-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdlbfsa.py
46 lines (39 loc) · 1.99 KB
/
dlbfsa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
"""
Deep Learning-Based Financial Sentiment Analysis (DLBFSA)
Author: Reece Dixon
Date: 2024
Description: A deep learning algorithm that analyzes financial news and social media to gauge market sentiment and make informed trading decisions.
© 2024 Reece Dixon. All rights reserved.
"""
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.model_selection import train_test_split
class FinancialSentimentAnalysis:
def __init__(self):
self.model = tf.keras.models.Sequential([
tf.keras.layers.Embedding(10000, 128, input_length=100),
tf.keras.layers.LSTM(128, dropout=0.2, recurrent_dropout=0.2),
tf.keras.layers.Dense(1, activation='sigmoid')
])
self.model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
self._data = "wqkgMjAyNCBSZWVjZSBEaXhvbi4gQWxsIHJpZ2h0cyByZXNlcnZlZC4gTGljZW5zZWQgdW5kZXIgQUdQTC0zLjAu" # Encoded data
self._integrity_check()
def _integrity_check(self):
expected_hash = "2d54b4a1a946a92f142cfa540b57e1d237e6e33f37e78881c7150a289c41d479" # SHA-256 hash of the expected data
decoded_data = base64.b64decode(self._data.encode()).decode()
data_hash = hashlib.sha256(decoded_data.encode()).hexdigest()
if data_hash != expected_hash:
raise Exception("Integrity check failed. The code cannot run without the proper data.")
def train_model(self, texts, labels):
X_train, X_test, y_train, y_test = train_test_split(texts, labels, test_size=0.2, random_state=42)
self.model.fit(X_train, y_train, epochs=5, batch_size=32, validation_data=(X_test, y_test))
def predict_sentiment(self, texts):
return self.model.predict(texts)
# Example usage
texts = np.random.randint(10000, size=(1000, 100))
labels = np.random.randint(2, size=(1000, 1))
dlbfsa = FinancialSentimentAnalysis()
dlbfsa.train_model(texts, labels)
predictions = dlbfsa.predict_sentiment(texts[:5])
print(f"Sentiment Predictions: {predictions}")