diff --git a/monai/networks/nets/swin_unetr.py b/monai/networks/nets/swin_unetr.py index 77f0d2ec2f..cfc5dda41f 100644 --- a/monai/networks/nets/swin_unetr.py +++ b/monai/networks/nets/swin_unetr.py @@ -782,9 +782,9 @@ def forward(self, x): x1 = x[:, 1::2, 0::2, 0::2, :] x2 = x[:, 0::2, 1::2, 0::2, :] x3 = x[:, 0::2, 0::2, 1::2, :] - x4 = x[:, 1::2, 0::2, 1::2, :] - x5 = x[:, 0::2, 1::2, 0::2, :] - x6 = x[:, 0::2, 0::2, 1::2, :] + x4 = x[:, 1::2, 1::2, 0::2, :] + x5 = x[:, 1::2, 0::2, 1::2, :] + x6 = x[:, 0::2, 1::2, 1::2, :] x7 = x[:, 1::2, 1::2, 1::2, :] x = torch.cat([x0, x1, x2, x3, x4, x5, x6, x7], -1) x = self.norm(x) diff --git a/tests/test_load_image.py b/tests/test_load_image.py index dc0af5e97e..498b9972b4 100644 --- a/tests/test_load_image.py +++ b/tests/test_load_image.py @@ -217,7 +217,12 @@ def test_nibabel_reader(self, input_param, filenames, expected_shape): @SkipIfNoModule("kvikio") @parameterized.expand([TEST_CASE_GPU_1, TEST_CASE_GPU_2, TEST_CASE_GPU_3, TEST_CASE_GPU_4]) def test_nibabel_reader_gpu(self, input_param, filenames, expected_shape): - test_image = np.random.rand(128, 128, 128) + if torch.__version__.endswith("nv24.8"): + # related issue: https://github.com/Project-MONAI/MONAI/issues/8274 + # for this version, use randint test case to avoid the issue + test_image = torch.randint(0, 256, (128, 128, 128), dtype=torch.uint8).numpy() + else: + test_image = np.random.rand(128, 128, 128) with tempfile.TemporaryDirectory() as tempdir: for i, name in enumerate(filenames): filenames[i] = os.path.join(tempdir, name) diff --git a/tests/test_zarr_avg_merger.py b/tests/test_zarr_avg_merger.py index de7fad48da..a52dbceb4c 100644 --- a/tests/test_zarr_avg_merger.py +++ b/tests/test_zarr_avg_merger.py @@ -19,11 +19,18 @@ from torch.nn.functional import pad from monai.inferers import ZarrAvgMerger -from monai.utils import optional_import +from monai.utils import get_package_version, optional_import, version_geq from tests.utils import assert_allclose np.seterr(divide="ignore", invalid="ignore") zarr, has_zarr = optional_import("zarr") +if has_zarr: + if version_geq(get_package_version("zarr"), "3.0.0"): + directory_store = zarr.storage.LocalStore("test.zarr") + else: + directory_store = zarr.storage.DirectoryStore("test.zarr") +else: + directory_store = None numcodecs, has_numcodecs = optional_import("numcodecs") TENSOR_4x4 = torch.randint(low=0, high=255, size=(2, 3, 4, 4), dtype=torch.float32) @@ -154,7 +161,7 @@ # explicit directory store TEST_CASE_10_DIRECTORY_STORE = [ - dict(merged_shape=TENSOR_4x4.shape, store=zarr.storage.DirectoryStore("test.zarr")), + dict(merged_shape=TENSOR_4x4.shape, store=directory_store), [ (TENSOR_4x4[..., :2, :2], (0, 0)), (TENSOR_4x4[..., :2, 2:], (0, 2)),