-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
194 lines (171 loc) · 7.18 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""
code modified from constrained-hamiltonian-neural-networks
https://github.com/mfinzi/constrained-hamiltonian-neural-networks
"""
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from torch.utils import data as data
from scipy.spatial.transform import Rotation
class Animation():
def __init__(self, qt, body=None):
self.qt = qt.detach().cpu().numpy()
T, n, d = qt.shape
assert d in (2, 3)
self.fig = plt.figure()
self.ax = self.fig.add_axes([0, 0, 1, 1], projection='3d') if d==3 else self.fig.add_axes([0,0,1,1])
# xyzmin = self.qt.min(0).min(0)
# xyzmax = self.qt.max(0).max(0)
# delta = xyzmax - xyzmin
# lower = xyzmin - 0.1 * delta; upper = xyzmax + 0.1 * delta
# self.ax.set_xlim((min(lower), max(upper)))
# self.ax.set_ylim((min(lower), max(upper)))
# if d==3: self.ax.set_zlim((min(lower), max(upper)))
if d!=3: self.ax.set_aspect("equal")
empty = d * [[]]
# self.colors = np.random.choice([f"C{i}" for i in range(15)], size=n, replace=False)
self.colors = [f"C{i}" for i in range(15)]
self.objects = {
'pts': sum([self.ax.plot(*empty, ms=6, color=self.colors[i]) for i in range(n)], []),
'trails': sum([self.ax.plot(*empty, "-", color=self.colors[i]) for i in range(n)], [])
}
def init(self):
empty = np.array(2 * [[]])
for obj in self.objects.values():
for elem in obj:
elem.set_data(*empty)
if self.qt.shape[-1]==3: elem.set_3d_properties([])
return sum(self.objects.values(), [])
def update(self, i=0):
T, n, d = self.qt.shape
qt = self.qt.reshape(T, self.n_o, self.n_p, d)
trail_len = 150
for j in range(self.n_o):
# draw trails
xyz = qt[max(i-trail_len, 0): i+1, j, 0, :]
self.objects["trails"][j].set_data(*xyz[...,:2].T)
if d==3: self.objects["trails"][j].set_3d_properties(xyz[...,2].T)
# draw points
self.objects['pts'][j].set_data(*xyz[-1:,...,:2].T)
if d==3: self.objects['pts'][j].set_3d_properties(xyz[-1:,...,2].T)
return sum(self.objects.values(), [])
def animate(self):
return animation.FuncAnimation(self.fig, self.update, frames=self.qt.shape[0],
interval=33, init_func=self.init, blit=True,)#.save("test.gif")#.to_html5_video()
def dummy_dataloader():
# dummy dataloader for Lightning Module
dummy = data.DataLoader(
data.TensorDataset(
torch.Tensor(1, 1),
torch.Tensor(1, 1)
),
batch_size=1,
shuffle=False
)
return dummy
def Linear(chin, chout, zero_bias=False, orthogonal_init=False):
linear = nn.Linear(chin, chout)
if zero_bias:
torch.nn.init.zeros_(linear.bias)
if orthogonal_init:
torch.nn.init.orthogonal_(linear.weight)
return linear
def mlp(sizes, activation, output_activation=nn.Identity, orthogonal_init=True):
layers = []
for i in range(len(sizes)-1):
act = activation if i < len(sizes)-2 else output_activation
layers += [Linear(sizes[i], sizes[i+1], orthogonal_init=orthogonal_init), act()]
return nn.Sequential(*layers)
class Reshape(nn.Module):
def __init__(self, *args):
super().__init__()
self.shape = args
def forward(self, x):
return x.view(self.shape)
class CosSin(nn.Module):
def __init__(self, q_ndim, angular_dims, only_q=True):
super().__init__()
self.q_ndim = q_ndim
self.angular_dims = tuple(angular_dims)
self.non_angular_dims = tuple(set(range(q_ndim)) - set(angular_dims))
self.only_q = only_q
def forward(self, q_or_qother):
if self.only_q:
q = q_or_qother
else:
q, other = q_or_qother.chunk(2, dim=-1)
assert q.shape[-1] == self.q_ndim
q_angular = q[..., self.angular_dims]
q_not_angular = q[..., self.non_angular_dims]
cos_ang_q, sin_ang_q = q_angular.cos(), q_angular.sin()
q = torch.cat([cos_ang_q, sin_ang_q, q_not_angular], dim=-1)
if self.only_q:
res = q
else:
res = torch.cat([q, other], dim=-1)
return res
def cross_matrix(k):
"""Application of hodge star on R3, mapping Λ^1 R3 -> Λ^2 R3"""
K = torch.zeros(*k.shape[:-1],3,3,device=k.device,dtype=k.dtype)
K[...,0,1] = -k[...,2]
K[...,0,2] = k[...,1]
K[...,1,0] = k[...,2]
K[...,1,2] = -k[...,0]
K[...,2,0] = -k[...,1]
K[...,2,1] = k[...,0]
return K
def uncross_matrix(K):
k = torch.zeros(*K.shape[:-1],device=K.device,dtype=K.dtype)
k[...,0] = (K[...,2,1] - K[...,1,2])/2
k[...,1] = (K[...,0,2] - K[...,2,0])/2
k[...,2] = (K[...,1,0] - K[...,0,1])/2
return k
def eulerdot_to_omega_matrix(euler):
"""(*bsT, 3) -> (*bsT, 3, 3) matrix"""
*bsT,_ = euler.shape
M = torch.zeros(*bsT,3,3,device=euler.device,dtype=euler.dtype)
phi,theta,psi = euler.unbind(-1)
M[...,0,0] = theta.sin()*psi.sin()
M[...,0,1] = psi.cos()
M[...,1,0] = theta.sin()*psi.cos()
M[...,1,1] = -psi.sin()
M[...,2,0] = theta.cos()
M[...,2,2] = 1
return M
def euler_to_frame(euler_and_dot):
""" input: (*bsT, 2, 3)
output: (*bsT, 2, 3, 3) """
*bsT, _, _ = euler_and_dot.shape
euler, eulerdot = euler_and_dot.unbind(dim=-2) # (*bsT, 3)
omega = (eulerdot_to_omega_matrix(euler) @ eulerdot.unsqueeze(-1)).squeeze(-1) # (*bsT, 3)
RT_Rdot = cross_matrix(omega)
# Rdot_RT = cross_matrix(omega) # (*bsT, 3, 3)
R = Rotation.from_euler("ZXZ", euler.reshape(-1, 3).detach().cpu().numpy()).as_matrix()
R = torch.from_numpy(R).reshape(*bsT, 3, 3).to(euler.device, euler.dtype)
Rdot = R @ RT_Rdot
# Rdot = Rdot_RT @ R
return torch.stack([R, Rdot], dim=-3).transpose(-2, -1) # (bs, 2, d, n) -> (bs, 2, n, d)
def frame_to_euler(frame):
""" input: (*bsT, 2, 3, 3) output: (*bsT, 2, 3) """
*bsT, _, _, _ = frame.shape
R, Rdot = frame.transpose(-2, -1).unbind(-3) # (*bsT, 3, 3)
omega = uncross_matrix(R.transpose(-2, -1) @ Rdot)
# omega = uncross_matrix(Rdot @ R.transpose(-2, -1)) # (*bsT, 3)
angles = Rotation.from_matrix(R.reshape(-1, 3, 3).detach().cpu().numpy()).as_euler("ZXZ")
angles = torch.from_numpy(angles).reshape(*bsT, 3).to(R.device, R.dtype) # (*bsT, 3)
eulerdot = torch.solve(omega.unsqueeze(-1), eulerdot_to_omega_matrix(angles))[0].squeeze(-1) # (*bsT, 3)
return torch.stack([angles, eulerdot], dim=-2) # (*bsT, 2, 3)
def com_euler_to_bodyX(com_euler):
""" input (*bsT, 2, 6), output (*bsT, 2, 4, 3) """
com = com_euler[..., :3] # (*bsT, 2, 3)
frame = euler_to_frame(com_euler[..., 3:]) # (*bsT, 2, 3, 3)
# in C frame, com would be zero
shifted_frame = frame + com[..., None, :]
return torch.cat([com[..., None, :], shifted_frame], dim=-2)
def bodyX_to_com_euler(X):
""" input: (*bsT, 2, 4, 3) output: (*bsT, 2, 6) """
com = X[..., 0, :] # (*bsT, 2, 3)
euler = frame_to_euler(X[..., 1:, :] - com[..., None, :]) # (*bsT, 2, 3, 3) -> (*bsT, 2, 3)
return torch.cat([com, euler], dim=-1)