diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 5925cda4658c8..9f29cda234e42 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -25,8 +25,6 @@ sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) import gguf -from convert import LlamaHfVocab - logger = logging.getLogger("hf-to-gguf") @@ -634,7 +632,7 @@ def _set_vocab_sentencepiece(self): special_vocab.add_to_gguf(self.gguf_writer) def _set_vocab_llama_hf(self): - vocab = LlamaHfVocab(self.dir_model) + vocab = gguf.LlamaHfVocab(self.dir_model) tokens = [] scores = [] toktypes = [] @@ -675,6 +673,44 @@ def set_gguf_parameters(self): self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True)) self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"]) + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) + n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) + + tensors: list[tuple[str, Tensor]] = [] + + if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name): + # Map bloom-style qkv_linear to gpt-style qkv_linear + # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa + # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa + qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed)) + data_torch = torch.cat( + ( + qkv_weights[:, 0, :, :].reshape((-1, n_embed)), + qkv_weights[:, 1, :, :].reshape((-1, n_embed)), + qkv_weights[:, 2, :, :].reshape((-1, n_embed)), + ), + dim=0, + ) + logger.info("re-format attention.linear_qkv.weight") + elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name): + qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head)) + data_torch = torch.cat( + ( + qkv_bias[:, 0, :].reshape((n_embed,)), + qkv_bias[:, 1, :].reshape((n_embed,)), + qkv_bias[:, 2, :].reshape((n_embed,)), + ), + dim=0, + ) + logger.info("re-format attention.linear_qkv.bias") + + tensors.append((self.map_tensor_name(name), data_torch)) + + return tensors + @Model.register("BloomForCausalLM") class BloomModel(Model):