-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_unet.py
212 lines (176 loc) · 6.3 KB
/
train_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
'''
Description: This script is to train UNet model.
8/23/2024, Linlin Cui (linlin.cui@noaa.gov)
'''
import os
from datetime import datetime, timedelta
import time
from tqdm import tqdm
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader, SubsetRandomSampler
from models.SmaAt_UNet import SmaAt_UNet
from utils.dataset import NetCDFDataset
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group["lr"]
def get_random_subset_dataloader(dataset, subset_fraction=0.9, batch_size=8, seed=42):
torch.manual_seed(seed)
num_samples = len(dataset)
indices = torch.randperm(num_samples)
subset_size = int(num_samples * subset_fraction)
train_indices = indices[:subset_size]
sampler = SubsetRandomSampler(train_indices)
train_dl = DataLoader(
dataset,
batch_size=batch_size,
sampler=sampler,
num_workers=0,
pin_memory=True,
)
valid_indices = indices[subset_size:]
sampler = SubsetRandomSampler(valid_indices)
valid_dl = DataLoader(
dataset,
batch_size=batch_size,
sampler=sampler,
num_workers=0,
pin_memory=True,
)
return train_dl, valid_dl
def trainer(
epochs,
batch_size,
seed,
train_percent,
model,
loss_func,
opt,
dataset,
device,
save_every,
tensorboard: bool = False,
earlystopping=None,
lr_scheduler=None,
):
writer =None
if tensorboard:
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(comment=f"{model.__class__.__name__}")
start_time = time.time()
best_valid_loss = 1.e6
earlystopping_counter = 0
for epoch in tqdm(range(epochs), desc='Epochs', leave=True):
train_dl, valid_dl = get_random_subset_dataloader(dataset, train_percent, batch_size, seed)
model.train()
train_loss = 0.0
for i, (xb, yb) in enumerate(tqdm(train_dl, desc='Batches', leave=False)):
loss = loss_func(model(xb.to(device)), yb.to(device))
opt.zero_grad()
loss.backward()
opt.step()
train_loss += loss.item()
train_loss /= len(train_dl)
#Cal validation loss
val_loss = 0.0
model.eval()
with torch.no_grad():
for xb, yb in tqdm(valid_dl, desc='validation', leave=False):
y_pred = model(xb.to(device))
loss = loss_func(y_pred, yb.to(device))
val_loss += loss.item()
#pred_class = torch.argmax(nn.functional.softmax(y_pred, dim=1), dim=1)
#iou_metric.add(pred_class, target=yb)
#iou_class, mean_iou = iou_metric.value()
val_loss /= len(valid_dl)
# Save the model with the best mean IOU
if val_loss < best_valid_loss:
os.makedirs("checkpoints", exist_ok=True)
torch.save(
{
'model': model,
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer_state_dict': opt.state_dict(),
'val_loss': val_loss,
'train_loss': train_loss,
},
f"checkpoints/best_model_{model.__class__.__name__}.pt",
)
best_valid_loss = val_loss
earlystopping_counter = 0
else:
if earlystopping is not None:
earlystopping_counter += 1
if earlystopping_counter >= earlystopping:
print(f"Stopping early --> valid_loss has not decreased over {earlystopping} epochs")
break
print(
f"Epoch: {epoch:5d}, Time: {(time.time() - start_time) / 60:.3f} min,"
f"Train_loss: {train_loss:2.10f}, Val_loss: {val_loss:2.10f},",
f"lr: {get_lr(opt)},",
f"Early stopping counter: {earlystopping_counter}/{earlystopping}" if earlystopping is not None else "",
)
if writer:
# add to tensorboard
writer.add_scalar("Loss/train", train_loss, epoch)
writer.add_scalar("Loss/val", val_loss, epoch)
writer.add_scalar("Parameters/learning_rate", get_lr(opt), epoch)
if save_every is not None:
if epoch % save_every == 0:
# save model
torch.save(
{
"model": model,
"epoch": epoch,
"state_dict": model.state_dict(),
"optimizer_state_dict": opt.state_dict(),
# 'scheduler_state_dict': scheduler.state_dict(),
"val_loss": val_loss,
"train_loss": train_loss,
},
f"checkpoints/model_{model.__class__.__name__}_epoch_{epoch}.pt",
)
if lr_scheduler is not None:
lr_scheduler.step(val_loss)
if __name__ == "__main__":
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
learning_rate = 0.001
epochs = 50
earlystopping = 30
save_every = 1
batch_size = 32
train_percent = 0.9
seed = 42
startdate = datetime(2021, 3, 23)
enddate = datetime(2024, , 1)
#print(startdate)
#print(enddate)
data_dir = '/scratch1/NCEPDEV/nems/Linlin.Cui/Tests/ML4BC/run27/data'
bbox = [230, 300, 25, 50]
dataset = NetCDFDataset(data_dir, startdate, enddate, bbox)
model = SmaAt_UNet(n_channels=1, n_classes=1)
if torch.cuda.device_count() > 1:
nn.DataParallel(model).to(device)
else:
model.to(device)
opt = optim.Adam(model.parameters(), lr=learning_rate)
loss_fn = nn.MSELoss().to(device)
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(opt, mode="max", factor=0.1, patience=4)
trainer(
epochs = epochs,
batch_size = batch_size,
seed = seed,
train_percent = train_percent,
model = model,
loss_func = loss_fn,
opt = opt,
dataset = dataset,
device = device,
save_every = save_every,
tensorboard = False,
earlystopping = earlystopping,
lr_scheduler = lr_scheduler,
)