-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathuniversal_datamodule_en.py
365 lines (332 loc) · 15.3 KB
/
universal_datamodule_en.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
from pytorch_lightning import LightningDataModule
from typing import Optional
import torch
from torch.utils.data import DataLoader, DistributedSampler, random_split
from custom_dataset_en import ImageEmbeddingDataset, collate_custom, expand_urls
import webdataset as wds
from prefetch_generator import BackgroundGenerator
def get_consume_samples(data_model: LightningDataModule) -> int:
if hasattr(data_model.trainer.lightning_module, 'consumed_samples'):
consumed_samples = data_model.trainer.lightning_module.consumed_samples
print('get consumed samples from model: {}'.format(consumed_samples))
else:
world_size = data_model.trainer.world_size
consumed_samples = max(0, data_model.trainer.global_step - 1) * \
data_model.hparams.train_batchsize * world_size * data_model.trainer.accumulate_grad_batches
print('calculate consumed samples: {}'.format(consumed_samples))
return consumed_samples
class UniversalDataModule(LightningDataModule):
@ staticmethod
def add_data_specific_args(parent_args):
parser = parent_args.add_argument_group('Universal DataModule')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--dataloader_workers', default=2, type=int)
parser.add_argument('--train_batchsize', default=16, type=int)
parser.add_argument('--val_batchsize', default=16, type=int)
parser.add_argument('--test_batchsize', default=16, type=int)
parser.add_argument('--datasets_name', type=str, default=None)
parser.add_argument('--train_datasets_field', type=str, default='train')
parser.add_argument('--val_datasets_field', type=str, default='validation')
parser.add_argument('--test_datasets_field', type=str, default='test')
parser.add_argument('--train_file', type=str, default=None)
parser.add_argument('--val_file', type=str, default=None)
parser.add_argument('--test_file', type=str, default=None)
parser.add_argument('--raw_file_type', type=str, default='json')
parser.add_argument('--sampler_type', type=str,
choices=['single',
'random'],
default='random')
return parent_args
def __init__(
self,
tokenizer,
collate_fn,
args,
datasets=None,
**kwargs,
):
super().__init__()
# 如果不传入datasets的名字,则可以在对象外部替换内部的datasets为模型需要的
if datasets is not None:
self.datasets = datasets
elif args.datasets_name is not None:
from fengshen.data.fs_datasets import load_dataset
print('---------begin to load datasets {}'.format(args.datasets_name))
self.datasets = load_dataset(
args.datasets_name, num_proc=args.num_workers)
print('---------ending load datasets {}'.format(args.datasets_name))
else:
print('---------begin to load datasets from local file')
from datasets import load_dataset
self.datasets = load_dataset(args.raw_file_type,
data_files={
args.train_datasets_field: args.train_file,
args.val_datasets_field: args.val_file,
args.test_datasets_field: args.test_file})
print('---------end to load datasets from local file')
self.tokenizer = tokenizer
self.collate_fn = collate_fn
self.save_hyperparameters(args)
def get_custom_sampler(self, ds):
from universal_sampler import PretrainingRandomSampler
from universal_sampler import PretrainingSampler
world_size = self.trainer.world_size
consumed_samples = get_consume_samples(self)
# use the user default sampler
if self.hparams.sampler_type == 'random':
return PretrainingRandomSampler(
total_samples=len(ds),
# consumed_samples cal by global steps
consumed_samples=consumed_samples,
micro_batch_size=self.hparams.train_batchsize,
data_parallel_rank=self.trainer.global_rank,
data_parallel_size=world_size,
epoch=self.trainer.current_epoch,
)
elif self.hparams.sampler_type == 'single':
return PretrainingSampler(
total_samples=len(ds),
# consumed_samples cal by global steps
consumed_samples=consumed_samples,
micro_batch_size=self.hparams.train_batchsize,
data_parallel_rank=self.trainer.global_rank,
data_parallel_size=world_size,
)
else:
raise Exception('Unknown sampler type: {}'.format(self.hparams.sampler_type))
def setup(self, stage: Optional[str] = None) -> None:
return
def train_dataloader(self):
ds = self.datasets[self.hparams.train_datasets_field]
collate_fn = self.collate_fn
if collate_fn is None and hasattr(ds, 'collater'):
collate_fn = ds.collater
if self.hparams.replace_sampler_ddp is False:
return DataLoader(
ds,
batch_sampler=self.get_custom_sampler(ds),
num_workers=self.hparams.dataloader_workers,
collate_fn=collate_fn,
pin_memory=True,
)
return DataLoader(
ds,
batch_size=self.hparams.train_batchsize,
num_workers=self.hparams.dataloader_workers,
collate_fn=collate_fn,
pin_memory=True,
)
def val_dataloader(self):
ds = self.datasets[self.hparams.val_datasets_field]
collate_fn = self.collate_fn
if collate_fn is None and hasattr(ds, 'collater'):
collate_fn = ds.collater
return DataLoader(
ds,
batch_size=self.hparams.val_batchsize,
shuffle=False,
num_workers=self.hparams.dataloader_workers,
collate_fn=collate_fn,
sampler=DistributedSampler(
ds, shuffle=False),
pin_memory=True,
)
# return DataLoader(
# ds, shuffle=False, batch_size=self.hparams.val_batchsize, pin_memory=False, collate_fn=collate_fn,
# )
def test_dataloader(self):
ds = self.datasets[self.hparams.test_datasets_field]
collate_fn = self.collate_fn
if collate_fn is None and hasattr(ds, 'collater'):
collate_fn = ds.collater
return DataLoader(
ds,
batch_size=self.hparams.test_batchsize,
shuffle=False,
num_workers=self.hparams.dataloader_workers,
collate_fn=collate_fn,
sampler=DistributedSampler(
ds, shuffle=False),
pin_memory=True,
)
class DataLoaderX(DataLoader):
def __iter__(self):
return BackgroundGenerator(super().__iter__())
class DataModuleCustom(LightningDataModule):
@ staticmethod
def add_data_specific_args(parent_args):
parser = parent_args.add_argument_group('Universal DataModule')
parser.add_argument('--webdataset_base_urls', type=str, nargs="+")
parser.add_argument('--num_workers', default=2, type=int)
parser.add_argument('--batch_size', default=16, type=int)
# parser.add_argument('--start_shard', default=0, type=int)
# parser.add_argument('--end_shard', default=1000, type=int)
parser.add_argument('--shard_width', default=5, type=int)
parser.add_argument('--hr_size', default=-1, type=int)
parser.add_argument('--train_split', default=1.0, type=float)
parser.add_argument('--val_split', default=0.0, type=float)
parser.add_argument('--test_split', default=0.0, type=float)
parser.add_argument('--shuffle_train', default=False, action="store_true")
parser.add_argument('--resample_train', default=False, action="store_true")
parser.add_argument('--shuffle_num', default=None, type=int)
parser.add_argument('--test_prompts', type=str, default="./test_prompts.txt")
parser.add_argument('--test_repeat', default=1, type=int)
parser.add_argument(
"--resolution", type=int, default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop", action="store_true", default=True,
help="Whether to center crop images before resizing to resolution"
)
return parent_args
def __init__(
self,
args,
tokenizer,
collate_fn = None,
use_worker_init_fn=None,
):
super().__init__()
# self.available_shards = list(range(args.start_shard, args.end_shard + 1))
# if splits is None:
# splits = []
splits = {
'train': args.train_split,
'val': args.val_split,
'test': args.test_split,
}
self.webdataset_base_urls = args.webdataset_base_urls
self.num_workers = args.num_workers
self.batch_size = args.batch_size
self.shuffle_train = args.shuffle_train
self.resample_train = args.resample_train
self.shard_width = args.shard_width
self.hr_size = args.hr_size
self.use_worker_init_fn = use_worker_init_fn
self.shuffle_num = args.shuffle_num
self.tokenizer = tokenizer
self.collate_fn = collate_fn if collate_fn is not None else collate_custom
self.center_crop = args.center_crop
self.resolution = args.resolution
self.train_prop = self.val_prop = self.test_prop = 0
self.datasets = {}
if splits['train'] > 0:
self.train_prop = splits['train']
self.train_dataloader = self._train_dataloader
self.datasets['train'] = None
if splits['val'] > 0:
self.val_prop = splits['val']
self.val_dataloader = self._val_dataloader
self.datasets['val'] = None
if splits['test'] > 0:
self.test_prop = splits['test']
self.test_dataloader = self._test_dataloader
self.datasets['test'] = None
self.prepare_data()
self.setup()
def prepare_data(self):
assert self.train_prop + self.test_prop + self.val_prop == 1
# num_train = round(self.train_prop*len(self.available_shards))
# num_test = round(self.test_prop*len(self.available_shards))
# num_val = len(self.available_shards) - num_train - num_test
# assert num_train + num_test + num_val == len(self.available_shards), f"{num_train} + {num_test} + {num_val} = {num_train + num_test + num_val} != {len(self.available_shards)}"
# train_split, test_split, val_split = random_split(self.available_shards, [num_train, num_test, num_val]) # , generator=torch.Generator().manual_seed(self.seed)
# self.train_urls = [self.webdataset_base_url.format(str(shard).zfill(self.shard_width)) for shard in train_split]
# self.test_urls = [self.webdataset_base_url.format(str(shard).zfill(self.shard_width)) for shard in test_split]
# self.val_urls = [self.webdataset_base_url.format(str(shard).zfill(self.shard_width)) for shard in val_split]
all_urls = []
for url in self.webdataset_base_urls:
all_urls += expand_urls(url)
num_train = round(self.train_prop*len(all_urls))
num_test = round(self.test_prop*len(all_urls))
num_val = len(all_urls) - num_train - num_test
assert num_train + num_test + num_val == len(all_urls), f"{num_train} + {num_test} + {num_val} = {num_train + num_test + num_val} != {len(all_urls)}"
self.train_urls, self.test_urls, self.val_urls = random_split(all_urls, [num_train, num_test, num_val]) # , generator=torch.Generator().manual_seed(self.seed)
def setup(self, stage=None):
if 'train' in self.datasets:
self.datasets['train'] = ImageEmbeddingDataset(
self.train_urls,
self.tokenizer,
shuffle_shards=self.shuffle_train,
resample=self.resample_train,
hr_size=self.hr_size,
handler=wds.handlers.warn_and_continue,
center_crop=self.center_crop,
size=self.resolution,
)
if self.shuffle_num is not None and self.shuffle_num > 0:
self.datasets['train'].shuffle(self.shuffle_num)
if 'val' in self.datasets:
self.datasets['val'] = ImageEmbeddingDataset(
self.val_urls,
self.tokenizer,
shuffle_shards=False,
resample=False,
hr_size=self.hr_size,
handler=wds.handlers.warn_and_continue,
center_crop=self.center_crop,
size=self.resolution,
)
if 'test' in self.datasets:
self.datasets['test'] = ImageEmbeddingDataset(
self.test_urls,
self.tokenizer,
shuffle_shards=False,
resample=False,
hr_size=self.hr_size,
handler=wds.handlers.warn_and_continue,
center_crop=self.center_crop,
size=self.resolution,
)
def _train_dataloader(self):
# return self.create_dataloader(self.train_urls, shuffle=self.shuffle_train, resample=self.resample_train)
if self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
return DataLoaderX(
self.datasets['train'],
num_workers=self.num_workers,
batch_size=self.batch_size,
prefetch_factor=2, # This might be good to have high so the next npy file is prefetched
pin_memory=True,
shuffle=False,
worker_init_fn=init_fn,
collate_fn=self.collate_fn,
)
def _val_dataloader(self, shuffle=False):
# return self.create_dataloader(self.val_urls, shuffle=False)
if self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
return DataLoaderX(
self.datasets['val'],
num_workers=self.num_workers,
batch_size=self.batch_size,
prefetch_factor=2, # This might be good to have high so the next npy file is prefetched
pin_memory=True,
shuffle=False,
worker_init_fn=init_fn,
collate_fn=self.collate_fn,
)
def _test_dataloader(self, shuffle=False):
# return self.create_dataloader(self.test_urls, shuffle=False)
if self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
return DataLoaderX(
self.datasets['test'],
num_workers=self.num_workers,
batch_size=self.batch_size,
prefetch_factor=2, # This might be good to have high so the next npy file is prefetched
pin_memory=True,
shuffle=False,
worker_init_fn=init_fn,
collate_fn=self.collate_fn,
)