizer_revision, - trust_remote_code=engine_args.trust_remote_code, - truncation_side="left") - runner.tokenizer = tokenizer - yield - - -app = FastAPI(lifespan=lifespan) - -# Add prometheus asgi middleware to route /metrics requests -route = Mount("/metrics", make_asgi_app()) -# Workaround for 307 Redirect for /metrics -route.path_regex = re.compile('^/metrics(?P.*)$') -app.routes.append(route) - - -@app.get("/v1/models") -async def show_available_models(): - models = [ - ModelCard(id=runner.engine_args.model, - root=runner.engine_args.model, - permission=[ModelPermission()]) - ] - model_list = ModelList(data=models) - return JSONResponse(content=model_list.model_dump()) - - -@app.get("/version") -async def show_version(): - ver = {"version": vllm.__version__} - return JSONResponse(content=ver) - - -async def _check_model(request: Union[CompletionRequest, - ChatCompletionRequest]): - model = request.model - if model != runner.engine_args.model: - return ErrorResponse(message=f"The model {model} does not exist.", - type="NotFoundError", - code=HTTPStatus.NOT_FOUND) - return None - - -async def completion_generator(model, result_queue, choices, created_time, - ids): - completed = 0 - try: - while True: - request_id, token, stats = await result_queue.get() - - choice_idx = choices[request_id] - res = CompletionStreamResponse(id=request_id, - created=created_time, - model=model, - choices=[ - CompletionResponseStreamChoice( - index=choice_idx, - text=token, - logprobs=None, - finish_reason=None, - stop_reason=None) - ], - usage=None) - if stats is not None: - res.usage = UsageInfo() - res.usage.completion_tokens = stats.get("tokens", 0) - res.usage.prompt_tokens = stats.get("prompt", 0) - res.usage.total_tokens = ( - res.usage.completion_tokens + # type: ignore - res.usage.prompt_tokens) - res.choices[0].finish_reason = stats["finish_reason"] - res.choices[0].stop_reason = stats["stop_reason"] - completed += 1 - response_json = res.model_dump_json(exclude_unset=True) - yield f"data: {response_json}\n\n" - if completed == len(choices): - runner.remove_result_queues(ids) - break - - yield "data: [DONE]\n\n" - except Exception as e: - logger.error("Error in completion_generator: %s", e) - return - - -@app.post("/v1/completions") -async def completions(request: CompletionRequest, raw_request: Request): - error_check_ret = await _check_model(request) - if error_check_ret is not None: - return JSONResponse(content=error_check_ret.model_dump(), - status_code=error_check_ret.code) - sampling_params = request.to_sampling_params( - default_max_tokens=runner.engine_config.model_config.max_model_len - # TODO: gshtras add - len(prompt_inputs["prompt_token_ids"]) - ) - ids, result_queue = await runner.add_request(request.prompt, - sampling_params) - res = CompletionResponse(model=request.model, - choices=[], - usage=UsageInfo(prompt_tokens=0, - total_tokens=0, - completion_tokens=0)) - choices = {} - for i, id in enumerate(ids): - res.choices.append( - CompletionResponseChoice(index=i, - text="", - finish_reason=None, - stop_reason=None)) - choices[id] = i - completed = 0 - if request.stream: - created_time = int(time.time()) - return StreamingResponse(content=completion_generator( - request.model, result_queue, choices, created_time, ids), - media_type="text/event-stream") - while True: - request_id, token, stats = await result_queue.get() - choice_idx = choices[request_id] - res.choices[choice_idx].text += str(token) - if stats is not None: - res.usage.completion_tokens += stats["tokens"] # type: ignore - res.usage.prompt_tokens += stats["prompt"] # type: ignore - res.choices[choice_idx].finish_reason = stats["finish_reason"] - res.choices[choice_idx].stop_reason = stats["stop_reason"] - completed += 1 - if completed == len(ids): - runner.remove_result_queues(ids) - break - continue - res.usage.total_tokens = ( # type: ignore - res.usage.completion_tokens + res.usage.prompt_tokens) # type: ignore - return res - - -async def chat_completion_generator(model, result_queue, created_time, id): - try: - first_token = ChatCompletionStreamResponse( - id=id, - created=created_time, - model=model, - choices=[ - ChatCompletionResponseStreamChoice( - index=0, - delta=DeltaMessage(role=runner.response_role), - logprobs=None, - finish_reason=None, - stop_reason=None) - ], - usage=None) - response_json = first_token.model_dump_json(exclude_unset=True) - yield f"data: {response_json}\n\n" - - while True: - request_id, token, stats = await result_queue.get() - assert request_id == id - - res = ChatCompletionStreamResponse( - id=request_id, - created=created_time, - model=model, - choices=[ - ChatCompletionResponseStreamChoice( - index=0, - delta=DeltaMessage(content=token), - logprobs=None, - finish_reason=None, - stop_reason=None) - ], - usage=None) - if stats is not None: - res.usage = UsageInfo() - res.usage.completion_tokens = stats.get("tokens", 0) - res.usage.prompt_tokens = stats.get("prompt", 0) - res.usage.total_tokens = ( - res.usage.completion_tokens + # type: ignore - res.usage.prompt_tokens) - res.choices[0].finish_reason = stats["finish_reason"] - res.choices[0].stop_reason = stats["stop_reason"] - response_json = res.model_dump_json(exclude_unset=True) - yield f"data: {response_json}\n\n" - if stats is not None: - runner.remove_result_queues([id]) - break - - yield "data: [DONE]\n\n" - except Exception as e: - logger.error("Error in completion_generator: %s", e) - return - - -@app.post("/v1/chat/completions") -async def chat_completions(request: ChatCompletionRequest, - raw_request: Request): - error_check_ret = await _check_model(request) - if error_check_ret is not None: - return JSONResponse(content=error_check_ret.model_dump(), - status_code=error_check_ret.code) - sampling_params = request.to_sampling_params( - default_max_tokens=runner.engine_config.model_config.max_model_len - # TODO: gshtras add len(prompt_inputs["prompt_token_ids"]) - ) - conversation: List[ConversationMessage] = [] - - res = ChatCompletionResponse(model=request.model, - choices=[], - usage=UsageInfo(prompt_tokens=0, - total_tokens=0, - completion_tokens=0)) - - mm_tracker = MultiModalItemTracker(runner.engine_config.model_config, - runner.tokenizer) - chat_template = request.chat_template or runner.chat_template - content_format = resolve_chat_template_content_format( - chat_template, runner.chat_template_content_format, runner.tokenizer) - for msg in request.messages: - parsed_msg = _parse_chat_message_content(msg, mm_tracker, - content_format) - conversation.extend(parsed_msg) - - prompt = runner.tokenizer.apply_chat_template( # type: ignore - conversation=conversation, - chat_template=chat_template, - tokenize=False, - add_generation_prompt=request.add_generation_prompt, - ) - - ids, result_queue = await runner.add_request(prompt, sampling_params) - assert len(ids) == 1 - - if request.stream: - created_time = int(time.time()) - return StreamingResponse(content=chat_completion_generator( - request.model, result_queue, created_time, ids[0]), - media_type="text/event-stream") - - res.choices.append( - ChatCompletionResponseChoice( - index=0, - message=ChatMessage(role=runner.response_role, content=""), - finish_reason=None, - stop_reason=None)) - - while True: - _, token, stats = await result_queue.get() - assert res.choices[0].message.content is not None - res.choices[0].message.content += str(token) - if stats is not None: - res.usage.completion_tokens += stats["tokens"] # type: ignore - res.usage.prompt_tokens += stats["prompt"] # type: ignore - res.choices[0].finish_reason = stats["finish_reason"] - res.choices[0].stop_reason = stats["stop_reason"] - runner.remove_result_queues(ids) - break - res.usage.total_tokens = ( # type: ignore - res.usage.completion_tokens + res.usage.prompt_tokens) # type: ignore - return res - - -def parse_args(): - parser = FlexibleArgumentParser( - description="vLLM OpenAI-Compatible RESTful API server.") - parser = make_arg_parser(parser) - return parser.parse_args() - - -if __name__ == "__main__": - args = parse_args() - engine_args = EngineArgs.from_cli_args(args) - runner.set_engine_args(engine_args) - runner.set_response_role(args.response_role) - runner.chat_template = load_chat_template(args.chat_template) - runner.chat_template_content_format = args.chat_template_content_format - - app.add_middleware( - CORSMiddleware, - allow_origins=args.allowed_origins, - allow_credentials=args.allow_credentials, - allow_methods=args.allowed_methods, - allow_headers=args.allowed_headers, - ) - - uvicorn.run(app, port=args.port, host=args.host) From ddec1333f8dcd90e99a1f61df559143fc4ae5bef Mon Sep 17 00:00:00 2001 From: Gregory Shtrasberg Date: Mon, 16 Dec 2024 18:02:58 +0000 Subject: [PATCH 191/733] Remove new irrelevant action --- .github/workflows/lint-and-deploy.yaml | 81 -------------------------- 1 file changed, 81 deletions(-) delete mode 100644 .github/workflows/lint-and-deploy.yaml diff --git a/.github/workflows/lint-and-deploy.yaml b/.github/workflows/lint-and-deploy.yaml deleted file mode 100644 index ab6f6e5d2060d..0000000000000 --- a/.github/workflows/lint-and-deploy.yaml +++ /dev/null @@ -1,81 +0,0 @@ -name: Lint and Deploy Charts - -on: pull_request - -jobs: - lint-and-deploy: - runs-on: ubuntu-latest - steps: - - name: Checkout - uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 - with: - fetch-depth: 0 - - - name: Set up Helm - uses: azure/setup-helm@fe7b79cd5ee1e45176fcad797de68ecaf3ca4814 # v4.2.0 - with: - version: v3.14.4 - - #Python is required because ct lint runs Yamale and yamllint which require Python. - - uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0 - with: - python-version: '3.13' - - - name: Set up chart-testing - uses: helm/chart-testing-action@e6669bcd63d7cb57cb4380c33043eebe5d111992 # v2.6.1 - with: - version: v3.10.1 - - - name: Run chart-testing (lint) - run: ct lint --target-branch ${{ github.event.repository.default_branch }} --chart-dirs examples/chart-helm --charts examples/chart-helm - - - name: Setup minio - run: | - docker network create vllm-net - docker run -d -p 9000:9000 --name minio --net vllm-net \ - -e "MINIO_ACCESS_KEY=minioadmin" \ - -e "MINIO_SECRET_KEY=minioadmin" \ - -v /tmp/data:/data \ - -v /tmp/config:/root/.minio \ - minio/minio server /data - export AWS_ACCESS_KEY_ID=minioadmin - export AWS_SECRET_ACCESS_KEY=minioadmin - export AWS_EC2_METADATA_DISABLED=true - mkdir opt-125m - cd opt-125m && curl -O -Ls "https://huggingface.co/facebook/opt-125m/resolve/main/{pytorch_model.bin,config.json,generation_config.json,merges.txt,special_tokens_map.json,tokenizer_config.json,vocab.json}" && cd .. - aws --endpoint-url http://127.0.0.1:9000/ s3 mb s3://testbucket - aws --endpoint-url http://127.0.0.1:9000/ s3 cp opt-125m/ s3://testbucket/opt-125m --recursive - - - name: Create kind cluster - uses: helm/kind-action@0025e74a8c7512023d06dc019c617aa3cf561fde # v1.10.0 - - - name: Build the Docker image vllm cpu - run: docker buildx build -f Dockerfile.cpu -t vllm-cpu-env . - - - name: Configuration of docker images, network and namespace for the kind cluster - run: | - docker pull amazon/aws-cli:2.6.4 - kind load docker-image amazon/aws-cli:2.6.4 --name chart-testing - kind load docker-image vllm-cpu-env:latest --name chart-testing - docker network connect vllm-net "$(docker ps -aqf "name=chart-testing-control-plane")" - kubectl create ns ns-vllm - - - name: Run chart-testing (install) - run: | - export AWS_ACCESS_KEY_ID=minioadmin - export AWS_SECRET_ACCESS_KEY=minioadmin - helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/chart-helm -f examples/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env" - - - name: curl test - run: | - kubectl -n ns-vllm port-forward service/test-vllm-service 8001:80 & - sleep 10 - CODE="$(curl -v -f --location http://localhost:8001/v1/completions \ - --header "Content-Type: application/json" \ - --data '{ - "model": "opt-125m", - "prompt": "San Francisco is a", - "max_tokens": 7, - "temperature": 0 - }'):$CODE" - echo "$CODE" \ No newline at end of file From efbce85f4d375d7851a491a0126a224e25d9f91d Mon Sep 17 00:00:00 2001 From: Varun Sundar Rabindranath Date: Mon, 16 Dec 2024 13:14:57 -0500 Subject: [PATCH 192/733] [misc] Layerwise profile updates (#10242) Signed-off-by: Varun Sundar Rabindranath Co-authored-by: Varun Sundar Rabindranath --- .buildkite/test-pipeline.yaml | 2 +- examples/offline_profile.py | 236 +++++++++++++++--- tools/profiler/print_layerwise_table.py | 9 +- tools/profiler/visualize_layerwise_profile.py | 92 ++++++- vllm/profiler/layerwise_profile.py | 22 +- 5 files changed, 314 insertions(+), 47 deletions(-) diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index 97aae233db105..44f47fac1c1b3 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -201,7 +201,7 @@ steps: - python3 offline_inference_classification.py - python3 offline_inference_embedding.py - python3 offline_inference_scoring.py - - python3 offline_profile.py --model facebook/opt-125m + - python3 offline_profile.py --model facebook/opt-125m run_num_steps --num-steps 2 - label: Prefix Caching Test # 9min mirror_hardwares: [amd] diff --git a/examples/offline_profile.py b/examples/offline_profile.py index 1d415b82cddb6..46afe8aa2604b 100644 --- a/examples/offline_profile.py +++ b/examples/offline_profile.py @@ -4,9 +4,10 @@ import sys from argparse import RawTextHelpFormatter from dataclasses import asdict, dataclass -from typing import Optional +from typing import Any, Dict, Generator, List, Optional, TypeAlias import torch +import tqdm from vllm import LLM, SamplingParams from vllm.engine.arg_utils import EngineArgs @@ -15,16 +16,21 @@ BATCH_SIZE_DEFAULT = 1 PROMPT_LEN_DEFAULT = 256 -OUTPUT_LEN_DEFAULT = 2 @dataclass class ProfileContext: engine_args: EngineArgs prompt_len: int - output_len: int batch_size: int - save_chrome_traces_folder: Optional[str] + + # The profiler can run in 2 modes, + # 1. Run profiler for user specified num_steps + num_steps: Optional[int] = None + # 2. Run profiler until all requests complete + complete_num_requests_per_step: Optional[int] = None + + save_chrome_traces_folder: Optional[str] = None def get_dtype(dtype: str): @@ -34,23 +40,155 @@ def get_dtype(dtype: str): return dtype +OutputLen_NumReqs_Map: TypeAlias = Dict[int, int] +def compute_request_output_lengths(batch_size: int, step_requests: List[int]) \ + -> OutputLen_NumReqs_Map: + """ + Given the number of requests, batch_size, and the number of requests + that each engine-step should process, step_requests, determine the + output lengths of the requests such that step_request is honoured. + + Example: + if batch size = 128 and step_request = [128, 128, 96, 64, 32, 1] + then return, + {2 : 32, 3 : 32, 4 : 32, 5 : 31, 6 : 1}, meaning, + 32 requests should have output length 2, + 32 requests should have output length 3, + 32 requests should have output length 4, + 31 requests should have output length 5, + 1 request should have output length 6. + + Args: + batch_size (int): Number of requests submitted for profile. This is + args.batch_size. + step_requests (List[int]): step_requests[i] is the number of requests + that the ith engine step should process. + + Returns: + OutputLen_NumReqs_Map : A dictionary with output-length as keys and the + number of requests required to have that output-length as values. + """ + ol_nr: OutputLen_NumReqs_Map = {} + + # Number of request that are assigned an output-length + num_reqs_assigned: int = 0 + num_steps: int = len(step_requests) + + # sanity check. The first step (prefill-step), must process all requests. + assert step_requests[0] == batch_size + + # Begin assignments from the last step. + output_length: int = num_steps + for num_requests_at_step in reversed(step_requests): + if num_reqs_assigned == batch_size: + break + + assert num_reqs_assigned < batch_size + + # Remove the number of requests that have been determined + # to participate in this step and beyond. + num_reqs_unassigned_at_step = num_requests_at_step - num_reqs_assigned + assert num_reqs_unassigned_at_step >= 0 + + if num_reqs_unassigned_at_step > 0: + ol_nr[output_length] = num_reqs_unassigned_at_step + num_reqs_assigned += num_reqs_unassigned_at_step + + output_length -= 1 + + # sanity checks. + assert sum(ol_nr.values()) == batch_size, \ + ("Number of requests in output-length assignment does not match " + f"batch-size.\n batch size {batch_size} - " + f"step requests {step_requests} - assignments {ol_nr}") + + # Check that the output-length is in [1, num-steps]. Output length must be + # at least 1 as all requests must participate in the prefill-step. + assert all(ol >= 1 and ol <= num_steps for ol in ol_nr), \ + ("Output lengths of requests should be in range " + f"[1, num-engine-steps].\n batch size {batch_size} - " + f"step requests {step_requests} - assignments {ol_nr}") + + return ol_nr + + +def determine_requests_per_step(context: ProfileContext) -> List[int]: + """ + Determine number of requests each engine step should process. + If context.num_steps is set, then all engine steps process the + same number of requests and the output list is of length + context.num_steps. + + If context.complete_num_requests_per_step is set, then each decode step + processes fewer and fewer requests until there are no requests to process. + In this case, the output list is as big as the number of steps + required to process all requests. + + Args: + context: ProfileContext object. + + Returns: + List[int]: Number of requests to process for all engine-steps. + output[i], contains the number of requests that the ith step + should process. + """ + if context.num_steps: + # All requests must run until num_engine_steps. This implies + # that their output lengths must be equal to num_engine_steps. + return [context.batch_size] * context.num_steps + + assert context.complete_num_requests_per_step and \ + context.complete_num_requests_per_step > 0, \ + (f"Expected a positive complete_num_requests_per_step argument." + f"Instead got {context.complete_num_requests_per_step}") + + # We start dropping after the first decode step. + step_requests = [ + context.batch_size, # prefill + context.batch_size, # decode + ] + + num_running_requests = context.batch_size + num_running_requests -= context.complete_num_requests_per_step + while num_running_requests > 0: + step_requests.append(num_running_requests) + num_running_requests -= context.complete_num_requests_per_step + + if step_requests[-1] != 1: + # have 1 request running at the last step. This is often + # useful + step_requests.append(1) + + return step_requests + + def run_profile(context: ProfileContext, csv_output: Optional[str], json_output: Optional[str]): print("Run profile with:") for key, value in asdict(context).items(): print(f" {key} = {value}") + requests_per_step: List[int] = determine_requests_per_step(context) + + ol_nr: OutputLen_NumReqs_Map = compute_request_output_lengths( + context.batch_size, requests_per_step) + + num_steps_to_profile: int = len(requests_per_step) + max_output_len: int = max(ol_nr.keys()) + assert max_output_len >= 1 + # Create sampling params - sampling_params = SamplingParams(temperature=0.8, - top_p=0.95, - max_tokens=args.output_len, - ignore_eos=True) + sampling_params = SamplingParams( + temperature=0.8, + top_p=0.95, + # max_tokens is set on a per-request basis. + max_tokens=None, + ignore_eos=True) # Create LLM llm = LLM(**asdict(context.engine_args)) batch_size = context.batch_size prompt_len = context.prompt_len - output_len = context.output_len scheduler_config = llm.llm_engine.scheduler_config max_model_len = llm.llm_engine.model_config.max_model_len @@ -65,7 +203,7 @@ def run_profile(context: ProfileContext, csv_output: Optional[str], f"choose a smaller batch size or prompt length, or increase " f"--max-num-batched-tokens") sys.exit(-1) - if batch_size >= max_num_seqs: + if batch_size > max_num_seqs: print( f"ERROR: chosen batch_size ({batch_size}) is larger than " f"max_num_seqs ({max_num_seqs}) and therefore cannot be run in a " @@ -73,16 +211,26 @@ def run_profile(context: ProfileContext, csv_output: Optional[str], sys.exit(-1) print("llm.llm_engine.model_config.max_model_len: ", llm.llm_engine.model_config.max_model_len) - if prompt_len + output_len > llm.llm_engine.model_config.max_model_len: - print( - f"ERROR: chosen prompt_len + output_len ({prompt_len} + " - f"{output_len} = {prompt_len + output_len}) is larger than the " - f"model's max_model_len ({max_model_len}), please choose a smaller " - f"prompt_len or output_len, or increase --max-model-len") + if prompt_len + max_output_len > llm.llm_engine.model_config.max_model_len: + print(f"ERROR: chosen prompt_len + max_output_len ({prompt_len} + " + f"{max_output_len} = {prompt_len + max_output_len}) is larger " + f"than the model's max_model_len ({max_model_len}), please " + f"choose a smaller prompt_len or max_output_len, or increase " + f"--max-model-len") sys.exit(-1) def add_requests(): + + def get_output_len_generator() -> Generator[int, Any, Any]: + for output_len, num_reqs in ol_nr.items(): + for _ in range(num_reqs): + yield output_len + + output_len_generator = get_output_len_generator() for i in range(batch_size): + sampling_params.max_tokens = next(output_len_generator) + assert isinstance(sampling_params.max_tokens, int) + prompt_token_ids = torch.randint( llm.llm_engine.model_config.get_vocab_size(), size=(prompt_len, )).tolist() @@ -110,8 +258,11 @@ def abort_requests(): llm.llm_engine.step() # First step is prefill decode_profs = [] - for x in range(args.output_len - 1): - with layerwise_profile() as decode_prof: + for _ in tqdm.tqdm(range(num_steps_to_profile - 1)): + num_running_seqs = llm.llm_engine.scheduler[ + 0].get_num_unfinished_seq_groups() + with layerwise_profile( + num_running_seqs=num_running_seqs) as decode_prof: llm.llm_engine.step() decode_profs.append(decode_prof) @@ -154,7 +305,8 @@ def abort_requests(): decode_results_list[0].print_summary_table() if csv_output: - csv_filename_base = csv_output.rstrip(".csv") + csv_filename_base = csv_output[:-4] \ + if csv_output.endswith('.csv') else csv_output prefill_results.export_model_stats_table_csv( csv_filename_base + "_prefill_model_table.csv") prefill_results.export_summary_stats_table_csv( @@ -187,10 +339,10 @@ def abort_requests(): for idx, dr in enumerate(decode_results_list): json_dict[f"decode_{idx + 1}"] = dr.convert_stats_to_dict() - for idx, dr in enumerate(decode_results_list[1:]): - json_dict[f"decode_{idx + 1}"] = dr.convert_stats_to_dict() - - with open(json_output.rstrip(".json") + ".json", "w+") as f: + # Add .json to json_output filename if it doesn't exist already. + json_output_file = json_output if json_output.endswith( + '.json') else json_output + '.json' + with open(json_output_file, "w+") as f: json.dump(json_dict, f, indent=2) pass @@ -214,7 +366,7 @@ def abort_requests(): python examples/offline_profile.py \\ --model neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8 --batch-size 4 \\ --prompt-len 512 --max-num-batched-tokens 8196 --json Llama31-8b-FP8 \\ - --enforce-eager + --enforce-eager run_num_steps -n 2 ``` then you can use various tools to analyze the json output @@ -261,17 +413,41 @@ def abort_requests(): default=BATCH_SIZE_DEFAULT, help=f"Number of requests to run as a single batch, " f"default={BATCH_SIZE_DEFAULT}") - parser.add_argument( - "--output-len", + + subparsers = parser.add_subparsers(dest="cmd") + + run_num_steps_parser = subparsers.add_parser( + "run_num_steps", + help="This variation profiles n engine.step() invocations.") + run_num_steps_parser.add_argument( + '-n', + '--num-steps', type=int, - default=OUTPUT_LEN_DEFAULT, - help="Number of llm steps to run (includes prefill and decode) " - "- default={OUTPUT_LEN_DEFAULT}") + help="Number of engine steps to profile.\n" + "Setting it to 1, profiles only the prefill step.\n" + "Setting it to 2, profiles the prefill and first decode step\n" + "Setting it to 3, profiles the prefill, 1st and 2nd decode steps\n" + "and so on ...") + + run_to_completion_parser = subparsers.add_parser( + "run_to_completion", + help="This variation profiles all the engine.step() invocations" + "until the engine exhausts all submitted requests.") + run_to_completion_parser.add_argument( + '-n', + '--complete-num-requests-per-step', + type=int, + help= + "Complete complete_num_requests_per_step requests every decode step." + "For e.g., with batch_size 128 and complete_num_requests_per_step 32," + "the profiler is run for 6 engine steps, with the steps processing, " + "128, 128, 96, 64, 32, 1 requests respectively.\n" + "Note that we tack-on a one-request step at the end as it is often " + "useful.") EngineArgs.add_cli_args(parser) args = parser.parse_args() - context = ProfileContext( engine_args=EngineArgs.from_cli_args(args), **{ diff --git a/tools/profiler/print_layerwise_table.py b/tools/profiler/print_layerwise_table.py index 081076ad7dbdc..394ca8663e189 100644 --- a/tools/profiler/print_layerwise_table.py +++ b/tools/profiler/print_layerwise_table.py @@ -34,9 +34,10 @@ def get_entries(node, curr_depth=0): "examples/offline_profile.py") parser.add_argument("--phase", type=str, - choices=["prefill", "decode_1"], required=True, - help="The phase to print the table for.") + help="The phase to print the table for. This is either" + "prefill or decode_n, where n is the decode step " + "number") parser.add_argument("--table", type=str, choices=["summary", "model"], @@ -49,6 +50,10 @@ def get_entries(node, curr_depth=0): with open(args.json_trace) as f: profile_data = json.load(f) + assert args.phase in profile_data, \ + (f"Cannot find phase {args.phase} in profile data. Choose one among" + f'{[x for x in profile_data.keys() if "prefill" in x or "decode" in x]}') #noqa + if args.table == "summary": entries_and_depths = flatten_entries( SummaryStatsEntry, profile_data[args.phase]["summary_stats"]) diff --git a/tools/profiler/visualize_layerwise_profile.py b/tools/profiler/visualize_layerwise_profile.py index adc44474aa4c1..da7a28da15c19 100644 --- a/tools/profiler/visualize_layerwise_profile.py +++ b/tools/profiler/visualize_layerwise_profile.py @@ -151,16 +151,31 @@ def is_quant(op_name: str): "scaled_int8_quant" in op_name: return True + # LoRA ops + def is_sgmv_shrink(op_name: str): + return "sgmv_shrink" in op_name + + def is_sgmv_expand(op_name: str): + return "sgmv_expand" in op_name + + def is_bgmv_shrink(op_name: str): + return "bgmv_shrink" in op_name + + def is_bgmv_expand(op_name: str): + return "bgmv_expand" in op_name + + def is_cutlass_gemm_op(op_name: str): + return "void cutlass::Kernel" in op_name or \ + "void cutlass::device_kernel" in op_name + def is_gemm_op(op_name: str): if is_quant(op_name): return False - if "xmma_gemm" in op_name or \ + return is_cutlass_gemm_op(op_name) or \ + "xmma_gemm" in op_name or \ "gemv2T_kernel" in op_name or \ "splitKreduce" in op_name or \ - "void cutlass::Kernel" in op_name or \ - "void cutlass::device_kernel" in op_name or \ - "s16816gemm" in op_name: - return True + "s16816gemm" in op_name def is_elementwise_op(op_name: str): return "elementwise_kernel" in op_name @@ -211,6 +226,18 @@ def is_reduce_kernel(op_name: str): quant_ops = list(filter(lambda x: is_quant(x), ops)) ops = list(filter(lambda x: x not in quant_ops, ops)) + sgmv_shrink_ops = list(filter(lambda x: is_sgmv_shrink(x), ops)) + ops = list(filter(lambda x: x not in sgmv_shrink_ops, ops)) + sgmv_expand_ops = list(filter(lambda x: is_sgmv_expand(x), ops)) + ops = list(filter(lambda x: x not in sgmv_expand_ops, ops)) + bgmv_shrink_ops = list(filter(lambda x: is_bgmv_shrink(x), ops)) + ops = list(filter(lambda x: x not in bgmv_shrink_ops, ops)) + bgmv_expand_ops = list(filter(lambda x: is_bgmv_expand(x), ops)) + ops = list(filter(lambda x: x not in bgmv_expand_ops, ops)) + + cutlass_gemm_ops = list(filter(lambda x: is_cutlass_gemm_op(x), ops)) + ops = list(filter(lambda x: x not in cutlass_gemm_ops, ops)) + gemm_ops = list(filter(lambda x: is_gemm_op(x), ops)) ops = list(filter(lambda x: x not in gemm_ops, ops)) @@ -257,6 +284,24 @@ def is_reduce_kernel(op_name: str): trace_df['attention'] = trace_df[attention_ops].agg("sum", axis=1) if len(quant_ops): trace_df['quant_ops'] = trace_df[quant_ops].agg("sum", axis=1) + + if len(sgmv_shrink_ops): + trace_df['sgmv_shrink_ops'] = trace_df[sgmv_shrink_ops].agg("sum", + axis=1) + if len(sgmv_expand_ops): + trace_df['sgmv_expand_ops'] = trace_df[sgmv_expand_ops].agg("sum", + axis=1) + if len(bgmv_shrink_ops): + trace_df['bgmv_shrink_ops'] = trace_df[bgmv_shrink_ops].agg("sum", + axis=1) + if len(bgmv_expand_ops): + trace_df['bgmv_expand_ops'] = trace_df[bgmv_expand_ops].agg("sum", + axis=1) + + if len(cutlass_gemm_ops): + trace_df['cutlass_gemm_ops'] = trace_df[cutlass_gemm_ops].agg("sum", + axis=1) + if len(gemm_ops): trace_df['gemm_ops'] = trace_df[gemm_ops].agg("sum", axis=1) if len(rms_norm_ops): @@ -296,7 +341,9 @@ def is_reduce_kernel(op_name: str): trace_df['reduce_kernel_ops'] = trace_df[reduce_kernel_ops].agg("sum", axis=1) - trace_df.drop(attention_ops + quant_ops + gemm_ops + rms_norm_ops + + trace_df.drop(attention_ops + quant_ops + sgmv_shrink_ops + + sgmv_expand_ops + bgmv_shrink_ops + bgmv_expand_ops + + cutlass_gemm_ops + gemm_ops + rms_norm_ops + vocab_embed_ops + mem_ops + elementwise_ops + nccl_all_reduce_ops + nccl_gather_ops + nccl_broadcast_ops + nccl_other_ops + cross_device_reduce_1stage_ops + @@ -315,7 +362,14 @@ def plot_trace_df(traces_df: pd.DataFrame, plot_title: str, output: Optional[Path] = None): + def get_phase_description(traces_df: pd.DataFrame, phase: str) -> str: + phase_df = traces_df.query(f'phase == "{phase}"') + descs = phase_df['phase_desc'].to_list() + assert all([desc == descs[0] for desc in descs]) + return descs[0] + phases = traces_df['phase'].unique() + phase_descs = [get_phase_description(traces_df, p) for p in phases] traces_df = traces_df.pivot_table(index="phase", columns="name", values=plot_metric, @@ -324,7 +378,8 @@ def plot_trace_df(traces_df: pd.DataFrame, traces_df = group_trace_by_operations(traces_df) # Make the figure - fig, ax = plt.subplots(1, figsize=(5, 8), sharex=True) + fig_size_x = max(5, len(phases)) + fig, ax = plt.subplots(1, figsize=(fig_size_x, 8), sharex=True) # Draw the stacked bars ops = list(traces_df) @@ -332,7 +387,7 @@ def plot_trace_df(traces_df: pd.DataFrame, for op in ops: values = [traces_df[op][phase] for phase in phases] values = list(map(lambda x: 0.0 if math.isnan(x) else x, values)) - ax.bar(phases, values, label=op, bottom=bottom) + ax.bar(phase_descs, values, label=op, bottom=bottom) bottom = [bottom[j] + values[j] for j in range(len(phases))] # Write the values as text on the bars @@ -390,6 +445,14 @@ def keep_only_top_entries(df: pd.DataFrame, ["name"]] = "others" return df + def get_phase_description(key: str) -> str: + num_running_seqs = profile_json[key]['metadata'][ + 'num_running_seqs'] + if num_running_seqs is not None: + return f"{key}-seqs-{num_running_seqs}" + else: + return key + # Get data for each key traces = list(map(lambda x: get_entries_and_traces(x), step_keys)) @@ -413,6 +476,7 @@ def keep_only_top_entries(df: pd.DataFrame, # Fill in information about the step-keys for trace_df, step_key in zip(trace_dfs, step_keys): trace_df['phase'] = step_key + trace_df['phase_desc'] = get_phase_description(step_key) # Combine all data frames so they can be put in a single plot traces_df = pd.concat(trace_dfs) @@ -426,12 +490,16 @@ def keep_only_top_entries(df: pd.DataFrame, def make_plot_title_suffix(profile_json: dict) -> str: context = profile_json["context"] sparsity = context.get('sparsity', None) - return (f"{context['model']}\n" + run_type = \ + f'Run {context["num_steps"]} steps' if context['num_steps'] else \ + (f'Complete {context["complete_num_requests_per_step"]} per ' + f'step; Run till completion') + return (f"{context['engine_args']['model']}\n" f"Batch={context['batch_size']}, " f"PromptLen={context['prompt_len']}, " - f"OutputLen={context['output_len']}," - f"NumGpus={context['tensor_parallel_size']}" - f"{', Sparsity ' + sparsity if sparsity else ''}") + f"NumGpus={context['engine_args']['tensor_parallel_size']}" + f"{', Sparsity ' + sparsity if sparsity else ''}\n" + f"Run Type: {run_type}") profile_json = None with open(json_trace) as f: diff --git a/vllm/profiler/layerwise_profile.py b/vllm/profiler/layerwise_profile.py index 9d9f427e807f6..33babfebdca1e 100644 --- a/vllm/profiler/layerwise_profile.py +++ b/vllm/profiler/layerwise_profile.py @@ -72,6 +72,9 @@ class LayerwiseProfileResults(profile): _model_stats_tree: List[_StatsTreeNode] = field(init=False) _summary_stats_tree: List[_StatsTreeNode] = field(init=False) + # profile metadata + num_running_seqs: Optional[int] = None + def __post_init__(self): self._build_correlation_map() self._build_module_tree() @@ -127,6 +130,9 @@ def export_summary_stats_table_csv(self, filename: str): def convert_stats_to_dict(self) -> str: return { + "metadata": { + "num_running_seqs": self.num_running_seqs + }, "summary_stats": self._convert_stats_tree_to_dict(self._summary_stats_tree), "model_stats": @@ -338,7 +344,15 @@ def df_traversal(node: _StatsTreeNode, curr_json_list: List[Dict]): class layerwise_profile(profile): - def __init__(self): + def __init__(self, num_running_seqs: Optional[int] = None): + """ + layerwise profile constructor. + + Args: + num_running_seqs (Optional[int], optional): When given, + num_running_seqs will be passed to LayerProfileResults for metadata + update. Defaults to None. + """ super().__init__( activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True, @@ -346,9 +360,13 @@ def __init__(self): with_modules=True, experimental_config=_ExperimentalConfig(verbose=True)) + self.num_running_seqs = num_running_seqs + def __enter__(self): return super().__enter__() def __exit__(self, exc_type, exc_val, exc_tb): super().__exit__(exc_type, exc_val, exc_tb) - self.results = LayerwiseProfileResults(self.profiler.kineto_results) + self.results = LayerwiseProfileResults( + self.profiler.kineto_results, + num_running_seqs=self.num_running_seqs) From 551603feffd9b4ba98ccdd34e02e403e04db88c1 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Mon, 16 Dec 2024 13:32:25 -0800 Subject: [PATCH 193/733] [core] overhaul memory profiling and fix backward compatibility (#10511) Signed-off-by: youkaichao --- tests/entrypoints/llm/test_gpu_utilization.py | 25 ++++ tests/entrypoints/llm/test_lazy_outlines.py | 2 +- tests/test_utils.py | 44 +++++- tests/worker/test_profile.py | 18 +-- vllm/engine/arg_utils.py | 11 +- vllm/utils.py | 125 +++++++++++++++++- vllm/worker/multi_step_model_runner.py | 3 +- vllm/worker/worker.py | 68 ++++------ 8 files changed, 236 insertions(+), 60 deletions(-) create mode 100644 tests/entrypoints/llm/test_gpu_utilization.py diff --git a/tests/entrypoints/llm/test_gpu_utilization.py b/tests/entrypoints/llm/test_gpu_utilization.py new file mode 100644 index 0000000000000..c2dab300ecefb --- /dev/null +++ b/tests/entrypoints/llm/test_gpu_utilization.py @@ -0,0 +1,25 @@ +from vllm import LLM, SamplingParams + + +def test_gpu_memory_utilization(): + prompts = [ + "Hello, my name is", + "The president of the United States is", + "The capital of France is", + "The future of AI is", + ] + sampling_params = SamplingParams(temperature=0.8, top_p=0.95) + + # makes sure gpu_memory_utilization is per-instance limit, + # not a global limit + llms = [ + LLM(model="facebook/opt-125m", + gpu_memory_utilization=0.3, + enforce_eager=True) for i in range(3) + ] + for llm in llms: + outputs = llm.generate(prompts, sampling_params) + for output in outputs: + prompt = output.prompt + generated_text = output.outputs[0].text + print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") diff --git a/tests/entrypoints/llm/test_lazy_outlines.py b/tests/entrypoints/llm/test_lazy_outlines.py index 2c53676c5f5dd..bf609b38a94f5 100644 --- a/tests/entrypoints/llm/test_lazy_outlines.py +++ b/tests/entrypoints/llm/test_lazy_outlines.py @@ -36,7 +36,7 @@ def run_lmfe(sample_regex): llm = LLM(model="facebook/opt-125m", enforce_eager=True, guided_decoding_backend="lm-format-enforcer", - gpu_memory_utilization=0.6) + gpu_memory_utilization=0.3) sampling_params = SamplingParams(temperature=0.8, top_p=0.95) outputs = llm.generate( prompts=[ diff --git a/tests/test_utils.py b/tests/test_utils.py index a731b11eae81c..0bc9e5bc32a46 100644 --- a/tests/test_utils.py +++ b/tests/test_utils.py @@ -5,11 +5,13 @@ from typing import AsyncIterator, Tuple import pytest +import torch from vllm.utils import (FlexibleArgumentParser, StoreBoolean, deprecate_kwargs, - get_open_port, merge_async_iterators, supports_kw) + get_open_port, memory_profiling, merge_async_iterators, + supports_kw) -from .utils import error_on_warning +from .utils import error_on_warning, fork_new_process_for_each_test @pytest.mark.asyncio @@ -270,3 +272,41 @@ def test_supports_kw(callable,kw_name,requires_kw_only, requires_kw_only=requires_kw_only, allow_var_kwargs=allow_var_kwargs ) == is_supported + + +@fork_new_process_for_each_test +def test_memory_profiling(): + # Fake out some model loading + inference memory usage to test profiling + # Memory used by other processes will show up as cuda usage outside of torch + from vllm.distributed.device_communicators.cuda_wrapper import ( + CudaRTLibrary) + lib = CudaRTLibrary() + # 512 MiB allocation outside of this instance + handle1 = lib.cudaMalloc(512 * 1024 * 1024) + + baseline_memory_in_bytes = \ + torch.cuda.mem_get_info()[1] - torch.cuda.mem_get_info()[0] + + # load weights + + weights = torch.randn(128, 1024, 1024, device='cuda', dtype=torch.float32) + + weights_memory_in_bytes = 128 * 1024 * 1024 * 4 # 512 MiB + + with memory_profiling(baseline_memory_in_bytes=baseline_memory_in_bytes, + weights_memory_in_bytes=weights_memory_in_bytes) as result: + # make a memory spike, 1 GiB + spike = torch.randn(256, 1024, 1024, device='cuda', dtype=torch.float32) + del spike + + # Add some extra non-torch memory 256 MiB (simulate NCCL) + handle2 = lib.cudaMalloc(256 * 1024 * 1024) + + # Check that the memory usage is within 5% of the expected values + non_torch_ratio = result.non_torch_increase_in_bytes / (256 * 1024 * 1024) # noqa + torch_peak_ratio = result.torch_peak_increase_in_bytes / (1024 * 1024 * 1024) # noqa + assert abs(non_torch_ratio - 1) <= 0.05 + assert abs(torch_peak_ratio - 1) <= 0.05 + del weights + lib.cudaFree(handle1) + lib.cudaFree(handle2) diff --git a/tests/worker/test_profile.py b/tests/worker/test_profile.py index 194ea2aa506f4..79233c75714de 100644 --- a/tests/worker/test_profile.py +++ b/tests/worker/test_profile.py @@ -31,10 +31,6 @@ def test_gpu_memory_profiling(): is_driver_worker=True, ) - # Load the model so we can profile it - worker.init_device() - worker.load_model() - # Set 10GiB as the total gpu ram to be device-agnostic def mock_mem_info(): current_usage = torch.cuda.memory_stats( @@ -46,20 +42,24 @@ def mock_mem_info(): from unittest.mock import patch with patch("torch.cuda.mem_get_info", side_effect=mock_mem_info): + # Load the model so we can profile it + worker.init_device() + worker.load_model() gpu_blocks, _ = worker.determine_num_available_blocks() - # Peak vram usage by torch should be 0.7077 GiB + # Peak vram usage by torch should be 0.47 GiB + # Model weights take 0.25 GiB # No memory should be allocated outside of torch # 9.0 GiB should be the utilization target - # 8.2923 GiB should be available for the KV cache + # 8.28 GiB should be available for the KV cache block_size = CacheEngine.get_cache_block_size( engine_config.cache_config, engine_config.model_config, engine_config.parallel_config) - expected_blocks = (8.2923 * 1024**3) // block_size + expected_blocks = (8.28 * 1024**3) // block_size # Check within a small tolerance for portability # Hardware, kernel, or dependency changes could all affect memory # utilization. - # A 10 block tolerance here should be about 6MB of wiggle room. - assert abs(gpu_blocks - expected_blocks) < 10 + # A 100 block tolerance here should be about 60MB of wiggle room. + assert abs(gpu_blocks - expected_blocks) < 100 diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index 0aa367a173b6c..06b8542779dc0 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -487,11 +487,12 @@ def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser: help='The fraction of GPU memory to be used for the model ' 'executor, which can range from 0 to 1. For example, a value of ' '0.5 would imply 50%% GPU memory utilization. If unspecified, ' - 'will use the default value of 0.9. This is a global gpu memory ' - 'utilization limit, for example if 50%% of the gpu memory is ' - 'already used before vLLM starts and --gpu-memory-utilization is ' - 'set to 0.9, then only 40%% of the gpu memory will be allocated ' - 'to the model executor.') + 'will use the default value of 0.9. This is a per-instance ' + 'limit, and only applies to the current vLLM instance.' + 'It does not matter if you have another vLLM instance running ' + 'on the same GPU. For example, if you have two vLLM instances ' + 'running on the same GPU, you can set the GPU memory utilization ' + 'to 0.5 for each instance.') parser.add_argument( '--num-gpu-blocks-override', type=int, diff --git a/vllm/utils.py b/vllm/utils.py index 45e682ac15782..73d2ae25f15ca 100644 --- a/vllm/utils.py +++ b/vllm/utils.py @@ -23,10 +23,12 @@ from asyncio import FIRST_COMPLETED, AbstractEventLoop, Future, Task from collections import UserDict, defaultdict from collections.abc import Iterable, Mapping +from dataclasses import dataclass, field from functools import lru_cache, partial, wraps from typing import (TYPE_CHECKING, Any, AsyncGenerator, Awaitable, Callable, - Dict, Generic, Hashable, List, Literal, Optional, - OrderedDict, Set, Tuple, Type, TypeVar, Union, overload) + Dict, Generator, Generic, Hashable, List, Literal, + Optional, OrderedDict, Set, Tuple, Type, TypeVar, Union, + overload) from uuid import uuid4 import numpy as np @@ -1664,3 +1666,122 @@ def kill_process_tree(pid: int): # Finally kill the parent with contextlib.suppress(ProcessLookupError): os.kill(pid, signal.SIGKILL) + + +@dataclass +class MemorySnapshot: + """Memory snapshot.""" + torch_peak_in_bytes: int = 0 + torch_memory_in_bytes: int = 0 + timestamp: float = 0.0 + + def measure(self): + self.torch_peak_in_bytes = torch.cuda.memory_stats( + )["allocated_bytes.all.peak"] + self.torch_memory_in_bytes = torch.cuda.memory_stats( + )["allocated_bytes.all.current"] + self.timestamp = time.time() + + def __sub__(self, other: "MemorySnapshot") -> "MemorySnapshot": + """support a - b""" + return MemorySnapshot( + torch_peak_in_bytes=self.torch_peak_in_bytes - + other.torch_peak_in_bytes, + torch_memory_in_bytes=self.torch_memory_in_bytes - + other.torch_memory_in_bytes, + timestamp=self.timestamp - other.timestamp) + + +@dataclass +class MemoryProfilingResult: + """Memory profiling result. + """ # noqa + baseline_memory_in_bytes: int = 0 + non_kv_cache_memory_in_bytes: int = 0 + torch_peak_increase_in_bytes: int = 0 + non_torch_increase_in_bytes: int = 0 + weights_memory_in_bytes: float = 0 + before_profile: MemorySnapshot = field(default_factory=MemorySnapshot) + after_profile: MemorySnapshot = field(default_factory=MemorySnapshot) + profile_time: float = 0.0 + + +@contextlib.contextmanager +def memory_profiling( + baseline_memory_in_bytes: int, weights_memory_in_bytes: int +) -> Generator[MemoryProfilingResult, None, None]: + """Memory profiling context manager. + baseline_memory_in_bytes: memory used by all the components other than + the current vLLM instance. It contains: memory used by other processes, memory + used by another vLLM instance in the same process, etc. It is usually measured + before the current vLLM instance initialize the device. And we assume it is + constant during the profiling of the current vLLM instance. + weights_memory_in_bytes: memory used by PyTorch when loading the model weights. + Note that, before loading the model weights, we also initialize the device + and distributed environment, which may consume some memory. This part is not + included in the weights_memory_in_bytes because PyTorch does not control it. + + The memory in one GPU can be classified into 3 categories: + 1. memory used by anything other than the current vLLM instance. + 2. memory used by torch in the current vLLM instance. + 3. memory used in the current vLLM instance, but not by torch. + + A quantitive example: + + Before creating the current vLLM instance: + category 1: 1 GiB + category 2: 0 GiB + category 3: 0 GiB + + After creating the current vLLM instance and loading the model, + (i.e. before profiling): + category 1: 1 GiB + category 2: 2 GiB (model weights take 2 GiB) + category 3: 0.5 GiB (memory used by NCCL) + + During profiling (peak): + category 1: 1 GiB + category 2: 4 GiB (peak activation tensors take 2 GiB) + category 3: 1 GiB (memory used by NCCL + buffers for some attention backends) + + After profiling: + category 1: 1 GiB + category 2: 3 GiB (after garbage-collecting activation tensors) + category 3: 1 GiB (memory used by NCCL + buffers for some attention backends) + + In this case, non-kv cache takes 5 GiB in total, including: + a. 2 GiB used by the model weights (category 2) + b. 2 GiB reserved for the peak activation tensors (category 2) + c. 1 GiB used by non-torch components (category 3) + + The memory used for loading weights (a.) is directly given from the argument `weights_memory_in_bytes`. + + The increase of ``torch.cuda.memory_stats()["allocated_bytes.all.peak"]` after profiling gives (b.). + + (c.) is tricky. We measure the total memory used in this GPU (`torch.cuda.mem_get_info()[1] - torch.cuda.mem_get_info()[0]`), + subtract the baseline memory, the memory used by the model weights, and diff of `torch.cuda.memory_stats()["allocated_bytes.all.current"]`. + """ # noqa + torch.cuda.reset_peak_memory_stats() + + result = MemoryProfilingResult() + + result.baseline_memory_in_bytes = baseline_memory_in_bytes + # the part of memory used for holding the model weights + result.weights_memory_in_bytes = weights_memory_in_bytes + + result.before_profile.measure() + + yield result + + gc.collect() + torch.cuda.empty_cache() + + result.after_profile.measure() + + diff = result.after_profile - result.before_profile + result.torch_peak_increase_in_bytes = diff.torch_peak_in_bytes + current_cuda_memory_bytes = torch.cuda.mem_get_info( + )[1] - torch.cuda.mem_get_info()[0] + result.non_torch_increase_in_bytes = current_cuda_memory_bytes - baseline_memory_in_bytes - weights_memory_in_bytes - diff.torch_memory_in_bytes # noqa + result.profile_time = diff.timestamp + result.non_kv_cache_memory_in_bytes = result.non_torch_increase_in_bytes + result.torch_peak_increase_in_bytes + result.weights_memory_in_bytes # noqa diff --git a/vllm/worker/multi_step_model_runner.py b/vllm/worker/multi_step_model_runner.py index e08a61e31fe42..18b03bf1bfb56 100644 --- a/vllm/worker/multi_step_model_runner.py +++ b/vllm/worker/multi_step_model_runner.py @@ -645,7 +645,8 @@ def _advance_step(self, model_input: StatefulModelInput, return model_input def load_model(self) -> None: - return self._base_model_runner.load_model() + self._base_model_runner.load_model() + self.model_memory_usage = self._base_model_runner.model_memory_usage def save_sharded_state( self, diff --git a/vllm/worker/worker.py b/vllm/worker/worker.py index a368bb9ee9a5b..f51b51d433d3d 100644 --- a/vllm/worker/worker.py +++ b/vllm/worker/worker.py @@ -1,7 +1,6 @@ """A GPU worker class.""" import gc import os -import time from typing import Dict, List, Optional, Set, Tuple, Type, Union import torch @@ -22,6 +21,7 @@ from vllm.prompt_adapter.request import PromptAdapterRequest from vllm.sequence import (ExecuteModelRequest, IntermediateTensors, SequenceGroupMetadata, SequenceGroupMetadataDelta) +from vllm.utils import GiB_bytes, memory_profiling from vllm.worker.cache_engine import CacheEngine from vllm.worker.enc_dec_model_runner import EncoderDecoderModelRunner from vllm.worker.model_runner import GPUModelRunnerBase, ModelRunner @@ -192,33 +192,22 @@ def determine_num_available_blocks(self) -> Tuple[int, int]: torch.cuda.reset_peak_memory_stats() free_memory_pre_profile, total_gpu_memory = torch.cuda.mem_get_info() - start_time = time.time() # Execute a forward pass with dummy inputs to profile the memory usage # of the model. - self.model_runner.profile_run() - torch.cuda.synchronize() + with memory_profiling(baseline_memory_in_bytes=total_gpu_memory - + self.init_gpu_memory, + weights_memory_in_bytes=self.model_runner. + model_memory_usage) as result: + self.model_runner.profile_run() + torch.cuda.synchronize() self._assert_memory_footprint_increased_during_profiling() - # Get the peak memory allocation recorded by torch - peak_memory = torch.cuda.memory_stats()["allocated_bytes.all.peak"] - - # Check for any memory left around that may have been allocated on the - # gpu outside of `torch`. NCCL operations, for example, can use a few - # GB during a forward pass - torch.cuda.empty_cache() - torch_allocated_bytes = torch.cuda.memory_stats( - )["allocated_bytes.all.current"] - total_allocated_bytes = torch.cuda.mem_get_info( - )[1] - torch.cuda.mem_get_info()[0] - non_torch_allocations = total_allocated_bytes - torch_allocated_bytes - if non_torch_allocations > 0: - peak_memory += non_torch_allocations - - available_kv_cache_memory = ( - total_gpu_memory * self.cache_config.gpu_memory_utilization - - peak_memory) + memory_for_current_instance = total_gpu_memory * \ + self.cache_config.gpu_memory_utilization + available_kv_cache_memory = (memory_for_current_instance - + result.non_kv_cache_memory_in_bytes) # Calculate the number of blocks that can be allocated with the # profiled peak memory. @@ -233,24 +222,23 @@ def determine_num_available_blocks(self) -> Tuple[int, int]: num_gpu_blocks = max(num_gpu_blocks, 0) num_cpu_blocks = max(num_cpu_blocks, 0) - end_time = time.time() - logger.info( - "Memory profiling results: " - "duration=%.2f seconds, " - "total_gpu_memory=%.2fGiB, " - "initial_memory_usage=%.2fGiB, " - "peak_torch_memory=%.2fGiB, " - "memory_usage_post_profile=%.2fGiB, " - "non_torch_memory=%.2fGiB, " - "kv_cache_size=%.2fGiB, " - "gpu_memory_utilization=%.2f.", end_time - start_time, - total_gpu_memory / (1024**3), - (total_gpu_memory - free_memory_pre_profile) / (1024**3), - (peak_memory - non_torch_allocations) / (1024**3), - total_allocated_bytes / (1024**3), - non_torch_allocations / (1024**3), - available_kv_cache_memory / (1024**3), - self.cache_config.gpu_memory_utilization) + msg = (f"Memory profiling takes {result.profile_time:.2f} seconds\n" + "the current vLLM instance can use " + "total_gpu_memory " + f"({(total_gpu_memory / GiB_bytes):.2f}GiB)" + " x gpu_memory_utilization " + f"({self.cache_config.gpu_memory_utilization:.2f})" + f" = {(memory_for_current_instance / GiB_bytes):.2f}GiB\n" + "model weights take " + f"{(result.weights_memory_in_bytes / GiB_bytes):.2f}GiB;" + " non_torch_memory takes " + f"{(result.non_torch_increase_in_bytes / GiB_bytes):.2f}GiB;" + " PyTorch activation peak memory takes " + f"{(result.torch_peak_increase_in_bytes / GiB_bytes):.2f}GiB;" + " the rest of the memory reserved for KV Cache is " + f"{(available_kv_cache_memory / GiB_bytes):.2f}GiB.") + + logger.info(msg) # Final cleanup if self.model_runner.lora_manager: From 35ffa682b1cd3f47eb6cda586a16dab5c0401477 Mon Sep 17 00:00:00 2001 From: bk-TurbaAI Date: Mon, 16 Dec 2024 23:20:39 +0100 Subject: [PATCH 194/733] [Docs] hint to enable use of GPU performance counters in profiling tools for multi-node distributed serving (#11235) Co-authored-by: Michael Goin --- docs/source/serving/distributed_serving.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/source/serving/distributed_serving.rst b/docs/source/serving/distributed_serving.rst index 4d57206e53a05..b24ba53e59694 100644 --- a/docs/source/serving/distributed_serving.rst +++ b/docs/source/serving/distributed_serving.rst @@ -54,7 +54,7 @@ Multi-Node Inference and Serving If a single node does not have enough GPUs to hold the model, you can run the model using multiple nodes. It is important to make sure the execution environment is the same on all nodes, including the model path, the Python environment. The recommended way is to use docker images to ensure the same environment, and hide the heterogeneity of the host machines via mapping them into the same docker configuration. -The first step, is to start containers and organize them into a cluster. We have provided a helper `script `_ to start the cluster. +The first step, is to start containers and organize them into a cluster. We have provided a helper `script `_ to start the cluster. Please note, this script launches docker without administrative privileges that would be required to access GPU performance counters when running profiling and tracing tools. For that purpose, the script can have ``CAP_SYS_ADMIN`` to the docker container by using the ``--cap-add`` option in the docker run command. Pick a node as the head node, and run the following command: From d09f1ced34309d0aa49496a963c2ed539a6c895d Mon Sep 17 00:00:00 2001 From: Gregory Shtrasberg <156009573+gshtras@users.noreply.github.com> Date: Mon, 16 Dec 2024 17:48:07 -0500 Subject: [PATCH 195/733] Fix regression from #246 (#332) --- vllm/attention/ops/triton_flash_attention.py | 1 - 1 file changed, 1 deletion(-) diff --git a/vllm/attention/ops/triton_flash_attention.py b/vllm/attention/ops/triton_flash_attention.py index 3671c2f91e3b7..2e647a8e52278 100644 --- a/vllm/attention/ops/triton_flash_attention.py +++ b/vllm/attention/ops/triton_flash_attention.py @@ -394,7 +394,6 @@ def get_autotune_configs(): @triton.autotune( configs=autotune_configs, key=autotune_keys, - use_cuda_graph=True, ) @triton.jit def attn_fwd( From c301616ed23fef433db1a49df332b9d61d3178ad Mon Sep 17 00:00:00 2001 From: youkaichao Date: Mon, 16 Dec 2024 15:53:18 -0800 Subject: [PATCH 196/733] [ci][tests] add gh200 tests (#11244) Signed-off-by: youkaichao --- .buildkite/run-gh200-test.sh | 25 +++++++++++++++++++++++++ 1 file changed, 25 insertions(+) create mode 100644 .buildkite/run-gh200-test.sh diff --git a/.buildkite/run-gh200-test.sh b/.buildkite/run-gh200-test.sh new file mode 100644 index 0000000000000..d25510c47fe6b --- /dev/null +++ b/.buildkite/run-gh200-test.sh @@ -0,0 +1,25 @@ +#!/bin/bash + +# This script build the GH200 docker image and run the offline inference inside the container. +# It serves a sanity check for compilation and basic model usage. +set -ex + +# Try building the docker image +DOCKER_BUILDKIT=1 docker build . \ + --target test \ + -platform "linux/arm64" \ + -t gh200-test \ + --build-arg max_jobs=66 \ + --build-arg nvcc_threads=2 \ + --build-arg torch_cuda_arch_list="9.0+PTX" \ + --build-arg vllm_fa_cmake_gpu_arches="90-real" + +# Setup cleanup +remove_docker_container() { docker rm -f gh200-test || true; } +trap remove_docker_container EXIT +remove_docker_container + +# Run the image and test offline inference +docker run --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c ' + python3 examples/offline_inference.py +' From 88a412ed3d964de3443c42a6a35108115ee0ad25 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Mon, 16 Dec 2024 16:15:22 -0800 Subject: [PATCH 197/733] [torch.compile] fast inductor (#11108) Signed-off-by: youkaichao Co-authored-by: Tyler Michael Smith --- vllm/compilation/backends.py | 213 +++++++++++++++++- vllm/config.py | 415 ++++++++++++++++++++++++++++++++++- vllm/envs.py | 3 + 3 files changed, 624 insertions(+), 7 deletions(-) diff --git a/vllm/compilation/backends.py b/vllm/compilation/backends.py index 4a5dc337d01b8..0c7bbfe599b02 100644 --- a/vllm/compilation/backends.py +++ b/vllm/compilation/backends.py @@ -1,6 +1,10 @@ +import ast import copy import dataclasses +import os +import pprint import time +from collections import defaultdict from contextlib import ExitStack from typing import Any, Callable, Dict, List, Optional, Sequence, Set, Tuple from unittest.mock import patch @@ -21,6 +25,122 @@ logger = init_logger(__name__) +class InductorHashCache: + """ + Disk format: a Python list of tuples, each tuple is + (runtime_shape, graph_index, hash_str) + We use list of tuple for readability. + + In-memory format: a defaultdict of dict, where the key is + runtime_shape, and the value is a dict of graph_index to hash_str. + + The data is essentially `Dict[Optional[int], Dict[int, str]]`, + we don't use json here because json doesn't support int as key. + + TODO: better off-the-shelf solution to serialize the data? + """ + + def __init__(self, cache_dir: str, disabled: bool = False): + self.cache: defaultdict = defaultdict(dict) + self.disabled = disabled + self.cache_dir = cache_dir + self.cache_file_path = os.path.join(cache_dir, + "inductor_hash_cache.py") + if disabled: + return + # set flags so that Inductor and Triton store their cache + # in the cache_dir, then users only need to copy the cache_dir + # to another machine to reuse the cache. + inductor_cache = os.path.join(cache_dir, "inductor_cache") + os.makedirs(inductor_cache, exist_ok=True) + os.environ["TORCHINDUCTOR_CACHE_DIR"] = inductor_cache + triton_cache = os.path.join(cache_dir, "triton_cache") + os.makedirs(triton_cache, exist_ok=True) + os.environ["TRITON_CACHE_DIR"] = triton_cache + if os.path.exists(self.cache_file_path): + with open(self.cache_file_path) as f: + self.deserialize(f.read()) + + def deserialize(self, data: str): + # we use ast.literal_eval to parse the data + # because it is a safe way to parse Python literals. + # do not use eval(), it is unsafe. + list_data = ast.literal_eval(data) + for runtime_shape, graph_index, hash_str in list_data: + self.cache[runtime_shape][graph_index] = hash_str + + def serialize(self) -> str: + data = [] + for runtime_shape, graph_index_to_hash_str in self.cache.items(): + for graph_index, hash_str in graph_index_to_hash_str.items(): + data.append((runtime_shape, graph_index, hash_str)) + printer = pprint.PrettyPrinter(indent=4) + return printer.pformat(data) + + def save_to_file(self): + if self.disabled: + return + with open(self.cache_file_path, "w") as f: + f.write(self.serialize()) + + def __contains__(self, key: Tuple[Optional[int], int]) -> bool: + if self.disabled: + return False + runtime_shape, graph_index = key + return runtime_shape in self.cache and graph_index in self.cache[ + runtime_shape] + + def __getitem__(self, key: Tuple[Optional[int], int]) -> str: + if self.disabled: + raise KeyError("cannot read from disabled cache") + runtime_shape, graph_index = key + return self.cache[runtime_shape][graph_index] + + def __setitem__(self, key: Tuple[Optional[int], int], value: str): + # setitem for disabled cache is fine, because we + # don't actually write to the disk + runtime_shape, graph_index = key + self.cache[runtime_shape][graph_index] = value + + +class AlwaysHitShapeEnv: + """ + Why do we need this class: + + For normal `torch.compile` usage, every compilation will have + one Dynamo bytecode compilation and one Inductor compilation. + The Inductor compilation happens under the context of the + Dynamo bytecode compilation, and that context is used to + determine the dynamic shape information, etc. + + For our use case, we only run Dynamo bytecode compilation once, + and run Inductor compilation multiple times with different shapes + plus a general shape. The compilation for specific shapes happens + outside of the context of the Dynamo bytecode compilation. At that + time, we don't have shape environment to provide to Inductor, and + it will fail the Inductor code cache lookup. + + By providing a dummy shape environment that always hits, we can + make the Inductor code cache lookup always hit, and we can + compile the graph for different shapes as needed. + + The following dummy methods are obtained by trial-and-error + until it works. + """ + + def __init__(self) -> None: + self.guards: List[Any] = [] + + def evaluate_guards_expression(self, *args, **kwargs): + return True + + def get_pruned_guards(self, *args, **kwargs): + return [] + + def produce_guards_expression(self, *args, **kwargs): + return "" + + def wrap_inductor(graph, example_inputs, additional_inductor_config, @@ -55,9 +175,93 @@ def wrap_inductor(graph, # inductor can inplace modify the graph, so we need to copy it # see https://github.com/pytorch/pytorch/issues/138980 graph = copy.deepcopy(graph) - compiled_graph = compile_fx(graph, - example_inputs, - config_patches=current_config) + + cache_data = compilation_config.inductor_hash_cache + if (runtime_shape, graph_index) in cache_data: + # we compiled this graph before + # so we can directly lookup the compiled graph via hash + hash_str = cache_data[(runtime_shape, graph_index)] + if graph_index == 0: + # adds some info logging for the first graph + logger.info( + "Directly lookup the graph for shape %s from the cache", + str(runtime_shape)) # noqa + logger.debug( + "directly lookup the %s-th graph for shape %s via hash %s", + graph_index, str(runtime_shape), hash_str) + from torch._inductor.codecache import FxGraphCache + with patch("torch._inductor.codecache.FxGraphCache._get_shape_env", + lambda *args, **kwargs: AlwaysHitShapeEnv()): + inductor_compiled_graph = FxGraphCache._lookup_graph( + hash_str, example_inputs, True, False) + assert inductor_compiled_graph is not None, ( + "Inductor cache lookup failed. Please remove" + f"the cache file {compilation_config.inductor_hash_cache.cache_file_path} and try again." # noqa + ) + + # Inductor calling convention (function signature): + # f(list) -> tuple + # Dynamo calling convention (function signature): + # f(*args) -> Any + + # need to know if the graph returns a tuple + from torch._inductor.compile_fx import graph_returns_tuple + returns_tuple = graph_returns_tuple(graph) + + # this is the graph we return to Dynamo to run + def compiled_graph(*args): + # convert args to list + list_args = list(args) + graph_output = inductor_compiled_graph(list_args) + # unpack the tuple if needed + if returns_tuple: + return graph_output + else: + return graph_output[0] + else: + # it's the first time we compile this graph + # the assumption is that we don't have nested Inductor compilation. + # compiled_fx_graph_hash will only be called once, and we can hook + # it to get the hash of the compiled graph directly. + from torch._inductor.codecache import compiled_fx_graph_hash + + def hijack_compiled_fx_graph_hash(*args, **kwargs): + out = compiled_fx_graph_hash(*args, **kwargs) + # store the hash in the cache + nonlocal cache_data + cache_data[(runtime_shape, graph_index)] = out[0] + if graph_index == 0: + # adds some info logging for the first graph + logger.info("Cache the graph of shape %s for later use", + str(runtime_shape)) + logger.debug("store the %s-th graph for shape %s via hash %s", + graph_index, str(runtime_shape), out[0]) + return out + + def _check_can_cache(*args, **kwargs): + # no error means it can be cached. + # Inductor refuses to cache the graph outside of Dynamo + # tracing context, and also disables caching for graphs + # with high-order ops. + # For vLLM, in either case, we want to cache the graph. + # see https://github.com/pytorch/pytorch/blob/9f5ebf3fc609105a74eab4ccc24932d6353ff566/torch/_inductor/codecache.py#L1221 # noqa + return + + def _get_shape_env(): + return AlwaysHitShapeEnv() + + with patch(# for hijacking the hash of the compiled graph + "torch._inductor.codecache.compiled_fx_graph_hash", + hijack_compiled_fx_graph_hash), \ + patch(# for providing a dummy shape environment + "torch._inductor.codecache.FxGraphCache._get_shape_env", + _get_shape_env), \ + patch(# for forcing the graph to be cached + "torch._inductor.codecache.FxGraphCache._check_can_cache", + _check_can_cache): + compiled_graph = compile_fx(graph, + example_inputs, + config_patches=current_config) # after compiling the last graph, record the end time if graph_index == num_graphs - 1: @@ -457,6 +661,9 @@ def __call__(self, *args) -> Any: # finished compilations for all required shapes if self.is_last_graph and not self.to_be_compiled_sizes: + + # save the hash of the inductor graph for the next run + self.compilation_config.inductor_hash_cache.save_to_file() end_monitoring_torch_compile(self.vllm_config) if not entry.use_cudagraph: diff --git a/vllm/config.py b/vllm/config.py index fce8011be4015..9cfd08024ea7b 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -3,6 +3,7 @@ import enum import hashlib import json +import os import warnings from contextlib import contextmanager from dataclasses import dataclass, field, replace @@ -162,6 +163,30 @@ class ModelConfig: which allows no processors. """ + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + factors: List[Any] = [] + factors.append(self.model) + factors.append(self.dtype) + factors.append(self.quantization) + factors.append(self.quantization_param_path) + factors.append(self.revision) + factors.append(self.code_revision) + factors.append(self.trust_remote_code) + factors.append(self.rope_scaling) + factors.append(self.rope_theta) + return hashlib.sha256(str(factors).encode()).hexdigest() + def __init__(self, model: str, task: Union[TaskOption, Literal["draft"]], @@ -203,6 +228,8 @@ def __init__(self, self.seed = seed self.revision = revision self.code_revision = code_revision + self.rope_scaling = rope_scaling + self.rope_theta = rope_theta if hf_overrides is None: hf_overrides = {} @@ -832,6 +859,24 @@ class CacheConfig: cpu_offload_gb: Size of the CPU offload buffer in GiB. """ + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + factors: List[Any] = [] + factors.append(self.cache_dtype) + # `cpu_offload_gb` does not use `torch.compile` yet. + hash_str = hashlib.md5(str(factors).encode()).hexdigest() + return hash_str + def __init__( self, block_size: int, @@ -928,6 +973,24 @@ class TokenizerPoolConfig: pool_type: Union[str, Type["BaseTokenizerGroup"]] extra_config: dict + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + # no factors to consider. + # this config will not affect the computation graph. + factors: List[Any] = [] + hash_str = hashlib.md5(str(factors).encode()).hexdigest() + return hash_str + def __post_init__(self): if self.pool_type not in ("ray", ) and not isinstance( self.pool_type, type): @@ -1010,6 +1073,24 @@ class LoadConfig: default_factory=dict) ignore_patterns: Optional[Union[List[str], str]] = None + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + # no factors to consider. + # this config will not affect the computation graph. + factors: List[Any] = [] + hash_str = hashlib.md5(str(factors).encode()).hexdigest() + return hash_str + def __post_init__(self): model_loader_extra_config = self.model_loader_extra_config or {} if isinstance(model_loader_extra_config, str): @@ -1073,6 +1154,19 @@ class ParallelConfig: rank: int = 0 + def compute_hash(self): + """ + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + factors: List[Any] = [] + factors.append(self.pipeline_parallel_size) + factors.append(self.tensor_parallel_size) + return hashlib.sha256(str(factors).encode()).hexdigest() + def __post_init__(self) -> None: self.world_size = self.pipeline_parallel_size * \ self.tensor_parallel_size @@ -1209,6 +1303,24 @@ class SchedulerConfig: chunked_prefill_enabled: bool = field(init=False) + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + # no factors to consider. + # this config will not affect the computation graph. + factors: List[Any] = [] + hash_str = hashlib.md5(str(factors).encode()).hexdigest() + return hash_str + def __post_init__(self) -> None: if self.max_num_batched_tokens is None: if self.enable_chunked_prefill: @@ -1286,6 +1398,25 @@ class DeviceConfig: device: Optional[torch.device] device_type: str + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + # no factors to consider. + # the device/platform information will be summarized + # by torch/vllm automatically. + factors: List[Any] = [] + hash_str = hashlib.md5(str(factors).encode()).hexdigest() + return hash_str + def __init__(self, device: str = "auto") -> None: if device == "auto": # Automated device type detection @@ -1313,6 +1444,24 @@ class SpeculativeConfig: decoding with top-1 proposals. """ + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + # no factors to consider. + # spec decode does not use `torch.compile` yet. + factors: List[Any] = [] + hash_str = hashlib.md5(str(factors).encode()).hexdigest() + return hash_str + @staticmethod def maybe_create_spec_config( target_model_config: ModelConfig, @@ -1753,6 +1902,24 @@ class LoRAConfig: long_lora_scaling_factors: Optional[Tuple[float]] = None bias_enabled: bool = False + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + # no factors to consider. + # LoRA is not compatible with `torch.compile` . + factors: List[Any] = [] + hash_str = hashlib.md5(str(factors).encode()).hexdigest() + return hash_str + def __post_init__(self): # Setting the maximum rank to 256 should be able to satisfy the vast # majority of applications. @@ -1802,6 +1969,24 @@ class PromptAdapterConfig: max_cpu_prompt_adapters: Optional[int] = None prompt_adapter_dtype: Optional[torch.dtype] = None + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + # no factors to consider. + # this config will not affect the computation graph. + factors: List[Any] = [] + hash_str = hashlib.md5(str(factors).encode()).hexdigest() + return hash_str + def __post_init__(self): if self.max_prompt_adapters < 1: @@ -1830,6 +2015,24 @@ class MultiModalConfig: for each :class:`~vllm.multimodal.MultiModalPlugin`. """ + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + # no factors to consider. + # this config will not affect the computation graph. + factors: List[Any] = [] + hash_str = hashlib.md5(str(factors).encode()).hexdigest() + return hash_str + # TODO: Add configs to init vision tower or not. @@ -1869,6 +2072,24 @@ class PoolerConfig: ``math-shepherd-mistral-7b-prm`` model. """ + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + # no factors to consider. + # this config will not affect the computation graph. + factors: List[Any] = [] + hash_str = hashlib.md5(str(factors).encode()).hexdigest() + return hash_str + @staticmethod def from_json(json_str: str) -> "PoolerConfig": return PoolerConfig(**json.loads(json_str)) @@ -2103,6 +2324,24 @@ class DecodingConfig: # 'outlines' / 'lm-format-enforcer' / 'xgrammar' guided_decoding_backend: str = 'xgrammar' + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + # no factors to consider. + # this config will not affect the computation graph. + factors: List[Any] = [] + hash_str = hashlib.md5(str(factors).encode()).hexdigest() + return hash_str + def __post_init__(self): valid_guided_backends = ['outlines', 'lm-format-enforcer', 'xgrammar'] backend = self.guided_decoding_backend @@ -2124,6 +2363,24 @@ class ObservabilityConfig: # If set, collects the model execute time for the request. collect_model_execute_time: bool = False + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + # no factors to consider. + # this config will not affect the computation graph. + factors: List[Any] = [] + hash_str = hashlib.md5(str(factors).encode()).hexdigest() + return hash_str + def __post_init__(self): if not is_otel_available() and self.otlp_traces_endpoint is not None: raise ValueError( @@ -2165,6 +2422,24 @@ class KVTransferConfig(BaseModel): # The KV connector port, used to build distributed connection kv_port: int = 14579 + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + # no factors to consider. + # this config will not affect the computation graph. + factors: List[Any] = [] + hash_str = hashlib.md5(str(factors).encode()).hexdigest() + return hash_str + @classmethod def from_cli(cls, cli_value: str) -> "KVTransferConfig": """Parse the CLI value for the kv cache transfer config.""" @@ -2234,6 +2509,9 @@ class CompilationConfig(BaseModel): - 2: dynamo once. - 3: piecewise compilation. - debug_dump_path: the path to dump the debug information. + - cache_dir: the directory to store the compiled graph, to + accelerate Inductor compilation. By default, it will use + model-related information to generate a cache directory. - backend: the backend for compilation. It needs to be a string. - "" (empty string): use the default backend. - "eager"/"openxla"/...: use the specified backend registered in PyTorch. @@ -2302,12 +2580,10 @@ class CompilationConfig(BaseModel): """ # noqa level: int = 0 debug_dump_path: str = "" + cache_dir: str = "" backend: str = "" custom_ops: List[str] = Field(default_factory=list) - splitting_ops: List[str] = Field(default_factory=lambda: [ - "vllm.unified_attention", - "vllm.unified_attention_with_output", - ]) + splitting_ops: List[str] = Field(default=None) # type: ignore use_inductor: bool = True candidate_compile_sizes: Optional[List[int]] = Field(default=None) @@ -2371,12 +2647,37 @@ def model_post_init(self, __context: Any) -> None: enabled_custom_ops: Counter[str] = PrivateAttr disabled_custom_ops: Counter[str] = PrivateAttr compilation_time: float = PrivateAttr + # should be InductorHashCache, but Pydantic does not support it + inductor_hash_cache: Any = PrivateAttr # Per-model forward context # Mainly used to store attention cls # Map from layer name to the attention cls static_forward_context: Dict[str, Any] = PrivateAttr + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + factors: List[Any] = [] + factors.append(self.level) + factors.append(self.backend) + factors.append(self.custom_ops) + factors.append(self.splitting_ops) + factors.append(self.use_inductor) + factors.append(self.inductor_compile_config) + factors.append(self.inductor_passes) + factors.append(self.pass_config.uuid()) + return hashlib.sha256(str(factors).encode()).hexdigest() + def __repr__(self) -> str: exclude = { "static_forward_context", @@ -2405,6 +2706,27 @@ def model_post_init(self, __context: Any) -> None: count_all = self.custom_ops.count("all") assert count_none + count_all <= 1, "Can only specify 'none' or 'all'" + if self.splitting_ops is None: + if envs.VLLM_USE_V1: + # v1 must split the graph on attention ops + # for piecewise cudagraph + self.splitting_ops = [ + "vllm.unified_attention", + "vllm.unified_attention_with_output", + ] + else: + # v0 can use full graph compilation without splitting, + # splitting is optional. + # right now we still need it. kv cache shape + # will be included in the graph if we don't split + # the graph. + # TODO: hide kv cache in static forward context + # so that inductor does not see it. + self.splitting_ops = [ + "vllm.unified_attention", + "vllm.unified_attention_with_output", + ] + for k, v in self.inductor_passes.items(): if not isinstance(v, str): assert callable(v), ( @@ -2444,6 +2766,30 @@ def init_backend(self, vllm_config: "VllmConfig") -> Union[str, Callable]: # TODO: pass user-specified backend to piecewise compilation # merge with the config use_inductor assert self.level == CompilationLevel.PIECEWISE + + if not self.cache_dir: + # no provided cache dir, generate one based on the known factors + # that affects the compilation. if none of the factors change, + # the cache dir will be the same so that we can reuse the compiled + # graph. + hash_key = vllm_config.compute_hash() + cache_dir = os.path.join( + envs.VLLM_CACHE_ROOT, "torch_compile_cache", hash_key, + f"rank_{vllm_config.parallel_config.rank}") + os.makedirs(cache_dir, exist_ok=True) + self.cache_dir = cache_dir + + disabled = envs.VLLM_DISABLE_COMPILE_CACHE + from vllm.compilation.backends import InductorHashCache + self.inductor_hash_cache: InductorHashCache = InductorHashCache( + self.cache_dir, disabled=disabled) + if disabled: + logger.info("vLLM's torch.compile cache is disabled.") + else: + logger.info( + "Using cache directory: %s for vLLM's torch.compile", + self.cache_dir) + from vllm.compilation.backends import VllmBackend return VllmBackend(vllm_config) @@ -2520,6 +2866,67 @@ class VllmConfig: init=True) # type: ignore instance_id: str = "" + def compute_hash(self) -> str: + """ + WARNING: Whenever a new field is added to this config, + ensure that it is included in the factors list if + it affects the computation graph. + + Provide a hash that uniquely identifies all the configs + that affect the structure of the computation + graph from input ids/embeddings to the final hidden states, + excluding anything before input ids/embeddings and after + the final hidden states. + """ + factors: List[Any] = [] + # summarize system state + from torch._inductor.codecache import CacheBase + system_factors = CacheBase.get_system() + factors.append(system_factors) + + # summarize pytorch state + from torch._inductor.codecache import torch_key + torch_factors = torch_key() + factors.append(torch_factors) + + # summarize vllm config + vllm_factors: List[Any] = [] + from vllm import __version__ + vllm_factors.append(__version__) + if self.model_config: + vllm_factors.append(self.model_config.compute_hash()) + if self.cache_config: + vllm_factors.append(self.cache_config.compute_hash()) + if self.parallel_config: + vllm_factors.append(self.parallel_config.compute_hash()) + if self.scheduler_config: + vllm_factors.append(self.scheduler_config.compute_hash()) + if self.device_config: + vllm_factors.append(self.device_config.compute_hash()) + if self.load_config: + vllm_factors.append(self.load_config.compute_hash()) + if self.lora_config: + vllm_factors.append(self.lora_config.compute_hash()) + if self.speculative_config: + vllm_factors.append(self.speculative_config.compute_hash()) + if self.decoding_config: + vllm_factors.append(self.decoding_config.compute_hash()) + if self.observability_config: + vllm_factors.append(self.observability_config.compute_hash()) + if self.prompt_adapter_config: + vllm_factors.append(self.prompt_adapter_config.compute_hash()) + if self.quant_config: + pass # should be captured by model_config.quantization + if self.compilation_config: + vllm_factors.append(self.compilation_config.compute_hash()) + if self.kv_transfer_config: + vllm_factors.append(self.kv_transfer_config.compute_hash()) + + factors.append(vllm_factors) + + hash_str = hashlib.md5(str(factors).encode()).hexdigest()[:10] + return hash_str + def pad_for_cudagraph(self, batch_size: int) -> int: # if batch_size > self.compilation_config.max_capture_size, # it should raise an IndexError. diff --git a/vllm/envs.py b/vllm/envs.py index da17b747ea215..18870c1c6b51a 100644 --- a/vllm/envs.py +++ b/vllm/envs.py @@ -71,6 +71,7 @@ VLLM_USE_V1: bool = False VLLM_ENABLE_V1_MULTIPROCESSING: bool = True VLLM_LOG_BATCHSIZE_INTERVAL: float = -1 + VLLM_DISABLE_COMPILE_CACHE: bool = False def get_default_cache_root(): @@ -463,6 +464,8 @@ def get_default_config_root(): lambda: bool(int(os.getenv("VLLM_ENABLE_V1_MULTIPROCESSING", "1"))), "VLLM_LOG_BATCHSIZE_INTERVAL": lambda: float(os.getenv("VLLM_LOG_BATCHSIZE_INTERVAL", "-1")), + "VLLM_DISABLE_COMPILE_CACHE": + lambda: bool(int(os.getenv("VLLM_DISABLE_COMPILE_CACHE", "0"))), } # end-env-vars-definition From 35bae114a89e03e3dc6a6d2f758378e58938bffa Mon Sep 17 00:00:00 2001 From: youkaichao Date: Mon, 16 Dec 2024 17:22:38 -0800 Subject: [PATCH 198/733] fix gh200 tests on main (#11246) Signed-off-by: youkaichao --- .buildkite/run-gh200-test.sh | 4 ++-- docs/source/serving/deploying_with_docker.rst | 5 +---- 2 files changed, 3 insertions(+), 6 deletions(-) diff --git a/.buildkite/run-gh200-test.sh b/.buildkite/run-gh200-test.sh index d25510c47fe6b..d06604f96f2b8 100644 --- a/.buildkite/run-gh200-test.sh +++ b/.buildkite/run-gh200-test.sh @@ -6,8 +6,8 @@ set -ex # Try building the docker image DOCKER_BUILDKIT=1 docker build . \ - --target test \ - -platform "linux/arm64" \ + --target vllm-openai \ + --platform "linux/arm64" \ -t gh200-test \ --build-arg max_jobs=66 \ --build-arg nvcc_threads=2 \ diff --git a/docs/source/serving/deploying_with_docker.rst b/docs/source/serving/deploying_with_docker.rst index 11a9f12fd17cd..56f0020a1011a 100644 --- a/docs/source/serving/deploying_with_docker.rst +++ b/docs/source/serving/deploying_with_docker.rst @@ -54,16 +54,13 @@ of PyTorch Nightly and should be considered **experimental**. Using the flag `-- # Example of building on Nvidia GH200 server. (Memory usage: ~12GB, Build time: ~1475s / ~25 min, Image size: 7.26GB) $ DOCKER_BUILDKIT=1 sudo docker build . \ --target vllm-openai \ - -platform "linux/arm64" \ + --platform "linux/arm64" \ -t vllm/vllm-gh200-openai:latest \ --build-arg max_jobs=66 \ --build-arg nvcc_threads=2 \ --build-arg torch_cuda_arch_list="9.0+PTX" \ --build-arg vllm_fa_cmake_gpu_arches="90-real" - - - To run vLLM: .. code-block:: console From 0064f697d318a2ce38342f7c20754cf229311b8b Mon Sep 17 00:00:00 2001 From: Michael Goin Date: Mon, 16 Dec 2024 22:39:58 -0500 Subject: [PATCH 199/733] [CI] Add test case with JSON schema using references + use xgrammar by default with OpenAI parse (#10935) Signed-off-by: mgoin --- tests/entrypoints/conftest.py | 39 +++++++++++++++++++ tests/entrypoints/llm/test_guided_generate.py | 28 +++++++++++++ vllm/entrypoints/openai/protocol.py | 2 +- 3 files changed, 68 insertions(+), 1 deletion(-) diff --git a/tests/entrypoints/conftest.py b/tests/entrypoints/conftest.py index 0f7d15e1d85aa..ef74062ce4b41 100644 --- a/tests/entrypoints/conftest.py +++ b/tests/entrypoints/conftest.py @@ -100,6 +100,45 @@ def sample_complex_json_schema(): } +@pytest.fixture +def sample_definition_json_schema(): + return { + '$defs': { + 'Step': { + 'properties': { + 'explanation': { + 'title': 'Explanation', + 'type': 'string' + }, + 'output': { + 'title': 'Output', + 'type': 'string' + } + }, + 'required': ['explanation', 'output'], + 'title': 'Step', + 'type': 'object' + } + }, + 'properties': { + 'steps': { + 'items': { + '$ref': '#/$defs/Step' + }, + 'title': 'Steps', + 'type': 'array' + }, + 'final_answer': { + 'title': 'Final Answer', + 'type': 'string' + } + }, + 'required': ['steps', 'final_answer'], + 'title': 'MathReasoning', + 'type': 'object' + } + + @pytest.fixture def sample_guided_choice(): return [ diff --git a/tests/entrypoints/llm/test_guided_generate.py b/tests/entrypoints/llm/test_guided_generate.py index de6257cfc551c..ed50ec6bbc9eb 100644 --- a/tests/entrypoints/llm/test_guided_generate.py +++ b/tests/entrypoints/llm/test_guided_generate.py @@ -104,6 +104,34 @@ def test_guided_complex_json_completion(sample_complex_json_schema, llm): schema=sample_complex_json_schema) +@pytest.mark.skip_global_cleanup +def test_guided_definition_json_completion(sample_definition_json_schema, llm): + sampling_params = SamplingParams(temperature=1.0, + max_tokens=1000, + guided_decoding=GuidedDecodingParams( + json=sample_definition_json_schema)) + outputs = llm.generate(prompts=[ + f"Give an example JSON for solving 8x + 7 = -23 " + f"that fits this schema: {sample_definition_json_schema}" + ] * 2, + sampling_params=sampling_params, + use_tqdm=True) + + assert outputs is not None + + for output in outputs: + assert output is not None + assert isinstance(output, RequestOutput) + prompt = output.prompt + + generated_text = output.outputs[0].text + assert generated_text is not None + print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") + output_json = json.loads(generated_text) + jsonschema.validate(instance=output_json, + schema=sample_definition_json_schema) + + @pytest.mark.skip_global_cleanup def test_guided_choice_completion(sample_guided_choice, llm): sampling_params = SamplingParams( diff --git a/vllm/entrypoints/openai/protocol.py b/vllm/entrypoints/openai/protocol.py index 6ed7c2e9dcd6b..5a70e0952666b 100644 --- a/vllm/entrypoints/openai/protocol.py +++ b/vllm/entrypoints/openai/protocol.py @@ -387,7 +387,7 @@ def to_sampling_params( assert json_schema is not None self.guided_json = json_schema.json_schema if self.guided_decoding_backend is None: - self.guided_decoding_backend = "lm-format-enforcer" + self.guided_decoding_backend = "xgrammar" guided_decoding = GuidedDecodingParams.from_optional( json=self._get_guided_json_from_tool() or self.guided_json, From 66d4b16724226e9f377551198cc7425c12ddafae Mon Sep 17 00:00:00 2001 From: kYLe Date: Tue, 17 Dec 2024 00:09:58 -0600 Subject: [PATCH 200/733] [Frontend] Add OpenAI API support for input_audio (#11027) Signed-off-by: DarkLight1337 Co-authored-by: DarkLight1337 --- .../serving/openai_compatible_server.md | 10 +- docs/source/usage/multimodal_inputs.rst | 90 ++++++++++++- ...i_chat_completion_client_for_multimodal.py | 34 ++++- tests/entrypoints/openai/test_audio.py | 125 +++++++++++++++++- vllm/entrypoints/chat_utils.py | 65 +++++++-- 5 files changed, 301 insertions(+), 23 deletions(-) diff --git a/docs/source/serving/openai_compatible_server.md b/docs/source/serving/openai_compatible_server.md index 14a5b02d72aa5..1bc8d32d2d161 100644 --- a/docs/source/serving/openai_compatible_server.md +++ b/docs/source/serving/openai_compatible_server.md @@ -34,11 +34,6 @@ We currently support the following OpenAI APIs: - *Note: `suffix` parameter is not supported.* - [Chat Completions API](#chat-api) (`/v1/chat/completions`) - Only applicable to [text generation models](../models/generative_models.rst) (`--task generate`) with a [chat template](#chat-template). - - [Vision](https://platform.openai.com/docs/guides/vision)-related parameters are supported; see [Multimodal Inputs](../usage/multimodal_inputs.rst). - - *Note: `image_url.detail` parameter is not supported.* - - We also support `audio_url` content type for audio files. - - Refer to [vllm.entrypoints.chat_utils](https://github.com/vllm-project/vllm/tree/main/vllm/entrypoints/chat_utils.py) for the exact schema. - - *TODO: Support `input_audio` content type as defined [here](https://github.com/openai/openai-python/blob/v1.52.2/src/openai/types/chat/chat_completion_content_part_input_audio_param.py).* - *Note: `parallel_tool_calls` and `user` parameters are ignored.* - [Embeddings API](#embeddings-api) (`/v1/embeddings`) - Only applicable to [embedding models](../models/pooling_models.rst) (`--task embed`). @@ -209,6 +204,11 @@ The following extra parameters are supported: Refer to [OpenAI's API reference](https://platform.openai.com/docs/api-reference/chat) for more details. +We support both [Vision](https://platform.openai.com/docs/guides/vision)- and +[Audio](https://platform.openai.com/docs/guides/audio?audio-generation-quickstart-example=audio-in)-related parameters; +see our [Multimodal Inputs](../usage/multimodal_inputs.rst) guide for more information. +- *Note: `image_url.detail` parameter is not supported.* + #### Extra parameters The following [sampling parameters (click through to see documentation)](../dev/sampling_params.rst) are supported. diff --git a/docs/source/usage/multimodal_inputs.rst b/docs/source/usage/multimodal_inputs.rst index 1e00f26f9a3ba..680382e457cc5 100644 --- a/docs/source/usage/multimodal_inputs.rst +++ b/docs/source/usage/multimodal_inputs.rst @@ -315,7 +315,95 @@ You can use `these tests `_. +Here is a simple example using Ultravox-v0.3. + +First, launch the OpenAI-compatible server: + +.. code-block:: bash + + vllm serve fixie-ai/ultravox-v0_3 + +Then, you can use the OpenAI client as follows: + +.. code-block:: python + + import base64 + import requests + from openai import OpenAI + from vllm.assets.audio import AudioAsset + + def encode_base64_content_from_url(content_url: str) -> str: + """Encode a content retrieved from a remote url to base64 format.""" + + with requests.get(content_url) as response: + response.raise_for_status() + result = base64.b64encode(response.content).decode('utf-8') + + return result + + openai_api_key = "EMPTY" + openai_api_base = "http://localhost:8000/v1" + + client = OpenAI( + api_key=openai_api_key, + base_url=openai_api_base, + ) + + # Any format supported by librosa is supported + audio_url = AudioAsset("winning_call").url + audio_base64 = encode_base64_content_from_url(audio_url) + + chat_completion_from_base64 = client.chat.completions.create( + messages=[{ + "role": "user", + "content": [ + { + "type": "text", + "text": "What's in this audio?" + }, + { + "type": "input_audio", + "input_audio": { + "data": audio_base64, + "format": "wav" + }, + }, + ], + }], + model=model, + max_completion_tokens=64, + ) + + result = chat_completion_from_base64.choices[0].message.content + print("Chat completion output from input audio:", result) + +Alternatively, you can pass :code:`audio_url`, which is the audio counterpart of :code:`image_url` for image input: + +.. code-block:: python + + chat_completion_from_url = client.chat.completions.create( + messages=[{ + "role": "user", + "content": [ + { + "type": "text", + "text": "What's in this audio?" + }, + { + "type": "audio_url", + "audio_url": { + "url": audio_url + }, + }, + ], + }], + model=model, + max_completion_tokens=64, + ) + + result = chat_completion_from_url.choices[0].message.content + print("Chat completion output from audio url:", result) A full code example can be found in `examples/openai_chat_completion_client_for_multimodal.py `_. diff --git a/examples/openai_chat_completion_client_for_multimodal.py b/examples/openai_chat_completion_client_for_multimodal.py index 0ec4f71dddf93..6a160fd70423f 100644 --- a/examples/openai_chat_completion_client_for_multimodal.py +++ b/examples/openai_chat_completion_client_for_multimodal.py @@ -153,10 +153,37 @@ def run_multi_image() -> None: # Audio input inference def run_audio() -> None: - # Any format supported by librosa is supported audio_url = AudioAsset("winning_call").url + audio_base64 = encode_base64_content_from_url(audio_url) + + # OpenAI-compatible schema (`input_audio`) + chat_completion_from_base64 = client.chat.completions.create( + messages=[{ + "role": + "user", + "content": [ + { + "type": "text", + "text": "What's in this audio?" + }, + { + "type": "input_audio", + "input_audio": { + # Any format supported by librosa is supported + "data": audio_base64, + "format": "wav" + }, + }, + ], + }], + model=model, + max_completion_tokens=64, + ) + + result = chat_completion_from_base64.choices[0].message.content + print("Chat completion output from input audio:", result) - # Use audio url in the payload + # HTTP URL chat_completion_from_url = client.chat.completions.create( messages=[{ "role": @@ -169,6 +196,7 @@ def run_audio() -> None: { "type": "audio_url", "audio_url": { + # Any format supported by librosa is supported "url": audio_url }, }, @@ -181,7 +209,7 @@ def run_audio() -> None: result = chat_completion_from_url.choices[0].message.content print("Chat completion output from audio url:", result) - audio_base64 = encode_base64_content_from_url(audio_url) + # base64 URL chat_completion_from_base64 = client.chat.completions.create( messages=[{ "role": diff --git a/tests/entrypoints/openai/test_audio.py b/tests/entrypoints/openai/test_audio.py index b579dcbb5c402..0a29d77e73abc 100644 --- a/tests/entrypoints/openai/test_audio.py +++ b/tests/entrypoints/openai/test_audio.py @@ -155,6 +155,61 @@ async def test_single_chat_session_audio_base64encoded( assert message.content is not None and len(message.content) >= 0 +@pytest.mark.asyncio +@pytest.mark.parametrize("model_name", [MODEL_NAME]) +@pytest.mark.parametrize("audio_url", TEST_AUDIO_URLS) +async def test_single_chat_session_input_audio( + client: openai.AsyncOpenAI, model_name: str, audio_url: str, + base64_encoded_audio: Dict[str, str]): + messages = [{ + "role": + "user", + "content": [ + { + "type": "input_audio", + "input_audio": { + "data": base64_encoded_audio[audio_url], + "format": "wav" + } + }, + { + "type": "text", + "text": "What's happening in this audio?" + }, + ], + }] + + # test single completion + chat_completion = await client.chat.completions.create( + model=model_name, + messages=messages, + max_completion_tokens=10, + logprobs=True, + top_logprobs=5) + assert len(chat_completion.choices) == 1 + + choice = chat_completion.choices[0] + assert choice.finish_reason == "length" + assert chat_completion.usage == openai.types.CompletionUsage( + completion_tokens=10, prompt_tokens=202, total_tokens=212) + + message = choice.message + message = chat_completion.choices[0].message + assert message.content is not None and len(message.content) >= 10 + assert message.role == "assistant" + messages.append({"role": "assistant", "content": message.content}) + + # test multi-turn dialogue + messages.append({"role": "user", "content": "express your result in json"}) + chat_completion = await client.chat.completions.create( + model=model_name, + messages=messages, + max_completion_tokens=10, + ) + message = chat_completion.choices[0].message + assert message.content is not None and len(message.content) >= 0 + + @pytest.mark.asyncio @pytest.mark.parametrize("model_name", [MODEL_NAME]) @pytest.mark.parametrize("audio_url", TEST_AUDIO_URLS) @@ -212,11 +267,72 @@ async def test_chat_streaming_audio(client: openai.AsyncOpenAI, assert "".join(chunks) == output +@pytest.mark.asyncio +@pytest.mark.parametrize("model_name", [MODEL_NAME]) +@pytest.mark.parametrize("audio_url", TEST_AUDIO_URLS) +async def test_chat_streaming_input_audio(client: openai.AsyncOpenAI, + model_name: str, audio_url: str, + base64_encoded_audio: Dict[str, + str]): + messages = [{ + "role": + "user", + "content": [ + { + "type": "input_audio", + "input_audio": { + "data": base64_encoded_audio[audio_url], + "format": "wav" + } + }, + { + "type": "text", + "text": "What's happening in this audio?" + }, + ], + }] + + # test single completion + chat_completion = await client.chat.completions.create( + model=model_name, + messages=messages, + max_completion_tokens=10, + temperature=0.0, + ) + output = chat_completion.choices[0].message.content + stop_reason = chat_completion.choices[0].finish_reason + + # test streaming + stream = await client.chat.completions.create( + model=model_name, + messages=messages, + max_completion_tokens=10, + temperature=0.0, + stream=True, + ) + chunks: List[str] = [] + finish_reason_count = 0 + async for chunk in stream: + delta = chunk.choices[0].delta + if delta.role: + assert delta.role == "assistant" + if delta.content: + chunks.append(delta.content) + if chunk.choices[0].finish_reason is not None: + finish_reason_count += 1 + # finish reason should only return in last block + assert finish_reason_count == 1 + assert chunk.choices[0].finish_reason == stop_reason + assert delta.content + assert "".join(chunks) == output + + @pytest.mark.asyncio @pytest.mark.parametrize("model_name", [MODEL_NAME]) @pytest.mark.parametrize("audio_url", TEST_AUDIO_URLS) async def test_multi_audio_input(client: openai.AsyncOpenAI, model_name: str, - audio_url: str): + audio_url: str, + base64_encoded_audio: Dict[str, str]): messages = [{ "role": @@ -229,9 +345,10 @@ async def test_multi_audio_input(client: openai.AsyncOpenAI, model_name: str, } }, { - "type": "audio_url", - "audio_url": { - "url": audio_url + "type": "input_audio", + "input_audio": { + "data": base64_encoded_audio[audio_url], + "format": "wav" } }, { diff --git a/vllm/entrypoints/chat_utils.py b/vllm/entrypoints/chat_utils.py index aaa5cd759366a..3df08c740d65b 100644 --- a/vllm/entrypoints/chat_utils.py +++ b/vllm/entrypoints/chat_utils.py @@ -13,7 +13,8 @@ # yapf conflicts with isort for this block # yapf: disable from openai.types.chat import (ChatCompletionAssistantMessageParam, - ChatCompletionContentPartImageParam) + ChatCompletionContentPartImageParam, + ChatCompletionContentPartInputAudioParam) from openai.types.chat import ( ChatCompletionContentPartParam as OpenAIChatCompletionContentPartParam) from openai.types.chat import (ChatCompletionContentPartRefusalParam, @@ -105,6 +106,7 @@ class CustomChatCompletionContentSimpleVideoParam(TypedDict, total=False): ChatCompletionContentPartParam: TypeAlias = Union[ OpenAIChatCompletionContentPartParam, ChatCompletionContentPartAudioParam, + ChatCompletionContentPartInputAudioParam, ChatCompletionContentPartVideoParam, ChatCompletionContentPartRefusalParam, CustomChatCompletionContentSimpleImageParam, CustomChatCompletionContentSimpleAudioParam, @@ -519,6 +521,10 @@ def parse_image(self, image_url: str) -> None: def parse_audio(self, audio_url: str) -> None: raise NotImplementedError + @abstractmethod + def parse_input_audio(self, input_audio: Dict[str, str]) -> None: + raise NotImplementedError + @abstractmethod def parse_video(self, video_url: str) -> None: raise NotImplementedError @@ -545,6 +551,15 @@ def parse_audio(self, audio_url: str) -> None: placeholder = self._tracker.add("audio", audio) self._add_placeholder(placeholder) + def parse_input_audio(self, input_audio: Dict[str, str]) -> None: + input_audio_data = input_audio.get("data","") + input_audio_format = input_audio.get("format","") + audio_url = f"data:audio/{input_audio_format};base64,{input_audio_data}" + audio = get_and_parse_audio(audio_url) + + placeholder = self._tracker.add("audio", audio) + self._add_placeholder(placeholder) + def parse_video(self, video_url: str) -> None: video = get_and_parse_video(video_url) @@ -574,6 +589,15 @@ def parse_audio(self, audio_url: str) -> None: placeholder = self._tracker.add("audio", audio_coro) self._add_placeholder(placeholder) + def parse_input_audio(self, input_audio: Dict[str, str]) -> None: + input_audio_data = input_audio.get("data","") + input_audio_format = input_audio.get("format","") + audio_url = f"data:audio/{input_audio_format};base64,{input_audio_data}" + audio_coro = async_get_and_parse_audio(audio_url) + + placeholder = self._tracker.add("audio", audio_coro) + self._add_placeholder(placeholder) + def parse_video(self, video_url: str) -> None: video = async_get_and_parse_video(video_url) @@ -667,17 +691,22 @@ def _get_full_multimodal_text_prompt(placeholder_counts: Dict[str, int], _TextParser = partial(cast, ChatCompletionContentPartTextParam) _ImageParser = partial(cast, ChatCompletionContentPartImageParam) _AudioParser = partial(cast, ChatCompletionContentPartAudioParam) +_InputAudioParser = partial(cast, ChatCompletionContentPartInputAudioParam) _RefusalParser = partial(cast, ChatCompletionContentPartRefusalParam) _VideoParser = partial(cast, ChatCompletionContentPartVideoParam) # Define a mapping from part types to their corresponding parsing functions. -MM_PARSER_MAP: Dict[str, Callable[[ChatCompletionContentPartParam], str]] = { +MM_PARSER_MAP: Dict[str, + Callable[[ChatCompletionContentPartParam], + Union[str, Dict[str,str]]]] = { "text": lambda part: _TextParser(part).get("text", ""), "image_url": lambda part: _ImageParser(part).get("image_url", {}).get("url", ""), "audio_url": lambda part: _AudioParser(part).get("audio_url", {}).get("url", ""), + "input_audio": + lambda part: _InputAudioParser(part).get("input_audio", {}), "refusal": lambda part: _RefusalParser(part).get("refusal", ""), "video_url": @@ -686,7 +715,8 @@ def _get_full_multimodal_text_prompt(placeholder_counts: Dict[str, int], def _parse_chat_message_content_mm_part( - part: ChatCompletionContentPartParam) -> Tuple[str, str]: + part: ChatCompletionContentPartParam) -> Tuple[str, + Union[str, Dict[str, str]]]: """ Parses a given multi-modal content part based on its type. @@ -717,6 +747,7 @@ def _parse_chat_message_content_mm_part( return part_type, content # Handle missing 'type' but provided direct URL fields. + # 'type' is required field by pydantic if part_type is None: if part.get("image_url") is not None: image_params = cast(CustomChatCompletionContentSimpleImageParam, @@ -726,6 +757,9 @@ def _parse_chat_message_content_mm_part( audio_params = cast(CustomChatCompletionContentSimpleAudioParam, part) return "audio_url", audio_params.get("audio_url", "") + if part.get("input_audio") is not None: + input_audio_params = cast(Dict[str, str], part) + return "input_audio", input_audio_params if part.get("video_url") is not None: video_params = cast(CustomChatCompletionContentSimpleVideoParam, part) @@ -739,7 +773,7 @@ def _parse_chat_message_content_mm_part( VALID_MESSAGE_CONTENT_MM_PART_TYPES = ("text", "refusal", "image_url", - "audio_url", "video_url") + "audio_url", "input_audio", "video_url") def _parse_chat_message_content_parts( @@ -795,7 +829,7 @@ def _parse_chat_message_content_part( # Handle structured dictionary parts part_type, content = _parse_chat_message_content_mm_part(part) - # if part_type is text/refusal/image_url/audio_url/video_url but + # if part_type is text/refusal/image_url/audio_url/video_url/input_audio but # content is empty, log a warning and skip if part_type in VALID_MESSAGE_CONTENT_MM_PART_TYPES and not content: logger.warning( @@ -804,18 +838,30 @@ def _parse_chat_message_content_part( return None if part_type in ("text", "refusal"): - return {'type': 'text', 'text': content} if wrap_dicts else content + str_content = cast(str, content) + if wrap_dicts: + return {'type': 'text', 'text': str_content} + else: + return str_content if part_type == "image_url": - mm_parser.parse_image(content) + str_content = cast(str, content) + mm_parser.parse_image(str_content) return {'type': 'image'} if wrap_dicts else None if part_type == "audio_url": - mm_parser.parse_audio(content) + str_content = cast(str, content) + mm_parser.parse_audio(str_content) + return {'type': 'audio'} if wrap_dicts else None + + if part_type == "input_audio": + dict_content = cast(Dict[str, str], content) + mm_parser.parse_input_audio(dict_content) return {'type': 'audio'} if wrap_dicts else None if part_type == "video_url": - mm_parser.parse_video(content) + str_content = cast(str, content) + mm_parser.parse_video(str_content) return {'type': 'video'} if wrap_dicts else None raise NotImplementedError(f"Unknown part type: {part_type}") @@ -840,7 +886,6 @@ def _parse_chat_message_content( content = [ ChatCompletionContentPartTextParam(type="text", text=content) ] - result = _parse_chat_message_content_parts( role, content, # type: ignore From 59c9b6ebeba79b2d744eec86734a7e13b03dcab7 Mon Sep 17 00:00:00 2001 From: Roger Wang <136131678+ywang96@users.noreply.github.com> Date: Mon, 16 Dec 2024 22:10:57 -0800 Subject: [PATCH 201/733] [V1][VLM] Proper memory profiling for image language models (#11210) Signed-off-by: Roger Wang Co-authored-by: ywang96 --- vllm/config.py | 8 ++++ vllm/model_executor/models/pixtral.py | 5 ++ vllm/multimodal/registry.py | 23 +++++++-- vllm/v1/core/scheduler.py | 7 ++- vllm/v1/engine/mm_input_mapper.py | 1 + vllm/v1/worker/gpu_model_runner.py | 67 ++++++++++++++++++++++++--- 6 files changed, 98 insertions(+), 13 deletions(-) diff --git a/vllm/config.py b/vllm/config.py index 9cfd08024ea7b..9ecd3e72afa9f 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -1280,6 +1280,14 @@ class SchedulerConfig: is_multimodal_model: bool = False + # FIXME(woosuk & ywang96): Below are placeholder values. We need to + # calculate the actual values from the configurations. + # Multimodal encoder run compute budget, only used in V1 + max_num_encoder_input_tokens = 16384 + + # Multimodal encoder cache size, only used in V1 + encoder_cache_size = 16384 + # Whether to perform preemption by swapping or # recomputation. If not specified, we determine the mode as follows: # We use recomputation by default since it incurs lower overhead than diff --git a/vllm/model_executor/models/pixtral.py b/vllm/model_executor/models/pixtral.py index 161d6b41bfa5f..f05ea195e043d 100644 --- a/vllm/model_executor/models/pixtral.py +++ b/vllm/model_executor/models/pixtral.py @@ -245,6 +245,11 @@ def get_multimodal_embeddings(self, **kwargs) -> Optional[NestedTensors]: # Do not split, return as tensor of shape [1, fs, hs] return image_embeds.unsqueeze(0) + # If the last split index is the last index in image_tokens, we + # ignore it to avoid empty split tensor + if split_indices[-1] == len(image_tokens): + split_indices = split_indices[:-1] + image_embeds = image_embeds.tensor_split(split_indices.cpu()) return image_embeds diff --git a/vllm/multimodal/registry.py b/vllm/multimodal/registry.py index 03f8814a95356..6cd79d414c978 100644 --- a/vllm/multimodal/registry.py +++ b/vllm/multimodal/registry.py @@ -200,6 +200,23 @@ def register_max_image_tokens( """ return self.register_max_multimodal_tokens("image", max_mm_tokens) + def get_max_tokens_per_item_by_modality( + self, + model_config: "ModelConfig", + ) -> Mapping[str, int]: + """ + Get the maximum number of tokens per data item from each modality + for profiling the memory usage of a model. + + Note: + This is currently directly used only in V1. + """ + + return { + key: plugin.get_max_multimodal_tokens(model_config) + for key, plugin in self._plugins.items() + } + def get_max_tokens_by_modality( self, model_config: "ModelConfig", @@ -216,9 +233,9 @@ def get_max_tokens_by_modality( limits_per_plugin = self._limits_by_model[model_config] return { - key: (limits_per_plugin[key] * - plugin.get_max_multimodal_tokens(model_config)) - for key, plugin in self._plugins.items() + key: limits_per_plugin[key] * max_tokens_per_mm_item + for key, max_tokens_per_mm_item in + self.get_max_tokens_per_item_by_modality(model_config).items() } def get_max_multimodal_tokens(self, model_config: "ModelConfig") -> int: diff --git a/vllm/v1/core/scheduler.py b/vllm/v1/core/scheduler.py index f76364f64033d..178532e477dae 100644 --- a/vllm/v1/core/scheduler.py +++ b/vllm/v1/core/scheduler.py @@ -73,14 +73,13 @@ def __init__( # NOTE(woosuk): Here, "encoder" includes the vision encoder (and # projector if needed). Currently, we assume that the encoder also # has the Transformer architecture (e.g., ViT). - # FIXME(woosuk): Below are placeholder values. We need to calculate the - # actual values from the configurations. - self.max_num_encoder_input_tokens = 16384 + self.max_num_encoder_input_tokens = self.scheduler_config.max_num_encoder_input_tokens #noqa: E501 # NOTE(woosuk): For the models without encoder (e.g., text-only models), # the encoder cache will not be initialized and used, regardless of # the cache size. This is because the memory space for the encoder cache # is preallocated in the profiling run. - self.encoder_cache_manager = EncoderCacheManager(cache_size=16384) + self.encoder_cache_manager = EncoderCacheManager( + cache_size=self.scheduler_config.encoder_cache_size) def schedule(self) -> "SchedulerOutput": # NOTE(woosuk) on the scheduling algorithm: diff --git a/vllm/v1/engine/mm_input_mapper.py b/vllm/v1/engine/mm_input_mapper.py index cca27c2218af7..6cdeba6f3f71e 100644 --- a/vllm/v1/engine/mm_input_mapper.py +++ b/vllm/v1/engine/mm_input_mapper.py @@ -54,6 +54,7 @@ def cache_hit_ratio(self, steps): logger.debug("MMInputMapper: cache_hit_ratio = %.2f ", self.mm_cache_hits / self.mm_cache_total) + # TODO: Support modalities beyond image. def process_inputs( self, mm_data: MultiModalDataDict, diff --git a/vllm/v1/worker/gpu_model_runner.py b/vllm/v1/worker/gpu_model_runner.py index 67166fb05085c..c6fab5f05fcb3 100644 --- a/vllm/v1/worker/gpu_model_runner.py +++ b/vllm/v1/worker/gpu_model_runner.py @@ -10,15 +10,16 @@ from vllm.config import CompilationLevel, VllmConfig from vllm.distributed.parallel_state import graph_capture from vllm.forward_context import set_forward_context -from vllm.inputs import INPUT_REGISTRY, InputRegistry +from vllm.inputs import INPUT_REGISTRY from vllm.logger import init_logger from vllm.model_executor.model_loader import get_model -from vllm.multimodal import MultiModalKwargs +from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs from vllm.sampling_params import SamplingType from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, DeviceMemoryProfiler, LayerBlockType, cdiv, is_pin_memory_available) from vllm.v1.attention.backends.flash_attn import (FlashAttentionBackend, FlashAttentionMetadata) +from vllm.v1.engine.mm_input_mapper import MMInputMapperClient from vllm.v1.outputs import ModelRunnerOutput from vllm.v1.sample.metadata import SamplingMetadata from vllm.v1.worker.gpu_input_batch import CachedRequestState, InputBatch @@ -35,7 +36,6 @@ def __init__( self, vllm_config: VllmConfig, device: torch.device, - input_registry: InputRegistry = INPUT_REGISTRY, ): self.vllm_config = vllm_config self.model_config = vllm_config.model_config @@ -77,7 +77,12 @@ def __init__( self.hidden_size = model_config.get_hidden_size() # Multi-modal data support - self.input_registry = input_registry + self.input_registry = INPUT_REGISTRY + self.mm_registry = MULTIMODAL_REGISTRY + # NOTE: mm_input_mapper is only used for memory profiling. + self.mm_input_mapper = MMInputMapperClient(self.model_config) + self.max_num_encoder_input_tokens = self.scheduler_config.max_num_encoder_input_tokens # noqa: E501 + self.encoder_cache_size = self.scheduler_config.encoder_cache_size # Lazy initialization # self.model: nn.Module # Set after load_model @@ -599,8 +604,6 @@ def _dummy_run( return hidden_states def profile_run(self) -> None: - # TODO(woosuk): Profile the max memory usage of the encoder and - # the encoder cache. # use an empty tensor instead of `None`` to force Dynamo to pass # it by reference, rather by specializing on the value `None`. # the `dtype` argument does not matter, and we use `float32` as @@ -612,6 +615,57 @@ def profile_run(self) -> None: torch.tensor([], dtype=torch.float32, device=self.device) for _ in range(self.num_attn_layers) ] + + # Profile with multimodal encoder & encoder cache. + # TODO (ywang96): generalize this beyond image modality since + # mm_input_mapper only supports image inputs. + if self.is_multimodal_model: + + # Create dummy batch of multimodal inputs. + dummy_request_data = self.input_registry.dummy_data_for_profiling( + model_config=self.model_config, + seq_len=self.max_num_tokens, + mm_registry=self.mm_registry, + ) + dummy_mm_data = dummy_request_data.multi_modal_data + dummy_mm_kwargs, _ = self.mm_input_mapper.process_inputs( + mm_data=dummy_mm_data, + mm_hashes=None, + mm_processor_kwargs=None, + precomputed_mm_inputs=None) + + # NOTE: Currently model is profiled with a single non-text + # modality even when it supports multiple. + max_tokens_per_mm_item = max( + self.mm_registry.get_max_tokens_per_item_by_modality( + self.model_config).values()) + + max_num_mm_items = min( + self.max_num_encoder_input_tokens, + self.encoder_cache_size) // max_tokens_per_mm_item + + # Dummy data definition in V0 may contain multiple multimodal items + # (e.g, multiple images) for a single request, therefore here we + # always replicate first item by max_num_mm_items times since in V1 + # they are scheduled to be processed separately. + batched_dummy_mm_inputs = MultiModalKwargs.batch( + [dummy_mm_kwargs[0]] * max_num_mm_items) + batched_dummy_mm_inputs = MultiModalKwargs.as_kwargs( + batched_dummy_mm_inputs, device=self.device) + + # Run multimodal encoder. + dummy_encoder_outputs = self.model.get_multimodal_embeddings( + **batched_dummy_mm_inputs) + assert len(dummy_encoder_outputs) == max_num_mm_items, ( + "Expected dimension 0 of encoder outputs to match the number " + f"of multimodal data items: {max_num_mm_items}, got " + f"{len(dummy_encoder_outputs)=} instead. This is most likely " + "due to the 'get_multimodal_embeddings' method of the model " + "not implemented correctly.") + + # Cache the dummy encoder outputs. + self.encoder_cache["tmp"] = dict(enumerate(dummy_encoder_outputs)) + # Trigger compilation for general shape. hidden_states = self._dummy_run(self.model, self.max_num_tokens, dummy_kv_caches) @@ -620,6 +674,7 @@ def profile_run(self) -> None: # TODO(woosuk): Consider the memory usage of the sampler. torch.cuda.synchronize() del hidden_states, logits + self.encoder_cache.clear() gc.collect() def capture_model(self) -> None: From e88db68cf5712956f36e77c288699592327b15bd Mon Sep 17 00:00:00 2001 From: wangxiyuan Date: Tue, 17 Dec 2024 14:11:06 +0800 Subject: [PATCH 202/733] [Platform] platform agnostic for EngineArgs initialization (#11225) Signed-off-by: wangxiyuan --- vllm/engine/arg_utils.py | 8 ++------ vllm/platforms/cpu.py | 3 +++ vllm/platforms/cuda.py | 4 ++++ vllm/platforms/hpu.py | 6 ++++++ vllm/platforms/neuron.py | 6 ++++++ vllm/platforms/openvino.py | 3 +++ vllm/platforms/rocm.py | 4 ++++ vllm/platforms/tpu.py | 5 +++++ vllm/platforms/xpu.py | 4 ++++ 9 files changed, 37 insertions(+), 6 deletions(-) diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index 06b8542779dc0..f6d276fe7c0c8 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -112,9 +112,7 @@ class EngineArgs: pipeline_parallel_size: int = 1 tensor_parallel_size: int = 1 max_parallel_loading_workers: Optional[int] = None - # NOTE(kzawora): default block size for Gaudi should be 128 - # smaller sizes still work, but very inefficiently - block_size: int = 16 if not current_platform.is_hpu() else 128 + block_size: Optional[int] = None enable_prefix_caching: Optional[bool] = None disable_sliding_window: bool = False use_v2_block_manager: bool = True @@ -1036,9 +1034,7 @@ def create_engine_config(self, self.enable_prefix_caching = False cache_config = CacheConfig( - # neuron needs block_size = max_model_len - block_size=self.block_size if self.device != "neuron" else - (self.max_model_len if self.max_model_len is not None else 0), + block_size=self.block_size, gpu_memory_utilization=self.gpu_memory_utilization, swap_space=self.swap_space, cache_dtype=self.kv_cache_dtype, diff --git a/vllm/platforms/cpu.py b/vllm/platforms/cpu.py index aad8755d9fcd8..d95a2b4cd5565 100644 --- a/vllm/platforms/cpu.py +++ b/vllm/platforms/cpu.py @@ -60,6 +60,9 @@ def check_and_update_config(cls, vllm_config: VllmConfig) -> None: cache_config = vllm_config.cache_config + if cache_config and cache_config.block_size is None: + cache_config.block_size = 16 + kv_cache_space = envs.VLLM_CPU_KVCACHE_SPACE if kv_cache_space >= 0: diff --git a/vllm/platforms/cuda.py b/vllm/platforms/cuda.py index ae1fd6d5ce068..3c5350b778345 100644 --- a/vllm/platforms/cuda.py +++ b/vllm/platforms/cuda.py @@ -137,6 +137,10 @@ def check_and_update_config(cls, vllm_config: VllmConfig) -> None: else: parallel_config.worker_cls = "vllm.worker.worker.Worker" + cache_config = vllm_config.cache_config + if cache_config and cache_config.block_size is None: + cache_config.block_size = 16 + # NVML utils # Note that NVML is not affected by `CUDA_VISIBLE_DEVICES`, diff --git a/vllm/platforms/hpu.py b/vllm/platforms/hpu.py index 2b947d280f9f8..0a44f2b74163a 100644 --- a/vllm/platforms/hpu.py +++ b/vllm/platforms/hpu.py @@ -48,6 +48,12 @@ def check_and_update_config(cls, vllm_config: VllmConfig) -> None: if parallel_config.worker_cls == "auto": parallel_config.worker_cls = "vllm.worker.hpu_worker.HPUWorker" + # NOTE(kzawora): default block size for Gaudi should be 128 + # smaller sizes still work, but very inefficiently + cache_config = vllm_config.cache_config + if cache_config and cache_config.block_size is None: + cache_config.block_size = 128 + @classmethod def is_pin_memory_available(cls): logger.warning("Pin memory is not supported on HPU.") diff --git a/vllm/platforms/neuron.py b/vllm/platforms/neuron.py index 86113523385f6..a4bbbd27c8a89 100644 --- a/vllm/platforms/neuron.py +++ b/vllm/platforms/neuron.py @@ -33,6 +33,12 @@ def check_and_update_config(cls, vllm_config: VllmConfig) -> None: parallel_config.worker_cls = \ "vllm.worker.neuron_worker.NeuronWorker" + cache_config = vllm_config.cache_config + if cache_config: + # neuron needs block_size = max_model_len + vllm_config.cache_config.block_size = \ + vllm_config.model_config.max_model_len + @classmethod def is_pin_memory_available(cls) -> bool: logger.warning("Pin memory is not supported on Neuron.") diff --git a/vllm/platforms/openvino.py b/vllm/platforms/openvino.py index ccd94e8adb3b1..16eb8dc81efc2 100644 --- a/vllm/platforms/openvino.py +++ b/vllm/platforms/openvino.py @@ -87,6 +87,9 @@ def check_and_update_config(cls, vllm_config: VllmConfig) -> None: # check and update cache config ov_core = ov.Core() cache_config = vllm_config.cache_config + if cache_config and cache_config.block_size is None: + cache_config.block_size = 16 + if envs.VLLM_OPENVINO_CPU_KV_CACHE_PRECISION == "u8": if not OpenVinoPlatform.is_openvino_cpu(): logger.info("VLLM_OPENVINO_CPU_KV_CACHE_PRECISION is" diff --git a/vllm/platforms/rocm.py b/vllm/platforms/rocm.py index 0133f26a0b1bc..7778b565372cb 100644 --- a/vllm/platforms/rocm.py +++ b/vllm/platforms/rocm.py @@ -84,6 +84,10 @@ def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool: @classmethod def check_and_update_config(cls, vllm_config: VllmConfig) -> None: + cache_config = vllm_config.cache_config + if cache_config and cache_config.block_size is None: + cache_config.block_size = 16 + parallel_config = vllm_config.parallel_config scheduler_config = vllm_config.scheduler_config if parallel_config.worker_cls == "auto": diff --git a/vllm/platforms/tpu.py b/vllm/platforms/tpu.py index 10d874349f36b..77f5c8401424b 100644 --- a/vllm/platforms/tpu.py +++ b/vllm/platforms/tpu.py @@ -46,6 +46,11 @@ def inference_mode(cls): @classmethod def check_and_update_config(cls, vllm_config: VllmConfig) -> None: from vllm.config import CompilationLevel + + cache_config = vllm_config.cache_config + if cache_config and cache_config.block_size is None: + cache_config.block_size = 16 + compilation_config = vllm_config.compilation_config if compilation_config.level == CompilationLevel.NO_COMPILATION: # TPU does not support NO_COMPILATION diff --git a/vllm/platforms/xpu.py b/vllm/platforms/xpu.py index c20190e789d7e..78e17c2afec65 100644 --- a/vllm/platforms/xpu.py +++ b/vllm/platforms/xpu.py @@ -51,6 +51,10 @@ def inference_mode(): @classmethod def check_and_update_config(cls, vllm_config: VllmConfig) -> None: + cache_config = vllm_config.cache_config + if cache_config and cache_config.block_size is None: + cache_config.block_size = 16 + # check and update model config model_config = vllm_config.model_config if model_config.dtype == torch.bfloat16: From 2bfdbf2a36256bb08547cea3d4ef83b5d27c4b04 Mon Sep 17 00:00:00 2001 From: Tyler Michael Smith Date: Tue, 17 Dec 2024 01:11:33 -0500 Subject: [PATCH 203/733] [V1][Core] Use weakref.finalize instead of atexit (#11242) Signed-off-by: Tyler Michael Smith --- vllm/v1/engine/core_client.py | 13 ++----------- vllm/v1/executor/multiproc_executor.py | 10 +++------- 2 files changed, 5 insertions(+), 18 deletions(-) diff --git a/vllm/v1/engine/core_client.py b/vllm/v1/engine/core_client.py index ff25a9b2e9cac..d56fcbdb1e7c4 100644 --- a/vllm/v1/engine/core_client.py +++ b/vllm/v1/engine/core_client.py @@ -1,5 +1,5 @@ -import atexit import os +import weakref from typing import List, Optional import msgspec @@ -165,15 +165,9 @@ def __init__( ready_path=ready_path, # type: ignore[misc] **kwargs, ) - atexit.register(self.shutdown) + self._finalizer = weakref.finalize(self, self.shutdown) def shutdown(self): - # During final garbage collection in process shutdown, atexit may be - # None. - if atexit: - # in case shutdown gets called via __del__ first - atexit.unregister(self.shutdown) - # Shut down the zmq context. self.ctx.destroy(linger=0) @@ -197,9 +191,6 @@ def shutdown(self): os.remove(socket_file) self.proc_handle = None - def __del__(self): - self.shutdown() - class SyncMPClient(MPClient): """Synchronous client for multi-proc EngineCore.""" diff --git a/vllm/v1/executor/multiproc_executor.py b/vllm/v1/executor/multiproc_executor.py index 17441dacdc5cf..128101aa6956d 100644 --- a/vllm/v1/executor/multiproc_executor.py +++ b/vllm/v1/executor/multiproc_executor.py @@ -1,9 +1,9 @@ -import atexit import os import pickle import signal import sys import time +import weakref from dataclasses import dataclass from enum import Enum, auto from multiprocessing.process import BaseProcess @@ -37,7 +37,7 @@ class MultiprocExecutor(Executor): def __init__(self, vllm_config: VllmConfig) -> None: # Call self.shutdown at exit to clean up # and ensure workers will be terminated. - atexit.register(self.shutdown) + self._finalizer = weakref.finalize(self, self.shutdown) self.vllm_config = vllm_config self.parallel_config = vllm_config.parallel_config @@ -195,14 +195,10 @@ def _cleanup_sockets(self): os.remove(socket_path) def shutdown(self): - if atexit: - # in case shutdown was called explicitly, we don't need to call it - # again - atexit.unregister(self.shutdown) """Properly shut down the executor and its workers""" if getattr(self, 'shutting_down', False): self.shutting_down = True - for w in self.workers: #TODO: not sure if needed + for w in self.workers: w.worker_response_mq = None self._ensure_worker_termination() From 02222a0256f60319f5bcd56d1d036a943d6334f8 Mon Sep 17 00:00:00 2001 From: Roger Wang <136131678+ywang96@users.noreply.github.com> Date: Mon, 16 Dec 2024 22:57:02 -0800 Subject: [PATCH 204/733] [Misc] Kernel Benchmark for `RMSNorm` (#11241) Signed-off-by: Roger Wang Co-authored-by: Xiaoyu Zhang --- benchmarks/kernels/benchmark_rmsnorm.py | 262 ++++++++++++++++++++++++ 1 file changed, 262 insertions(+) create mode 100644 benchmarks/kernels/benchmark_rmsnorm.py diff --git a/benchmarks/kernels/benchmark_rmsnorm.py b/benchmarks/kernels/benchmark_rmsnorm.py new file mode 100644 index 0000000000000..baa5de0fff1bd --- /dev/null +++ b/benchmarks/kernels/benchmark_rmsnorm.py @@ -0,0 +1,262 @@ +import itertools +from typing import Optional, Tuple, Union + +import torch +import triton +from flashinfer.norm import fused_add_rmsnorm, rmsnorm +from torch import nn + +from vllm import _custom_ops as vllm_ops + + +class HuggingFaceRMSNorm(nn.Module): + + def __init__(self, hidden_size: int, eps: float = 1e-6) -> None: + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward( + self, + x: torch.Tensor, + residual: Optional[torch.Tensor] = None, + ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: + orig_dtype = x.dtype + x = x.to(torch.float32) + if residual is not None: + x = x + residual.to(torch.float32) + residual = x.to(orig_dtype) + + variance = x.pow(2).mean(dim=-1, keepdim=True) + x = x * torch.rsqrt(variance + self.variance_epsilon) + x = x.to(orig_dtype) * self.weight + if residual is None: + return x + else: + return x, residual + + +def rmsnorm_naive( + x: torch.Tensor, + weight: torch.Tensor, + residual: Optional[torch.Tensor] = None, + eps: float = 1e-6, +): + naive_norm = HuggingFaceRMSNorm(x.shape[-1], eps=eps) + naive_norm.weight = nn.Parameter(weight) + naive_norm = naive_norm.to(x.device) + + orig_shape = x.shape + x = x.view(-1, x.shape[-1]) + if residual is not None: + residual = residual.view(-1, residual.shape[-1]) + + output = naive_norm(x, residual) + + if isinstance(output, tuple): + output = (output[0].view(orig_shape), output[1].view(orig_shape)) + else: + output = output.view(orig_shape) + return output + + +def rmsnorm_flashinfer( + x: torch.Tensor, + weight: torch.Tensor, + residual: Optional[torch.Tensor] = None, + eps: float = 1e-6, +): + orig_shape = x.shape + x = x.view(-1, x.shape[-1]) + if residual is not None: + residual = residual.view(-1, residual.shape[-1]) + + if residual is not None: + fused_add_rmsnorm(x, residual, weight, eps) + output = (x, residual) + else: + output = rmsnorm(x, weight, eps) + + if isinstance(output, tuple): + output = (output[0].view(orig_shape), output[1].view(orig_shape)) + else: + output = output.view(orig_shape) + return output + + +def rmsnorm_vllm( + x: torch.Tensor, + weight: torch.Tensor, + residual: Optional[torch.Tensor] = None, + eps: float = 1e-6, +): + orig_shape = x.shape + x = x.view(-1, x.shape[-1]) + if residual is not None: + residual = residual.view(-1, residual.shape[-1]) + + if residual is not None: + vllm_ops.fused_add_rms_norm(x, residual, weight, eps) + output = (x, residual) + else: + out = torch.empty_like(x) + vllm_ops.rms_norm(out, x, weight, eps) + output = out + + if isinstance(output, tuple): + output = (output[0].view(orig_shape), output[1].view(orig_shape)) + else: + output = output.view(orig_shape) + return output + + +def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True): + dtype = torch.bfloat16 + x = torch.randn(batch_size, + seq_len, + hidden_size, + dtype=dtype, + device="cuda") + weight = torch.ones(hidden_size, dtype=dtype, device="cuda") + residual = torch.randn_like(x) if use_residual else None + + output_naive = rmsnorm_naive( + x.clone(), weight, + residual.clone() if residual is not None else None) + output_flashinfer = rmsnorm_flashinfer( + x.clone(), weight, + residual.clone() if residual is not None else None) + output_vllm = rmsnorm_vllm( + x.clone(), weight, + residual.clone() if residual is not None else None) + + if use_residual: + output_naive = output_naive[0] + output_flashinfer = output_flashinfer[0] + output_vllm = output_vllm[0] + + print(f"Naive output={output_naive}") + print(f"FlashInfer output={output_flashinfer}") + print(f"VLLM output={output_vllm}") + + if torch.allclose(output_naive, output_flashinfer, atol=1e-2, + rtol=1e-2) and torch.allclose( + output_naive, output_vllm, atol=1e-2, rtol=1e-2): + print("✅ All implementations match") + else: + print("❌ Implementations differ") + + +batch_size_range = [2**i for i in range(0, 7, 2)] +seq_length_range = [2**i for i in range(6, 11, 1)] +head_num_range = [32, 48] +configs = list( + itertools.product(head_num_range, batch_size_range, seq_length_range)) + + +def get_benchmark(use_residual): + + @triton.testing.perf_report( + triton.testing.Benchmark( + x_names=["head_num", "batch_size", "seq_len"], + x_vals=[list(_) for _ in configs], + line_arg="provider", + line_vals=["huggingface", "flashinfer", "vllm"], + line_names=["HuggingFace", "FlashInfer", "vLLM"], + styles=[("blue", "-"), ("green", "-"), ("red", "-")], + ylabel="us", + plot_name= + f"rmsnorm-perf-{'with' if use_residual else 'without'}-residual", + args={}, + )) + def benchmark(head_num, batch_size, seq_len, provider): + dtype = torch.bfloat16 + hidden_size = head_num * 128 # assuming head_dim = 128 + + x = torch.randn(batch_size, + seq_len, + hidden_size, + dtype=dtype, + device="cuda") + weight = torch.ones(hidden_size, dtype=dtype, device="cuda") + residual = torch.randn_like(x) if use_residual else None + + quantiles = [0.5, 0.2, 0.8] + + if provider == "huggingface": + ms, min_ms, max_ms = triton.testing.do_bench( + lambda: rmsnorm_naive( + x.clone(), + weight, + residual.clone() if residual is not None else None, + ), + quantiles=quantiles, + ) + elif provider == "flashinfer": + ms, min_ms, max_ms = triton.testing.do_bench( + lambda: rmsnorm_flashinfer( + x.clone(), + weight, + residual.clone() if residual is not None else None, + ), + quantiles=quantiles, + ) + else: + ms, min_ms, max_ms = triton.testing.do_bench( + lambda: rmsnorm_vllm( + x.clone(), + weight, + residual.clone() if residual is not None else None, + ), + quantiles=quantiles, + ) + + return 1000 * ms, 1000 * max_ms, 1000 * min_ms + + return benchmark + + +if __name__ == "__main__": + import argparse + + parser = argparse.ArgumentParser() + parser.add_argument( + "--batch-size", + type=int, + default=4, + help="Batch size", + ) + parser.add_argument( + "--seq-len", + type=int, + default=128, + help="Sequence length", + ) + parser.add_argument( + "--hidden-size", + type=int, + default=4096, + help="Hidden size (2nd dimension) of the sequence", + ) + parser.add_argument("--use-residual", + action="store_true", + help="Whether to use residual connection") + parser.add_argument( + "--save-path", + type=str, + default="./configs/rmsnorm/", + help="Path to save rmsnorm benchmark results", + ) + + args = parser.parse_args() + + # Run correctness test + calculate_diff(batch_size=args.batch_size, + seq_len=args.seq_len, + hidden_size=args.hidden_size, + use_residual=args.use_residual) + + # Get the benchmark function with proper use_residual setting + benchmark = get_benchmark(args.use_residual) + # Run performance benchmark + benchmark.run(print_data=True, save_path=args.save_path) From f9ecbb18bf03338a4272c933a49a87021363b048 Mon Sep 17 00:00:00 2001 From: Isotr0py Date: Tue, 17 Dec 2024 16:37:04 +0800 Subject: [PATCH 205/733] [Misc] Allow passing logits_soft_cap for xformers backend (#11252) Signed-off-by: Isotr0py <2037008807@qq.com> --- vllm/attention/backends/xformers.py | 8 +++----- 1 file changed, 3 insertions(+), 5 deletions(-) diff --git a/vllm/attention/backends/xformers.py b/vllm/attention/backends/xformers.py index e2e989efb020c..3e59b3603d2c6 100644 --- a/vllm/attention/backends/xformers.py +++ b/vllm/attention/backends/xformers.py @@ -17,9 +17,7 @@ is_all_cross_attn_metadata_set, is_all_encoder_attn_metadata_set) from vllm.attention.ops.paged_attn import (PagedAttention, PagedAttentionMetadata) -from vllm.logger import init_logger - -logger = init_logger(__name__) +from vllm.utils import print_warning_once class XFormersBackend(AttentionBackend): @@ -386,8 +384,8 @@ def __init__( raise ValueError( "XFormers does not support block-sparse attention.") if logits_soft_cap is not None: - raise ValueError( - "XFormers does not support attention logits soft capping.") + print_warning_once("XFormers does not support logits soft cap. " + "Outputs may be slightly off.") self.num_heads = num_heads self.head_size = head_size self.scale = float(scale) From 2d1b9baa8f57fc59912c7bcd07fd630fb9d72c9d Mon Sep 17 00:00:00 2001 From: Joe Runde Date: Tue, 17 Dec 2024 13:26:32 -0700 Subject: [PATCH 206/733] [Bugfix] Fix request cancellation without polling (#11190) --- tests/entrypoints/openai/test_basic.py | 51 ++++++++++++++++ tests/test_utils.py | 6 +- tests/utils.py | 11 ++-- vllm/engine/async_llm_engine.py | 46 +++++++++------ vllm/entrypoints/api_server.py | 11 ++-- vllm/entrypoints/openai/api_server.py | 8 +++ vllm/entrypoints/openai/serving_chat.py | 5 -- vllm/entrypoints/openai/serving_completion.py | 3 +- vllm/entrypoints/openai/serving_embedding.py | 5 +- vllm/entrypoints/openai/serving_score.py | 5 +- vllm/entrypoints/utils.py | 57 ++++++++++++++++++ vllm/utils.py | 59 ++----------------- 12 files changed, 164 insertions(+), 103 deletions(-) create mode 100644 vllm/entrypoints/utils.py diff --git a/tests/entrypoints/openai/test_basic.py b/tests/entrypoints/openai/test_basic.py index 4616f363cc04a..547c1fd020928 100644 --- a/tests/entrypoints/openai/test_basic.py +++ b/tests/entrypoints/openai/test_basic.py @@ -1,6 +1,8 @@ +import asyncio from http import HTTPStatus from typing import List +import openai import pytest import pytest_asyncio import requests @@ -103,3 +105,52 @@ async def test_check_health(server: RemoteOpenAIServer): response = requests.get(server.url_for("health")) assert response.status_code == HTTPStatus.OK + + +@pytest.mark.parametrize( + "server_args", + [ + pytest.param(["--max-model-len", "10100"], + id="default-frontend-multiprocessing"), + pytest.param( + ["--disable-frontend-multiprocessing", "--max-model-len", "10100"], + id="disable-frontend-multiprocessing") + ], + indirect=True, +) +@pytest.mark.asyncio +async def test_request_cancellation(server: RemoteOpenAIServer): + # clunky test: send an ungodly amount of load in with short timeouts + # then ensure that it still responds quickly afterwards + + chat_input = [{"role": "user", "content": "Write a long story"}] + client = server.get_async_client(timeout=0.5) + tasks = [] + # Request about 2 million tokens + for _ in range(200): + task = asyncio.create_task( + client.chat.completions.create(messages=chat_input, + model=MODEL_NAME, + max_tokens=10000, + extra_body={"min_tokens": 10000})) + tasks.append(task) + + done, pending = await asyncio.wait(tasks, + return_when=asyncio.ALL_COMPLETED) + + # Make sure all requests were sent to the server and timed out + # (We don't want to hide other errors like 400s that would invalidate this + # test) + assert len(pending) == 0 + for d in done: + with pytest.raises(openai.APITimeoutError): + d.result() + + # If the server had not cancelled all the other requests, then it would not + # be able to respond to this one within the timeout + client = server.get_async_client(timeout=5) + response = await client.chat.completions.create(messages=chat_input, + model=MODEL_NAME, + max_tokens=10) + + assert len(response.choices) == 1 diff --git a/tests/test_utils.py b/tests/test_utils.py index 0bc9e5bc32a46..32a6b0aed66aa 100644 --- a/tests/test_utils.py +++ b/tests/test_utils.py @@ -1,7 +1,6 @@ import asyncio import os import socket -from functools import partial from typing import AsyncIterator, Tuple import pytest @@ -26,10 +25,7 @@ async def mock_async_iterator(idx: int): print(f"iterator {idx} cancelled") iterators = [mock_async_iterator(i) for i in range(3)] - merged_iterator = merge_async_iterators(*iterators, - is_cancelled=partial(asyncio.sleep, - 0, - result=False)) + merged_iterator = merge_async_iterators(*iterators) async def stream_output(generator: AsyncIterator[Tuple[int, str]]): async for idx, output in generator: diff --git a/tests/utils.py b/tests/utils.py index afeb708f3bcdc..bf3d88194e4ca 100644 --- a/tests/utils.py +++ b/tests/utils.py @@ -163,12 +163,11 @@ def get_client(self): api_key=self.DUMMY_API_KEY, ) - def get_async_client(self): - return openai.AsyncOpenAI( - base_url=self.url_for("v1"), - api_key=self.DUMMY_API_KEY, - max_retries=0, - ) + def get_async_client(self, **kwargs): + return openai.AsyncOpenAI(base_url=self.url_for("v1"), + api_key=self.DUMMY_API_KEY, + max_retries=0, + **kwargs) def _test_completion( diff --git a/vllm/engine/async_llm_engine.py b/vllm/engine/async_llm_engine.py index 32396fd10188d..f50e20cf70323 100644 --- a/vllm/engine/async_llm_engine.py +++ b/vllm/engine/async_llm_engine.py @@ -1065,16 +1065,20 @@ async def generate( >>> # Process and return the final output >>> ... """ - async for output in await self.add_request( - request_id, - prompt, - sampling_params, - lora_request=lora_request, - trace_headers=trace_headers, - prompt_adapter_request=prompt_adapter_request, - priority=priority, - ): - yield LLMEngine.validate_output(output, RequestOutput) + try: + async for output in await self.add_request( + request_id, + prompt, + sampling_params, + lora_request=lora_request, + trace_headers=trace_headers, + prompt_adapter_request=prompt_adapter_request, + priority=priority, + ): + yield LLMEngine.validate_output(output, RequestOutput) + except asyncio.CancelledError: + await self.abort(request_id) + raise async def encode( self, @@ -1147,15 +1151,19 @@ async def encode( >>> # Process and return the final output >>> ... """ - async for output in await self.add_request( - request_id, - prompt, - pooling_params, - lora_request=lora_request, - trace_headers=trace_headers, - priority=priority, - ): - yield LLMEngine.validate_output(output, PoolingRequestOutput) + try: + async for output in await self.add_request( + request_id, + prompt, + pooling_params, + lora_request=lora_request, + trace_headers=trace_headers, + priority=priority, + ): + yield LLMEngine.validate_output(output, PoolingRequestOutput) + except asyncio.CancelledError: + await self.abort(request_id) + raise async def abort(self, request_id: str) -> None: """Abort a request. diff --git a/vllm/entrypoints/api_server.py b/vllm/entrypoints/api_server.py index ea3c93f733038..95da1c6e7b9bf 100644 --- a/vllm/entrypoints/api_server.py +++ b/vllm/entrypoints/api_server.py @@ -17,11 +17,11 @@ from vllm.engine.arg_utils import AsyncEngineArgs from vllm.engine.async_llm_engine import AsyncLLMEngine from vllm.entrypoints.launcher import serve_http +from vllm.entrypoints.utils import with_cancellation from vllm.logger import init_logger from vllm.sampling_params import SamplingParams from vllm.usage.usage_lib import UsageContext -from vllm.utils import (FlexibleArgumentParser, iterate_with_cancellation, - random_uuid) +from vllm.utils import FlexibleArgumentParser, random_uuid from vllm.version import __version__ as VLLM_VERSION logger = init_logger("vllm.entrypoints.api_server") @@ -47,6 +47,11 @@ async def generate(request: Request) -> Response: - other fields: the sampling parameters (See `SamplingParams` for details). """ request_dict = await request.json() + return await _generate(request_dict, raw_request=request) + + +@with_cancellation +async def _generate(request_dict: dict, raw_request: Request) -> Response: prompt = request_dict.pop("prompt") stream = request_dict.pop("stream", False) sampling_params = SamplingParams(**request_dict) @@ -54,8 +59,6 @@ async def generate(request: Request) -> Response: assert engine is not None results_generator = engine.generate(prompt, sampling_params, request_id) - results_generator = iterate_with_cancellation( - results_generator, is_cancelled=request.is_disconnected) # Streaming case async def stream_results() -> AsyncGenerator[bytes, None]: diff --git a/vllm/entrypoints/openai/api_server.py b/vllm/entrypoints/openai/api_server.py index 14e3a34ce141c..00e2d1a56f160 100644 --- a/vllm/entrypoints/openai/api_server.py +++ b/vllm/entrypoints/openai/api_server.py @@ -59,6 +59,7 @@ from vllm.entrypoints.openai.serving_tokenization import ( OpenAIServingTokenization) from vllm.entrypoints.openai.tool_parsers import ToolParserManager +from vllm.entrypoints.utils import with_cancellation from vllm.logger import init_logger from vllm.usage.usage_lib import UsageContext from vllm.utils import (FlexibleArgumentParser, get_open_zmq_ipc_path, @@ -311,6 +312,7 @@ async def health(raw_request: Request) -> Response: @router.post("/tokenize") +@with_cancellation async def tokenize(request: TokenizeRequest, raw_request: Request): handler = tokenization(raw_request) @@ -325,6 +327,7 @@ async def tokenize(request: TokenizeRequest, raw_request: Request): @router.post("/detokenize") +@with_cancellation async def detokenize(request: DetokenizeRequest, raw_request: Request): handler = tokenization(raw_request) @@ -353,6 +356,7 @@ async def show_version(): @router.post("/v1/chat/completions") +@with_cancellation async def create_chat_completion(request: ChatCompletionRequest, raw_request: Request): handler = chat(raw_request) @@ -373,6 +377,7 @@ async def create_chat_completion(request: ChatCompletionRequest, @router.post("/v1/completions") +@with_cancellation async def create_completion(request: CompletionRequest, raw_request: Request): handler = completion(raw_request) if handler is None: @@ -390,6 +395,7 @@ async def create_completion(request: CompletionRequest, raw_request: Request): @router.post("/v1/embeddings") +@with_cancellation async def create_embedding(request: EmbeddingRequest, raw_request: Request): handler = embedding(raw_request) if handler is None: @@ -407,6 +413,7 @@ async def create_embedding(request: EmbeddingRequest, raw_request: Request): @router.post("/score") +@with_cancellation async def create_score(request: ScoreRequest, raw_request: Request): handler = score(raw_request) if handler is None: @@ -424,6 +431,7 @@ async def create_score(request: ScoreRequest, raw_request: Request): @router.post("/v1/score") +@with_cancellation async def create_score_v1(request: ScoreRequest, raw_request: Request): logger.warning( "To indicate that Score API is not part of standard OpenAI API, we " diff --git a/vllm/entrypoints/openai/serving_chat.py b/vllm/entrypoints/openai/serving_chat.py index 527418c635093..81bce0dd370bb 100644 --- a/vllm/entrypoints/openai/serving_chat.py +++ b/vllm/entrypoints/openai/serving_chat.py @@ -32,7 +32,6 @@ from vllm.sequence import Logprob from vllm.transformers_utils.tokenizer import AnyTokenizer, MistralTokenizer from vllm.transformers_utils.tokenizers import maybe_serialize_tool_calls -from vllm.utils import iterate_with_cancellation logger = init_logger(__name__) @@ -234,10 +233,6 @@ async def create_chat_completion( assert len(generators) == 1 result_generator, = generators - if raw_request: - result_generator = iterate_with_cancellation( - result_generator, raw_request.is_disconnected) - # Streaming response if request.stream: return self.chat_completion_stream_generator( diff --git a/vllm/entrypoints/openai/serving_completion.py b/vllm/entrypoints/openai/serving_completion.py index bd39a4c42e938..5cf9df92e296e 100644 --- a/vllm/entrypoints/openai/serving_completion.py +++ b/vllm/entrypoints/openai/serving_completion.py @@ -159,8 +159,7 @@ async def create_completion( # TODO: Use a vllm-specific Validation Error return self.create_error_response(str(e)) - result_generator = merge_async_iterators( - *generators, is_cancelled=raw_request.is_disconnected) + result_generator = merge_async_iterators(*generators) model_name = self._get_model_name(lora_request) num_prompts = len(engine_prompts) diff --git a/vllm/entrypoints/openai/serving_embedding.py b/vllm/entrypoints/openai/serving_embedding.py index fd501ad4f833e..879276646d2ba 100644 --- a/vllm/entrypoints/openai/serving_embedding.py +++ b/vllm/entrypoints/openai/serving_embedding.py @@ -202,10 +202,7 @@ async def create_embedding( # TODO: Use a vllm-specific Validation Error return self.create_error_response(str(e)) - result_generator = merge_async_iterators( - *generators, - is_cancelled=raw_request.is_disconnected if raw_request else None, - ) + result_generator = merge_async_iterators(*generators) num_prompts = len(engine_prompts) diff --git a/vllm/entrypoints/openai/serving_score.py b/vllm/entrypoints/openai/serving_score.py index 6f5cc14ac37cc..101d170bee4d6 100644 --- a/vllm/entrypoints/openai/serving_score.py +++ b/vllm/entrypoints/openai/serving_score.py @@ -186,10 +186,7 @@ async def create_score( # TODO: Use a vllm-specific Validation Error return self.create_error_response(str(e)) - result_generator = merge_async_iterators( - *generators, - is_cancelled=raw_request.is_disconnected if raw_request else None, - ) + result_generator = merge_async_iterators(*generators) num_prompts = len(engine_prompts) diff --git a/vllm/entrypoints/utils.py b/vllm/entrypoints/utils.py new file mode 100644 index 0000000000000..e8a78d216d0f0 --- /dev/null +++ b/vllm/entrypoints/utils.py @@ -0,0 +1,57 @@ +import asyncio +import functools + +from fastapi import Request + + +async def listen_for_disconnect(request: Request) -> None: + """Returns if a disconnect message is received""" + while True: + message = await request.receive() + if message["type"] == "http.disconnect": + break + + +def with_cancellation(handler_func): + """Decorator that allows a route handler to be cancelled by client + disconnections. + + This does _not_ use request.is_disconnected, which does not work with + middleware. Instead this follows the pattern from + starlette.StreamingResponse, which simultaneously awaits on two tasks- one + to wait for an http disconnect message, and the other to do the work that we + want done. When the first task finishes, the other is cancelled. + + A core assumption of this method is that the body of the request has already + been read. This is a safe assumption to make for fastapi handlers that have + already parsed the body of the request into a pydantic model for us. + This decorator is unsafe to use elsewhere, as it will consume and throw away + all incoming messages for the request while it looks for a disconnect + message. + + In the case where a `StreamingResponse` is returned by the handler, this + wrapper will stop listening for disconnects and instead the response object + will start listening for disconnects. + """ + + # Functools.wraps is required for this wrapper to appear to fastapi as a + # normal route handler, with the correct request type hinting. + @functools.wraps(handler_func) + async def wrapper(*args, **kwargs): + + # The request is either the second positional arg or `raw_request` + request = args[1] if len(args) > 1 else kwargs["raw_request"] + + handler_task = asyncio.create_task(handler_func(*args, **kwargs)) + cancellation_task = asyncio.create_task(listen_for_disconnect(request)) + + done, pending = await asyncio.wait([handler_task, cancellation_task], + return_when=asyncio.FIRST_COMPLETED) + for task in pending: + task.cancel() + + if handler_task in done: + return handler_task.result() + return None + + return wrapper diff --git a/vllm/utils.py b/vllm/utils.py index 73d2ae25f15ca..38c7dea6d2d3d 100644 --- a/vllm/utils.py +++ b/vllm/utils.py @@ -20,7 +20,7 @@ import uuid import warnings import weakref -from asyncio import FIRST_COMPLETED, AbstractEventLoop, Future, Task +from asyncio import FIRST_COMPLETED, AbstractEventLoop, Task from collections import UserDict, defaultdict from collections.abc import Iterable, Mapping from dataclasses import dataclass, field @@ -370,72 +370,23 @@ def _next_task(iterator: AsyncGenerator[T, None], return loop.create_task(iterator.__anext__()) # type: ignore[arg-type] -async def iterate_with_cancellation( - iterator: AsyncGenerator[T, None], - is_cancelled: Callable[[], Awaitable[bool]], -) -> AsyncGenerator[T, None]: - """Convert async iterator into one that polls the provided function - at least once per second to check for client cancellation. - """ - - loop = asyncio.get_running_loop() - - awaits: List[Future[T]] = [_next_task(iterator, loop)] - next_cancel_check: float = 0 - while True: - done, pending = await asyncio.wait(awaits, timeout=1.5) - - # Check for cancellation at most once per second - time_now = time.time() - if time_now >= next_cancel_check: - if await is_cancelled(): - with contextlib.suppress(BaseException): - awaits[0].cancel() - await iterator.aclose() - raise asyncio.CancelledError("client cancelled") - next_cancel_check = time_now + 1 - - if done: - try: - item = await awaits[0] - awaits[0] = _next_task(iterator, loop) - yield item - except StopAsyncIteration: - # we are done - return - - async def merge_async_iterators( - *iterators: AsyncGenerator[T, None], - is_cancelled: Optional[Callable[[], Awaitable[bool]]] = None, -) -> AsyncGenerator[Tuple[int, T], None]: + *iterators: AsyncGenerator[T, + None], ) -> AsyncGenerator[Tuple[int, T], None]: """Merge multiple asynchronous iterators into a single iterator. This method handle the case where some iterators finish before others. When it yields, it yields a tuple (i, item) where i is the index of the iterator that yields the item. - - It also optionally polls a provided function at least once per second - to check for client cancellation. """ loop = asyncio.get_running_loop() awaits = {_next_task(pair[1], loop): pair for pair in enumerate(iterators)} - timeout = None if is_cancelled is None else 1.5 - next_cancel_check: float = 0 try: while awaits: - done, pending = await asyncio.wait(awaits.keys(), - return_when=FIRST_COMPLETED, - timeout=timeout) - if is_cancelled is not None: - # Check for cancellation at most once per second - time_now = time.time() - if time_now >= next_cancel_check: - if await is_cancelled(): - raise asyncio.CancelledError("client cancelled") - next_cancel_check = time_now + 1 + done, _ = await asyncio.wait(awaits.keys(), + return_when=FIRST_COMPLETED) for d in done: pair = awaits.pop(d) try: From d9fed263f4181225a774eed5e4b6a1fc573658e7 Mon Sep 17 00:00:00 2001 From: Micah Williamson Date: Tue, 17 Dec 2024 17:43:18 -0600 Subject: [PATCH 207/733] Dynamic Scale Factor Calculations for Key/Value Scales With FP8 KV Caching (#317) * Changed _k_scale and _v_scale to tensors * fixed rocm paged attention with tensor kv scales * Added on the fly scale factor calculation * trying to fix attn metadata * fixed AttentionMetadata issue, updated description for calculate-kv-scales flag in arg_utils.py * Changed K and V scale constants * Removed unneeded comment * Changes to pass format.sh, also fixed lingering k_scale/v_scale : float * Fix for TP > 1 * Ran format.sh * Removed legacy kv_scale loading from the json file * Removed the outdated kv cache docs * Revert some unwanted changes --------- Co-authored-by: Gregory Shtrasberg --- csrc/attention/attention_kernels.cuh | 10 +- csrc/attention/paged_attention_v1.cu | 17 +- csrc/attention/paged_attention_v2.cu | 17 +- csrc/cache.h | 6 +- csrc/cache_kernels.cu | 30 +- csrc/ops.h | 10 +- csrc/rocm/attention.cu | 20 +- csrc/rocm/ops.h | 21 +- csrc/rocm/torch_bindings.cpp | 2 +- csrc/torch_bindings.cpp | 8 +- docs/source/quantization/fp8_e4m3_kvcache.rst | 10 +- examples/fp8/README.md | 96 ----- examples/fp8/extract_scales.py | 367 ------------------ examples/fp8/quantizer/README.md | 32 -- examples/fp8/quantizer/quantize.py | 367 ------------------ .../llama2-70b-fp8-kv/kv_cache_scales.json | 90 ----- .../llama2-7b-fp8-kv/kv_cache_scales.json | 42 -- .../models/decoder_only/language/test_fp8.py | 15 +- vllm/_custom_ops.py | 20 +- vllm/attention/backends/abstract.py | 11 +- vllm/attention/backends/blocksparse_attn.py | 4 +- vllm/attention/backends/rocm_flash_attn.py | 4 +- vllm/attention/layer.py | 21 +- vllm/attention/ops/paged_attn.py | 8 +- vllm/attention/ops/prefix_prefill.py | 4 +- vllm/config.py | 15 +- vllm/engine/arg_utils.py | 24 +- vllm/envs.py | 10 + .../layers/quantization/kv_cache.py | 19 +- .../model_loader/weight_utils.py | 44 +-- vllm/model_executor/models/exaone.py | 34 +- vllm/model_executor/models/granite.py | 31 +- vllm/model_executor/models/llama.py | 34 +- vllm/model_executor/models/solar.py | 34 +- vllm/worker/model_runner.py | 38 +- vllm/worker/model_runner_base.py | 3 +- 36 files changed, 194 insertions(+), 1324 deletions(-) delete mode 100644 examples/fp8/README.md delete mode 100644 examples/fp8/extract_scales.py delete mode 100644 examples/fp8/quantizer/README.md delete mode 100644 examples/fp8/quantizer/quantize.py delete mode 100644 tests/fp8_kv/llama2-70b-fp8-kv/kv_cache_scales.json delete mode 100644 tests/fp8_kv/llama2-7b-fp8-kv/kv_cache_scales.json diff --git a/csrc/attention/attention_kernels.cuh b/csrc/attention/attention_kernels.cuh index 563e1438f0b01..eb216dc8baf10 100644 --- a/csrc/attention/attention_kernels.cuh +++ b/csrc/attention/attention_kernels.cuh @@ -105,7 +105,7 @@ __device__ void paged_attention_kernel( const int max_num_blocks_per_seq, const float* __restrict__ alibi_slopes, // [num_heads] const int q_stride, const int kv_block_stride, const int kv_head_stride, - const float k_scale, const float v_scale, const int tp_rank, + const float* k_scale, const float* v_scale, const int tp_rank, const int blocksparse_local_blocks, const int blocksparse_vert_stride, const int blocksparse_block_size, const int blocksparse_head_sliding_step) { const int seq_idx = blockIdx.y; @@ -285,7 +285,7 @@ __device__ void paged_attention_kernel( Quant_vec k_vec_quant = *reinterpret_cast( k_ptr + offset1 * BLOCK_SIZE * x + offset2); k_vecs[j] = fp8::scaled_convert( - k_vec_quant, k_scale); + k_vec_quant, *k_scale); } } @@ -415,7 +415,7 @@ __device__ void paged_attention_kernel( *reinterpret_cast(v_ptr + offset); // Vector conversion from V_quant_vec to V_vec. v_vec = fp8::scaled_convert(v_quant_vec, - v_scale); + *v_scale); } if (block_idx == num_seq_blocks - 1) { // NOTE(woosuk): When v_vec contains the tokens that are out of the @@ -513,7 +513,7 @@ __global__ void paged_attention_v1_kernel( const int max_num_blocks_per_seq, const float* __restrict__ alibi_slopes, // [num_heads] const int q_stride, const int kv_block_stride, const int kv_head_stride, - const float k_scale, const float v_scale, const int tp_rank, + const float* k_scale, const float* v_scale, const int tp_rank, const int blocksparse_local_blocks, const int blocksparse_vert_stride, const int blocksparse_block_size, const int blocksparse_head_sliding_step) { paged_attention_kernel& alibi_slopes, float k_scale, - float v_scale, const int tp_rank, const int blocksparse_local_blocks, - const int blocksparse_vert_stride, const int blocksparse_block_size, - const int blocksparse_head_sliding_step) { + const c10::optional& alibi_slopes, torch::Tensor& k_scale, + torch::Tensor& v_scale, const int tp_rank, + const int blocksparse_local_blocks, const int blocksparse_vert_stride, + const int blocksparse_block_size, const int blocksparse_head_sliding_step) { int num_seqs = query.size(0); int num_heads = query.size(1); int head_size = query.size(2); @@ -80,6 +80,8 @@ void paged_attention_v1_launcher( CACHE_T* value_cache_ptr = reinterpret_cast(value_cache.data_ptr()); int* block_tables_ptr = block_tables.data_ptr(); int* seq_lens_ptr = seq_lens.data_ptr(); + const float* k_scale_ptr = reinterpret_cast(k_scale.data_ptr()); + const float* v_scale_ptr = reinterpret_cast(v_scale.data_ptr()); constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE; int padded_max_seq_len = @@ -193,8 +195,9 @@ void paged_attention_v1( torch::Tensor& seq_lens, // [num_seqs] int64_t block_size, int64_t max_seq_len, const c10::optional& alibi_slopes, - const std::string& kv_cache_dtype, double k_scale, double v_scale, - const int64_t tp_rank, const int64_t blocksparse_local_blocks, + const std::string& kv_cache_dtype, torch::Tensor& k_scale, + torch::Tensor& v_scale, const int64_t tp_rank, + const int64_t blocksparse_local_blocks, const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size, const int64_t blocksparse_head_sliding_step, const int64_t num_threads) { const bool is_block_sparse = (blocksparse_vert_stride > 1); diff --git a/csrc/attention/paged_attention_v2.cu b/csrc/attention/paged_attention_v2.cu index 0c9caeb687ecb..c0e6b7cfd67a0 100644 --- a/csrc/attention/paged_attention_v2.cu +++ b/csrc/attention/paged_attention_v2.cu @@ -45,7 +45,7 @@ typedef __hip_bfloat16 __nv_bfloat16; exp_sums_ptr, max_logits_ptr, tmp_out_ptr, query_ptr, key_cache_ptr, \ value_cache_ptr, num_kv_heads, scale, block_tables_ptr, \ seq_lens_ptr, max_num_blocks_per_seq, alibi_slopes_ptr, q_stride, \ - kv_block_stride, kv_head_stride, k_scale, v_scale, tp_rank, \ + kv_block_stride, kv_head_stride, k_scale_ptr, v_scale_ptr, tp_rank, \ blocksparse_local_blocks, blocksparse_vert_stride, \ blocksparse_block_size, blocksparse_head_sliding_step); \ vllm::paged_attention_v2_reduce_kernel& alibi_slopes, float k_scale, - float v_scale, const int tp_rank, const int blocksparse_local_blocks, - const int blocksparse_vert_stride, const int blocksparse_block_size, - const int blocksparse_head_sliding_step) { + const c10::optional& alibi_slopes, torch::Tensor& k_scale, + torch::Tensor& v_scale, const int tp_rank, + const int blocksparse_local_blocks, const int blocksparse_vert_stride, + const int blocksparse_block_size, const int blocksparse_head_sliding_step) { int num_seqs = query.size(0); int num_heads = query.size(1); int head_size = query.size(2); @@ -92,6 +92,8 @@ void paged_attention_v2_launcher( CACHE_T* value_cache_ptr = reinterpret_cast(value_cache.data_ptr()); int* block_tables_ptr = block_tables.data_ptr(); int* seq_lens_ptr = seq_lens.data_ptr(); + const float* k_scale_ptr = reinterpret_cast(k_scale.data_ptr()); + const float* v_scale_ptr = reinterpret_cast(v_scale.data_ptr()); constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE; int max_num_partitions = DIVIDE_ROUND_UP(max_seq_len, PARTITION_SIZE); @@ -212,8 +214,9 @@ void paged_attention_v2( torch::Tensor& seq_lens, // [num_seqs] int64_t block_size, int64_t max_seq_len, const c10::optional& alibi_slopes, - const std::string& kv_cache_dtype, double k_scale, double v_scale, - const int64_t tp_rank, const int64_t blocksparse_local_blocks, + const std::string& kv_cache_dtype, torch::Tensor& k_scale, + torch::Tensor& v_scale, const int64_t tp_rank, + const int64_t blocksparse_local_blocks, const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size, const int64_t blocksparse_head_sliding_step, const int64_t num_threads) { const bool is_block_sparse = (blocksparse_vert_stride > 1); diff --git a/csrc/cache.h b/csrc/cache.h index 11c4c5001daaa..eedad9fafa3c0 100644 --- a/csrc/cache.h +++ b/csrc/cache.h @@ -18,15 +18,15 @@ void copy_blocks(std::vector const& key_caches, void reshape_and_cache(torch::Tensor& key, torch::Tensor& value, torch::Tensor& key_cache, torch::Tensor& value_cache, torch::Tensor& slot_mapping, - const std::string& kv_cache_dtype, const double k_scale, - const double v_scale); + const std::string& kv_cache_dtype, + torch::Tensor& k_scale, torch::Tensor& v_scale); void reshape_and_cache_flash(torch::Tensor& key, torch::Tensor& value, torch::Tensor& key_cache, torch::Tensor& value_cache, torch::Tensor& slot_mapping, const std::string& kv_cache_dtype, - const double k_scale, const double v_scale); + torch::Tensor& k_scale, torch::Tensor& v_scale); // Just for unittest void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache, diff --git a/csrc/cache_kernels.cu b/csrc/cache_kernels.cu index 8a95279f9a25a..21a0aec0ececc 100644 --- a/csrc/cache_kernels.cu +++ b/csrc/cache_kernels.cu @@ -159,8 +159,8 @@ __global__ void reshape_and_cache_kernel( // block_size] const int64_t* __restrict__ slot_mapping, // [num_tokens] const int key_stride, const int value_stride, const int num_heads, - const int head_size, const int block_size, const int x, const float k_scale, - const float v_scale) { + const int head_size, const int block_size, const int x, + const float* k_scale, const float* v_scale) { const int64_t token_idx = blockIdx.x; const int64_t slot_idx = slot_mapping[token_idx]; if (slot_idx < 0) { @@ -196,9 +196,9 @@ __global__ void reshape_and_cache_kernel( value_cache[tgt_value_idx] = tgt_value; } else { key_cache[tgt_key_idx] = - fp8::scaled_convert(tgt_key, k_scale); + fp8::scaled_convert(tgt_key, *k_scale); value_cache[tgt_value_idx] = - fp8::scaled_convert(tgt_value, v_scale); + fp8::scaled_convert(tgt_value, *v_scale); } } } @@ -214,7 +214,7 @@ __global__ void reshape_and_cache_flash_kernel( const int64_t* __restrict__ slot_mapping, // [num_tokens] const int block_stride, const int key_stride, const int value_stride, const int num_heads, const int head_size, const int block_size, - const float k_scale, const float v_scale) { + const float* k_scale, const float* v_scale) { const int64_t token_idx = blockIdx.x; const int64_t slot_idx = slot_mapping[token_idx]; // NOTE: slot_idx can be -1 if the token is padded @@ -239,9 +239,9 @@ __global__ void reshape_and_cache_flash_kernel( value_cache[tgt_key_value_idx] = tgt_value; } else { key_cache[tgt_key_value_idx] = - fp8::scaled_convert(tgt_key, k_scale); + fp8::scaled_convert(tgt_key, *k_scale); value_cache[tgt_key_value_idx] = - fp8::scaled_convert(tgt_value, v_scale); + fp8::scaled_convert(tgt_value, *v_scale); } } } @@ -258,7 +258,9 @@ __global__ void reshape_and_cache_flash_kernel( reinterpret_cast(key_cache.data_ptr()), \ reinterpret_cast(value_cache.data_ptr()), \ slot_mapping.data_ptr(), key_stride, value_stride, \ - num_heads, head_size, block_size, x, k_scale, v_scale); + num_heads, head_size, block_size, x, \ + reinterpret_cast(k_scale.data_ptr()), \ + reinterpret_cast(v_scale.data_ptr())); void reshape_and_cache( torch::Tensor& key, // [num_tokens, num_heads, head_size] @@ -268,8 +270,8 @@ void reshape_and_cache( torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size] torch::Tensor& slot_mapping, // [num_tokens] - const std::string& kv_cache_dtype, const double k_scale, - const double v_scale) { + const std::string& kv_cache_dtype, torch::Tensor& k_scale, + torch::Tensor& v_scale) { int num_tokens = key.size(0); int num_heads = key.size(1); int head_size = key.size(2); @@ -299,7 +301,9 @@ void reshape_and_cache( reinterpret_cast(key_cache.data_ptr()), \ reinterpret_cast(value_cache.data_ptr()), \ slot_mapping.data_ptr(), block_stride, key_stride, \ - value_stride, num_heads, head_size, block_size, k_scale, v_scale); + value_stride, num_heads, head_size, block_size, \ + reinterpret_cast(k_scale.data_ptr()), \ + reinterpret_cast(v_scale.data_ptr())); void reshape_and_cache_flash( torch::Tensor& key, // [num_tokens, num_heads, head_size] @@ -308,8 +312,8 @@ void reshape_and_cache_flash( torch::Tensor& value_cache, // [num_blocks, block_size, num_heads, head_size] torch::Tensor& slot_mapping, // [num_tokens] or [num_actual_tokens] - const std::string& kv_cache_dtype, const double k_scale, - const double v_scale) { + const std::string& kv_cache_dtype, torch::Tensor& k_scale, + torch::Tensor& v_scale) { // NOTE(woosuk): In vLLM V1, key.size(0) can be different from // slot_mapping.size(0) because of padding for CUDA graphs. // In vLLM V0, key.size(0) is always equal to slot_mapping.size(0) because diff --git a/csrc/ops.h b/csrc/ops.h index 1c9c10d78d53d..8ca912ff58897 100644 --- a/csrc/ops.h +++ b/csrc/ops.h @@ -34,8 +34,9 @@ void paged_attention_v1( torch::Tensor& value_cache, int64_t num_kv_heads, double scale, torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size, int64_t max_seq_len, const c10::optional& alibi_slopes, - const std::string& kv_cache_dtype, double k_scale, double v_scale, - const int64_t tp_rank, const int64_t blocksparse_local_blocks, + const std::string& kv_cache_dtype, torch::Tensor& k_scale, + torch::Tensor& v_scale, const int64_t tp_rank, + const int64_t blocksparse_local_blocks, const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size, const int64_t blocksparse_head_sliding_step, const int64_t num_threads); @@ -45,8 +46,9 @@ void paged_attention_v2( torch::Tensor& value_cache, int64_t num_kv_heads, double scale, torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size, int64_t max_seq_len, const c10::optional& alibi_slopes, - const std::string& kv_cache_dtype, double k_scale, double v_scale, - const int64_t tp_rank, const int64_t blocksparse_local_blocks, + const std::string& kv_cache_dtype, torch::Tensor& k_scale, + torch::Tensor& v_scale, const int64_t tp_rank, + const int64_t blocksparse_local_blocks, const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size, const int64_t blocksparse_head_sliding_step, const int64_t num_threads); diff --git a/csrc/rocm/attention.cu b/csrc/rocm/attention.cu index efda714f53c6c..bb217c1bb4e63 100644 --- a/csrc/rocm/attention.cu +++ b/csrc/rocm/attention.cu @@ -236,7 +236,7 @@ __global__ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_kernel( scalar_t* __restrict__ out, // [num_seqs, num_heads, max_num_partitions, // head_size] OUTT* __restrict__ final_out, // [num_seqs, num_heads, head_size] - int max_ctx_blocks, float k_scale, float v_scale, + int max_ctx_blocks, const float* k_scale_ptr, const float* v_scale_ptr, const float* __restrict__ fp8_out_scale_ptr) { constexpr int NWARPS = NUM_THREADS / WARP_SIZE; const int warpid = threadIdx.x / WARP_SIZE; @@ -438,7 +438,7 @@ __global__ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_kernel( // Vlocalb8[h][b * BLOCK_SIZE / 8 + d] = v_ptrh8be[d]; const _B8x8 Vlocalb8 = v_ptrh8be[d]; Vlocal[h][b * BLOCK_SIZE / 8 + d] = - scaled_convert_b8x8(Vlocalb8, v_scale); + scaled_convert_b8x8(Vlocalb8, *v_scale_ptr); } } } @@ -448,7 +448,7 @@ __global__ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_kernel( #pragma unroll for (int d = 0; d < KHELOOP; d++) { Klocal[d] = - scaled_convert_b8x8(Klocalb8[d], k_scale); + scaled_convert_b8x8(Klocalb8[d], *k_scale_ptr); } } @@ -995,7 +995,7 @@ __global__ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_kernel( scalar_t* __restrict__ out, // [num_seqs, num_heads, max_num_partitions, // head_size] OUTT* __restrict__ final_out, // [num_seqs, num_heads, head_size] - int max_ctx_blocks, float k_scale, float v_scale, + int max_ctx_blocks, const float* k_scale_ptr, const float* v_scale_ptr, const float* __restrict__ fp8_out_scale_ptr) { UNREACHABLE_CODE } @@ -1026,7 +1026,7 @@ __launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_reduce_kernel( block_tables_ptr, context_lens_ptr, max_num_blocks_per_seq, \ alibi_slopes_ptr, q_stride, kv_block_stride, kv_head_stride, \ exp_sums_ptr, max_logits_ptr, tmp_out_ptr, out_ptr, max_ctx_blocks, \ - k_scale, v_scale, fp8_out_scale_ptr); + k_scale_ptr, v_scale_ptr, fp8_out_scale_ptr); #define LAUNCH_CUSTOM_REDUCTION(NPAR_LOOPS) \ paged_attention_ll4mi_reduce_kernel& alibi_slopes, - float k_scale, float v_scale, + torch::Tensor& k_scale, torch::Tensor& v_scale, const c10::optional& fp8_out_scale) { int num_seqs = query.size(0); int num_heads = query.size(1); @@ -1068,6 +1068,9 @@ void paged_attention_custom_launcher( int* block_tables_ptr = block_tables.data_ptr(); int* context_lens_ptr = context_lens.data_ptr(); + const float* k_scale_ptr = reinterpret_cast(k_scale.data_ptr()); + const float* v_scale_ptr = reinterpret_cast(v_scale.data_ptr()); + // NOTE: fp8_out_scale is optional. const float* fp8_out_scale_ptr = fp8_out_scale @@ -1263,8 +1266,9 @@ void paged_attention( torch::Tensor& context_lens, // [num_seqs] int64_t block_size, int64_t max_context_len, const c10::optional& alibi_slopes, - const std::string& kv_cache_dtype, double k_scale, double v_scale, - const c10::optional& fp8_out_scale, int64_t partition_size) { + const std::string& kv_cache_dtype, torch::Tensor& k_scale, + torch::Tensor& v_scale, const c10::optional& fp8_out_scale, + int64_t partition_size) { const int head_size = query.size(2); if (kv_cache_dtype == "auto") { if (query.dtype() == at::ScalarType::Half) { diff --git a/csrc/rocm/ops.h b/csrc/rocm/ops.h index d825686a6ced4..1a7e348ec2086 100644 --- a/csrc/rocm/ops.h +++ b/csrc/rocm/ops.h @@ -11,12 +11,15 @@ void LLMM1(at::Tensor& in_a, at::Tensor& in_b, at::Tensor& out_c, void wvSpltK(at::Tensor& in_a, at::Tensor& in_b, at::Tensor& out_c, const int64_t N_in, const int64_t CuCount); -void paged_attention( - torch::Tensor& out, torch::Tensor& exp_sums, torch::Tensor& max_logits, - torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache, - torch::Tensor& value_cache, int64_t num_kv_heads, double scale, - torch::Tensor& block_tables, torch::Tensor& context_lens, - int64_t block_size, int64_t max_context_len, - const c10::optional& alibi_slopes, - const std::string& kv_cache_dtype, double k_scale, double v_scale, - const c10::optional& fp8_out_scale, int64_t partition_size); +void paged_attention(torch::Tensor& out, torch::Tensor& exp_sums, + torch::Tensor& max_logits, torch::Tensor& tmp_out, + torch::Tensor& query, torch::Tensor& key_cache, + torch::Tensor& value_cache, int64_t num_kv_heads, + double scale, torch::Tensor& block_tables, + torch::Tensor& context_lens, int64_t block_size, + int64_t max_context_len, + const c10::optional& alibi_slopes, + const std::string& kv_cache_dtype, torch::Tensor& k_scale, + torch::Tensor& v_scale, + const c10::optional& fp8_out_scale, + int64_t partition_size); diff --git a/csrc/rocm/torch_bindings.cpp b/csrc/rocm/torch_bindings.cpp index 6402a3b2b2b60..50640a96725e0 100644 --- a/csrc/rocm/torch_bindings.cpp +++ b/csrc/rocm/torch_bindings.cpp @@ -35,7 +35,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, rocm_ops) { " int max_context_len," " Tensor? alibi_slopes," " str kv_cache_dtype," - " float k_scale, float v_scale," + " Tensor k_scale, Tensor v_scale," " Tensor? fp8_out_scale," " int partition_size) -> ()"); rocm_ops.impl("paged_attention", torch::kCUDA, &paged_attention); diff --git a/csrc/torch_bindings.cpp b/csrc/torch_bindings.cpp index a7592deb03659..b9eb9a89a9cca 100644 --- a/csrc/torch_bindings.cpp +++ b/csrc/torch_bindings.cpp @@ -30,7 +30,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { " Tensor value_cache, int num_kv_heads, float scale," " Tensor block_tables, Tensor seq_lens, int block_size," " int max_seq_len, Tensor? alibi_slopes," - " str kv_cache_dtype, float k_scale, float v_scale," + " str kv_cache_dtype, Tensor k_scale, Tensor v_scale," " int tp_rank, int blocksparse_local_blocks," " int blocksparse_vert_stride, int blocksparse_block_size," " int blocksparse_head_sliding_step," @@ -45,7 +45,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { " Tensor value_cache, int num_kv_heads, float scale," " Tensor block_tables, Tensor seq_lens, int block_size," " int max_seq_len, Tensor? alibi_slopes," - " str kv_cache_dtype, float k_scale, float v_scale," + " str kv_cache_dtype, Tensor k_scale, Tensor v_scale," " int tp_rank, int blocksparse_local_blocks," " int blocksparse_vert_stride, int blocksparse_block_size," " int blocksparse_head_sliding_step," @@ -430,7 +430,7 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) { " Tensor! key_cache, Tensor! value_cache," " Tensor slot_mapping," " str kv_cache_dtype," - " float k_scale, float v_scale) -> ()"); + " Tensor k_scale, Tensor v_scale) -> ()"); cache_ops.impl("reshape_and_cache", torch::kCUDA, &reshape_and_cache); // Reshape the key and value tensors and cache them. @@ -440,7 +440,7 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) { " Tensor! value_cache," " Tensor slot_mapping," " str kv_cache_dtype," - " float k_scale, float v_scale) -> ()"); + " Tensor k_scale, Tensor v_scale) -> ()"); cache_ops.impl("reshape_and_cache_flash", torch::kCUDA, &reshape_and_cache_flash); diff --git a/docs/source/quantization/fp8_e4m3_kvcache.rst b/docs/source/quantization/fp8_e4m3_kvcache.rst index cc52d8f40af8f..a9147f8fd8ff3 100644 --- a/docs/source/quantization/fp8_e4m3_kvcache.rst +++ b/docs/source/quantization/fp8_e4m3_kvcache.rst @@ -30,18 +30,14 @@ Here is an example of how to enable this feature: .. code-block:: python - # two float8_e4m3fn kv cache scaling factor files are provided under tests/fp8_kv, please refer to - # https://github.com/vllm-project/vllm/blob/main/examples/fp8/README.md to generate kv_cache_scales.json of your own. + # To calculate kv cache scales on the fly enable the calculate_kv_scales + # parameter from vllm import LLM, SamplingParams sampling_params = SamplingParams(temperature=1.3, top_p=0.8) llm = LLM(model="meta-llama/Llama-2-7b-chat-hf", kv_cache_dtype="fp8", - quantization_param_path="./tests/fp8_kv/llama2-7b-fp8-kv/kv_cache_scales.json") + calculate_kv_scales=True) prompt = "London is the capital of" out = llm.generate(prompt, sampling_params)[0].outputs[0].text print(out) - - # output w/ scaling factors: England, the United Kingdom, and one of the world's leading financial, - # output w/o scaling factors: England, located in the southeastern part of the country. It is known - diff --git a/examples/fp8/README.md b/examples/fp8/README.md deleted file mode 100644 index 181c36558fcff..0000000000000 --- a/examples/fp8/README.md +++ /dev/null @@ -1,96 +0,0 @@ -# FP8 KV Cache - -This utility extracts the KV cache scaling factors from a quantized HF (Hugging Face) model. The extracted scaling factors are saved to a JSON file, which can later be used by vLLM (variable-length language model) during runtime. This tool is particularly useful when the KV cache data type is FP8 and is intended for use on ROCm (AMD GPU) platforms. - -## Prerequisites - -- Python 3.x -- PyTorch -- NumPy -- Hugging Face Transformers -- Hugging Face Hub -- AMMO - -Before incorporating the FP8 datatype for inference workloads, you must adhere to the following steps: -1. Install all necessary prerequisites and dependencies. -2. Convert HF model into a quantized HF model. -3. Extract KV Cache Scaling Factors from quantized HF model. -4. Load KV Cache Scaling Factors into VLLM. - -### 2. Convert HF model into a quantized HF model. -Note: The following steps are adapted from the [TensorRT-LLM repository](https://github.com/NVIDIA/TensorRT-LLM/blob/main/examples/quantization/README.md). - -`quantize.py` (examples/fp8/quantizer/quantize.py) uses the quantization toolkit (AMMO) to calibrate the PyTorch models and export TensorRT-LLM checkpoints. Each TensorRT-LLM checkpoint contains a config file (in .json format) and one or several rank weight files (in .safetensors format). - -The detailed quantization toolkit (AMMO) conversion guide for FP8 can be found at `examples/fp8/quantizer/README.md`. - -### 3. Extract KV Cache Scaling Factors from quantized HF model. -`extract_scales.py` (examples/fp8/extract_scales.py) can be utilized to extract the KV cache scaling factors from your quantized HF model, however at the moment, this tool exclusively supports Llama 2 models. It is also important to note the following: -1. **File Structure**: The utility operates under the assumption that all parameters, including KV cache scaling factors, corresponding to a particular Tensor Parallelism (TP) rank are stored in a single file. These files must adhere to a specific naming convention where the TP rank is immediately identified after a specific keyword (e.g., "rank") in the filename. - -2. **TP Decomposition**: The utility assumes consistency between the TP decomposition employed by the quantizer tool and that used by vLLM. - -3. **AMMO Compatibility**: Currently, the generated KV cache scaling factors for AMMO remain uniform across all TP ranks. - -```python -# prerequisites: -# - Quantized HF LLaMa 2 model -python3 examples/fp8/extract_scales.py --help -Usage: extract_scales.py [-h] --quantized_model QUANTIZED_MODEL [--load_format {auto,safetensors,npz,pt}] [--output_dir OUTPUT_DIR] [--output_name OUTPUT_NAME] [--tp_size TP_SIZE] - -KV Scale Extraction Example - -optional arguments: ---quantized_model: Specify either the local path to, or name of, a quantized HF model. It is expected that the quantization format is FP8_E4M3, for use on ROCm (AMD GPU). -Optional arguments: ---cache_dir: Specify a cache directory to use in the event of a HF model download. (Default: None) ---load_format: Specify the format of the model's tensor files containing the KV cache scaling factors. (Choices: auto, safetensors, npz, pt; Default: auto) ---revision: Specify the model's revision number. (Default: None) ---output_dir: Specify the output directory. By default the KV cache scaling factors will be saved in the model directory. (Default: None) ---output_name: Specify the output filename. (Default: kv_cache_scales.json) ---tp_size: Specify the tensor-parallel (TP) size that the quantized model should correspond to. If specified, during KV cache scaling factor extraction the observed TP size will be checked against this and an error will be raised if there is a mismatch. (Default: None) -``` -```python -Example: -python3 examples/fp8/extract_scales.py --quantized_model --tp_size --output_dir -``` -### 4. Load KV Cache Scaling Factors into VLLM. -This script evaluates the inference throughput of language models using various backends such as vLLM. It measures the time taken to process a given number of prompts and generate sequences for each prompt. The recently generated KV cache scaling factors are now integrated into the benchmarking process and allow for KV cache scaling factors to be utilized for FP8. -```python -# prerequisites: -# - LLaMa 2 kv_cache_scales.json file - -python3 benchmarks/benchmark_throughput.py --help -usage: benchmark_throughput.py [-h] [--backend {vllm,hf,mii}] [--dataset DATASET] [--input-len INPUT_LEN] [--output-len OUTPUT_LEN] [--model MODEL] - [--tokenizer TOKENIZER] [--quantization {awq,gptq,None}] [--tensor-parallel-size TENSOR_PARALLEL_SIZE] [--n N] - [--use-beam-search] [--num-prompts NUM_PROMPTS] [--seed SEED] [--hf-max-batch-size HF_MAX_BATCH_SIZE] [--trust-remote-code] - [--max-model-len MAX_MODEL_LEN] [--dtype {auto,half,float16,bfloat16,float,float32}] [--enforce-eager] [--kv-cache-dtype {auto,fp8}] - [--quantization-param-path KV_CACHE_quantization_param_path] - -Benchmark Throughput Example -optional arguments: - -h, --help show this help message and exit - --backend {vllm,hf,mii} - --dataset DATASET Path to the dataset. - --input-len INPUT_LEN Input prompt length for each request - --output-len OUTPUT_LEN Output length for each request. Overrides the output length from the dataset. - --model MODEL - --tokenizer TOKENIZER - --quantization {awq,gptq,None}, -q {awq,gptq,None} - --tensor-parallel-size TENSOR_PARALLEL_SIZE, -tp TENSOR_PARALLEL_SIZE - --n N Number of generated sequences per prompt. - --use-beam-search - --num-prompts NUM_PROMPTS Number of prompts to process. - --seed SEED - --hf-max-batch-size HF_MAX_BATCH_SIZE Maximum batch size for HF backend. - --trust-remote-code trust remote code from huggingface - --max-model-len MAX_MODEL_LEN Maximum length of a sequence (including prompt and output). If None, will be derived from the model. - --dtype {auto,half,float16,bfloat16,float,float32} data type for model weights and activations. The "auto" option will use FP16 precision for FP32 and FP16 models, and BF16 precision for BF16 models. - --enforce-eager enforce eager execution - --kv-cache-dtype {auto,fp8} Data type for kv cache storage. If "auto", will use model data type. FP8_E5M2 (without scaling) is only supported on cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead supported ```for common inference criteria. - --quantization-param-path QUANT_PARAM_JSON Path to the JSON file containing the KV cache scaling factors. This should generally be supplied, when KV cache dtype is FP8. Otherwise, KV cache scaling factors default to 1.0, which may cause accuracy issues. FP8_E5M2 (without scaling) is only supported on cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead supported for common inference criteria. -``` -``` -Example: -python3 benchmarks/benchmark_throughput.py --input-len --output-len -tp --kv-cache-dtype fp8 --quantization-param-path --model -```python diff --git a/examples/fp8/extract_scales.py b/examples/fp8/extract_scales.py deleted file mode 100644 index 1dce9d7e993a0..0000000000000 --- a/examples/fp8/extract_scales.py +++ /dev/null @@ -1,367 +0,0 @@ -import argparse -import glob -import json -import os -from typing import Any, Callable, Dict, List, Optional, Tuple - -import numpy as np -import torch -from safetensors.torch import safe_open - -from vllm.model_executor.layers.quantization.schema import QuantParamSchema - - -# Adapted from vllm/model_executor/model_loader/weight_utils.py -# The main differences are that we add the NPZ format and simplify -# its functionality drastically for our purposes (e.g. we assume that -# the quantized model exists locally and there is no need to download it) -def _prepare_hf_weights( - quantized_model_dir: str, - load_format: str = "auto", - fall_back_to_pt: bool = True, -) -> Tuple[List[str], bool]: - if not os.path.isdir(quantized_model_dir): - raise FileNotFoundError( - f"The quantized model directory `{quantized_model_dir}` " - "does not exist.") - use_safetensors = False - # Some quantized models use .pt files for storing the weights. - if load_format == "auto": - allow_patterns = ["*.safetensors", "*.bin"] - elif load_format == "safetensors": - use_safetensors = True - allow_patterns = ["*.safetensors"] - elif load_format == "pt": - allow_patterns = ["*.pt"] - elif load_format == "npz": - allow_patterns = ["*.npz"] - else: - raise ValueError(f"Unknown load_format: {load_format}") - if fall_back_to_pt: - allow_patterns += ["*.pt"] - - hf_weights_files: List[str] = [] - for pattern in allow_patterns: - hf_weights_files += glob.glob( - os.path.join(quantized_model_dir, pattern)) - if len(hf_weights_files) > 0: - if pattern == "*.safetensors": - use_safetensors = True - break - - if not use_safetensors: - # Exclude files that are not needed for inference. - # https://github.com/huggingface/transformers/blob/v4.34.0/src/transformers/trainer.py#L227-L233 - blacklist = [ - "training_args.bin", - "optimizer.bin", - "optimizer.pt", - "scheduler.pt", - "scaler.pt", - ] - hf_weights_files = [ - f for f in hf_weights_files - if not any(f.endswith(x) for x in blacklist) - ] - - if len(hf_weights_files) == 0: - raise RuntimeError( - f"Cannot find any model weights with `{quantized_model_dir}`") - - return hf_weights_files, use_safetensors - - -# Adapted from vllm/model_executor/model_loader/weight_utils.py -def _hf_tensorfile_iterator(filename: str, load_format: str, - use_safetensors: bool): - if load_format == "npz": - assert not use_safetensors - with np.load(filename) as data: - for name in data.files: - param = torch.from_numpy(data[name]) - yield name, param - elif use_safetensors: - with safe_open(filename, framework="pt") as f: - for name in f.keys(): # NOQA: SIM118 - param = f.get_tensor(name) - yield name, param - else: - state = torch.load(filename, map_location="cpu") - for name, param in state.items(): - yield name, param - del state - torch.cuda.empty_cache() - - -def _kv_scales_extractor( - hf_tensor_files: List[str], - use_safetensors: bool, - rank_keyword: str = "rank", - expected_tp_size: Optional[int] = None) -> Dict[int, Dict[int, float]]: - """ - Given a list of files containing tensor data, attempt to extract KV cache - scales from these files. Intended as a helper function taking in the output - from _prepare_hf_weights. - Args: - rank_keyword Matches the number immediately after this keyword in the - tensor filename to determine the TP rank corresponding - to said tensor file - expected_tp_size If specified, the TP size of the tensor files is checked - against this and an error is raised if they don't match. - Returns a dictionary mapping TP ranks to their relevant KV cache scales. - The per-rank scales are themselves represented as a dictionary of layer - indices to the respective per-layer scale. - """ - for char in rank_keyword: - assert not char.isdecimal( - ), f"Rank keyword {rank_keyword} contains a numeric character!" - rank_scales_map: Dict[int, Dict[int, float]] = {} - for tensor_file in hf_tensor_files: - try: - rank_idx = tensor_file.find(rank_keyword) - if rank_idx != -1: - start_idx = rank_idx + len(rank_keyword) - stop_idx = start_idx - while stop_idx < len( - tensor_file) and tensor_file[stop_idx].isdecimal(): - stop_idx += 1 - if stop_idx == start_idx: - raise RuntimeError("Did not find rank # in filename.") - rank = int(tensor_file[start_idx:stop_idx]) - elif len(hf_tensor_files) == 1: - # Since there is only one tensor file, we can assume - # that it's intended for TP rank 0 - rank = 0 - else: - raise RuntimeError( - f"Filename does not contain '{rank_keyword}'.") - except RuntimeError: - print("Unable to determine TP rank " - f"corresponding to file '{tensor_file}'") - raise - - if rank not in rank_scales_map: - layer_scales_map: Dict[int, float] = {} - rank_scales_map[rank] = layer_scales_map - else: - raise RuntimeError( - f"Tensor file '{tensor_file}' shares TP rank {rank} " - "with another tensor file.") - - module_delimiter = ":" if args.load_format == "npz" else "." - for name, param in _hf_tensorfile_iterator(tensor_file, - args.load_format, - use_safetensors): - if "kv_cache_scaling_factor" in name: - nums = [ - int(s) for s in name.split(module_delimiter) - if s.isdecimal() - ] - assert len( - nums) == 1, f"Could not determine layer idx for {name}" - layer_idx = nums[0] - assert layer_idx not in layer_scales_map, f"Duplicate scaling"\ - f" factor corresponding to layer {layer_idx}" - try: - layer_scales_map[layer_idx] = param.item() - except RuntimeError: - print( - "This utility supports only per-tensor scalar scales " - f"for now. The tensor\n {name} = {param} \nis an " - "invalid scale factor.") - raise - - if all( - len(layer_scales_map) == 0 - for layer_scales_map in rank_scales_map.values()): - # Note: this is true even if the rank_scales_map is empty - print("WARNING: No KV cache scale factors found. No output saved.") - return None - empirical_tp_world_size = max(rank_scales_map.keys()) + 1 - if expected_tp_size is not None: - assert expected_tp_size == empirical_tp_world_size, \ - f"User expected TP world size = {expected_tp_size} " \ - "from model but tool is expecting TP world size = " \ - f"{empirical_tp_world_size} from model instead." - for i in range(empirical_tp_world_size): - assert i in rank_scales_map, "Expected TP world size = "\ - f"{empirical_tp_world_size} but did not find KV " \ - f"cache scaling factors for TP rank {i}" - print(f"Found TP world size = {empirical_tp_world_size} " - "when extracting KV cache scales!") - return rank_scales_map - - -def _metadata_extractor(quantized_model_dir: str, - metadata_extract_fns: \ - Dict[str, Callable[[Dict[str, Any]], Any]]) \ - -> Dict[str, Any]: - """ - Given a directory containing quantized model files, this function - aims to extract metadata from the JSON files within this directory. - Each JSON file is expected to represent a dictionary in JSON - format (referred to as a "JSON-dictionary"). Metadata extraction is - defined by a dictionary called metadata_extract_fns, where each - metadata field name is mapped to an extraction function. - - These extraction functions are designed to take a JSON-dictionary - as their only argument and return the corresponding metadata. - While extraction functions are permitted to raise exceptions, they - should only raise a KeyError or ValueError if the metadata field - cannot be extracted from the current JSON-dictionary, yet there's - a possibility of finding it in another JSON-dictionary. - - The function returns a dictionary that maps metadata fields to - their extracted data. The keys of this dictionary correspond exactly - to those in metadata_extract_fns. If any fields fail to be extracted, - their corresponding values are set to None, and a warning is printed. - """ - if not os.path.isdir(quantized_model_dir): - raise FileNotFoundError( - f"The quantized model directory `{quantized_model_dir}` " - "does not exist.") - metadata_files = glob.glob(os.path.join(quantized_model_dir, "*.json")) - - result: Dict[str, Any] = {} - for file in metadata_files: - with open(file) as f: - try: - metadata = json.load(f) - except json.JSONDecodeError: - print(f"Could not parse `{file}` as a valid metadata file," - " skipping it.") - continue - if not isinstance(metadata, dict): - print(f"The file `{file}` does not correspond to a " - "JSON-serialized dictionary, skipping it.") - continue - for metadata_name, extract_fn in metadata_extract_fns.items(): - try: - metadata_info = extract_fn(metadata) - if metadata_name not in result: - result[metadata_name] = metadata_info - elif metadata_info != result[metadata_name]: - raise RuntimeError( - "Metadata mismatch! Originally found " - f"{metadata_name} = {result[metadata_name]} but " - f"now found {metadata_name} = {metadata_info} in " - f"`{file}`") - except KeyError: - # It is possible that a given file does not contain some - # of our selected metadata as it could be located in some - # other metadata file. - # 'EFINAE': extract_fn failure is not an error. - pass - except ValueError: - # See above. - pass - - # Warn if we cannot find any of the requested metadata - for metadata_name in metadata_extract_fns: - if metadata_name not in result: - print("WARNING: Unable to find requested metadata field " - f"`{metadata_name}`, setting it to None.") - result[metadata_name] = None - - return result - - -def main(args): - metadata_extract_fns = { - "model_type": lambda json_dict: json_dict["layers"][0]["decoder_type"], - "tp_size": lambda json_dict: int(json_dict["tensor_parallel"]), - "model_dtype": lambda json_dict: json_dict["dtype"] - } - recovered_metadata = _metadata_extractor(args.quantized_model, - metadata_extract_fns) - if args.tp_size is not None: - metadata_tp_size = recovered_metadata["tp_size"] - if metadata_tp_size is not None: - assert args.tp_size == metadata_tp_size, \ - f"User expected TP world size = {args.tp_size} " \ - f"but found TP world size = {metadata_tp_size} from metadata!" - expected_tp_size = args.tp_size or recovered_metadata["tp_size"] - rank_keyword = "rank" - hf_tensor_files, use_safetensors = _prepare_hf_weights( - args.quantized_model, args.load_format) - rank_scales_map = _kv_scales_extractor(hf_tensor_files, use_safetensors, - rank_keyword, expected_tp_size) - # Postprocess: formatting to the current schema. Consider pulling it - # out into a dedicated function should it ever become more complicated. - rank_scales_map = { - rank: {k: scale[k] - for k in sorted(scale.keys())} - for rank, scale in rank_scales_map.items() - } - # TODO: Expand this with activation and weights scaling factors when - # they are used in the future - schema = QuantParamSchema( - model_type=recovered_metadata["model_type"], - kv_cache={ - "dtype": ("float8_e4m3fn" if len(rank_scales_map) > 0 else - recovered_metadata["model_dtype"]), - "scaling_factor": - rank_scales_map - }, - ) - - if args.output_dir is None: - output_file = os.path.join(args.quantized_model, args.output_name) - else: - if not os.path.isdir(args.output_dir): - os.makedirs(args.output_dir, exist_ok=True) - output_file = os.path.join(args.output_dir, args.output_name) - - with open(output_file, 'w') as f: - f.write(schema.model_dump_json(indent=4)) - print(f"Completed! KV cache scaling factors saved to {output_file}") - - -if __name__ == "__main__": - parser = argparse.ArgumentParser( - description="This simple utility extracts the " - "KV cache scaling factors from a quantized HF model " - "and saves them to a JSON file compatible with later " - "use by vLLM (pass this file to the appropriate " - "runtime typically using the argument " - "--quantization-param-path ). This is only used " - "if the KV cache dtype is FP8 and on ROCm (AMD GPU).") - parser.add_argument( - "--quantized-model", - help="Specify the directory containing a single quantized HF model. " - "It is expected that the quantization format is FP8_E4M3, for use " - "on ROCm (AMD GPU).", - required=True) - parser.add_argument( - "--load_format", - help="Optionally specify the format of the model's tensor files " - "containing the KV cache scaling factors.", - choices=["auto", "safetensors", "npz", "pt"], - default="auto") - parser.add_argument( - "--output-dir", - help="Optionally specify the output directory. By default the " - "KV cache scaling factors will be saved in the model directory, " - "however you can override this behavior here.", - default=None) - parser.add_argument( - "--output-name", - help="Optionally specify the output filename.", - # TODO: Change this once additional scaling factors are enabled - default="kv_cache_scales.json") - parser.add_argument( - "--tp-size", - help="Optionally specify the tensor-parallel (TP) size that the " - "quantized model should correspond to. If specified, during KV " - "cache scaling factor extraction the observed TP size will be " - "checked against this and an error will be raised if there is " - "a mismatch. If not specified, the quantized model's expected " - "TP size is instead inferred from the largest TP rank observed. " - "The expected TP size is cross-checked against the TP ranks " - "observed in the quantized model and an error is raised if any " - "discrepancies are found.", - default=None, - type=int) - args = parser.parse_args() - - main(args) diff --git a/examples/fp8/quantizer/README.md b/examples/fp8/quantizer/README.md deleted file mode 100644 index d0895e97dc341..0000000000000 --- a/examples/fp8/quantizer/README.md +++ /dev/null @@ -1,32 +0,0 @@ -### Quantizer Utilities -`quantize.py`: NVIDIA Quantization utilities using TensorRT-Model-Optimizer, ported -from TensorRT-LLM: [`examples/quantization/quantize.py`](https://github.com/NVIDIA/TensorRT-LLM/blob/main/examples/quantization/quantize.py) - -### Prerequisite - -#### AMMO (AlgorithMic Model Optimization) Installation: nvidia-ammo 0.7.1 or later -`pip install --no-cache-dir --extra-index-url https://pypi.nvidia.com nvidia-ammo` - -#### AMMO Download (code and docs) -`https://developer.nvidia.com/downloads/assets/cuda/files/nvidia-ammo/nvidia_ammo-0.5.0.tar.gz` -`https://developer.nvidia.com/downloads/assets/cuda/files/nvidia-ammo/nvidia_ammo-0.7.1.tar.gz` - -### Usage - -#### Run on H100 system for speed if FP8; number of GPUs depends on the model size - -#### Example: quantize Llama2-7b model from HF to FP8 with FP8 KV Cache: -`python quantize.py --model-dir ./ll2-7b --dtype float16 --qformat fp8 --kv-cache-dtype fp8 --output-dir ./ll2_7b_fp8 --calib-size 512 --tp-size 1` - -Outputs: model structure, quantized model & parameters (with scaling factors) are in JSON and Safetensors (npz is generated only for the reference) -``` -# ll ./ll2_7b_fp8/ -total 19998244 -drwxr-xr-x 2 root root 4096 Feb 7 01:08 ./ -drwxrwxr-x 8 1060 1061 4096 Feb 7 01:08 ../ --rw-r--r-- 1 root root 176411 Feb 7 01:08 llama_tp1.json --rw-r--r-- 1 root root 13477087480 Feb 7 01:09 llama_tp1_rank0.npz --rw-r--r-- 1 root root 7000893272 Feb 7 01:08 rank0.safetensors -# -``` - diff --git a/examples/fp8/quantizer/quantize.py b/examples/fp8/quantizer/quantize.py deleted file mode 100644 index d75cc8b3d1cf7..0000000000000 --- a/examples/fp8/quantizer/quantize.py +++ /dev/null @@ -1,367 +0,0 @@ -# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # noqa: E501 -# SPDX-License-Identifier: Apache-2.0 -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Adapted from examples/quantization/hf_ptq.py -""" - -import argparse -import copy -import json -import random -import time - -import ammo.torch.quantization as atq -import numpy as np -import torch -from ammo.torch.export import export_model_config -from datasets import load_dataset -from torch.utils.data import DataLoader -from transformers import AutoModelForCausalLM, AutoTokenizer - -RAND_SEED = 1234 -MAX_SEQ_LEN = 2048 - -EMPTY_CFG = { - "quant_cfg": { - "*weight_quantizer": { - "enable": False, - }, - "*input_quantizer": { - "enable": False - }, - "*lm_head*": { - "enable": False - }, - "*output_layer*": { - "enable": False - }, - "default": { - "enable": False - }, - }, - "algorithm": "max", -} - -KV_CACHE_CFG = { - "*.query_key_value.output_quantizer": { - "num_bits": 8, - "axis": None, - "enable": True - }, - "*.Wqkv.output_quantizer": { - "num_bits": 8, - "axis": None, - "enable": True - }, - "*.W_pack.output_quantizer": { - "num_bits": 8, - "axis": None, - "enable": True - }, - "*.c_attn.output_quantizer": { - "num_bits": 8, - "axis": None, - "enable": True - }, - "*.k_proj.output_quantizer": { - "num_bits": 8, - "axis": None, - "enable": True - }, - "*.v_proj.output_quantizer": { - "num_bits": 8, - "axis": None, - "enable": True - }, -} - -QUANT_CFG_CHOICES = { - "int8_sq": atq.INT8_SMOOTHQUANT_CFG, - "fp8": atq.FP8_DEFAULT_CFG, - "int4_awq": atq.INT4_AWQ_CFG, - "w4a8_awq": atq.W4A8_AWQ_BETA_CFG, - "int8_wo": EMPTY_CFG, - "int4_wo": EMPTY_CFG, - "full_prec": EMPTY_CFG, -} - -MODEL_NAME_PATTERN_MAP = { - "GPT2": "gpt2", - "Xverse": "llama", - "Llama": "llama", - "Mistral": "llama", - "GPTJ": "gptj", - "FalconForCausalLM": "falcon", - "RWForCausalLM": "falcon", - "baichuan": "baichuan", - "MPT": "mpt", - "Bloom": "bloom", - "ChatGLM": "chatglm", - "QWen": "qwen", -} - - -def get_tokenizer(ckpt_path, max_seq_len=MAX_SEQ_LEN, model_type=None): - print(f"Initializing tokenizer from {ckpt_path}") - tokenizer = AutoTokenizer.from_pretrained( - ckpt_path, - model_max_length=max_seq_len, - padding_side="left", - trust_remote_code=True, - ) - if model_type and model_type == "qwen": - # qwen use token id 151643 as pad and eos tokens - tokenizer.pad_token = tokenizer.convert_ids_to_tokens(151643) - tokenizer.eos_token = tokenizer.convert_ids_to_tokens(151643) - - # can't set attribute 'pad_token' for "" - if tokenizer.pad_token != "": - tokenizer.pad_token = tokenizer.eos_token - if tokenizer.pad_token is None: - tokenizer.pad_token = tokenizer.eos_token - assert (tokenizer.pad_token - is not None), f"Pad token for {model_type} cannot be set!" - - return tokenizer - - -def get_model(ckpt_path, dtype="fp16", device="cuda"): - print(f"Initializing model from {ckpt_path}") - if dtype == "bf16" or dtype == "bfloat16": - dtype = torch.bfloat16 - elif dtype == "fp16" or dtype == "float16": - dtype = torch.float16 - elif dtype == "fp32" or dtype == "float32": - dtype = torch.float32 - else: - raise NotImplementedError(f"Unknown dtype {dtype}") - - # model_kwargs = {"torch_dtype": dtype} - model_kwargs = {"torch_dtype": "auto"} - - model = AutoModelForCausalLM.from_pretrained(ckpt_path, - device_map="auto", - **model_kwargs, - trust_remote_code=True) - model.eval() - - model_dtype = next(model.parameters()).dtype - if dtype != model_dtype: - print("[TensorRT-LLM][WARNING] The manually set model data type is " - f"{dtype}, but the data type of the HuggingFace model is " - f"{model_dtype}.") - - return model - - -def get_model_type(model): - for k, v in MODEL_NAME_PATTERN_MAP.items(): - if k.lower() in type(model).__name__.lower(): - return v - return None - - -def get_calib_dataloader(data="cnn_dailymail", - tokenizer=None, - batch_size=1, - calib_size=512, - block_size=512, - device=None): - print("Loading calibration dataset") - if data == "pileval": - dataset = load_dataset( - "json", - data_files="https://the-eye.eu/public/AI/pile/val.jsonl.zst", - split="train") - dataset = dataset["text"][:calib_size] - elif data == "cnn_dailymail": - dataset = load_dataset("cnn_dailymail", name="3.0.0", split="train") - dataset = dataset["article"][:calib_size] - else: - raise NotImplementedError - - batch_encoded = tokenizer.batch_encode_plus(dataset, - return_tensors="pt", - padding="max_length", - truncation=True, - max_length=block_size) - if device: - batch_encoded = batch_encoded.to(device) - batch_encoded = batch_encoded["input_ids"] - - calib_dataloader = DataLoader(batch_encoded, - batch_size=batch_size, - shuffle=False) - - return calib_dataloader - - -def quantize_model(model, quant_cfg, calib_dataloader=None): - - def calibrate_loop(): - if calib_dataloader is None: - return - """Adjusts weights and scaling factors based on selected algorithms.""" - for idx, data in enumerate(calib_dataloader): - print(f"Calibrating batch {idx}") - model(data) - - print("Starting quantization...") - start_time = time.time() - atq.quantize(model, quant_cfg, forward_loop=calibrate_loop) - end_time = time.time() - print("Quantization done. Total time used: {:.2f} s.".format(end_time - - start_time)) - - return model - - -def main(args): - if not torch.cuda.is_available(): - raise OSError("GPU is required for inference.") - - random.seed(RAND_SEED) - np.random.seed(RAND_SEED) - - model = get_model(args.model_dir, args.dtype, args.device) - model_type = get_model_type(model) - tokenizer = get_tokenizer(args.model_dir, model_type=model_type) - - if args.qformat in ["full_prec", "int8_wo", "int4_wo" - ] and args.kv_cache_dtype is None: - print(f"No quantization applied, export {args.dtype} model") - else: - if "awq" in args.qformat: - if args.calib_size > 32: - print("AWQ calibration could take longer with calib_size = " - f"{args.calib_size}, Using calib_size=32 instead") - args.calib_size = 32 - print("\nAWQ calibration could take longer than other calibration " - "methods. Please increase the batch size to speed up the " - "calibration process. Batch size can be set by adding the " - "argument --batch_size to the command line.\n") - - calib_dataloader = get_calib_dataloader( - tokenizer=tokenizer, - batch_size=args.batch_size, - calib_size=args.calib_size, - device=args.device, - ) - - if args.qformat in QUANT_CFG_CHOICES: - quant_cfg = QUANT_CFG_CHOICES[args.qformat] - else: - raise ValueError( - f"Unsupported quantization format: {args.qformat}") - - if "awq" in args.qformat: - quant_cfg = copy.deepcopy(QUANT_CFG_CHOICES[args.qformat]) - weight_quantizer = quant_cfg["quant_cfg"][ - "*weight_quantizer"] # type: ignore - if isinstance(weight_quantizer, list): - weight_quantizer = weight_quantizer[0] - weight_quantizer["block_sizes"][-1] = args.awq_block_size - - if args.kv_cache_dtype is not None: - if args.kv_cache_dtype == "fp8": - for value in KV_CACHE_CFG.values(): - value.update({"num_bits": (4, 3)}) # type: ignore - quant_cfg["quant_cfg"].update(KV_CACHE_CFG) # type: ignore - - print(quant_cfg) - - model = quantize_model(model, quant_cfg, calib_dataloader) - - with torch.inference_mode(): - if model_type is None: - print(f"Unknown model type {type(model).__name__}. Continue " - "exporting...") - model_type = f"unknown:{type(model).__name__}" - - export_path = args.output_dir - start_time = time.time() - - if args.qformat == "int4_awq" and model_type == "qwen": - torch.save(model.state_dict(), export_path) - else: - export_npz = (model_type not in [ - 'gptj', 'falcon', 'chatglm', 'mpt', 'llama', 'baichuan' - ]) - - # export safetensors - export_model_config( - model, - model_type, - getattr(torch, args.dtype), - export_dir=export_path, - inference_tensor_parallel=args.tp_size, - inference_pipeline_parallel=args.pp_size, - # export_tensorrt_llm_config=(not export_npz), - export_tensorrt_llm_config=False, - export_npz=export_npz) - - # Workaround for wo quantization - if args.qformat in ["int8_wo", "int4_wo", "full_prec"]: - with open(f"{export_path}/config.json") as f: - tensorrt_llm_config = json.load(f) - if args.qformat == "int8_wo": - tensorrt_llm_config["quantization"]["quant_algo"] = 'W8A16' - elif args.qformat == "int4_wo": - tensorrt_llm_config["quantization"]["quant_algo"] = 'W4A16' - else: - tensorrt_llm_config["quantization"]["quant_algo"] = None - with open(f"{export_path}/config.json", "w") as f: - json.dump(tensorrt_llm_config, f, indent=4) - - end_time = time.time() - print("Quantized model exported to {} \nTotal time used {:.2f} s.". - format(export_path, end_time - start_time)) - - -if __name__ == "__main__": - parser = argparse.ArgumentParser(description=__doc__) - parser.add_argument("--model-dir", - help="Specify where the HuggingFace model is", - required=True) - parser.add_argument("--device", default="cuda") - parser.add_argument("--dtype", help="Model data type.", default="float16") - parser.add_argument( - "--qformat", - help="Quantization format.", - default="full_prec", - choices=[ - "fp8", "int8_sq", "int4_awq", "w4a8_awq", "int8_wo", "int4_wo", - "full_prec" - ], - ) - parser.add_argument("--batch-size", - help="Batch size for calibration.", - type=int, - default=1) - parser.add_argument("--calib-size", - help="Number of samples for calibration.", - type=int, - default=512) - parser.add_argument("--output-dir", default="exported_model") - parser.add_argument("--tp-size", type=int, default=1) - parser.add_argument("--pp-size", type=int, default=1) - parser.add_argument("--awq-block-size", type=int, default=128) - parser.add_argument("--kv-cache-dtype", - help="KV Cache dtype.", - default=None, - choices=["int8", "fp8", None]) - args = parser.parse_args() - - main(args) diff --git a/tests/fp8_kv/llama2-70b-fp8-kv/kv_cache_scales.json b/tests/fp8_kv/llama2-70b-fp8-kv/kv_cache_scales.json deleted file mode 100644 index a548f0a9611f6..0000000000000 --- a/tests/fp8_kv/llama2-70b-fp8-kv/kv_cache_scales.json +++ /dev/null @@ -1,90 +0,0 @@ -{ - "model_type": "llama", - "kv_cache": { - "dtype": "float8_e4m3fn", - "scaling_factor": { - "0": { - "0": 0.0230364128947258, - "1": 0.01979283057153225, - "2": 0.0241350457072258, - "3": 0.0308314748108387, - "4": 0.0430733822286129, - "5": 0.0370396226644516, - "6": 0.0306222103536129, - "7": 0.0357491634786129, - "8": 0.0358189195394516, - "9": 0.0443289652466774, - "10": 0.0433175228536129, - "11": 0.0416782945394516, - "12": 0.0366908498108387, - "13": 0.0432477705180645, - "14": 0.0410505048930645, - "15": 0.0457589291036129, - "16": 0.0418526791036129, - "17": 0.0432477705180645, - "18": 0.0469447560608387, - "19": 0.0514787957072258, - "20": 0.0541294664144516, - "21": 0.0587681382894516, - "22": 0.0625, - "23": 0.0585588738322258, - "24": 0.0600237175822258, - "25": 0.0588030144572258, - "26": 0.0531180277466774, - "27": 0.06396484375, - "28": 0.0603027381002903, - "29": 0.0582101047039032, - "30": 0.0625348836183548, - "31": 0.0585588738322258, - "32": 0.0582798570394516, - "33": 0.0575125589966774, - "34": 0.0590820349752903, - "35": 0.0614188089966774, - "36": 0.0631975457072258, - "37": 0.0615931935608387, - "38": 0.0601283498108387, - "39": 0.0571986623108387, - "40": 0.0670340433716774, - "41": 0.0523507259786129, - "42": 0.0547223798930645, - "43": 0.0631975457072258, - "44": 0.0663713738322258, - "45": 0.0603376142680645, - "46": 0.0652204304933548, - "47": 0.0734514519572258, - "48": 0.0693708211183548, - "49": 0.0725446492433548, - "50": 0.0627790242433548, - "51": 0.0691266804933548, - "52": 0.0688825398683548, - "53": 0.068429134786129, - "54": 0.0605119988322258, - "55": 0.0799386203289032, - "56": 0.0853097140789032, - "57": 0.0661969929933548, - "58": 0.0689871683716774, - "59": 0.0724051371216774, - "60": 0.0541643425822258, - "61": 0.0626743882894516, - "62": 0.0628487765789032, - "63": 0.0607212632894516, - "64": 0.0589076466858387, - "65": 0.0451660193502903, - "66": 0.0453055277466774, - "67": 0.0414341539144516, - "68": 0.0385044664144516, - "69": 0.0414341539144516, - "70": 0.0466308631002903, - "71": 0.0399693101644516, - "72": 0.0437011756002903, - "73": 0.0434221550822258, - "74": 0.0428989976644516, - "75": 0.0401785746216774, - "76": 0.0431082621216774, - "77": 0.0484444759786129, - "78": 0.0417829267680645, - "79": 0.0418178029358387 - } - } - } -} \ No newline at end of file diff --git a/tests/fp8_kv/llama2-7b-fp8-kv/kv_cache_scales.json b/tests/fp8_kv/llama2-7b-fp8-kv/kv_cache_scales.json deleted file mode 100644 index bb734039e982b..0000000000000 --- a/tests/fp8_kv/llama2-7b-fp8-kv/kv_cache_scales.json +++ /dev/null @@ -1,42 +0,0 @@ -{ - "model_type": "llama", - "kv_cache": { - "dtype": "float8_e4m3fn", - "scaling_factor": { - "0": { - "0": 0.0152239128947258, - "1": 0.0188860222697258, - "2": 0.0354178324341774, - "3": 0.0376674123108387, - "4": 0.0418526791036129, - "5": 0.0433175228536129, - "6": 0.0397600457072258, - "7": 0.0424455925822258, - "8": 0.0415387861430645, - "9": 0.0408412404358387, - "10": 0.0395856611430645, - "11": 0.0377371683716774, - "12": 0.0400739423930645, - "13": 0.040771484375, - "14": 0.0393415205180645, - "15": 0.0369001142680645, - "16": 0.03857421875, - "17": 0.0387486070394516, - "18": 0.0403180830180645, - "19": 0.0396205373108387, - "20": 0.0375627800822258, - "21": 0.0407366082072258, - "22": 0.0432477705180645, - "23": 0.0377022884786129, - "24": 0.0399693101644516, - "25": 0.0374581478536129, - "26": 0.0413295216858387, - "27": 0.0442243330180645, - "28": 0.0424804724752903, - "29": 0.0456891767680645, - "30": 0.0409109964966774, - "31": 0.0482352152466774 - } - } - } -} diff --git a/tests/models/decoder_only/language/test_fp8.py b/tests/models/decoder_only/language/test_fp8.py index 53f23e24511b3..5f06f1e3a2fe9 100644 --- a/tests/models/decoder_only/language/test_fp8.py +++ b/tests/models/decoder_only/language/test_fp8.py @@ -19,18 +19,17 @@ @pytest.mark.skipif(not is_quant_method_supported("fp8"), reason="fp8 is not supported on this GPU type.") @pytest.mark.parametrize( - "kv_cache_dtype,base_model,test_model,scale_path", + "kv_cache_dtype,base_model,test_model", [ # Test FP8 checkpoint w. fp8_e4m3 kv-cache scaling factors. ("fp8_e4m3", "meta-llama/Llama-3.2-1B-Instruct", - "nm-testing/Llama-3.2-1B-Instruct-FP8-KV", None), + "nm-testing/Llama-3.2-1B-Instruct-FP8-KV"), # Test FP16 checkpoint w. fp8_e5m2 kv-cache. ("fp8_e5m2", "meta-llama/Llama-3.2-1B-Instruct", - "meta-llama/Llama-3.2-1B-Instruct", None), + "meta-llama/Llama-3.2-1B-Instruct"), # Test FP16 checkpoint w. fp8_e4m3 kv-cache scaling factors in json. ("fp8_e4m3", "meta-llama/Llama-2-7b-chat-hf", - "meta-llama/Llama-2-7b-chat-hf", - "./tests/fp8_kv/llama2-7b-fp8-kv/kv_cache_scales.json") + "meta-llama/Llama-2-7b-chat-hf") ]) # Due to low-precision numerical divergence, we only test logprob of 4 tokens @pytest.mark.parametrize("max_tokens", [4]) @@ -48,7 +47,6 @@ def test_models( kv_cache_dtype: str, base_model: str, test_model: str, - scale_path: Optional[str], max_tokens: int, enforce_eager: bool, backend: str, @@ -76,10 +74,6 @@ def test_models( baseline_outputs = vllm_model.generate_greedy_logprobs( example_prompts, max_tokens, NUM_LOG_PROBS) - extra_kwargs = {} - if scale_path is not None: - extra_kwargs["quantization_param_path"] = scale_path - with vllm_runner( test_model, max_model_len=MAX_MODEL_LEN, @@ -87,7 +81,6 @@ def test_models( enforce_eager=enforce_eager, kv_cache_dtype=kv_cache_dtype, disable_async_output_proc=disable_async_output_proc, - **extra_kwargs, ) as vllm_model: test_outputs = vllm_model.generate_greedy_logprobs( example_prompts, max_tokens, NUM_LOG_PROBS) diff --git a/vllm/_custom_ops.py b/vllm/_custom_ops.py index ff7264c31d0cc..afc7c2ada348c 100644 --- a/vllm/_custom_ops.py +++ b/vllm/_custom_ops.py @@ -115,8 +115,8 @@ def paged_attention_v1( max_seq_len: int, alibi_slopes: Optional[torch.Tensor], kv_cache_dtype: str, - k_scale: float, - v_scale: float, + k_scale: torch.Tensor, + v_scale: torch.Tensor, tp_rank: int = 0, blocksparse_local_blocks: int = 0, blocksparse_vert_stride: int = 0, @@ -149,8 +149,8 @@ def paged_attention_v2( max_seq_len: int, alibi_slopes: Optional[torch.Tensor], kv_cache_dtype: str, - k_scale: float, - v_scale: float, + k_scale: torch.Tensor, + v_scale: torch.Tensor, tp_rank: int = 0, blocksparse_local_blocks: int = 0, blocksparse_vert_stride: int = 0, @@ -183,8 +183,8 @@ def paged_attention_rocm( max_seq_len: int, alibi_slopes: Optional[torch.Tensor], kv_cache_dtype: str, - k_scale: float, - v_scale: float, + k_scale: torch.Tensor, + v_scale: torch.Tensor, fp8_out_scale: Optional[torch.Tensor], partition_size: int, ) -> None: @@ -936,8 +936,8 @@ def reshape_and_cache( value_cache: torch.Tensor, slot_mapping: torch.Tensor, kv_cache_dtype: str, - k_scale: float, - v_scale: float, + k_scale: torch.Tensor, + v_scale: torch.Tensor, ) -> None: torch.ops._C_cache_ops.reshape_and_cache(key, value, key_cache, value_cache, slot_mapping, @@ -951,8 +951,8 @@ def reshape_and_cache_flash( value_cache: torch.Tensor, slot_mapping: torch.Tensor, kv_cache_dtype: str, - k_scale: float, - v_scale: float, + k_scale: torch.Tensor, + v_scale: torch.Tensor, ) -> None: torch.ops._C_cache_ops.reshape_and_cache_flash(key, value, key_cache, value_cache, slot_mapping, diff --git a/vllm/attention/backends/abstract.py b/vllm/attention/backends/abstract.py index 11e9380e11cee..0af04224d853d 100644 --- a/vllm/attention/backends/abstract.py +++ b/vllm/attention/backends/abstract.py @@ -1,6 +1,6 @@ from abc import ABC, abstractmethod from contextlib import contextmanager -from dataclasses import dataclass, fields +from dataclasses import dataclass, field, fields from typing import (TYPE_CHECKING, Any, Dict, Generic, List, Optional, Set, Tuple, Type, TypeVar) @@ -124,6 +124,11 @@ class AttentionMetadata: multi_modal_placeholder_index_maps: Optional[Dict[ str, MultiModalPlaceholderMap.IndexMap]] + # Enable/disable KV scales calculation. This is so that we can disable the + # calculation until after prefill and cuda graph capture. + enable_kv_scales_calculation: bool = field(init=False, + default_factory=lambda: True) + @property @abstractmethod def prefill_metadata(self) -> Optional["AttentionMetadata"]: @@ -244,8 +249,8 @@ def forward( value: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: T, - k_scale: float = 1.0, - v_scale: float = 1.0, + k_scale: torch.Tensor, + v_scale: torch.Tensor, attn_type: str = AttentionType.DECODER, output: Optional[torch.Tensor] = None, fp8_out_scale: Optional[torch.Tensor] = None, diff --git a/vllm/attention/backends/blocksparse_attn.py b/vllm/attention/backends/blocksparse_attn.py index 49a9d70ca2ccc..6c34a0327c2d4 100644 --- a/vllm/attention/backends/blocksparse_attn.py +++ b/vllm/attention/backends/blocksparse_attn.py @@ -357,8 +357,8 @@ def forward( value: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: BlocksparseFlashAttentionMetadata, - k_scale: float = 1.0, - v_scale: float = 1.0, + k_scale: torch.Tensor, + v_scale: torch.Tensor, attn_type: str = AttentionType.DECODER, output: Optional[torch.Tensor] = None, fp8_out_scale: Optional[torch.Tensor] = None, diff --git a/vllm/attention/backends/rocm_flash_attn.py b/vllm/attention/backends/rocm_flash_attn.py index d58d7f55b0020..228f9c9c3dd65 100644 --- a/vllm/attention/backends/rocm_flash_attn.py +++ b/vllm/attention/backends/rocm_flash_attn.py @@ -545,8 +545,8 @@ def forward( value: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: ROCmFlashAttentionMetadata, - k_scale: float = 1.0, - v_scale: float = 1.0, + k_scale: torch.Tensor, + v_scale: torch.Tensor, attn_type: str = AttentionType.DECODER, output: Optional[torch.Tensor] = None, fp8_out_scale: torch.Tensor = None, diff --git a/vllm/attention/layer.py b/vllm/attention/layer.py index f191d44ff9bc5..800a1ff2f4f65 100644 --- a/vllm/attention/layer.py +++ b/vllm/attention/layer.py @@ -5,6 +5,7 @@ import torch.nn as nn import torch.nn.functional as F +import vllm.envs as envs from vllm.attention import AttentionMetadata, AttentionType from vllm.attention.selector import backend_name_to_enum, get_attn_backend from vllm.config import CacheConfig, get_current_vllm_config @@ -56,10 +57,12 @@ def __init__( kv_cache_dtype = cache_config.cache_dtype block_size = cache_config.block_size is_attention_free = cache_config.is_attention_free + calculate_kv_scales = cache_config.calculate_kv_scales else: kv_cache_dtype = "auto" block_size = 16 is_attention_free = False + calculate_kv_scales = False if num_kv_heads is None: num_kv_heads = num_heads @@ -69,8 +72,9 @@ def __init__( # expect the pre-quantized k/v_scale to be loaded along # with the model weights. self.kv_cache_dtype = kv_cache_dtype - self._k_scale = 1.0 - self._v_scale = 1.0 + self.calculate_kv_scales = calculate_kv_scales + self._k_scale = torch.tensor(1.0, dtype=torch.float32) + self._v_scale = torch.tensor(1.0, dtype=torch.float32) quant_method = quant_config.get_quant_method( self, prefix=prefix) if quant_config else None if quant_method is not None: @@ -120,6 +124,9 @@ def __init__( compilation_config.static_forward_context[prefix] = self self.layer_name = prefix + self.k_range = torch.tensor(envs.K_SCALE_CONSTANT, dtype=torch.float32) + self.v_range = torch.tensor(envs.V_SCALE_CONSTANT, dtype=torch.float32) + def forward( self, query: torch.Tensor, @@ -130,6 +137,10 @@ def forward( attn_type: str = AttentionType.DECODER, fp8_out_scale: Optional[torch.Tensor] = None, ) -> torch.Tensor: + if self.calculate_kv_scales and \ + attn_metadata.enable_kv_scales_calculation: + self.calc_kv_scales(key, value) + if self.use_direct_call: return self.impl.forward(query, key, @@ -161,6 +172,12 @@ def forward( kv_cache, attn_type, self.layer_name) + def calc_kv_scales(self, key, value): + self._k_scale.copy_(torch.abs(key).max() / self.k_range) + self._v_scale.copy_(torch.abs(value).max() / self.v_range) + # We only calculate the scales once + self.calculate_kv_scales = False + def extra_repr(self) -> str: s = f"head_size={self.impl.head_size}" # type: ignore s += f", num_heads={self.impl.num_heads}" # type: ignore diff --git a/vllm/attention/ops/paged_attn.py b/vllm/attention/ops/paged_attn.py index 2207483bea2c9..65e6aaedfb739 100644 --- a/vllm/attention/ops/paged_attn.py +++ b/vllm/attention/ops/paged_attn.py @@ -71,8 +71,8 @@ def write_to_paged_cache( value_cache: torch.Tensor, slot_mapping: torch.Tensor, kv_cache_dtype: str, - k_scale: float, - v_scale: float, + k_scale: torch.Tensor, + v_scale: torch.Tensor, ) -> None: ops.reshape_and_cache( key, @@ -97,8 +97,8 @@ def forward_decode( num_kv_heads: int, scale: float, alibi_slopes: Optional[torch.Tensor], - k_scale: float, - v_scale: float, + k_scale: torch.Tensor, + v_scale: torch.Tensor, tp_rank: int = 0, blocksparse_local_blocks: int = 0, blocksparse_vert_stride: int = 0, diff --git a/vllm/attention/ops/prefix_prefill.py b/vllm/attention/ops/prefix_prefill.py index 339631872b43a..e8d6854c043af 100644 --- a/vllm/attention/ops/prefix_prefill.py +++ b/vllm/attention/ops/prefix_prefill.py @@ -133,7 +133,7 @@ def _fwd_kernel( other=0.0) # [D,N] if k_load.dtype.is_fp8(): - k = (k_load.to(tl.float32) * k_scale).to(q.dtype) + k = (k_load.to(tl.float32) * tl.load(k_scale)).to(q.dtype) else: k = k_load @@ -181,7 +181,7 @@ def _fwd_kernel( ((start_n + offs_n[:, None]) < cur_batch_ctx_len), other=0.0) # [N,D] if v_load.dtype.is_fp8(): - v = (v_load.to(tl.float32) * v_scale).to(q.dtype) + v = (v_load.to(tl.float32) * tl.load(v_scale)).to(q.dtype) else: v = v_load p = p.to(v.dtype) diff --git a/vllm/config.py b/vllm/config.py index d695fbc196dc6..0f6a5293aa5db 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -111,11 +111,6 @@ class ModelConfig: decoding draft models. quantization: Quantization method that was used to quantize the model weights. If None, we assume the model weights are not quantized. - quantization_param_path: Path to JSON file containing scaling factors. - Used to load KV cache scaling factors into the model when KV cache - type is FP8_E4M3 on ROCm (AMD GPU). In the future these will also - be used to load activation and weight scaling factors when the - model dtype is FP8_E4M3 on ROCm. enforce_eager: Whether to enforce eager execution. If True, we will disable CUDA graph and always execute the model in eager mode. If False, we will use CUDA graph and eager execution in hybrid. @@ -179,7 +174,6 @@ def __init__(self, max_model_len: Optional[int] = None, spec_target_max_model_len: Optional[int] = None, quantization: Optional[str] = None, - quantization_param_path: Optional[str] = None, enforce_eager: Optional[bool] = None, max_seq_len_to_capture: Optional[int] = None, max_logprobs: int = 20, @@ -233,7 +227,6 @@ def __init__(self, else: self.tokenizer_revision = tokenizer_revision self.quantization = quantization - self.quantization_param_path = quantization_param_path self.enforce_eager = enforce_eager self.max_seq_len_to_capture = max_seq_len_to_capture self.max_logprobs = max_logprobs @@ -844,6 +837,7 @@ def __init__( sliding_window: Optional[int] = None, enable_prefix_caching: bool = False, cpu_offload_gb: float = 0, + calculate_kv_scales: Optional[bool] = None, ) -> None: self.block_size = block_size self.gpu_memory_utilization = gpu_memory_utilization @@ -854,7 +848,7 @@ def __init__( self.sliding_window = sliding_window self.enable_prefix_caching = enable_prefix_caching self.cpu_offload_gb = cpu_offload_gb - + self.calculate_kv_scales = calculate_kv_scales self._verify_args() self._verify_cache_dtype() self._verify_prefix_caching() @@ -863,6 +857,10 @@ def __init__( self.num_gpu_blocks: Optional[int] = None self.num_cpu_blocks: Optional[int] = None + # Set calculate_kv_scales to False if the value is unset. + if self.calculate_kv_scales is None: + self.calculate_kv_scales = False + def metrics_info(self): # convert cache_config to dict(key: str, value: str) for prometheus # metrics info @@ -2751,7 +2749,6 @@ def __str__(self): f"quantization={self.model_config.quantization}, " f"enforce_eager={self.model_config.enforce_eager}, " f"kv_cache_dtype={self.cache_config.cache_dtype}, " - f"quantization_param_path={self.model_config.quantization_param_path}," f" device_config={self.device_config.device}, " f"decoding_config={self.decoding_config!r}, " f"observability_config={self.observability_config!r}, " diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index 0aa367a173b6c..bac9527f285cb 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -99,7 +99,6 @@ class EngineArgs: config_format: ConfigFormat = ConfigFormat.AUTO dtype: str = 'auto' kv_cache_dtype: str = 'auto' - quantization_param_path: Optional[str] = None seed: int = 0 max_model_len: Optional[int] = None worker_use_ray: bool = False @@ -198,6 +197,7 @@ class EngineArgs: worker_cls: str = "auto" kv_transfer_config: Optional[KVTransferConfig] = None + calculate_kv_scales: Optional[bool] = None def __post_init__(self): if not self.tokenizer: @@ -347,17 +347,6 @@ def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser: help='Data type for kv cache storage. If "auto", will use model ' 'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. ' 'ROCm (AMD GPU) supports fp8 (=fp8_e4m3)') - parser.add_argument( - '--quantization-param-path', - type=nullable_str, - default=None, - help='Path to the JSON file containing the KV cache ' - 'scaling factors. This should generally be supplied, when ' - 'KV cache dtype is FP8. Otherwise, KV cache scaling factors ' - 'default to 1.0, which may cause accuracy issues. ' - 'FP8_E5M2 (without scaling) is only supported on cuda version ' - 'greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead ' - 'supported for common inference criteria.') parser.add_argument('--max-model-len', type=int, default=EngineArgs.max_model_len, @@ -941,6 +930,15 @@ def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser: default="auto", help='The worker class to use for distributed execution.') + parser.add_argument( + '--calculate-kv-scales', + action='store_true', + help='This enables dynamic calculation of ' + 'k_scale and v_scale when kv-cache-dtype is fp8. ' + 'If calculate-kv-scales is false, the scales will ' + 'be loaded from the model checkpoint if available. ' + 'Otherwise, the scales will default to 1.0.') + return parser @classmethod @@ -970,7 +968,6 @@ def create_model_config(self) -> ModelConfig: tokenizer_revision=self.tokenizer_revision, max_model_len=self.max_model_len, quantization=self.quantization, - quantization_param_path=self.quantization_param_path, enforce_eager=self.enforce_eager, max_seq_len_to_capture=self.max_seq_len_to_capture, max_logprobs=self.max_logprobs, @@ -1046,6 +1043,7 @@ def create_engine_config(self, sliding_window=model_config.get_sliding_window(), enable_prefix_caching=self.enable_prefix_caching, cpu_offload_gb=self.cpu_offload_gb, + calculate_kv_scales=self.calculate_kv_scales, ) parallel_config = ParallelConfig( pipeline_parallel_size=self.pipeline_parallel_size, diff --git a/vllm/envs.py b/vllm/envs.py index a26d7c39f3000..19e520691e436 100644 --- a/vllm/envs.py +++ b/vllm/envs.py @@ -83,6 +83,8 @@ VLLM_FP8_PADDING: bool = True VLLM_ENABLE_V1_MULTIPROCESSING: bool = True VLLM_LOG_BATCHSIZE_INTERVAL: float = -1 + K_SCALE_CONSTANT: int = 200 + V_SCALE_CONSTANT: int = 100 def get_default_cache_root(): @@ -528,6 +530,14 @@ def get_default_config_root(): "VLLM_FP8_PADDING": lambda: bool(int(os.getenv("VLLM_FP8_PADDING", "1"))), + # Divisor for dynamic key scale factor calculation for FP8 KV Cache + "K_SCALE_CONSTANT": + lambda: int(os.getenv("K_SCALE_CONSTANT", "200")), + + # Divisor for dynamic value scale factor calculation for FP8 KV Cache + "V_SCALE_CONSTANT": + lambda: int(os.getenv("V_SCALE_CONSTANT", "100")), + # If set, enable multiprocessing in LLM for the V1 code path. "VLLM_ENABLE_V1_MULTIPROCESSING": lambda: bool(int(os.getenv("VLLM_ENABLE_V1_MULTIPROCESSING", "1"))), diff --git a/vllm/model_executor/layers/quantization/kv_cache.py b/vllm/model_executor/layers/quantization/kv_cache.py index d79536d196b92..b386a9f309639 100644 --- a/vllm/model_executor/layers/quantization/kv_cache.py +++ b/vllm/model_executor/layers/quantization/kv_cache.py @@ -2,7 +2,8 @@ from vllm.model_executor.layers.quantization.base_config import ( QuantizationConfig, QuantizeMethodBase) -from vllm.utils import print_warning_once +from vllm.platforms import current_platform +from vllm.utils import is_navi, print_warning_once class BaseKVCacheMethod(QuantizeMethodBase): @@ -38,11 +39,16 @@ def apply(self, layer: torch.nn.Module) -> torch.Tensor: def process_weights_after_loading(self, layer: torch.nn.Module) -> None: # If the kv-cache dtype is auto, we enforce the k/v_scale to be 1.0 # regardless whether the kv-scale is available in the checkpoint. - if layer.kv_cache_dtype != "auto": + # No need to process kv scales after loading if we are going to + # calculate them on the fly. + if layer.kv_cache_dtype != "auto" and not layer.calculate_kv_scales: if layer.k_scale > 0.0 and layer.v_scale > 0.0: # We prefer to use separate k_scale and v_scale if present k_scale = layer.k_scale.to("cpu").tolist() v_scale = layer.v_scale.to("cpu").tolist() + if current_platform.is_rocm() and not is_navi(): + k_scale *= 2 + v_scale *= 2 elif layer.k_scale < 0.0 and layer.v_scale < 0.0: # If no scales were loaded (both scales are invalid negative # values), use the default value of 1.0 @@ -56,6 +62,9 @@ def process_weights_after_loading(self, layer: torch.nn.Module) -> None: scale_to_duplicate = max(layer.k_scale, layer.v_scale) k_scale = scale_to_duplicate.to("cpu").tolist() v_scale = scale_to_duplicate.to("cpu").tolist() + if current_platform.is_rocm() and not is_navi(): + k_scale *= 2 + v_scale *= 2 if not isinstance(k_scale, float) or not isinstance( v_scale, float): @@ -63,9 +72,9 @@ def process_weights_after_loading(self, layer: torch.nn.Module) -> None: "for fp8 KV cache") # These are used in the final Attention.forward() - layer._k_scale = k_scale - layer._v_scale = v_scale - if (layer._k_scale == 1.0 and layer._v_scale == 1.0 + layer._k_scale.copy_(k_scale) + layer._v_scale.copy_(v_scale) + if (k_scale == 1.0 and v_scale == 1.0 and "e5m2" not in layer.kv_cache_dtype): print_warning_once( "Using KV cache scaling factor 1.0 for fp8_e4m3. This " diff --git a/vllm/model_executor/model_loader/weight_utils.py b/vllm/model_executor/model_loader/weight_utils.py index 9488d54edf365..0fd5840cb79fe 100644 --- a/vllm/model_executor/model_loader/weight_utils.py +++ b/vllm/model_executor/model_loader/weight_utils.py @@ -6,8 +6,7 @@ import os import tempfile from collections import defaultdict -from typing import (Any, Callable, Dict, Generator, Iterable, List, Optional, - Tuple, Union) +from typing import Any, Callable, Dict, Generator, List, Optional, Tuple, Union import filelock import gguf @@ -23,7 +22,6 @@ from vllm.logger import init_logger from vllm.model_executor.layers.quantization import (QuantizationConfig, get_quantization_config) -from vllm.model_executor.layers.quantization.schema import QuantParamSchema from vllm.platforms import current_platform from vllm.utils import print_warning_once @@ -469,46 +467,6 @@ def gguf_quant_weights_iterator( yield name, param -def kv_cache_scales_loader( - filename: str, tp_rank: int, tp_size: int, num_hidden_layers: int, - model_type: Optional[str]) -> Iterable[Tuple[int, float]]: - """ - A simple utility to read in KV cache scaling factors that have been - previously serialized to disk. Used by the model to populate the appropriate - KV cache scaling factors. The serialization should represent a dictionary - whose keys are the TP ranks and values are another dictionary mapping layers - to their KV cache scaling factors. - Keep this function in sync with the output of examples/fp8/extract_scales.py - """ - try: - with open(filename) as f: - context = { - "model_type": model_type, - "num_hidden_layers": num_hidden_layers, - "tp_rank": tp_rank, - "tp_size": tp_size, - } - schema_dct = json.load(f) - schema = QuantParamSchema.model_validate(schema_dct, - context=context) - layer_scales_map = schema.kv_cache.scaling_factor[tp_rank] - return layer_scales_map.items() - - except FileNotFoundError: - logger.error("File or directory '%s' not found.", filename) - except json.JSONDecodeError: - logger.error("Error decoding JSON in file '%s'.", filename) - except Exception: - logger.exception("An error occurred while reading '%s'.", filename) - # This section is reached if and only if any of the excepts are hit - # Return an empty iterable (list) => no KV cache scales are loaded - # which ultimately defaults to 1.0 scales - logger.warning( - "Defaulting to KV cache scaling factors = 1.0 for all " - "layers in TP rank %d as an error occurred during loading.", tp_rank) - return [] - - def convert_pyslice_to_tensor(x: Any) -> torch.Tensor: """convert PySafeSlice object from safetensors to torch.Tensor diff --git a/vllm/model_executor/models/exaone.py b/vllm/model_executor/models/exaone.py index 0398f0943a70a..6926de007bc84 100644 --- a/vllm/model_executor/models/exaone.py +++ b/vllm/model_executor/models/exaone.py @@ -30,8 +30,7 @@ from vllm.attention import Attention, AttentionMetadata from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig -from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank, - get_tensor_model_parallel_world_size) +from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import (MergedColumnParallelLinear, @@ -46,9 +45,8 @@ from vllm.model_executor.layers.vocab_parallel_embedding import ( DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import ( - default_weight_loader, kv_cache_scales_loader, maybe_remap_kv_scale_name) + default_weight_loader, maybe_remap_kv_scale_name) from vllm.model_executor.sampling_metadata import SamplingMetadata -from vllm.platforms import current_platform from vllm.sequence import IntermediateTensors from vllm.transformers_utils.configs.exaone import ExaoneConfig @@ -583,31 +581,3 @@ def load_weights(self, weights: Iterable[Tuple[str, weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params - - # If this function is called, it should always initialize KV cache scale - # factors (or else raise an exception). Thus, handled exceptions should - # make sure to leave KV cache scale factors in a known good (dummy) state - def load_kv_cache_scales(self, quantization_param_path: str) -> None: - tp_size = get_tensor_model_parallel_world_size() - tp_rank = get_tensor_model_parallel_rank() - for layer_idx, scaling_factor in kv_cache_scales_loader( - quantization_param_path, - tp_rank, - tp_size, - self.config.num_hidden_layers, - self.config.__class__.model_type, - ): - if not isinstance(self.transformer.h[layer_idx], nn.Identity): - layer_self_attn = self.transformer.h[layer_idx].attn - - if current_platform.is_rocm(): - # The scaling factor convention we are assuming is - # quantized_value * scaling_factor ~= true_value - # which is consistent with the practice of setting - # scaling_factor = tensor_amax / FPtype_max - scaling_factor *= 2 - if hasattr(layer_self_attn, "kv_scale"): - layer_self_attn.attn._kv_scale = scaling_factor - else: - raise RuntimeError("Self attention has no KV cache scaling " - "factor attribute!") diff --git a/vllm/model_executor/models/granite.py b/vllm/model_executor/models/granite.py index f9e0443b9a508..6353a7703d6cb 100644 --- a/vllm/model_executor/models/granite.py +++ b/vllm/model_executor/models/granite.py @@ -29,8 +29,7 @@ from vllm.attention import Attention, AttentionMetadata from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig -from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank, - get_tensor_model_parallel_world_size) +from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import (MergedColumnParallelLinear, @@ -46,9 +45,8 @@ from vllm.model_executor.layers.vocab_parallel_embedding import ( DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import ( - default_weight_loader, kv_cache_scales_loader, maybe_remap_kv_scale_name) + default_weight_loader, maybe_remap_kv_scale_name) from vllm.model_executor.sampling_metadata import SamplingMetadata -from vllm.platforms import current_platform from vllm.sequence import IntermediateTensors from .interfaces import SupportsLoRA, SupportsPP @@ -525,28 +523,3 @@ def load_weights(self, weights: Iterable[Tuple[str, weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params - - # If this function is called, it should always initialize KV cache scale - # factors (or else raise an exception). Thus, handled exceptions should - # make sure to leave KV cache scale factors in a known good (dummy) state - def load_kv_cache_scales(self, quantization_param_path: str) -> None: - tp_size = get_tensor_model_parallel_world_size() - tp_rank = get_tensor_model_parallel_rank() - for layer_idx, scaling_factor in kv_cache_scales_loader( - quantization_param_path, tp_rank, tp_size, - self.config.num_hidden_layers, - self.config.__class__.model_type): - if not isinstance(self.model.layers[layer_idx], nn.Identity): - layer_self_attn = self.model.layers[layer_idx].self_attn - - if current_platform.is_rocm(): - # The scaling factor convention we are assuming is - # quantized_value * scaling_factor ~= true_value - # which is consistent with the practice of setting - # scaling_factor = tensor_amax / FPtype_max - scaling_factor *= 2 - if hasattr(layer_self_attn, "kv_scale"): - layer_self_attn.attn._kv_scale = scaling_factor - else: - raise RuntimeError("Self attention has no KV cache scaling " - "factor attribute!") diff --git a/vllm/model_executor/models/llama.py b/vllm/model_executor/models/llama.py index a0987b15aafb4..514ba946af6f7 100644 --- a/vllm/model_executor/models/llama.py +++ b/vllm/model_executor/models/llama.py @@ -31,8 +31,7 @@ from vllm.attention import Attention, AttentionMetadata from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig -from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank, - get_tensor_model_parallel_world_size) +from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import (MergedColumnParallelLinear, @@ -48,7 +47,7 @@ from vllm.model_executor.layers.vocab_parallel_embedding import ( DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import ( - default_weight_loader, kv_cache_scales_loader, maybe_remap_kv_scale_name) + default_weight_loader, maybe_remap_kv_scale_name) from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.platforms import current_platform from vllm.sequence import IntermediateTensors @@ -467,32 +466,6 @@ def load_weights(self, weights: Iterable[Tuple[str, loaded_params.add(name) return loaded_params - # If this function is called, it should always initialize KV cache scale - # factors (or else raise an exception). Thus, handled exceptions should - # make sure to leave KV cache scale factors in a known good (dummy) state - def load_kv_cache_scales(self, quantization_param_path: str) -> None: - tp_size = get_tensor_model_parallel_world_size() - tp_rank = get_tensor_model_parallel_rank() - for layer_idx, scaling_factor in kv_cache_scales_loader( - quantization_param_path, tp_rank, tp_size, - self.config.num_hidden_layers, - self.config.__class__.model_type): - if not isinstance(self.layers[layer_idx], nn.Identity): - layer_self_attn = self.layers[layer_idx].self_attn - - # Navi4x quantization should be treated as CUDA devices. - if current_platform.is_rocm() and not is_navi(): - # The scaling factor convention we are assuming is - # quantized_value * scaling_factor ~= true_value - # which is consistent with the practice of setting - # scaling_factor = tensor_amax / FPtype_max - scaling_factor *= 2 - if hasattr(layer_self_attn, "kv_scale"): - layer_self_attn.attn._kv_scale = scaling_factor - else: - raise RuntimeError("Self attention has no KV cache scaling " - "factor attribute!") - class LlamaForCausalLM(nn.Module, SupportsLoRA, SupportsPP): packed_modules_mapping = { @@ -630,9 +603,6 @@ def load_weights(self, weights: Iterable[Tuple[str, self.maybe_remap_mistral(name, loaded_weight) for name, loaded_weight in weights) - def load_kv_cache_scales(self, quantization_param_path: str) -> None: - self.model.load_kv_cache_scales(quantization_param_path) - # This function is used to remap the mistral format as # used by Mistral and Llama <=2 def maybe_remap_mistral( diff --git a/vllm/model_executor/models/solar.py b/vllm/model_executor/models/solar.py index caae0b65d7d10..087697bc45e61 100644 --- a/vllm/model_executor/models/solar.py +++ b/vllm/model_executor/models/solar.py @@ -30,8 +30,7 @@ from vllm.attention import Attention, AttentionMetadata from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig -from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank, - get_tensor_model_parallel_world_size) +from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import (MergedColumnParallelLinear, @@ -46,9 +45,8 @@ from vllm.model_executor.layers.vocab_parallel_embedding import ( DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import ( - default_weight_loader, kv_cache_scales_loader, maybe_remap_kv_scale_name) + default_weight_loader, maybe_remap_kv_scale_name) from vllm.model_executor.sampling_metadata import SamplingMetadata -from vllm.platforms import current_platform from vllm.sequence import IntermediateTensors from .interfaces import SupportsLoRA, SupportsPP @@ -542,31 +540,3 @@ def load_weights(self, weights: Iterable[Tuple[str, weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params - - # If this function is called, it should always initialize KV cache scale - # factors (or else raise an exception). Thus, handled exceptions should - # make sure to leave KV cache scale factors in a known good (dummy) state - def load_kv_cache_scales(self, quantization_param_path: str) -> None: - tp_size = get_tensor_model_parallel_world_size() - tp_rank = get_tensor_model_parallel_rank() - for layer_idx, scaling_factor in kv_cache_scales_loader( - quantization_param_path, - tp_rank, - tp_size, - self.config.num_hidden_layers, - self.config.__class__.model_type, - ): - if not isinstance(self.model.layers[layer_idx], nn.Identity): - layer_self_attn = self.model.layers[layer_idx].self_attn - - if current_platform.is_rocm(): - # The scaling factor convention we are assuming is - # quantized_value * scaling_factor ~= true_value - # which is consistent with the practice of setting - # scaling_factor = tensor_amax / FPtype_max - scaling_factor *= 2 - if hasattr(layer_self_attn, "kv_scale"): - layer_self_attn.attn._kv_scale = scaling_factor - else: - raise RuntimeError("Self attention has no KV cache scaling " - "factor attribute!") diff --git a/vllm/worker/model_runner.py b/vllm/worker/model_runner.py index 2cddc4fa6eb0f..e33a51887d827 100644 --- a/vllm/worker/model_runner.py +++ b/vllm/worker/model_runner.py @@ -3,7 +3,6 @@ import inspect import itertools import time -import warnings import weakref from dataclasses import dataclass from typing import (TYPE_CHECKING, Any, Callable, Dict, List, Optional, Set, @@ -38,7 +37,6 @@ from vllm.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs, MultiModalKwargs, MultiModalPlaceholderMap, MultiModalRegistry) -from vllm.platforms import current_platform from vllm.prompt_adapter.layers import PromptAdapterMapping from vllm.prompt_adapter.request import PromptAdapterRequest from vllm.prompt_adapter.worker_manager import ( @@ -176,6 +174,8 @@ def from_broadcasted_tensor_dict( if attn_backend is not None: tensor_dict = _init_attn_metadata_from_tensor_dict( attn_backend, tensor_dict) + if "enable_kv_scales_calculation" in tensor_dict: + tensor_dict.pop("enable_kv_scales_calculation") return cls(**tensor_dict) @@ -1134,33 +1134,6 @@ def load_model(self) -> None: self.prompt_adapter_manager.create_prompt_adapter_manager( self.model)) - if self.kv_cache_dtype == "fp8" and current_platform.is_rocm(): - # Currently only ROCm accepts kv-cache scaling factors - # via quantization_param_path and this will be deprecated - # in the future. - if self.model_config.quantization_param_path is not None: - if callable(getattr(self.model, "load_kv_cache_scales", None)): - warnings.warn( - "Loading kv cache scaling factor from JSON is " - "deprecated and will be removed. Please include " - "kv cache scaling factors in the model checkpoint.", - FutureWarning, - stacklevel=2) - self.model.load_kv_cache_scales( - self.model_config.quantization_param_path) - logger.info("Loaded KV cache scaling factors from %s", - self.model_config.quantization_param_path) - else: - raise RuntimeError( - "Using FP8 KV cache and scaling factors provided but " - "model %s does not support loading scaling factors.", - self.model.__class__) - else: - logger.warning( - "Using FP8 KV cache but no scaling factors " - "provided. Defaulting to scaling factors of 1.0. " - "This may lead to less accurate results!") - if self.vllm_config.compilation_config.level ==\ CompilationLevel.DYNAMO_AS_IS and supports_dynamo(): backend = self.vllm_config.compilation_config.init_backend( @@ -1326,6 +1299,10 @@ def profile_run(self) -> None: dtype=self.model_config.dtype, device=self.device) + # Disable KV Scale Calculation for dummy data during profile run + if model_input.attn_metadata is not None: + model_input.attn_metadata.enable_kv_scales_calculation = False + self.execute_model(model_input, kv_caches, intermediate_tensors) torch.cuda.synchronize() return @@ -1458,7 +1435,8 @@ def capture_model(self, kv_caches: List[List[torch.Tensor]]) -> None: batch_size, is_encoder_decoder_model=self.model_config. is_encoder_decoder)) - + # Disable KV Scale Calculation for graph capture + attn_metadata.enable_kv_scales_calculation = False if self.lora_config: lora_mapping = LoRAMapping( **dict(index_mapping=[0] * batch_size, diff --git a/vllm/worker/model_runner_base.py b/vllm/worker/model_runner_base.py index cd4770202a186..4a3f711e3a9ed 100644 --- a/vllm/worker/model_runner_base.py +++ b/vllm/worker/model_runner_base.py @@ -47,7 +47,8 @@ def _init_attn_metadata_from_tensor_dict( # Extract the fields used to create AttentionMetadata. valid_attn_kwargs = {} for field in dataclasses.fields(attn_backend.get_metadata_cls()): - if field.name in tensor_dict: + if field.name in tensor_dict and field.name != \ + 'enable_kv_scales_calculation': valid_attn_kwargs[field.name] = tensor_dict.pop(field.name) attn_metadata = attn_backend.make_metadata(**valid_attn_kwargs) From c77eb8a33ceb62858d951ffef87ae626a0d09973 Mon Sep 17 00:00:00 2001 From: Michael Goin Date: Tue, 17 Dec 2024 19:34:06 -0500 Subject: [PATCH 208/733] [Bugfix] Set temperature=0.7 in test_guided_choice_chat (#11264) --- tests/entrypoints/openai/test_chat.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/tests/entrypoints/openai/test_chat.py b/tests/entrypoints/openai/test_chat.py index 8d23a2be6f9bb..47c521a9b5eb5 100644 --- a/tests/entrypoints/openai/test_chat.py +++ b/tests/entrypoints/openai/test_chat.py @@ -482,6 +482,7 @@ async def test_guided_choice_chat(client: openai.AsyncOpenAI, model=MODEL_NAME, messages=messages, max_completion_tokens=10, + temperature=0.7, extra_body=dict(guided_choice=sample_guided_choice, guided_decoding_backend=guided_decoding_backend)) choice1 = chat_completion.choices[0].message.content @@ -496,6 +497,7 @@ async def test_guided_choice_chat(client: openai.AsyncOpenAI, model=MODEL_NAME, messages=messages, max_completion_tokens=10, + temperature=0.7, extra_body=dict(guided_choice=sample_guided_choice, guided_decoding_backend=guided_decoding_backend)) choice2 = chat_completion.choices[0].message.content From bf8717ebaea8d74279df84fbe127ad22cf62e219 Mon Sep 17 00:00:00 2001 From: Cody Yu Date: Tue, 17 Dec 2024 16:37:59 -0800 Subject: [PATCH 209/733] [V1] Prefix caching for vision language models (#11187) Signed-off-by: Cody Yu --- tests/v1/core/test_prefix_caching.py | 88 +++++++++++++++++++- tests/v1/engine/test_engine_args.py | 15 ---- vllm/engine/arg_utils.py | 27 ++++--- vllm/inputs/data.py | 20 +++++ vllm/multimodal/inputs.py | 3 + vllm/v1/core/kv_cache_manager.py | 74 +++++++++++------ vllm/v1/core/kv_cache_utils.py | 115 ++++++++++++++++++++++++--- vllm/v1/core/scheduler.py | 2 + vllm/v1/engine/async_llm.py | 10 ++- vllm/v1/engine/core.py | 8 +- vllm/v1/engine/llm_engine.py | 9 ++- vllm/v1/engine/mm_input_mapper.py | 33 ++++---- vllm/v1/engine/processor.py | 12 +-- vllm/v1/request.py | 24 +++++- 14 files changed, 342 insertions(+), 98 deletions(-) diff --git a/tests/v1/core/test_prefix_caching.py b/tests/v1/core/test_prefix_caching.py index 00f7b0fcfe1dc..ed04f0a373c51 100644 --- a/tests/v1/core/test_prefix_caching.py +++ b/tests/v1/core/test_prefix_caching.py @@ -2,16 +2,23 @@ import pytest from vllm.inputs import token_inputs +from vllm.multimodal.inputs import PlaceholderRange from vllm.sampling_params import SamplingParams from vllm.utils import cdiv from vllm.v1.core.kv_cache_manager import KVCacheManager, Request from vllm.v1.core.kv_cache_utils import KVCacheBlock, hash_block_tokens -def make_request(request_id, prompt_token_ids): +def make_request(request_id, + prompt_token_ids, + mm_positions=None, + mm_hashes=None): return Request( request_id=request_id, - inputs=token_inputs(prompt_token_ids=prompt_token_ids), + inputs=token_inputs(prompt_token_ids=prompt_token_ids, + multi_modal_placeholders={"image": mm_positions} + if mm_positions else None, + multi_modal_hashes=mm_hashes), sampling_params=SamplingParams(max_tokens=17), eos_token_id=100, arrival_time=0, @@ -38,6 +45,7 @@ def test_prefill(): all_token_ids = common_token_ids + unique_token_ids req0 = make_request("0", all_token_ids) computed_blocks = manager.get_computed_blocks(req0) + assert len(req0.kv_block_hashes) == 3 assert not computed_blocks blocks = manager.allocate_slots(req0, 55, computed_blocks) assert [b.block_id for b in blocks] == [0, 1, 2, 3, 4] @@ -61,6 +69,7 @@ def test_prefill(): unique_token_ids = [3] * 5 req1 = make_request("1", common_token_ids + unique_token_ids) computed_blocks = manager.get_computed_blocks(req1) + assert len(req1.kv_block_hashes) == 3 assert [b.block_id for b in computed_blocks] == [0, 1, 2] num_new_tokens = 53 - 3 * 16 blocks = manager.allocate_slots(req1, num_new_tokens, computed_blocks) @@ -90,6 +99,7 @@ def test_prefill(): unique_token_ids = [3] * 6 req2 = make_request("2", common_token_ids + unique_token_ids) computed_block = manager.get_computed_blocks(req2) + assert len(req2.kv_block_hashes) == 3 assert [b.block_id for b in computed_block] == [0, 1, 2] num_new_tokens = 53 - 3 * 16 blocks = manager.allocate_slots(req2, num_new_tokens, computed_blocks) @@ -416,3 +426,77 @@ def test_cache_blocks(): ) assert len(manager.cached_block_hash_to_block) == 3 assert blocks[0].block_hash is not None + + +def test_mm_prefix_caching(): + """ + This tests that the multi-modal prefix caching is correct. + """ + manager = KVCacheManager( + block_size=16, + num_gpu_blocks=10, + max_model_len=8192, + sliding_window=None, + enable_caching=True, + num_preallocate_tokens=16, + ) + + # Common prompt tokens (T is text tokens and P is image placeholder tokens) + # [T,...,T, P0,...,P0], [P0,...,P0,T,...,T,P1,...,P1], [P1,...,P1] + common_token_ids = list(range(10)) + [-1] * 6 + common_token_ids += [-1] * 4 + list(range(10, 20)) + [-1] * 2 + common_token_ids += [-1] * 16 + + common_mm_positions = [ + PlaceholderRange(offset=11, length=10), + PlaceholderRange(offset=30, length=18), + ] + common_mm_hashes = ["aaa", "bbb"] + + # A unique image plus some text tokens. + unique_token_ids = [-1] * 7 + [100] * 4 + all_token_ids = common_token_ids + unique_token_ids + mm_positions = common_mm_positions + [ + PlaceholderRange(offset=48, length=7) + ] + mm_hashes = common_mm_hashes + ["ccc"] + req0 = make_request("0", + all_token_ids, + mm_positions=mm_positions, + mm_hashes=mm_hashes) + computed_blocks = manager.get_computed_blocks(req0) + + # Completed block should have hashes with extra keys. + assert not computed_blocks + assert len(req0.kv_block_hashes) == 3 + assert req0.kv_block_hashes[0].extra_keys == (("aaa", 0), ) + assert req0.kv_block_hashes[1].extra_keys == (("aaa", 5), ("bbb", 0)) + assert req0.kv_block_hashes[2].extra_keys == (("bbb", 2), ) + + blocks = manager.allocate_slots(req0, 59, computed_blocks) + assert [b.block_id for b in blocks] == [0, 1, 2, 3, 4] + req0.num_computed_tokens = 59 + + # Append slots without allocating a new block. + for _ in range(5): + req0.append_output_token_ids(8) + new_blocks = manager.append_slots(req0, 5) + assert new_blocks is not None and len(new_blocks) == 0 + + # The just completed block should have hashes with extra keys. + assert len(req0.kv_block_hashes) == 4 + assert req0.kv_block_hashes[3].extra_keys == (("ccc", 0), ) + + # Cache hit. + unique_token_ids = [-1] * 7 + [200] * 5 + all_token_ids = common_token_ids + unique_token_ids + mm_positions = common_mm_positions + [ + PlaceholderRange(offset=48, length=7) + ] + mm_hashes = common_mm_hashes + ["ccc"] + req1 = make_request("1", + all_token_ids, + mm_positions=mm_positions, + mm_hashes=mm_hashes) + computed_blocks = manager.get_computed_blocks(req1) + assert len(computed_blocks) == 3 diff --git a/tests/v1/engine/test_engine_args.py b/tests/v1/engine/test_engine_args.py index ac5e7dde525a7..ff38a4568ecb1 100644 --- a/tests/v1/engine/test_engine_args.py +++ b/tests/v1/engine/test_engine_args.py @@ -31,14 +31,6 @@ def test_prefix_caching_from_cli(): assert engine_args.enable_prefix_caching -def test_defaults(): - engine_args = EngineArgs(model="facebook/opt-125m") - - # Assert V1 defaults - assert (engine_args.enable_prefix_caching - ), "V1 turns on prefix caching by default" - - def test_defaults_with_usage_context(): engine_args = EngineArgs(model="facebook/opt-125m") vllm_config: VllmConfig = engine_args.create_engine_config( @@ -52,10 +44,3 @@ def test_defaults_with_usage_context(): UsageContext.OPENAI_API_SERVER) assert vllm_config.scheduler_config.max_num_seqs == 1024 assert vllm_config.scheduler_config.max_num_batched_tokens == 2048 - - -def test_prefix_cache_disabled_with_multimodel(): - engine_args = EngineArgs(model="llava-hf/llava-1.5-7b-hf") - - vllm_config = engine_args.create_engine_config(UsageContext.LLM_CLASS) - assert not vllm_config.cache_config.enable_prefix_caching diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index f6d276fe7c0c8..674577f23eba6 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -205,6 +205,7 @@ def __post_init__(self): # by user. if self.enable_prefix_caching is None: self.enable_prefix_caching = bool(envs.VLLM_USE_V1) + # Override max_num_seqs if it's not set by user. if self.max_num_seqs is None: self.max_num_seqs = 256 if not envs.VLLM_USE_V1 else 1024 @@ -1026,11 +1027,11 @@ def create_engine_config(self, device_config = DeviceConfig(device=self.device) model_config = self.create_model_config() - if model_config.is_multimodal_model: - if self.enable_prefix_caching: - logger.warning( - "--enable-prefix-caching is currently not " - "supported for multimodal models and has been disabled.") + if (model_config.is_multimodal_model and not envs.VLLM_USE_V1 + and self.enable_prefix_caching): + logger.warning("--enable-prefix-caching is currently not " + "supported for multimodal models in v0 and " + "has been disabled.") self.enable_prefix_caching = False cache_config = CacheConfig( @@ -1249,11 +1250,14 @@ def _override_v1_engine_args(self, usage_context: UsageContext) -> None: # When no user override, set the default values based on the usage # context. # TODO(woosuk): Tune the default values for different hardware. - if self.max_num_batched_tokens is None: - if usage_context == UsageContext.LLM_CLASS: - self.max_num_batched_tokens = 8192 - elif usage_context == UsageContext.OPENAI_API_SERVER: - self.max_num_batched_tokens = 2048 + default_max_num_batched_tokens = { + UsageContext.LLM_CLASS: 8192, + UsageContext.OPENAI_API_SERVER: 2048, + } + if (self.max_num_batched_tokens is None + and usage_context in default_max_num_batched_tokens): + self.max_num_batched_tokens = default_max_num_batched_tokens[ + usage_context] logger.warning( "Setting max_num_batched_tokens to %d for %s usage context.", self.max_num_batched_tokens, usage_context.value) @@ -1263,9 +1267,6 @@ def _override_v1_engine_config(self, engine_config: VllmConfig) -> None: Override the EngineConfig's configs based on the usage context for V1. """ assert envs.VLLM_USE_V1, "V1 is not enabled" - if engine_config.model_config.is_multimodal_model: - # TODO (ywang96): Enable APC by default when VLM supports it. - assert not engine_config.cache_config.enable_prefix_caching @dataclass diff --git a/vllm/inputs/data.py b/vllm/inputs/data.py index 85aaaa776907f..d54cbb5c37819 100644 --- a/vllm/inputs/data.py +++ b/vllm/inputs/data.py @@ -162,6 +162,11 @@ class TokenInputs(TypedDict): Placeholder ranges for the multi-modal data. """ + multi_modal_hashes: NotRequired[List[str]] + """ + The hashes of the multi-modal data. + """ + mm_processor_kwargs: NotRequired[Dict[str, Any]] """ Optional multi-modal processor kwargs to be forwarded to the @@ -177,6 +182,7 @@ def token_inputs( prompt: Optional[str] = None, multi_modal_data: Optional["MultiModalDataDict"] = None, multi_modal_inputs: Optional["MultiModalKwargs"] = None, + multi_modal_hashes: Optional[List[str]] = None, multi_modal_placeholders: Optional["MultiModalPlaceholderDict"] = None, mm_processor_kwargs: Optional[Dict[str, Any]] = None, ) -> TokenInputs: @@ -191,6 +197,8 @@ def token_inputs( inputs["multi_modal_data"] = multi_modal_data if multi_modal_inputs is not None: inputs["multi_modal_inputs"] = multi_modal_inputs + if multi_modal_hashes is not None: + inputs["multi_modal_hashes"] = multi_modal_hashes if multi_modal_placeholders is not None: inputs["multi_modal_placeholders"] = multi_modal_placeholders if mm_processor_kwargs is not None: @@ -295,6 +303,18 @@ def multi_modal_inputs(self) -> Union[Dict, "MultiModalKwargs"]: assert_never(inputs) + @cached_property + def multi_modal_hashes(self) -> List[str]: + inputs = self.inputs + + if inputs["type"] == "token": + return inputs.get("multi_modal_hashes", []) + + if inputs["type"] == "multimodal": + return inputs.get("mm_hashes", []) + + assert_never(inputs) + @cached_property def multi_modal_placeholders(self) -> "MultiModalPlaceholderDict": inputs = self.inputs diff --git a/vllm/multimodal/inputs.py b/vllm/multimodal/inputs.py index 229a8fbdf5831..c00943a5f26d9 100644 --- a/vllm/multimodal/inputs.py +++ b/vllm/multimodal/inputs.py @@ -215,6 +215,9 @@ class MultiModalInputsV2(TypedDict): mm_kwargs: MultiModalKwargs """Keyword arguments to be directly passed to the model after batching.""" + mm_hashes: NotRequired[List[str]] + """The hashes of the multi-modal data.""" + mm_placeholders: MultiModalPlaceholderDict """ For each modality, information about the placeholder tokens in diff --git a/vllm/v1/core/kv_cache_manager.py b/vllm/v1/core/kv_cache_manager.py index aaa44c930e324..61a3f5fd6d841 100644 --- a/vllm/v1/core/kv_cache_manager.py +++ b/vllm/v1/core/kv_cache_manager.py @@ -4,7 +4,9 @@ from vllm.logger import init_logger from vllm.utils import cdiv from vllm.v1.core.kv_cache_utils import (BlockHashType, FreeKVCacheBlockQueue, - KVCacheBlock, hash_block_tokens, + KVCacheBlock, + generate_block_hash_extra_keys, + hash_block_tokens, hash_request_tokens) from vllm.v1.request import Request @@ -83,10 +85,12 @@ def get_computed_blocks(self, request: Request) -> List[KVCacheBlock]: computed_blocks = [] - # TODO(rickyx): potentially we could cache this so we don't have to - # recompute it every time. - block_hashes = hash_request_tokens(self.block_size, - request.all_token_ids) + # The block hashes for the request may already be computed + # if the request was preempted and resumed. + if not request.kv_block_hashes: + request.set_kv_block_hashes( + hash_request_tokens(self.block_size, request)) + block_hashes = request.kv_block_hashes for block_hash in block_hashes: # block_hashes is a chain of block hashes. If a block hash is not @@ -242,14 +246,16 @@ def allocate_slots( num_computed_tokens = len(computed_blocks) * self.block_size num_full_blocks = (num_computed_tokens + num_tokens) // self.block_size - self._cache_full_blocks( - request=request, - blk_start_idx=len(computed_blocks), - # The new full blocks are the full blocks that are not computed. - full_blocks=self.req_to_blocks[request.request_id] - [len(computed_blocks):num_full_blocks], - prev_block=computed_blocks[-1] if computed_blocks else None, - ) + new_full_blocks = self.req_to_blocks[ + request.request_id][len(computed_blocks):num_full_blocks] + if new_full_blocks: + self._cache_full_blocks( + request=request, + blk_start_idx=len(computed_blocks), + # The new full blocks are the full blocks that are not computed. + full_blocks=new_full_blocks, + prev_block=computed_blocks[-1] if computed_blocks else None, + ) return new_blocks @@ -376,6 +382,8 @@ def _cache_full_blocks( full_blocks: The list of blocks to update hash metadata. prev_block: The previous block in the chain. """ + num_cached_block_hashes = len(request.kv_block_hashes) + # Update the new blocks with the block hashes through the chain. prev_block_hash_value = None if prev_block is not None: @@ -387,17 +395,35 @@ def _cache_full_blocks( for i, blk in enumerate(full_blocks): blk_idx = blk_start_idx + i - block_tokens = request.all_token_ids[blk_idx * - self.block_size:(blk_idx + - 1) * - self.block_size] - assert len(block_tokens) == self.block_size, ( - f"Expected {self.block_size} tokens, got {len(block_tokens)} " - f"at {blk_idx}th block for request " - f"{request.request_id}({request})") - - # Compute the hash of the current block. - block_hash = hash_block_tokens(prev_block_hash_value, block_tokens) + if blk_idx < num_cached_block_hashes: + # The block hash may already be computed in + # "get_computed_blocks" if the tokens are not generated by + # this request (either the prompt tokens or the previously + # generated tokens with preemption). In this case we simply + # reuse the block hash. + block_hash = request.kv_block_hashes[blk_idx] + else: + # Otherwise compute the block hash and cache it in the request + # in case it will be preempted in the future. + start_token_idx = blk_idx * self.block_size + end_token_idx = (blk_idx + 1) * self.block_size + block_tokens = request.all_token_ids[ + start_token_idx:end_token_idx] + assert len(block_tokens) == self.block_size, ( + f"Expected {self.block_size} tokens, got " + f"{len(block_tokens)} at {blk_idx}th block for request " + f"{request.request_id}({request})") + + # Generate extra keys for multi-modal inputs. Note that since + # we reach to this branch only when the block is completed with + # generated tokens, we only need to consider the last mm input. + extra_keys, _ = generate_block_hash_extra_keys( + request, start_token_idx, end_token_idx, -1) + + # Compute the hash of the current block. + block_hash = hash_block_tokens(prev_block_hash_value, + block_tokens, extra_keys) + request.append_kv_block_hashes(block_hash) # Update and added the full block to the cache. blk.block_hash = block_hash diff --git a/vllm/v1/core/kv_cache_utils.py b/vllm/v1/core/kv_cache_utils.py index 0ba338aa5a3d2..d80ea128c7749 100644 --- a/vllm/v1/core/kv_cache_utils.py +++ b/vllm/v1/core/kv_cache_utils.py @@ -1,20 +1,25 @@ """KV-Cache Utilities.""" from collections.abc import Sequence from dataclasses import dataclass -from typing import List, NamedTuple, Optional, Tuple +from typing import Any, List, NamedTuple, Optional, Tuple from vllm.logger import init_logger +from vllm.v1.request import Request logger = init_logger(__name__) class BlockHashType(NamedTuple): - """Hash value of a block and the token IDs in the block. - The reason we keep a tuple of token IDs is to make sure no hash - collision happens when the hash value is the same. + """Hash value of a block (int), the token IDs in the block, and extra keys. + The reason we keep a tuple of token IDs and extra keys is to make sure + no hash collision happens when the hash value is the same. """ + # Hash value of the block in an integer. hash_value: int + # Token IDs in the block. token_ids: Tuple[int, ...] + # Extra keys for the block. + extra_keys: Optional[Any] = None @dataclass @@ -159,8 +164,80 @@ def get_all_free_blocks(self) -> List[KVCacheBlock]: return ret -def hash_block_tokens(parent_block_hash: Optional[int], - curr_block_token_ids: Sequence[int]) -> BlockHashType: +def generate_block_hash_extra_keys( + request: Request, start_token_idx: int, end_token_idx: int, + start_mm_idx: int) -> Tuple[Optional[Tuple[Any, ...]], int]: + """Generate extra keys for the block hash. The extra keys can come from + the multi-modal inputs and request specific metadata (e.g., LoRA ID). + For multi-modal inputs, the extra keys are (mm_hash, start_offset) that + indicate a mm input contained in the block and its starting offset in + the block tokens. + + Args: + request: The request object. + start_token_idx: The start token index of the block. + end_token_idx: The end token index of the block. + start_mm_idx: The start multi-modal index of the block. + + Returns: + A tuple of extra keys and the next multi-modal index. + """ + + mm_positions, mm_hashes = request.mm_positions, request.mm_hashes + if not mm_positions: + return None, start_mm_idx + + if mm_positions and len(mm_positions) != len(mm_hashes): + raise ValueError( + "The number of multi-modal positions and hashes must match. This " + "is likely because you do not enable MM preprocessor hashing. " + "Please set mm_cache_preprocessor=True.") + + # Note that we assume mm_positions is sorted by offset. + # We do not need to check all mm inputs if the start token index is out of + # range. This usually happens in the late prefill phase and decoding phase. + if mm_positions[-1]["offset"] + mm_positions[-1][ + "length"] < start_token_idx: + return None, start_mm_idx + + # Support start_mm_idx == -1 to indicate the last mm input. + if start_mm_idx < 0: + assert -start_mm_idx <= len(mm_positions) + start_mm_idx = len(mm_positions) + start_mm_idx + + extra_keys = [] + curr_mm_idx = start_mm_idx + while mm_positions and curr_mm_idx < len(mm_positions): + assert mm_hashes[curr_mm_idx] is not None + offset = mm_positions[curr_mm_idx]["offset"] + length = mm_positions[curr_mm_idx]["length"] + if end_token_idx > offset: + if start_token_idx > offset + length: + # This block has passed the current mm input. + curr_mm_idx += 1 + continue + + # The block contains the current mm input. + mm_start = max(0, start_token_idx - offset) + extra_keys.append((mm_hashes[curr_mm_idx], mm_start)) + if end_token_idx >= offset + length: + # If this block contains the end of the current mm input, + # move to the next mm input as this block may also contain + # the next mm input. + curr_mm_idx += 1 + else: + # Otherwise this block is done with mm inputs. + break + else: + # This block has not reached the current mm input. + break + return tuple(extra_keys), curr_mm_idx + + +def hash_block_tokens( + parent_block_hash: Optional[int], + curr_block_token_ids: Sequence[int], + extra_keys: Optional[Tuple[Any, ...]] = None) -> BlockHashType: """Computes a hash value corresponding to the contents of a block and the contents of the preceding block(s). The hash value is used for prefix caching. We use LRU cache for this function to avoid recomputing @@ -174,27 +251,39 @@ def hash_block_tokens(parent_block_hash: Optional[int], if this is the first block. curr_block_token_ids: A list of token ids in the current block. The current block is assumed to be full. + extra_keys: Extra keys for the block. Returns: The hash value of the block and the token ids in the block. The entire tuple is used as the hash key of the block. """ return BlockHashType(hash((parent_block_hash, *curr_block_token_ids)), - tuple(curr_block_token_ids)) + tuple(curr_block_token_ids), extra_keys) def hash_request_tokens(block_size: int, - token_ids: Sequence[int]) -> List[BlockHashType]: + request: Request) -> List[BlockHashType]: """Computes hash values of a chain of blocks given a sequence of token IDs. The hash value is used for prefix caching. Args: block_size: The size of each block. - token_ids: A sequence of token ids in the request. + request: The request object. Returns: The list of computed hash values. """ + token_ids = request.all_token_ids + mm_positions, mm_hashes = request.mm_positions, request.mm_hashes + if mm_positions and len(mm_positions) != len(mm_hashes): + raise ValueError( + "The number of multi-modal positions and hashes must match.") + + # TODO: Extend this to support other features such as LoRA. + need_extra_keys = bool(mm_positions) + extra_keys = None + curr_mm_idx = 0 + ret = [] parent_block_hash_value = None for start in range(0, len(token_ids), block_size): @@ -203,8 +292,14 @@ def hash_request_tokens(block_size: int, # Do not hash the block if it is not full. if len(block_token_ids) < block_size: break + + # Add extra keys if the block is a multi-modal block. + if need_extra_keys: + extra_keys, curr_mm_idx = generate_block_hash_extra_keys( + request, start, end, curr_mm_idx) + block_hash = hash_block_tokens(parent_block_hash_value, - block_token_ids) + block_token_ids, extra_keys) ret.append(block_hash) parent_block_hash_value = block_hash.hash_value return ret diff --git a/vllm/v1/core/scheduler.py b/vllm/v1/core/scheduler.py index 178532e477dae..08e7c0fd4dc9b 100644 --- a/vllm/v1/core/scheduler.py +++ b/vllm/v1/core/scheduler.py @@ -516,6 +516,7 @@ class NewRequestData: prompt_token_ids: List[int] prompt: Optional[str] mm_inputs: List["MultiModalKwargs"] + mm_hashes: List[str] mm_positions: List["PlaceholderRange"] sampling_params: SamplingParams block_ids: List[int] @@ -533,6 +534,7 @@ def from_request( prompt_token_ids=request.prompt_token_ids, prompt=request.prompt, mm_inputs=request.mm_inputs, + mm_hashes=request.mm_hashes, mm_positions=request.mm_positions, sampling_params=request.sampling_params, block_ids=block_ids, diff --git a/vllm/v1/engine/async_llm.py b/vllm/v1/engine/async_llm.py index b36de5f66917c..41fb4b25d45bb 100644 --- a/vllm/v1/engine/async_llm.py +++ b/vllm/v1/engine/async_llm.py @@ -60,9 +60,13 @@ def __init__( self.client_aborted_requests: List[str] = [] # Processor (converts Inputs --> EngineCoreRequests). - self.processor = Processor(vllm_config.model_config, - vllm_config.lora_config, self.tokenizer, - input_registry) + self.processor = Processor( + model_config=vllm_config.model_config, + cache_config=vllm_config.cache_config, + lora_config=vllm_config.lora_config, + tokenizer=self.tokenizer, + input_registry=input_registry, + ) # Detokenizer (converts EngineCoreOutputs --> RequestOutput). self.detokenizer = Detokenizer( diff --git a/vllm/v1/engine/core.py b/vllm/v1/engine/core.py index 56d4dc67e4a0e..497d5db5b4c99 100644 --- a/vllm/v1/engine/core.py +++ b/vllm/v1/engine/core.py @@ -65,7 +65,8 @@ def __init__( self._last_logging_time = time.time() - self.mm_input_mapper_server = MMInputMapperServer() + self.mm_input_mapper_server = MMInputMapperServer( + vllm_config.model_config) def _initialize_kv_caches(self, cache_config: CacheConfig) -> Tuple[int, int]: @@ -98,9 +99,8 @@ def add_request(self, request: EngineCoreRequest): # MM mapper, so anything that has a hash must have a HIT cache # entry here as well. assert request.mm_inputs is not None - request.mm_inputs, request.mm_hashes = ( - self.mm_input_mapper_server.process_inputs( - request.mm_inputs, request.mm_hashes)) + request.mm_inputs = self.mm_input_mapper_server.process_inputs( + request.mm_inputs, request.mm_hashes) req = Request.from_engine_core_request(request) diff --git a/vllm/v1/engine/llm_engine.py b/vllm/v1/engine/llm_engine.py index 15dedbd0f9529..bea8c5502f612 100644 --- a/vllm/v1/engine/llm_engine.py +++ b/vllm/v1/engine/llm_engine.py @@ -55,9 +55,12 @@ def __init__( self.tokenizer.ping() # Processor (convert Inputs --> EngineCoreRequests) - self.processor = Processor(vllm_config.model_config, - vllm_config.lora_config, self.tokenizer, - input_registry, mm_registry) + self.processor = Processor(model_config=vllm_config.model_config, + cache_config=vllm_config.cache_config, + lora_config=vllm_config.lora_config, + tokenizer=self.tokenizer, + input_registry=input_registry, + mm_registry=mm_registry) # Detokenizer (converts EngineCoreOutputs --> RequestOutput) self.detokenizer = Detokenizer( diff --git a/vllm/v1/engine/mm_input_mapper.py b/vllm/v1/engine/mm_input_mapper.py index 6cdeba6f3f71e..e53ba092ede04 100644 --- a/vllm/v1/engine/mm_input_mapper.py +++ b/vllm/v1/engine/mm_input_mapper.py @@ -1,4 +1,4 @@ -from typing import Any, Dict, List, Optional, Tuple +from typing import Any, Dict, List, Optional import PIL from blake3 import blake3 @@ -42,6 +42,8 @@ def __init__( model_config) self.mm_registry.init_mm_limits_per_prompt(model_config) + # Init cache + self.use_cache = model_config.mm_cache_preprocessor self.mm_cache = LRUDictCache[str, MultiModalKwargs](MM_CACHE_SIZE) # DEBUG: Set to None to disable @@ -61,7 +63,7 @@ def process_inputs( mm_hashes: Optional[List[str]], mm_processor_kwargs: Optional[Dict[str, Any]], precomputed_mm_inputs: Optional[List[MultiModalKwargs]], - ) -> Tuple[List[MultiModalKwargs], Optional[List[str]]]: + ) -> List[MultiModalKwargs]: if precomputed_mm_inputs is None: image_inputs = mm_data["image"] if not isinstance(image_inputs, list): @@ -70,26 +72,21 @@ def process_inputs( else: num_inputs = len(precomputed_mm_inputs) - # Check if hash is enabled - use_hash = mm_hashes is not None - if use_hash: + # Sanity + if self.use_cache: assert mm_hashes is not None - assert num_inputs == len( - mm_hashes), "num_inputs = {} len(mm_hashes) = {}".format( - num_inputs, len(mm_hashes)) + assert num_inputs == len(mm_hashes) # Process each image input separately, so that later we can schedule # them in a fine-grained manner. # Apply caching (if enabled) and reuse precomputed inputs (if provided) - ret_hashes: Optional[List[str]] = [] if use_hash else None ret_inputs: List[MultiModalKwargs] = [] for input_id in range(num_inputs): if self.mm_debug_cache_hit_ratio_steps is not None: self.cache_hit_ratio(self.mm_debug_cache_hit_ratio_steps) - mm_hash = None mm_input = None - if use_hash: + if self.use_cache: assert mm_hashes is not None mm_hash = mm_hashes[input_id] mm_input = self.mm_cache.get(mm_hash) @@ -106,7 +103,7 @@ def process_inputs( mm_processor_kwargs=mm_processor_kwargs, ) - if use_hash: + if self.use_cache: # Add to cache assert mm_hash is not None self.mm_cache.put(mm_hash, mm_input) @@ -114,18 +111,15 @@ def process_inputs( self.mm_cache_hits += 1 mm_input = None # Avoids sending mm_input to Server - if use_hash: - assert mm_hash is not None - assert ret_hashes is not None - ret_hashes.append(mm_hash) ret_inputs.append(mm_input) - return ret_inputs, ret_hashes + return ret_inputs class MMInputMapperServer: - def __init__(self, ): + def __init__(self, model_config): + self.use_cache = model_config.mm_cache_preprocessor self.mm_cache = LRUDictCache[str, MultiModalKwargs](MM_CACHE_SIZE) def process_inputs( @@ -135,6 +129,9 @@ def process_inputs( ) -> List[MultiModalKwargs]: assert len(mm_inputs) == len(mm_hashes) + if not self.use_cache: + return mm_inputs + full_mm_inputs = [] for mm_input, mm_hash in zip(mm_inputs, mm_hashes): assert mm_hash is not None diff --git a/vllm/v1/engine/processor.py b/vllm/v1/engine/processor.py index 679bf8e25e9ca..732757d6b0ac2 100644 --- a/vllm/v1/engine/processor.py +++ b/vllm/v1/engine/processor.py @@ -1,7 +1,7 @@ import time from typing import Any, Dict, Mapping, Optional, Tuple, Union -from vllm.config import LoRAConfig, ModelConfig +from vllm.config import CacheConfig, LoRAConfig, ModelConfig from vllm.inputs import (INPUT_REGISTRY, InputRegistry, ProcessorInputs, PromptType, SingletonInputsAdapter) from vllm.inputs.parse import is_encoder_decoder_inputs @@ -23,6 +23,7 @@ class Processor: def __init__( self, model_config: ModelConfig, + cache_config: CacheConfig, lora_config: Optional[LoRAConfig], tokenizer: BaseTokenizerGroup, input_registry: InputRegistry = INPUT_REGISTRY, @@ -45,8 +46,9 @@ def __init__( self.mm_input_mapper_client = MMInputMapperClient(model_config) # Multi-modal hasher (for images) - self.mm_hasher = MMHasher( - ) if model_config.mm_cache_preprocessor else None + self.use_hash = model_config.mm_cache_preprocessor or \ + cache_config.enable_prefix_caching + self.mm_hasher = MMHasher() # TODO: run in an ThreadpoolExecutor or BackgroundProcess. # This ideally should releases the GIL, so we should not block the @@ -77,7 +79,7 @@ def process_inputs( # Compute MM hashes (if enabled) mm_hashes = None - if self.mm_hasher is not None: + if self.use_hash: mm_hashes = self.mm_hasher.hash(prompt) # Process inputs. @@ -118,7 +120,7 @@ def process_inputs( # Apply MM mapper mm_inputs = None if len(decoder_inputs.multi_modal_data) > 0: - mm_inputs, mm_hashes = self.mm_input_mapper_client.process_inputs( + mm_inputs = self.mm_input_mapper_client.process_inputs( decoder_inputs.multi_modal_data, mm_hashes, decoder_inputs.mm_processor_kwargs, precomputed_mm_inputs) diff --git a/vllm/v1/request.py b/vllm/v1/request.py index 1737d096e811d..f4783ae366ef0 100644 --- a/vllm/v1/request.py +++ b/vllm/v1/request.py @@ -1,5 +1,5 @@ import enum -from typing import List, Optional, Union +from typing import TYPE_CHECKING, List, Optional, Union from vllm.inputs import DecoderOnlyInputs, SingletonInputsAdapter, token_inputs from vllm.lora.request import LoRARequest @@ -9,6 +9,9 @@ from vllm.v1.engine import EngineCoreRequest from vllm.v1.utils import ConstantList +if TYPE_CHECKING: + from vllm.v1.core.kv_cache_utils import BlockHashType + class Request: @@ -45,6 +48,7 @@ def __init__( self._all_token_ids: List[int] = self.prompt_token_ids.copy() self.num_computed_tokens = 0 + # Multi-modal input metadata. mm_positions = self.inputs.multi_modal_placeholders if mm_positions: # FIXME(woosuk): Support other modalities. @@ -56,6 +60,12 @@ def __init__( if self.inputs.multi_modal_inputs: self.mm_inputs = self.inputs.multi_modal_inputs + self.mm_hashes: List[str] = self.inputs.multi_modal_hashes + + # Cache the computed kv block hashes of the request to avoid + # recomputing. + self._kv_block_hashes: List[BlockHashType] = [] + @classmethod def from_engine_core_request(cls, request: EngineCoreRequest) -> "Request": return cls( @@ -65,6 +75,7 @@ def from_engine_core_request(cls, request: EngineCoreRequest) -> "Request": prompt=request.prompt, multi_modal_data=None, multi_modal_inputs=request.mm_inputs, + multi_modal_hashes=request.mm_hashes, multi_modal_placeholders=request.mm_placeholders, mm_processor_kwargs=None, ), @@ -121,6 +132,17 @@ def get_num_encoder_tokens(self, input_id: int) -> int: num_tokens = self.mm_positions[input_id]["length"] return num_tokens + @property + def kv_block_hashes(self) -> ConstantList["BlockHashType"]: + # Prevent directly appending to the kv_block_hashes. + return ConstantList(self._kv_block_hashes) + + def set_kv_block_hashes(self, value: List["BlockHashType"]) -> None: + self._kv_block_hashes = value + + def append_kv_block_hashes(self, block_hash: "BlockHashType") -> None: + self._kv_block_hashes.append(block_hash) + class RequestStatus(enum.IntEnum): """Status of a request.""" From 866fa4550d572f4ff3521ccf503e0df2e76591a1 Mon Sep 17 00:00:00 2001 From: Konrad Zawora Date: Wed, 18 Dec 2024 01:39:07 +0100 Subject: [PATCH 210/733] [Bugfix] Restore support for larger block sizes (#11259) Signed-off-by: Konrad Zawora --- vllm/config.py | 4 ++++ vllm/engine/arg_utils.py | 6 ++++-- 2 files changed, 8 insertions(+), 2 deletions(-) diff --git a/vllm/config.py b/vllm/config.py index 9ecd3e72afa9f..307cf9c8d5b2a 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -917,6 +917,10 @@ def _verify_args(self) -> None: raise ValueError( "GPU memory utilization must be less than 1.0. Got " f"{self.gpu_memory_utilization}.") + if (current_platform.is_cuda() and self.block_size is not None + and self.block_size > 32): + raise ValueError("CUDA Paged Attention kernel only supports " + f"block sizes up to 32. Got {self.block_size}.") def _verify_cache_dtype(self) -> None: if self.cache_dtype == "auto": diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index 674577f23eba6..64cc4592c2861 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -424,10 +424,12 @@ def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser: parser.add_argument('--block-size', type=int, default=EngineArgs.block_size, - choices=[8, 16, 32], + choices=[8, 16, 32, 64, 128], help='Token block size for contiguous chunks of ' 'tokens. This is ignored on neuron devices and ' - 'set to max-model-len') + 'set to max-model-len. On CUDA devices, ' + 'only block sizes up to 32 are supported. ' + 'On HPU devices, block size defaults to 128.') parser.add_argument( "--enable-prefix-caching", From 8b79f9e107fd4214187bf65485b3ea1bb3191a46 Mon Sep 17 00:00:00 2001 From: Wallas Henrique Date: Wed, 18 Dec 2024 03:34:08 -0300 Subject: [PATCH 211/733] [Bugfix] Fix guided decoding with tokenizer mode mistral (#11046) --- .buildkite/test-pipeline.yaml | 6 +- requirements-common.txt | 3 +- .../model_executor/test_guided_processors.py | 54 ++++++++- .../decoder_only/language/test_mistral.py | 86 ++++++++++++- .../guided_decoding/xgrammar_decoding.py | 113 +++++++++++------- vllm/transformers_utils/tokenizer.py | 2 +- vllm/transformers_utils/tokenizers/mistral.py | 5 +- 7 files changed, 217 insertions(+), 52 deletions(-) diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index 44f47fac1c1b3..b563c96343f92 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -224,8 +224,12 @@ steps: mirror_hardwares: [amd] source_file_dependencies: - vllm/model_executor/layers + - vllm/model_executor/guided_decoding - tests/test_logits_processor - command: pytest -v -s test_logits_processor.py + - tests/model_executor/test_guided_processors + commands: + - pytest -v -s test_logits_processor.py + - pytest -v -s model_executor/test_guided_processors.py - label: Speculative decoding tests # 30min source_file_dependencies: diff --git a/requirements-common.txt b/requirements-common.txt index bd2b4b7a01668..1c935303c8d79 100644 --- a/requirements-common.txt +++ b/requirements-common.txt @@ -14,12 +14,13 @@ aiohttp openai >= 1.45.0 # Ensure modern openai package (ensure types module present and max_completion_tokens field support) uvicorn[standard] pydantic >= 2.9 # Required for fastapi >= 0.113.0 -pillow # Required for image processing prometheus_client >= 0.18.0 +pillow # Required for image processing prometheus-fastapi-instrumentator >= 7.0.0 tiktoken >= 0.6.0 # Required for DBRX tokenizer lm-format-enforcer >= 0.10.9, < 0.11 outlines == 0.1.11 +lark == 1.2.2 xgrammar >= 0.1.6; platform_machine == "x86_64" typing_extensions >= 4.10 filelock >= 3.16.1 # need to contain https://github.com/tox-dev/filelock/pull/317 diff --git a/tests/model_executor/test_guided_processors.py b/tests/model_executor/test_guided_processors.py index 9f4d81b583141..3334c0df149b5 100644 --- a/tests/model_executor/test_guided_processors.py +++ b/tests/model_executor/test_guided_processors.py @@ -1,13 +1,19 @@ +import pickle + import pytest import torch from transformers import AutoTokenizer +from vllm.config import ModelConfig from vllm.model_executor.guided_decoding import ( - get_guided_decoding_logits_processor) + get_guided_decoding_logits_processor, + get_local_guided_decoding_logits_processor) from vllm.model_executor.guided_decoding.outlines_logits_processors import ( JSONLogitsProcessor, RegexLogitsProcessor) from vllm.sampling_params import GuidedDecodingParams +MODEL_NAME = 'HuggingFaceH4/zephyr-7b-beta' + def test_guided_logits_processors(sample_regex, sample_json_schema): """Basic unit test for RegexLogitsProcessor and JSONLogitsProcessor.""" @@ -38,14 +44,29 @@ def test_guided_logits_processors(sample_regex, sample_json_schema): @pytest.mark.asyncio @pytest.mark.parametrize("backend", ["outlines", "lm-format-enforcer", "xgrammar"]) -async def test_guided_logits_processor_black_box(backend: str, sample_regex, +@pytest.mark.parametrize("is_local", [True, False]) +async def test_guided_logits_processor_black_box(backend: str, is_local: bool, + sample_regex, sample_json_schema): - tokenizer = AutoTokenizer.from_pretrained('HuggingFaceH4/zephyr-7b-beta') + + config = ModelConfig( + MODEL_NAME, + task="generate", + tokenizer=MODEL_NAME, + tokenizer_mode="auto", + trust_remote_code=False, + seed=0, + dtype="bfloat16", + ) + tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) token_ids = tokenizer.encode( f"Give an example IPv4 address with this regex: {sample_regex}") regex_request = GuidedDecodingParams(regex=sample_regex, backend=backend) - regex_lp = await get_guided_decoding_logits_processor( - regex_request, tokenizer) + + regex_lp = get_local_guided_decoding_logits_processor( + regex_request, tokenizer, config) if is_local else \ + await get_guided_decoding_logits_processor( + regex_request, tokenizer, config) assert regex_lp is not None tensor = torch.rand(32000) original_tensor = torch.clone(tensor) @@ -59,7 +80,7 @@ async def test_guided_logits_processor_black_box(backend: str, sample_regex, json_request = GuidedDecodingParams(json=sample_json_schema, backend=backend) json_lp = await get_guided_decoding_logits_processor( - json_request, tokenizer) + json_request, tokenizer, config) assert json_lp is not None tensor = torch.rand(32000) original_tensor = torch.clone(tensor) @@ -84,3 +105,24 @@ def test_multiple_guided_options_not_allowed(sample_json_schema, sample_regex): with pytest.raises(ValueError, match="You can only use one kind of guided"): GuidedDecodingParams(json=sample_json_schema, grammar="test grammar") + + +def test_pickle_xgrammar_tokenizer_data(): + + # TODO: move to another test file for xgrammar + try: + import xgrammar as xgr + except ImportError: + pytest.skip("Could not import xgrammar to run test") + + from vllm.model_executor.guided_decoding.xgrammar_decoding import ( + TokenizerData) + tokenizer_data = TokenizerData(vocab_type=xgr.VocabType.RAW) + pickled = pickle.dumps(tokenizer_data) + + assert pickled is not None + + depickled: TokenizerData = pickle.loads(pickled) + + assert depickled is not None + assert depickled.vocab_type == xgr.VocabType.RAW diff --git a/tests/models/decoder_only/language/test_mistral.py b/tests/models/decoder_only/language/test_mistral.py index 99b5d5694f9f7..bdc1571784b5d 100644 --- a/tests/models/decoder_only/language/test_mistral.py +++ b/tests/models/decoder_only/language/test_mistral.py @@ -3,17 +3,20 @@ Run `pytest tests/models/test_mistral.py`. """ import copy +import json +import jsonschema +import jsonschema.exceptions import pytest -from vllm import SamplingParams from vllm.entrypoints.openai.tool_parsers.mistral_tool_parser import ( # noqa MistralToolParser) +from vllm.sampling_params import GuidedDecodingParams, SamplingParams from ...utils import check_logprobs_close MODELS = [ - "mistralai/Mistral-7B-Instruct-v0.1", + "mistralai/Mistral-7B-Instruct-v0.3", ] MISTRAL_FORMAT_MODELS = [ @@ -126,6 +129,45 @@ } ] +SAMPLE_JSON_SCHEMA = { + "type": "object", + "properties": { + "name": { + "type": "string" + }, + "age": { + "type": "integer" + }, + "skills": { + "type": "array", + "items": { + "type": "string", + "maxLength": 10 + }, + "minItems": 3 + }, + "work_history": { + "type": "array", + "items": { + "type": "object", + "properties": { + "company": { + "type": "string" + }, + "duration": { + "type": "number" + }, + "position": { + "type": "string" + } + }, + "required": ["company", "position"] + } + } + }, + "required": ["name", "age", "skills", "work_history"] +} + @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["bfloat16"]) @@ -251,3 +293,43 @@ def test_mistral_function_calling( assert parsed_message.tool_calls[ 0].function.arguments == '{"city": "Dallas", "state": "TX", "unit": "fahrenheit"}' # noqa assert parsed_message.content is None + + +@pytest.mark.parametrize("model", MODELS) +@pytest.mark.parametrize("guided_backend", + ["outlines", "lm-format-enforcer", "xgrammar"]) +def test_mistral_guided_decoding( + vllm_runner, + model: str, + guided_backend: str, +) -> None: + with vllm_runner(model, dtype='bfloat16', + tokenizer_mode="mistral") as vllm_model: + + guided_decoding = GuidedDecodingParams(json=SAMPLE_JSON_SCHEMA, + backend=guided_backend) + params = SamplingParams(max_tokens=512, + temperature=0.7, + guided_decoding=guided_decoding) + + messages = [{ + "role": "system", + "content": "you are a helpful assistant" + }, { + "role": + "user", + "content": + f"Give an example JSON for an employee profile that " + f"fits this schema: {SAMPLE_JSON_SCHEMA}" + }] + outputs = vllm_model.model.chat(messages, sampling_params=params) + + generated_text = outputs[0].outputs[0].text + json_response = json.loads(generated_text) + assert outputs is not None + + try: + jsonschema.validate(instance=json_response, + schema=SAMPLE_JSON_SCHEMA) + except jsonschema.exceptions.ValidationError: + pytest.fail("Generated response is not valid with JSON schema") diff --git a/vllm/model_executor/guided_decoding/xgrammar_decoding.py b/vllm/model_executor/guided_decoding/xgrammar_decoding.py index fc45e37cf6f06..5b97f03257502 100644 --- a/vllm/model_executor/guided_decoding/xgrammar_decoding.py +++ b/vllm/model_executor/guided_decoding/xgrammar_decoding.py @@ -3,7 +3,7 @@ import json from dataclasses import dataclass, field -from typing import TYPE_CHECKING, Any, NamedTuple +from typing import TYPE_CHECKING, Any import torch from transformers import PreTrainedTokenizerFast @@ -16,6 +16,7 @@ from vllm.model_executor.guided_decoding.xgrammar_utils import ( convert_lark_to_gbnf, grammar_is_likely_lark) +from vllm.transformers_utils.tokenizers.mistral import MistralTokenizer if TYPE_CHECKING: from transformers import PreTrainedTokenizer @@ -37,11 +38,21 @@ def get_local_xgrammar_guided_decoding_logits_processor( return XGrammarLogitsProcessor(config) -class TokenizerData(NamedTuple): +@dataclass(frozen=True) +class TokenizerData: """Immutable container for cached tokenizer data.""" - encoded_vocab: list[str] - stop_token_ids: list[int] | None - backend_str: str + encoded_vocab: list[str] = field(default_factory=list) + stop_token_ids: list[int] | None = None + # These fields are mutually exclusive: `backend_str` is used to create a + # TokenizeInfo with `TokenizerInfo.from_huggingface` while `vocab_type` is + # used within the constructor of TokenizeInfo + backend_str: str | None = None + vocab_type: xgr.VocabType | None = None + + def __post_init__(self): + # Check for mutual exclusive + assert not (self.backend_str and self.vocab_type), \ + "backend_str and vocab_type are mutual exclusive" class TokenizerDataCache: @@ -68,18 +79,27 @@ def get_tokenizer_data(cls, "get_vocab method.") from e stop_token_ids = None - backend_str = xgr.VocabType.RAW + backend_str = "" + vocab_type = xgr.VocabType.RAW + + if stop_token_ids is None and hasattr( + tokenizer, + "eos_token_id") and tokenizer.eos_token_id is not None: + stop_token_ids = [tokenizer.eos_token_id] + if isinstance(tokenizer, PreTrainedTokenizerFast): backend_str = tokenizer.backend_tokenizer.to_str() - if stop_token_ids is None and hasattr( - tokenizer, - "eos_token_id") and tokenizer.eos_token_id is not None: - stop_token_ids = [tokenizer.eos_token_id] + vocab_type = None + + elif isinstance(tokenizer, MistralTokenizer): + # REF: https://github.com/mlc-ai/xgrammar/blob/5e141f6ff1ca02bc31f9e512e68b61f2a8ae88e5/tests/python/test_tokenizer_info.py#L43 # noqa: E501 + vocab_type = xgr.VocabType.BYTE_FALLBACK cls._cache[tokenizer_hash] = TokenizerData( encoded_vocab=encoded_vocab, stop_token_ids=stop_token_ids, - backend_str=backend_str) + backend_str=backend_str, + vocab_type=vocab_type) return cls._cache[tokenizer_hash] @@ -98,11 +118,30 @@ def get_compiler(cls, config: GrammarConfig) -> xgr.GrammarCompiler: cache_key = str(config.tokenizer_hash) if cache_key not in cls._cache: - assert config.encoded_vocab is not None - tokenizer_info = xgr.TokenizerInfo._create_from_handle( - xgr_core.TokenizerInfo.from_huggingface( - config.encoded_vocab, config.backend_str, - config.vocab_size, config.stop_token_ids)) + assert config.tokenizer_data is not None + assert config.tokenizer_data.encoded_vocab is not None + + config_data = config.tokenizer_data + + # In TokenizerDataCache.get_tokenizer_data, a serializable + # tokenizer_data is created and cached. This data is used to build + # a tokenizer_info and create an xgrammar compiler. + # - If tokenizer_data has backend_str set, use + # xgr_core.TokenizerInfo.from_huggingface (a C++ bind). + # - Otherwise, use the default constructor with vocab_type. + # - xgr_core.TokenizerInfo.from_huggingface != + # xgr.TokenizerInfo.from_huggingface. + if config_data.backend_str: + tokenizer_info = xgr.TokenizerInfo._create_from_handle( + xgr_core.TokenizerInfo.from_huggingface( + config_data.encoded_vocab, config_data.backend_str, + config.vocab_size, config_data.stop_token_ids)) + else: + tokenizer_info = xgr.TokenizerInfo( + config_data.encoded_vocab, + config_data.vocab_type, + vocab_size=config.vocab_size, + stop_token_ids=config_data.stop_token_ids) cls._cache[cache_key] = xgr.GrammarCompiler( tokenizer_info, max_threads=config.max_threads) @@ -118,10 +157,7 @@ class GrammarConfig: grammar_str: str | None = None json_object: bool | None = None max_threads: int = 8 - # Only populated if tokenizer_hash not in cache - encoded_vocab: list[str] | None = None - stop_token_ids: list[int] | None = None - backend_str: str | None = None + tokenizer_data: TokenizerData | None = None @classmethod def from_guided_params(cls, @@ -132,9 +168,6 @@ def from_guided_params(cls, tokenizer_hash = hash(tokenizer) tokenizer_data = TokenizerDataCache.get_tokenizer_data(tokenizer) - encoded_vocab = tokenizer_data.encoded_vocab - stop_token_ids = tokenizer_data.stop_token_ids - backend_str = tokenizer_data.backend_str if guided_params.json: if not isinstance(guided_params.json, str): @@ -152,11 +185,9 @@ def from_guided_params(cls, return cls(json_str=json_str, vocab_size=model_config.hf_text_config.vocab_size, - encoded_vocab=encoded_vocab, - stop_token_ids=stop_token_ids, - backend_str=backend_str, tokenizer_hash=tokenizer_hash, - max_threads=max_threads) + max_threads=max_threads, + tokenizer_data=tokenizer_data) elif guided_params.grammar: # XGrammar only supports GBNF grammars, so we must convert Lark if grammar_is_likely_lark(guided_params.grammar): @@ -181,19 +212,17 @@ def from_guided_params(cls, return cls(grammar_str=grammar_str, vocab_size=model_config.hf_text_config.vocab_size, - encoded_vocab=encoded_vocab, - stop_token_ids=stop_token_ids, - backend_str=backend_str, tokenizer_hash=tokenizer_hash, - max_threads=max_threads) + max_threads=max_threads, + tokenizer_data=tokenizer_data) elif guided_params.json_object: - return cls(json_object=True, - vocab_size=model_config.hf_text_config.vocab_size, - encoded_vocab=encoded_vocab, - stop_token_ids=stop_token_ids, - backend_str=backend_str, - tokenizer_hash=tokenizer_hash, - max_threads=max_threads) + return cls( + json_object=True, + vocab_size=model_config.hf_text_config.vocab_size, + tokenizer_hash=tokenizer_hash, + max_threads=max_threads, + tokenizer_data=tokenizer_data, + ) else: raise ValueError( "Currently only support JSON and EBNF grammar mode for xgrammar" @@ -269,10 +298,14 @@ def __call__(self, input_ids: list[int], # fill_next_token_bitmask so we move it to the device of scores device_type = scores.device.type if device_type != "cuda": - scores = scores.to("cpu") + scores = scores.to("cpu").unsqueeze(0) + + # Note: In this method, if the tensors have different dimensions + # on CPU device fails, but on GPU it runs without error. Hence the + # unsqueeze above for scores, to match the token bitmask shape xgr.apply_token_bitmask_inplace(scores, self.token_bitmask.to(scores.device)) if device_type != "cuda": - scores = scores.to(device_type) + scores = scores.to(device_type).squeeze() return scores diff --git a/vllm/transformers_utils/tokenizer.py b/vllm/transformers_utils/tokenizer.py index 54f9f895fe541..e6701f4c4b835 100644 --- a/vllm/transformers_utils/tokenizer.py +++ b/vllm/transformers_utils/tokenizer.py @@ -132,7 +132,7 @@ def get_tokenizer( if is_from_mistral_org and tokenizer_mode != "mistral": warnings.warn( 'It is strongly recommended to run mistral models with ' - '`--tokenizer_mode "mistral"` to ensure correct ' + '`--tokenizer-mode "mistral"` to ensure correct ' 'encoding and decoding.', FutureWarning, stacklevel=2) diff --git a/vllm/transformers_utils/tokenizers/mistral.py b/vllm/transformers_utils/tokenizers/mistral.py index 83b3c37d6f04c..17d722e3d88fe 100644 --- a/vllm/transformers_utils/tokenizers/mistral.py +++ b/vllm/transformers_utils/tokenizers/mistral.py @@ -314,12 +314,15 @@ def _token_to_id(t: str): if regular_tokens: decoded_list.append( - self.decode(regular_tokens)) # type: ignore + self.tokenizer.decode(regular_tokens)) # type: ignore decoded = ''.join(decoded_list) return decoded + # WARN: Outlines logits processors can overwrite this method. + # See: guided_decoding/outlines_logits_processors.py::_adapt_tokenizer + # for more. def decode(self, ids: Union[List[int], int], skip_special_tokens: bool = True) -> str: From f04e407e6b6b9ce65c16cffda836f05c2ad32682 Mon Sep 17 00:00:00 2001 From: Yan Ma Date: Wed, 18 Dec 2024 14:34:23 +0800 Subject: [PATCH 212/733] [MISC][XPU]update ipex link for CI fix (#11278) --- requirements-xpu.txt | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/requirements-xpu.txt b/requirements-xpu.txt index e41295792283f..42c6c321d040c 100644 --- a/requirements-xpu.txt +++ b/requirements-xpu.txt @@ -9,8 +9,8 @@ setuptools-scm>=8 wheel jinja2 -torch @ https://intel-extension-for-pytorch.s3.us-east-1.amazonaws.com/ipex_dev/xpu/torch-2.5.0a0%2Bgite84e33f-cp310-cp310-linux_x86_64.whl -intel-extension-for-pytorch @ https://intel-extension-for-pytorch.s3.us-east-1.amazonaws.com/ipex_dev/xpu/intel_extension_for_pytorch-2.5.10%2Bgit9d489a8-cp310-cp310-linux_x86_64.whl -oneccl_bind_pt @ https://intel-extension-for-pytorch.s3.us-east-1.amazonaws.com/ipex_dev/xpu/oneccl_bind_pt-2.5.0%2Bxpu-cp310-cp310-linux_x86_64.whl +torch @ https://intel-optimized-pytorch.s3.cn-north-1.amazonaws.com.cn/ipex_dev/xpu/torch-2.5.0a0%2Bgite84e33f-cp310-cp310-linux_x86_64.whl +intel-extension-for-pytorch @ https://intel-optimized-pytorch.s3.cn-north-1.amazonaws.com.cn/ipex_dev/xpu/intel_extension_for_pytorch-2.5.10%2Bgit9d489a8-cp310-cp310-linux_x86_64.whl +oneccl_bind_pt @ https://intel-optimized-pytorch.s3.cn-north-1.amazonaws.com.cn/ipex_dev/xpu/oneccl_bind_pt-2.5.0%2Bxpu-cp310-cp310-linux_x86_64.whl triton-xpu == 3.0.0b1 From 60508ffda91c22e4cde3b18f149d222211db8886 Mon Sep 17 00:00:00 2001 From: Dipika Sikka Date: Wed, 18 Dec 2024 09:57:16 -0500 Subject: [PATCH 213/733] [Kernel]: Cutlass 2:4 Sparsity + FP8/Int8 Quant Support (#10995) Co-authored-by: Faraz Shahsavan Co-authored-by: ilmarkov Co-authored-by: Rahul Tuli Co-authored-by: rshaw@neuralmagic.com --- CMakeLists.txt | 26 +- .../cutlass_benchmarks/sparse_benchmarks.py | 384 ++++++++++++++ benchmarks/cutlass_benchmarks/utils.py | 96 ++++ .../cutlass_benchmarks/w8a8_benchmarks.py | 28 +- .../cutlass_benchmarks/weight_shapes.py | 2 +- csrc/core/math.hpp | 7 + csrc/cutlass_extensions/common.cpp | 11 + csrc/cutlass_extensions/common.hpp | 35 ++ .../epilogue/scaled_mm_epilogues_c3x.hpp | 4 +- csrc/ops.h | 9 + csrc/quantization/cutlass_w8a8/common.hpp | 27 - .../cutlass_w8a8/scaled_mm_c2x.cuh | 3 +- .../cutlass_w8a8/scaled_mm_c3x.cu | 3 +- .../cutlass_w8a8/scaled_mm_entry.cu | 12 +- csrc/sparse/cutlass/sparse_compressor_c3x.cu | 163 ++++++ .../sparse/cutlass/sparse_compressor_entry.cu | 42 ++ csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu | 303 +++++++++++ csrc/sparse/cutlass/sparse_scaled_mm_c3x.cuh | 496 ++++++++++++++++++ csrc/sparse/cutlass/sparse_scaled_mm_entry.cu | 59 +++ csrc/torch_bindings.cpp | 15 + pyproject.toml | 2 +- tests/kernels/test_semi_structured.py | 131 +++++ tests/quantization/test_compressed_tensors.py | 103 +++- tests/weight_loading/models.txt | 2 + .../run_model_weight_loading_test.sh | 4 + tests/weight_loading/test_weight_loading.py | 7 + vllm/_custom_ops.py | 103 ++++ .../compressed_tensors/compressed_tensors.py | 187 ++++++- .../compressed_tensors/schemes/__init__.py | 15 +- .../schemes/compressed_tensors_24.py | 203 +++++++ 30 files changed, 2365 insertions(+), 117 deletions(-) create mode 100644 benchmarks/cutlass_benchmarks/sparse_benchmarks.py create mode 100644 benchmarks/cutlass_benchmarks/utils.py create mode 100644 csrc/core/math.hpp create mode 100644 csrc/cutlass_extensions/common.cpp create mode 100644 csrc/cutlass_extensions/common.hpp delete mode 100644 csrc/quantization/cutlass_w8a8/common.hpp create mode 100644 csrc/sparse/cutlass/sparse_compressor_c3x.cu create mode 100644 csrc/sparse/cutlass/sparse_compressor_entry.cu create mode 100644 csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu create mode 100644 csrc/sparse/cutlass/sparse_scaled_mm_c3x.cuh create mode 100644 csrc/sparse/cutlass/sparse_scaled_mm_entry.cu create mode 100644 tests/kernels/test_semi_structured.py create mode 100644 vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py diff --git a/CMakeLists.txt b/CMakeLists.txt index bf19b3d227171..51b49a18dddf2 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -206,7 +206,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA") SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library") # Set CUTLASS_REVISION manually -- its revision detection doesn't work in this case. - set(CUTLASS_REVISION "v3.5.1" CACHE STRING "CUTLASS revision to use") + set(CUTLASS_REVISION "v3.6.0" CACHE STRING "CUTLASS revision to use") # Use the specified CUTLASS source directory for compilation if VLLM_CUTLASS_SRC_DIR is provided if (DEFINED ENV{VLLM_CUTLASS_SRC_DIR}) @@ -223,13 +223,13 @@ if(VLLM_GPU_LANG STREQUAL "CUDA") FetchContent_Declare( cutlass GIT_REPOSITORY https://github.com/nvidia/cutlass.git - GIT_TAG v3.5.1 + GIT_TAG 8aa95dbb888be6d81c6fbf7169718c5244b53227 GIT_PROGRESS TRUE # Speed up CUTLASS download by retrieving only the specified GIT_TAG instead of the history. # Important: If GIT_SHALLOW is enabled then GIT_TAG works only with branch names and tags. # So if the GIT_TAG above is updated to a commit hash, GIT_SHALLOW must be set to FALSE - GIT_SHALLOW TRUE + GIT_SHALLOW FALSE ) endif() FetchContent_MakeAvailable(cutlass) @@ -241,7 +241,10 @@ if(VLLM_GPU_LANG STREQUAL "CUDA") "csrc/quantization/awq/gemm_kernels.cu" "csrc/custom_all_reduce.cu" "csrc/permute_cols.cu" - "csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu") + "csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu" + "csrc/sparse/cutlass/sparse_scaled_mm_entry.cu" + "csrc/sparse/cutlass/sparse_compressor_entry.cu" + "csrc/cutlass_extensions/common.cpp") set_gencode_flags_for_srcs( SRCS "${VLLM_EXT_SRC}" @@ -271,11 +274,14 @@ if(VLLM_GPU_LANG STREQUAL "CUDA") endif() # - # The cutlass_scaled_mm kernels for Hopper (c3x, i.e. CUTLASS 3.x) require + # The cutlass_scaled_mm cutlass_scaled_sparse_mm, and cutlass_compressor kernels + # For Hopper (c3x, i.e. CUTLASS 3.x) require # CUDA 12.0 or later (and only work on Hopper, 9.0/9.0a for now). cuda_archs_loose_intersection(SCALED_MM_3X_ARCHS "9.0;9.0a" "${CUDA_ARCHS}") if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_3X_ARCHS) - set(SRCS "csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu") + set(SRCS "csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu" + "csrc/sparse/cutlass/sparse_compressor_c3x.cu" + "csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu") set_gencode_flags_for_srcs( SRCS "${SRCS}" CUDA_ARCHS "${SCALED_MM_3X_ARCHS}") @@ -284,12 +290,12 @@ if(VLLM_GPU_LANG STREQUAL "CUDA") message(STATUS "Building scaled_mm_c3x for archs: ${SCALED_MM_3X_ARCHS}") else() if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0 AND SCALED_MM_3X_ARCHS) - message(STATUS "Not building scaled_mm_c3x as CUDA Compiler version is " + message(STATUS "Not building cutlass_c3x kernels as CUDA Compiler version is " "not >= 12.0, we recommend upgrading to CUDA 12.0 or " - "later if you intend on running FP8 quantized models on " + "later if you intend on running FP8 sparse or quantized models on " "Hopper.") else() - message(STATUS "Not building scaled_mm_c3x as no compatible archs found " + message(STATUS "Not building cutlass_c3x as no compatible archs found " "in CUDA target architectures") endif() @@ -404,7 +410,7 @@ define_gpu_extension_target( SOURCES ${VLLM_EXT_SRC} COMPILE_FLAGS ${VLLM_GPU_FLAGS} ARCHITECTURES ${VLLM_GPU_ARCHES} - INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR} + INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR};${CUTLASS_TOOLS_UTIL_INCLUDE_DIR} USE_SABI 3 WITH_SOABI) diff --git a/benchmarks/cutlass_benchmarks/sparse_benchmarks.py b/benchmarks/cutlass_benchmarks/sparse_benchmarks.py new file mode 100644 index 0000000000000..3d1c5e392f9e2 --- /dev/null +++ b/benchmarks/cutlass_benchmarks/sparse_benchmarks.py @@ -0,0 +1,384 @@ +import argparse +import copy +import itertools +import pickle as pkl +import time +from typing import Callable, Iterable, List, Tuple + +import torch +import torch.utils.benchmark as TBenchmark +from torch.utils.benchmark import Measurement as TMeasurement +from utils import make_rand_sparse_tensors +from weight_shapes import WEIGHT_SHAPES + +from vllm import _custom_ops as ops +from vllm.utils import FlexibleArgumentParser + +DEFAULT_MODELS = list(WEIGHT_SHAPES.keys()) +DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512] +DEFAULT_TP_SIZES = [1] + + +# bench +def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args, + **kwargs) -> TMeasurement: + min_run_time = 1 + + globals = { + "args": args, + "kwargs": kwargs, + "fn": fn, + } + return TBenchmark.Timer( + stmt="fn(*args, **kwargs)", + globals=globals, + label=label, + sub_label=sub_label, + description=description, + ).blocked_autorange(min_run_time=min_run_time) + + +def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str, + sub_label: str) -> Iterable[TMeasurement]: + assert dtype == torch.int8 + b_compressed, e, a, b = make_rand_sparse_tensors(torch.int8, m, n, k) + scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32) + scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32) + bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16) + + out = ops.cutlass_scaled_sparse_mm(a, b_compressed, e, scale_a, scale_b, + torch.bfloat16) + out_ref = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16) + + if not torch.allclose(out, out_ref): + print("Incorrect results") + print(out) + print(out_ref) + else: + print("Correct results") + + timers = [] + # pytorch impl - bfloat16 + timers.append( + bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales", + torch.mm, a.to(dtype=torch.bfloat16), + b.to(dtype=torch.bfloat16))) + + # pytorch impl - float16 + timers.append( + bench_fn(label, sub_label, + "pytorch_fp16_fp16_fp16_matmul-no-scales", torch.mm, + a.to(dtype=torch.float16), b.to(dtype=torch.float16))) + + # cutlass impl + timers.append( + bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm", + ops.cutlass_scaled_mm, a, b, scale_a, scale_b, + torch.bfloat16)) + + # cutlass with bias + timers.append( + bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_bias", + ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16, + bias)) + + # cutlass sparse impl + timers.append( + bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_sparse_mm", + ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a, + scale_b, torch.bfloat16)) + + # cutlass sparse with bias + timers.append( + bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_sparse_mm_bias", + ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a, + scale_b, torch.bfloat16, bias)) + + return timers + + +def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str, + sub_label: str) -> Iterable[TMeasurement]: + assert dtype == torch.float8_e4m3fn + b_compressed, e, a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, m, n, + k) + scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32) + scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32) + bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16) + + out = ops.cutlass_scaled_sparse_mm(a, b_compressed, e, scale_a, scale_b, + torch.bfloat16) + out_ref = ops.cutlass_scaled_mm(a, b, scale_a, scale_b, torch.bfloat16) + + if not torch.allclose(out, out_ref): + print("Incorrect results") + print(out) + print(out_ref) + else: + print("Correct results") + + timers = [] + + # pytorch impl w. bf16 + timers.append( + bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales", + torch.mm, a.to(dtype=torch.bfloat16, device="cuda"), + b.to(dtype=torch.bfloat16, device="cuda"))) + + # pytorch impl: bf16 output, without fp8 fast accum + timers.append( + bench_fn(label, + sub_label, + "pytorch_fp8_fp8_bf16_scaled_mm", + torch._scaled_mm, + a, + b, + scale_a=scale_a, + scale_b=scale_b, + out_dtype=torch.bfloat16)) + + # pytorch impl: bf16 output, with fp8 fast accum + timers.append( + bench_fn(label, + sub_label, + "pytorch_fp8_fp8_bf16_scaled_mm_fast_accum", + torch._scaled_mm, + a, + b, + scale_a=scale_a, + scale_b=scale_b, + out_dtype=torch.bfloat16, + use_fast_accum=True)) + + # pytorch impl: fp16 output, without fp8 fast accum + timers.append( + bench_fn(label, + sub_label, + "pytorch_fp8_fp8_fp16_scaled_mm", + torch._scaled_mm, + a, + b, + scale_a=scale_a, + scale_b=scale_b, + out_dtype=torch.float16)) + + # pytorch impl: fp16 output, with fp8 fast accum + timers.append( + bench_fn(label, + sub_label, + "pytorch_fp8_fp8_fp16_scaled_mm_fast_accum", + torch._scaled_mm, + a, + b, + scale_a=scale_a, + scale_b=scale_b, + out_dtype=torch.float16, + use_fast_accum=True)) + + # cutlass impl: bf16 output + timers.append( + bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm", + ops.cutlass_scaled_mm, a, b, scale_a, scale_b, + torch.bfloat16)) + + # cutlass impl: bf16 output + timers.append( + bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_sparse_mm", + ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a, + scale_b, torch.bfloat16)) + + # cutlass impl: fp16 output + timers.append( + bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_sparse_mm", + ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a, + scale_b, torch.float16)) + + # cutlass impl: bf16 output, with bias + timers.append( + bench_fn(label, sub_label, + "cutlass_fp8_fp8_bf16_scaled_sparse_mm_bias", + ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a, + scale_b, torch.bfloat16, bias)) + + # cutlass impl: fp16 output, with bias + timers.append( + bench_fn(label, sub_label, + "cutlass_fp8_fp8_fp16_scaled_sparse_mm_bias", + ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a, + scale_b, torch.float16, bias.to(dtype=torch.float16))) + + return timers + + +def bench(dtype: torch.dtype, m: int, k: int, n: int, label: str, + sub_label: str) -> Iterable[TMeasurement]: + if dtype == torch.int8: + return bench_int8(dtype, m, k, n, label, sub_label) + if dtype == torch.float8_e4m3fn: + return bench_fp8(dtype, m, k, n, label, sub_label) + raise ValueError("unsupported type") + + +# runner +def print_timers(timers: Iterable[TMeasurement]): + compare = TBenchmark.Compare(timers) + compare.print() + + +def run(dtype: torch.dtype, + MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]: + results = [] + for m, k, n in MKNs: + timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm", + f"MKN=({m}x{k}x{n})") + print_timers(timers) + results.extend(timers) + + return results + + +# output makers +def make_output(data: Iterable[TMeasurement], + MKNs: Iterable[Tuple[int, int, int]], + base_description: str, + timestamp=None): + print(f"== All Results {base_description} ====") + print_timers(data) + + # pickle all the results + timestamp = int(time.time()) if timestamp is None else timestamp + with open(f"{base_description}-{timestamp}.pkl", "wb") as f: + pkl.dump(data, f) + + +# argparse runners + + +def run_square_bench(args): + dim_sizes = list( + range(args.dim_start, args.dim_end + 1, args.dim_increment)) + MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes)) + data = run(args.dtype, MKNs) + + make_output(data, MKNs, f"square_bench-{args.dtype}") + + +def run_range_bench(args): + dim_sizes = list(range(args.dim_start, args.dim_end, args.dim_increment)) + n = len(dim_sizes) + Ms = [args.m_constant] * n if args.m_constant is not None else dim_sizes + Ks = [args.k_constant] * n if args.k_constant is not None else dim_sizes + Ns = [args.n_constant] * n if args.n_constant is not None else dim_sizes + MKNs = list(zip(Ms, Ks, Ns)) + data = run(args.dtype, MKNs) + + make_output(data, MKNs, f"range_bench-{args.dtype}") + + +def run_model_bench(args): + print("Benchmarking models:") + for i, model in enumerate(args.models): + print(f"[{i}] {model}") + + def model_shapes(model_name: str, tp_size: int) -> List[Tuple[int, int]]: + KNs = [] + for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model_name]): + KN[tp_split_dim] = KN[tp_split_dim] // tp_size + KNs.append(KN) + return KNs + + model_bench_data = [] + models_tps = list(itertools.product(args.models, args.tp_sizes)) + for model, tp_size in models_tps: + Ms = args.batch_sizes + KNs = model_shapes(model, tp_size) + MKNs = [] + for m in Ms: + for k, n in KNs: + MKNs.append((m, k, n)) + + data = run(args.dtype, MKNs) + model_bench_data.append(data) + + # Print all results + for data, model_tp in zip(model_bench_data, models_tps): + model, tp_size = model_tp + print(f"== Results {args.dtype} {model}-TP{tp_size} ====") + print_timers(data) + + timestamp = int(time.time()) + + all_data = [] + for d in model_bench_data: + all_data.extend(d) + # pickle all data + with open(f"model_bench-{args.dtype}-{timestamp}.pkl", "wb") as f: + pkl.dump(all_data, f) + + +if __name__ == '__main__': + + def to_torch_dtype(dt): + if dt == "int8": + return torch.int8 + if dt == "fp8": + return torch.float8_e4m3fn + raise ValueError("unsupported dtype") + + parser = FlexibleArgumentParser( + description=""" +Benchmark Cutlass GEMM. + + To run square GEMMs: + python3 ./benchmarks/cutlass_benchmarks/sparse_benchmarks.py --dtype fp8 square_bench --dim-start 128 --dim-end 512 --dim-increment 64 + + To run constant N and K and sweep M: + python3 ./benchmarks/cutlass_benchmarks/sparse_benchmarks.py --dtype fp8 range_bench --dim-start 128 --dim-end 512 --dim-increment 64 --n-constant 16384 --k-constant 16384 + + To run dimensions from a model: + python3 ./benchmarks/cutlass_benchmarks/sparse_benchmarks.py --dtype fp8 model_bench --models meta-llama/Llama-2-7b-hf --batch-sizes 16 --tp-sizes 1 + + Output: + - a .pkl file, that is a list of raw torch.benchmark.utils.Measurements for the pytorch and cutlass implementations for the various GEMMs. + """, # noqa: E501 + formatter_class=argparse.RawTextHelpFormatter) + + parser.add_argument("--dtype", + type=to_torch_dtype, + required=True, + help="Available options are ['int8', 'fp8']") + subparsers = parser.add_subparsers(dest="cmd") + + square_parser = subparsers.add_parser("square_bench") + square_parser.add_argument("--dim-start", type=int, required=True) + square_parser.add_argument("--dim-end", type=int, required=True) + square_parser.add_argument("--dim-increment", type=int, required=True) + square_parser.set_defaults(func=run_square_bench) + + range_parser = subparsers.add_parser("range_bench") + range_parser.add_argument("--dim-start", type=int, required=True) + range_parser.add_argument("--dim-end", type=int, required=True) + range_parser.add_argument("--dim-increment", type=int, required=True) + range_parser.add_argument("--m-constant", type=int, default=None) + range_parser.add_argument("--n-constant", type=int, default=None) + range_parser.add_argument("--k-constant", type=int, default=None) + range_parser.set_defaults(func=run_range_bench) + + model_parser = subparsers.add_parser("model_bench") + model_parser.add_argument("--models", + nargs="+", + type=str, + default=DEFAULT_MODELS, + choices=WEIGHT_SHAPES.keys()) + model_parser.add_argument("--tp-sizes", + nargs="+", + type=int, + default=DEFAULT_TP_SIZES) + model_parser.add_argument("--batch-sizes", + nargs="+", + type=int, + default=DEFAULT_BATCH_SIZES) + model_parser.set_defaults(func=run_model_bench) + + args = parser.parse_args() + args.func(args) diff --git a/benchmarks/cutlass_benchmarks/utils.py b/benchmarks/cutlass_benchmarks/utils.py new file mode 100644 index 0000000000000..ef06fcd6604dd --- /dev/null +++ b/benchmarks/cutlass_benchmarks/utils.py @@ -0,0 +1,96 @@ +# Cutlass bench utils +from typing import Iterable, Tuple + +import torch + +import vllm._custom_ops as ops + + +def to_fp8(tensor: torch.Tensor) -> torch.Tensor: + finfo = torch.finfo(torch.float8_e4m3fn) + return torch.round(tensor.clamp( + min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn) + + +def to_int8(tensor: torch.Tensor) -> torch.Tensor: + return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8) + + +def to_bf16(tensor: torch.Tensor) -> torch.Tensor: + return tensor.to(dtype=torch.bfloat16) + + +def to_fp16(tensor: torch.Tensor) -> torch.Tensor: + return tensor.to(dtype=torch.float16) + + +def make_rand_tensors(dtype: torch.dtype, m: int, n: int, + k: int) -> Tuple[torch.Tensor, torch.Tensor]: + a = torch.randn((m, k), device='cuda') * 5 + b = torch.randn((n, k), device='cuda').t() * 5 + + if dtype == torch.int8: + return to_int8(a), to_int8(b) + if dtype == torch.float8_e4m3fn: + return to_fp8(a), to_fp8(b) + + raise ValueError("unsupported dtype") + + +def prune_to_2_4(tensor): + # Reshape tensor to [N, 4] where N is number of groups of 4 + original_shape = tensor.shape + reshaped = tensor.reshape(-1, 4) + + # Get indices of top 2 absolute values in each group of 4 + _, indices = torch.topk(torch.abs(reshaped), k=2, dim=1) + + # Create binary mask + mask = torch.zeros_like(reshaped) + mask.scatter_(dim=1, + index=indices, + src=torch.ones_like(indices, dtype=mask.dtype)) + + # Apply mask and reshape back + pruned = reshaped * mask + + # Turn all -0.0 to 0.0 + pruned[pruned == -0.0] = 0.0 + + return pruned.reshape(original_shape) + + +def make_rand_sparse_tensors(dtype: torch.dtype, m: int, n: int, + k: int) -> Tuple[torch.Tensor, torch.Tensor]: + a = torch.randn((m, k), device='cuda') * 5 + b = torch.randn((n, k), device='cuda').t() * 5 + + b = prune_to_2_4(b.t()).t() + + if dtype == torch.int8: + a, b = to_int8(a), to_int8(b) + elif dtype == torch.float8_e4m3fn: + a, b = to_fp8(a), to_fp8(b) + elif dtype == torch.float16: + a, b = to_fp16(a), to_fp16(b) + elif dtype == torch.bfloat16: + a, b = to_bf16(a), to_bf16(b) + else: + raise ValueError("unsupported dtype") + + b_compressed, e = ops.cutlass_sparse_compress(b.t()) + + # Compressed B, Metadata, Original A, B + return b_compressed, e, a, b + + +def make_n_rand_sparse_tensors(num_tensors: int, dtype: torch.dtype, + m: int, n: int, k: int) -> \ + Tuple[Iterable[torch.Tensor], Iterable[torch.Tensor]]: + ABs = [] + for _ in range(num_tensors): + b_comp, e, a, b = make_rand_sparse_tensors(dtype, m, n, k) + if b_comp is not None: + ABs.append(make_rand_sparse_tensors(dtype, m, n, k)) + BComps, Es, As, Bs = zip(*ABs) + return list(BComps), list(Es), list(As), list(Bs) diff --git a/benchmarks/cutlass_benchmarks/w8a8_benchmarks.py b/benchmarks/cutlass_benchmarks/w8a8_benchmarks.py index 63cf5d50cac75..d0353bc8cb42a 100644 --- a/benchmarks/cutlass_benchmarks/w8a8_benchmarks.py +++ b/benchmarks/cutlass_benchmarks/w8a8_benchmarks.py @@ -8,6 +8,7 @@ import torch import torch.utils.benchmark as TBenchmark from torch.utils.benchmark import Measurement as TMeasurement +from utils import make_rand_tensors from weight_shapes import WEIGHT_SHAPES from vllm import _custom_ops as ops @@ -17,31 +18,6 @@ DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512] DEFAULT_TP_SIZES = [1] -# helpers - - -def to_fp8(tensor: torch.Tensor) -> torch.Tensor: - finfo = torch.finfo(torch.float8_e4m3fn) - return torch.round(tensor.clamp( - min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn) - - -def to_int8(tensor: torch.Tensor) -> torch.Tensor: - return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8) - - -def make_rand_tensors(dtype: torch.dtype, m: int, n: int, - k: int) -> Tuple[torch.Tensor, torch.Tensor]: - a = torch.randn((m, k), device='cuda') * 5 - b = torch.randn((n, k), device='cuda').t() * 5 - - if dtype == torch.int8: - return to_int8(a), to_int8(b) - if dtype == torch.float8_e4m3fn: - return to_fp8(a), to_fp8(b) - - raise ValueError("unsupported dtype") - # bench def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args, @@ -386,4 +362,4 @@ def to_torch_dtype(dt): model_parser.set_defaults(func=run_model_bench) args = parser.parse_args() - args.func(args) + args.func(args) \ No newline at end of file diff --git a/benchmarks/cutlass_benchmarks/weight_shapes.py b/benchmarks/cutlass_benchmarks/weight_shapes.py index 25ec9d6028627..d58fb0bf86374 100644 --- a/benchmarks/cutlass_benchmarks/weight_shapes.py +++ b/benchmarks/cutlass_benchmarks/weight_shapes.py @@ -40,4 +40,4 @@ ([8192, 57344], 1), ([28672, 8192], 0), ], -} +} \ No newline at end of file diff --git a/csrc/core/math.hpp b/csrc/core/math.hpp new file mode 100644 index 0000000000000..ba9f40a230c8e --- /dev/null +++ b/csrc/core/math.hpp @@ -0,0 +1,7 @@ +#include +#include + +inline uint32_t next_pow_2(uint32_t const num) { + if (num <= 1) return num; + return 1 << (CHAR_BIT * sizeof(num) - __builtin_clz(num - 1)); +} \ No newline at end of file diff --git a/csrc/cutlass_extensions/common.cpp b/csrc/cutlass_extensions/common.cpp new file mode 100644 index 0000000000000..3d2093ab94297 --- /dev/null +++ b/csrc/cutlass_extensions/common.cpp @@ -0,0 +1,11 @@ +#include "cutlass_extensions/common.hpp" + +int32_t get_sm_version_num() { + int32_t major_capability, minor_capability; + cudaDeviceGetAttribute(&major_capability, cudaDevAttrComputeCapabilityMajor, + 0); + cudaDeviceGetAttribute(&minor_capability, cudaDevAttrComputeCapabilityMinor, + 0); + int32_t version_num = major_capability * 10 + minor_capability; + return version_num; +} \ No newline at end of file diff --git a/csrc/cutlass_extensions/common.hpp b/csrc/cutlass_extensions/common.hpp new file mode 100644 index 0000000000000..85e359aa57113 --- /dev/null +++ b/csrc/cutlass_extensions/common.hpp @@ -0,0 +1,35 @@ +#pragma once + +#include "cutlass/cutlass.h" +#include +#include "cuda_runtime.h" +#include + +/** + * Helper function for checking CUTLASS errors + */ +#define CUTLASS_CHECK(status) \ + { \ + cutlass::Status error = status; \ + TORCH_CHECK(error == cutlass::Status::kSuccess, \ + cutlassGetStatusString(error)); \ + } + +/** + * Panic wrapper for unwinding CUDA runtime errors + */ +#define CUDA_CHECK(status) \ + { \ + cudaError_t error = status; \ + TORCH_CHECK(error == cudaSuccess, cudaGetErrorString(error)); \ + } + +inline int get_cuda_max_shared_memory_per_block_opt_in(int const device) { + int max_shared_mem_per_block_opt_in = 0; + cudaDeviceGetAttribute(&max_shared_mem_per_block_opt_in, + cudaDevAttrMaxSharedMemoryPerBlockOptin, + device); + return max_shared_mem_per_block_opt_in; +} + +int32_t get_sm_version_num(); diff --git a/csrc/cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp b/csrc/cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp index 95764ecddc79f..fcc17c7727f94 100644 --- a/csrc/cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp +++ b/csrc/cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp @@ -36,13 +36,13 @@ struct ScaledEpilogueBase { // Don't want to support nullptr by default template using ColLoad = cutlass::epilogue::fusion::Sm90ColBroadcast< - 0 /*Stages*/, typename EpilogueDescriptor::TileShape, T, + 0 /*Stages*/, typename EpilogueDescriptor::TileShape, T, T, Stride, Int<0>, Int<0>>, 128 / sizeof_bits_v, EnableNullPtr>; // Don't want to support nullptr by default template using RowLoad = cutlass::epilogue::fusion::Sm90RowBroadcast< - 0 /*Stages*/, typename EpilogueDescriptor::TileShape, T, + 0 /*Stages*/, typename EpilogueDescriptor::TileShape, T, T, Stride, Int<1>, Int<0>>, 128 / sizeof_bits_v, EnableNullPtr>; // This utility function constructs the arguments for the load descriptors diff --git a/csrc/ops.h b/csrc/ops.h index 816b471d062d2..c145e4eda0845 100644 --- a/csrc/ops.h +++ b/csrc/ops.h @@ -162,6 +162,15 @@ void cutlass_scaled_mm_azp(torch::Tensor& out, torch::Tensor const& a, torch::Tensor const& azp_adj, c10::optional const& azp, c10::optional const& bias); + +void cutlass_scaled_sparse_mm(torch::Tensor& out, torch::Tensor const& a, + torch::Tensor const& b, torch::Tensor const& e, + torch::Tensor const& a_scales, + torch::Tensor const& b_scales, + c10::optional const& bias); + +bool cutlass_sparse_compress_entry(torch::Tensor& a_compressed, + torch::Tensor& e, torch::Tensor const& a); #endif void static_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input, diff --git a/csrc/quantization/cutlass_w8a8/common.hpp b/csrc/quantization/cutlass_w8a8/common.hpp deleted file mode 100644 index bf04bb400790f..0000000000000 --- a/csrc/quantization/cutlass_w8a8/common.hpp +++ /dev/null @@ -1,27 +0,0 @@ -#pragma once - -#include "cutlass/cutlass.h" -#include - -/** - * Helper function for checking CUTLASS errors - */ -#define CUTLASS_CHECK(status) \ - { \ - TORCH_CHECK(status == cutlass::Status::kSuccess, \ - cutlassGetStatusString(status)) \ - } - -inline uint32_t next_pow_2(uint32_t const num) { - if (num <= 1) return num; - return 1 << (CHAR_BIT * sizeof(num) - __builtin_clz(num - 1)); -} - -inline int get_cuda_max_shared_memory_per_block_opt_in(int const device) { - int max_shared_mem_per_block_opt_in = 0; - cudaDeviceGetAttribute(&max_shared_mem_per_block_opt_in, - cudaDevAttrMaxSharedMemoryPerBlockOptin, - device); - return max_shared_mem_per_block_opt_in; -} - diff --git a/csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cuh b/csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cuh index d03242f44ab1d..75681f7f37820 100644 --- a/csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cuh +++ b/csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cuh @@ -21,7 +21,8 @@ #include "cutlass/epilogue/threadblock/fusion/visitors.hpp" #include "cutlass/gemm/kernel/default_gemm_universal_with_visitor.h" -#include "common.hpp" +#include "core/math.hpp" +#include "cutlass_extensions/common.hpp" // clang-format on using namespace cute; diff --git a/csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu b/csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu index 33581a63d4c3d..8190277997161 100644 --- a/csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu +++ b/csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu @@ -24,7 +24,8 @@ #include "cutlass/gemm/collective/collective_builder.hpp" #include "cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp" -#include "common.hpp" +#include "core/math.hpp" +#include "cutlass_extensions/common.hpp" // clang-format on using namespace cute; diff --git a/csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu b/csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu index 97a969cf5e3e0..4f7b6588ef3f7 100644 --- a/csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu +++ b/csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu @@ -3,6 +3,8 @@ #include #include +#include "cutlass_extensions/common.hpp" + void cutlass_scaled_mm_sm75(torch::Tensor& c, torch::Tensor const& a, torch::Tensor const& b, torch::Tensor const& a_scales, @@ -79,16 +81,6 @@ bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability) { return false; } -int32_t get_sm_version_num() { - int32_t major_capability, minor_capability; - cudaDeviceGetAttribute(&major_capability, cudaDevAttrComputeCapabilityMajor, - 0); - cudaDeviceGetAttribute(&minor_capability, cudaDevAttrComputeCapabilityMinor, - 0); - int32_t version_num = major_capability * 10 + minor_capability; - return version_num; -} - void cutlass_scaled_mm(torch::Tensor& c, torch::Tensor const& a, torch::Tensor const& b, torch::Tensor const& a_scales, torch::Tensor const& b_scales, diff --git a/csrc/sparse/cutlass/sparse_compressor_c3x.cu b/csrc/sparse/cutlass/sparse_compressor_c3x.cu new file mode 100644 index 0000000000000..218c5317b4de6 --- /dev/null +++ b/csrc/sparse/cutlass/sparse_compressor_c3x.cu @@ -0,0 +1,163 @@ +// clang-format will break include orders +// clang-format off +#include + +#include "sparse_scaled_mm_c3x.cuh" + +#include "cutlass/numeric_conversion.h" +#include "cutlass/transform/device/transform_universal_adapter.hpp" +#include "cutlass/transform/kernel/sparse_gemm_compressor.hpp" +#include "cutlass/epilogue/collective/default_epilogue.hpp" + +#include "cutlass/util/host_tensor.h" +#include "cutlass/util/packed_stride.hpp" +// clang-format on + +using namespace cute; +using namespace vllm; + +/// Make A structured sparse by replacing elements with 0 and compress it +template +bool cutlass_sparse_compress(torch::Tensor& a_nzs, torch::Tensor& a_meta, + torch::Tensor const& a) { + // Checks for conformality + TORCH_CHECK(a.dtype() == torch::kInt8 || a.dtype() == torch::kFloat8_e4m3fn || + a.dtype() == torch::kFloat16 || a.dtype() == torch::kBFloat16); + TORCH_CHECK(a.dim() == 2) + // Check for strides and alignment + TORCH_CHECK(a.stride(0) % 4 == 0) // Required for semi-structured sparsity + TORCH_CHECK(a.stride(1) == 1) + + int m = a.size(0); + int k = a.size(1); + + // Sparse kernel setup; this kernel is not used for matmul, + // but just for setting up the compressor utility + // A matrix configuration + using ElementA = ElementA_; + using LayoutTagA = cutlass::layout::RowMajor; + constexpr int AlignmentA = 128 / cutlass::sizeof_bits::value; + // B matrix configuration + using ElementB = ElementA; + using LayoutTagB = cutlass::layout::ColumnMajor; + constexpr int AlignmentB = 128 / cutlass::sizeof_bits::value; + // C/D matrix configuration + using ElementC = float; + using LayoutTagC = cutlass::layout::ColumnMajor; + constexpr int AlignmentC = 128 / cutlass::sizeof_bits::value; + // Core kernel configurations + using ElementAccumulator = ElementAcc_; + using TileShape = Shape<_128, _128, _128>; + using TileShapeRef = Shape<_128, _128, _64>; + using ClusterShape = Shape<_1, _2, _1>; + using KernelSchedule = typename std::conditional< + std::is_same_v, + cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum, + cutlass::gemm::KernelTmaWarpSpecialized>::type; + + using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; + using ProblemShape = Shape; + + using CollectiveEpilogue = + typename cutlass::epilogue::collective::CollectiveBuilder< + cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, TileShape, + ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto, + ElementAccumulator, ElementAccumulator, ElementC, LayoutTagC, + AlignmentC, ElementC, LayoutTagC, AlignmentC, + EpilogueSchedule>::CollectiveOp; + + using CollectiveMainloop = + typename cutlass::gemm::collective::CollectiveBuilder< + cutlass::arch::Sm90, cutlass::arch::OpClassSparseTensorOp, ElementA, + LayoutTagA, AlignmentA, ElementB, LayoutTagB, AlignmentB, + ElementAccumulator, TileShape, ClusterShape, + cutlass::gemm::collective::StageCountAutoCarveout( + sizeof(typename CollectiveEpilogue::SharedStorage))>, + KernelSchedule>::CollectiveOp; + + using GemmKernel = + cutlass::gemm::kernel::GemmUniversal; + + using Gemm = cutlass::gemm::device::GemmUniversalAdapter; + + using StrideA = cutlass::gemm::TagToStrideA_t; + using StrideE = StrideA; + + using StrideA = Stride, int64_t>; + + // The n (=1) dimension does not matter for the compressor + typename GemmKernel::ProblemShape prob_shape{m, 1, k, 1}; + + using LayoutA = typename GemmKernel::CollectiveMainloop::LayoutA; + using LayoutE = typename GemmKernel::CollectiveMainloop::LayoutE; + + using ElementE = typename GemmKernel::CollectiveMainloop::ElementE; + using SparseConfig = typename GemmKernel::CollectiveMainloop::SparseConfig; + + // Offline compressor kernel + using CompressorUtility = + cutlass::transform::kernel::StructuredSparseCompressorUtility< + ProblemShape, ElementA, LayoutTagA, SparseConfig>; + + using CompressorKernel = + cutlass::transform::kernel::StructuredSparseCompressor< + ProblemShape, ElementA, LayoutTagA, SparseConfig, + cutlass::arch::Sm90>; + + using Compressor = + cutlass::transform::device::TransformUniversalAdapter; + + auto [M, N, K, L] = prob_shape; + + StrideA stride_A; + stride_A = + cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, L)); + + CompressorUtility compressor_utility(prob_shape, stride_A); + + int ME = compressor_utility.get_metadata_m_physical(); + int KE = compressor_utility.get_metadata_k_physical(); + int KC = compressor_utility.get_tensorA_k_physical(); + + auto a_ptr = static_cast(a.data_ptr()); + + auto a_nzs_ptr = static_cast(a_nzs.data_ptr()); + auto a_meta_ptr = static_cast( + a_meta.data_ptr()); + + cutlass::KernelHardwareInfo hw_info; + hw_info.device_id = 0; + hw_info.sm_count = + cutlass::KernelHardwareInfo::query_device_multiprocessor_count( + hw_info.device_id); + typename Compressor::Arguments arguments{ + prob_shape, {a_ptr, stride_A, a_nzs_ptr, a_meta_ptr}, {hw_info}}; + + Compressor compressor_op; + size_t workspace_size = Compressor::get_workspace_size(arguments); + cutlass::device_memory::allocation workspace(workspace_size); + + CUTLASS_CHECK(compressor_op.can_implement(arguments)); + CUTLASS_CHECK(compressor_op.initialize(arguments, workspace.get())); + CUTLASS_CHECK(compressor_op.run()); + CUDA_CHECK(cudaDeviceSynchronize()); + + return true; +} + +bool cutlass_sparse_compress_sm90(torch::Tensor& a_nzs, torch::Tensor& a_meta, + torch::Tensor const& a) { + if (a.dtype() == torch::kBFloat16) { + return cutlass_sparse_compress(a_nzs, a_meta, + a); + } else if (a.dtype() == torch::kFloat16) { + return cutlass_sparse_compress(a_nzs, a_meta, a); + } else if (a.dtype() == torch::kFloat8_e4m3fn) { + return cutlass_sparse_compress(a_nzs, a_meta, + a); + } else if (a.dtype() == torch::kInt8) { + return cutlass_sparse_compress(a_nzs, a_meta, a); + } + return false; +} \ No newline at end of file diff --git a/csrc/sparse/cutlass/sparse_compressor_entry.cu b/csrc/sparse/cutlass/sparse_compressor_entry.cu new file mode 100644 index 0000000000000..d23d937b6ac28 --- /dev/null +++ b/csrc/sparse/cutlass/sparse_compressor_entry.cu @@ -0,0 +1,42 @@ +#include + +#include +#include + +#include "cutlass_extensions/common.hpp" + +#if defined ENABLE_SCALED_MM_C3X && ENABLE_SCALED_MM_C3X +bool cutlass_sparse_compress_sm90(torch::Tensor& a_nzs, torch::Tensor& a_meta, + torch::Tensor const& a); +#endif + +bool cutlass_sparse_compress_entry(torch::Tensor& a_nzs, torch::Tensor& a_meta, + torch::Tensor const& a) { + // Checks for conformality + TORCH_CHECK(a.dim() == 2 && a_meta.dim() == 2 && a_nzs.dim() == 2); + TORCH_CHECK(a.size(0) == a_nzs.size(0) && a.size(0) == a_meta.size(0) && + a_nzs.size(1) * 2 == a.size(1) && + a_meta.size(1) * 2 * 4 == a.size(1)); + // Considering elemsPerMetaElem = 8b / 2b_per_nz = 4 + + // Check for strides and alignment + TORCH_CHECK(a.stride(1) == 1 && a_nzs.stride(1) == 1 && + a_meta.stride(1) == 1); // Row-major + TORCH_CHECK(a.stride(0) % 8 == 0); // 8 Byte Alignment for Compression + + at::cuda::OptionalCUDAGuard const device_guard(device_of(a)); + int32_t version_num = get_sm_version_num(); + + // Guard against compilation issues for sm90 kernels +#if defined ENABLE_SCALED_MM_C3X && ENABLE_SCALED_MM_C3X + if (version_num >= 90) { + return cutlass_sparse_compress_sm90(a_nzs, a_meta, a); + } +#endif + + TORCH_CHECK_NOT_IMPLEMENTED( + false, + "No compiled cutlass_scaled_sparse_mm for a compute capability less than " + "CUDA device capability: ", + version_num); +} diff --git a/csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu b/csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu new file mode 100644 index 0000000000000..b50e9a3a2c240 --- /dev/null +++ b/csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu @@ -0,0 +1,303 @@ +// clang-format will break include orders +// clang-format off +#include + +#if defined CUDA_VERSION && CUDA_VERSION >= 12000 +#include "sparse_scaled_mm_c3x.cuh" +// clang-format on + +using namespace cute; +using namespace vllm; + +template typename Epilogue, + typename... EpilogueArgs> +void cutlass_gemm_sm90_fp8_dispatch(torch::Tensor& out, torch::Tensor const& a, + torch::Tensor const& bt_nzs, + torch::Tensor const& bt_meta, + EpilogueArgs&&... args) { + static_assert(std::is_same()); + TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn); + TORCH_CHECK(bt_meta.dtype() == torch::kUInt8); + TORCH_CHECK(bt_nzs.dtype() == torch::kFloat8_e4m3fn); + + using Cutlass3xGemmDefault = + typename sm90_config_default::Cutlass3xGemm; + using Cutlass3xGemmM64 = + typename sm90_fp8_config_M64::Cutlass3xGemm; + using Cutlass3xGemmM128 = + typename sm90_fp8_config_M128::Cutlass3xGemm; + using Cutlass3xGemmM256 = + typename sm90_fp8_config_M256::Cutlass3xGemm; + using Cutlass3xGemmM512 = + typename sm90_fp8_config_M512::Cutlass3xGemm; + + using Cutlass3xGemm1 = + typename sm90_fp8_config_1::Cutlass3xGemm; + using Cutlass3xGemm2 = + typename sm90_fp8_config_2::Cutlass3xGemm; + using Cutlass3xGemm3 = + typename sm90_fp8_config_3::Cutlass3xGemm; + using Cutlass3xGemm4 = + typename sm90_fp8_config_4::Cutlass3xGemm; + using Cutlass3xGemm5 = + typename sm90_fp8_config_5::Cutlass3xGemm; + using Cutlass3xGemm6 = + typename sm90_fp8_config_6::Cutlass3xGemm; + using Cutlass3xGemm7 = + typename sm90_fp8_config_7::Cutlass3xGemm; + using Cutlass3xGemm8 = + typename sm90_fp8_config_8::Cutlass3xGemm; + + uint32_t const n = bt_nzs.size(0); + uint32_t const m = a.size(0); // Batch size + uint32_t const mp2 = + std::max(static_cast(64), next_pow_2(m)); // next power of 2 + + if (mp2 <= 64) { + if (n == 28672) { + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } else if (n == 4096 || n == 6144) { + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } + } else if (mp2 <= 128) { + if (n == 4096) { + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } else if (n == 28672) { + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } else if (n == 6144) { + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } + } else if (mp2 <= 256) { + if (n == 4096) { + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } else if (n == 28672) { + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } else if (n == 6144) { + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } + } else { + if (n == 6144 || n == 28672) { + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } else if (n == 4096) { + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } + } + + // Otherwise the default heuristic + if (mp2 <= 64) { + // n in [1, 64] + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } else if (mp2 <= 128) { + // n in (64, 128] + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } else if (mp2 <= 256) { + // n in (128, 256] + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } else { + // n in (256, inf) + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } +} + +template typename Epilogue, + typename... EpilogueArgs> +void cutlass_gemm_sm90_fp16_dispatch(torch::Tensor& out, torch::Tensor const& a, + torch::Tensor const& bt_nzs, + torch::Tensor const& bt_meta, + EpilogueArgs&&... args) { + static_assert(std::is_same()); + TORCH_CHECK(a.dtype() == torch::kFloat16); + TORCH_CHECK(bt_meta.dtype() == torch::kUInt8); + TORCH_CHECK(bt_nzs.dtype() == torch::kFloat16); + + using Cutlass3xGemmDefault = + typename sm90_config_default::Cutlass3xGemm; + + // m in (128, inf) + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); +} + +template typename Epilogue, + typename... EpilogueArgs> +void cutlass_gemm_sm90_bf16_dispatch(torch::Tensor& out, torch::Tensor const& a, + torch::Tensor const& bt_nzs, + torch::Tensor const& bt_meta, + EpilogueArgs&&... args) { + static_assert(std::is_same()); + TORCH_CHECK(a.dtype() == torch::kBFloat16); + TORCH_CHECK(bt_meta.dtype() == torch::kUInt8); + TORCH_CHECK(bt_nzs.dtype() == torch::kBFloat16); + + using Cutlass3xGemmDefault = + typename sm90_config_default::Cutlass3xGemm; + + // m in (128, inf) + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); +} + +template typename Epilogue, + typename... EpilogueArgs> +void cutlass_gemm_sm90_int8_dispatch(torch::Tensor& out, torch::Tensor const& a, + torch::Tensor const& bt_nzs, + torch::Tensor const& bt_meta, + EpilogueArgs&&... args) { + static_assert(std::is_same()); + TORCH_CHECK(a.dtype() == torch::kInt8); + TORCH_CHECK(bt_meta.dtype() == torch::kUInt8); + TORCH_CHECK(bt_nzs.dtype() == torch::kInt8); + + using Cutlass3xGemmDefault = + typename sm90_config_default::Cutlass3xGemm; + using Cutlass3xGemmM128 = + typename sm90_int8_config_M128::Cutlass3xGemm; + using Cutlass3xGemmM64 = + typename sm90_int8_config_M64::Cutlass3xGemm; + using Cutlass3xGemmM32NBig = + typename sm90_int8_config_M32_NBig::Cutlass3xGemm; + using Cutlass3xGemmM32NSmall = + typename sm90_int8_config_M32_NSmall::Cutlass3xGemm; + + uint32_t const n = out.size(1); + bool const is_small_n = n < 8192; + + uint32_t const m = a.size(0); + uint32_t const mp2 = + std::max(static_cast(32), next_pow_2(m)); // next power of 2 + + if (mp2 <= 32) { + // m in [1, 32] + if (is_small_n) { + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } else { + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } + } else if (mp2 <= 64) { + // m in (32, 64] + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } else if (mp2 <= 128) { + // m in (64, 128] + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } else { + // m in (128, inf) + return cutlass_sparse_gemm_caller( + out, a, bt_nzs, bt_meta, std::forward(args)...); + } +} + +template