-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAI_core_API.py
68 lines (57 loc) · 1.83 KB
/
AI_core_API.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# -*- coding: utf-8 -*-
"""Untitled0.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1yZ-g4TrUbUWQZ8uL6ypKjAKV5GLSp4Ng
"""
#from google.colab import drive
#drive.mount('/content/drive')
#conda install -U Flask gevent requests pillow
from tensorflow import keras
from keras.preprocessing.image import img_to_array
from PIL import Image
import numpy as np
import io
import flask
from flask import Flask, request, jsonify,render_template
import pickle
from tensorflow.keras import layers
from tensorflow.keras import mixed_precision
from keras.models import load_model
import base64
app = flask.Flask(__name__)
model = load_model('model50.h5')
def prepare_image(image, target):
if image.mode != "RGB":
image = image.convert("RGB")
image = image.resize(150,150)
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = np.vstack([image])
return image
@app.route("/predict", methods=["POST"])
def predict():
if flask.request.method == "POST":
if flask.request.files.get("image"):
image = flask.request.files["image"]
image = base64.b64decode(image)
image = Image.open(io.BytesIO(image))
image = prepare_image(image, target=(150, 150))
val = np.argmax(model.predict(image))
if val == 0:
r="New Back"
elif val == 1:
r="New Front"
elif val == 2:
r="Old Back"
else :
r="Old Back"
print(r)
response={
"Class":r
}
return jsonify(response)
if __name__ == "__main__":
print(("* Loading Keras model and Flask starting server..."
"please wait until server has fully started"))
app.run(port=5000)