-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
503 lines (425 loc) · 25.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import importlib
import tqdm
import os
import torch
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import torch.distributed as dist
import sys
import time
import shutil
import matplotlib.pyplot as plt
from utils import read_args, info_log, cal_cov_component, cal_concept, cal_acc, cal_class_MCP, cal_cov, load_model, check_device, CCD_loss, CKA_loss
class GatherLayer(torch.autograd.Function):
"""Gather tensors from all process, supporting backward propagation."""
@staticmethod
def forward(ctx, input):
ctx.save_for_backward(input)
output = [torch.zeros_like(input) for _ in range(dist.get_world_size())]
dist.all_gather(output, input)
return tuple(output)
@staticmethod
def backward(ctx, *grads):
(input,) = ctx.saved_tensors
grad_out = torch.zeros_like(input)
grad_out[:] = grads[dist.get_rank()]
return grad_out
# =============================================================================
# Get optimizer learning rate
# =============================================================================
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
# =============================================================================
# Run one iteration
# =============================================================================
def one_step(model, data, label, loss_funcs, optimizer, args, concept_vectors = None, concept_means = None, class_MCP_dist = None):
if args.device_id != -1:
b_data = data.to(args.device_id)
b_label = label.to(args.device_id)
else:
b_data = data
b_label = label
optimizer.zero_grad()
# Model forward
l1, l2, l3, l4 = model(b_data)
# calculate loss
if l1.shape[0] > 2:
cka_loss = loss_funcs["CKA_loss"]((l1, l2, l3, l4), (1, 2, 3, 4))
else:
cka_loss = torch.tensor(0).cuda()
ccd_loss = loss_funcs["CCD_loss"]((l1, l2, l3, l4), concept_vectors, concept_means, (1, 2, 3, 4), b_label, class_MCP_dist) * args.CCD_weight
loss = cka_loss + ccd_loss
loss.backward()
optimizer.step()
losses = {
"CKA_loss" : cka_loss.detach(),
"CCD_loss" : ccd_loss.detach()
}
return losses
def test(model, data, label, loss_func, args):
if args.device_id != -1:
b_data = data.to(args.local_rank)
b_label = label.cuda(args.global_rank)
else:
b_data = data
b_label = label
# Model forward
l1, l2, l3, l4 = model(b_data)
if args.world_size > 1:
l1 = torch.cat(GatherLayer.apply(l1.contiguous()), dim = 0)
l2 = torch.cat(GatherLayer.apply(l2.contiguous()), dim = 0)
l3 = torch.cat(GatherLayer.apply(l3.contiguous()), dim = 0)
l4 = torch.cat(GatherLayer.apply(l4.contiguous()), dim = 0)
b_label = torch.cat(GatherLayer.apply(b_label), dim = 0)
losses = {
}
return losses, l1, l2, l3, l4
# =============================================================================
# Load data, load model (pretrain if needed), define loss function, define optimizer,
# define learning rate scheduler (if needed), training and validation
# =============================================================================
def runs(args):
# Load dataset ------------------------------------------------------------
dataloader = importlib.import_module(args.dataloader)
dataset, dataset_sizes, all_image_datasets = dataloader.load_data(args)
# -------------------------------------------------------------------------
# Define tensorboard for recording ----------------------------------------
if args.global_rank in [-1, 0]:
with open('{}/logging.txt'.format(args.dst), "a") as f:
print('Index : {}'.format(args.index), file = f)
print("dataset : {}".format(args.dataset_name), file = f)
writer = SummaryWriter('./logs/{}/{}_{}'.format(args.index, args.model.lower(), args.basic_model.lower()))
# -------------------------------------------------------------------------
start_epoch = 1
if args.resume:
resume_data = torch.load(args.weight_path)
args.concept_cha = resume_data['concept_cha']
start_epoch = resume_data["Epoch"] + 1
# Load model (load pretrain if needed) ------------------------------------
model = load_model(args)
# -------------------------------------------------------------------------
# Define loss -------------------------------------------------------------
loss_funcs = {}
loss_funcs["CCD_loss"] = CCD_loss(args.concept_cha, args.margin)
loss_funcs["CKA_loss"] = CKA_loss(args.concept_cha)
if args.global_rank in [0, -1]:
print(loss_funcs)
assert len(loss_funcs) != 0, "Miss define loss"
# -------------------------------------------------------------------------
# Define optimizer --------------------------------------------------------
train_optimizer = None
if args.optimizer == "adam":
train_optimizer = torch.optim.Adam(model.parameters(), lr = args.lr, weight_decay = args.weight_decay)
if args.optimizer == "sgd":
train_optimizer = torch.optim.SGD(model.parameters(), lr = args.lr, weight_decay = args.weight_decay, momentum = 0.9)
if args.optimizer == "adamw":
train_optimizer = torch.optim.AdamW(model.parameters(), lr = args.lr, weight_decay = args.weight_decay)
assert train_optimizer is not None, "Miss define optimizer"
# -------------------------------------------------------------------------
# Define learning rate scheduler ------------------------------------------
if "lr_scheduler" in args:
lr_scheduler = torch.optim.lr_scheduler.StepLR(train_optimizer, step_size = args.lr_scheduler, gamma = 0.1)
# -------------------------------------------------------------------------
# Define Meters -------------------------------------------------------
max_acc = {'train' : AverageMeter(), 'val' : AverageMeter()}
last_acc = {'train' : AverageMeter(), 'val' : AverageMeter()}
# ---------------------------------------------------------------------
# Train and Validation ---------------------------------------------------------------
concept_vectors = [[], [], [], []]
concept_means = [[], [], [],[]]
first_concept_vectors = [[], [], [], []]
first_concept_means = [[], [], [], []]
train_transform = dataset["train"].dataset.transform
val_transform = dataset["val"].dataset.transform
for epoch in range(start_epoch, args.epoch + 1):
if args.global_rank in [-1, 0]:
info_log('-' * 15, args.global_rank, args.log_type, args.log)
info_log('Epoch {}/{}'.format(epoch, args.epoch), args.global_rank, args.log_type, args.log)
cov_xxs = [torch.zeros(args.concept_per_layer[0], args.concept_cha[0], args.concept_cha[0], dtype = torch.float64).cuda(args.global_rank),
torch.zeros(args.concept_per_layer[1], args.concept_cha[1], args.concept_cha[1], dtype = torch.float64).cuda(args.global_rank),
torch.zeros(args.concept_per_layer[2], args.concept_cha[2], args.concept_cha[2], dtype = torch.float64).cuda(args.global_rank),
torch.zeros(args.concept_per_layer[3], args.concept_cha[3], args.concept_cha[3], dtype = torch.float64).cuda(args.global_rank)]
cov_means = [torch.zeros(args.concept_per_layer[0], args.concept_cha[0], 1, dtype = torch.float64).cuda(args.global_rank),
torch.zeros(args.concept_per_layer[1], args.concept_cha[1], 1, dtype = torch.float64).cuda(args.global_rank),
torch.zeros(args.concept_per_layer[2], args.concept_cha[2], 1, dtype = torch.float64).cuda(args.global_rank),
torch.zeros(args.concept_per_layer[3], args.concept_cha[3], 1, dtype = torch.float64).cuda(args.global_rank)]
Sum_As = [torch.zeros(args.concept_per_layer[0], dtype = torch.float64).cuda(args.global_rank),
torch.zeros(args.concept_per_layer[1], dtype = torch.float64).cuda(args.global_rank),
torch.zeros(args.concept_per_layer[2], dtype = torch.float64).cuda(args.global_rank),
torch.zeros(args.concept_per_layer[3], dtype = torch.float64).cuda(args.global_rank)]
Square_Sum_As = [torch.zeros(args.concept_per_layer[0], dtype = torch.float64).cuda(args.global_rank),
torch.zeros(args.concept_per_layer[1], dtype = torch.float64).cuda(args.global_rank),
torch.zeros(args.concept_per_layer[2], dtype = torch.float64).cuda(args.global_rank),
torch.zeros(args.concept_per_layer[3], dtype = torch.float64).cuda(args.global_rank)]
# Inference one time to get the concept ====================================================
if epoch == 1:
if args.global_rank in [-1, 0]:
print("First epoch: Extract the concept vectors and concept means!!")
dataset["train"].dataset.transform = val_transform
model.train(False)
with torch.no_grad():
nb = len(dataset["train"])
pbar = enumerate(dataset["train"])
if args.global_rank in [-1, 0]:
pbar = tqdm.tqdm(pbar, total = nb) # progress bar
# Evaluate first time and Extract the concept vector
for step, (data, label) in pbar:
losses, l1, l2, l3, l4 = test(model, data, label, loss_funcs, args)
features = [l1, l2, l3, l4]
Sum_As, Square_Sum_As, cov_xxs, cov_means = cal_cov_component(features, Sum_As, Square_Sum_As, cov_xxs, cov_means, args)
if args.world_size > 1:
for i in range(len(features)):
dist.all_reduce(Sum_As[i], op = dist.ReduceOp.SUM)
dist.all_reduce(Square_Sum_As[i], op = dist.ReduceOp.SUM)
dist.all_reduce(cov_xxs[i], op = dist.ReduceOp.SUM)
dist.all_reduce(cov_means[i], op = dist.ReduceOp.SUM)
covs = []
for i in range(len(features)):
# calculate weighted covariance matrix
cov, cov_mean = cal_cov(cov_xxs[i], cov_means[i], Sum_As[i])
covs.append(cov)
concept_means[i] = cov_mean
# eigen decompose
concept_vectors[i], concept_means[i] = cal_concept(cov, cov_mean)
first_concept_vectors[i] = concept_vectors[i].type(torch.float32).clone()
first_concept_means[i] = concept_means[i].type(torch.float32).clone()
torch.cuda.empty_cache()
# Calculate the class MCP distributions
class_MCP = cal_class_MCP(model, concept_vectors, concept_means, dataset["train"], args.category, args)
print("Finish extract concept and MCP distribution!!")
torch.cuda.empty_cache()
# train phase =================================================================================================
dataset["train"].dataset.transform = train_transform
model.train(True)
if args.global_rank != -1:
dataset["train"].sampler.set_epoch(epoch)
dataset["val"].sampler.set_epoch(epoch)
loss_t = AverageMeter()
loss_detail_t = {}
nb = len(dataset["train"])
pbar = enumerate(dataset["train"])
if args.global_rank in [-1, 0]:
pbar = tqdm.tqdm(pbar, total=nb) # progress bar
for step, (data, label) in pbar:
losses = one_step(model = model,
data = data,
label = label,
loss_funcs = loss_funcs,
optimizer = train_optimizer,
args = args,
concept_vectors = concept_vectors,
concept_means = concept_means,
class_MCP_dist = class_MCP)
# record losses
loss = 0
for key in losses.keys():
loss_i = losses[key]
dist.all_reduce(loss_i, op = dist.ReduceOp.SUM)
loss_i = loss_i / args.world_size
loss += loss_i
if key not in loss_detail_t.keys():
loss_detail_t[key] = AverageMeter()
if args.global_rank in [-1, 0]:
loss_detail_t[key].update(loss_i, data.size(0) * args.world_size)
losses[key] = losses[key].detach().item()
if args.global_rank in [-1, 0]:
loss_t.update(loss, data.size(0) * args.world_size)
pbar.set_postfix(losses)
if args.global_rank in [-1, 0]:
writer.add_scalar('Loss/train', loss_t.avg, epoch)
for key in loss_detail_t.keys():
writer.add_scalar('{}/train'.format(key), loss_detail_t[key].avg, epoch)
if epoch == 1:
for layer_i in range(len(Sum_As)):
Sum_As[layer_i] = torch.zeros_like(Sum_As[layer_i], dtype = torch.float64)
Square_Sum_As[layer_i] = torch.zeros_like(Square_Sum_As[layer_i], dtype = torch.float64)
cov_xxs[layer_i] = torch.zeros_like(cov_xxs[layer_i], dtype = torch.float64)
cov_means[layer_i] = torch.zeros_like(cov_means[layer_i], dtype = torch.float64)
torch.cuda.empty_cache()
# validation =============================================================================================================
dataset["train"].dataset.transform = val_transform
model.train(False)
for phase in ["train", "val"]:
correct_t = AverageMeter()
correct_t5 = AverageMeter()
loss_t = AverageMeter()
loss_detail_t = {}
with torch.no_grad():
total_correct = 0
total_count = 0
nb = len(dataset[phase])
pbar = enumerate(dataset[phase])
if args.global_rank in [-1, 0]:
pbar = tqdm.tqdm(pbar, total = nb) # progress bar
# Evaluate first time and Extract the concept vector
for step, (data, label) in pbar:
if args.global_rank != -1:
b_label = label.cuda(args.global_rank)
losses, l1, l2, l3, l4 = test(model, data, label, loss_funcs, args)
features = [l1, l2, l3, l4]
if phase == "train":
Sum_As, Square_Sum_As, cov_xxs, cov_means = cal_cov_component(features, Sum_As, Square_Sum_As, cov_xxs, cov_means, args)
else:
# Calculate val-set acc
resp_top1, resp_top5 = cal_acc(features, class_MCP, concept_vectors, concept_means, args)
loss = 0
for key in losses.keys():
loss_i = losses[key]
dist.reduce(loss_i, 0, op = dist.ReduceOp.SUM)
loss_i = loss_i / args.world_size
loss += loss_i
if key not in loss_detail_t.keys():
loss_detail_t[key] = AverageMeter()
if args.global_rank in [-1, 0]:
loss_detail_t[key].update(loss_i, data.size(0) * args.world_size)
if args.global_rank in [-1, 0]:
loss_t.update(loss, data.size(0) * args.world_size)
if phase == "val":
b_label_all = [torch.zeros_like(b_label) for _ in range(args.world_size)]
dist.all_gather(b_label_all, b_label)
b_label = torch.cat(b_label_all, dim = 0)
correct_1 = (resp_top1 == b_label.unsqueeze(1)).sum()
total_correct += correct_1
total_count += b_label.shape[0]
correct_5 = (resp_top5 == b_label.unsqueeze(1)).sum()
assert correct_5 >= correct_1, "Error on calulate accuracy"
if args.global_rank in [-1, 0]:
correct_t.update(correct_1.item() / b_label.shape[0], b_label.shape[0])
correct_t5.update(correct_5.item() / b_label.shape[0], b_label.shape[0])
if phase == "train":
for i in range(4):
dist.all_reduce(Sum_As[i], op = dist.ReduceOp.SUM)
dist.all_reduce(Square_Sum_As[i], op = dist.ReduceOp.SUM)
dist.all_reduce(cov_xxs[i], op = dist.ReduceOp.SUM)
dist.all_reduce(cov_means[i], op = dist.ReduceOp.SUM)
covs = []
sim_vecs = []
sim_means = []
for i in range(4):
# calculate weighted covariance matrix
cov, cov_mean = cal_cov(cov_xxs[i], cov_means[i], Sum_As[i])
covs.append(cov)
concept_means[i] = cov_mean
# eigen decompose
concept_vectors[i], concept_means[i] = cal_concept(cov, cov_mean)
# Calculate the class MCP
class_MCP = cal_class_MCP(model, concept_vectors, concept_means, dataset["train"], args.category, args)
if args.global_rank in [-1, 0]:
# Recording loss and accuracy ---------------------------------
if phase == "val":
writer.add_scalar('Loss/{}'.format(phase), loss_t.avg, epoch)
for key in losses.keys():
writer.add_scalar('{}/{}'.format(key, phase), loss_detail_t[key].avg, epoch)
writer.add_scalar('Accuracy resp top1/{}'.format(phase), correct_t.avg, epoch)
writer.add_scalar('Accuracy resp top5/{}'.format(phase), correct_t5.avg, epoch)
# -------------------------------------------------------------
# Save model --------------------------------------------------
if max_acc[phase].avg <= correct_t.avg:
last_acc[phase] = max_acc[phase]
max_acc[phase] = correct_t
if phase == 'val':
ACCMeters = correct_t
LOSSMeters = loss_t
info_log('save')
optimizers_state_dict= train_optimizer.state_dict()
lr_state_dict = lr_scheduler.state_dict()
save_data = {"Model" : model.state_dict(),
"Epoch" : epoch,
"Optimizer" : optimizers_state_dict,
"lr_scheduler" : lr_state_dict,
"Best ACC" : max_acc[phase].avg,
"concept_cha" : args.concept_cha}
torch.save(save_data, f"{args.dst}/best_model.pkl")
MCP_data = {"cent_MCP" : class_MCP,
"concept_covs" : covs,
"concept_means" : concept_means}
torch.save(MCP_data, f"{args.dst}/MCP_data.pkl")
optimizers_state_dict= train_optimizer.state_dict()
lr_state_dict = lr_scheduler.state_dict()
save_data = {"Model" : model.state_dict(),
"Epoch" : epoch,
"Optimizer" : optimizers_state_dict,
"Lr_scheduler" : lr_state_dict,
"Best ACC" : max_acc[phase].avg,
"concept_cha" : args.concept_cha}
torch.save(save_data, './pkl/{}/{}_{}/last_model.pkl'.format(args.index, args.model.lower(), args.basic_model.lower()))
# -------------------------------------------------------------
info_log('Index : {}'.format(args.index), args.global_rank, args.log_type, args.log)
info_log("dataset : {}".format(args.dataset_name), args.global_rank, args.log_type, args.log)
info_log("Model name : {}_{}".format(args.model, args.basic_model), args.global_rank, args.log_type, args.log)
info_log("{} set loss : {:.6f}".format(phase, loss_t.avg), args.global_rank, args.log_type, args.log)
for key in loss_detail_t.keys():
info_log(" {} set {} : {:.6f}".format(phase, key, loss_detail_t[key].avg), args.global_rank, args.log_type, args.log)
info_log("{} set resp top-1 acc : {:.6f}%".format(phase, correct_t.avg * 100.), args.global_rank, args.log_type, args.log)
info_log("{} set resp top-5 acc : {:.6f}%".format(phase, correct_t5.avg * 100.), args.global_rank, args.log_type, args.log)
info_log("{} resp last update : {:.6f}%".format(phase, (max_acc[phase].avg - last_acc[phase].avg) * 100.), args.global_rank, args.log_type, args.log)
info_log("{} set resp max acc : {:.6f}%".format(phase, max_acc[phase].avg * 100.), args.global_rank, args.log_type, args.log)
info_log("-" * 10, args.global_rank, args.log_type, args.log)
lr_scheduler.step()
# ---------------------------------------------------------------------
# Show the best result ----------------------------------------------------
info_log("Best acc : {:.6f} loss : {:.6f}".format(ACCMeters.avg, LOSSMeters.avg), args.global_rank, args.log_type, args.log)
# =============================================================================
# Templet for recording values
# =============================================================================
class AverageMeter():
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.value = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, value, batch):
self.value = value
self.sum += value * batch
self.count += batch
self.avg = self.sum / self.count
if __name__ == '__main__':
args = read_args()
# Set DDP variables
args.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
args.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
# check if it can run on gpu
device_id = check_device(args.devices, args.train_batch_size, args.val_batch_size)
args.train_total_batch_size = args.train_batch_size
args.val_total_batch_size = args.val_batch_size
if args.local_rank != -1:
assert torch.cuda.device_count() > args.local_rank
torch.cuda.set_device(args.local_rank)
device_id = torch.device('cuda', args.local_rank)
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
assert args.train_batch_size % args.world_size == 0, 'train_batch_size must be multiple of CUDA device count'
args.train_batch_size = args.train_total_batch_size // args.world_size
args.dst = f"{args.saved_dir}/pkl/{args.index}/{args.model.lower()}_{args.basic_model.lower()}"
args.log = '{}/logging.txt'.format(args.dst)
if args.global_rank in [-1, 0]:
first_time = False
if not os.path.exists(args.dst):
first_time = True
os.makedirs(args.dst)
print(f"Args : {args}")
if not args.resume and not first_time:
response = input("The experiment already exist ({}/{}_{}). Are you sure you want replace it? (y/n)".format(args.index, args.model.lower(), args.basic_model.lower())).lower()
while response != 'y' and response != 'n':
response = input("The experiment already exist ({}/{}_{}). Are you sure you want replace it? (y/n)".format(args.index, args.model.lower(), args.basic_model.lower())).lower()
if response == 'n':
sys.exit()
with open(args.log, "w") as f:
print(f"Args : {args}", file = f)
print("Save file to ", args.dst)
shutil.copy(src = os.path.join(os.getcwd(), __file__), dst = args.dst)
shutil.copy(src = os.path.join(os.getcwd(), "{}.py".format(args.model)), dst = args.dst)
if args.basic_model == "resnet50":
shutil.copy(src = os.path.join(os.getcwd(), "ResNet.py"), dst = args.dst)
elif args.basic_model == "inceptionv3":
shutil.copy(src = os.path.join(os.getcwd(), "inception_net.py"), dst = args.dst)
shutil.copy(src = os.path.join(os.getcwd(), "utils/arg_reader.py"), dst = args.dst)
shutil.copy(src = os.path.join(os.getcwd(), "utils/loss.py"), dst = args.dst)
start = time.time()
args.device_id = device_id
runs(args)
if args.global_rank in [-1, 0]:
info_log("Train for {:.1f} hours".format((time.time() - start) / 3600), args.global_rank, args.log_type, args.log)