forked from dean-breed/IATI-Covid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_data.R
229 lines (208 loc) · 8.83 KB
/
process_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
list.of.packages <- c("data.table", "anytime", "ggplot2", "scales", "bsts", "dplyr", "Hmisc","reshape2","splitstackshape")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages)
lapply(list.of.packages, require, character.only=T)
wd = "/home/alex/git/IATI-Covid/output/"
setwd(wd)
agg <- fread("iati_unfiltered_agg.csv")
agg = subset(agg, secondary_reporter %in% c("0","false"))
agg = subset(agg, usd_disbursement > 0)
comm = c("C", "2")
disb = c("E", "D", "3", "4")
incom = c("11")
# Analytics
t.april = subset(agg,budget_or_transaction=="Transaction" & year==2020)
t.april$transaction_date = anydate(t.april$transaction_date)
t.april$month = month(t.april$transaction_date)
t.april = subset(t.april, month==4)
t.april.publishers = unique(t.april$publisher)
t.april.commits = subset(
t.april,
transaction_type %in% comm &
!(publisher %in% c("undp", "afd"))
)
undp.t.april.comm <- subset(
t.april,
transaction_type %in% comm &
publisher == "undp"
)
undp.t.april.incom <- subset(
t.april,
transaction_type %in% incom &
publisher == "undp"
)
undp.t.april.incom$usd_disbursement = -1 * undp.t.april.incom$usd_disbursement
undp.t.april = rbind(undp.t.april.comm, undp.t.april.incom)
t.april.commits = rbind(t.april.commits, undp.t.april)
t.april.sum = t.april.commits[,.(total.spend=sum(usd_disbursement, na.rm=T)),by=.(publisher)]
t.april.sum = t.april.sum[order(t.april.sum$total.spend),]
t.april.sum$publisher = factor(t.april.sum$publisher,levels=rev(t.april.sum$publisher))
ggplot(t.april.sum,aes(x=publisher,y=total.spend)) +
geom_bar(stat="identity") +
scale_y_continuous(labels=dollar) +
theme_bw() +
theme(axis.text.x = element_text(angle = 45, hjust=1)) +
labs(
y="Total April 2020 commitments (USD)",
x=""
)
# b.april = subset(agg,budget_or_transaction=="Budget" & year==2020)
# b.april$budget_period_start = anydate(b.april$budget_period_start)
# b.april$month = month(b.april$budget_period_start)
# b.april = subset(b.april, month==4)
# b.april.publishers = unique(b.april$publisher)
# Test charts ####
t <- subset(
agg,
budget_or_transaction=="Transaction" &
year>=2008 &
year<=2020 &
transaction_type %in% comm &
publisher %in% t.april.publishers &
!(publisher %in% c("undp", "afd"))
)
undp.t.comm <- subset(
agg,
budget_or_transaction=="Transaction" &
year>=2008 &
year<=2020 &
transaction_type %in% comm &
publisher == "undp"
)
undp.t.incom <- subset(
agg,
budget_or_transaction=="Transaction" &
year>=2008 &
year<=2020 &
transaction_type %in% incom &
publisher == "undp"
)
undp.t.incom$usd_disbursement = -1 * undp.t.incom$usd_disbursement
undp.t = rbind(undp.t.comm, undp.t.incom)
t = rbind(t, undp.t)
t$transaction_date = anydate(t$transaction_date)
t$month = month(t$transaction_date)
t$year = year(t$transaction_date)
t.sum = t[,.(total.spend=sum(usd_disbursement, na.rm=T)),by=.(month, year)]
t.sum = t.sum[order(t.sum$year, t.sum$month),]
t.sum$year = factor(t.sum$year)
ggplot(t.sum, aes(x=month,y=total.spend,group=year,color=year)) +
geom_point() +
geom_line() +
scale_x_discrete(limits=month.abb) +
scale_y_continuous(labels=dollar) +
theme_bw() +
labs(
y="Total commitments (USD)",
x="Month of commitment",
color="Year of commitment",
title="\"Excess\" commitments published to IATI\nas a result of COVID-19"
)
b <- subset(agg,budget_or_transaction=="Budget" & year>=2008 & year<=2020)
b$budget_period_start = anydate(b$budget_period_start)
b$budget_period_end = anydate(b$budget_period_end)
b$month = month(b$budget_period_start)
b$year = year(b$budget_period_start)
b.sum = b[,.(total.budget=sum(usd_disbursement, na.rm=T)),by=.(month, year)]
b.sum = b.sum[order(b.sum$year, b.sum$month),]
b.sum$year = factor(b.sum$year)
ggplot(b.sum, aes(x=month,y=total.budget,group=year,color=year)) +
geom_point() +
geom_line() +
scale_x_discrete(limits=month.abb) +
scale_y_continuous(labels=dollar) +
theme_bw() +
labs(
y="Total budgets (USD)",
x="Month of budget",
color="Year of budget"
)
# Numeric Analysis ####
t$transaction_date = t$transaction_date - mday(t$transaction_date) + 1
t.sum = t[,.(total.spend=sum(usd_disbursement, na.rm=T)),by=.(transaction_date)]
t.sum = t.sum[order(t.sum$transaction_date),]
t.sum.pre = subset(t.sum, transaction_date<as.Date("2020-01-01"))
t_y = ts(t.sum.pre$total.spend, frequency=12, start=c(2008,1))
### Run the bsts model
t_ss <- AddLocalLinearTrend(list(), t_y)
t_ss <- AddSeasonal(t_ss, t_y, nseasons = 12)
t_bsts.model <- bsts(t_y, state.specification = t_ss, niter = 500, ping=0, seed=2016)
### Get a suggested number of burn-ins
t_burn <- SuggestBurn(0.1, t_bsts.model)
# Predict until December 2024
t_p <- predict.bsts(t_bsts.model, horizon = 12, burn = t_burn, quantiles = c(.025, .975))
t_p.ts = ts(rep(NA,12),frequency=12,start=c(2020,1))
### Actual versus predicted
t_d2 <- data.frame(
# fitted values and predictions
c(as.numeric(-colMeans(t_bsts.model$one.step.prediction.errors[-(1:t_burn),])+t_y),
as.numeric(t_p$mean)),
# actual data and dates
as.numeric(c(t_y,rep(NA,12))),
c(as.Date(time(t_y)),as.Date(time(t_p.ts))))
names(t_d2) <- c("Fitted", "Actual", "Date")
### 95% forecast credible interval
t_posterior.interval <- cbind.data.frame(
as.numeric(t_p$interval[1,]),
as.numeric(t_p$interval[2,]),
subset(t_d2, Date>=as.Date("2020-01-01"))$Date)
names(t_posterior.interval) <- c("LL", "UL", "Date")
### Join intervals to the forecast
t_d3 <- left_join(t_d2, t_posterior.interval, by="Date")
t_d3$Fitted[which(t_d3$Fitted<0)] = 0
t_d3$LL[which(t_d3$LL<0)] = 0
t_d3$UL[which(t_d3$UL<0)] = 0
prediction = subset(t_d3,Date==as.Date("2020-04-01"))
actual = subset(t.sum,transaction_date==as.Date("2020-04-01"))
actual_total = actual$total.spend
predicted_total = prediction$Fitted
predicted_ll = prediction$LL
predicted_ul = prediction$UL
probable_extra = actual_total - predicted_total
probable_extra_perc = probable_extra/predicted_total
message(
paste0(
"The observed April 2020 commitment total was $",
format(round(actual_total),big.mark=","), ".\n",
"The Baysean time-series projection for April 2020 based on data of the same publishers from",
" 2008 to 2019 was $",
format(round(predicted_total),big.mark=","), " with",
" a 95% confidence interval lower limit of $",
format(round(predicted_ll),big.mark=","), " and an upper limit of $",
format(round(predicted_ul),big.mark=","), ".\n",
"From this we can infer that the \"excess\" COVID-19 commitment total is probably $",
format(round(probable_extra),big.mark=",",scientific=F), " (+",percent(probable_extra_perc, big.mark=""),")."
)
)
t_d4 = t_d3
t_d4$transaction_date = t_d4$Date
t_d4 = merge(t_d4, t.sum, by="transaction_date")
t_d4$Actual[which(is.na(t_d4$Actual))] = t_d4$total.spend[which(is.na(t_d4$Actual))]
ggplot(data=t_d4, aes(x=Date)) +
geom_line(aes(y=Actual, colour = "Actual"), size=1.2) +
geom_line(data=subset(t_d4,Date>=as.Date("2020-04-01")),aes(y=Fitted, colour = "Estimate"), size=1.2, linetype=1) +
theme_bw() + theme(legend.title = element_blank()) + ylab("") + xlab("") +
geom_vline(xintercept=as.numeric(as.Date("2020-04-01")), linetype=2) +
geom_ribbon(data=subset(t_d4,Date>=as.Date("2020-04-01")),aes(ymin=LL, ymax=UL, fill="95% conf."), alpha=0.5) +
scale_fill_manual("", values=c("95% conf."="grey")) +
scale_y_continuous(labels=scales::dollar) +
theme(axis.text.x=element_text(angle = -90, hjust = 0))
# Bill Analysis
b.dat = subset(agg,budget_or_transaction=="Transaction" & year==2020 & transaction_type %in% comm)
b.dat$transaction_date = anydate(b.dat$transaction_date)
keep = c("iati_identifier","reporting_org_ref","publisher","humanitarian",
"transaction_date", "usd_disbursement", "transaction_sector_code",
"transaction_sector_percentage", "transaction_sector_vocabulary", "transaction_type")
b.dat = b.dat[,keep,with=F]
b.dat$transaction.id = c(1:nrow(b.dat))
names(b.dat) = gsub("_",".",names(b.dat))
original_names = names(b.dat)
b.dat.split = cSplit(b.dat,c("transaction.sector.code", "transaction.sector.percentage", "transaction.sector.vocabulary"),",")
new_names = setdiff(names(b.dat.split),original_names)
b.dat.split.long =reshape(b.dat.split, varying=new_names, direction="long", sep="_")
b.dat.split.long[ , `:=`( max_count = .N , count = 1:.N ) , by = transaction.id ]
b.dat.split.long=subset(b.dat.split.long, !is.na(transaction.sector.code) | max_count==1 | count==1)
b.dat.split.long$usd.value=(b.dat.split.long$transaction.sector.percentage/100)*b.dat.split.long$usd.disbursement
b.dat.split.long$usd.value[which(is.na(b.dat.split.long$usd.value))] = b.dat.split.long$usd.disbursement[which(is.na(b.dat.split.long$usd.value))]
b.dat.split.long[,c("usd.disbursement", "max_count", "count", "transaction.id", "id", "time")] = NULL
fwrite(b.dat.split.long, "bill_data.csv")