forked from mysbupt/FashionKE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
319 lines (257 loc) · 15.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import datetime
import torch
torch.manual_seed(0)
from torch.autograd import Variable
from torch.optim import lr_scheduler
import sys
sys.path.insert(0, "./models")
from FashionKE import *
from utility import *
import json
import yaml
import numpy as np
np.random.seed(0)
import random
random.seed(0)
torch.cuda.manual_seed_all(0)
import pickle as pkl
from copy import deepcopy
from tensorboard_logger import configure, log_value
from scipy.spatial.distance import pdist, cdist, squareform
torch.multiprocessing.set_sharing_strategy('file_system')
def train_fashion_recognition(conf):
dataset = FashionData(conf)
train_dataloader = dataset.train_dataloader
if conf["noise_cancel_method"] == "forward":
train_dataloader = dataset.train_dataloader_clean_noise
conf["num_occasion"] = 10
conf["num_cat"] = len(dataset.cat_code)
conf["num_attr"] = len(dataset.attr_code)
conf["num_country"] = len(dataset.country_code) + 1
conf["attr_class_num"] = [0] * conf["num_attr"]
conf["device"] = torch.device("cuda" if torch.cuda.is_available() else "cpu")
for attr, code in dataset.attr_code.items():
conf["attr_class_num"][code] = len(dataset.attr_val_code[attr])
if not os.path.isdir(conf["checkpoint"]):
os.mkdir(conf["checkpoint"])
if not os.path.isdir(conf["model_save_path"]):
os.mkdir(conf["model_save_path"])
model = OccCatAttrClassifier(conf, dataset.word_embedding, dataset.meta_embed, dataset.cat_noise_estimate, dataset.attr_noise_estimate_list)
model.to(device=conf["device"])
start_time = datetime.datetime.now().strftime("%Y-%m-%d_%H_%M_%S")
log_file_name = "Loss_%s__NCM_%s__LR_%.2f__LDI_%d__NR_%.2f__Beta_%.2f__Ctx_%s__Text_%d__%s__%s" %(conf["loss"], conf["noise_cancel_method"], conf["lr"], conf["lr_decay_interval"], conf["noise_ratio"], conf["noise_loss_beta"], conf["context"], conf["text"], conf["info"], start_time)
configure(os.path.join(conf["checkpoint"], log_file_name), flush_secs=5)
# init optimizer
lr = conf["lr"]
weight_decay = conf["weight_decay"]
params = [
{'params': model.imageCNN.parameters(), 'lr': 0.5*lr},
{'params': model.catW.parameters(), 'lr': lr},
{'params': model.occW.parameters(), 'lr': lr},
{'params': model.attrWs.parameters(), 'lr': lr},
{'params': model.attrW1s.parameters(), 'lr': lr},
{'params': model.occ_classifier.parameters(), 'lr': lr},
{'params': model.cat_classifier.parameters(), 'lr': lr},
{'params': model.attr_classifiers.parameters(), 'lr': lr},
{'params': model.convs1.parameters(), 'lr': lr},
{'params': model.textW.parameters(), 'lr': lr},
{'params': model.attr_context_rnn.parameters(), 'lr': lr},
{'params': model.visual_context_rnn.parameters(), 'lr': lr},
{'params': model.attr_noise_transitions.parameters(), 'lr': 0.001 * lr},
{'params': model.cat_noise_transition.parameters(), 'lr': 0.001 * lr}
]
optimizer = torch.optim.SGD(params, lr=lr, momentum=conf["momentum"])
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=int(conf["lr_decay_interval"]*len(train_dataloader)), gamma=conf["lr_decay_gamma"])
best_occ_acc = 0.0
best_cat_acc = 0.0
best_attr_val_acc = 0.0
loss_print, occ_loss_print, attr_ttl_loss_print, cat_loss_print = [[] for i in range(4)]
attr_loss_print = [[] for i in range(len(dataset.attr_code))]
for epoch in range(conf["num_epoches"]):
for batch_cnt, batch in enumerate(train_dataloader):
step = int(batch_cnt + epoch*len(train_dataloader) + 1)
model.to(device=conf["device"])
model.train(True)
exp_lr_scheduler.step() #adjust learning rate
optimizer.zero_grad()
if conf["noise_cancel_method"] == "forward":
# [batch_cnt, 2, 3, 224, 224]
whole_img = Variable(torch.cat([batch[0][:, 0, :, :, :], batch[0][:, 1, :, :, :]], dim=0)).to(device=conf["device"])
# [batch_cnt, 2, max_num_cloth, 3, 224, 224]
imgs = Variable(torch.cat([batch[1][:, 0, :, :, :, :], batch[1][:, 1, :, :, :, :]], dim=0)).to(device=conf["device"])
# [batch_cnt, 2]
occ, season, country = [Variable(torch.cat([each[:, 0], each[:, 1]], dim=0).squeeze(-1)).to(device=conf["device"]) for each in [batch[2], batch[8], batch[11]]]
# [batch_cnt, 2, max_num_cloth, attr_num]
attr_val, attr_val_masks = [Variable(torch.cat([each[:, 0, :, :], each[:, 1, :, :]], dim=0)).to(device=conf["device"]) for each in [batch[3], batch[5]]]
# [batch_cnt, 2, max_num_cloth]
cats, cat_masks, age, gender = [Variable(torch.cat([each[:, 0, :], each[:, 1, :]], dim=0)).to(device=conf["device"]) for each in [batch[4], batch[6], batch[9], batch[10]]]
# [batch_cnt, 2, sent_len(16)]
text = Variable(torch.cat([batch[12][:, 0, :], batch[12][:, 1, :]], dim=0)).to(device=conf["device"])
else:
whole_img = Variable(batch[0]).to(device=conf["device"])
imgs = Variable(batch[1]).to(device=conf["device"])
occ, season, country = [Variable(each.squeeze(-1)).to(device=conf["device"]) for each in [batch[2], batch[8], batch[11]]]
attr_val, attr_val_masks = [Variable(each).to(device=conf["device"]) for each in [batch[3], batch[5]]]
cats, cat_masks, age, gender = [Variable(each).to(device=conf["device"]) for each in [batch[4], batch[6], batch[9], batch[10]]]
text = Variable(batch[12]).to(device=conf["device"])
occ_loss, cat_losses, attr_losses = model(whole_img, imgs, occ, attr_val, cats, season, age, gender, country, text)
occ_loss /= conf["batch_size"]
if conf["noise_cancel_method"] == "forward":
ori_cat_losses, modified_cat_losses = cat_losses
ori_attr_losses, modified_attr_losses = attr_losses
clean_noise_cat_loss = ori_cat_losses * cat_masks
clean_cat_loss = torch.sum(clean_noise_cat_loss[:conf["batch_size_clean"], :]) / torch.sum(cat_masks[:conf["batch_size_clean"], :])
modified_cat_losses = modified_cat_losses * cat_masks
modified_cat_loss = torch.sum(modified_cat_losses[conf["batch_size_clean"]:, :]) / torch.sum(cat_masks[conf["batch_size_clean"]:, :])
cat_loss = clean_cat_loss + conf["noise_loss_beta"] * modified_cat_loss
# attr_losses, attr_val_masks: [batch, num_cloth, num_attrs] [20, 5, 10]
per_attr_losses = []
ori_attr_losses = ori_attr_losses * attr_val_masks
modified_attr_losses = modified_attr_losses * attr_val_masks
num_valid_attr = 0
for attr, code in sorted(dataset.attr_code.items(), key=lambda i: i[1]):
denorm = torch.sum(attr_val_masks[:conf["batch_size_clean"], :, code])
if denorm == 0:
clean_per_attr_loss = torch.sum(ori_attr_losses[:conf["batch_size_clean"], :, code])
else:
clean_per_attr_loss = torch.sum(ori_attr_losses[:conf["batch_size_clean"], :, code]) / denorm
denorm = torch.sum(attr_val_masks[conf["batch_size_clean"]:, :, code])
if denorm == 0:
modified_attr_loss = torch.sum(modified_attr_losses[conf["batch_size_clean"]:, :, code])
else:
modified_attr_loss = torch.sum(modified_attr_losses[conf["batch_size_clean"]:, :, code]) / denorm
num_valid_attr += 1
per_attr_loss = clean_per_attr_loss + conf["noise_loss_beta"] * modified_attr_loss
per_attr_losses.append(per_attr_loss)
attr_ttl_loss = torch.sum(torch.stack(per_attr_losses, dim=0)) / num_valid_attr
if conf["loss"] == "cat":
loss = cat_loss
if conf["loss"] == "attr":
loss = attr_ttl_loss
if conf["loss"] == "all":
loss = torch.sum(torch.stack([occ_loss, cat_loss] + per_attr_losses, dim=0)) / (num_valid_attr + 2)
else:
cat_loss = torch.sum(cat_losses * cat_masks)
cat_loss = cat_loss / torch.sum(cat_masks)
per_attr_losses = []
attr_losses = attr_losses * attr_val_masks
num_valid_attr = 0
for attr, code in sorted(dataset.attr_code.items(), key=lambda i: i[1]):
denorm = torch.sum(attr_val_masks[:, :, code])
if denorm == 0:
per_attr_losses.append(torch.sum(attr_losses[:, :, code]))
else:
num_valid_attr += 1
per_attr_losses.append(torch.sum(attr_losses[:, :, code]) / denorm)
attr_ttl_loss = torch.sum(torch.stack(per_attr_losses, dim=0)) / num_valid_attr
if conf["loss"] == "cat":
loss = cat_loss
if conf["loss"] == "attr":
loss = attr_ttl_loss
if conf["loss"] == "all":
loss = torch.sum(torch.stack([occ_loss, cat_loss] + per_attr_losses, dim=0)) / (num_valid_attr + 2)
log_value("occ_loss", occ_loss.item(), step)
log_value("cat_loss", cat_loss.item(), step)
log_value("loss", loss.item(), step)
occ_loss_print.append(occ_loss.item())
loss_print.append(loss.item())
log_value("attr_ttl_loss", attr_ttl_loss.item(), step)
for attr, code in sorted(dataset.attr_code.items(), key=lambda i: i[1]):
log_value("%s_loss" %(attr), per_attr_losses[code], step)
attr_ttl_loss_print.append(attr_ttl_loss.item())
for i, each_attr_loss in enumerate(per_attr_losses):
attr_loss_print[i].append(each_attr_loss)
cat_loss_print.append(cat_loss.item())
if (batch_cnt+1) % 10 == 0:
each_attr_loss = []
for attr, code in sorted(dataset.attr_code.items(), key=lambda i: i[1]):
each_attr_loss.append("%s:%f.4" %(attr, mean(attr_loss_print[code])))
print("epoch/batch/total:%d/%d/%d,loss:%f.4,cat_loss:%f.4,occ_loss:%f.4,attr_loss:%f.4" %(epoch, batch_cnt, len(train_dataloader), mean(loss_print), mean(cat_loss_print), mean(occ_loss_print), mean(attr_ttl_loss_print)))
loss_print, occ_loss_print, attr_ttl_loss_print, cat_loss_print = [[] for i in range(4)]
attr_loss_print = [[] for i in range(len(dataset.attr_code))]
loss.backward()
optimizer.step()
if (batch_cnt+1) % int(conf["test_interval"]*len(train_dataloader)) == 0:
#import ipdb
#ipdb.set_trace()
print("\n\nstart to test, context: %s, loss: %s" %(conf["context"], conf["loss"]))
model.eval()
occ_acc, cat_acc, attr_val_acc = test_fashion_recognition(model, dataset, conf)
attr_val_ttl_acc = sum(attr_val_acc)/len(attr_val_acc)
log_value("occ_acc", occ_acc, step)
log_value("cat_acc", cat_acc, step)
log_value("attr_val_acc", attr_val_ttl_acc, step)
each_attr_acc = []
for attr, code in sorted(dataset.attr_code.items(), key=lambda i: i[1]):
log_value("%s_acc" %(attr), attr_val_acc[code], step)
each_attr_acc.append("%s:%f" %(attr, attr_val_acc[code]))
print("occ_acc:%f,cat_acc:%f,attr_val_tll_acc:%f" %(occ_acc, cat_acc, attr_val_ttl_acc))
if occ_acc > best_occ_acc and cat_acc > best_cat_acc and attr_val_ttl_acc > best_attr_val_acc:
best_occ_acc = occ_acc
best_cat_acc = cat_acc
best_attr_val_acc = attr_val_ttl_acc
print("achieve best performance, save model.")
print("best_occ: %f, best_cat: %f, best_attr: %f" %(best_occ_acc, best_cat_acc, best_attr_val_acc))
model_save_path = os.path.join(conf["model_save_path"], log_file_name)
torch.save(model.state_dict(), model_save_path)
def mean(num_list):
return sum(num_list) / float(len(num_list))
def test_fashion_recognition(model, dataset, conf):
occ, attr_val, cat, attr_val_mask, cat_mask = [], [], [], [], []
occ_res, attr_val_res, cat_res = [], [], []
for batch_cnt, batch in enumerate(dataset.test_dataloader):
#model.to(device=conf["device"])
whole_img = batch[0].to(device=conf["device"])
imgs = batch[1].to(device=conf["device"])
occs, attr_vals, cats, attr_val_masks, cat_masks, _ = batch[2:8]
season, age, gender, country, text = [each.to(device=conf["device"]) for each in batch[8:13]]
occ.append(occs)
attr_val.append(attr_vals)
cat.append(cats)
attr_val_mask.append(attr_val_masks)
cat_mask.append(cat_masks)
occ_reses, cat_reses, attr_val_reses = model.predict(whole_img, imgs, season, age, gender, country, text)
occ_res.append(occ_reses.data.cpu())
cat_res.append(cat_reses.data.cpu())
# x: [batch, num_cloth, num_vals_for_each_attr]
tmp_attr_val = torch.stack([torch.argmax(x, dim=-1) for x in attr_val_reses], dim=0) #[num_attr, batch, num_cloth]
x = tmp_attr_val.shape
tmp_attr_val = tmp_attr_val.permute(1, 2, 0) #[batch, num_cloth, num_attr]
attr_val_res.append(tmp_attr_val.data.cpu())
#import ipdb
#ipdb.set_trace()
occ_res = np.argmax(torch.cat(occ_res, dim=0).numpy(), axis=-1) # [test_size]
cat_res = np.argmax(torch.cat(cat_res, dim=0).numpy(), axis=-1) # [test_size, num_cloth]
occ = torch.cat(occ, dim=0).numpy() # [test_size]
cat = torch.cat(cat, dim=0).numpy() # [test_size, num_cloth]
cat_mask = torch.cat(cat_mask, dim=0).numpy() # [test_size, num_cloth]
occ_acc = np.sum(np.equal(occ, occ_res)) / occ.shape[0]
cat_acc = np.sum(np.equal(cat, cat_res) * cat_mask) / np.sum(cat_mask)
attr_acc = []
cat_res_index = cat_res.astype(np.int)
tmp_attr_val_res = torch.cat(attr_val_res, dim=0).numpy() # [test_size, num_cloth, num_attr]
tmp_attr_val = torch.cat(attr_val, dim=0).numpy() # [test_size, num_cloth, num_attr]
tmp_attr_val_mask = torch.cat(attr_val_mask, dim=0).numpy() # [test_size, num_cloth, num_attr]
np.save(conf["result_path"] + "/attr_val_res", tmp_attr_val_res)
np.save(conf["result_path"] + "/occ_res", occ_res)
np.save(conf["result_path"] + "/cat_res", cat_res)
np.save(conf["result_path"] + "/cat_mask", cat_mask)
for attr, code in sorted(dataset.attr_code.items(), key=lambda i: i[1]):
if conf["loss"] in ["cat_attr", "all"]:
#import ipdb
#ipdb.set_trace()
# cat_res shape: [test_size, num_cloth]
# dataset.cat_attr_mask shape: [num_cat, num_attr]
# tmp_cat_attr_mask shape: [test_size, num_cloth]
tmp_cat_attr_mask = dataset.cat_attr_mask[cat_res_index, code * np.ones(cat_res_index.shape, dtype=np.int)]
each_attr_acc = np.sum(np.equal(tmp_attr_val[:, :, code], tmp_attr_val_res[:, :, code]) * tmp_attr_val_mask[:, :, code] * tmp_cat_attr_mask) / np.sum(tmp_attr_val_mask[:, :, code])
else:
each_attr_acc = np.sum(np.equal(tmp_attr_val[:, :, code], tmp_attr_val_res[:, :, code]) * tmp_attr_val_mask[:, :, code]) / np.sum(tmp_attr_val_mask[:, :, code])
attr_acc.append(each_attr_acc)
return occ_acc, cat_acc, attr_acc
def main():
conf = yaml.load(open("./config.yaml"))
assert conf["noise_ratio"] in [0.0, 0.1, 0.3, 0.5, 0.7]
train_fashion_recognition(conf)
if __name__ == "__main__":
main()