-
Notifications
You must be signed in to change notification settings - Fork 265
/
Copy pathbuild_transport_demand.py
210 lines (163 loc) · 6.71 KB
/
build_transport_demand.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# SPDX-FileCopyrightText: Contributors to PyPSA-Eur <https://github.com/pypsa/pypsa-eur>
#
# SPDX-License-Identifier: MIT
"""
Build land transport demand per clustered model region including efficiency
improvements due to drivetrain changes, time series for electric vehicle
availability and demand-side management constraints.
"""
import logging
import numpy as np
import pandas as pd
import xarray as xr
from _helpers import (
configure_logging,
generate_periodic_profiles,
get_snapshots,
set_scenario_config,
)
logger = logging.getLogger(__name__)
def build_nodal_transport_data(fn, pop_layout, year):
# get numbers of car and fuel efficiency per country
transport_data = pd.read_csv(fn, index_col=[0, 1])
transport_data = transport_data.xs(year, level="year")
# break number of cars down to nodal level based on population density
nodal_transport_data = transport_data.loc[pop_layout.ct].fillna(0.0)
nodal_transport_data.index = pop_layout.index
nodal_transport_data["number cars"] = (
pop_layout["fraction"] * nodal_transport_data["number cars"]
)
# fill missing fuel efficiency with average data
nodal_transport_data.loc[
nodal_transport_data["average fuel efficiency"] == 0.0,
"average fuel efficiency",
] = transport_data["average fuel efficiency"].mean()
return nodal_transport_data
def build_transport_demand(traffic_fn, airtemp_fn, nodes, nodal_transport_data):
"""
Returns transport demand per bus in unit km driven [100 km].
"""
# averaged weekly counts from the year 2010-2015
traffic = pd.read_csv(traffic_fn, skiprows=2, usecols=["count"]).squeeze("columns")
# create annual profile take account time zone + summer time
transport_shape = generate_periodic_profiles(
dt_index=snapshots,
nodes=nodes,
weekly_profile=traffic.values,
)
transport_shape = transport_shape / transport_shape.sum()
# get heating demand for correction to demand time series
temperature = xr.open_dataarray(airtemp_fn).to_pandas()
# correction factors for vehicle heating
dd_ICE = transport_degree_factor(
temperature,
options["transport_heating_deadband_lower"],
options["transport_heating_deadband_upper"],
options["ICE_lower_degree_factor"],
options["ICE_upper_degree_factor"],
)
# divide out the heating/cooling demand from ICE totals
ice_correction = (transport_shape * (1 + dd_ICE)).sum() / transport_shape.sum()
# unit TWh
energy_totals_transport = (
pop_weighted_energy_totals["total road"]
+ pop_weighted_energy_totals["total rail"]
- pop_weighted_energy_totals["electricity rail"]
)
# average fuel efficiency in MWh/100 km
eff = nodal_transport_data["average fuel efficiency"]
return (transport_shape.multiply(energy_totals_transport) * 1e6 * nyears).divide(
eff * ice_correction
)
def transport_degree_factor(
temperature,
deadband_lower=15,
deadband_upper=20,
lower_degree_factor=0.5,
upper_degree_factor=1.6,
):
"""
Work out how much energy demand in vehicles increases due to heating and
cooling.
There is a deadband where there is no increase. Degree factors are %
increase in demand compared to no heating/cooling fuel consumption.
Returns per unit increase in demand for each place and time
"""
dd = temperature.copy()
dd[(temperature > deadband_lower) & (temperature < deadband_upper)] = 0.0
dT_lower = deadband_lower - temperature[temperature < deadband_lower]
dd[temperature < deadband_lower] = lower_degree_factor / 100 * dT_lower
dT_upper = temperature[temperature > deadband_upper] - deadband_upper
dd[temperature > deadband_upper] = upper_degree_factor / 100 * dT_upper
return dd
def bev_availability_profile(fn, snapshots, nodes, options):
"""
Derive plugged-in availability for passenger electric vehicles.
"""
# car count in typical week
traffic = pd.read_csv(fn, skiprows=2, usecols=["count"]).squeeze("columns")
# maximum share plugged-in availability for passenger electric vehicles
avail_max = options["bev_avail_max"]
# average share plugged-in availability for passenger electric vehicles
avail_mean = options["bev_avail_mean"]
# linear scaling, highest when traffic is lowest, decreases if traffic increases
avail = avail_max - (avail_max - avail_mean) * (traffic - traffic.min()) / (
traffic.mean() - traffic.min()
)
if not avail[avail < 0].empty:
logger.warning(
"The BEV availability weekly profile has negative values which can "
"lead to infeasibility."
)
return generate_periodic_profiles(
dt_index=snapshots,
nodes=nodes,
weekly_profile=avail.values,
)
def bev_dsm_profile(snapshots, nodes, options):
dsm_week = np.zeros((24 * 7,))
# assuming that at a certain time ("bev_dsm_restriction_time") EVs have to
# be charged to a minimum value (defined in bev_dsm_restriction_value)
dsm_week[(np.arange(0, 7, 1) * 24 + options["bev_dsm_restriction_time"])] = options[
"bev_dsm_restriction_value"
]
return generate_periodic_profiles(
dt_index=snapshots,
nodes=nodes,
weekly_profile=dsm_week,
)
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("build_transport_demand", clusters=128)
configure_logging(snakemake)
set_scenario_config(snakemake)
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
nodes = pop_layout.index
pop_weighted_energy_totals = pd.read_csv(
snakemake.input.pop_weighted_energy_totals, index_col=0
)
options = snakemake.params.sector
snapshots = get_snapshots(
snakemake.params.snapshots, snakemake.params.drop_leap_day, tz="UTC"
)
nyears = len(snapshots) / 8760
energy_totals_year = snakemake.params.energy_totals_year
nodal_transport_data = build_nodal_transport_data(
snakemake.input.transport_data, pop_layout, energy_totals_year
)
transport_demand = build_transport_demand(
snakemake.input.traffic_data_KFZ,
snakemake.input.temp_air_total,
nodes,
nodal_transport_data,
)
avail_profile = bev_availability_profile(
snakemake.input.traffic_data_Pkw, snapshots, nodes, options
)
dsm_profile = bev_dsm_profile(snapshots, nodes, options)
nodal_transport_data.to_csv(snakemake.output.transport_data)
transport_demand.to_csv(snakemake.output.transport_demand)
avail_profile.to_csv(snakemake.output.avail_profile)
dsm_profile.to_csv(snakemake.output.dsm_profile)