-
Notifications
You must be signed in to change notification settings - Fork 764
/
Copy pathinteger_vif.c
826 lines (723 loc) · 32.7 KB
/
integer_vif.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
/**
*
* Copyright 2016-2020 Netflix, Inc.
*
* Licensed under the BSD+Patent License (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSDplusPatent
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <errno.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include "cpu.h"
#include "dict.h"
#include "common/macros.h"
#include "feature_collector.h"
#include "feature_extractor.h"
#include "feature_name.h"
#include "mem.h"
#include "picture.h"
#include "integer_vif.h"
#if ARCH_X86
#include "x86/vif_avx2.h"
#if HAVE_AVX512
#include "x86/vif_avx512.h"
#endif
#elif ARCH_AARCH64
#include "arm64/vif_neon.h"
#endif
typedef struct VifState {
VifPublicState public;
bool debug;
void (*subsample_rd_8)(VifBuffer buf, unsigned w, unsigned h);
void (*subsample_rd_16)(VifBuffer buf, unsigned w, unsigned h, int scale, int bpc);
void (*vif_statistic_8)(VifPublicState *s, float *num, float *den, unsigned w, unsigned h);
void (*vif_statistic_16)(VifPublicState *s, float *num, float *den, unsigned w, unsigned h, int bpc, int scale);
VmafDictionary *feature_name_dict;
} VifState;
static const VmafOption options[] = {
{
.name = "debug",
.help = "debug mode: enable additional output",
.offset = offsetof(VifState, debug),
.type = VMAF_OPT_TYPE_BOOL,
.default_val.b = false,
},
{
.name = "vif_enhn_gain_limit",
.alias = "egl",
.help = "enhancement gain imposed on vif, must be >= 1.0, "
"where 1.0 means the gain is completely disabled",
.offset = offsetof(VifState, public.vif_enhn_gain_limit),
.type = VMAF_OPT_TYPE_DOUBLE,
.default_val.d = DEFAULT_VIF_ENHN_GAIN_LIMIT,
.min = 1.0,
.max = DEFAULT_VIF_ENHN_GAIN_LIMIT,
.flags = VMAF_OPT_FLAG_FEATURE_PARAM,
},
{ 0 }
};
static FORCE_INLINE inline void
pad_top_and_bottom(VifBuffer buf, unsigned h, int fwidth)
{
const unsigned fwidth_half = fwidth / 2;
unsigned char *ref = buf.ref;
unsigned char *dis = buf.dis;
for (unsigned i = 1; i <= fwidth_half; ++i) {
size_t offset = buf.stride * i;
memcpy(ref - offset, ref + offset, buf.stride);
memcpy(dis - offset, dis + offset, buf.stride);
memcpy(ref + buf.stride * (h - 1) + buf.stride * i,
ref + buf.stride * (h - 1) - buf.stride * i,
buf.stride);
memcpy(dis + buf.stride * (h - 1) + buf.stride * i,
dis + buf.stride * (h - 1) - buf.stride * i,
buf.stride);
}
}
static FORCE_INLINE inline void
decimate_and_pad(VifBuffer buf, unsigned w, unsigned h, int scale)
{
uint16_t *ref = buf.ref;
uint16_t *dis = buf.dis;
const ptrdiff_t stride = buf.stride / sizeof(uint16_t);
const ptrdiff_t mu_stride = buf.stride_16 / sizeof(uint16_t);
for (unsigned i = 0; i < h / 2; ++i) {
for (unsigned j = 0; j < w / 2; ++j) {
ref[i * stride + j] = buf.mu1[(i * 2) * mu_stride + (j * 2)];
dis[i * stride + j] = buf.mu2[(i * 2) * mu_stride + (j * 2)];
}
}
pad_top_and_bottom(buf, h / 2, vif_filter1d_width[scale]);
}
static void subsample_rd_8(VifBuffer buf, unsigned w, unsigned h)
{
const unsigned fwidth = vif_filter1d_width[1];
const uint16_t *vif_filt_s1 = vif_filter1d_table[1];
for (unsigned i = 0; i < h; ++i) {
//VERTICAL
for (unsigned j = 0; j < w; ++j) {
uint32_t accum_ref = 0;
uint32_t accum_dis = 0;
for (unsigned fi = 0; fi < fwidth; ++fi) {
int ii = i - fwidth / 2;
int ii_check = ii + fi;
const uint16_t fcoeff = vif_filt_s1[fi];
const uint8_t *ref = (uint8_t*)buf.ref;
const uint8_t *dis = (uint8_t*)buf.dis;
accum_ref += fcoeff * (uint32_t)ref[ii_check * buf.stride + j];
accum_dis += fcoeff * (uint32_t)dis[ii_check * buf.stride + j];
}
buf.tmp.ref_convol[j] = (accum_ref + 128) >> 8;
buf.tmp.dis_convol[j] = (accum_dis + 128) >> 8;
}
PADDING_SQ_DATA_2(buf, w, fwidth / 2);
//HORIZONTAL
for (unsigned j = 0; j < w; ++j) {
uint32_t accum_ref = 0;
uint32_t accum_dis = 0;
for (unsigned fj = 0; fj < fwidth; ++fj) {
int jj = j - fwidth / 2;
int jj_check = jj + fj;
const uint16_t fcoeff = vif_filt_s1[fj];
accum_ref += fcoeff * buf.tmp.ref_convol[jj_check];
accum_dis += fcoeff * buf.tmp.dis_convol[jj_check];
}
const ptrdiff_t stride = buf.stride_16 / sizeof(uint16_t);
buf.mu1[i * stride + j] = (uint16_t)((accum_ref + 32768) >> 16);
buf.mu2[i * stride + j] = (uint16_t)((accum_dis + 32768) >> 16);
}
}
decimate_and_pad(buf, w, h, 0);
}
static void subsample_rd_16(VifBuffer buf, unsigned w, unsigned h, int scale, int bpc)
{
const unsigned fwidth = vif_filter1d_width[scale + 1];
const uint16_t *vif_filt = vif_filter1d_table[scale + 1];
int32_t add_shift_round_VP, shift_VP;
if (scale == 0) {
add_shift_round_VP = 1 << (bpc - 1);
shift_VP = bpc;
}
else {
add_shift_round_VP = 32768;
shift_VP = 16;
}
for (unsigned i = 0; i < h; ++i) {
//VERTICAL
for (unsigned j = 0; j < w; ++j) {
uint32_t accum_ref = 0;
uint32_t accum_dis = 0;
for (unsigned fi = 0; fi < fwidth; ++fi) {
int ii = i - fwidth / 2;
int ii_check = ii + fi;
const uint16_t fcoeff = vif_filt[fi];
const ptrdiff_t stride = buf.stride / sizeof(uint16_t);
uint16_t *ref = buf.ref;
uint16_t *dis = buf.dis;
accum_ref += fcoeff * ((uint32_t)ref[ii_check * stride + j]);
accum_dis += fcoeff * ((uint32_t)dis[ii_check * stride + j]);
}
buf.tmp.ref_convol[j] = (uint16_t)((accum_ref + add_shift_round_VP) >> shift_VP);
buf.tmp.dis_convol[j] = (uint16_t)((accum_dis + add_shift_round_VP) >> shift_VP);
}
PADDING_SQ_DATA_2(buf, w, fwidth / 2);
//HORIZONTAL
for (unsigned j = 0; j < w; ++j) {
uint32_t accum_ref = 0;
uint32_t accum_dis = 0;
for (unsigned fj = 0; fj < fwidth; ++fj) {
int jj = j - fwidth / 2;
int jj_check = jj + fj;
const uint16_t fcoeff = vif_filt[fj];
accum_ref += fcoeff * ((uint32_t)buf.tmp.ref_convol[jj_check]);
accum_dis += fcoeff * ((uint32_t)buf.tmp.dis_convol[jj_check]);
}
const ptrdiff_t stride = buf.stride_16 / sizeof(uint16_t);
buf.mu1[i * stride + j] = (uint16_t)((accum_ref + 32768) >> 16);
buf.mu2[i * stride + j] = (uint16_t)((accum_dis + 32768) >> 16);
}
}
decimate_and_pad(buf, w, h, scale);
}
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
static inline void log_generate(uint16_t *log2_table)
{
for (unsigned i = 32767; i < 65536; ++i) {
log2_table[i] = (uint16_t)round(log2f((float)i) * 2048);
}
}
void vif_statistic_8(struct VifPublicState *s, float *num, float *den, unsigned w, unsigned h) {
const unsigned fwidth = vif_filter1d_width[0];
const uint16_t *vif_filt_s0 = vif_filter1d_table[0];
VifBuffer buf = s->buf;
int64_t accum_num_log = 0.0;
int64_t accum_den_log = 0.0;
int64_t accum_num_non_log = 0;
int64_t accum_den_non_log = 0;
static const int32_t sigma_nsq = 65536 << 1;
uint16_t *log2_table = s->log2_table;
double vif_enhn_gain_limit = s->vif_enhn_gain_limit;
for (unsigned i = 0; i < h; ++i) {
//VERTICAL
for (unsigned j = 0; j < w; ++j) {
uint32_t accum_mu1 = 0;
uint32_t accum_mu2 = 0;
uint32_t accum_ref = 0;
uint32_t accum_dis = 0;
uint32_t accum_ref_dis = 0;
for (unsigned fi = 0; fi < fwidth; ++fi) {
int ii = i - fwidth / 2;
int ii_check = ii + fi;
const uint16_t fcoeff = vif_filt_s0[fi];
const uint8_t *ref = (uint8_t*)buf.ref;
const uint8_t *dis = (uint8_t*)buf.dis;
uint16_t imgcoeff_ref = ref[ii_check * buf.stride + j];
uint16_t imgcoeff_dis = dis[ii_check * buf.stride + j];
uint32_t img_coeff_ref = fcoeff * (uint32_t)imgcoeff_ref;
uint32_t img_coeff_dis = fcoeff * (uint32_t)imgcoeff_dis;
accum_mu1 += img_coeff_ref;
accum_mu2 += img_coeff_dis;
accum_ref += img_coeff_ref * (uint32_t)imgcoeff_ref;
accum_dis += img_coeff_dis * (uint32_t)imgcoeff_dis;
accum_ref_dis += img_coeff_ref * (uint32_t)imgcoeff_dis;
}
buf.tmp.mu1[j] = (accum_mu1 + 128) >> 8;
buf.tmp.mu2[j] = (accum_mu2 + 128) >> 8;
buf.tmp.ref[j] = accum_ref;
buf.tmp.dis[j] = accum_dis;
buf.tmp.ref_dis[j] = accum_ref_dis;
}
PADDING_SQ_DATA(buf, w, fwidth / 2);
//HORIZONTAL
for (unsigned j = 0; j < w; ++j) {
uint32_t accum_mu1 = 0;
uint32_t accum_mu2 = 0;
uint64_t accum_ref = 0;
uint64_t accum_dis = 0;
uint64_t accum_ref_dis = 0;
for (unsigned fj = 0; fj < fwidth; ++fj) {
int jj = j - fwidth / 2;
int jj_check = jj + fj;
const uint16_t fcoeff = vif_filt_s0[fj];
accum_mu1 += fcoeff * ((uint32_t)buf.tmp.mu1[jj_check]);
accum_mu2 += fcoeff * ((uint32_t)buf.tmp.mu2[jj_check]);
accum_ref += fcoeff * ((uint64_t)buf.tmp.ref[jj_check]);
accum_dis += fcoeff * ((uint64_t)buf.tmp.dis[jj_check]);
accum_ref_dis += fcoeff * ((uint64_t)buf.tmp.ref_dis[jj_check]);
}
uint32_t mu1_val = accum_mu1;
uint32_t mu2_val = accum_mu2;
uint32_t mu1_sq_val = (uint32_t)((((uint64_t)mu1_val * mu1_val)
+ 2147483648) >> 32);
uint32_t mu2_sq_val = (uint32_t)((((uint64_t)mu2_val * mu2_val)
+ 2147483648) >> 32);
uint32_t mu1_mu2_val = (uint32_t)((((uint64_t)mu1_val * mu2_val)
+ 2147483648) >> 32);
uint32_t xx_filt_val = (uint32_t)((accum_ref + 32768) >> 16);
uint32_t yy_filt_val = (uint32_t)((accum_dis + 32768) >> 16);
uint32_t xy_filt_val = (uint32_t)((accum_ref_dis + 32768) >> 16);
int32_t sigma1_sq = (int32_t)(xx_filt_val - mu1_sq_val);
int32_t sigma2_sq = (int32_t)(yy_filt_val - mu2_sq_val);
int32_t sigma12 = (int32_t)(xy_filt_val - mu1_mu2_val);
sigma2_sq = MAX(sigma2_sq, 0);
if (sigma1_sq >= sigma_nsq) {
/**
* log values are taken from the look-up table generated by
* log_generate() function which is called in integer_combo_threadfunc
* den_val in float is log2(1 + sigma1_sq/2)
* here it is converted to equivalent of log2(2+sigma1_sq) - log2(2) i.e log2(2*65536+sigma1_sq) - 17
* multiplied by 2048 as log_value = log2(i)*2048 i=16384 to 65535 generated using log_value
* x because best 16 bits are taken
*/
accum_den_log += log2_32(log2_table, sigma_nsq + sigma1_sq) - 2048 * 17;
if (sigma12 > 0 && sigma2_sq > 0) {
/**
* In floating-point numerator = log2((1.0f + (g * g * sigma1_sq)/(sv_sq + sigma_nsq))
*
* In Fixed-point the above is converted to
* numerator = log2((sv_sq + sigma_nsq)+(g * g * sigma1_sq))- log2(sv_sq + sigma_nsq)
*/
const double eps = 65536 * 1.0e-10;
double g = sigma12 / (sigma1_sq + eps); // this epsilon can go away
int32_t sv_sq = sigma2_sq - g * sigma12;
sv_sq = (uint32_t)(MAX(sv_sq, 0));
g = MIN(g, vif_enhn_gain_limit);
uint32_t numer1 = (sv_sq + sigma_nsq);
int64_t numer1_tmp = (int64_t)((g * g * sigma1_sq)) + numer1; //numerator
accum_num_log += log2_64(log2_table, numer1_tmp) - log2_64(log2_table, numer1);
}
}
else {
accum_num_non_log += sigma2_sq;
accum_den_non_log++;
}
}
}
num[0] = accum_num_log / 2048.0 + (accum_den_non_log - ((accum_num_non_log) / 16384.0) / (65025.0));
den[0] = accum_den_log / 2048.0 + accum_den_non_log;
}
void vif_statistic_16(struct VifPublicState *s, float *num, float *den, unsigned w, unsigned h, int bpc, int scale) {
const unsigned fwidth = vif_filter1d_width[scale];
const uint16_t *vif_filt = vif_filter1d_table[scale];
VifBuffer buf = s->buf;
int64_t accum_num_log = 0.0;
int64_t accum_den_log = 0.0;
int64_t accum_num_non_log = 0;
int64_t accum_den_non_log = 0;
static const int32_t sigma_nsq = 65536 << 1;
uint16_t *log2_table = s->log2_table;
double vif_enhn_gain_limit = s->vif_enhn_gain_limit;
int32_t add_shift_round_HP, shift_HP;
int32_t add_shift_round_VP, shift_VP;
int32_t add_shift_round_VP_sq, shift_VP_sq;
if (scale == 0) {
shift_HP = 16;
add_shift_round_HP = 32768;
shift_VP = bpc;
add_shift_round_VP = 1 << (bpc - 1);
shift_VP_sq = (bpc - 8) * 2;
add_shift_round_VP_sq = (bpc == 8) ? 0 : 1 << (shift_VP_sq - 1);
}
else {
shift_HP = 16;
add_shift_round_HP = 32768;
shift_VP = 16;
add_shift_round_VP = 32768;
shift_VP_sq = 16;
add_shift_round_VP_sq = 32768;
}
for (unsigned i = 0; i < h; ++i) {
//VERTICAL
for (unsigned j = 0; j < w; ++j) {
uint32_t accum_mu1 = 0;
uint32_t accum_mu2 = 0;
uint64_t accum_ref = 0;
uint64_t accum_dis = 0;
uint64_t accum_ref_dis = 0;
for (unsigned fi = 0; fi < fwidth; ++fi) {
int ii = i - fwidth / 2;
int ii_check = ii + fi;
const uint16_t fcoeff = vif_filt[fi];
const ptrdiff_t stride = buf.stride / sizeof(uint16_t);
uint16_t *ref = buf.ref;
uint16_t *dis = buf.dis;
uint16_t imgcoeff_ref = ref[ii_check * stride + j];
uint16_t imgcoeff_dis = dis[ii_check * stride + j];
uint32_t img_coeff_ref = fcoeff * (uint32_t)imgcoeff_ref;
uint32_t img_coeff_dis = fcoeff * (uint32_t)imgcoeff_dis;
accum_mu1 += img_coeff_ref;
accum_mu2 += img_coeff_dis;
accum_ref += img_coeff_ref * (uint64_t)imgcoeff_ref;
accum_dis += img_coeff_dis * (uint64_t)imgcoeff_dis;
accum_ref_dis += img_coeff_ref * (uint64_t)imgcoeff_dis;
}
buf.tmp.mu1[j] = (uint16_t)((accum_mu1 + add_shift_round_VP) >> shift_VP);
buf.tmp.mu2[j] = (uint16_t)((accum_mu2 + add_shift_round_VP) >> shift_VP);
buf.tmp.ref[j] = (uint32_t)((accum_ref + add_shift_round_VP_sq) >> shift_VP_sq);
buf.tmp.dis[j] = (uint32_t)((accum_dis + add_shift_round_VP_sq) >> shift_VP_sq);
buf.tmp.ref_dis[j] = (uint32_t)((accum_ref_dis + add_shift_round_VP_sq) >> shift_VP_sq);
}
PADDING_SQ_DATA(buf, w, fwidth / 2);
//HORIZONTAL
for (unsigned j = 0; j < w; ++j) {
uint32_t accum_mu1 = 0;
uint32_t accum_mu2 = 0;
uint64_t accum_ref = 0;
uint64_t accum_dis = 0;
uint64_t accum_ref_dis = 0;
for (unsigned fj = 0; fj < fwidth; ++fj) {
int jj = j - fwidth / 2;
int jj_check = jj + fj;
const uint16_t fcoeff = vif_filt[fj];
accum_mu1 += fcoeff * ((uint32_t)buf.tmp.mu1[jj_check]);
accum_mu2 += fcoeff * ((uint32_t)buf.tmp.mu2[jj_check]);
accum_ref += fcoeff * ((uint64_t)buf.tmp.ref[jj_check]);
accum_dis += fcoeff * ((uint64_t)buf.tmp.dis[jj_check]);
accum_ref_dis += fcoeff * ((uint64_t)buf.tmp.ref_dis[jj_check]);
}
uint32_t mu1_val = accum_mu1;
uint32_t mu2_val = accum_mu2;
uint32_t mu1_sq_val = (uint32_t)((((uint64_t)mu1_val * mu1_val)
+ 2147483648) >> 32);
uint32_t mu2_sq_val = (uint32_t)((((uint64_t)mu2_val * mu2_val)
+ 2147483648) >> 32);
uint32_t mu1_mu2_val = (uint32_t)((((uint64_t)mu1_val * mu2_val)
+ 2147483648) >> 32);
uint32_t xx_filt_val = (uint32_t)((accum_ref + add_shift_round_HP) >> shift_HP);
uint32_t yy_filt_val = (uint32_t)((accum_dis + add_shift_round_HP) >> shift_HP);
uint32_t xy_filt_val = (uint32_t)((accum_ref_dis + add_shift_round_HP) >> shift_HP);
int32_t sigma1_sq = (int32_t)(xx_filt_val - mu1_sq_val);
int32_t sigma2_sq = (int32_t)(yy_filt_val - mu2_sq_val);
int32_t sigma12 = (int32_t)(xy_filt_val - mu1_mu2_val);
sigma2_sq = MAX(sigma2_sq, 0);
if (sigma1_sq >= sigma_nsq) {
/**
* log values are taken from the look-up table generated by
* log_generate() function which is called in integer_combo_threadfunc
* den_val in float is log2(1 + sigma1_sq/2)
* here it is converted to equivalent of log2(2+sigma1_sq) - log2(2) i.e log2(2*65536+sigma1_sq) - 17
* multiplied by 2048 as log_value = log2(i)*2048 i=16384 to 65535 generated using log_value
* x because best 16 bits are taken
*/
accum_den_log += log2_32(log2_table, sigma_nsq + sigma1_sq) - 2048 * 17;
if (sigma12 > 0 && sigma2_sq > 0) {
/**
* In floating-point numerator = log2((1.0f + (g * g * sigma1_sq)/(sv_sq + sigma_nsq))
*
* In Fixed-point the above is converted to
* numerator = log2((sv_sq + sigma_nsq)+(g * g * sigma1_sq))- log2(sv_sq + sigma_nsq)
*/
const double eps = 65536 * 1.0e-10;
double g = sigma12 / (sigma1_sq + eps); // this epsilon can go away
int32_t sv_sq = sigma2_sq - g * sigma12;
sv_sq = (uint32_t)(MAX(sv_sq, 0));
g = MIN(g, vif_enhn_gain_limit);
uint32_t numer1 = (sv_sq + sigma_nsq);
int64_t numer1_tmp = (int64_t)((g * g * sigma1_sq)) + numer1; //numerator
accum_num_log += log2_64(log2_table, numer1_tmp) - log2_64(log2_table, numer1);
}
}
else {
accum_num_non_log += sigma2_sq;
accum_den_non_log++;
}
}
}
num[0] = accum_num_log / 2048.0 + (accum_den_non_log - ((accum_num_non_log) / 16384.0) / (65025.0));
den[0] = accum_den_log / 2048.0 + accum_den_non_log;
}
VifResiduals vif_compute_line_residuals(VifPublicState *s, unsigned from,
unsigned to, int scale)
{
VifResiduals residuals = { 0 };
const unsigned fwidth = vif_filter1d_width[scale];
const uint16_t *vif_filt = vif_filter1d_table[scale];
VifBuffer buf = s->buf;
const uint16_t *log2_table = s->log2_table;
double vif_enhn_gain_limit = s->vif_enhn_gain_limit;
static const int32_t sigma_nsq = 65536 << 1;
int32_t shift_HP = 16;
int32_t add_shift_round_HP = 32768;
//HORIZONTAL
for (unsigned j = from; j < to; ++j) {
uint32_t accum_mu1 = 0;
uint32_t accum_mu2 = 0;
uint64_t accum_ref = 0;
uint64_t accum_dis = 0;
uint64_t accum_ref_dis = 0;
for (unsigned fj = 0; fj < fwidth; ++fj) {
int jj = j - fwidth / 2;
int jj_check = jj + fj;
const uint16_t fcoeff = vif_filt[fj];
accum_mu1 += fcoeff * ((uint32_t)buf.tmp.mu1[jj_check]);
accum_mu2 += fcoeff * ((uint32_t)buf.tmp.mu2[jj_check]);
accum_ref += fcoeff * ((uint64_t)buf.tmp.ref[jj_check]);
accum_dis += fcoeff * ((uint64_t)buf.tmp.dis[jj_check]);
accum_ref_dis += fcoeff * ((uint64_t)buf.tmp.ref_dis[jj_check]);
}
uint32_t mu1_val = accum_mu1;
uint32_t mu2_val = accum_mu2;
uint32_t mu1_sq_val = (uint32_t)((((uint64_t)mu1_val * mu1_val)
+ 2147483648) >> 32);
uint32_t mu2_sq_val = (uint32_t)((((uint64_t)mu2_val * mu2_val)
+ 2147483648) >> 32);
uint32_t mu1_mu2_val = (uint32_t)((((uint64_t)mu1_val * mu2_val)
+ 2147483648) >> 32);
uint32_t xx_filt_val = (uint32_t)((accum_ref + add_shift_round_HP) >> shift_HP);
uint32_t yy_filt_val = (uint32_t)((accum_dis + add_shift_round_HP) >> shift_HP);
uint32_t xy_filt_val = (uint32_t)((accum_ref_dis + add_shift_round_HP) >> shift_HP);
int32_t sigma1_sq = (int32_t)(xx_filt_val - mu1_sq_val);
int32_t sigma2_sq = (int32_t)(yy_filt_val - mu2_sq_val);
int32_t sigma12 = (int32_t)(xy_filt_val - mu1_mu2_val);
sigma2_sq = MAX(sigma2_sq, 0);
if (sigma1_sq >= sigma_nsq) {
/**
* log values are taken from the look-up table generated by
* log_generate() function which is called in integer_combo_threadfunc
* den_val in float is log2(1 + sigma1_sq/2)
* here it is converted to equivalent of log2(2+sigma1_sq) - log2(2) i.e log2(2*65536+sigma1_sq) - 17
* multiplied by 2048 as log_value = log2(i)*2048 i=16384 to 65535 generated using log_value
* x because best 16 bits are taken
*/
residuals.accum_den_log += log2_32(log2_table, sigma_nsq + sigma1_sq) - 2048 * 17;
if (sigma12 > 0 && sigma2_sq > 0) {
/**
* In floating-point numerator = log2((1.0f + (g * g * sigma1_sq)/(sv_sq + sigma_nsq))
*
* In Fixed-point the above is converted to
* numerator = log2((sv_sq + sigma_nsq)+(g * g * sigma1_sq))- log2(sv_sq + sigma_nsq)
*/
const double eps = 65536 * 1.0e-10;
double g = sigma12 / (sigma1_sq + eps); // this epsilon can go away
int32_t sv_sq = sigma2_sq - g * sigma12;
sv_sq = (uint32_t)(MAX(sv_sq, 0));
g = MIN(g, vif_enhn_gain_limit);
uint32_t numer1 = (sv_sq + sigma_nsq);
int64_t numer1_tmp = (int64_t)((g * g * sigma1_sq)) + numer1; //numerator
residuals.accum_num_log += log2_64(log2_table, numer1_tmp) - log2_64(log2_table, numer1);
}
}
else {
residuals.accum_num_non_log += sigma2_sq;
residuals.accum_den_non_log++;
}
}
return residuals;
}
static int init(VmafFeatureExtractor *fex, enum VmafPixelFormat pix_fmt,
unsigned bpc, unsigned w, unsigned h)
{
VifState *s = fex->priv;
s->subsample_rd_8 = subsample_rd_8;
s->subsample_rd_16 = subsample_rd_16;
s->vif_statistic_8 = vif_statistic_8;
s->vif_statistic_16 = vif_statistic_16;
#if ARCH_X86
unsigned flags = vmaf_get_cpu_flags();
if (flags & VMAF_X86_CPU_FLAG_AVX2) {
s->subsample_rd_8 = vif_subsample_rd_8_avx2;
s->subsample_rd_16 = vif_subsample_rd_16_avx2;
s->vif_statistic_8 = vif_statistic_8_avx2;
s->vif_statistic_16 = vif_statistic_16_avx2;
}
#if HAVE_AVX512
if (flags & VMAF_X86_CPU_FLAG_AVX512) {
s->subsample_rd_8 = vif_subsample_rd_8_avx512;
s->subsample_rd_16 = vif_subsample_rd_16_avx512;
s->vif_statistic_8 = vif_statistic_8_avx512;
s->vif_statistic_16 = vif_statistic_16_avx512;
}
#endif
#elif ARCH_AARCH64
unsigned flags = vmaf_get_cpu_flags();
if (flags & VMAF_ARM_CPU_FLAG_NEON) {
s->subsample_rd_8 = vif_subsample_rd_8_neon;
s->subsample_rd_16 = vif_subsample_rd_16_neon;
s->vif_statistic_8 = vif_statistic_8_neon;
s->vif_statistic_16 = vif_statistic_16_neon;
}
#endif
log_generate(s->public.log2_table);
(void)pix_fmt;
const bool hbd = bpc > 8;
s->public.buf.stride = ALIGN_CEIL(w << hbd);
s->public.buf.stride_16 = ALIGN_CEIL(w * sizeof(uint16_t));
s->public.buf.stride_32 = ALIGN_CEIL(w * sizeof(uint32_t));
s->public.buf.stride_tmp =
ALIGN_CEIL((MAX_ALIGN + w + MAX_ALIGN) * sizeof(uint32_t));
const size_t frame_size = s->public.buf.stride * h;
const size_t pad_size = s->public.buf.stride * 8;
const size_t data_sz =
2 * (pad_size + frame_size + pad_size) + 2 * (h * s->public.buf.stride_16) +
5 * (s->public.buf.stride_32) + 7 * s->public.buf.stride_tmp;
void *data = aligned_malloc(data_sz, MAX_ALIGN);
if (!data) return -ENOMEM;
memset(data, 0, data_sz);
s->public.buf.data = data; data += pad_size;
s->public.buf.ref = data; data += frame_size + pad_size + pad_size;
s->public.buf.dis = data; data += frame_size + pad_size;
s->public.buf.mu1 = data; data += h * s->public.buf.stride_16;
s->public.buf.mu2 = data; data += h * s->public.buf.stride_16;
s->public.buf.mu1_32 = data; data += s->public.buf.stride_32;
s->public.buf.mu2_32 = data; data += s->public.buf.stride_32;
s->public.buf.ref_sq = data; data += s->public.buf.stride_32;
s->public.buf.dis_sq = data; data += s->public.buf.stride_32;
s->public.buf.ref_dis = data; data += s->public.buf.stride_32;
s->public.buf.tmp.mu1 = data; data += s->public.buf.stride_tmp;
s->public.buf.tmp.mu2 = data; data += s->public.buf.stride_tmp;
s->public.buf.tmp.ref = data; data += s->public.buf.stride_tmp;
s->public.buf.tmp.dis = data; data += s->public.buf.stride_tmp;
s->public.buf.tmp.ref_dis = data; data += s->public.buf.stride_tmp;
s->public.buf.tmp.ref_convol = data; data += s->public.buf.stride_tmp;
s->public.buf.tmp.dis_convol = data;
s->feature_name_dict =
vmaf_feature_name_dict_from_provided_features(fex->provided_features,
fex->options, s);
if (!s->feature_name_dict) goto fail;
return 0;
fail:
if (data) aligned_free(data);
vmaf_dictionary_free(&s->feature_name_dict);
return -ENOMEM;
}
typedef struct VifScore {
struct {
float num;
float den;
} scale[4];
} VifScore;
static int write_scores(VmafFeatureCollector *feature_collector, unsigned index,
VifScore vif, VifState *s)
{
int err = 0;
err |= vmaf_feature_collector_append_with_dict(feature_collector,
s->feature_name_dict, "VMAF_integer_feature_vif_scale0_score",
vif.scale[0].num / vif.scale[0].den, index);
err |= vmaf_feature_collector_append_with_dict(feature_collector,
s->feature_name_dict, "VMAF_integer_feature_vif_scale1_score",
vif.scale[1].num / vif.scale[1].den, index);
err |= vmaf_feature_collector_append_with_dict(feature_collector,
s->feature_name_dict, "VMAF_integer_feature_vif_scale2_score",
vif.scale[2].num / vif.scale[2].den, index);
err |= vmaf_feature_collector_append_with_dict(feature_collector,
s->feature_name_dict, "VMAF_integer_feature_vif_scale3_score",
vif.scale[3].num / vif.scale[3].den, index);
if (!s->debug) return err;
const double score_num =
(double)vif.scale[0].num + (double)vif.scale[1].num +
(double)vif.scale[2].num + (double)vif.scale[3].num;
const double score_den =
(double)vif.scale[0].den + (double)vif.scale[1].den +
(double)vif.scale[2].den + (double)vif.scale[3].den;
const double score =
score_den == 0.0 ? 1.0f : score_num / score_den;
err |= vmaf_feature_collector_append_with_dict(feature_collector,
s->feature_name_dict, "integer_vif", score, index);
err |= vmaf_feature_collector_append_with_dict(feature_collector,
s->feature_name_dict, "integer_vif_num", score_num, index);
err |= vmaf_feature_collector_append_with_dict(feature_collector,
s->feature_name_dict, "integer_vif_den", score_den, index);
err |= vmaf_feature_collector_append_with_dict(feature_collector,
s->feature_name_dict, "integer_vif_num_scale0", vif.scale[0].num,
index);
err |= vmaf_feature_collector_append_with_dict(feature_collector,
s->feature_name_dict, "integer_vif_den_scale0", vif.scale[0].den,
index);
err |= vmaf_feature_collector_append_with_dict(feature_collector,
s->feature_name_dict, "integer_vif_num_scale1", vif.scale[1].num,
index);
err |= vmaf_feature_collector_append_with_dict(feature_collector,
s->feature_name_dict, "integer_vif_den_scale1", vif.scale[1].den,
index);
err |= vmaf_feature_collector_append_with_dict(feature_collector,
s->feature_name_dict, "integer_vif_num_scale2", vif.scale[2].num,
index);
err |= vmaf_feature_collector_append_with_dict(feature_collector,
s->feature_name_dict, "integer_vif_den_scale2", vif.scale[2].den,
index);
err |= vmaf_feature_collector_append_with_dict(feature_collector,
s->feature_name_dict, "integer_vif_num_scale3", vif.scale[3].num,
index);
err |= vmaf_feature_collector_append_with_dict(feature_collector,
s->feature_name_dict, "integer_vif_den_scale3", vif.scale[3].den,
index);
return err;
}
static int extract(VmafFeatureExtractor *fex,
VmafPicture *ref_pic, VmafPicture *ref_pic_90,
VmafPicture *dist_pic, VmafPicture *dist_pic_90,
unsigned index, VmafFeatureCollector *feature_collector)
{
VifState *s = fex->priv;
(void)ref_pic_90;
(void)dist_pic_90;
unsigned w = ref_pic->w[0];
unsigned h = dist_pic->h[0];
unsigned char *ref_in = ref_pic->data[0];
unsigned char *dis_in = dist_pic->data[0];
unsigned char *ref_out = s->public.buf.ref;
unsigned char *dis_out = s->public.buf.dis;
for (unsigned i = 0; i < h; i++) {
memcpy(ref_out, ref_in, ref_pic->stride[0]);
memcpy(dis_out, dis_in, dist_pic->stride[0]);
ref_in += ref_pic->stride[0];
dis_in += dist_pic->stride[0];
ref_out += s->public.buf.stride;
dis_out += s->public.buf.stride;
}
pad_top_and_bottom(s->public.buf, h, vif_filter1d_width[0]);
VifScore vif_score;
for (unsigned scale = 0; scale < 4; ++scale) {
if (scale > 0) {
if (ref_pic->bpc == 8 && scale == 1)
s->subsample_rd_8(s->public.buf, w, h);
else
s->subsample_rd_16(s->public.buf, w, h, scale - 1, ref_pic->bpc);
w /= 2; h /= 2;
}
if (ref_pic->bpc == 8 && scale == 0) {
s->vif_statistic_8(&s->public, &vif_score.scale[scale].num, &vif_score.scale[scale].den, w, h);
}
else {
s->vif_statistic_16(&s->public, &vif_score.scale[scale].num, &vif_score.scale[scale].den, w, h, ref_pic->bpc, scale);
}
}
return write_scores(feature_collector, index, vif_score, s);
}
static int close(VmafFeatureExtractor *fex)
{
VifState *s = fex->priv;
if (s->public.buf.data) aligned_free(s->public.buf.data);
vmaf_dictionary_free(&s->feature_name_dict);
return 0;
}
static const char *provided_features[] = {
"VMAF_integer_feature_vif_scale0_score", "VMAF_integer_feature_vif_scale1_score",
"VMAF_integer_feature_vif_scale2_score", "VMAF_integer_feature_vif_scale3_score",
"integer_vif", "integer_vif_num", "integer_vif_den", "integer_vif_num_scale0",
"integer_vif_den_scale0", "integer_vif_num_scale1", "integer_vif_den_scale1",
"integer_vif_num_scale2", "integer_vif_den_scale2", "integer_vif_num_scale3",
"integer_vif_den_scale3",
NULL
};
VmafFeatureExtractor vmaf_fex_integer_vif = {
.name = "vif",
.init = init,
.extract = extract,
.options = options,
.close = close,
.priv_size = sizeof(VifState),
.provided_features = provided_features,
};