Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Extra passives allocated when importing a build with cluster jewel #7570

Open
3 tasks done
PPFilip opened this issue Apr 14, 2024 · 2 comments
Open
3 tasks done

Extra passives allocated when importing a build with cluster jewel #7570

PPFilip opened this issue Apr 14, 2024 · 2 comments
Labels
bug: behaviour Behavioral differences

Comments

@PPFilip
Copy link

PPFilip commented Apr 14, 2024

Check version

  • I'm running the latest version of Path of Building and I've verified this by checking the changelog

Check for duplicates

  • I've checked for duplicate open and closed issues by using the search function of the issue tracker

Check for support

  • I've checked that the behaviour is supposed to be supported. If it isn't please open a feature request instead (Red text is a feature request).

What is the behaviour in-game?

The character has 8 passive cluster, but paths only in one direction to allocate nodes, as per screenshot

What is the behaviour in Path of Building?

When importing, all 8 passives are allocated on the cluster, even though they are not allocated in game
This is not visual bug, you have to de-allocate the passive to get correct calculations

How to reproduce the issue

Equip a cluster
Path through one side only
Import build

Character build code

eNrtfVtz20ay8HP4K1CqynmxbM_94s_eU9TFlmIrliXZTvZlawAMRNggQAOgZGVr__vXA4AkQBEUdct692RTm1CDnp6ZvndjBvPyf7-PE-_C5kWcpa-28DO05dk0yMI4PX-19fHs9VO19b9_G7w8NuXofbQzjRP35G-Dn15Wv73EXtjk1ZaWW15p8nNbfpqhov8AVBOTliObpUfmS5a_ycJXW2cju5PHqX0LaLY836RhXL7a-jVL7ZYXJKYofjVjC2B2PElMvuWZIrBpuLt4chDbPJuMADF0GJncBKXN37lpDKdldpSFABOZpAB8YxOnp1nw1ZZv8mw6geVteRexvayBDo-O35-cteYYp80ch75vc1jwFqzzp5fHibmy-WlpSq-Af8FjIJc5twcxzODCJFPAxTjCjD1Tgm09X9tpZ5oX5Z4Zw89bdD6dWBvO4ekzxvsgj3O7H0U2KOMLu5vH5S4QKrCtrlT1db0D-NE0KeNJAhyZd8F98AfXsGOE-oDPstIke8enc1hNsdRaPROKqfWdsgVXetF_jsvRTgI0ve0QruPheRqX9i49j7O4yNK7Lqvdr3dlu9MkAc3aCPbEFja_MGXcnVM_7mzsg-bemmjD3Jr3US2WJyaMp8WRLXNbtMSsV2qOTGp2s2IDnjrIY5uDtShv1eHUBhkYmNuOccue7-LIbg55q3U0HW47m7utY_90U7hbI77bhE7Akm4GeZpNkw0hy4U940r168-3NiTDpA9yz35fWD3wlf0IO5C41yEcpmXbjK5R8W9tUNoPuWcvMmcJbqZOZY_2D44XNoArTJ9ppJhADNFe1zS6KuLAJEfmezyejsEfnJmvdjEgEViofok9H5UpWLa-3hjBJHop-zrO7d167mZJeMeeI5MVfV2popSsU88FWdYwDeKC4IWDPkyDVod1eD-meWX2W_EEk2JdjxPQRhe8-IndtMtikEapF5NDz4TmghMsqcZ0_bjnNm0Gv9rMpr2zNhi9gajvxJR2M3O-YCbBmK8ltANvE5rJtW5rBaXXjtHts0y4NcGS67iaWCBkz8S6brck2H5q8_Or01Fsk9aiMJFykx6z6e2ayWadK6q3MbSprzYccxVdOMPP6CbdV9PHTfpZ7_CfTR5u5rduKeH7F6ZoW2jBGF5PurpDm2r9QmQhHoYOoV2K0jnpzzWyLy7TSG7Zb5iPs2krYxCUrl1GDd9eBRU3OZk6xTqx4TToeDWq-3ruJJApLq2BqDUTS5JVXXoJPCxLE3zdy8Jzu2mXapBb9ZjnflXX0-lkAvbEycCmCJyjhLwgboVJagPg9yDBbbVmaJ0_3XiABfC1AfSNkcLGoyz1uDYUW-vhl4bRGwAvj3AzO4_ARIzBHVSFgKOsZXyfUS37nfFrSAc3yu0qwA1zzOPsEuY_cuWeRQ7HNoGGaOjmDq9zm_5xtYwfbQTeHmCNgQ-nuVOHjdew3GPVOs7iMZjQotgzpfHCJpr-ZPLYpCWpSk-FNXkwegcC8NokiQ_W4NVWu7X6qypXvY6T0uZ70OYGdYtfxohnlZaXz6tCnPt1OJ5keeklpiiHQZBN0_LAFCMAlEhyxSShgfG5ZEgSAjGYNIJFUkaESGxD7cMgruuJNckY2La75dnvDuGxycureU3NgezOym41fqqIjjTm2JcmCn3EQookYwhrzbiKrB_5QkRBHfi8rNDBcooyTqvaA5jGJNnyTkfZ5TC8cAs-y7KkmI9oJhObhrM_KxxnubWemRm6wNGi4oH7wxvDDMGf1roDaP7JKVPbWGpG_rX9T8Y02eaUi391aouHMADZ8tIMJvZqS1KltqmSCG8LWALdBoKRbYK0kttUCMq2CdaKbQtQPrEtOJd0m3LO4TdCGm0TxQjAQJyLtxmRmm9TYAKgkdzhgUxHbTNImBD0FVptC8yw3oYEUtAKG9vmiBEHyQAzVlLIbSK0QNtMccy2q0UQTTnd5hwSCfgtMYGHjAACyBgqLHwbI4q3qdZYbFPGAYxRAatHXCK3DgmzkBQ6Yjc910cohxu5f2MBM0Icw5iQgcC_tVsNhadulRRmTWFasD4OnbcxIRwBkSmMAryHxSNC1DaHVrKtGWDECGLfaubwUBLkpo4drbiEFQkMoNAuuKMDIsKNh_i2dIvmSMG0mdAwGaLdQ8DqOESZ1DBtBb8ZcKVetgIYTB1vBGAkCB7CyDB3rAXl1QokTEwLeEhhSkQoAcMJBDTFGDEB5JBAWQLUcyzTBKYEA0nALmHxFCtgFiwUEHPu-lIqgM7QFZZDKSjYttJO5DAjjmMEaEVExSBYIIAg7aZKkBMg5pYN_4JRhQSWUYVlReBKAjlwDtfLAUGBWXIk3DwUjMSAW0APCfHTtq6ERVAJwzkWMyWBDkBfJw8ADb8prATYTYAQlUIQDeoJ06VAVMyB044fmDmD5KovJr8adtUD7EMJetcq8BPW1OzdY16p4E8vP568q378NCrLSfHi-fPLy8tnE1OOssh-h1jxWZCNn0-gEyjv0-JrnCRPHdrnQ_jfzvnH3fDkjyC5ourk8gv6GE2P3yS_nT-18Vv-_pvwL0dfj0SQWx3mV69H5kJ-uRBi_-L78d9_u_qYHJtPu_p89OYo-Jb-_svBhw8Xp8Hvn84_HIyfXv4avVbfvv_-7fgk__LhiL698N9e_ZJ-EenTo4M_4td5LidHafHh4wX5enx4cHJyvHOEPv9yNEzPQUHN1-PfkvHJlT-cnn8oDl4ffP_yJs-Dp8Hnd_vB4buD8sOHd79Hafjp63l5gK4AX_GxeB3k5vgt2tstxr_6yenbz-jv-QVWpyz9nXz5tvfb1Rdxri5jvXsVXLydZJ_fBodv9v6gl5_k8MPv9tPh-4uvSfrhKvCH74p059uby_fm8xuiRC7eXpXHHw5kfPb6_Ql-mx3a41362-l5Mfzlw2483P19-Mvl8Hz4eTh8e777bfh2uPP7-etvw9FZsf_79zevR2dfK0Y9n3HqZf2OpKjZ1vxVmULHV6e8W15c2nFlI5uo_jpcZRcXgFj0AVamcwFIcR-gM2QtONYHV9mq1sh9cJW9aSGkvUtx-twC7F2zs06tgXsRVva1RUTZuxTnFFqAupc2zi21AFUvoHMtrTny3qGd92lh7AWsfE0LcLbql8_bcvTSBbl5DO60Do-eO99cxSvOebsfv2alrWBd4-yPl6fOIhQQB-XlGzsudq4gJH3tUvGl9w-N93fQp7as46t2n1dbZT61Lm6KzDRx7R-mJoldJIPare_qF5hplo_npUlABcGIy55qjGdXExcVDN-9q58Mk7JB5oabRSZ1BNJMyIvDWVTSNFZvI4eLWe-aJCiqecdpkEyBtmkTrcNs4sRFWr6bmXsf62pv4WxFRZK5KoM1kyz18NYy3vmwP72E2TWd3ySZbxLSYK6srovDFnNo3uMSoM15zdcjW5oQYtnnh8Do4rlb6fNqAPi1A_HrPGtykXAVk7penSdAp9-a0XqefZvxxA08n1YVijWPXMe9mltbncXgGT2WyFMFvs1CUzNuAkQ3tjcf3Msi733ux6Wb_vMbqLUhaebSMoRwfvZ-d06XWWMD1qJK07Lo1aHJw1JhPsiGa-YbLnlO2GOb2jKvwvrjZFp0SNAH1EuSfqyPSaJLV6e3YUtYWsMvTJ2b683aXSG_j36TFfrtem_GP2f5N5VZk4Jw5tfFdta-TnIXfR9XeGEcrx7ogQV4N0vLPEtgDnuQmOZ10fCaBPdC9dJmDd4_Q4YXw3ut8TclHlYbUu80cTWeRTm4S7VrT3uptQLPI1KpHs1rD_enaTfM98It7x66vbGrLsvEOqNf7NYvGVq-uvuo5ai7Dx6RCYuh_gfsXfH_Cs-N-PxBSQDcSs6yYT5e0uZW83zp7cZHXLYbxiszrxrooQOQ_dLmqUl2XDVyOT5betarikfwf5OA_biImxco31rh88MSo5mTN5_ww7L_c7WVr02EpmW-5ubvx1thPcCfZl12sqy8p3HBG5G2dsm7SWa-rggbmvY5mTutjx8o1AM9tHIdpkFuTQEOfdqEhO2FX3vaq2Ar8CxIQh-aJPPRvPlwj5D2PHAI-UNEkBsamdd5VpR-EqddRWg3zxd9GNg9UzyqwWmN-6dZnQObjG15L7MjNvPnCRC47MYy87aFJ5-1PB6VZ0M8tCrtJFkWHpnzOOjGa_PmXkVq93xMPcqz82o_wcMq0V5cBG47edq1IO3m-YLbjY-30tYoD5Q0zZYK5jjcMWlab51frLXdPl_s8TSH9M3aZPbkEVfsJuA14_yJEUt45c32BT1-3LJ7FSTZkpTN2xYWZNbymIlAM8ZD1zNMUX4eQU7r9v2ktjoTcL2c0QPUX83oxfqnFDNgdK8a3muNv7EJ2kwy5lW_zyafrC5f1k_mtFlqf0RKLCqS1VAPtPC5zMz3g3aWPW_tTxUX_R5x8W4Urx7mod1ttUuwJ6BfetZLhGs4HlMOIE1-vDi-OUF0Wubx1yUL2X7SbyS6_R_TdtYjec1Qj-GsCnBIbgOWo9QLLF-cjszE5rNS1Vk2DUbb3m4-LUxoc29W1Xuskh9uUXs_jayttuS3Y4F7FGFm-K6Rsfl5asvq9W39gtb9rAhZQRymk2lZIXu1NYaQ6R_-NIrcKUuYMDDHHSXdf_16f_fs8NN-s12u3aVa1D_S6dh3sU3938VJwlNbVaC8YuoX9c9XW59ie1lNZA9kOU4Kt6okMZPCzjeKVW9gm5kn0G8NtgrqIJ6fy1yNawHQj2n_u83L2hcEeWx75zV_fsOk6gHd_nC3vbAPmzvz2I-o3njsvGe9ib2HUtUR034s7rhn73LcwzV9D8cTk_SO3Dy9gRKlewcPkhpHkP6UplzPcvfGvoZaQ5cgABsaXK3hd7Nruh9HdYi0D0H9sL9zfRy0r3fzdA1Vq3OovVStn_Z337OB6V17_bC_8_xcRJZWx6BXY5lDrcH0a5ZWQu62BMSJ2-Pcy9n9xM5B-hG-L0c2bzZ_9mE6Ahs1A1mrOHnsT8t-NW5BrKFVdZqrh0LuWX_X-oBSzxrcszWWqHNUp4egbZh-VPWBll5Dtq5rvd-9l37N3vk1LGhSwh7y10_XEGF2YqZn_c3jNUpS2d_hRRaH9fmJHnVZAltnMLLg6_3RVIdC7o9m-ZTI_TG-TkzxtZffzdP-7h_L2MUyK7DUsctGSJxS3Q-D0637YThZDiQWfU_WhxDzQwkrO8-erlP85qzCnTHUJyru3L068HHn3pX5huTAwgrW2u85zBrxLqfpIiO7F6pqWjfagVshq13ZAy211tDmjPE6Ja5BbkAEzvhgTbi3Gab54aUDaxL38YssuR_Ca2ep77XOrCxMGu65I5j3XKg7wTmdALLZzN6vitcXSrCM9eXzWSZVHWxxuU1zKggy21dbkzwem8Tztrw_smz8u9uDzfQzItwhDE0kr9ubfawYNZtXIfjdi4EDeSU5s-Ed5G-vtjRWzzhWRCLNVfM9gpdVNaDZV-t-z7bVTgtbf5Ch3pJWNbd2vDrQalmE1WnsSfVS5IX38dfDDx_3B-9sOYLpH7u9wIPZISnvF3tpk0HVt5r5C0-xQf1xkBfeO2ckBu_iMUSwoVdmLzw8gCwhiQMQyhceGuxm4zHQ27rvD7nMuxjFE89lSR7mEjHv0uR5nOWFN01dXj78ml2ZwXF95qCApN_Lq5E8k1u3R-rbFMgUev6VB4rpvTX5NB4cQGCS5XFQJcOQyp6Y9NxCP_g3ZNrP-Fazw7dJl3shyI0Qs3NqVTmmS1K8RNKT4cn-4OBqkmZlHHinZZZaoAXk-mVD0I9pDIvxDvdeeEQHgbRhqGgYcimCSHE_QNxGhikjI8JxIIH3fhhwolnkh8RY4UNjZKgOKF1mTocBTzBz21f27PfSuqkNnmj3N8irTc_LkQfM8Q7T0pVoz50ADvjPrtbSvIOuKrlVwuldVvXcUVZ9VsozXh2MDlQbfFzrvee88p_GjjUQrJ9hRNxaB1osUzYIVci0xhghSYQlgrsDdFIRSm3EfSaw0Igwy_3IcEyM0X7k28g3zFd-tF6f_m9qEFqhQe_9JL5wVvx0EucmGQzHwJ8rkMkTEMI2Q1jEgROEYM4jbpnypfQNoSpg2nAjFQsNwYz7vmVGk8hqEyJttAwFjzRFrMsQMqh-ndhvLzyB2vzAgycE_ew0qDol7NV5kYs0QNO4a3f7xRbZ5uAJ5W19AyhKXUOT0XgnxlWhBk8Yca0zBarzvZmOPRGy_bDSrieE1dMAhWzP4sfRujUQ_EYIcSOEXKPbKyTpeJTZNP7unU3ztF-MKKbMShZQS7iJMJO-xFFAAhpaxkOhJPENhb-5waFWzFhLke-bwLIICUSW9Jq3xUguixHtESMq1kgC09clgdUC6c74dxAxslJCnjBRtS9eUrUe_jPITQS-_F9POG-P5DK1v2SrmuIKPw-xY3bpHVaHqILKi74ZgedMrrz9K3vde6Aw0lpqK8FVSIk4FkqgkHKCbaBDG_gqIL5mGDPBEQAoBr95JIQiOEBiyeHTrmB1HHL9fsFzVV_3rY3mBYxXV0sHT9T6UOAJIddk4AnB1yRwN8vz6QSk5gf3-atitN0ROHnwfd6Zdbne4LS8Oo9N6n2KC9vmGY4gNEOBkEHkg3s3CAcRD1DoR4EIQsRFQJUwMjAGwf8D4c6tSUFoRDXTEoeDgymQNvfcZLr8E4PmNN4Lb9hl5YEpPOwN_auicLyroMAZiI5D6fC77Xj4dafh0p3LkU3GEDv87M2-wOLVaY43_wZL2wrg_3IrsEpO-Ao5GZ5n6ZX35iq3_d4jDASSmnKrg4gx6vsagRpbwygPBNY-9UmEJQQnPgSNnGrEwbsIIsKQEaNEuKzXLe_Bl70H6fEefCncYGydN7nO3SeSbexhFmJCeCfJuG5K_nIdrvOqjAOM57QIqijQ20_i73E-OJlCeF4VLjtpogkYCjnzQ2OxlpIoxQgPrIqI5IH2fREp92U_n2gcKJdKRlRRFkkVQgwT4a50oUFzMBYQy5akYdWVtDmPPxZVEmhTrykNemBzgpEXTZNkQDpZ46ySN6jFszEvpSujeGEGPSErhgzEfVqgK5FeOHXvoD1bFaQGJ3bs3sRXITUYNQ-S6EpI4YerdTTPITFybbHTAxA29z1gaDPLqKuUiTTfTCg29VkbC80qhssuw4-Gbw53B-6kV5xOM0jJPkzj4GsRJ25mFbvdaVeXlh1AstZmPZgTP-SQy6CIUikFcNYEgYkQNoHGWvuBH0a-sihC4KRANnwlAk0FwT4BbySWw9I56zG5P-tZp2BQAXizT6UNRPvh7NtITUWhYXZdfdyUIfcKANQqhgzdSxXgSTA_2HRqJpORs3UdpuzYZHpuOlUARCDrlIpC7h8YCZkkxgFhwBBLlEGhMRjSfWIVFVpD3BYGNOCScxIFSghxrXCz0EjUYgu7E1swsCWvtzrNH09AzpzeMPmz-yA32OXqZJOrlXu-dbyAaKg6g9hlDUd98K_z7A-n1B3wf6fr1itt7NGXLAFjMHhjLpZKbz4nyFBqMGMWIQizdRDwEAuJJLIaR8BJgiilxFckApsa-GCAjQ2UJjiiqMtBvOAgWgR1O0_hnzUFBReKzTgFJmsMFqucpt7ZKLeFK7cNzvL4_BxYZ5oQsHPkuXox6AziQVxue5exi-M99Awccm3pIP0DHNllOujrXHgjIAvYZM99c9eLI68ZEFTxCUWo48hBs79NQTWcGrtSCFqkD-0nSrf1finQHCjZfrqYTvO4-bAESG2cek8gRIEIvXj8COJPjQ_WQKg1NTK80qMkcQrSZNKZ_frFhEu26xQCskkM-t8Wfu4TCQoLzsVaI7iRPiYskAFRkbAQqIqQamwjFoVGMxpFSkPAIa02SFhEA9MRftlnvji7i_miZGVA4SzXXFcqa-NWeDoC0XY6cJVNb2OL7uVLMFlpas4ctStFGOwn9tyAtzvJpqCHTcxd74R44VFww_XvHVhi8w3ZOLFgOp4xzMWgKRDWkM0fPaAtnvoIc4gJfSEZFkJZn0mfcQ2xA_ghDAmr9CVkJtTXxFhKMVGW6ZBoxkRgjQ6WU5A2T-cW7fNT-KfFYrls0VyJdMG9aifFIiRwWS1tTFkxGCazzLYuUX8exSVkIXWJqhm94vHMejWbVz23GXawstULIH83SZHNWxuLEuXZ2MlIDmkNmJYDUAqYayd0rVlS5S8NzcEG_twUTNyUqsX8lc64ZS6Ftyf778AYrdh3O1jadjvXAcJErw5IJfSgE8FDJDRrqRuudxIMt5XBCi4JsswPAuL7EeGaSqMj30ghImuVpNZiYnzNGWJcGWlDRYywHAn4r0-axayo2ciVnv7kqfun4-tFVzN2p3lhKy8fg72rvPVsO2_jwweK9MnjUu7uzbZFNu8QqvCOLFXwcJ0wuUes_RIQV5l90z6vFuD20N30yUHihbcfdGbZfZkxg-3MpANffcL4Wv2p6baY5Y9YV_yhwwO1onD1ZpRNwcROTP4VJBW0JQcyV-fOl9VL8BvUi2quOnVsw33wHtYKG9IolNjaSGoaCiJxCCEDk5GKMImoZcZXiBkC0TYFN-PrwHIseqNn0lGqawF051UKGSzSfhf4_uy8xVzomyDY_Zxvt2rijUEncR3Wu0WqzHRWGOuqktDXi2V0xYs5xle_dqGq_7ULRf158l_Cv5nwr079DtMwPgcvfjD18xiSijgPElsuiz4h7AbZB1-lO7IfMQFBsMRMceIqM4YFyPpUEyk0xuB6OJYRV-71IEKR9SXmCpJ_6kNcxnjXt-wnYc-rgTUqcdJWCd3dNIA56jXlA9m7ZaOJ0Ty9UKIqQHdx9RQcl6m9Rl2a_DVLn8apE-Cybp5FeHWcVW-8dGW5KhRrHtaVuUp5RGeKVe7p4rwmVMtyr8oGXIpZuntM6jFAI1xEbR1nkqul4lOdCzfepA-DW0uV8HZRbXvTiVNPgEY__0clmyvfgKOVyrB_BVFHkxK-AaKVl1kSDea_vDMQtmJs0ragCwxZIJaKGqIhCZSaY4OJb0LpA62sDFDEraZMSItCBbKu3fswPyRUBCigwbJEtzJD0hZausgMISfIAjDnhduH43bUud0fEBoR2fOui3fKjE0ZYYYbzGkYRzGINTSncTkNbZ1qhNnUnbb6N4QZK1mGe_PJw4sMtOrM7dYdnELmUs7C6wMz9S349VlAzSET6wuo3YeKl82eVjcF1ER30kuwZgEXNLJg47ivogAxqUKBhLZ-5ORCY0p16GMKUTYmodt2o0OFIwinrWKyWzLoMW87kF66_590ksyu10eDJ1xf99EU9b7tasJL5J0097Y0Llxff5_dCijqcOI6ojqu6L7gAFNXv-Oo7F9lbHwLZsj-5703XbnzAW1UfDrLJuaPbvXprfkKDztyxFWk3XetQx8FWhEUamWMDALDhHHXJLikzReQo-FICWq58i38YU3IlC9Q16hI-rClJ7ay9ORszPXSU5XQFXeoPd2LFSvLgPtp4kLL5nOCi62mbprD0EyqVbSzY0YVC4UJAkZRZDDlhvpuD4NgAqL1iAuIeUDfhUVKIhZJS7g0NIDgBZbnszXbTvHAVYDWF-qa3SdL2-V0b2zyY1hpvGr_z3AC7iq5mkCEdDKN00G1i9PbTabueoMV-31DP9IhZwbZQPmGQAQiwJ8yH0sZwJ_GhhaZwEYQLFoWCGOMRQESUvFIS2WXCd8n8G2PGoaFp7xmW2gTZC0eExAQt8O0-7xykrUIzap1bYQu4Bo79i31Ogdylu7V4toi_xoEVbzYYCFLHt-A_LhiSHtjsquitN5p1GvDq5bkTPRpEDv3ltSlisPQmjWwZZaPvT1Q6q_gev_7N75gvjIG-WzKYLQo6kEUOYDADAJFt7f9-u42HgmtLA0RFgwFfmhCiA-UMoEmEVHM7UiQ3DIRBpFPwfxzGYC5t0IJhZhg1_ZQ9p8u4KusRTfZWQlS-WPWa2qaA6eVfc9ScPX1lgJ3NTGInjP0rltpmz3xpgKvN1X_3ZokKyFaewfSBcrvspDFpgN3wrZJro5aA1abFb6XuZm3dgOO68M037P6EURynZsSt_VTTaDfkibDNPh-gaSlfkh97vbh8kBEEVOaCuVHDNJqhDB4JSNCxgOFJYJwkyIbgbfSa71UE7jNPhsNjhz_vLpA8wSj9Xsl1Q_uuAi5kReQaxXgmxfMmNV629sgw4CSEAIFtwE6lFxaBs5Lcxe0WRpYXyrELTgyyAQskJ8gaQyCtBFT42Mk1mxdnZ9VWZSj0Z9G1JUkozeR7BNIa-h2i85p9j4Puy9ZXe2HS8m4L0IruR9gLsEAEiy4lZRjInCEo8BSIoiTXaAoD4zgWGGCmew6e7m0DXBOBa_6nJx78VVtrYJcJI0AzD1poq1_Ru4iqCnEZP_qF9UnuGdb4Ybkvp-E8t4EeBhmeeoy9baIdqxEEEKgBL4E-RqFoP6Rikjo3uGQgITYUBZabRGyOjA-lRDfRsg3EeUqxADPlvfGrfE5kEJ2Smvz4LYdKS2HNGD-S7D91RabOc-qr__V3YpbCvRK-snbWtsWgzs5vmSKcJ8L6Qu3nylilmJQ8gDCUkK19GmEQNWRDSFvoIgqJKxkzFX1DVou-Cwde-CraedqibPzrN7s0xFrkoEn-udZ8rCfVLVyk7SWU_woRlc9RKIG3s5KHIWhCCQBQ6vBXMB_EZUEhwhMCBhXXeUQFFIFZQXT2oRGRr5inIfXAqqbXeBqmq5M2H54v6cfhAVKUrcBTPssNAqBTkTu1TJB4AwZ5cjHiglNfEYYhmCFG-AYg2gkYhKyOeF3rbjusoCtKF7-RybHFK86YGEgaUuuinFzCvaG5FhYpow7OamNJZxG3NdYRRADRjKU2mCDpQLxBjIzDVYJOeeqI8ePKMDCbWHt20PP0H9bcvxk9QGv3nR2kbQdWJOXD5Mjf3aHnibVt0hbN1f8tUOmvo7s1gHkKutjFGUB18KdMAxtQKkgAqxP4NsI4RBLG9EI0msD4WUYaINCGYZBYDG2FKIeQ9Y4APTvtuor6baqyFanht5pAtKX32RFqA4heg4MDzUOIyAYElRTpQOitOJcSxppJBUPiI8hMzHaJxhicp8hE5G1J3H-G61I9wMBf5mPH8V8sIcxH4QgHURK8VC67xFQP0DM1fytT0IdaWEFhItRhDnE-AIMi5YqwBBXQnIE-ZQM1-bsm-WVq2zMI1sSd7Vf_wdRurf-Vap3GH48ebd8EWT92cuavK27IY99gH21NZvaaQJZd7u96be4-m92B6O-qcuOhVi0e-TTa93hiDYdchkHvz0OshGOFbSrrwNtk25xQegtKeedXprJ8jzEA9BDPAA9boOj2nG3jIDeAkF9acMyBnybKawQrTuRYRVP-APwBD8ADnZLgizA2b1k8iF0dDMc9XefZt-JqjHWr9tbPJB3kkdyT2mi91xAi3nqpvHrveT3EaHVGiU2NHLN1cNtK9e6jXhDMze7iWV-6a--C9laixZ3I9tttHc4nibtOZM7yzt9ABtMN2RXc5d1m12t662X2bWK3_Wt2R1-Ly7S3gBBcxtzZwaLC5o3FJjV7GP31LuW3tMbOeG-etDuwdcturkmu73o1s3ZtwsGasdzC5mZfch9rl13s4r8ntRtiSjGdzNK5N5m7f6hBrtvtMM2VNXm9ve2zLQuhH-IAJLeainzC28e3tnwhwq_8Ia01QypLmnrlltQdg1ByKYJAuOKLmUIddOt5rFCxm4dkrd0844hh3gYYeK3Nmz3kerKiLeEhtyJ2vgBHDi7S-B83wxkDR_EPWNgdm8-3jcKb3GF3oMQ9KFs04Mhukuy2tJvcgtitDQD30sq8cNI5Z21ZEOLLLVYcrl1y4axrcDM3WDfMeh1020M-gpZfjAHualrYgyLpZU0TRuSgmEilnxb03SXiPf-VQbyIEZ7FUkfzHJfR1TXcuuLjNy3tk1oT6vvbH-2rvhd1B_jrr6DXd1vlKVRfH7ttiLrvqZyWOxkRbG43qj66_rNRhOTliObpUfmS5a_ycJFh7OR3YFf9u38DrtOR1dejqsbx9zm9npLy-JqJMrXdXmXXdZ3jvhZlliTNtnD9R5-dcvjcQKTdLfY3ARuFvc3u6MOszNuuyPrrrS4qXewuLOvufRww45zGsbpEg2Hvm8XN2uvJkb17ZuKiH1LhPUH1n0Sx-ZtDtcXIs1JLhFaD1_tbmsuNJn3Inx9p_nbtdnVU_PLr7AUN4yXz-8nmve6YTT3pb3lGbKblgUtt5-cG-lWvcbTpHQXrdr8c-y-mGnD0-rWKndX2alNohYafvOEb7vIORtuTR3H9OWFMoluZt1yJ3pDnxr-JEuS6nVVWzDXd5xFHvPZMa7x-i6zTyjcnu_zC3dmXRRVqrdLEZ_HyfuoujAE2F3detK9_e3l85kRfvn8GDT9fbQzjatvxf9t8P8BTx6WjA==

Screenshots

In game:
image
POB after import:
image

@PPFilip PPFilip added the bug: behaviour Behavioral differences label Apr 14, 2024
@n1tr0xs
Copy link
Contributor

n1tr0xs commented May 28, 2024

I assume this is impossible for now. Because GGG doesn't show allocated cluster points at all.
Here's example:
image

@Regisle
Copy link
Member

Regisle commented May 28, 2024

The data is actually there iirc, and this PR fixed it #7270 if I remember correctly, but it had issues and was reverted

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug: behaviour Behavioral differences
Projects
None yet
Development

No branches or pull requests

3 participants