-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_use_dtc.py
executable file
·100 lines (91 loc) · 4.2 KB
/
train_use_dtc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve,auc
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import Imputer
from sklearn.externals import joblib
from sklearn.tree import DecisionTreeClassifier
from pydotplus import graph_from_dot_data
from sklearn.tree import export_graphviz
import warnings
warnings.filterwarnings('ignore')
def creatDictKV(keys, vals):
lookup = {}
if len(keys) == len(vals):
for i in range(len(keys)):
key = keys[i]
val = vals[i]
lookup[key] = val
return lookup
#计算AUC函数, 做性能度量
def computeAUC(y_true,y_score):
#计算并可视化AUC
fpr, tpr, threshold = roc_curve(y_true,y_score)
rocauc = auc(fpr,tpr)
plt.plot(fpr,tpr,'b',label='AUC=%0.4f'% rocauc)
plt.legend(loc='lower right')
plt.plot([0,1],[0,1],'r--')
plt.title('ROC curve')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.show()
return rocauc
def main():
#1,加载数据(训练和测试)和预处理数据
#将NumberTime30-59,60-89,90中标记的96,98替换为NaN
#将Age中的0替换为NaN
colnames = ['ID', 'label', 'RUUnsecuredL', 'age', 'NOTime30-59',
'DebtRatio', 'Income', 'NOCredit', 'NOTimes90',
'NORealEstate', 'NOTime60-89', 'NODependents']
col_nas = ['', 'NA', 'NA', 0, [98, 96], 'NA', 'NA', 'NA', [98, 96], 'NA', [98, 96], 'NA']
col_na_values = creatDictKV(colnames, col_nas)
dftrain = pd.read_csv("./data/cs-training.csv", names=colnames, na_values=col_na_values, skiprows=[0])
dftrain.pop("NOCredit")
train_id = [int(x) for x in dftrain.pop("ID")]
y_train = np.asarray([int(x)for x in dftrain.pop("label")])
x_train = dftrain.as_matrix()
dftest = pd.read_csv("./data/cs-test.csv", names=colnames, na_values=col_na_values, skiprows=[0])
dftest.pop("NOCredit")
test_id = [int(x) for x in dftest.pop("ID")]
y_test = np.asarray(dftest.pop("label"))
x_test = dftest.as_matrix()
#使用StratifiedShuffleSplit将训练数据分解为training_new和test_new(用于验证模型)
sss = StratifiedShuffleSplit(n_splits=1,test_size=0.33333,random_state=0)
for train_index, test_index in sss.split(x_train, y_train):
x_train_new, x_test_new = x_train[train_index], x_train[test_index]
y_train_new, y_test_new = y_train[train_index], y_train[test_index]
y_train = y_train_new
x_train = x_train_new
#使用Imputer将NaN替换为平均值
imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
imp.fit(x_train)
x_train = imp.transform(x_train)
x_test_new = imp.transform(x_test_new)
x_test = imp.transform(x_test)
if not os.path.isfile("dtc_model.m"):
clf = DecisionTreeClassifier(max_depth=12, min_samples_leaf=200 ,class_weight="balanced")
clf.fit(x_train, y_train)
joblib.dump(clf,"dtc_model.m")
predicted_probs_train =clf.predict_proba(x_train)
predicted_probs_train = [x[1] for x in predicted_probs_train]
computeAUC(y_train, predicted_probs_train)
# 将决策树可视化输出,需要Graphviz软件的支持
dot_data = export_graphviz(clf, filled = True,
rounded = True,
class_names = ['0', '1'],
feature_names = ['RUUnsecuredL', 'age', 'NOTime30-59', 'DebtRatio', 'Income', 'NOTimes90',
'NORealEstate', 'NOTime60-89', 'NODependents'],
out_file = None)
graph = graph_from_dot_data(dot_data)
graph.write_png('tree.png')
else:
clf = joblib.load("dtc_model.m")
predicted_probs_test_new = clf.predict_proba(x_test_new)
predicted_probs_test_new = [x[1] for x in predicted_probs_test_new]
computeAUC(y_test_new, predicted_probs_test_new)
if __name__ == "__main__":
main()