-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathdeepinversion_cifar10.py
350 lines (273 loc) · 13.8 KB
/
deepinversion_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
'''
ResNet model inversion for CIFAR10.
Copyright (C) 2020 NVIDIA Corporation. All rights reserved.
This work is made available under the Nvidia Source Code License (1-Way Commercial). To view a copy of this license, visit https://github.com/NVlabs/DeepInversion/blob/master/LICENSE
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import random
import torch
import torch.nn as nn
# import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
# import torch.utils.data
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torchvision.utils as vutils
import torchvision.transforms as transforms
import numpy as np
import os
import glob
import collections
from resnet_cifar import ResNet34, ResNet18
try:
from apex.parallel import DistributedDataParallel as DDP
from apex import amp, optimizers
USE_APEX = True
except ImportError:
print("Please install apex from https://www.github.com/nvidia/apex to run this example.")
print("will attempt to run without it")
USE_APEX = False
#provide intermeiate information
debug_output = False
debug_output = True
class DeepInversionFeatureHook():
'''
Implementation of the forward hook to track feature statistics and compute a loss on them.
Will compute mean and variance, and will use l2 as a loss
'''
def __init__(self, module):
self.hook = module.register_forward_hook(self.hook_fn)
def hook_fn(self, module, input, output):
# hook co compute deepinversion's feature distribution regularization
nch = input[0].shape[1]
mean = input[0].mean([0, 2, 3])
var = input[0].permute(1, 0, 2, 3).contiguous().view([nch, -1]).var(1, unbiased=False)
# forcing mean and variance to match between two distributions
# other ways might work better, e.g. KL divergence
r_feature = torch.norm(module.running_var.data.type(var.type()) - var, 2) + torch.norm(
module.running_mean.data.type(var.type()) - mean, 2)
self.r_feature = r_feature
# must have no output
def close(self):
self.hook.remove()
def get_images(net, bs=256, epochs=1000, idx=-1, var_scale=0.00005,
net_student=None, prefix=None, competitive_scale=0.01, train_writer = None, global_iteration=None,
use_amp=False,
optimizer = None, inputs = None, bn_reg_scale = 0.0, random_labels = False, l2_coeff=0.0):
'''
Function returns inverted images from the pretrained model, parameters are tight to CIFAR dataset
args in:
net: network to be inverted
bs: batch size
epochs: total number of iterations to generate inverted images, training longer helps a lot!
idx: an external flag for printing purposes: only print in the first round, set as -1 to disable
var_scale: the scaling factor for variance loss regularization. this may vary depending on bs
larger - more blurred but less noise
net_student: model to be used for Adaptive DeepInversion
prefix: defines the path to store images
competitive_scale: coefficient for Adaptive DeepInversion
train_writer: tensorboardX object to store intermediate losses
global_iteration: indexer to be used for tensorboard
use_amp: boolean to indicate usage of APEX AMP for FP16 calculations - twice faster and less memory on TensorCores
optimizer: potimizer to be used for model inversion
inputs: data place holder for optimization, will be reinitialized to noise
bn_reg_scale: weight for r_feature_regularization
random_labels: sample labels from random distribution or use columns of the same class
l2_coeff: coefficient for L2 loss on input
return:
A tensor on GPU with shape (bs, 3, 32, 32) for CIFAR
'''
kl_loss = nn.KLDivLoss(reduction='batchmean').cuda()
# preventing backpropagation through student for Adaptive DeepInversion
net_student.eval()
best_cost = 1e6
# initialize gaussian inputs
inputs.data = torch.randn((bs, 3, 32, 32), requires_grad=True, device='cuda')
# if use_amp:
# inputs.data = inputs.data.half()
# set up criteria for optimization
criterion = nn.CrossEntropyLoss()
optimizer.state = collections.defaultdict(dict) # Reset state of optimizer
# target outputs to generate
if random_labels:
targets = torch.LongTensor([random.randint(0,9) for _ in range(bs)]).to('cuda')
else:
targets = torch.LongTensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9] * 25 + [0, 1, 2, 3, 4, 5]).to('cuda')
## Create hooks for feature statistics catching
loss_r_feature_layers = []
for module in net.modules():
if isinstance(module, nn.BatchNorm2d):
loss_r_feature_layers.append(DeepInversionFeatureHook(module))
# setting up the range for jitter
lim_0, lim_1 = 2, 2
for epoch in range(epochs):
# apply random jitter offsets
off1 = random.randint(-lim_0, lim_0)
off2 = random.randint(-lim_1, lim_1)
inputs_jit = torch.roll(inputs, shifts=(off1,off2), dims=(2,3))
# foward with jit images
optimizer.zero_grad()
net.zero_grad()
outputs = net(inputs_jit)
loss = criterion(outputs, targets)
loss_target = loss.item()
# competition loss, Adaptive DeepInvesrion
if competitive_scale != 0.0:
net_student.zero_grad()
outputs_student = net_student(inputs_jit)
T = 3.0
if 1:
# jensen shanon divergence:
# another way to force KL between negative probabilities
P = F.softmax(outputs_student / T, dim=1)
Q = F.softmax(outputs / T, dim=1)
M = 0.5 * (P + Q)
P = torch.clamp(P, 0.01, 0.99)
Q = torch.clamp(Q, 0.01, 0.99)
M = torch.clamp(M, 0.01, 0.99)
eps = 0.0
# loss_verifier_cig = 0.5 * kl_loss(F.log_softmax(outputs_verifier / T, dim=1), M) + 0.5 * kl_loss(F.log_softmax(outputs/T, dim=1), M)
loss_verifier_cig = 0.5 * kl_loss(torch.log(P + eps), M) + 0.5 * kl_loss(torch.log(Q + eps), M)
# JS criteria - 0 means full correlation, 1 - means completely different
loss_verifier_cig = 1.0 - torch.clamp(loss_verifier_cig, 0.0, 1.0)
loss = loss + competitive_scale * loss_verifier_cig
# apply total variation regularization
diff1 = inputs_jit[:,:,:,:-1] - inputs_jit[:,:,:,1:]
diff2 = inputs_jit[:,:,:-1,:] - inputs_jit[:,:,1:,:]
diff3 = inputs_jit[:,:,1:,:-1] - inputs_jit[:,:,:-1,1:]
diff4 = inputs_jit[:,:,:-1,:-1] - inputs_jit[:,:,1:,1:]
loss_var = torch.norm(diff1) + torch.norm(diff2) + torch.norm(diff3) + torch.norm(diff4)
loss = loss + var_scale*loss_var
# R_feature loss
loss_distr = sum([mod.r_feature for mod in loss_r_feature_layers])
loss = loss + bn_reg_scale*loss_distr # best for noise before BN
# l2 loss
if 1:
loss = loss + l2_coeff * torch.norm(inputs_jit, 2)
if debug_output and epoch % 200==0:
print(f"It {epoch}\t Losses: total: {loss.item():3.3f},\ttarget: {loss_target:3.3f} \tR_feature_loss unscaled:\t {loss_distr.item():3.3f}")
vutils.save_image(inputs.data.clone(),
'./{}/output_{}.png'.format(prefix, epoch//200),
normalize=True, scale_each=True, nrow=10)
if best_cost > loss.item():
best_cost = loss.item()
best_inputs = inputs.data
# backward pass
if use_amp:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
outputs=net(best_inputs)
_, predicted_teach = outputs.max(1)
outputs_student=net_student(best_inputs)
_, predicted_std = outputs_student.max(1)
if idx == 0:
print('Teacher correct out of {}: {}, loss at {}'.format(bs, predicted_teach.eq(targets).sum().item(), criterion(outputs, targets).item()))
print('Student correct out of {}: {}, loss at {}'.format(bs, predicted_std.eq(targets).sum().item(), criterion(outputs_student, targets).item()))
name_use = "best_images"
if prefix is not None:
name_use = prefix + name_use
next_batch = len(glob.glob("./%s/*.png" % name_use)) // 1
vutils.save_image(best_inputs[:20].clone(),
'./{}/output_{}.png'.format(name_use, next_batch),
normalize=True, scale_each = True, nrow=10)
if train_writer is not None:
train_writer.add_scalar('gener_teacher_criteria', criterion(outputs, targets), global_iteration)
train_writer.add_scalar('gener_student_criteria', criterion(outputs_student, targets), global_iteration)
train_writer.add_scalar('gener_teacher_acc', predicted_teach.eq(targets).sum().item() / bs, global_iteration)
train_writer.add_scalar('gener_student_acc', predicted_std.eq(targets).sum().item() / bs, global_iteration)
train_writer.add_scalar('gener_loss_total', loss.item(), global_iteration)
train_writer.add_scalar('gener_loss_var', (var_scale*loss_var).item(), global_iteration)
net_student.train()
return best_inputs
def test():
print('==> Teacher validation')
net_teacher.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net_teacher(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss / (batch_idx + 1), 100. * correct / total, correct, total))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 DeepInversion')
parser.add_argument('--bs', default=256, type=int, help='batch size')
parser.add_argument('--iters_mi', default=2000, type=int, help='number of iterations for model inversion')
parser.add_argument('--cig_scale', default=0.0, type=float, help='competition score')
parser.add_argument('--di_lr', default=0.1, type=float, help='lr for deep inversion')
parser.add_argument('--di_var_scale', default=2.5e-5, type=float, help='TV L2 regularization coefficient')
parser.add_argument('--di_l2_scale', default=0.0, type=float, help='L2 regularization coefficient')
parser.add_argument('--r_feature_weight', default=1e2, type=float, help='weight for BN regularization statistic')
parser.add_argument('--amp', action='store_true', help='use APEX AMP O1 acceleration')
parser.add_argument('--exp_descr', default="try1", type=str, help='name to be added to experiment name')
parser.add_argument('--teacher_weights', default="'./checkpoint/teacher_resnet34_only.weights'", type=str, help='path to load weights of the model')
args = parser.parse_args()
print("loading resnet34")
net_teacher = ResNet34()
net_student = ResNet18()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net_student = net_student.to(device)
net_teacher = net_teacher.to(device)
criterion = nn.CrossEntropyLoss()
# place holder for inputs
data_type = torch.half if args.amp else torch.float
inputs = torch.randn((args.bs, 3, 32, 32), requires_grad=True, device='cuda', dtype=data_type)
optimizer_di = optim.Adam([inputs], lr=args.di_lr)
if args.amp:
opt_level = "O1"
loss_scale = 'dynamic'
[net_student, net_teacher], optimizer_di = amp.initialize(
[net_student, net_teacher], optimizer_di,
opt_level=opt_level,
loss_scale=loss_scale)
checkpoint = torch.load(args.teacher_weights)
net_teacher.load_state_dict(checkpoint)
net_teacher.eval() #important, otherwise generated images will be non natural
if args.amp:
# need to do this trick for FP16 support of batchnorms
net_teacher.train()
for module in net_teacher.modules():
if isinstance(module, nn.BatchNorm2d):
module.eval().half()
cudnn.benchmark = True
batch_idx = 0
prefix = "runs/data_generation/"+args.exp_descr+"/"
for create_folder in [prefix, prefix+"/best_images/"]:
if not os.path.exists(create_folder):
os.makedirs(create_folder)
if 0:
# loading
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=args.bs, shuffle=True, num_workers=6,
drop_last=True)
# Checking teacher accuracy
print("Checking teacher accuracy")
test()
train_writer = None # tensorboard writter
global_iteration = 0
print("Starting model inversion")
inputs = get_images(net=net_teacher, bs=args.bs, epochs=args.iters_mi, idx=batch_idx,
net_student=net_student, prefix=prefix, competitive_scale=args.cig_scale,
train_writer=train_writer, global_iteration=global_iteration, use_amp=args.amp,
optimizer=optimizer_di, inputs=inputs, bn_reg_scale=args.r_feature_weight,
var_scale=args.di_var_scale, random_labels=False, l2_coeff=args.di_l2_scale)