-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path026.js
56 lines (50 loc) · 1.4 KB
/
026.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
/*
Problem 26: Reciprocal cycles
A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:
1/2 = 0.5
1/3 = 0.(3)
1/4 = 0.25
1/5 = 0.2
1/6 = 0.1(6)
1/7 = 0.(142857)
1/8 = 0.125
1/9 = 0.(1)
1/10 = 0.1
Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.
Find the value of d < n for which 1/d contains the longest recurring cycle in its decimal fraction part.
*/
const reciprocalCycles = n => {
const getRecurLen = num => {
const memory = new Map();
let dividend = 1;
while (dividend && memory.size < n) {
while (dividend / num < 1) dividend *= 10;
if (memory.has(dividend)) { // cycle found
let cycleStart;
let arr = Array.from(memory);
arr.forEach((el,i) => {
if (el[0] === dividend) cycleStart = i;
})
return arr.slice(cycleStart).length
}
let whole = ~~(dividend / num);
memory.set(dividend, whole);
dividend = dividend - whole * num;
}
return 0;
}
let maxNum;
new Array(n).fill(0)
.map((_,i) => i + 1) // array from 1 to n
.reduce((acc, curr) => {
let cycleLen = getRecurLen(curr);
if (cycleLen > acc) {
maxNum = curr;
return cycleLen;
} else {
return acc;
}
}, 0);
return maxNum;
}
reciprocalCycles(1000);