-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsub_app.r
384 lines (324 loc) · 16.1 KB
/
sub_app.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
library(sf)
library(tmap)
library(leaflet)
library(councildown)
library(htmlwidgets)
library(data.table)
library(dplyr)
library(plyr)
library(tidyr)
library(purrr)
library(leaflet.extras)
library(shinyWidgets)
library(RSocrata)
library(readxl)
options(scipen = 999)
#borough geojson
bb=st_read('BoroughBoundaries.geojson') %>%
st_transform("+proj=longlat +datum=WGS84") %>%
st_simplify(dTolerance = .001)
bb=bb[,-1]
saveRDS(bb,"data/boroughs.rds")
#stations-----
ss=st_read('Subway_Stops_2019/stops_nyc_subway_may2019.shp', layer="stops_nyc_subway_may2019") %>%
st_transform("+proj=longlat +datum=WGS84")
#for filtering subway lines -----
full=st_read('ADA/Stations_ADA_Full.shp', layer="Stations_ADA_Full") %>%
st_transform("+proj=longlat +datum=WGS84")
partial=st_read('ADA/Stations_ADA_Partial.shp', layer="Stations_ADA_Partial") %>%
st_transform("+proj=longlat +datum=WGS84")
partial_full=st_read('ADA/Stations_ADA_NextCapitalPlan_Partial.shp', layer="Stations_ADA_NextCapitalPlan_Partial") %>%
st_transform("+proj=longlat +datum=WGS84")
const=st_read('ADA/Stations_ADA_ConstructionInProgress.shp', layer="Stations_ADA_ConstructionInProgress") %>%
st_transform("+proj=longlat +datum=WGS84")
noplan=st_read('NoADA/Stations_NoADA.shp', layer="Stations_NoADA") %>%
st_transform("+proj=longlat +datum=WGS84")
ff=st_read('NoADA/Stations_NoADA_NextCapitalPlan_Full.shp', layer="Stations_NoADA_NextCapitalPlan_Full") %>%
st_transform("+proj=longlat +datum=WGS84")
ff$ADA_Status=rep("No Access - Committed to Fund", nrow(ff))
ff=ff[,c(1:6,8,7)]
full_sir=st_read('SIR/SIRail_ADA.shp', layer="SIRail_ADA") %>%
st_transform("+proj=longlat +datum=WGS84")
full_sir$ADA_Status=rep("Full ADA Access", nrow(full_sir))
full_sir=full_sir[,c(2,3,11,1,10)]
noplan_sir=st_read('SIR/SIRail_NoADA.shp', layer="SIRail_NoADA") %>%
st_transform("+proj=longlat +datum=WGS84")
noplan_sir$ADA_Status=rep("No Access - No Plans for Funding", nrow(noplan_sir))
noplan_sir=noplan_sir[,c(2,3,11,1,10)]
ff_sir=st_read('SIR/SIRail_NextCapital.shp', layer="SIRail_NextCapital") %>%
st_transform("+proj=longlat +datum=WGS84")
ff_sir$ADA_Status=rep("No Access - Under Consideration", nrow(ff_sir))
ff_sir=ff_sir[,c(2,3,11,1,10)]
#combining all stops ----
allstops=rbind(full, partial, partial_full, const, ff, noplan)
allstops=allstops[,c(3,5,7,4,8)]
all_sir=rbind(data.frame(full_sir),data.frame(noplan_sir),data.frame(ff_sir))
names(all_sir)<-names(allstops)
allstops=rbind(data.frame(allstops),data.frame(all_sir))
###changing ada status labels -----
allstops$ADA_StatusLayer=as.character(allstops$ADA_Status)
allstops[allstops$ADA_StatusLayer=='Partial ADA Acccess southbound only',6]<-"Partial ADA Access"
allstops[which(allstops$ADA_StatusLayer=='Partial ADA Access northbound only'),6]<-'Partial ADA Access'
allstops[which(allstops$ADA_StatusLayer=='Partial ADA Access soutbound only'),6]<-'Partial ADA Access'
allstops[which(allstops$ADA_StatusLayer=='Partial ADA Access Southbound Only'),6]<-'Partial ADA Access'
allstops[which(allstops$objectid=='123'),6]<-'Partial: Funding for Full ADA Access'
allstops[which(allstops$objectid=='286'),6]<-'Partial: Funding for Full ADA Access'
allstops[which(allstops$objectid=='344'),6]<-'Partial: Funding for Full ADA Access'
allstops[which(allstops$ADA_StatusLayer=='ADA Access Under Construction'),6]<-'Construction in Progress'
allstops[which(allstops$ADA_StatusLayer=='No Access - Committed to Fund'),6]<-'No ADA: Funding Committed'
allstops[which(allstops$ADA_StatusLayer=='No Access - Under Consideration'),6]<-'No ADA Access'
allstops[which(allstops$ADA_StatusLayer=='No Access - No Plans for Funding'),6]<-'No ADA Access'
allstops[which(allstops$ADA_StatusLayer=='No Access - Under Consideration'),6]<-'No ADA Access'
allstops[which(allstops$objectid=='S16'),6]<-'No ADA: Funding Committed'
allstops[which(allstops$objectid=='S22'),6]<-'No ADA: Funding Committed'
allstops[which(allstops$objectid=='S28'),6]<-'No ADA: Funding Committed'
#adding station ids
st_ids=read.csv('Subway_Stops_2019/stopsmatch.csv', stringsAsFactors = FALSE)
st_ids$match1=paste(st_ids$name,st_ids$objectid,sep = " ")
allstops$match1=paste(allstops$name,allstops$objectid,sep = " ")
allstops=left_join(allstops,st_ids,by='match1', suffix=c("",".y"))
allstops=allstops[,-c(8:16)]
#allstops 1
allstops1=data.table(allstops)
#fixing line column to filter -----
allstops1$line=gsub(" Express", "", allstops$line)
#####
s=list()
for (i in 1:nrow(allstops1)){
s[i]=strsplit(allstops1$line[i],"-")
}
#####make lines unique
u2=c()
for (i in 1:length(s))
{
u2[i]=paste(sort(unique(unlist(s[[i]]))), collapse="-")
}
s1=list()
for (i in 1:length(u2)){
s1[i]=strsplit(u2[i],"-")
}
#s1[1]
####add unique lines to dataframe
allstops1$s=s1
##add clean lines
allstops1$lines2=u2
########################
#creating station/point for each line
allstops1=allstops1 %>%
mutate(s=map(s,~tibble(s=.))) %>%
unnest(s, .drop = FALSE)
#add subway colors from sublines for filtering by subway lines-----
allstops1$linecolors<-c(rep("",nrow(allstops1)))
allstops1[which(allstops1$s=='A'|allstops1$s=='C'|allstops1$s=='E' ),]$linecolors<-"#0039A6"
allstops1[which(allstops1$s=='B'|allstops1$s=='D'|allstops1$s=='F'|allstops1$s=='M'),]$linecolors<-"#FF6319"
allstops1[which(allstops1$s=='G'),]$linecolors<-"#6CBE45"
allstops1[which(allstops1$s=='J'|allstops1$s=='Z'),]$linecolors<-"#996633"
allstops1[which(allstops1$s=='L'),]$linecolors<-"#A7A9AC"
allstops1[which(allstops1$s=='N'|allstops1$s=='Q'|allstops1$s=='R'|allstops1$s=='W'),]$linecolors<-"#FCCC0A"
allstops1[which(allstops1$s=='S'),]$linecolors<-"#808183"
allstops1[which(allstops1$s=='1'|allstops1$s=='2'|allstops1$s=='3'),]$linecolors<-"#EE352E"
allstops1[which(allstops1$s=='4'|allstops1$s=='5'|allstops1$s=='6'),]$linecolors<-"#00933C"
allstops1[which(allstops1$s=='7'),]$linecolors<-"#B933AD"
allstops1[which(allstops1$s=='SIR'),]$linecolors<-"#053159"
###changing ada status labels -----
# allstops1$ADA_StatusLayer=as.character(allstops1$ADA_Status)
# allstops1[allstops1$ADA_StatusLayer=='Partial ADA Acccess southbound only',8]<-"Partial ADA Access"
# allstops1[which(allstops1$ADA_StatusLayer=='Partial ADA Access northbound only'),8]<-'Partial ADA Access'
# allstops1[which(allstops1$ADA_StatusLayer=='Partial ADA Access soutbound only'),8]<-'Partial ADA Access'
# allstops1[which(allstops1$ADA_StatusLayer=='Partial ADA Access Southbound Only'),8]<-'Partial ADA Access'
# allstops1[which(allstops1$ADA_StatusLayer=='ADA Access Under Construction'),8]<-'Construction in Progress'
# allstops1[which(allstops1$ADA_StatusLayer=='No Access - Under Consideration'),8]<-'No ADA: Under Consideration'
# allstops1[which(allstops1$ADA_StatusLayer=='No Access - No Plans for Funding'),8]<-'No ADA: No Funding Plans'
#add subway colors from sublines for filtering by ada status type-----
allstops1$adacolors<-c(rep("",nrow(allstops1)))
allstops1[which(allstops1$ADA_StatusLayer=="Full ADA Access"),]$adacolors<-"#1D5ED7"
allstops1[which(allstops1$ADA_StatusLayer=="Partial ADA Access"),]$adacolors<-"#007535"
allstops1[which(allstops1$ADA_StatusLayer=="Partial: Funding for Full ADA Access"),]$adacolors<-"#A427C4"
allstops1[which(allstops1$ADA_StatusLayer=="Construction in Progress"),]$adacolors<-"#6C4BCE"
allstops1[which(allstops1$ADA_StatusLayer=="No ADA: Funding Committed"),]$adacolors<-"#A80000"
allstops1[which(allstops1$ADA_StatusLayer=="No ADA Access"),]$adacolors<-"#4A4A4A"
#converting into shapefile ----
allstops1<-st_as_sf(allstops1) %>%
st_transform("+proj=longlat +datum=WGS84")
#search by station name and line -----
allstops1$stationline=paste(allstops1$name, ": ", allstops1$s, sep = "")
#adding elevator outages ----
ee=read.csv('elevator/out_lines_new.csv', stringsAsFactors = FALSE)
ee$stationline=paste(ee$name_in_Rose_Data_set, ": ", ee$s, sep = "")
ee$X1st_Quarter_2019_24_Hour_Availability_=
as.numeric(substr(ee$X1st_Quarter_2019_24_Hour_Availability_,1,nchar(ee$X1st_Quarter_2019_24_Hour_Availability_)-1))
ee$X1st_Quarter_2019_24_Hour_Availability_AM_Peak=
as.numeric(substr(ee$X1st_Quarter_2019_24_Hour_Availability_AM_Peak,1,nchar(ee$X1st_Quarter_2019_24_Hour_Availability_AM_Peak)-1))
ee$unavailability=100-ee$X1st_Quarter_2019_24_Hour_Availability_
#calculate the number of elevators throughout system (135/494)
ee$locationline=paste(ee$Location, ee$Lines, sep=" ")
length(unique(ee$locationline))
#add replacement definition column ----
ee$status2=rep("",nrow(ee))
ee[grep('[**]',ee$Elevator_ID),]$status2<-"Removed from service during first quarter of 2019 for replacement"
ee$Elevator_ID=gsub("[*]", "", ee$Elevator_ID)
#ADA elevator performance-----
e1=read.csv('elevator/elevators_jan19.csv', stringsAsFactors = FALSE)
e2=read.csv('elevator/elevators_feb19.csv', stringsAsFactors = FALSE)
e3=read.csv('elevator/elevators_march19.csv', stringsAsFactors = FALSE)
e4=read.csv('elevator/elevators_april19.csv', stringsAsFactors = FALSE)
e5=read.csv('elevator/elevators_may19.csv', stringsAsFactors = FALSE)
e6=read.csv('elevator/elevators_june19.csv', stringsAsFactors = FALSE)
e7=read.csv('elevator/elevators_july19.csv', stringsAsFactors = FALSE)
e8=read.csv('elevator/elevators_aug19.csv', stringsAsFactors = FALSE)
#add month column
e1$month=rep('January', nrow(e1))
e2$month=rep('February', nrow(e2))
e3$month=rep('March', nrow(e3))
e4$month=rep('April', nrow(e4))
e5$month=rep('May', nrow(e5))
e6$month=rep('June', nrow(e6))
e7$month=rep('July', nrow(e7))
e8$month=rep('August', nrow(e8))
#rbind months
etm=rbind(e1,e2,e3,e4,e5,e6,e7,e8)
#add accessibility status column
etm$ADA_Status=rep('ADA', nrow(etm))
#make availability percent numeric
etm$X24Hr=as.numeric(substr(etm$X24Hr,1,nchar(etm$X24Hr)-2))/100
etm$AM=as.numeric(substr(etm$AM,1,nchar(etm$AM)-2))/100
etm$PM=as.numeric(substr(etm$AM,1,nchar(etm$PM)-2))/100
#Not ADA elevator performance----
ne1=read.csv('elevator/not_elevators_jan19.csv', stringsAsFactors = FALSE)
ne2=read.csv('elevator/not_elevators_feb19.csv', stringsAsFactors = FALSE)
ne3=read.csv('elevator/not_elevators_march19.csv', stringsAsFactors = FALSE)
ne4=read.csv('elevator/not_elevators_april19.csv', stringsAsFactors = FALSE)
ne5=read.csv('elevator/not_elevators_may19.csv', stringsAsFactors = FALSE)
ne6=read.csv('elevator/not_elevators_june19.csv', stringsAsFactors = FALSE)
ne7=read.csv('elevator/not_elevators_july19.csv', stringsAsFactors = FALSE)
ne8=read.csv('elevator/not_elevators_aug19.csv', stringsAsFactors = FALSE)
#add month column
ne1$month=rep('January', nrow(ne1))
ne2$month=rep('February', nrow(ne2))
ne3$month=rep('March', nrow(ne3))
ne4$month=rep('April', nrow(ne4))
ne5$month=rep('May', nrow(ne5))
ne6$month=rep('June', nrow(ne6))
ne7$month=rep('July', nrow(ne7))
ne8$month=rep('August', nrow(ne8))
#rbind months
netm=rbind(ne1,ne2,ne3,ne4,ne5,ne6,ne7,ne8)
#add accessibility status column
netm$ADA_Status=rep('Not ADA', nrow(netm))
#make availability percent numeric
netm$X24Hr=as.numeric(substr(netm$X24Hr,1,nchar(netm$X24Hr)-2))/100
netm$AM=as.numeric(substr(netm$AM,1,nchar(netm$AM)-2))/100
netm$PM=as.numeric(substr(netm$AM,1,nchar(netm$PM)-2))/100
#rbind netm and etm -----
fetm=rbind(etm,netm)
#adding whether those elevators are ADA or not ADA -----
t1=fetm[!duplicated(fetm$EquipmentNo),]
es=c()
el_list=c()
for (i in 1:length(ee$Elevator_ID)){
w1=unique(ee$Elevator_ID)
es[i]=t1[which(t1$EquipmentNo %in% ee$Elevator_ID[i]),]$ADA_Status
el_list[i]=t1[which(t1$EquipmentNo %in% ee$Elevator_ID[i]),]$Station.Name
}
ee$ADA_Status=es
ee$Station.Name=el_list
#getting real time info ----
#t2=ee[!duplicated(ee$stationline),]
#t2$Station.Name=substr(t2$Station.Name,1,nchar(t2$Station.Name)-8)
#t2=t2[,c("stationline","Station.Name")]
#write.csv(t2,"rt_elevnames.csv", row.names = FALSE)
#outages ------
# so=c()
# for (i in 1:length(unique(ee$locationline))){
# so[i]=ee[which(ee$locationline==unique(ee$locationline)[i]),]$Scheduled_Outages
# }
# uo=c()
# for (i in 1:length(unique(ee$locationline))){
# uo[i]=ee[which(ee$locationline==unique(ee$locationline)[i]),]$Non_Scheduled_Outages
# }
#outages ------
fetm[is.na(fetm$Outages)==TRUE,]$Outages<-0
fetm[is.na(fetm$Scheduled)==TRUE,]$Scheduled<-0
fetm[is.na(fetm$Non.Scheduled)==TRUE,]$Non.Scheduled<-0
so=c()
for (i in 1:length(unique(fetm$Station.Name))){
so[i]=sum(fetm[which(fetm$Station.Name==unique(fetm$Station.Name)[i]),]$Scheduled)
}
uo=c()
for (i in 1:length(unique(fetm$Station.Name))){
uo[i]=sum(fetm[which(fetm$Station.Name==unique(fetm$Station.Name)[i]),]$Non.Scheduled)
}
uu=c()
for (i in 1:length(unique(fetm$Station.Name))){
uu[i]=sum(fetm[which(fetm$Station.Name==unique(fetm$Station.Name)[i]),]$Outages)
}
#outages stats for 2019 to aug-----
sum(fetm$Outages, na.rm = TRUE)
sum(fetm$Scheduled, na.rm = TRUE)
sum(fetm$Non.Scheduled, na.rm = TRUE)
out=as.data.frame(cbind(so,uo,uu,unique(fetm$Station.Name) ))
#elevator info for map popup ----
r=list()
r1=list()
no_service=c()
num_el=c()
el_stat=c()
for (i in 1:length(unique(ee$stationline))){
num_el[i]=nrow(ee[ee$stationline==unique(ee$stationline)[i],])
r[[i]]=ee[ee$stationline==unique(ee$stationline)[i],]$unavailability
r1[[i]]=ee[ee$stationline==unique(ee$stationline)[i],]$ADA_Status
if (length(unique(round(unlist(r[[i]]),1)))>1){
no_service[i]=paste(c(min(unique(round(unlist(r[[i]]),1)))," - ",max(unique(round(unlist(r[[i]]),1))), "%"), collapse="")
} else{no_service[i]=paste(c(unique(round(unlist(r[[i]]),1)), "%"), collapse="")}
if (length(unlist(r[i]))>1) {
el_stat[i]=paste(unique(unlist(r1[[i]])), collapse=" and ")}
else{el_stat[i]=unlist(r1[[i]])}
}
ee2=data.frame(cbind(num_el, no_service, el_stat, unique(ee$stationline) ))
names(ee2)[4]<-"stationline"
ee2$stationline=as.character(ee2$stationline)
#join elevator info to stations (allstops) ----
allstops1=left_join(allstops1,ee2,by="stationline", suffix=c("",".y"))
#saving allstops as and rds file ----
st_write(allstops1, "allstops.geojson", driver = "GeoJSON", delete_dsn=TRUE)
saveRDS(allstops1,"data/allstops.rds")
#baruch gis file has colors
#https://www.baruch.cuny.edu/confluence/pages/viewpage.action?pageId=28016896
sublines2 = st_read('Subway_Lines_2019/routes_nyc_subway_may2019.shp',
layer = "routes_nyc_subway_may2019", stringsAsFactors=FALSE) %>%
st_transform("+proj=longlat +datum=WGS84")
st=sublines2[sublines2$group=='SIR',]%>%
st_simplify(dTolerance = as.numeric(.0001))
#making sublines load faster
os= st_read('Subway_Lines_2019/SubwayLines.geojson') %>%
st_transform("+proj=longlat +datum=WGS84")
#add color column
#adding subway line colors for filtering by accessibility type----------
#http://web.mta.info/developers/resources/line_colors.htm
os$color<-c(rep("",nrow(os)))
os[which(os$name=='A'|os$name=='C'|os$name=='E'|os$name=='A-C'|os$name=='A-C-E'),]$color<-"#0039A6"
os[which(os$name=='B'|os$name=='D'|os$name=='F'|os$name=='M'|os$name=='B-D'|os$name=='B-D-F-M'|os$name=='F-M'),]$color<-"#FF6319"
os[which(os$name=='G'),]$color<-"#6CBE45"
os[which(os$name=='J-Z'),]$color<-"#996633"
os[which(os$name=='L'),]$color<-"#A7A9AC"
os[which(os$name=='N'|os$name=='Q'|os$name=='R'|os$name=='N-Q'|os$name=='N-Q-R'|os$name=='N-R'|os$name=='N-R-W'|os$name=='N-W'|os$name=='R-W'|os$name=='N-Q-R-W'),]$color<-"#FCCC0A"
os[which(os$name=='S'),]$color<-"#808183"
os[which(os$name=='1'|os$name=='2'|os$name=='3'|os$name=='1-2-3'|os$name=='2-3'),]$color<-"#EE352E"
os[which(os$name=='4'|os$name=='5'|os$name=='6'|os$name=='4-5'|os$name=='4-5-6'),]$color<-"#00933C"
os[which(os$name=='7'),]$color<-"#B933AD"
#subsetting----
os=os[,c(1,8,7)]
st=st[,c(2,4,6)]
names(st)[1]<-"name"
os=as.data.frame(os)
st=as.data.frame(st)
nt=rbind(os,st)%>%
st_as_sf()
st_write(nt,"Subway_Lines_2019/newsublines.geojson", driver = "GeoJSON", delete_dsn=TRUE)
saveRDS(nt,"data/sublines.rds")
#elevator mta complaints-----
cc=read.socrata('https://data.ny.gov/resource/tppa-s6t6.json?$where=year>2013&commendation_or_complaint=Complaint&subject_detail=Elevators&agency=Subways')
sort(table(cc[cc$year==2018,]$issue_detail), decreasing = TRUE)[1:5]
table(cc[cc$issue_detail=='Add More / Not Enough',]$year,cc[cc$issue_detail=='Add More / Not Enough',]$branch_line_route )
sort(table(cc[cc$issue_detail=='Add More / Not Enough',]$branch_line_route),decreasing = TRUE)[1:5]
sort(table(cc[cc$year==2018 & cc$issue_detail=='Add More / Not Enough',]$branch_line_route),decreasing = TRUE)[1:5]