-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLSA_improved_accuracy.py
89 lines (71 loc) · 2.93 KB
/
LSA_improved_accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import re
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC
from sklearn.metrics import f1_score, recall_score, precision_score
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.decomposition import TruncatedSVD
from sklearn.model_selection import GridSearchCV
def normalize_text(dataset):
normalized_training_data = []
for index, row in dataset.iterrows():
data = row['Text']
target = row['oh_label']
if isinstance(data, str):
for f in re.findall("([A-Z]+)", data):
data = data.replace(f, f.lower())
processed_text = re.sub(r"[^\w\s]", "", data)
processed_text = re.split("\W", processed_text)
processed_text = [i for i in processed_text if i != '']
normalized_training_data.append((' '.join(processed_text), target))
return normalized_training_data
def train_LM(path_to_train_file):
training_data = pd.read_csv(path_to_train_file)
training_data.dropna(subset=['oh_label'], inplace=True)
vectorizer = TfidfVectorizer()
X_train = vectorizer.fit_transform(training_data['Text'])
y_train = training_data['oh_label']
svd = TruncatedSVD(n_components=150)
X_train = svd.fit_transform(X_train)
param_grid = {
'C': [0.1, 1, 10],
'penalty': ['l1', 'l2'],
'class_weight': [None, 'balanced']
}
svc_classifier = LinearSVC()
svc_grid_search = GridSearchCV(svc_classifier, param_grid, scoring='f1_weighted', cv=5, n_jobs=-1)
svc_grid_search.fit(X_train, y_train)
best_svc = svc_grid_search.best_estimator_
print("Best hyperparameters:", svc_grid_search.best_params_)
print("Best validation score:", svc_grid_search.best_score_)
X_train, X_val, y_train, y_val = train_test_split(
X_train, y_train, test_size=0.2, random_state=42
)
best_svc.fit(X_train, y_train)
accuracy = best_svc.score(X_val, y_val)
print("Validation accuracy:", accuracy)
y_pred = best_svc.predict(X_val)
precision = precision_score(y_val, y_pred, average='weighted')
print("Validation precision:", precision)
recall = recall_score(y_val, y_pred, average='weighted')
print("Validation recall:", recall)
f1 = f1_score(y_val, y_pred, average='weighted')
print("Validation f1:", f1)
cm = confusion_matrix(y_val, y_pred)
plt.figure(figsize=(8, 8))
sns.heatmap(
cm,
annot=True,
cmap="Blues",
fmt="d",
square=True,
xticklabels=best_svc.classes_,
yticklabels=best_svc.classes_,
)
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.show()
train_LM("C:/Users/Prajju/OneDrive/Desktop/Sem-1/NLP/final project/final_dataset.csv")