-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollect_feedback.py
277 lines (238 loc) · 11.4 KB
/
collect_feedback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import numpy as np
import torch
import random
import os, sys
import imageio
import utils
from utils import n_2_w
import argparse
from mineclip_official import build_pretrain_model
from envs.minecraft_hard_task import MinecraftHardHarvestEnv
from skills import skills, skill_search, SkillsModel, convert_state_to_init_items, LLMPlanner
from minedojo.sim import InventoryItem
import matplotlib.pyplot as plt
import sys
import json
import pickle
from copy import deepcopy
def main(args, task, task_conf, planner):
# save path
save_dir = args.save_path
if not os.path.exists(save_dir):
os.mkdir(save_dir)
save_dir = os.path.join(save_dir, task)
if not os.path.exists(save_dir):
os.mkdir(save_dir)
# Inference device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
torch.set_default_tensor_type("torch.cuda.FloatTensor")
print('Running on device: ', device)
# seed control
seed = args.seed
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
# load clip model
clip_config = utils.get_yaml_data(args.clip_config_path)
model_clip = build_pretrain_model(
image_config = clip_config['image_config'],
text_config = clip_config['text_config'],
temporal_config = clip_config['temporal_config'],
adapter_config = clip_config['adaptor_config'],
state_dict = torch.load(args.clip_model_path)
).to(device)
model_clip.eval()
print('MineCLIP model loaded from:', args.clip_model_path)
init_items = {}
init_items_str = []
task_conf_dict = deepcopy(task_conf)
if 'initial_inventory' in task_conf:
init_items = task_conf['initial_inventory']
init_items_str = [f"{n_2_w(v)} {k}" for k,v in init_items.items() if v > 0]
init_inv = [InventoryItem(slot=i, name=k, variant=None, quantity=task_conf['initial_inventory'][k])
for i,k in enumerate(list(task_conf['initial_inventory'].keys()))]
task_conf['initial_inventory'] = init_inv
init_inventory = init_items
init_inventory_str = init_items_str
init_surrounding = {}
init_surrounding_str = []
# ablation for max steps
if args.shorter_episode:
task_conf['max_steps'] = task_conf['max_steps']//2
#task_conf['max_steps'] = task_conf['max_steps']*2
print('task configs', task_conf)
# Instantiate environment
env = MinecraftHardHarvestEnv(
image_size=(160,256),
seed=seed,
clip_model=model_clip,
device=device,
save_rgb=args.save_gif,
**task_conf
)
# load skills
skills_model = SkillsModel(device=device, path=args.skills_model_config_path)
# init LLM
#planner = LLMPlanner()
# run test
target_name = task_conf['target_name']
task_name = task.split('_with_')[0]
task_name = task_name.replace('_', ' ')
task_condition = planner.task_to_condition(task, task_conf)
skill_sequence = planner.make_plan(task_name, task_condition, init_items_str, init_items, init_inventory_str, init_surrounding_str)
if not skill_sequence:
skill_sequence = [task_name]
skill_success_cnt = np.zeros(len(skill_sequence))
print('Initial skill sequence: {}, length: {}'.format(skill_sequence, len(skill_sequence)))
test_success_rate = 0
all_feedback = []
success_traj = []
sub_success_tarj = []
for ep in range(args.test_episode):
print('Execute task: {}, episode: {}'.format(task, ep))
env.reset()
episode_snapshots = [('begin', np.transpose(env.obs['rgb'], [1,2,0]).astype(np.uint8))]
past_skills = []
traj_plan = []
episode_skill_success = np.zeros(len(skill_sequence))
episode_skill_idx = 0
skill_next = skill_sequence[0]
init_items_next = init_items
init_items_next_str = init_items_str
init_inventory_next = init_inventory
init_inventory_next_str = init_inventory_str
init_surrounding_next = init_surrounding
init_surrounding_next_str = init_surrounding_str
planner.reset_info()
planner.get_sub_tasks(task_conf_dict)
planner.initialize_history()
next_skill_type = 2
while True:
step_info = {'inventory': init_inventory_next_str, 'surrounding': init_surrounding_next_str, 'skill': skill_next, 'sub_task': planner.subtask_str}
skill_correct = False
for revise_turn in range(args.fr_turn):
skill_next, skill_action, feedback_tuple = planner.convert_skill(skill_next, init_items_next)
if feedback_tuple:
feedback, revision_satisfied, revised_skill, revised_raw = feedback_tuple
if revision_satisfied:
all_feedback.append(feedback)
print('revised skill:', revised_skill)
skill_next = revised_skill
step_info['skill'] = revised_raw
traj_plan.append(step_info)
skill_correct = True
break
else:
if revised_raw:
skill_next = revised_raw
continue
else:
break
else:
traj_plan.append(step_info)
skill_correct = True
break
if skill_correct == False:
task_success = False
task_done = False
break
print('executing skill:',skill_next)
past_skills.append(skill_next)
skill_done, task_success, task_done = skills_model.execute(skill_name=skill_next, skill_info=skills[skill_next], env=env, next_skill_type=next_skill_type)
if skill_done or task_success:
episode_snapshots.append((skill_next, np.transpose(env.obs['rgb'], [1,2,0]).astype(np.uint8)))
if task_done:
break
init_items_next, init_inventory_next, init_surrounding_next = convert_state_to_init_items(init_items_next, skill_next, skills[skill_next]['skill_type'],
skill_done, env.obs['inventory']['name'], env.obs['inventory']['quantity'], env.obs['nearby_tools'])
sub_task_completion, cur_task_completion = planner.check_sub_tasks(init_items_next)
if sub_task_completion:
sub_success_tarj.append(deepcopy(traj_plan))
if cur_task_completion:
planner.subtask_str = ""
init_items_next_str = [f"{n_2_w(v)} {k}" for k,v in init_items_next.items() if v > 0]
init_inventory_next_str = [f"{n_2_w(v)} {k}" for k,v in init_inventory_next.items() if v > 0]
init_surrounding_next_str = [f"{n_2_w(v)} {k}" for k,v in init_surrounding_next.items() if v > 0]
skill_sequence_next = planner.make_plan(task_name, task_condition, init_items_next_str, init_items_next, init_inventory_next_str, init_surrounding_next_str, past_skills, first_plan=False)
if not skill_sequence_next:
skill_sequence_next = [task_name]
skill_next = skill_sequence_next[0]
next_skill_type = 2
print('recomputed skill sequence:', skill_sequence_next)
print('task done {}'.format(task_done))
if task_success:
test_success_rate += 1
success_traj.append(traj_plan)
# dump history
with open(os.path.join(save_dir, 'episode{}_history.jsonl'.format(ep)), 'w') as f:
for his_tuple in planner.total_history_input_output:
f.write(json.dumps(his_tuple)+'\n')
# save gif
if args.save_gif and task_success:
imageio.mimsave(os.path.join(save_dir,'episode{}_success{}.gif'.format(ep,int(task_success))), env.rgb_list, duration=0.1)
with open(os.path.join(save_dir,'episode{}_skills.json'.format(ep)), 'w') as f:
json.dump(traj_plan, f)
save_dir_snapshots = os.path.join(save_dir, 'episode{}_success{}'.format(ep,int(task_success)))
if not os.path.exists(save_dir_snapshots):
os.mkdir(save_dir_snapshots)
for i, (sk, im) in enumerate(episode_snapshots):
imageio.imsave(os.path.join(save_dir_snapshots, '{}_{}.png'.format(i,sk)), im)
if args.use_aquila and task_success:
break
if ep%100==0 and ep!=0:
env.remake_env()
print()
# save feedback
if args.save_feedback:
with open(os.path.join(save_dir, 'feedback.jsonl'), 'w') as f:
for feedback in all_feedback:
f.write(json.dumps(feedback)+'\n')
# save success trajectory
if args.save_success_tarj:
with open(os.path.join(save_dir, 'success_traj.jsonl'), 'w') as f:
for traj in success_traj:
f.write(json.dumps(traj)+'\n')
with open(os.path.join(save_dir, 'sub_success_traj.jsonl'), 'w') as f:
for traj in sub_success_tarj:
f.write(json.dumps(traj)+'\n')
test_success_rate /= float(args.test_episode)
print('success rate:', test_success_rate)
# save success rate
with open(os.path.join(save_dir, 'success_rate.jsonl'), 'w') as f:
success_info = {'success_rate': test_success_rate}
f.write(json.dumps(success_info))
return test_success_rate
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--shorter-episode', type=int, default=0) # ablation for using 1/2 episode steps?
parser.add_argument('--test-episode', type=int, default=20) # number of test episodes per task
parser.add_argument('--seed', type=int, default=7) # random seed for both np, torch and env
parser.add_argument('--save-gif', type=int, default=1) # save whole gifs?
parser.add_argument('--save-feedback', type=int, default=1) # save feedback
parser.add_argument('--save-success-tarj', type=int, default=1) # save success trajectory
parser.add_argument('--save-path', type=str, default='results')
parser.add_argument('--clip-config-path', type=str, default='mineclip_official/config.yml')
parser.add_argument('--clip-model-path', type=str, default='mineclip_official/attn.pth')
parser.add_argument('--task-config-path', type=str, default='envs/hard_task_conf.yaml')
parser.add_argument('--skills-model-config-path', type=str, default='skills/load_skills.yaml')
parser.add_argument('--use-aquila', type=int, default=1) # use aquila to generate
parser.add_argument('--fr-turn', type=int, default=5) # feedback-revision turns
parser.add_argument('--task-range-st', type=int, default=0)
parser.add_argument('--task-range-ed', type=int, default=30)
parser.add_argument('--adapter', type=str, default="nope")
args = parser.parse_args()
# load task configs
tasks = utils.get_yaml_data(args.task_config_path)#[args.task]
success_rates = {}
planner = LLMPlanner(adapters_name = args.adapter)
test_list = []
for task in tasks:
test_list.append(task)
test_list = test_list[args.task_range_st:args.task_range_ed]
print(test_list)
for task in test_list:
success_rate = main(args, task, tasks[task], planner)
success_rates[task] = success_rate
print(success_rates)