-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathambiqual.py
175 lines (134 loc) · 5.18 KB
/
ambiqual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import soundfile as sf
import numpy as np
from vnsim import calc_vnsim
from argparse import ArgumentParser
from pathlib import Path
import warnings
def load_and_preprocess_signals(ref_path, deg_path):
"""
Load and pre-process reference and degraded audio signals.
Args:
ref_path (Path): Path to the reference audio file.
deg_path (Path): Path to the degraded audio file.
Returns:
tuple: Processed reference signal, degraded signal, sample rate, and number of channels.
"""
# reading reference and degraded audio files
ref_sig, sample_rate = sf.read(str(ref_path))
deg_sig, _ = sf.read(str(deg_path))
n_channels_ref = ref_sig.shape[1]
n_channels_deg = deg_sig.shape[1]
# Number of samples to append
num_zeros = 11520
# Create an array of zeros with shape (11520, number of channels)
zeros_ref = np.zeros((num_zeros, n_channels_ref))
zeros_deg = np.zeros((num_zeros, n_channels_deg))
# Concatenate the zeros array with the original signals
ref_sig = np.vstack((zeros_ref, ref_sig))
deg_sig = np.vstack((zeros_deg, deg_sig))
return ref_sig, deg_sig, sample_rate, n_channels_deg
def calculate_ambiqual(ref_path, deg_path, intensity_threshold, elc, ignore_freq_bands):
"""
Calculate the Ambiqual metrics for the given audio files.
Args:
ref_path (Path): Path to the reference audio file.
deg_path (Path): Path to the degraded audio file.
intensity_threshold (int): Intensity threshold for NSIM calculation.
elc (int): Equal loudness contour adjustment parameter:
0 - no elc
1 - elc by boosting low and high frequencies
2 - elc by attenuating low and high frequencies
ignore_freq_bands (int): ignoring high frequency bands (0:32):
0 - all 32 frequency bands are taken into account
k - k-th to 32 frequency bands are ignored in calculations
Returns:
tuple: List of NSIM values, LQ, LA values.
"""
ref_sig, deg_sig, sample_rate, n_channels = load_and_preprocess_signals(ref_path, deg_path)
nsim_values = []
nsim_values_nan = []
alpha = 0.999
beta = 0.034
gamma = 0.078
delta = 0.001
epsilon = 0.001
zeta = 0.001
chi = 0.095
psi = 0.135
omega = 0.174
for i in range(16):
if i >= n_channels:
vnsim = np.nan
else:
vnsim = calc_vnsim(ref_sig[:, i], deg_sig[:, i],
sample_rate, intensity_threshold, elc, ignore_freq_bands)
nsim_values_nan.append(vnsim)
#print(f"vnsim_{i}:", round(vnsim, 6))
LQ = nsim_values_nan[0]
nsim_values = []
for i in range(16):
if np.isnan(nsim_values_nan[i]):
nsim_values.append(0.1)
else:
nsim_values.append(nsim_values_nan[i])
LA = (
(nsim_values[1] ** alpha) * (nsim_values[3] ** alpha) *
(nsim_values[4] ** beta) * (nsim_values[8] ** beta) *
(nsim_values[9] ** gamma) * (nsim_values[15] ** gamma) *
(nsim_values[5] ** delta) * (nsim_values[7] ** delta) *
(nsim_values[10] ** epsilon) * (nsim_values[14] ** epsilon) *
(nsim_values[11] ** zeta) * (nsim_values[13] ** zeta) *
(nsim_values[2] ** chi) * (nsim_values[6] ** psi) *
(nsim_values[2] ** omega)
)
return nsim_values_nan, LQ, LA
def parse_args():
parser = ArgumentParser("Ambiqual")
parser.add_argument("--ref",
type=Path,
help="Path to reference audio file.",
required=True
)
parser.add_argument("--deg",
type=Path,
help="Path to degraded audio file.",
required=True
)
parser.add_argument("--level",
type=float,
help="Intensity threshold for NSIM calculation.",
required=False
)
parser.add_argument("--elc",
type=int,
help="",
required=False
)
parser.add_argument("--ignorefreqbands",
type=int,
help="Number of frequency bands to ignore.",
required=False)
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
ref_path = args.ref
deg_path = args.deg
intensity_threshold = args.level
elc = args.elc
ignore_freq_bands = args.ignorefreqbands
if intensity_threshold == None:
intensity_threshold = -180
if elc == None:
elc = 0
if ignore_freq_bands == None:
ignore_freq_bands = 0
nsim_values, LQ, LA = calculate_ambiqual(ref_path,
deg_path,
intensity_threshold,
elc,
ignore_freq_bands
)
# print("vnsim", nsim_values)
print("")
print("LQ: ", LQ)
print("LA: ", LA)