-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBert-base-finetuned.py
106 lines (84 loc) · 4.7 KB
/
Bert-base-finetuned.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import pandas as pd
import re
import torch
from torch.utils.data import TensorDataset, DataLoader
from sklearn.metrics import f1_score, precision_score, recall_score, classification_report
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AdamW
def normalize_text(dataset):
normalized_training_data = []
for index, row in dataset.iterrows():
data = row['Text']
target = row['oh_label']
if isinstance(data, str):
for f in re.findall("([A-Z]+)", data):
data = data.replace(f, f.lower())
processed_text = re.sub(r"[^\w\s]", "", data)
processed_text = re.split("\W", processed_text)
processed_text = [i for i in processed_text if i != '']
normalized_training_data.append((' '.join(processed_text), target))
return normalized_training_data
def fine_tune(path_to_train_file):
training_data = pd.read_csv(path_to_train_file).sample(n=10000)
training_data.dropna(subset=['oh_label'], inplace=True)
normalized_training_data = normalize_text(training_data)
sentences = [s[0] for s in normalized_training_data]
labels = [s[1] for s in normalized_training_data]
tokenizer = AutoTokenizer.from_pretrained("ptaszynski/bert-base-polish-cyberbullying")
encoding = tokenizer(sentences, padding=True, truncation=True, max_length=64, return_tensors='pt')
input_ids = encoding['input_ids']
attention_mask = encoding['attention_mask']
labels = torch.tensor(labels)
dataset = TensorDataset(input_ids, attention_mask, labels)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
batch_size = 10
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size)
model = AutoModelForSequenceClassification.from_pretrained("ptaszynski/bert-base-polish-cyberbullying")
optimizer = AdamW(model.parameters(), lr=1e-5)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
train_loss_values, val_loss_values, train_preds, train_labels, val_preds, val_labels = [], [], [], [], [], []
epochs = 3
for epoch in range(epochs):
print(f'Epoch {epoch + 1}/{epochs}')
model.train()
train_loss = 0
for batch in train_dataloader:
batch_input_ids = torch.tensor(batch[0], dtype=torch.long).to(device)
batch_attention_mask = torch.tensor(batch[1], dtype=torch.long).to(device)
batch_labels = torch.tensor(batch[2], dtype=torch.long).to(device)
optimizer.zero_grad()
outputs = model(input_ids=batch_input_ids, attention_mask=batch_attention_mask, labels=batch_labels)
loss = outputs.loss
train_loss_values.append(loss.item())
loss.backward()
optimizer.step()
train_loss += loss.item()
train_pred = torch.argmax(outputs.logits, dim=1).tolist()
train_preds.extend(train_pred)
train_label = batch_labels.tolist()
train_labels.extend(train_label)
print(f'Training loss: {train_loss / len(train_dataloader)}')
print(classification_report(train_labels, train_preds))
train_f1 = f1_score(train_labels, train_preds, average='macro')
train_precision = precision_score(train_labels, train_preds, average='macro')
train_recall = recall_score(train_labels, train_preds, average='macro')
print(f'Training f1 score: {train_f1}, Training precision: {train_precision}, Training recall: {train_recall}')
model.eval()
val_loss = 0
for batch in val_dataloader:
batch_input_ids = torch.tensor(batch[0], dtype=torch.long).to(device)
batch_attention_mask = torch.tensor(batch[1], dtype=torch.long).to(device)
batch_labels = torch.tensor(batch[2], dtype=torch.long).to(device)
outputs = model(input_ids=batch_input_ids, attention_mask=batch_attention_mask, labels=batch_labels)
loss = outputs.loss
val_loss_values.append(loss.item())
val_pred = torch.argmax(outputs.logits, dim=1).tolist()
val_preds.extend(val_pred)
val_label = batch_labels.tolist()
val_labels.extend(val_label)
print(f'Validation loss: {val_loss / len(val_dataloader)}')
print(classification_report(val_labels, val_preds))
fine_tune("C:/Users/Prajju/OneDrive/Desktop/Sem-1/NLP/final_project/final_dataset.csv")