-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathprime.cpp
304 lines (240 loc) · 10.9 KB
/
prime.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
/*******************************************************************************************
Hash(BEGIN(Satoshi[2010]), END(Sunny[2012])) == Videlicet[2014] ++
[Learn, Create, but do not Forge] Viz. http://www.opensource.org/licenses/mit-license.php
*******************************************************************************************/
#include "core.h"
using namespace std;
namespace Core
{
unsigned int *primes;
unsigned int *inverses;
unsigned int nBitArray_Size = 1024*1024*16;
mpz_t zPrimorial;
unsigned int prime_limit = 71378571;
unsigned int nPrimeLimit = 4194304;
unsigned int nPrimorialEndPrime = 12;
uint64 octuplet_origins[256] = {15760091,25658441,93625991,182403491,226449521,661972301,910935911,1042090781,1071322781,1170221861,1394025161,1459270271,1712750771,
1742638811,1935587651,2048038451,2397437501,2799645461,2843348351,3734403131,4090833821,5349522791,5379039551,5522988461,5794564661,
5950513181,6070429481,6138646511,6193303001,6394117181,6520678511,6765896981,6969026411,7219975571,7602979451,8247812381,8750853101,
9870884321,9966184841,11076719651,11234903411,11567910701,11881131791,12753314921,12848960471,12850665671,12886759001,13345214411,
13421076281,15065117141,15821203241,16206106991,16427277941,16804790531,17140322651,17383048211,18234075311,18379278761,18821455181,
18856092371,21276989801,21315831611,21803245811,22190786531,22367332061,22642418411,22784826131,22827253901,23393094071,24816950771,
24887046251,24930296381,26092031081,28657304561,28900195391,29055481571,29906747861,30332927741,30526543121,31282661141,31437430091,
31447680611,31779849371,31907755331,33081664151,33734375021,35035293101,35969034371,36551720741,37000821701,37037888801,37654490171,
38855298941,40743911051,41614070411,43298074271,43813839521,44676352991,45549998561,46961199401,47346763811,48333938111,49788942011,
49827604901,50144961941,50878435451,53001578081,54270148391,57440594201,60239937671,62184803951,63370318001,64202502431,65227645781,
65409385031,66449431661,69707273171,71750241371,73457668631,74082349331,74445418121,74760009671,75161088461,75778477121,76289638961,
77310104141,77653734071,78065091101,78525462131,79011826961,79863776801,79976720891,80041993301,80587471031,80790462281,82455937631,
83122625471,84748266131,84882447101,85544974631,86408384591,87072248561,88163200661,88436579501,88815669401,89597692181,90103909781,
91192669481,93288681371,93434383571,93487652171,93703549391,94943708591,95109448781,95391400451,96133393241,97249028951,98257943081,
100196170421,101698684931,104487717401,105510861341,106506834431,107086217081,109750518791,110327129441,111422173391,114994357391,
116632573901,117762315941,118025332961,119063726051,121317512201,123019590761,123775576271,124168028051,130683361421,131045869301,
131176761251,131484693071,132595345691,133391614241,135614688941,138478375151,139017478331,139858746941,141763537451,143258671091,
144224334251,147215781521,147332222951,148124799281,148323246341,148671287111,148719488831,148916953301,148949723381,150613299911,
153779378561,155130467951,155521458551,156146394401,156456267881,157272782741,157519407581,163899228791,164138756051,165040690931,
165792941381,165952761041,166004527301,166225007561,168626248781,169349651741,170316751721,170552481551,170587733201,170832928151,
171681030791,172892544941,173405293331,174073117061,177620195561,178242755681,180180782051,180237252311,184430028311,185515423391,
185814366581,186122739611,187735172741,187971393341,188090847011,189066712181,190192014821,192380171981,193725710021,194875423271,
198006027671,198146724311,198658763111,198869317721,199658510321,199847262731,200599766441,201708760061,202506276431,203499800501,
204503641871,206150764271,207369666851,208403006081,211925962091,214556015741,218389714001,218732226521};
inline int64 GetTimeMicros()
{
return (boost::posix_time::ptime(boost::posix_time::microsec_clock::universal_time()) - boost::posix_time::ptime(boost::gregorian::date(1970,1,1))).total_microseconds();
}
unsigned long sqrtld(unsigned long N) {
int b = 1;
unsigned long res,s;
while(1<<b<N) b+= 1;
res = 1<<(b/2 + 1);
for(;;) {
s = (N/res + res)/2;
if(s>=res) return res;
res = s;
}
}
unsigned int * make_primes(unsigned int limit) {
unsigned int *primes;
unsigned long i,j;
unsigned long s = sqrtld(prime_limit);
unsigned long n = 0;
bool *bit_array_sieve = (bool*)malloc((prime_limit + 1) * sizeof(bool));
bit_array_sieve[0] = 0;
bit_array_sieve[1] = 0;
for(i=2; i<=prime_limit; i++) bit_array_sieve[i] = 1;
j = 4;
while(j<=prime_limit) {
bit_array_sieve[j] = 0;
j += 2;
}
for(i=3; i<=s; i+=2) {
if(bit_array_sieve[i] == 1) {
j = i * 3;
while(j<=prime_limit) {
bit_array_sieve[j] = 0;
j += 2 * i;
}
}
}
for(i=2;i<=prime_limit;i++) if(bit_array_sieve[i]==1) n += 1;
primes = (unsigned int*)malloc((n + 1) * sizeof(unsigned long));
primes[0] = n;
j = 1;
for(i=2;i<=prime_limit;i++) if(bit_array_sieve[i]==1) {
primes[j] = i;
j++;
}
free(bit_array_sieve);
return primes;
}
/** Divisor bit_array_sieve for Prime Searching. **/
std::vector<unsigned int> DIVISOR_SIEVE;
void InitializePrimes()
{
printf("\nGenerating primes...\n");
// generate prime table
primes = make_primes(prime_limit);
printf("\n%d primes generated\n", primes[0]);
mpz_init(zPrimorial);
mpz_set_ui(zPrimorial, 1);
for (int i=1; i<nPrimorialEndPrime; i++)
{
mpz_mul_ui(zPrimorial, zPrimorial, primes[i]);
}
printf("\nPrimorial:");
printf("\n"); mpz_out_str(stdout, 10, zPrimorial); printf("\n");
printf("\nLast Primorial Prime = %u\n", primes[nPrimorialEndPrime-1]);
printf("\nFirst Sieving Prime = %u\n", primes[nPrimorialEndPrime]);
int nSize = mpz_sizeinbase(zPrimorial,2);
printf("\nPrimorial Size = %d-bit\n\n", nSize);
inverses=(unsigned int *) malloc((nPrimeLimit+1)*sizeof(unsigned int));
memset(inverses, 0, (nPrimeLimit+1) * sizeof(unsigned int));
mpz_t zPrime, zInverse, zResult;
mpz_init(zPrime);
mpz_init(zInverse);
mpz_init(zResult);
for(unsigned int i=nPrimorialEndPrime; i<=nPrimeLimit; i++)
{
mpz_set_ui(zPrime, primes[i]);
int inv = mpz_invert(zResult, zPrimorial, zPrime);
if (inv <= 0)
{
printf("\nNo Inverse for prime %u at position %u\n\n", zPrime, i);
exit(0);
}
else
{
inverses[i] = mpz_get_ui(zResult);
}
}
}
/** Convert Double to unsigned int Representative. Used for encoding / decoding prime difficulty from nBits. **/
unsigned int SetBits(double nDiff)
{
unsigned int nBits = 10000000;
nBits *= nDiff;
return nBits;
}
/** Determines the difficulty of the Given Prime Number.
Difficulty is represented as so V.X
V is the whole number, or Cluster Size, X is a proportion
of Fermat Remainder from last Composite Number [0 - 1] **/
double GetPrimeDifficulty(CBigNum prime, int checks, std::vector<unsigned int>& vOffsets)
{
if(!PrimeCheck(prime, checks))
return 0.0;
CBigNum lastPrime = prime;
CBigNum next = prime + 2;
unsigned int clusterSize = 1, nOffset = 0;
///largest prime gap in cluster can be +12
///this was determined by previously found clusters up to 17 primes
vOffsets.push_back(nOffset);
for( next ; next <= lastPrime + 12; next += 2)
{
nOffset += 2;
if(PrimeCheck(next, checks))
{
lastPrime = next;
++clusterSize;
vOffsets.push_back(nOffset);
nOffset = 0;
}
}
///calulate the rarety of cluster from proportion of fermat remainder of last prime + 2
///keep fractional remainder in bounds of [0, 1]
double fractionalRemainder = 1000000.0 / GetFractionalDifficulty(next);
if(fractionalRemainder > 1.0 || fractionalRemainder < 0.0)
fractionalRemainder = 0.0;
return (clusterSize + fractionalRemainder);
}
double GetSieveDifficulty(CBigNum next, unsigned int clusterSize)
{
///calulate the rarety of cluster from proportion of fermat remainder of last prime + 2
///keep fractional remainder in bounds of [0, 1]
double fractionalRemainder = 1000000.0 / GetFractionalDifficulty(next);
if(fractionalRemainder > 1.0 || fractionalRemainder < 0.0)
fractionalRemainder = 0.0;
return (clusterSize + fractionalRemainder);
}
/** Gets the unsigned int representative of a decimal prime difficulty **/
unsigned int GetPrimeBits(CBigNum prime, int checks, std::vector<unsigned int>& vOffsets)
{
return SetBits(GetPrimeDifficulty(prime, checks, vOffsets));
}
/** Breaks the remainder of last composite in Prime Cluster into an integer.
Larger numbers are more rare to find, so a proportion can be determined
to give decimal difficulty between whole number increases. **/
unsigned int GetFractionalDifficulty(CBigNum composite)
{
/** Break the remainder of Fermat test to calculate fractional difficulty [Thanks Sunny] **/
return ((composite - FermatTest(composite, 2) << 24) / composite).getuint();
}
/** bit_array_sieve of Eratosthenes for Divisor Tests. Used for Searching Primes. **/
std::vector<unsigned int> Eratosthenes(int nSieveSize)
{
bool TABLE[nSieveSize];
for(int nIndex = 0; nIndex < nSieveSize; nIndex++)
TABLE[nIndex] = false;
for(int nIndex = 2; nIndex < nSieveSize; nIndex++)
for(int nComposite = 2; (nComposite * nIndex) < nSieveSize; nComposite++)
TABLE[nComposite * nIndex] = true;
std::vector<unsigned int> PRIMES;
for(int nIndex = 2; nIndex < nSieveSize; nIndex++)
if(!TABLE[nIndex])
PRIMES.push_back(nIndex);
printf("bit_array_sieve of Eratosthenes Generated %i Primes.\n", PRIMES.size());
return PRIMES;
}
/** Basic Search filter to determine if further tests should be done. **/
bool DivisorCheck(CBigNum test)
{
for(int index = 0; index < DIVISOR_SIEVE.size(); index++)
if(test % DIVISOR_SIEVE[index] == 0)
return false;
return true;
}
/** Determines if given number is Prime. Accuracy can be determined by "checks".
The default checks the Coinshield Network uses is 2 **/
bool PrimeCheck(CBigNum test, int checks)
{
/** Check C: Fermat Tests */
CBigNum n = 2;
if(FermatTest(test, n) != 1)
return false;
return true;
}
/** Simple Modular Exponential Equation a^(n - 1) % n == 1 or notated in Modular Arithmetic a^(n - 1) = 1 [mod n].
a = Base or 2... 2 + checks, n is the Prime Test. Used after Miller-Rabin and Divisor tests to verify primality. **/
CBigNum FermatTest(CBigNum n, CBigNum a)
{
CAutoBN_CTX pctx;
CBigNum e = n - 1;
CBigNum r;
BN_mod_exp(&r, &a, &e, &n, pctx);
return r;
}
/** Miller-Rabin Primality Test from the OpenSSL BN Library. **/
bool Miller_Rabin(CBigNum n, int checks)
{
return (BN_is_prime(&n, checks, NULL, NULL, NULL) == 1);
}
}