-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsstn_var.m
215 lines (182 loc) · 7.4 KB
/
sstn_var.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
function [STFT,SST1,SST2,SST3,SST4,omega,omega2,omega3,omega4,tau2,tau3,phi22p,phi33p,phi44p] = sstn_var(s,gamma,sigma,ft,bt)
% sstn : computes the STFT of a signal and different versions of synchrosqueezing/reassignment.
% Uses a Gaussian window.
%
% INPUTS:
% s: real or complex signal, must be of length 2^N
% gamma: threshold
% sigma: window parameter
% ft: frequency bins
% bt: time bins
%
% OUTPUTS:
% STFT: the short-time Fourier transform
% SST1: standard synchrosqueezing
% SST2: vertical second-order synchrosqueezing
% SST3: vertical third-order synchrosqueezing
% SST4: vertical fourth-order synchrosqueezing
% omega: instantaneous frequency (vertical reassignment operator)
% tau2: second-order phase delay (horizontal reassignment operator)
% tau3: third-order phase delay (horizontal reassignment operator)
% omega2: second-order instantaneous frequency
% omega3: third-order instantaneous frequency
% checking length of signal
n = length(s);
nv = log2(n);
if mod(nv,1)~=0
warning('The signal is not a power of two, truncation to the next power');
s = s(1:2^floor(nv));
end
n = length(s);
s = s(:);
% Optional parameters
if nargin<5
ft = 1:n/2;
bt = 1:n;
end
nb = length(bt);
neta = length(ft);
sz=zeros(n,1);
% Padding
sleft = flipud(conj(sz(2:n/2+1)));
sright = flipud(sz(end-n/2:end-1));
x = [sleft; s ; sright];
clear xleft xright;
% Window definition
t = -0.5:1/n:0.5-1/n;t=t';
g = 1/sigma*exp(-pi/sigma^2*t.^2);
gp = -2*pi/sigma^2*t .* g; % g'
%gpp = (-2*pi/sigma^2+4*pi^2/sigma^4*t.^2) .* g; % g''
% Initialization
STFT = zeros(neta,nb);
SST1 = zeros(neta,nb, 3);
SST2 = zeros(neta,nb, 3);
SST3 = zeros(neta,nb, 3);
SST4 = zeros(neta,nb, 3);
omega = zeros(neta,nb);
tau2 = zeros(neta,nb);
tau3 = zeros(neta,nb);
tau4 = zeros(neta,nb);
omega2 = zeros(neta,nb);
omega3 = zeros(neta,nb);
omega4 = zeros(neta,nb);
phi22p = zeros(neta,nb);
%phi2p = zeros(neta,nb);
phi23p = zeros(neta,nb);
phi33p = zeros(neta,nb);
%phi3p = zeros(neta,nb);
phi24p = zeros(neta,nb);
phi34p = zeros(neta,nb);
phi44p = zeros(neta,nb);
% = zeros(neta,nb);
vg = zeros(neta,7);
vgp = zeros(neta,5);
Y = zeros(neta,4,4);
%% Computes STFT and reassignment operators
for b=1:nb
% STFT, window t^n*g
for i = 0:7
tmp = (fft(x(bt(b):bt(b)+n-1).*(t.^i).*g))/n;
vg(:,i+1) = tmp(ft);
end
%% STFT, window gx^np
for i = 0:5
tmp = fft(x(bt(b):bt(b)+n-1).*(t.^i).*gp)/n;
vgp(:,i+1) = tmp(ft);
end
%% second-order operator tau
tau2(:,b) = vg(:,2)./vg(:,1);
% third order operator tau
tau3(:,b) = vg(:,3)./vg(:,1);
% four order operator tau
tau4(:,b) = vg(:,4)./vg(:,1);
%% Y expressions
for i = 1:7
for j = 1:7
if i>=j
Y(:,i,j) = vg(:,1).*vg(:,i+1) - vg(:,j).*vg(:,i-j+2);
end
end
end
%% W expressions
W2 = 1/2/1i/pi*(vg(:,1).^2+vg(:,1).*vgp(:,2)-vg(:,2).*vgp(:,1));
W3 = 1/2/1i/pi*(2*vg(:,1).*vg(:,2)+vg(:,1).*vgp(:,3)-vg(:,3).*vgp(:,1));
W4 = 1/2/1i/pi*(2*vg(:,1).*vg(:,3)+2*vg(:,2).^2+vg(:,1).*vgp(:,4) - vg(:,4).*vgp(:,1)+vg(:,2).*vgp(:,3) - vg(:,3).*vgp(:,2));
%% operator omega
omega(:,b) = (ft-1)'-real(vgp(:,1)/2/1i/pi./vg(:,1));
%% operator hat p: estimations of frequency modulation
%SST2
phi22p(:,b) = W2./Y(:,2,2);
omega2(:,b) = omega(:,b) + real(phi22p(:,b).*tau2(:,b));
%SST3
phi33p(:,b) = (W3.*Y(:,2,2)-W2.*Y(:,3,3))./(Y(:,4,3).*Y(:,2,2)-Y(:,3,2).*Y(:,3,3));
phi23p(:,b) = W2./Y(:,2,2) - phi33p(:,b).*Y(:,3,2)./Y(:,2,2);
omega3(:,b) = omega(:,b) + real(phi23p(:,b).*tau2(:,b))+ real(phi33p(:,b).*tau3(:,b));
%SST4
phi44p(:,b) =((Y(:,4,3).*Y(:,2,2)-Y(:,3,2).*Y(:,3,3)).*W4-(W3.*Y(:,2,2)-W2.*Y(:,3,3)).*(Y(:,5,4)+Y(:,5,3)-Y(:,5,2))+(W3.*Y(:,3,2)-W2.*Y(:,4,3)).*(Y(:,4,4)+Y(:,4,3)-Y(:,4,2)))...
./((Y(:,4,3).*Y(:,2,2)-Y(:,3,2).*Y(:,3,3)).*(Y(:,6,4)+Y(:,6,3)-Y(:,6,2))-(Y(:,5,3).*Y(:,2,2)-Y(:,4,2).*Y(:,3,3)).*(Y(:,5,4)+Y(:,5,3)-Y(:,5,2))+(Y(:,5,3).*Y(:,3,2)-Y(:,4,2).*Y(:,4,3)).*(Y(:,4,4)+Y(:,4,3)-Y(:,4,2)));
phi34p(:,b) = (W3.*Y(:,2,2)-W2.*Y(:,3,3))./(Y(:,4,3).*Y(:,2,2)-Y(:,3,2).*Y(:,3,3))-phi44p(:,b).*(Y(:,5,3).*Y(:,2,2)-Y(:,4,2).*Y(:,3,3))./(Y(:,4,3).*Y(:,2,2)-Y(:,3,2).*Y(:,3,3));
phi24p(:,b) = W2./Y(:,2,2) - phi34p(:,b).*Y(:,3,2)./Y(:,2,2) - phi44p(:,b).*Y(:,4,2)./Y(:,2,2);
omega4(:,b) = omega(:,b) + real(phi24p(:,b).*tau2(:,b))+ real(phi34p(:,b).*tau3(:,b))+ real(phi44p(:,b).*tau4(:,b));
% Storing STFT
STFT(:,b) = vg(:,1).* exp(1i*pi*(ft-1)'); % compensates the tranlation 1/2 of s
end
%% Reassignment step
for b=1:nb
for eta=1:neta
if abs(STFT(eta,b))>gamma
%%%%%%%%%%%%%%%%%%%%%%%%%%SST1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
k = 1 + round(omega(eta,b) - 1/2);
if k>=1 && k<=neta
SST1(k,b, 1) = SST1(k,b,1) + STFT(eta,b);
end
k = 1+round(omega(eta,b));
if k>=1 && k<=neta
SST1(k,b, 2) = SST1(k,b,2) + STFT(eta,b);
end
k = 1+round(omega(eta,b) + 1/2);
if k>=1 && k<=neta
SST1(k,b, 3) = SST1(k,b,3) + STFT(eta,b);
end
%%%%%%%%%%%%%%%%%%%%SST2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
k = 1 + round(omega2(eta,b) - 1/2);
if k>=1 && k<=neta
SST2(k,b, 1) = SST2(k,b,1) + STFT(eta,b);
end
k = 1+round(omega2(eta,b));
if k>=1 && k<=neta
SST2(k,b, 2) = SST2(k,b,2) + STFT(eta,b);
end
k = 1+round(omega2(eta,b) + 1/2);
if k>=1 && k<=neta
SST2(k,b, 3) = SST2(k,b,3) + STFT(eta,b);
end
%%%%%%%%%%%%%%%%%%%%%SST3%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
k = 1 + round(omega3(eta,b) - 1/2);
if k>=1 && k<=neta
SST3(k,b, 1) = SST3(k,b,1) + STFT(eta,b);
end
k = 1+round(omega3(eta,b));
if k>=1 && k<=neta
SST3(k,b, 2) = SST3(k,b,2) + STFT(eta,b);
end
k = 1+round(omega3(eta,b) + 1/2);
if k>=1 && k<=neta
SST3(k,b, 3) = SST3(k,b,3) + STFT(eta,b);
end
%%%%%%%%%%%%%%%%%%%%%SST4%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
k = 1 + round(omega4(eta,b) - 1/2);
if k>=1 && k<=neta
SST4(k,b, 1) = SST4(k,b,1) + STFT(eta,b);
end
k = 1+round(omega4(eta,b));
if k>=1 && k<=neta
SST4(k,b, 2) = SST4(k,b,2) + STFT(eta,b);
end
k = 1+round(omega4(eta,b) + 1/2);
if k>=1 && k<=neta
SST4(k,b, 3) = SST4(k,b,3) + STFT(eta,b);
end
end
end
end