-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathABGMRES_elsa.py
88 lines (60 loc) · 2.77 KB
/
ABGMRES_elsa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import time
import numpy as np
# --- REMOVE IF ELSA IS NOT INSTALLED ---
import pyelsa as elsa
def apply(A, x):
if isinstance(A,(list,np.ndarray, np.matrix)):
return np.asarray(np.dot(A, x)).reshape(-1)
else:
# --- REMOVE IF ELSA IS NOT INSTALLED ---
return np.asarray(A.apply(elsa.DataContainer(x)))
def log(text, logging):
print(text)
def ABGMRES(A, B, b, x0, nmax_iter, epsilon = None, logging=False):
log("Starting preperations... ", logging=logging)
ti = time.process_time()
# Saving this shape as in tomographic reconstruction cases with elsa this is not a vector so we have to translate the shape
b_shape = np.shape(np.asarray(b))
x0_shape = np.shape(np.asarray(x0))
h = np.zeros((nmax_iter + 1, nmax_iter))
w = [np.zeros(len(r0))] * nmax_iter
e = np.zeros(nmax_iter + 1)
y = [0] * nmax_iter
# r0 = b - Ax
r0 = np.asarray(b).reshape(-1) - apply(A, x0).reshape(-1)
e[0] = np.linalg.norm(r0)
w[0] = r0 / np.linalg.norm(r0)
elapsed_time = time.perf_counter() - ti
log("Preperations done, took: " + str(elapsed_time) + "s", logging=logging)
# --- 2. Iterate ---
for k in range(nmax_iter):
log("Iteration | residual | elapsed time | total time", logging=logging)
t = time.perf_counter()
# q = ABw_k
q = np.asarray(apply(A, apply(B, np.reshape(w[k], b_shape)))).reshape(-1)
for i in range(k+1):
h[i, k] = apply(q.T, w[i])
q = q - h[i, k] * w[i]
h[k+1, k] = np.linalg.norm(q)
if (h[k + 1, k] != 0 and k != nmax_iter - 1):
w[k+1] = q/h[k+1, k]
# Solving minimization problem using numpy leastsquares
y = np.linalg.lstsq(h, e, rcond=None)[0]
# transforming list of vectors to a matrix
w_copy = np.reshape(np.asarray(w), (nmax_iter, len(w[0]))).T
# applying estimated guess from our generated krylov subspace to our initial guess x0
x = np.asarray(x0) + apply(B, np.reshape(np.asarray(np.dot(w_copy, y)), b_shape))
# calculating a residual
r = np.asarray(b).reshape(-1) - np.asarray(apply(A, np.reshape(x, x0_shape))).reshape(-1)
elapsed_time = time.process_time() - t
ti += elapsed_time
log(str(k) + " | " + str(np.linalg.norm(r)) + " | " + str(elapsed_time)[:6] + " | " + str(ti)[:6], logging=logging)
if epsilon is not None:
if np.linalg.norm(np.asarray(r)) <= epsilon:
print("Reached Convergence at: " + str(k) + "/" + str(nmax_iter))
break
return x, r
def ABGMRES_res(A, B, b, x0, nmax_iter, restarts, epsilon = None, logging=False):
x = x0
for r in range(restarts):
x, r = ABGMRES(A, B, b, x, nmax_iter, epsilon=epsilon, logging=logging)