-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathne_evaluate_mentions.py
173 lines (148 loc) · 5.49 KB
/
ne_evaluate_mentions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from collections import defaultdict
from itertools import islice
import pandas as pd
def fix_multi_biose(tag, multi_delim='^'):
parts = [x[0] for x in tag.split('^')]
cat = ''
if '-' in tag:
cat = '-' + tag.split('-')[1][:3]
bio = 'O'
if 'S' in parts:
bio = 'S'
elif 'B' in parts and 'E' in parts:
bio='S'
elif 'E' in parts:
bio = 'E'
elif 'B' in parts:
bio = 'B'
elif 'I' in parts:
bio = 'I'
return bio+cat
def read_file_sents(path, comment_prefix='#', field_delim=' ', multi_delim='^', fix_multi_tag=True, sent_id_shift=0):
sents = []
for i, sent in enumerate(open(path, 'r', encoding='utf8').read().split('\n\n')):
if len(sent)>0:
cur = []
for line in sent.split('\n'):
if not line.startswith(comment_prefix):
ls = line.split(field_delim)
tok, tag = ls[0], ls[-1]
if fix_multi_tag and multi_delim in tag:
tag = fix_multi_biose(tag, multi_delim=multi_delim)
cur.append((tok, tag))
sents.append((cur, i+sent_id_shift))
idx, values = zip(*sents)
sents = pd.Series(idx, values)
return sents
def evaluate_files(gold_path, pred_path, fix_multi_tag_pred=True, truncate=None, ignore_cat=False, str_join_char='', verbose=False):
gold_sents = read_file_sents(gold_path)
pred_sents = read_file_sents(pred_path)
gold_mentions = sents_to_mentions(gold_sents, truncate=truncate, ignore_cat=ignore_cat, str_join_char=str_join_char)
pred_mentions = sents_to_mentions(pred_sents, truncate=truncate, ignore_cat=ignore_cat, str_join_char=str_join_char)
return evaluate_mentions(gold_mentions, pred_mentions, verbose=verbose)
def evaluate_mentions(true_ments, pred_ments, examples=5, verbose=True, return_tpc=False):
t, p = set(true_ments), set(pred_ments)
correct = p.intersection(t)
if len(p)==0:
prec=-1
else:
prec = len(correct) / len(p)
if len(t)==0:
recall=-1
else:
recall = len(correct) / len(t)
if prec+recall==0:
f1=-1
else:
f1 = 2*prec*recall/(prec+recall)
if verbose:
print(len(t), 'mentions,', len(p), 'found,', len(correct), 'correct.')
print('Precision:', round(prec, 2))
print('Recall: ', round(recall, 2))
print('F1: ', round(f1, 2))
print('FP ex.:', [e[1] for e in list(p-t)[:examples]])
print('FN ex.:', [e[1] for e in list(t-p)[:examples]])
if return_tpc:
return prec, recall, f1, len(t), len(p), len(correct)
else:
return prec, recall, f1
def sent_to_mentions_dict(sent, sent_id, truncate=None, ignore_cat=False, str_join_char=''):
mentions = defaultdict(lambda: 0)
current_mention= None
current_cat = None
if truncate is not None:
it = islice(sent, truncate)
else:
it = sent
for tok, bio, cat in it:
if ignore_cat:
cat = 'NAN'
if bio=='S':
mentions[(sent_id, tok, cat)]+=1
current_mention= None
current_cat = None
if bio=='B':
current_mention = [tok]
current_cat = cat
if bio=='I' and current_mention is not None:
current_mention.append(tok)
if bio=='E' and current_mention is not None:
current_mention.append(tok)
mentions[(sent_id, str_join_char.join(current_mention), current_cat)]+=1
current_mention= None
current_cat = None
if bio=='O':
current_mention = None
current_cat = None
return mentions
def get_ment_set(ments):
ment_set = []
for ment in ments:
for k, val in ment.items():
for i in range(val):
ment_set.append((k[0], k[1], k[2], i+1))
return ment_set
def get_sents_fixed(sents):
sf = []
for sent in sents:
new_sent = []
for tok, biose in sent:
tag = biose.split('-')
biose = tag[0]
if len(tag)>1:
cat = tag[1]
else:
cat = '_'
new_sent.append((tok, biose, cat))
sf.append(new_sent)
sf = list(zip(list(sents.index), sf))
return sf
def sents_to_mentions(sents, truncate=None, ignore_cat=False, str_join_char=''):
sents_fixed = get_sents_fixed(sents)
ments = [sent_to_mentions_dict(sent, sent_id, truncate, ignore_cat=ignore_cat, str_join_char=str_join_char) for sent_id, sent in sents_fixed]
ment_set = get_ment_set(ments)
return ment_set
def get_sents_with_pred_tags(splits, preds, truncate=None):
sents_preds = []
for split, pred in zip(splits, preds):
spl_preds = []
test_sents = split[3]
i=0
for sent in test_sents:
new_sent = []
for tok, bio, cat in islice(sent, truncate):
pred_tag = pred[i].split('-')
pred_bio = pred_tag[0]
if len(pred_tag)>1:
pred_cat = pred_tag[1]
else:
pred_cat = '_'
new_sent.append((tok, pred_bio, pred_cat))
i+=1
spl_preds.append(new_sent)
spl_preds = pd.Series(spl_preds, index=test_sents.index)
sents_preds.append(spl_preds)
return sents_preds
if '__main__' == __name__:
import sys
evaluate_files(sys.argv[1], sys.argv[2], str_join_char='', verbose=True)