This repository has been archived by the owner on Mar 6, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlogic.py
729 lines (588 loc) · 22.1 KB
/
logic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
import numpy as np
from openeo_processes.utils import process
from openeo_processes.comparison import is_empty
import xarray as xr
########################################################################################################################
# And Process
########################################################################################################################
@process
def and_():
"""
Returns class instance of `And`.
For more details, please have a look at the implementations inside `And`.
Returns
-------
And :
Class instance implementing all 'and' processes.
"""
return And()
class And:
"""
Class implementing all 'and' processes.
"""
@staticmethod
def exec_num(x, y):
"""
Checks if both values are true.
Evaluates parameter `x` before `y` and stops once the outcome is unambiguous.
If any argument is None, the result will be None if the outcome is ambiguous.
Parameters
----------
x : bool
A boolean value.
y : bool
A boolean value.
Returns
-------
bool :
Boolean result of the logical AND.
"""
return x and y if None not in [x, y] else None
@staticmethod
def exec_np(x, y):
"""
Checks if both arrays are true.
Evaluates parameter `x` before `y` and stops once the outcome is unambiguous.
If any argument is np.nan, the result will be np.nan if the outcome is ambiguous.
Parameters
----------
x : np.array or bool
A boolean value.
y : np.array or bool
A boolean value.
Returns
-------
np.array :
Boolean result of the logical AND.
"""
return x & y
@staticmethod
def exec_xar(x, y):
"""
Checks if both arrays are true.
Evaluates parameter `x` before `y` and stops once the outcome is unambiguous.
If any argument is np.nan, the result will be np.nan if the outcome is ambiguous.
Parameters
----------
x : xr.DataArray or bool
A boolean value.
y : xr.DataArray or bool
A boolean value.
Returns
-------
xr.DataArray :
Boolean result of the logical AND.
"""
x_nan = x.where(x == True, False) # Set NaN to False
y_nan = y.where(y == True, False)
logical_and = xr.ufuncs.logical_and(x, y)
logical_and = logical_and.where(x == x_nan, np.nan)
logical_and = logical_and.where(y == y_nan, np.nan)
return logical_and
@staticmethod
def exec_da():
pass
########################################################################################################################
# Or Process
########################################################################################################################
@process
def or_():
"""
Returns class instance of `Or`.
For more details, please have a look at the implementations inside `Or`.
Returns
-------
Or :
Class instance implementing all 'or' processes.
"""
return Or()
class Or:
"""
Class implementing all 'or' processes.
"""
@staticmethod
def exec_num(x, y):
"""
Checks if at least one of the values is True. Evaluates parameter `x` before `y` and stops once the outcome
is unambiguous. If a component is None, the result will be None if the outcome is ambiguous.
Parameters
----------
x : bool
A boolean value.
y : bool
A boolean value.
Returns
-------
bool :
Boolean result of the logical OR.
"""
return None if None in [x, y] and False in [x, y] else x or y
@staticmethod
def exec_np(x, y):
"""
Checks if at least one of the array values is True. Evaluates parameter `x` before `y` and stops once the
outcome is unambiguous. If a component is np.nan, the result will be np.nan if the outcome is ambiguous.
Parameters
----------
x : bool
A boolean value.
y : bool
A boolean value.
Returns
-------
np.array :
Boolean result of the logical OR.
"""
return x | y
@staticmethod
def exec_xar(x, y):
"""
Checks if at least one of the array values is True. Evaluates parameter `x` before `y` and stops once the
outcome is unambiguous. If a component is np.nan, the result will be np.nan if the outcome is ambiguous.
Parameters
----------
x : xr.DataArray
A boolean value.
y : xr.DataArray
A boolean value.
Returns
-------
xr.DataArray:
Boolean result of the logical OR.
"""
x_nan = x.where(x == True, False) # Set NaN to False
y_nan = y.where(y == True, False)
logical_or = xr.ufuncs.logical_or(x, y)
logical_or = logical_or.where(x == x_nan, np.nan)
logical_or = logical_or.where(y == y_nan, np.nan)
return logical_or
@staticmethod
def exec_da():
pass
########################################################################################################################
# Xor Process
########################################################################################################################
@process
def xor():
"""
Returns class instance of `Xor`.
For more details, please have a look at the implementations inside `Xor`.
Returns
-------
Xor :
Class instance implementing all 'xor' processes.
"""
return Xor()
class Xor:
"""
Class implementing all 'xor' processes.
"""
@staticmethod
def exec_num(x, y):
"""
Checks if exactly one of the values is true. If a component is None, the result will be None if the outcome
is ambiguous.
Parameters
----------
x : bool
A boolean value.
y : bool
A boolean value.
Returns
-------
bool :
Boolean result of the logical XOR.
"""
return sum([x, y]) == 1 if None not in [x, y] else None
@staticmethod
def exec_np(x, y):
"""
Checks if exactly one of the array values is true. If a component is np.nan, the result will be np.nan if the
outcome is ambiguous.
Parameters
----------
x : bool
A boolean value.
y : bool
A boolean value.
Returns
-------
np.array :
Boolean result of the logical XOR.
"""
if np.any(np.isnan(x)) or np.any(np.isnan(y)):
return np.nan
else:
return (x + y) == 1
@staticmethod
def exec_xar(x, y):
"""
Checks if exactly one of the array values is true. If a component is np.nan, the result will be np.nan if the
outcome is ambiguous.
Parameters
----------
x : xr.DataArray
A boolean value.
y : xr.DataArray
A boolean value.
Returns
-------
xr.DataArray :
Boolean result of the logical XOR.
"""
x_nan = x.where(x == True, False) # Set NaN to False
y_nan = y.where(y == True, False)
logical_xor = xr.ufuncs.logical_xor(x, y)
logical_xor = logical_xor.where(x == x_nan, np.nan)
logical_xor = logical_xor.where(y == y_nan, np.nan)
return logical_xor
@staticmethod
def exec_da():
pass
########################################################################################################################
# Not Process
########################################################################################################################
@process
def not_():
"""
Returns class instance of `Not`.
For more details, please have a look at the implementations inside `Not`.
Returns
-------
Not
Class instance implementing all 'not' processes.
"""
return Not()
class Not:
"""
Class implementing all 'not' processes.
"""
@staticmethod
def exec_num(x):
"""
Inverts a boolean so that True gets False and False gets True.
The no-data value None is passed through and therefore gets propagated.
Parameters
----------
x : bool
Boolean value to invert.
Returns
-------
bool :
Inverted boolean value.
"""
return not x if x is not None else x
@staticmethod
def exec_np(x):
"""
Inverts booleans so that True/1 gets False/0 and False/0 gets True/1.
The no-data value np.nan is passed through and therefore gets propagated.
Parameters
----------
x : np.array
Boolean values to invert.
Returns
-------
np.array :
Inverted boolean values.
"""
return ~x
@staticmethod
def exec_xar(x):
"""
Inverts booleans so that True/1 gets False/0 and False/0 gets True/1.
The no-data value np.nan is passed through and therefore gets propagated.
Parameters
----------
x : xr.DataArray
Boolean values to invert.
Returns
-------
xr.DataArray :
Inverted boolean values.
"""
return xr.ufuncs.logical_not(x)
@staticmethod
def exec_da():
pass
########################################################################################################################
# If Process
########################################################################################################################
@process
def if_():
"""
Returns class instance of `If`.
For more details, please have a look at the implementations inside `If`.
Returns
-------
If :
Class instance implementing all 'if' processes.
"""
return If()
class If:
"""
Class implementing all 'if' processes.
"""
@staticmethod
def exec_num(value, accept, reject=None):
"""
If the value passed is True, returns the value of the `accept` parameter,
otherwise returns the value of the `reject` parameter.
Parameters
----------
value : bool
A boolean value.
accept : object
A value that is returned if the boolean value is True.
reject : object, optional
A value that is returned if the boolean value is not True. Defaults to None.
Returns
-------
object :
Either the `accept` or `reject` argument depending on the given boolean value.
"""
return accept if value else reject
@staticmethod
def exec_np(value, accept, reject=np.nan):
"""
If the array value passed is True, returns the value of the `accept` parameter,
otherwise returns the value of the `reject` parameter.
Parameters
----------
value : np.array
A boolean array.
accept : object
A value that is returned if the boolean value is True.
reject : object, optional
A value that is returned if the boolean value is not True. Defaults to None.
Returns
-------
np.array :
Either the `accept` or `reject` argument depending on the given boolean value.
"""
return np.where(value, accept, reject)
@staticmethod
def exec_xar(value, accept, reject=np.nan):
"""
If the array value passed is True, returns the value of the `accept` parameter,
otherwise returns the value of the `reject` parameter.
Parameters
----------
value : xr.DataArray
A boolean array.
accept : object
A value that is returned if the boolean value is True.
reject : object, optional
A value that is returned if the boolean value is not True. Defaults to None.
Returns
-------
xr.DataArray :
Either the `accept` or `reject` argument depending on the given boolean value.
"""
p = value.where(value == 0, accept)
p = p.where(value == 1, reject)
return p
@staticmethod
def exec_da():
pass
########################################################################################################################
# Any Process
########################################################################################################################
@process
def any_():
"""
Returns class instance of `Any`.
For more details, please have a look at the implementations inside `Any`.
Returns
-------
Any :
Class instance implementing all 'any' processes.
"""
return Any()
class Any:
"""
Class implementing all 'any' processes.
"""
@staticmethod
def exec_num():
pass
@staticmethod
def exec_np(data, ignore_nodata=True, dimension=0):
"""
Checks if any (i.e. at least one) value is True. Evaluates all values from the first to the last element and
stops once the outcome is unambiguous. If only one value is given, the process evaluates to the given value.
If no value is given (i.e. the array is empty) the process returns None.
By default all NaN values are ignored so that the process returns np.nan if all values are NaN,
True if at least one of the other values is True and False otherwise.
Setting the `ignore_nodata` flag to False considers NaN values so that np.nan is a valid logical object.
If a component is np.nan, the result will be np.nan if the outcome is ambiguous.
Parameters
----------
data : np.array
A boolean array. An empty array resolves always with None.
ignore_nodata : bool, optional
Indicates whether no-data values are ignored or not. Ignores them by default (=True).
Setting this flag to False considers no-data values so that np.nan is returned if any value is such a value.
dimension : int, optional
Defines the dimension to evaluate 'any' along (default is 0).
Returns
-------
np.array :
Boolean result of the logical operation.
"""
if is_empty(data):
return np.nan
if len(data.shape) == 1: # exand data if it has only one dimension
data = data[:, None]
nan_ar = np.isnan(data)
if ignore_nodata:
nan_mask = np.all(nan_ar, axis=dimension)
data[nan_ar] = False
else:
nan_mask = np.any(nan_ar, axis=dimension)
data_any = np.any(data, axis=dimension)
data_any = data_any.astype(np.float32) # convert to float to store NaN values
data_any[nan_mask] = np.nan
return data_any
@staticmethod
def exec_xar(data, ignore_nodata = True, dimension = None, axis = None):
"""
Checks if any (i.e. at least one) value is True. Evaluates all values from the first to the last element and
stops once the outcome is unambiguous. If only one value is given, the process evaluates to the given value.
If no value is given (i.e. the array is empty) the process returns None.
By default all NaN values are ignored so that the process returns np.nan if all values are NaN,
True if at least one of the other values is True and False otherwise.
Setting the `ignore_nodata` flag to False considers NaN values so that np.nan is a valid logical object.
If a component is np.nan, the result will be np.nan if the outcome is ambiguous.
Parameters
----------
data : xr.DataArray
A boolean array. An empty array resolves always with None.
ignore_nodata : bool, optional
Indicates whether no-data values are ignored or not. Ignores them by default (=True).
Setting this flag to False considers no-data values so that np.nan is returned if any value is such a value.
dimension : str, optional
Defines the dimension to evaluate 'any' along (default is None).
axis : int, optional
Defines the axis to evaluate 'any' along.
Only one of the ‘dimension’ and ‘axis’ arguments can be supplied. If neither are supplied, then 'any' is calculated over axes
Returns
-------
xr.DataArray :
Boolean result of the logical operation.
"""
if len(data) == 0:
return xr.DataArray(np.nan)
data_nan = data.where(data == True, False) # Set NaN to False
if ignore_nodata:
return data_nan.any(dim=dimension, axis=axis)
else:
data = data.any(dim=dimension, axis=axis)
data_nan = data_nan.any(dim=dimension, axis=axis)
if (data == data_nan).all(): # See if there are NaNs, that were set to False
return data
else:
return data.where(data == data_nan, np.nan)
@staticmethod
def exec_da():
pass
########################################################################################################################
# All Process
########################################################################################################################
@process
def all_():
"""
Returns class instance of `All`.
For more details, please have a look at the implementations inside `All`.
Returns
-------
All :
Class instance implementing all 'all' processes.
"""
return All()
class All:
"""
Class implementing all 'all' processes.
"""
@staticmethod
def exec_num():
pass
@staticmethod
def exec_np(data, ignore_nodata=True, dimension=0):
"""
Checks if all of the values are True. Evaluates all values from the first to the last element and stops once
the outcome is unambiguous. If only one value is given, the process evaluates to the given value. If no value
is given (i.e. the array is empty) the process returns None. By default all no-data values are ignored so
that the process returns np.nan if all values are no-data, True if all other values are True and False
otherwise. Setting the `ignore_nodata` flag to False considers no-data values so that np.nan is a valid
logical object. If a component is np.nan, the result will be np.nan if the outcome is ambiguous.
Parameters
----------
data : np.array
A boolean array. An empty array resolves always with None.
ignore_nodata : bool, optional
Indicates whether no-data values are ignored or not. Ignores them by default (=True).
Setting this flag to False considers no-data values so that np.nan is returned if any value is such a value.
dimension : int, optional
Defines the dimension to evaluate 'all' along (default is 0).
Returns
-------
np.array :
Boolean result of the logical operation.
"""
if is_empty(data):
return np.nan
if len(data.shape) == 1: # exand data if it has only one dimension
data = data[:, None]
nan_ar = np.isnan(data)
if ignore_nodata:
nan_mask = np.all(nan_ar, axis=dimension)
data_all = np.all(data, axis=dimension)
else:
nan_mask = np.any(nan_ar, axis=dimension) # flag elements with at least one NaN value along the dimension
data_all = np.all(data, axis=dimension)
nan_mask = nan_mask & data_all # reset nan mask to only mask trues and NaN values
data_all = data_all.astype(np.float32) # convert to float to store NaN values
data_all[nan_mask] = np.nan
return data_all
@staticmethod
def exec_xar(data, ignore_nodata = True, dimension = None, axis = None):
"""
Checks if all of the values are True. Evaluates all values from the first to the last element and stops once
the outcome is unambiguous. If only one value is given, the process evaluates to the given value. If no value
is given (i.e. the array is empty) the process returns None. By default all no-data values are ignored so
that the process returns np.nan if all values are no-data, True if all other values are True and False
otherwise. Setting the `ignore_nodata` flag to False considers no-data values so that np.nan is a valid
logical object. If a component is np.nan, the result will be np.nan if the outcome is ambiguous.
Parameters
----------
data : xr.DataArray
A boolean array. An empty array resolves always with None.
ignore_nodata : bool, optional
Indicates whether no-data values are ignored or not. Ignores them by default (=True).
Setting this flag to False considers no-data values so that np.nan is returned if any value is such a value.
dimension : int, optional
Defines the dimension to evaluate 'all' along (default is 0).
axis : int, optional
Defines the axis to evaluate 'all' along.
Only one of the ‘dimension’ and ‘axis’ arguments can be supplied. If neither are supplied, then 'all' is calculated over axes
Returns
-------
xr.DataArray :
Boolean result of the logical operation.
"""
if len(data) == 0:
return xr.DataArray(np.nan)
data_nan = data.where(data == True, False)
if ignore_nodata:
return data.all(dim=dimension, axis=axis) # all ignores NaNs
else:
data = data.all(dim=dimension, axis=axis)
data_nan = data_nan.all(dim=dimension, axis=axis)
if (data == data_nan).all(): # See if there are NaNs, that were set to False
return data
else:
return data.where(data == data_nan, np.nan)
@staticmethod
def exec_da():
pass