-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathfast_bilateral.hh
187 lines (154 loc) · 7.27 KB
/
fast_bilateral.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/**
This sofrware and program is distributed under MIT License.
Original alogorithm : http://people.csail.mit.edu/sparis/bf/
Please cite above paper for research purpose.
The MIT License (MIT)
Copyright (c) 2015 Yuichi Takeda
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#ifndef __FAST_BILATERAL__
#define __FAST_BILATERAL__
#include <opencv2/opencv.hpp>
namespace cv_extend {
void bilateralFilter(cv::InputArray src, cv::OutputArray dst,
double sigmaColor, double sigmaSpace);
void bilateralFilterImpl(cv::Mat1d src, cv::Mat1d dst,
double sigmaColor, double sigmaSpace);
template<typename T, typename T_, typename T__>
inline
T clamp(const T_ min, const T__ max, const T x)
{
return
( x < static_cast<T>(min) ) ? static_cast<T>(min) :
( x < static_cast<T>(max) ) ? static_cast<T>(x) :
static_cast<T>(max);
}
template<typename T>
inline
T
trilinear_interpolation( const cv::Mat mat,
const double y,
const double x,
const double z)
{
const size_t height = mat.size[0];
const size_t width = mat.size[1];
const size_t depth = mat.size[2];
const size_t y_index = clamp(0, height-1, static_cast<size_t>(y));
const size_t yy_index = clamp(0, height-1, y_index+1);
const size_t x_index = clamp(0, width-1, static_cast<size_t>(x));
const size_t xx_index = clamp(0, width-1, x_index+1);
const size_t z_index = clamp(0, depth-1, static_cast<size_t>(z));
const size_t zz_index = clamp(0, depth-1, z_index+1);
const double y_alpha = y - y_index;
const double x_alpha = x - x_index;
const double z_alpha = z - z_index;
return
(1.0-y_alpha) * (1.0-x_alpha) * (1.0-z_alpha) * mat.at<T>(y_index, x_index, z_index) +
(1.0-y_alpha) * x_alpha * (1.0-z_alpha) * mat.at<T>(y_index, xx_index, z_index) +
y_alpha * (1.0-x_alpha) * (1.0-z_alpha) * mat.at<T>(yy_index, x_index, z_index) +
y_alpha * x_alpha * (1.0-z_alpha) * mat.at<T>(yy_index, xx_index, z_index) +
(1.0-y_alpha) * (1.0-x_alpha) * z_alpha * mat.at<T>(y_index, x_index, zz_index) +
(1.0-y_alpha) * x_alpha * z_alpha * mat.at<T>(y_index, xx_index, zz_index) +
y_alpha * (1.0-x_alpha) * z_alpha * mat.at<T>(yy_index, x_index, zz_index) +
y_alpha * x_alpha * z_alpha * mat.at<T>(yy_index, xx_index, zz_index);
}
/**
* Implementation
*/
void bilateralFilter(cv::InputArray _src, cv::OutputArray _dst,
double sigmaColor, double sigmaSpace)
{
cv::Mat src = _src.getMat();
CV_Assert(src.channels() == 1);
// bilateralFilterImpl runs with double depth, single channel
if ( src.depth() != CV_64FC1 ) {
src = cv::Mat(_src.size(), CV_64FC1);
_src.getMat().convertTo(src, CV_64FC1);
}
cv::Mat dst_tmp = cv::Mat(_src.size(), CV_64FC1);
bilateralFilterImpl(src, dst_tmp, sigmaColor, sigmaSpace);
_dst.create(dst_tmp.size(), _src.type());
dst_tmp.convertTo(_dst.getMat(), _src.type());
}
void bilateralFilterImpl(cv::Mat1d src, cv::Mat1d dst,
double sigma_color, double sigma_space)
{
using namespace cv;
const size_t height = src.rows, width = src.cols;
const size_t padding_xy = 2, padding_z = 2;
double src_min, src_max;
cv::minMaxLoc(src, &src_min, &src_max);
const int small_height = static_cast<int>((height-1)/sigma_space) + 1 + 2 * padding_xy;
const int small_width = static_cast<int>((width-1)/sigma_space) + 1 + 2 * padding_xy;
const int small_depth = static_cast<int>((src_max-src_min)/sigma_color) + 1 + 2 * padding_xy;
int data_size[] = {small_height, small_width, small_depth};
cv::Mat data(3, data_size, CV_64FC2);
data.setTo(0);
// down sample
for ( int y = 0; y < height; ++y ) {
for ( int x = 0; x < width; ++x) {
const size_t small_x = static_cast<size_t>( x/sigma_space + 0.5) + padding_xy;
const size_t small_y = static_cast<size_t>( y/sigma_space + 0.5) + padding_xy;
const double z = src.at<double>(y,x) - src_min;
const size_t small_z = static_cast<size_t>( z/sigma_color + 0.5 ) + padding_z;
cv::Vec2d v = data.at<cv::Vec2d>(small_y, small_x, small_z);
v[0] += src.at<double>(y,x);
v[1] += 1.0;
data.at<cv::Vec2d>(small_y, small_x, small_z) = v;
}
}
// convolution
cv::Mat buffer(3, data_size, CV_64FC2);
buffer.setTo(0);
int offset[3];
offset[0] = &(data.at<cv::Vec2d>(1,0,0)) - &(data.at<cv::Vec2d>(0,0,0));
offset[1] = &(data.at<cv::Vec2d>(0,1,0)) - &(data.at<cv::Vec2d>(0,0,0));
offset[2] = &(data.at<cv::Vec2d>(0,0,1)) - &(data.at<cv::Vec2d>(0,0,0));
for ( int dim = 0; dim < 3; ++dim ) { // dim = 3 stands for x, y, and depth
const int off = offset[dim];
for ( int ittr = 0; ittr < 2; ++ittr ) {
cv::swap(data, buffer);
for ( int y = 1; y < small_height-1; ++y ) {
for ( int x = 1; x < small_width-1; ++x ) {
cv::Vec2d *d_ptr = &(data.at<cv::Vec2d>(y,x,1));
cv::Vec2d *b_ptr = &(buffer.at<cv::Vec2d>(y,x,1));
for ( int z = 1; z < small_depth-1; ++z, ++d_ptr, ++b_ptr ) {
cv::Vec2d b_prev = *(b_ptr-off), b_curr = *b_ptr, b_next = *(b_ptr+off);
*d_ptr = (b_prev + b_next + 2.0 * b_curr) / 4.0;
} // z
} // x
} // y
} // ittr
} // dim
// upsample
for ( cv::MatIterator_<cv::Vec2d> d = data.begin<cv::Vec2d>(); d != data.end<cv::Vec2d>(); ++d )
{
(*d)[0] /= (*d)[1] != 0 ? (*d)[1] : 1;
}
for ( int y = 0; y < height; ++y ) {
for ( int x = 0; x < width; ++x ) {
const double z = src.at<double>(y,x) - src_min;
const double px = static_cast<double>(x) / sigma_space + padding_xy;
const double py = static_cast<double>(y) / sigma_space + padding_xy;
const double pz = static_cast<double>(z) / sigma_color + padding_z;
dst.at<double>(y,x) = trilinear_interpolation<cv::Vec2d>(data, py, px, pz)[0];
}
}
}
} // end of namespace cv_extend
#endif