-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
fast-conformer_transducer_bpe.yaml
283 lines (245 loc) · 12.8 KB
/
fast-conformer_transducer_bpe.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# It contains the default values for training a Fast Conformer-Transducer ASR model, large size (~120M) with Transducer loss and sub-word encoding.
# You may find more info about FastConformer here: https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/models.html#fast-conformer
# We suggest to use trainer.precision=bf16 for GPUs which support it otherwise trainer.precision=16 is recommended.
# Using bf16 or 16 would make it possible to double the batch size and speedup training/inference. If fp16 is not stable and model diverges after some epochs, you may use fp32.
# Here are the suggested batch size per GPU for each precision and memory sizes:
# +-----------+------------+------------+
# | Precision | GPU Memory | Batch Size |
# +===========+============+============+
# | 32 | 16GB | 16 |
# | | 32GB | 32 |
# | | 80GB | 64 |
# +-----------+------------+------------+
# | fp16 or | 16GB | 32 |
# | bf16 | 32GB | 64 |
# | | 80GB | 128 |
# +-----------+------------+------------+
# Here are the recommended configs for different variants of FastConformer-Transducer-BPE, other parameters are the same as in this config file.
#
# +--------------+---------+---------+----------+----------------+--------------+--------------------------+-----------------+------------+
# | Model | d_model | n_heads | n_layers |conv_kernel_size| weight_decay | pred_hidden/joint_hidden | pred_rnn_layers | xscaling |
# +==============+=========+========+===========+================+==============+==========================+=================+============+
# | Small (14M) | 176 | 4 | 16 | 9 | 0.0 | 320 | 1 | True |
# +--------------+---------+--------+-----------+----------------+--------------+--------------------------+-----------------+------------+
# | Medium (32M) | 256 | 4 | 16 | 9 | 1e-3 | 640 | 1 | True |
# +--------------+---------+--------+-----------+----------------+--------------+--------------------------+-----------------+------------+
# | Large (120M) | 512 | 8 | 17 | 9 | 1e-3 | 640 | 1 | True |
# +--------------+---------+--------+-----------+----------------+--------------+--------------------------+-----------------+------------+
# | XLarge (616M)| 1024 | 8 | 24 | 9 | 1e-3 | 640 | 2 | True |
# +--------------+---------+--------+-----------+----------------+--------------+--------------------------+-----------------+------------+
# | XXLarge(1.2B)| 1024 | 8 | 42 | 5 | 1e-3 | 640 | 2 | False |
# +--------------------------------------------------------------+--------------+--------------------------+-----------------+------------+
# Note: They are based on the assumption of max_duration of 20. If you have longer or shorter max_duration, then batch sizes may need to get updated accordingly.
# Default learning parameters in this config are set for global batch size of 2K while you may use lower values.
# To increase the global batch size with limited number of GPUs, you may use higher accumulate_grad_batches.
# However accumulate_grad_batches is better to be avoided as long as the global batch size is large enough and training is stable.
name: "FastConformer-Transducer-BPE"
model:
sample_rate: 16000
compute_eval_loss: false # eval samples can be very long and exhaust memory. Disable computation of transducer loss during validation/testing with this flag.
log_prediction: true # enables logging sample predictions in the output during training
rnnt_reduction: 'mean_volume'
skip_nan_grad: false
model_defaults:
enc_hidden: ${model.encoder.d_model}
pred_hidden: 640
joint_hidden: 640
train_ds:
manifest_filepath: ???
sample_rate: ${model.sample_rate}
batch_size: 16 # you may increase batch_size if your memory allows
shuffle: true
num_workers: 8
pin_memory: true
max_duration: 16.7 # it is set for LibriSpeech, you may need to update it for your dataset
min_duration: 0.1
# tarred datasets
is_tarred: false
tarred_audio_filepaths: null
shuffle_n: 2048
# bucketing params
bucketing_strategy: "fully_randomized"
bucketing_batch_size: null
validation_ds:
manifest_filepath: ???
sample_rate: ${model.sample_rate}
batch_size: 16
shuffle: false
use_start_end_token: false
num_workers: 8
pin_memory: true
test_ds:
manifest_filepath: null
sample_rate: ${model.sample_rate}
batch_size: 16
shuffle: false
use_start_end_token: false
num_workers: 8
pin_memory: true
# You may find more detail on how to train a tokenizer at: /scripts/tokenizers/process_asr_text_tokenizer.py
tokenizer:
dir: ??? # path to directory which contains either tokenizer.model (bpe) or vocab.txt (for wpe)
type: bpe # Can be either bpe (SentencePiece tokenizer) or wpe (WordPiece tokenizer)
preprocessor:
_target_: nemo.collections.asr.modules.AudioToMelSpectrogramPreprocessor
sample_rate: ${model.sample_rate}
normalize: "per_feature"
window_size: 0.025
window_stride: 0.01
window: "hann"
features: 80
n_fft: 512
frame_splicing: 1
dither: 0.00001
pad_to: 0
spec_augment:
_target_: nemo.collections.asr.modules.SpectrogramAugmentation
freq_masks: 2 # set to zero to disable it
time_masks: 10 # set to zero to disable it
freq_width: 27
time_width: 0.05
encoder:
_target_: nemo.collections.asr.modules.ConformerEncoder
feat_in: ${model.preprocessor.features}
feat_out: -1 # you may set it if you need different output size other than the default d_model
n_layers: 17
d_model: 512
# Sub-sampling parameters
subsampling: dw_striding # vggnet, striding, stacking or stacking_norm, dw_striding
subsampling_factor: 8 # must be power of 2 for striding and vggnet
subsampling_conv_channels: 256 # set to -1 to make it equal to the d_model
causal_downsampling: false
# Reduction parameters: Can be used to add another subsampling layer at a given position.
# Having a 2x reduction will speedup the training and inference speech while keeping similar WER.
# Adding it at the end will give the best WER while adding it at the beginning will give the best speedup.
reduction: null # pooling, striding, or null
reduction_position: null # Encoder block index or -1 for subsampling at the end of encoder
reduction_factor: 1
# Feed forward module's params
ff_expansion_factor: 4
# Multi-headed Attention Module's params
self_attention_model: rel_pos # rel_pos or abs_pos
n_heads: 8 # may need to be lower for smaller d_models
# [left, right] specifies the number of steps to be seen from left and right of each step in self-attention
att_context_size: [-1, -1] # -1 means unlimited context
att_context_style: regular # regular or chunked_limited
xscaling: true # scales up the input embeddings by sqrt(d_model)
untie_biases: true # unties the biases of the TransformerXL layers
pos_emb_max_len: 5000
# Convolution module's params
conv_kernel_size: 9
conv_norm_type: 'batch_norm' # batch_norm or layer_norm or groupnormN (N specifies the number of groups)
# conv_context_size can be"causal" or a list of two integers while conv_context_size[0]+conv_context_size[1]+1==conv_kernel_size
# null means [(kernel_size-1)//2, (kernel_size-1)//2], and 'causal' means [(kernel_size-1), 0]
conv_context_size: null
### regularization
dropout: 0.1 # The dropout used in most of the Conformer Modules
dropout_pre_encoder: 0.1 # The dropout used before the encoder
dropout_emb: 0.0 # The dropout used for embeddings
dropout_att: 0.1 # The dropout for multi-headed attention modules
# set to non-zero to enable stochastic depth
stochastic_depth_drop_prob: 0.0
stochastic_depth_mode: linear # linear or uniform
stochastic_depth_start_layer: 1
decoder:
_target_: nemo.collections.asr.modules.RNNTDecoder
normalization_mode: null # Currently only null is supported for export.
random_state_sampling: false # Random state sampling: https://arxiv.org/pdf/1910.11455.pdf
blank_as_pad: true # This flag must be set in order to support exporting of RNNT models + efficient inference.
prednet:
pred_hidden: ${model.model_defaults.pred_hidden}
pred_rnn_layers: 1
t_max: null
dropout: 0.2
# if a large vocabulary size is desired, you may wish to use SampleRNNTJoint module
# _target_: nemo.collections.asr.modules.SampledRNNTJoint
# n_samples: 500 # Specifies the minimum number of tokens to sample from the vocabulary space, excluding
# the RNNT blank token. If a given value is larger than the entire vocabulary size, then the full
# vocabulary will be used
joint:
_target_: nemo.collections.asr.modules.RNNTJoint
log_softmax: null # 'null' would set it automatically according to CPU/GPU device
preserve_memory: false # dramatically slows down training, but might preserve some memory
# Fuses the computation of prediction net + joint net + loss + WER calculation
# to be run on sub-batches of size `fused_batch_size`.
# When this flag is set to true, consider the `batch_size` of *_ds to be just `encoder` batch size.
# `fused_batch_size` is the actual batch size of the prediction net, joint net and transducer loss.
# Using small values here will preserve a lot of memory during training, but will make training slower as well.
# An optimal ratio of fused_batch_size : *_ds.batch_size is 1:1.
# However, to preserve memory, this ratio can be 1:8 or even 1:16.
# Extreme case of 1:B (i.e. fused_batch_size=1) should be avoided as training speed would be very slow.
fuse_loss_wer: true
fused_batch_size: 4
jointnet:
joint_hidden: ${model.model_defaults.joint_hidden}
activation: "relu"
dropout: 0.2
decoding:
strategy: "greedy_batch" # can be greedy, greedy_batch, beam, tsd, alsd.
# greedy strategy config
greedy:
max_symbols: 10
# beam strategy config
beam:
beam_size: 2
return_best_hypothesis: False
score_norm: true
tsd_max_sym_exp: 50 # for Time Synchronous Decoding
alsd_max_target_len: 2.0 # for Alignment-Length Synchronous Decoding
loss:
loss_name: "default"
warprnnt_numba_kwargs:
# FastEmit regularization: https://arxiv.org/abs/2010.11148
# You may enable FastEmit to reduce the latency of the model for streaming
fastemit_lambda: 0.0 # Recommended values to be in range [1e-4, 1e-2], 0.001 is a good start.
clamp: -1.0 # if > 0, applies gradient clamping in range [-clamp, clamp] for the joint tensor only.
optim:
name: adamw
lr: 5e-3
# optimizer arguments
betas: [0.9, 0.98]
weight_decay: 1e-3
# scheduler setup
sched:
name: CosineAnnealing
# scheduler config override
warmup_steps: 15000
warmup_ratio: null
min_lr: 5e-4
trainer:
devices: -1 # number of GPUs, -1 would use all available GPUs
num_nodes: 1
max_epochs: 500
max_steps: -1 # computed at runtime if not set
val_check_interval: 1.0 # Set to 0.25 to check 4 times per epoch, or an int for number of iterations
accelerator: auto
strategy: ddp
accumulate_grad_batches: 1
gradient_clip_val: 0.0
precision: 32 # 16, 32, or bf16
log_every_n_steps: 10 # Interval of logging.
enable_progress_bar: True
num_sanity_val_steps: 0 # number of steps to perform validation steps for sanity check the validation process before starting the training, setting to 0 disables it
check_val_every_n_epoch: 1 # number of evaluations on validation every n epochs
sync_batchnorm: true
enable_checkpointing: False # Provided by exp_manager
logger: false # Provided by exp_manager
benchmark: false # needs to be false for models with variable-length speech input as it slows down training
exp_manager:
exp_dir: null
name: ${name}
create_tensorboard_logger: true
create_checkpoint_callback: true
checkpoint_callback_params:
# in case of multiple validation sets, first one is used
monitor: "val_wer"
mode: "min"
save_top_k: 5
always_save_nemo: True # saves the checkpoints as nemo files instead of PTL checkpoints
resume_from_checkpoint: null # The path to a checkpoint file to continue the training, restores the whole state including the epoch, step, LR schedulers, apex, etc.
resume_if_exists: false
resume_ignore_no_checkpoint: false
create_wandb_logger: false
wandb_logger_kwargs:
name: null
project: null