forked from speechlab-ntu/cnn_for_sentiment_analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
113 lines (87 loc) · 2.79 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import time
import uuid
import numpy as np
from nltk.tokenize import word_tokenize
import re
def _pad_sequences(sequences, pad_tok, max_length):
"""
Args:
sequences: a generator of list or tuple
pad_tok: the char to pad with
Returns:
a list of list where each sublist has same length
"""
sequence_padded, sequence_length = [], []
for seq in sequences:
seq = list(seq)
seq_ = seq[:max_length] + [pad_tok] * max(max_length - len(seq), 0)
sequence_padded += [seq_]
sequence_length += [min(len(seq), max_length)]
return sequence_padded, sequence_length
def pad_sequences(sequences, pad_tok, max_sent_length):
"""
Args:
sequences: a generator of list or tuple
pad_tok: the char to pad with
max_sent_length:
Returns:
a list of list where each sublist has same length
"""
max_length = max(map(lambda x: len(x), sequences))
max_length = max_length if max_length < max_sent_length else max_sent_length
sequence_padded, sequence_length = _pad_sequences(sequences, pad_tok, max_length)
return sequence_padded, sequence_length
def parse_raw_data(s):
s = re.sub(r'[^\w.,?!\'; ]', '', s)
s = re.sub(r'([.,?!;])(\w)', r'\1 \2', s)
s = re.sub(r'\s+', ' ', s)
return word_tokenize(s)
def get_trimmed_w2v_vectors(filename):
"""
Args:
filename: path to the npz file
Returns:
matrix of embeddings (np array)
"""
with np.load(filename) as data:
return data["embeddings"]
def load_vocab(filename):
"""
Args:
filename: file with a word per line
Returns:
d: dict[word] = index
"""
d = dict()
with open(filename) as f:
for idx, word in enumerate(f):
word = word.strip()
d[word] = idx + 1 # preserve idx 0 for pad_tok
return d
class Timer:
def __init__(self):
self.job_info = {}
self.running_jobs = []
def start(self, job):
if job is None:
return None
job_id = str(uuid.uuid4())
self.job_info[job_id] = (job, time.time())
print("[INFO] {job} started.".format(job=job))
self.running_jobs.append(job_id)
return job_id
def stop(self, job_id=None):
if job_id is None and len(self.running_jobs) != 0:
job_id = self.running_jobs[-1]
if job_id is None or job_id not in self.job_info:
return None
name, start = self.job_info.pop(job_id)
elapsed_time = time.time() - start
print("[INFO] {job} finished in {elapsed_time:0.3f}s.".format(job=name, elapsed_time=elapsed_time))
self.running_jobs.remove(job_id)
class Log:
verbose = True
@staticmethod
def log(text):
if Log.verbose:
print(text)