-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathhoma_outgoing.c
1093 lines (1009 loc) · 36.6 KB
/
homa_outgoing.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: BSD-2-Clause
/* This file contains functions related to the sender side of message
* transmission. It also contains utility functions for sending packets.
*/
#include "homa_impl.h"
#include "homa_peer.h"
#include "homa_rpc.h"
#include "homa_skb.h"
#include "homa_wire.h"
/**
* homa_message_out_init() - Initialize rpc->msgout.
* @rpc: RPC whose output message should be initialized.
* @length: Number of bytes that will eventually be in rpc->msgout.
*/
void homa_message_out_init(struct homa_rpc *rpc, int length)
{
rpc->msgout.length = length;
rpc->msgout.num_skbs = 0;
rpc->msgout.copied_from_user = 0;
rpc->msgout.packets = NULL;
rpc->msgout.next_xmit = &rpc->msgout.packets;
rpc->msgout.next_xmit_offset = 0;
atomic_set(&rpc->msgout.active_xmits, 0);
rpc->msgout.unscheduled = rpc->hsk->homa->unsched_bytes;
if (rpc->msgout.unscheduled > length)
rpc->msgout.unscheduled = length;
rpc->msgout.sched_priority = 0;
rpc->msgout.init_ns = sched_clock();
}
/**
* homa_fill_data_interleaved() - This function is invoked to fill in the
* part of a data packet after the initial header, when GSO is being used
* but TCP hijacking is not. As result, homa_seg_hdrs must be interleaved
* with the data to provide the correct offset for each segment.
* @rpc: RPC whose output message is being created.
* @skb: The packet being filled. The initial homa_data_hdr was
* created and initialized by the caller and the
* homa_skb_info has been filled in with the packet geometry.
* @iter: Describes location(s) of (remaining) message data in user
* space.
* Return: Either a negative errno or 0 (for success).
*/
int homa_fill_data_interleaved(struct homa_rpc *rpc, struct sk_buff *skb,
struct iov_iter *iter)
{
struct homa_skb_info *homa_info = homa_get_skb_info(skb);
int seg_length = homa_info->seg_length;
int bytes_left = homa_info->data_bytes;
int offset = homa_info->offset;
int err;
/* Each iteration of the following loop adds info for one packet,
* which includes a homa_seg_hdr followed by the data for that
* segment. The first homa_seg_hdr was already added by the caller.
*/
while (1) {
struct homa_seg_hdr seg;
if (bytes_left < seg_length)
seg_length = bytes_left;
err = homa_skb_append_from_iter(rpc->hsk->homa, skb, iter,
seg_length);
if (err != 0)
return err;
bytes_left -= seg_length;
offset += seg_length;
if (bytes_left == 0)
break;
seg.offset = htonl(offset);
err = homa_skb_append_to_frag(rpc->hsk->homa, skb, &seg,
sizeof(seg));
if (err != 0)
return err;
}
return 0;
}
/**
* homa_new_data_packet() - Allocate a new sk_buff and fill it with a Homa
* data packet. The resulting packet will be a GSO packet that will eventually
* be segmented by the NIC.
* @rpc: RPC that packet will belong to (msgout must have been
* initialized).
* @iter: Describes location(s) of (remaining) message data in user
* space.
* @offset: Offset in the message of the first byte of data in this
* packet.
* @length: How many bytes of data to include in the skb. Caller must
* ensure that this amount of data isn't too much for a
* well-formed GSO packet, and that iter has at least this
* much data.
* @max_seg_data: Maximum number of bytes of message data that can go in
* a single segment of the GSO packet.
* Return: A pointer to the new packet, or a negative errno.
*/
struct sk_buff *homa_new_data_packet(struct homa_rpc *rpc,
struct iov_iter *iter, int offset,
int length, int max_seg_data)
{
struct homa_skb_info *homa_info;
struct homa_data_hdr *h;
struct sk_buff *skb;
int err, gso_size;
__u64 segs;
segs = length + max_seg_data - 1;
do_div(segs, max_seg_data);
/* Initialize the overall skb. */
skb = homa_skb_new_tx(sizeof32(struct homa_data_hdr));
if (!skb)
return ERR_PTR(-ENOMEM);
/* Fill in the Homa header (which will be replicated in every
* network packet by GSO).
*/
h = (struct homa_data_hdr *)skb_put(skb, sizeof(struct homa_data_hdr));
h->common.sport = htons(rpc->hsk->port);
h->common.dport = htons(rpc->dport);
h->common.sequence = htonl(offset);
h->common.type = DATA;
homa_set_doff(h, sizeof(struct homa_data_hdr));
h->common.flags = HOMA_TCP_FLAGS;
h->common.checksum = 0;
h->common.urgent = htons(HOMA_TCP_URGENT);
h->common.sender_id = cpu_to_be64(rpc->id);
h->message_length = htonl(rpc->msgout.length);
h->incoming = htonl(rpc->msgout.unscheduled);
h->ack.client_id = 0;
homa_peer_get_acks(rpc->peer, 1, &h->ack);
h->cutoff_version = rpc->peer->cutoff_version;
h->retransmit = 0;
h->seg.offset = htonl(-1);
homa_info = homa_get_skb_info(skb);
homa_info->next_skb = NULL;
homa_info->wire_bytes = length + segs * (sizeof(struct homa_data_hdr)
+ rpc->hsk->ip_header_length + HOMA_ETH_OVERHEAD);
homa_info->data_bytes = length;
homa_info->seg_length = max_seg_data;
homa_info->offset = offset;
if (segs > 1 && rpc->hsk->sock.sk_protocol != IPPROTO_TCP) {
homa_set_doff(h, sizeof(struct homa_data_hdr) -
sizeof32(struct homa_seg_hdr));
h->seg.offset = htonl(offset);
gso_size = max_seg_data + sizeof(struct homa_seg_hdr);
err = homa_fill_data_interleaved(rpc, skb, iter);
} else {
gso_size = max_seg_data;
err = homa_skb_append_from_iter(rpc->hsk->homa, skb, iter,
length);
}
if (err)
goto error;
if (segs > 1) {
skb_shinfo(skb)->gso_segs = segs;
skb_shinfo(skb)->gso_size = gso_size;
/* It's unclear what gso_type should be used to force software
* GSO; the value below seems to work...
*/
skb_shinfo(skb)->gso_type =
rpc->hsk->homa->gso_force_software ? 0xd : SKB_GSO_TCPV6;
}
return skb;
error:
homa_skb_free_tx(rpc->hsk->homa, skb);
return ERR_PTR(err);
}
/**
* homa_message_out_fill() - Initializes information for sending a message
* for an RPC (either request or response); copies the message data from
* user space and (possibly) begins transmitting the message.
* @rpc: RPC for which to send message; this function must not
* previously have been called for the RPC. Must be locked. The RPC
* will be unlocked while copying data, but will be locked again
* before returning.
* @iter: Describes location(s) of message data in user space.
* @xmit: Nonzero means this method should start transmitting packets;
* transmission will be overlapped with copying from user space.
* Zero means the caller will initiate transmission after this
* function returns.
*
* Return: 0 for success, or a negative errno for failure. It is possible
* for the RPC to be freed while this function is active. If that
* happens, copying will cease, -EINVAL will be returned, and
* rpc->state will be RPC_DEAD.
*/
int homa_message_out_fill(struct homa_rpc *rpc, struct iov_iter *iter, int xmit)
__releases(rpc->bucket_lock)
__acquires(rpc->bucket_lock)
{
/* Geometry information for packets:
* mtu: largest size for an on-the-wire packet (including
* all headers through IP header, but not Ethernet
* header).
* max_seg_data: largest amount of Homa message data that fits
* in an on-the-wire packet (after segmentation).
* max_gso_data: largest amount of Homa message data that fits
* in a GSO packet (before segmentation).
*/
int mtu, max_seg_data, max_gso_data;
struct sk_buff **last_link;
struct dst_entry *dst;
__u64 segs_per_gso;
int overlap_xmit;
/* Bytes of the message that haven't yet been copied into skbs. */
int bytes_left;
int gso_size;
int err;
homa_message_out_init(rpc, iter->count);
if (unlikely(rpc->msgout.length > HOMA_MAX_MESSAGE_LENGTH ||
rpc->msgout.length == 0)) {
tt_record2("homa_message_out_fill found bad length %d for id %d",
rpc->msgout.length, rpc->id);
err = -EINVAL;
goto error;
}
/* Compute the geometry of packets. */
dst = homa_get_dst(rpc->peer, rpc->hsk);
mtu = dst_mtu(dst);
max_seg_data = mtu - rpc->hsk->ip_header_length
- sizeof(struct homa_data_hdr);
gso_size = dst->dev->gso_max_size;
if (gso_size > rpc->hsk->homa->max_gso_size)
gso_size = rpc->hsk->homa->max_gso_size;
/* Round gso_size down to an even # of mtus; calculation depends
* on whether we're doing TCP hijacking (need more space in TSO packet
* if no hijacking).
*/
if (rpc->hsk->sock.sk_protocol == IPPROTO_TCP) {
/* Hijacking */
segs_per_gso = gso_size - rpc->hsk->ip_header_length
- sizeof(struct homa_data_hdr);
do_div(segs_per_gso, max_seg_data);
} else {
/* No hijacking */
segs_per_gso = gso_size - rpc->hsk->ip_header_length -
sizeof(struct homa_data_hdr) +
sizeof(struct homa_seg_hdr);
do_div(segs_per_gso, max_seg_data +
sizeof(struct homa_seg_hdr));
}
if (segs_per_gso == 0)
segs_per_gso = 1;
max_gso_data = segs_per_gso * max_seg_data;
UNIT_LOG("; ", "mtu %d, max_seg_data %d, max_gso_data %d",
mtu, max_seg_data, max_gso_data);
overlap_xmit = rpc->msgout.length > 2 * max_gso_data;
rpc->msgout.granted = rpc->msgout.unscheduled;
atomic_or(RPC_COPYING_FROM_USER, &rpc->flags);
homa_skb_stash_pages(rpc->hsk->homa, rpc->msgout.length);
/* Each iteration of the loop below creates one GSO packet. */
tt_record3("starting copy from user space for id %d, length %d, unscheduled %d",
rpc->id, rpc->msgout.length, rpc->msgout.unscheduled);
last_link = &rpc->msgout.packets;
for (bytes_left = rpc->msgout.length; bytes_left > 0; ) {
int skb_data_bytes, offset;
struct sk_buff *skb;
homa_rpc_unlock(rpc);
skb_data_bytes = max_gso_data;
offset = rpc->msgout.length - bytes_left;
if (offset < rpc->msgout.unscheduled &&
(offset + skb_data_bytes) > rpc->msgout.unscheduled) {
/* Insert a packet boundary at the unscheduled limit,
* so we don't transmit extra data.
*/
skb_data_bytes = rpc->msgout.unscheduled - offset;
}
if (skb_data_bytes > bytes_left)
skb_data_bytes = bytes_left;
skb = homa_new_data_packet(rpc, iter, offset, skb_data_bytes,
max_seg_data);
if (unlikely(!skb)) {
err = PTR_ERR(skb);
homa_rpc_lock(rpc, "homa_message_out_fill");
goto error;
}
bytes_left -= skb_data_bytes;
homa_rpc_lock(rpc, "homa_message_out_fill2");
if (rpc->state == RPC_DEAD) {
/* RPC was freed while we were copying. */
err = -EINVAL;
homa_skb_free_tx(rpc->hsk->homa, skb);
goto error;
}
*last_link = skb;
last_link = &(homa_get_skb_info(skb)->next_skb);
*last_link = NULL;
rpc->msgout.num_skbs++;
rpc->msgout.copied_from_user = rpc->msgout.length - bytes_left;
if (overlap_xmit && list_empty(&rpc->throttled_links) &&
xmit && offset < rpc->msgout.granted) {
tt_record1("waking up pacer for id %d", rpc->id);
homa_add_to_throttled(rpc);
}
}
tt_record2("finished copy from user space for id %d, length %d",
rpc->id, rpc->msgout.length);
atomic_andnot(RPC_COPYING_FROM_USER, &rpc->flags);
INC_METRIC(sent_msg_bytes, rpc->msgout.length);
if (!overlap_xmit && xmit)
homa_xmit_data(rpc, false);
return 0;
error:
atomic_andnot(RPC_COPYING_FROM_USER, &rpc->flags);
return err;
}
/**
* homa_xmit_control() - Send a control packet to the other end of an RPC.
* @type: Packet type, such as DATA.
* @contents: Address of buffer containing the contents of the packet.
* Only information after the common header must be valid;
* the common header will be filled in by this function.
* @length: Length of @contents (including the common header).
* @rpc: The packet will go to the socket that handles the other end
* of this RPC. Addressing info for the packet, including all of
* the fields of homa_common_hdr except type, will be set from this.
*
* Return: Either zero (for success), or a negative errno value if there
* was a problem.
*/
int homa_xmit_control(enum homa_packet_type type, void *contents,
size_t length, struct homa_rpc *rpc)
{
struct homa_common_hdr *h = contents;
h->type = type;
h->sport = htons(rpc->hsk->port);
h->dport = htons(rpc->dport);
h->flags = HOMA_TCP_FLAGS;
h->urgent = htons(HOMA_TCP_URGENT);
h->sender_id = cpu_to_be64(rpc->id);
return __homa_xmit_control(contents, length, rpc->peer, rpc->hsk);
}
/**
* __homa_xmit_control() - Lower-level version of homa_xmit_control: sends
* a control packet.
* @contents: Address of buffer containing the contents of the packet.
* The caller must have filled in all of the information,
* including the common header.
* @length: Length of @contents.
* @peer: Destination to which the packet will be sent.
* @hsk: Socket via which the packet will be sent.
*
* Return: Either zero (for success), or a negative errno value if there
* was a problem.
*/
int __homa_xmit_control(void *contents, size_t length, struct homa_peer *peer,
struct homa_sock *hsk)
{
#ifndef __STRIP__ /* See strip.py */
struct netdev_queue *txq;
#endif /* See strip.py */
struct homa_common_hdr *h;
struct dst_entry *dst;
int result, priority;
struct sk_buff *skb;
int extra_bytes;
dst = homa_get_dst(peer, hsk);
skb = homa_skb_new_tx(HOMA_MAX_HEADER);
if (unlikely(!skb))
return -ENOBUFS;
dst_hold(dst);
skb_dst_set(skb, dst);
h = skb_put(skb, length);
memcpy(h, contents, length);
extra_bytes = HOMA_MIN_PKT_LENGTH - length;
if (extra_bytes > 0) {
memset(skb_put(skb, extra_bytes), 0, extra_bytes);
UNIT_LOG(",", "padded control packet with %d bytes",
extra_bytes);
}
priority = hsk->homa->num_priorities - 1;
skb->ooo_okay = 1;
skb_get(skb);
if (hsk->inet.sk.sk_family == AF_INET6) {
result = ip6_xmit(&hsk->inet.sk, skb, &peer->flow.u.ip6, 0,
NULL, hsk->homa->priority_map[priority] << 4,
0);
} else {
/* This will find its way to the DSCP field in the IPv4 hdr. */
hsk->inet.tos = hsk->homa->priority_map[priority] << 5;
result = ip_queue_xmit(&hsk->inet.sk, skb, &peer->flow);
}
if (unlikely(result != 0)) {
INC_METRIC(control_xmit_errors, 1);
/* It appears that ip*_xmit frees skbuffs after
* errors; the following code is to raise an alert if
* this isn't actually the case. The extra skb_get above
* and kfree_skb call below are needed to do the check
* accurately (otherwise the buffer could be freed and
* its memory used for some other purpose, resulting in
* a bogus "reference count").
*/
if (refcount_read(&skb->users) > 1) {
#ifndef __STRIP__ /* See strip.py */
if (hsk->inet.sk.sk_family == AF_INET6) {
pr_notice("ip6_xmit didn't free Homa control packet (type %d) after error %d\n",
h->type, result);
} else {
pr_notice("ip_queue_xmit didn't free Homa control packet (type %d) after error %d\n",
h->type, result);
tt_record2("ip_queue_xmit didn't free Homa control packet (type %d) after error %d\n",
h->type, result);
}
#else /* See strip.py */
if (hsk->inet.sk.sk_family == AF_INET6)
pr_notice("ip6_xmit didn't free Homa control packet (type %d) after error %d\n",
h->type, result);
else
pr_notice("ip_queue_xmit didn't free Homa control packet (type %d) after error %d\n",
h->type, result);
#endif /* See strip.py */
}
}
#ifndef __STRIP__ /* See strip.py */
txq = netdev_get_tx_queue(skb->dev, skb->queue_mapping);
if (netif_tx_queue_stopped(txq))
tt_record4("__homa_xmit_control found stopped txq for id %d, qid %d, num_queued %d, limit %d",
be64_to_cpu(h->sender_id), skb->queue_mapping,
txq->dql.num_queued, txq->dql.adj_limit);
#endif /* See strip.py */
INC_METRIC(packets_sent[h->type - DATA], 1);
INC_METRIC(priority_bytes[priority], skb->len);
INC_METRIC(priority_packets[priority], 1);
kfree_skb(skb);
return result;
}
/**
* homa_xmit_unknown() - Send an UNKNOWN packet to a peer.
* @skb: Buffer containing an incoming packet; identifies the peer to
* which the UNKNOWN packet should be sent.
* @hsk: Socket that should be used to send the UNKNOWN packet.
*/
void homa_xmit_unknown(struct sk_buff *skb, struct homa_sock *hsk)
{
struct homa_common_hdr *h = (struct homa_common_hdr *)skb->data;
struct in6_addr saddr = skb_canonical_ipv6_saddr(skb);
struct homa_unknown_hdr unknown;
struct homa_peer *peer;
if (hsk->homa->verbose)
pr_notice("sending UNKNOWN to peer %s:%d for id %llu",
homa_print_ipv6_addr(&saddr),
ntohs(h->sport), homa_local_id(h->sender_id));
tt_record3("sending unknown to 0x%x:%d for id %llu",
tt_addr(saddr), ntohs(h->sport),
homa_local_id(h->sender_id));
unknown.common.sport = h->dport;
unknown.common.dport = h->sport;
unknown.common.type = UNKNOWN;
unknown.common.flags = HOMA_TCP_FLAGS;
unknown.common.urgent = htons(HOMA_TCP_URGENT);
unknown.common.sender_id = cpu_to_be64(homa_local_id(h->sender_id));
peer = homa_peer_find(hsk->homa->peers, &saddr, &hsk->inet);
if (!IS_ERR(peer))
__homa_xmit_control(&unknown, sizeof(unknown), peer, hsk);
}
/**
* homa_xmit_data() - If an RPC has outbound data packets that are permitted
* to be transmitted according to the scheduling mechanism, arrange for
* them to be sent (some may be sent immediately; others may be sent
* later by the pacer thread).
* @rpc: RPC to check for transmittable packets. Must be locked by
* caller. Note: this function will release the RPC lock while
* passing packets through the RPC stack, then reacquire it
* before returning. It is possible that the RPC gets freed
* when the lock isn't held, in which case the state will
* be RPC_DEAD on return.
* @force: True means send at least one packet, even if the NIC queue
* is too long. False means that zero packets may be sent, if
* the NIC queue is sufficiently long.
*/
void homa_xmit_data(struct homa_rpc *rpc, bool force)
__releases(rpc->bucket_lock)
__acquires(rpc->bucket_lock)
{
struct homa *homa = rpc->hsk->homa;
#ifndef __STRIP__ /* See strip.py */
struct netdev_queue *txq;
#endif /* See strip.py */
atomic_inc(&rpc->msgout.active_xmits);
while (*rpc->msgout.next_xmit) {
int priority;
struct sk_buff *skb = *rpc->msgout.next_xmit;
if (rpc->msgout.next_xmit_offset >= rpc->msgout.granted) {
tt_record3("homa_xmit_data stopping at offset %d for id %u: granted is %d",
rpc->msgout.next_xmit_offset, rpc->id,
rpc->msgout.granted);
break;
}
if ((rpc->msgout.length - rpc->msgout.next_xmit_offset)
>= homa->throttle_min_bytes) {
if (!homa_check_nic_queue(homa, skb, force)) {
tt_record1("homa_xmit_data adding id %u to throttle queue",
rpc->id);
homa_add_to_throttled(rpc);
break;
}
}
if (rpc->msgout.next_xmit_offset < rpc->msgout.unscheduled) {
priority = homa_unsched_priority(homa, rpc->peer,
rpc->msgout.length);
} else {
priority = rpc->msgout.sched_priority;
}
rpc->msgout.next_xmit = &(homa_get_skb_info(skb)->next_skb);
rpc->msgout.next_xmit_offset +=
homa_get_skb_info(skb)->data_bytes;
homa_rpc_unlock(rpc);
skb_get(skb);
__homa_xmit_data(skb, rpc, priority);
#ifndef __STRIP__ /* See strip.py */
txq = netdev_get_tx_queue(skb->dev, skb->queue_mapping);
if (netif_tx_queue_stopped(txq))
tt_record4("homa_xmit_data found stopped txq for id %d, qid %d, num_queued %d, limit %d",
rpc->id, skb->queue_mapping,
txq->dql.num_queued, txq->dql.adj_limit);
#endif /* See strip.py */
force = false;
homa_rpc_lock(rpc, "homa_xmit_data");
if (rpc->state == RPC_DEAD)
break;
}
atomic_dec(&rpc->msgout.active_xmits);
}
/**
* __homa_xmit_data() - Handles packet transmission stuff that is common
* to homa_xmit_data and homa_resend_data.
* @skb: Packet to be sent. The packet will be freed after transmission
* (and also if errors prevented transmission).
* @rpc: Information about the RPC that the packet belongs to.
* @priority: Priority level at which to transmit the packet.
*/
void __homa_xmit_data(struct sk_buff *skb, struct homa_rpc *rpc, int priority)
{
#ifndef __STRIP__ /* See strip.py */
struct homa_skb_info *homa_info = homa_get_skb_info(skb);
#endif /* See strip.py */
struct dst_entry *dst;
int err;
/* Update info that may have changed since the message was initially
* created.
*/
((struct homa_data_hdr *)skb_transport_header(skb))->cutoff_version =
rpc->peer->cutoff_version;
dst = homa_get_dst(rpc->peer, rpc->hsk);
dst_hold(dst);
skb_dst_set(skb, dst);
skb->ooo_okay = 1;
skb->ip_summed = CHECKSUM_PARTIAL;
skb->csum_start = skb_transport_header(skb) - skb->head;
skb->csum_offset = offsetof(struct homa_common_hdr, checksum);
if (rpc->hsk->inet.sk.sk_family == AF_INET6) {
tt_record4("calling ip6_xmit: wire_bytes %d, peer 0x%x, id %d, offset %d",
homa_get_skb_info(skb)->wire_bytes,
tt_addr(rpc->peer->addr), rpc->id,
homa_info->offset);
err = ip6_xmit(&rpc->hsk->inet.sk, skb, &rpc->peer->flow.u.ip6,
0, NULL,
rpc->hsk->homa->priority_map[priority] << 4, 0);
} else {
tt_record4("calling ip_queue_xmit: wire_bytes %d, peer 0x%x, id %d, offset %d",
homa_get_skb_info(skb)->wire_bytes,
tt_addr(rpc->peer->addr), rpc->id,
homa_info->offset);
rpc->hsk->inet.tos =
rpc->hsk->homa->priority_map[priority] << 5;
err = ip_queue_xmit(&rpc->hsk->inet.sk, skb, &rpc->peer->flow);
}
tt_record4("Finished queueing packet: rpc id %llu, offset %d, len %d, qid %d",
rpc->id, homa_info->offset,
homa_get_skb_info(skb)->data_bytes, skb->queue_mapping);
if (err)
INC_METRIC(data_xmit_errors, 1);
INC_METRIC(packets_sent[0], 1);
INC_METRIC(priority_bytes[priority], skb->len);
INC_METRIC(priority_packets[priority], 1);
}
/**
* homa_resend_data() - This function is invoked as part of handling RESEND
* requests. It retransmits the packet(s) containing a given range of bytes
* from a message.
* @rpc: RPC for which data should be resent.
* @start: Offset within @rpc->msgout of the first byte to retransmit.
* @end: Offset within @rpc->msgout of the byte just after the last one
* to retransmit.
* @priority: Priority level to use for the retransmitted data packets.
*/
void homa_resend_data(struct homa_rpc *rpc, int start, int end,
int priority)
{
struct homa_skb_info *homa_info;
struct sk_buff *skb;
if (end <= start)
return;
/* Each iteration of this loop checks one packet in the message
* to see if it contains segments that need to be retransmitted.
*/
for (skb = rpc->msgout.packets; skb; skb = homa_info->next_skb) {
int seg_offset, offset, seg_length, data_left;
struct homa_data_hdr *h;
homa_info = homa_get_skb_info(skb);
offset = homa_info->offset;
if (offset >= end)
break;
if (start >= (offset + homa_info->data_bytes))
continue;
offset = homa_info->offset;
seg_offset = sizeof32(struct homa_data_hdr);
data_left = homa_info->data_bytes;
if (skb_shinfo(skb)->gso_segs <= 1) {
seg_length = data_left;
} else {
seg_length = homa_info->seg_length;
h = (struct homa_data_hdr *)skb_transport_header(skb);
}
for ( ; data_left > 0; data_left -= seg_length,
offset += seg_length,
seg_offset += skb_shinfo(skb)->gso_size) {
struct homa_skb_info *new_homa_info;
struct sk_buff *new_skb;
int err;
if (seg_length > data_left)
seg_length = data_left;
if (end <= offset)
goto resend_done;
if ((offset + seg_length) <= start)
continue;
/* This segment must be retransmitted. */
new_skb = homa_skb_new_tx(sizeof(struct homa_data_hdr)
- sizeof(struct homa_seg_hdr));
if (unlikely(!new_skb)) {
if (rpc->hsk->homa->verbose)
pr_notice("%s couldn't allocate skb\n",
__func__);
UNIT_LOG("; ", "skb allocation error");
goto resend_done;
}
h = __skb_put_data(new_skb, skb_transport_header(skb),
sizeof32(struct homa_data_hdr));
h->common.sequence = htonl(offset);
h->seg.offset = htonl(offset);
h->retransmit = 1;
if ((offset + seg_length) <= rpc->msgout.granted)
h->incoming = htonl(rpc->msgout.granted);
else if ((offset + seg_length) > rpc->msgout.length)
h->incoming = htonl(rpc->msgout.length);
else
h->incoming = htonl(offset + seg_length);
err = homa_skb_append_from_skb(rpc->hsk->homa, new_skb,
skb, seg_offset,
seg_length);
if (err != 0) {
pr_err("%s got error %d from homa_skb_append_from_skb\n",
__func__, err);
UNIT_LOG("; ", "%s got error %d while copying data",
__func__, -err);
kfree_skb(new_skb);
goto resend_done;
}
new_homa_info = homa_get_skb_info(new_skb);
new_homa_info->wire_bytes = rpc->hsk->ip_header_length
+ sizeof(struct homa_data_hdr)
+ seg_length + HOMA_ETH_OVERHEAD;
new_homa_info->data_bytes = seg_length;
new_homa_info->seg_length = seg_length;
new_homa_info->offset = offset;
tt_record3("retransmitting offset %d, length %d, id %d",
offset, seg_length, rpc->id);
homa_check_nic_queue(rpc->hsk->homa, new_skb, true);
__homa_xmit_data(new_skb, rpc, priority);
INC_METRIC(resent_packets, 1);
}
}
resend_done:
return;
}
/**
* homa_outgoing_sysctl_changed() - Invoked whenever a sysctl value is changed;
* any output-related parameters that depend on sysctl-settable values.
* @homa: Overall data about the Homa protocol implementation.
*/
void homa_outgoing_sysctl_changed(struct homa *homa)
{
__u64 tmp;
tmp = 8 * 1000ULL * 1000ULL * 1000ULL;
/* Underestimate link bandwidth (overestimate time) by 1%. */
tmp = tmp * 101 / 100;
do_div(tmp, homa->link_mbps);
homa->ns_per_mbyte = tmp;
}
/**
* homa_check_nic_queue() - This function is invoked before passing a packet
* to the NIC for transmission. It serves two purposes. First, it maintains
* an estimate of the NIC queue length. Second, it indicates to the caller
* whether the NIC queue is so full that no new packets should be queued
* (Homa's SRPT depends on keeping the NIC queue short).
* @homa: Overall data about the Homa protocol implementation.
* @skb: Packet that is about to be transmitted.
* @force: True means this packet is going to be transmitted
* regardless of the queue length.
* Return: Nonzero is returned if either the NIC queue length is
* acceptably short or @force was specified. 0 means that the
* NIC queue is at capacity or beyond, so the caller should delay
* the transmission of @skb. If nonzero is returned, then the
* queue estimate is updated to reflect the transmission of @skb.
*/
int homa_check_nic_queue(struct homa *homa, struct sk_buff *skb, bool force)
{
__u64 idle, new_idle, clock, ns_for_packet;
int bytes;
bytes = homa_get_skb_info(skb)->wire_bytes;
ns_for_packet = homa->ns_per_mbyte;
ns_for_packet *= bytes;
do_div(ns_for_packet, 1000000);
while (1) {
clock = sched_clock();
idle = atomic64_read(&homa->link_idle_time);
if ((clock + homa->max_nic_queue_ns) < idle && !force &&
!(homa->flags & HOMA_FLAG_DONT_THROTTLE))
return 0;
if (!list_empty(&homa->throttled_rpcs))
INC_METRIC(pacer_bytes, bytes);
#ifndef __STRIP__ /* See strip.py */
if (idle < clock) {
if (homa->pacer_wake_time) {
__u64 lost = (homa->pacer_wake_time > idle)
? clock - homa->pacer_wake_time
: clock - idle;
INC_METRIC(pacer_lost_ns, lost);
tt_record1("pacer lost %d cycles", lost);
}
new_idle = clock + ns_for_packet;
} else {
new_idle = idle + ns_for_packet;
}
#else /* See strip.py */
if (idle < clock)
new_idle = clock + ns_for_packet;
else
new_idle = idle + ns_for_packet;
#endif /* See strip.py */
/* This method must be thread-safe. */
if (atomic64_cmpxchg_relaxed(&homa->link_idle_time, idle,
new_idle) == idle)
break;
}
return 1;
}
/**
* homa_pacer_main() - Top-level function for the pacer thread.
* @transport: Pointer to struct homa.
*
* Return: Always 0.
*/
int homa_pacer_main(void *transport)
{
struct homa *homa = (struct homa *)transport;
homa->pacer_wake_time = sched_clock();
while (1) {
if (homa->pacer_exit) {
homa->pacer_wake_time = 0;
break;
}
homa_pacer_xmit(homa);
/* Sleep this thread if the throttled list is empty. Even
* if the throttled list isn't empty, call the scheduler
* to give other processes a chance to run (if we don't,
* softirq handlers can get locked out, which prevents
* incoming packets from being handled).
*/
set_current_state(TASK_INTERRUPTIBLE);
#ifndef __STRIP__ /* See strip.py */
if (list_first_or_null_rcu(&homa->throttled_rpcs,
struct homa_rpc, throttled_links) == NULL)
tt_record("pacer sleeping");
else
#else /* See strip.py */
if (list_first_or_null_rcu(&homa->throttled_rpcs,
struct homa_rpc,
throttled_links) != NULL)
#endif /* See strip.py */
__set_current_state(TASK_RUNNING);
INC_METRIC(pacer_ns, sched_clock() - homa->pacer_wake_time);
homa->pacer_wake_time = 0;
schedule();
homa->pacer_wake_time = sched_clock();
__set_current_state(TASK_RUNNING);
}
kthread_complete_and_exit(&homa_pacer_kthread_done, 0);
return 0;
}
/**
* homa_pacer_xmit() - Transmit packets from the throttled list. Note:
* this function may be invoked from either process context or softirq (BH)
* level. This function is invoked from multiple places, not just in the
* pacer thread. The reason for this is that (as of 10/2019) Linux's scheduling
* of the pacer thread is unpredictable: the thread may block for long periods
* of time (e.g., because it is assigned to the same CPU as a busy interrupt
* handler). This can result in poor utilization of the network link. So,
* this method gets invoked from other places as well, to increase the
* likelihood that we keep the link busy. Those other invocations are not
* guaranteed to happen, so the pacer thread provides a backstop.
* @homa: Overall data about the Homa protocol implementation.
*/
void homa_pacer_xmit(struct homa *homa)
{
struct homa_rpc *rpc;
int i;
/* Make sure only one instance of this function executes at a
* time.
*/
if (!spin_trylock_bh(&homa->pacer_mutex))
return;
/* Each iteration through the following loop sends one packet. We
* limit the number of passes through this loop in order to cap the
* time spent in one call to this function (see note in
* homa_pacer_main about interfering with softirq handlers).
*/
for (i = 0; i < 5; i++) {
__u64 idle_time, now;
/* If the NIC queue is too long, wait until it gets shorter. */
now = sched_clock();
idle_time = atomic64_read(&homa->link_idle_time);
while ((now + homa->max_nic_queue_ns) < idle_time) {
/* If we've xmitted at least one packet then
* return (this helps with testing and also
* allows homa_pacer_main to yield the core).
*/
if (i != 0)
goto done;
now = sched_clock();
}
/* Note: when we get here, it's possible that the NIC queue is
* still too long because other threads have queued packets,
* but we transmit anyway so we don't starve (see perf.text
* for more info).
*/
/* Lock the first throttled RPC. This may not be possible
* because we have to hold throttle_lock while locking
* the RPC; that means we can't wait for the RPC lock because
* of lock ordering constraints (see sync.txt). Thus, if
* the RPC lock isn't available, do nothing. Holding the
* throttle lock while locking the RPC is important because
* it keeps the RPC from being deleted before it can be locked.
*/
homa_throttle_lock(homa);
homa->pacer_fifo_count -= homa->pacer_fifo_fraction;
if (homa->pacer_fifo_count <= 0) {
struct homa_rpc *cur;
__u64 oldest = ~0;
homa->pacer_fifo_count += 1000;
rpc = NULL;
list_for_each_entry_rcu(cur, &homa->throttled_rpcs,
throttled_links) {
if (cur->msgout.init_ns < oldest) {
rpc = cur;
oldest = cur->msgout.init_ns;
}
}
} else {
rpc = list_first_or_null_rcu(&homa->throttled_rpcs,
struct homa_rpc,
throttled_links);
}
if (!rpc) {
homa_throttle_unlock(homa);
break;
}
if (!homa_rpc_try_lock(rpc, "homa_pacer_xmit")) {
homa_throttle_unlock(homa);
INC_METRIC(pacer_skipped_rpcs, 1);
break;
}
homa_throttle_unlock(homa);
tt_record4("pacer calling homa_xmit_data for rpc id %llu, port %d, offset %d, bytes_left %d",
rpc->id, rpc->hsk->port,
rpc->msgout.next_xmit_offset,
rpc->msgout.length - rpc->msgout.next_xmit_offset);
homa_xmit_data(rpc, true);
/* Note: rpc->state could be RPC_DEAD here, but the code
* below should work anyway.
*/
if (!*rpc->msgout.next_xmit || rpc->msgout.next_xmit_offset >=
rpc->msgout.granted) {
/* Nothing more to transmit from this message (right
* now), so remove it from the throttled list.
*/
homa_throttle_lock(homa);
if (!list_empty(&rpc->throttled_links)) {
tt_record2("pacer removing id %d from throttled list, offset %d",
rpc->id, rpc->msgout.next_xmit_offset);
list_del_rcu(&rpc->throttled_links);
if (list_empty(&homa->throttled_rpcs))
INC_METRIC(throttled_ns, sched_clock()
- homa->throttle_add);
/* Note: this reinitialization is only safe
* because the pacer only looks at the first
* element of the list, rather than traversing
* it (and besides, we know the pacer isn't
* active concurrently, since this code *is*
* the pacer). It would not be safe under more
* general usage patterns.
*/
INIT_LIST_HEAD_RCU(&rpc->throttled_links);
}
homa_throttle_unlock(homa);
}
homa_rpc_unlock(rpc);
}
done:
spin_unlock_bh(&homa->pacer_mutex);
}
/**
* homa_pacer_stop() - Will cause the pacer thread to exit (waking it up
* if necessary); doesn't return until after the pacer thread has exited.
* @homa: Overall data about the Homa protocol implementation.
*/
void homa_pacer_stop(struct homa *homa)
{
homa->pacer_exit = true;
wake_up_process(homa->pacer_kthread);
kthread_stop(homa->pacer_kthread);
homa->pacer_kthread = NULL;
}
/**
* homa_add_to_throttled() - Make sure that an RPC is on the throttled list
* and wake up the pacer thread if necessary.
* @rpc: RPC with outbound packets that have been granted but can't be
* sent because of NIC queue restrictions. Must be locked by caller.