-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparameters.py
319 lines (267 loc) · 12.9 KB
/
parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# -*- coding: utf-8 -*-
"""define all global parameters here."""
from os.path import join
import argparse
import pcode.models as models
from pcode.utils.checkpoint import get_checkpoint_folder_name
def get_args():
ROOT_DIRECTORY = "./"
RAW_DATA_DIRECTORY = join(ROOT_DIRECTORY, "data/")
TRAINING_DIRECTORY = join(RAW_DATA_DIRECTORY, "checkpoint")
model_names = sorted(
name for name in models.__dict__ if name.islower() and not name.startswith("__")
)
# feed them to the parser.
parser = argparse.ArgumentParser(description="PyTorch Training for ConvNet")
parser.add_argument("--train_size", default=None, type=int)
# arguments for evaluation only
parser.add_argument("--model_dir", default=None, type=str) # where saved models are
parser.add_argument("--checkpoint_dir", default=None, type=str) # where to save the trained model
parser.add_argument("--inference_dir", default=None, type=str) # where to save the inference jsons
parser.add_argument("--epochs_ran", default=None, type=int)
# arguments for DeTAG
parser.add_argument("--gossip_eta", default=None, type=float)
parser.add_argument("--gossip_rounds", default=None, type=int)
parser.add_argument("--oracle_budget", default=None, type=int)
# add arguments.
parser.add_argument("--clean_output", default=True, type=str2bool)
parser.add_argument("--work_dir", default=None, type=str)
parser.add_argument("--remote_exec", default=False, type=str2bool)
# dataset.
parser.add_argument("--data", default="cifar10", help="a specific dataset name")
parser.add_argument(
"--data_dir", default=RAW_DATA_DIRECTORY, help="path to dataset"
)
parser.add_argument(
"--use_lmdb_data",
default=False,
type=str2bool,
help="use sequential lmdb dataset for better loading.",
)
parser.add_argument(
"--partition_data",
default=None,
type=str,
help="decide if each worker will access to all data.",
)
parser.add_argument("--pin_memory", default=True, type=str2bool)
# model
parser.add_argument(
"--arch",
"-a",
default="resnet20",
help="model architecture: " + " | ".join(model_names) + " (default: resnet20)",
)
# training and learning scheme
parser.add_argument("--train_fast", type=str2bool, default=False)
parser.add_argument("--skip_eval", type=str2bool, default=False)
parser.add_argument("--stop_criteria", type=str, default="epoch")
parser.add_argument("--num_epochs", type=int, default=90)
parser.add_argument("--num_iterations", type=int, default=9800)
parser.add_argument("--eval_n_points", type=int, default=50)
# parser.add_argument("--avg_model", type=str2bool, default=False)
parser.add_argument("--reshuffle_per_epoch", default=False, type=str2bool)
parser.add_argument(
"--batch_size",
"-b",
default=256,
type=int,
help="mini-batch size (default: 256)",
)
parser.add_argument("--base_batch_size", default=None, type=int)
parser.add_argument("--initial_batch_num", default=None, type=int) # for GT-HSGD
parser.add_argument("--true_gradient", default=False, type=str2bool)
# for time varying setup
# PProx-SPDA / FSPDA
parser.add_argument("--eta", type=float, default=0.0)
parser.add_argument("--gamma", type=float, default=0.0)
parser.add_argument("--beta", type=float, default=1.0)
parser.add_argument("--omega", type=float, default=1.0)
parser.add_argument("--edge_fraction", type=float, default=0.0)
parser.add_argument("--one_edge", type=str2bool, default=False)
# CHOCO-SGD
parser.add_argument("--node_fraction", type=float, default=1.0)
# CP-SGD
parser.add_argument("--alpha", type=float, default=0.0)
# TiCoPD
parser.add_argument("--theta", type=float, default=0.0)
# Di-CS-SVRG
parser.add_argument("--SVRG", type=str2bool, default=False)
parser.add_argument("--outer_loop_T", type=int, default=100)
parser.add_argument("--B_connected", type=int, default=10)
# SPARQ-SGD
parser.add_argument("--c_init", type=float, default=2.0)
parser.add_argument("--c_incre", type=float, default=1.0)
parser.add_argument("--sam", type=str2bool, default=False)
# learning rate scheme
parser.add_argument("--lr", type=float, default=0.01)
parser.add_argument("--dual_lr", type=float, default=0.01)
parser.add_argument("--const_lr", default=False, type=str2bool)
parser.add_argument("--lr_schedule_scheme", type=str, default=None)
parser.add_argument("--cosine_warmup_epoch", type=int, default=0)
parser.add_argument("--ramp_up_epoch", type=int, default=0)
parser.add_argument("--ramp_down_epoch", type=int, default=0)
parser.add_argument("--min_lambda", type=float, default=0)
parser.add_argument("--lr_change_epochs", type=str, default=None)
parser.add_argument("--lr_fields", type=str, default=None)
parser.add_argument("--lr_scale_indicators", type=str, default=None)
parser.add_argument("--lr_scaleup", type=str2bool, default=False)
parser.add_argument("--lr_scaleup_type", type=str, default="linear")
parser.add_argument(
"--lr_scaleup_factor",
type=str,
default="graph",
help="scale by the graph connection, or the world size",
)
parser.add_argument("--lr_warmup", type=str2bool, default=False)
parser.add_argument("--lr_warmup_epochs", type=int, default=5)
parser.add_argument("--lr_decay", type=float, default=10)
parser.add_argument("--lr_onecycle_low", type=float, default=0.15)
parser.add_argument("--lr_onecycle_high", type=float, default=3)
parser.add_argument("--lr_onecycle_extra_low", type=float, default=0.0015)
parser.add_argument("--lr_onecycle_num_epoch", type=int, default=46)
parser.add_argument("--lr_gamma", type=float, default=None)
parser.add_argument("--lr_mu", type=float, default=None)
parser.add_argument("--lr_alpha", type=float, default=None)
# optimizer
parser.add_argument("--optimizer", type=str, default="sgd")
parser.add_argument("--adam_beta_1", default=0.9, type=float)
parser.add_argument("--adam_beta_2", default=0.999, type=float)
parser.add_argument("--adam_eps", default=1e-8, type=float)
# the topology of the decentralized network.
parser.add_argument("--graph_topology", default="complete", type=str)
parser.add_argument("--er_p", default=0.5, type=float)
# compression scheme.
parser.add_argument("--comm_algo", default=None, type=str)
parser.add_argument(
"--comm_op",
default=None,
type=str,
choices=["compress_top_k", "compress_random_k", "quantize_qsgd", "sign", "quantize"],
)
parser.add_argument("--compress_ratio", default=None, type=float)
parser.add_argument(
"--compress_warmup_values", default="0.75,0.9375,0.984375,0.996,0.999", type=str
)
parser.add_argument("--compress_warmup_epochs", default=0, type=int)
parser.add_argument("--quantize_level", default=None, type=int)
parser.add_argument("--quantize_bits", default=None, type=int)
parser.add_argument("--side_length", default=None, type=float)
parser.add_argument("--is_biased", default=False, type=str2bool)
parser.add_argument("--majority_vote", default=False, type=str2bool)
parser.add_argument("--consensus_stepsize", default=0.9, type=float)
parser.add_argument("--momentum_beta", default=None, type=float)
parser.add_argument("--dual_momentum_beta", default=None, type=float)
# parser.add_argument("--evaluate_consensus", default=False, type=str2bool)
parser.add_argument("--eval_consensus_only", default=False, type=str2bool)
parser.add_argument("--mask_momentum", default=False, type=str2bool)
parser.add_argument("--clip_grad", default=False, type=str2bool)
parser.add_argument("--clip_grad_val", default=None, type=float)
parser.add_argument("--local_step", default=1, type=int)
parser.add_argument("--turn_on_local_step_from", default=0, type=int)
parser.add_argument("--local_adam_memory_treatment", default=None, type=str)
# momentum scheme
parser.add_argument("--momentum_factor", default=0.9, type=float)
parser.add_argument("--use_nesterov", default=False, type=str2bool)
# regularization
parser.add_argument(
"--weight_decay", default=5e-4, type=float, help="weight decay (default: 1e-4)"
)
parser.add_argument("--drop_rate", default=0.0, type=float)
# configuration for different models.
parser.add_argument("--densenet_growth_rate", default=12, type=int)
parser.add_argument("--densenet_bc_mode", default=False, type=str2bool)
parser.add_argument("--densenet_compression", default=0.5, type=float)
parser.add_argument("--wideresnet_widen_factor", default=4, type=int)
parser.add_argument("--rnn_n_hidden", default=200, type=int)
parser.add_argument("--rnn_n_layers", default=2, type=int)
parser.add_argument("--rnn_bptt_len", default=35, type=int)
parser.add_argument("--rnn_clip", type=float, default=0.25)
parser.add_argument("--rnn_use_pretrained_emb", type=str2bool, default=True)
parser.add_argument("--rnn_tie_weights", type=str2bool, default=True)
parser.add_argument("--rnn_weight_norm", type=str2bool, default=False)
# miscs
parser.add_argument("--manual_seed", type=int, default=6, help="manual seed")
parser.add_argument(
"--evaluate",
"-e",
dest="evaluate",
type=str2bool,
default=False,
help="evaluate model on validation set",
)
parser.add_argument("--summary_freq", default=100, type=int)
parser.add_argument("--timestamp", default=None, type=str)
parser.add_argument("--track_time", default=False, type=str2bool)
parser.add_argument("--track_detailed_time", default=False, type=str2bool)
parser.add_argument("--display_tracked_time", default=False, type=str2bool)
parser.add_argument("--eval_grad", type=str2bool, default=True)
parser.add_argument("--eval_worst", type=str2bool, default=True, help="evaluate every local model and log the worst performance.")
# parser.add_argument("--evaluate_avg", default=False, type=str2bool)
# checkpoint
parser.add_argument("--resume", default=None, type=str)
parser.add_argument(
"--checkpoint",
"-c",
default=TRAINING_DIRECTORY,
type=str,
help="path to save checkpoint (default: checkpoint)",
)
parser.add_argument("--checkpoint_index", type=str, default=None)
parser.add_argument("--save_epoch_models", type=str2bool, default=False)
parser.add_argument("--save_all_models", type=str2bool, default=False)
parser.add_argument("--save_model", type=str2bool, default=False)
parser.add_argument("--load_model", type=str2bool, default=False)
parser.add_argument("--save_some_models", type=str, default=None)
"""meta info."""
parser.add_argument("--user", type=str, default="lin")
parser.add_argument(
"--project", type=str, default="distributed_adam_type_algorithm"
)
parser.add_argument("--experiment", type=str, default=None)
# device
parser.add_argument("--backend", type=str, default="mpi")
parser.add_argument("--use_ipc", type=str2bool, default=False)
parser.add_argument("--hostfile", type=str, default="iccluster/hostfile")
parser.add_argument("--mpi_path", type=str, default="$HOME/.openmpi")
parser.add_argument("--mpirun_path", type=str, default="$HOME/.openmpi/bin/mpirun")
parser.add_argument("--mpi_env", type=str, default=None)
parser.add_argument(
"--python_path", type=str, default="$HOME/conda/envs/pytorch-py3.6/bin/python"
)
parser.add_argument(
"-j",
"--num_workers",
default=4,
type=int,
help="number of data loading workers (default: 4)",
)
parser.add_argument(
"--n_mpi_process", default=1, type=int, help="# of the main process."
)
parser.add_argument(
"--n_sub_process",
default=1,
type=int,
help="# of subprocess for each mpi process.",
)
parser.add_argument("--world", default=None, type=str)
parser.add_argument("--on_cuda", type=str2bool, default=True)
parser.add_argument("--comm_device", type=str, default="cuda")
parser.add_argument("--local_rank", default=None, type=str)
parser.add_argument("--clean_python", default=False, type=str2bool)
parser.add_argument("--log_eval", type=str2bool, default=False)
# parse conf.
conf = parser.parse_args()
if conf.timestamp is None:
conf.timestamp = get_checkpoint_folder_name(conf)
return conf
def str2bool(v):
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
if __name__ == "__main__":
args = get_args()