-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhownet.py
198 lines (157 loc) · 7.8 KB
/
hownet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
import math
import torch.nn as nn
import torch.optim as optim
import args
from numpy import *
from util_for_BQ import *
from tqdm import tqdm_notebook,tqdm
from torch.nn import functional as F
from sklearn import metrics
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def length_to_mask(lengths):
a = torch.zeros(lengths.shape,dtype=torch.int64)
mask = a == lengths
return mask
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len = args.max_len):
super(PositionalEncoding, self).__init__()
pe=torch.zeros(max_len,d_model)
position = torch.arange(0,max_len,dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0,d_model,2).float() * (-math.log(10000.0)/d_model))
pe[:,0::2] = torch.sin(position * div_term)
pe[:,1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0,1)
self.register_buffer('pe',pe)
def forward(self,x):
x = torch.transpose(x,0,1)
x = x + self.pe[:x.size(0),:]
return x
class M1(nn.Module):
def __init__(self,vocab_size, hidden_dim,num_class):
super(M1, self).__init__()
self.embedding_dim = args.embedding_dim
self.hidden_dim = hidden_dim
self.num_class = num_class
self.embeds = nn.Embedding(vocab_size,self.embedding_dim)
self.bn_embeds = nn.BatchNorm1d(self.embedding_dim)
# self.embeddings = nn.Embedding(vocab_size,embedding_dim)
self.position_embedding = PositionalEncoding(self.embedding_dim)
encoder_layer1 = nn.TransformerEncoderLayer(self.embedding_dim, 4,dim_feedforward=512, dropout=0.1,activation='relu')
self.transformer = nn.TransformerEncoder(encoder_layer1,8).to(device)
self.vc = nn.Linear(args.embedding_dim, 1, bias=False).to(device)
self.vd = nn.Linear(args.embedding_dim, 1, bias=False).to(device)
self.vm = nn.Linear(args.embedding_dim, 1, bias=False).to(device)
self.alpha = nn.Parameter(torch.FloatTensor([0.1])).to(device)
self.att_fc= nn.Linear(4*max_len,max_len)
self.lstm = nn.LSTM(self.embedding_dim, self.hidden_dim, batch_first=True, bidirectional=True).to(device)
self.lr = nn.Linear(200,100)
self.fc = nn.Sequential(
nn.Linear(4548,1000),
nn.Linear(1000,self.num_class)
)
def apply_multiple(self, x):
# input: batch_size * seq_len * (2 * hidden_size)
p1 = F.avg_pool1d(x.transpose(1, 2), x.size(1)).squeeze(-1)
p2 = F.max_pool1d(x.transpose(1, 2), x.size(1)).squeeze(-1)
# output: batch_size * (4 * hidden_size)
return torch.cat([p1, p2], 1)
def soft_attention_align(self, x1, x2,mat):
attention = torch.matmul(x1, x2.transpose(1, 2)).to(device) + self.alpha * mat.to(device)
weight1 = F.softmax(attention, dim=-1)
x1_align = torch.matmul(weight1, x2).to(device)
weight2 = F.softmax(attention.transpose(1, 2), dim=-1)
x2_align = torch.matmul(weight2, x1).to(device)
return x1_align, x2_align
def forward(self,sent1,s1_mask,sent2,s2_mask,mat,label,is_train = True):
# embeds: batch_size * seq_len => batch_size * seq_len * dim
# x1 = self.bn_embeds(self.embeds(sent1).transpose(1, 2).contiguous()).transpose(1, 2)
# x2 = self.bn_embeds(self.embeds(sent2).transpose(1, 2).contiguous()).transpose(1, 2)
x1 = self.bn_embeds(self.embeds(sent1.to(device)).transpose(1, 2).contiguous()).transpose(1, 2).to(device)
x2 = self.bn_embeds(self.embeds(sent2.to(device)).transpose(1, 2).contiguous()).transpose(1, 2).to(device)
x1_ = self.position_embedding(x1)
tf_1 = self.transformer(x1_, src_key_padding_mask=s1_mask.to(device))
x1_tf = tf_1.transpose(0, 1)
x2_ = self.position_embedding(x2)
tf_2 = self.transformer(x2_, src_key_padding_mask=s2_mask.to(device))
x2_tf = tf_2.transpose(0, 1)
x_1,x_2 = self.soft_attention_align(x1_tf,x2_tf,mat)
row = torch.sum(mat,dim=1).to(device)
line = torch.sum(mat,dim=2).to(device)
o1, _ = self.lstm(x_1)
o2, _ = self.lstm(x_2)
row_ = row.unsqueeze(-1).to(device)
line_ = line.unsqueeze(-1).to(device)
output1 = torch.cat([x1_tf, o1], dim=2)
output2 = torch.cat([x2_tf, o2], dim=2)
q1_rep = self.apply_multiple(output1)
q2_rep = self.apply_multiple(output2)
m = self.lr(torch.cat([line,row],dim=-1).float())
x = torch.cat([q1_rep, q2_rep, q1_rep - q2_rep,q1_rep*q2_rep,m], -1)
# batch_size * seq_len * dim => batch_size * seq_len * hidden_size
logits = self.fc(x)
out = torch.softmax(logits,1).to(device)
if is_train:
loss1= nn.CrossEntropyLoss()
loss_1 = loss1(out,label.to(device))
# loss2 = cosent(lam=20)
# out = out[:,1]
# loss_2 = loss2(out,label)
out = torch.argmax(out, 1)
return loss_1,out
else:
out = torch.argmax(out,1)
return out
Model = M1(vocab_size=args.vocab_size,hidden_dim=args.hidden_dim,num_class=args.class_size).to(device)
train_dataset = LoadData('PAWSX_train.pickle')
train_loader = DataLoader(train_dataset,batch_size=args.batch_size,collate_fn=collate,shuffle=True,drop_last=False)
print('train data has been loaded')
test_dataset = LoadData('PAWSX_dev.pickle')
test_loader = DataLoader(test_dataset,batch_size=50,collate_fn=collate,shuffle=True,drop_last=True)
print('test data has been loaded')
optimizer = optim.Adam(Model.parameters(),lr=1e-5)
total_params = sum(p.numel() for p in Model.parameters())
LOSS = nn.CrossEntropyLoss()
print(f'{total_params:,} total parameters.')
total_trainable_params = sum(
p.numel() for p in Model.parameters() if p.requires_grad)
print(f'{total_trainable_params:,} training parameters.')
print('start training ....')
best_acc = 0
best_epoch = 0
for epoch in range(args.epoch):
process_bar = tqdm(train_loader,leave = False)
loss = 0
train_acc = 0
train_res = []
for sent1,s1_mask,sent2,s2_mask,mat,label in process_bar:
loss,output = Model(sent1,s1_mask,sent2,s2_mask,mat,label)
optimizer.zero_grad()
label = label.to(device)
output = output.long().to(device)
correct_prediction = torch.eq(output, label).to(device)
train_accuracy = correct_prediction.float().to(device)
train_acc = torch.mean(train_accuracy, dim=0).item()
train_res.append(train_acc)
loss.backward()
optimizer.step()
print('epoch={},loss={},train_acc = {}'.format(epoch,loss.item(),mean(train_res)))
res = []
f1s = []
for sent1,s1_mask,sent2,s2_mask,mat,label in test_loader:
output = Model(sent1,s1_mask,sent2,s2_mask,mat,label,is_train = False)
label = label.to(device)
output = output.long().to(device)
correct_prediction = torch.eq(output, label).to(device)
test_accuracy = correct_prediction.float().to(device)
test_acc = torch.mean(test_accuracy, dim=0).item()
res.append(test_acc)
f1 = metrics.f1_score(label.cpu(),output.cpu())
f1s.append(f1)
if mean(res) > best_acc and epoch>20:
best_acc = mean(res)
best_epoch = epoch + 1
# torch.save(Model.state_dict(), './data/models/bq/2-{}-{}.pth'.format(best_epoch, best_acc))
print('epoch =', epoch + 1, 'test_acc=', mean(res),'f1=',mean(f1s), ' best acc epoch:', best_epoch, ' best acc:', best_acc)
# if epoch % 100 == 0:
# torch.save(Model.state_dict(), './data/models/bq/2-{}-{}.pth'.format(epoch, mean(res)))