-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_test_tflite.py
46 lines (42 loc) · 1.18 KB
/
gen_test_tflite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import tensorflow as tf
import numpy as np
from pprint import pprint
np.random.seed(0)
dummy_input = np.ones([1,10], dtype=np.float32)
# Create a model
i1 = tf.keras.layers.Input(
shape=[
dummy_input.shape[1],
# dummy_input.shape[2],
# dummy_input.shape[3],
],
batch_size=dummy_input.shape[0],
dtype=tf.float32,
)
i2 = tf.keras.layers.Input(
shape=[
dummy_input.shape[1],
# dummy_input.shape[2],
# dummy_input.shape[3],
],
batch_size=dummy_input.shape[0],
dtype=tf.float32,
)
# o = tf.math.top_k(input=i, k=1, sorted=True)
o = tf.math.multiply(i1, 5)
# o2 = tf.math.multiply(i2, 5)
o = tf.math.multiply(o, i2)
# o = tf.split(value=o, num_or_size_splits=5, axis=1)
model = tf.keras.models.Model(inputs=[i1, i2], outputs=o)
model.summary()
output_path = 'saved_model'
tf.saved_model.save(model, output_path)
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS,
tf.lite.OpsSet.SELECT_TF_OPS
]
tflite_model = converter.convert()
open(f"{output_path}/test.tflite", "wb").write(tflite_model)