-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathUnet.cpp
182 lines (153 loc) · 5.97 KB
/
Unet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#include <stdio.h>
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <opencv2/core/ocl.hpp>
#include "tensorflow/lite/builtin_op_data.h"
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/register.h"
#include "tensorflow/lite/string_util.h"
#include "tensorflow/lite/model.h"
#include <cmath>
using namespace cv;
using namespace std;
using namespace tflite;
int model_width;
int model_height;
int model_channels;
std::unique_ptr<Interpreter> interpreter;
//------------------------------------------------------------------------------------
struct RGB {
unsigned char blue;
unsigned char green;
unsigned char red;
};
//------------------------------------------------------------------------------------
const RGB Colors[21] = {{127,127,127} , // 0 background
{ 0, 0,255} , // 1 aeroplane
{ 0,255, 0} , // 2 bicycle
{255, 0, 0} , // 3 bird
{255, 0,255} , // 4 boat
{ 0,255,255} , // 5 bottle
{255,255, 0} , // 6 bus
{ 0, 0,127} , // 7 car
{ 0,127, 0} , // 8 cat
{127, 0, 0} , // 9 chair
{127, 0,127} , //10 cow
{ 0,127,127} , //11 diningtable
{127,127, 0} , //12 dog
{127,127,255} , //13 horse
{127,255,127} , //14 motorbike
{255,127,127} , //15 person
{255,127,255} , //16 potted plant
{127,255,255} , //17 sheep
{255,255,127} , //18 sofa
{ 0, 91,127} , //19 train
{ 91, 0,127} }; //20 tv monitor
//-----------------------------------------------------------------------------------------------------------------------
void GetImageTFLite(float* out, Mat &src)
{
int i;
float f;
uint8_t *in;
static Mat image;
int Len;
// copy image to input as input tensor
cv::resize(src, image, Size(model_width,model_height),INTER_NEAREST);
in=image.data;
Len=image.rows*image.cols*image.channels();
for(i=0;i<Len;i++){
f =in[i];
out[i]=(f - 127.5f) / 127.5f;
}
}
//-----------------------------------------------------------------------------------------------------------------------
void detect_from_video(Mat &src)
{
int i,j,k,mi;
float mx,v;
float *data;
RGB *rgb;
static Mat image;
static Mat frame(model_height,model_width,CV_8UC3);
static Mat blend(src.rows,src.cols ,CV_8UC3);
GetImageTFLite(interpreter->typed_tensor<float>(interpreter->inputs()[0]), src);
interpreter->Invoke(); // run your model
// get max object per pixel
data = interpreter->tensor(interpreter->outputs()[0])->data.f;
rgb = (RGB *)frame.data;
for(i=0;i<model_height;i++){
for(j=0;j<model_width;j++){
for(mi=-1,mx=0.0,k=0;k<21;k++){
v = data[21*(i*model_width+j)+k];
if(v>mx){ mi=k; mx=v; }
}
rgb[j+i*model_width] = Colors[mi];
}
}
//merge output into frame
cv::resize(frame, blend, Size(src.cols,src.rows),INTER_NEAREST);
cv::addWeighted(src, 0.5, blend, 0.5, 0.0, src);
}
//-----------------------------------------------------------------------------------------------------------------------
int main(int argc,char ** argv)
{
float f;
float FPS[16];
int i;
int In;
int Fcnt=0;
Mat frame;
chrono::steady_clock::time_point Tbegin, Tend;
for(i=0;i<16;i++) FPS[i]=0.0;
// Load model
std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile("deeplabv3_257_mv_gpu.tflite");
// Build the interpreter
ops::builtin::BuiltinOpResolver resolver;
InterpreterBuilder(*model.get(), resolver)(&interpreter);
interpreter->AllocateTensors();
interpreter->SetAllowFp16PrecisionForFp32(true);
interpreter->SetNumThreads(4); //quad core
// Get input dimension from the input tensor metadata
// Assuming one input only
In = interpreter->inputs()[0];
model_height = interpreter->tensor(In)->dims->data[1];
model_width = interpreter->tensor(In)->dims->data[2];
model_channels = interpreter->tensor(In)->dims->data[3];
cout << "height : "<< model_height << endl;
cout << "width : "<< model_width << endl;
cout << "channels : "<< model_channels << endl;
VideoCapture cap("Highway.mp4");
if (!cap.isOpened()) {
cerr << "ERROR: Unable to open the camera" << endl;
return 0;
}
cout << "Start grabbing, press ESC on Live window to terminate" << endl;
while(1){
//frame=imread("cat.jpg"); //need to refresh frame before dnn class detection
cap >> frame;
if (frame.empty()) {
cerr << "End of movie" << endl;
break;
}
detect_from_video(frame);
Tend = chrono::steady_clock::now();
//calculate frame rate
f = chrono::duration_cast <chrono::milliseconds> (Tend - Tbegin).count();
Tbegin = chrono::steady_clock::now();
FPS[((Fcnt++)&0x0F)]=1000.0/f;
for(f=0.0, i=0;i<16;i++){ f+=FPS[i]; }
putText(frame, format("FPS %0.2f",f/16),Point(10,20),FONT_HERSHEY_SIMPLEX,0.6, Scalar(0, 0, 255));
//show output
imshow("RPi 4 - 1.85 GHz - 2 Mb RAM", frame);
char esc = waitKey(5);
if(esc == 27) break;
}
cout << "Closing the camera" << endl;
// When everything done, release the video capture and write object
cap.release();
destroyAllWindows();
cout << "Bye!" << endl;
return 0;
}