diff --git a/physics/GFS_GWD_generic.F90 b/physics/GFS_GWD_generic.F90 index 09c969162..f418909c6 100644 --- a/physics/GFS_GWD_generic.F90 +++ b/physics/GFS_GWD_generic.F90 @@ -1,4 +1,4 @@ -!> \file GFS_GWD_generic.f +!> \file GFS_GWD_generic.F90 !! This file contains the CCPP-compliant orographic gravity wave !! drag pre interstitial codes. diff --git a/physics/GFS_MP_generic.F90 b/physics/GFS_MP_generic.F90 index 3786fa123..4f8ec58f8 100644 --- a/physics/GFS_MP_generic.F90 +++ b/physics/GFS_MP_generic.F90 @@ -71,6 +71,7 @@ end subroutine GFS_MP_generic_pre_finalize end module GFS_MP_generic_pre +!>\defgroup gfs_calpreciptype GFS Precipitation Type Diagnostics Module !> This module contains the subroutine that calculates !! precipitation type and its post, which provides precipitation forcing !! to LSM. @@ -82,8 +83,7 @@ module GFS_MP_generic_post subroutine GFS_MP_generic_post_init end subroutine GFS_MP_generic_post_init -!>\defgroup gfs_calpreciptype GFS Precipitation Type Diagnostics Module -!! \brief If dominant precip type is requested (i.e., Zhao-Carr MP scheme), 4 more algorithms in calpreciptype() +!> \brief If dominant precip type is requested (i.e., Zhao-Carr MP scheme), 4 more algorithms in calpreciptype() !! will be called. the tallies are then summed in calwxt_dominant(). For GFDL cloud MP scheme, determine convective !! rain/snow by surface temperature; and determine explicit rain/snow by rain/snow coming out directly from MP. !! diff --git a/physics/GFS_rad_time_vary.fv3.F90 b/physics/GFS_rad_time_vary.fv3.F90 index 9a4583dc4..f67cb83c3 100644 --- a/physics/GFS_rad_time_vary.fv3.F90 +++ b/physics/GFS_rad_time_vary.fv3.F90 @@ -1,5 +1,7 @@ -!>\file GFS_rad_time_vary.F90 +!>\file GFS_rad_time_vary.fv3.F90 !! Contains code related to GFS physics suite setup (radiation part of time_vary_step) + +!>\defgroup gfs_rad_time_vary_mod GFS Radiation Time Update Module module GFS_rad_time_vary implicit none @@ -10,13 +12,11 @@ module GFS_rad_time_vary contains -!! \section arg_table_GFS_rad_time_vary_init Argument Table +!> \section arg_table_GFS_rad_time_vary_init Argument Table !! subroutine GFS_rad_time_vary_init end subroutine GFS_rad_time_vary_init -!>\defgroup mod_GFS_rad_time_vary GFS Radiation Time Update -!> @{ !> \section arg_table_GFS_rad_time_vary_run Argument Table !! \htmlinclude GFS_rad_time_vary_run.html !! @@ -98,7 +98,6 @@ subroutine GFS_rad_time_vary_run (Model, Data, nthrds, errmsg, errflg) endif end subroutine GFS_rad_time_vary_run -!> @} !> \section arg_table_GFS_rad_time_vary_finalize Argument Table !! diff --git a/physics/GFS_rrtmg_post.F90 b/physics/GFS_rrtmg_post.F90 index 7f80ca4c3..79d2bd93d 100644 --- a/physics/GFS_rrtmg_post.F90 +++ b/physics/GFS_rrtmg_post.F90 @@ -1,10 +1,10 @@ !>\file GFS_rrtmg_post.f90 !! This file contains + +!>\defgroup GFS_rrtmg_post_mod GFS RRTMG Scheme Post module GFS_rrtmg_post contains -!>\defgroup GFS_rrtmg_post GFS RRTMG Scheme Post -!! @{ !> \section arg_table_GFS_rrtmg_post_init Argument Table !! subroutine GFS_rrtmg_post_init () @@ -203,5 +203,4 @@ end subroutine GFS_rrtmg_post_run subroutine GFS_rrtmg_post_finalize () end subroutine GFS_rrtmg_post_finalize -!! @} end module GFS_rrtmg_post diff --git a/physics/GFS_rrtmg_pre.F90 b/physics/GFS_rrtmg_pre.F90 index e15a6ea66..d5c13f987 100644 --- a/physics/GFS_rrtmg_pre.F90 +++ b/physics/GFS_rrtmg_pre.F90 @@ -1,14 +1,14 @@ !> \file GFS_rrtmg_pre.f90 !! This file contains + +!> \defgroup GFS_rrtmg_pre_mod GFS RRTMG Scheme Pre module GFS_rrtmg_pre public GFS_rrtmg_pre_run contains -!> \defgroup GFS_rrtmg_pre GFS RRTMG Scheme Pre -!! @{ -!! \section arg_table_GFS_rrtmg_pre_init Argument Table +!> \section arg_table_GFS_rrtmg_pre_init Argument Table !! subroutine GFS_rrtmg_pre_init () end subroutine GFS_rrtmg_pre_init @@ -941,5 +941,4 @@ end subroutine GFS_rrtmg_pre_run subroutine GFS_rrtmg_pre_finalize () end subroutine GFS_rrtmg_pre_finalize -!! @} end module GFS_rrtmg_pre diff --git a/physics/GFS_rrtmg_setup.F90 b/physics/GFS_rrtmg_setup.F90 index b3c91cacc..9c615e387 100644 --- a/physics/GFS_rrtmg_setup.F90 +++ b/physics/GFS_rrtmg_setup.F90 @@ -1,5 +1,7 @@ !> \file GFS_rrtmg_setup.f90 !! This file contains + +!> \defgroup GFS_rrtmg_setup_mod GFS RRTMG Scheme Setup module GFS_rrtmg_setup use physparam, only : isolar , ictmflg, ico2flg, ioznflg, iaerflg,& @@ -38,9 +40,7 @@ module GFS_rrtmg_setup contains -!> \defgroup GFS_rrtmg_setup GFS RRTMG Scheme Setup -!! @{ -!! \section arg_table_GFS_rrtmg_setup_init Argument Table +!> \section arg_table_GFS_rrtmg_setup_init Argument Table !! \htmlinclude GFS_rrtmg_setup_init.html !! subroutine GFS_rrtmg_setup_init ( & @@ -818,5 +818,4 @@ subroutine radupdate( idate,jdate,deltsw,deltim,lsswr, me, & end subroutine radupdate !----------------------------------- -!! @} end module GFS_rrtmg_setup diff --git a/physics/GFS_stochastics.F90 b/physics/GFS_stochastics.F90 index 11292fb21..f1d899355 100644 --- a/physics/GFS_stochastics.F90 +++ b/physics/GFS_stochastics.F90 @@ -1,6 +1,8 @@ !> \file GFS_stochastics.f90 !! This file contains code previously in GFS_stochastics_driver. +!>\defgroup gfs_stoch GFS Stochastics Physics Module +!! This module module GFS_stochastics contains @@ -12,9 +14,6 @@ subroutine GFS_stochastics_finalize() end subroutine GFS_stochastics_finalize -!>\defgroup gfs_stoch GFS Stochastics Physics Module -!! This module -!> @{ !> \section arg_table_GFS_stochastics_run Argument Table !! \htmlinclude GFS_stochastics_run.html !! @@ -250,4 +249,3 @@ subroutine GFS_stochastics_run (im, km, kdt, do_sppt, use_zmtnblck, do_shum, end subroutine GFS_stochastics_run end module GFS_stochastics -!> @} diff --git a/physics/GFS_surface_generic.F90 b/physics/GFS_surface_generic.F90 index 23ba7fa8c..272d8dc6d 100644 --- a/physics/GFS_surface_generic.F90 +++ b/physics/GFS_surface_generic.F90 @@ -1,6 +1,7 @@ !> \file GFS_surface_generic.F90 !! Contains code related to all GFS surface schemes. +!>\defgroup mod_GFS_surface_generic_pre GFS Surface Generic Pre module module GFS_surface_generic_pre use machine, only: kind_phys diff --git a/physics/GFS_time_vary_pre.fv3.F90 b/physics/GFS_time_vary_pre.fv3.F90 index dc9332bb9..6bb2c3ded 100644 --- a/physics/GFS_time_vary_pre.fv3.F90 +++ b/physics/GFS_time_vary_pre.fv3.F90 @@ -1,6 +1,7 @@ -!> \file GFS_time_vary_pre.F90 +!> \file GFS_time_vary_pre.fv3.F90 !! Contains code related to GFS physics suite setup (generic part of time_vary_step) +!>\defgroup gfs_time_vary_pre_mod GFS Time Vary Pre Module module GFS_time_vary_pre use funcphys, only: gfuncphys diff --git a/physics/cires_ugwp.F90 b/physics/cires_ugwp.F90 index df0116cd0..6d33207fa 100644 --- a/physics/cires_ugwp.F90 +++ b/physics/cires_ugwp.F90 @@ -10,6 +10,7 @@ !! 3. GW Effects: Unified representation of GW impacts on the "resolved" flow for all sources (energy-balanced schemes for momentum, heat and mixing). !! https://www.weather.gov/media/sti/nggps/Presentations%202017/02%20NGGPS_VYUDIN_2017_.pdf +!>\defgroup cires_ugwp_run Unified Gravity Wave Physics General Algorithm module cires_ugwp use machine, only: kind_phys @@ -136,8 +137,6 @@ end subroutine cires_ugwp_finalize ! order = dry-adj=>conv=mp-aero=>radiation -sfc/land- chem -> vertdiff-> [rf-gws]=> ion-re ! ----------------------------------------------------------------------- !>@brief These subroutines and modules execute the CIRES UGWP Version 0 -!>\defgroup cires_ugwp_run Unified Gravity Wave Physics General Algorithm -!> @{ !! The physics of NGWs in the UGWP framework (Yudin et al. 2018 \cite yudin_et_al_2018) is represented by four GW-solvers, which is introduced in Lindzen (1981) \cite lindzen_1981, Hines (1997) \cite hines_1997, Alexander and Dunkerton (1999) \cite alexander_and_dunkerton_1999, and Scinocca (2003) \cite scinocca_2003. The major modification of these GW solvers is represented by the addition of the background dissipation of temperature and winds to the saturation criteria for wave breaking. This feature is important in the mesosphere and thermosphere for WAM applications and it considers appropriate scale-dependent dissipation of waves near the model top lid providing the momentum and energy conservation in the vertical column physics (Shaw and Shepherd 2009 \cite shaw_and_shepherd_2009). In the UGWP-v0, the modification of Scinocca (2003) \cite scinocca_2003 scheme for NGWs with non-hydrostatic and rotational effects for GW propagations and background dissipation is represented by the subroutine \ref fv3_ugwp_solv2_v0. In the next release of UGWP, additional GW-solvers will be implemented along with physics-based triggering of waves and stochastic approaches for selection of GW modes characterized by horizontal phase velocities, azimuthal directions and magnitude of the vertical momentum flux (VMF). !! !! In UGWP-v0, the specification for the VMF function is adopted from the GEOS-5 global atmosphere model of GMAO NASA/GSFC, as described in Molod et al. (2015) \cite molod_et_al_2015 and employed in the MERRRA-2 reanalysis (Gelaro et al., 2017 \cite gelaro_et_al_2017). The Fortran subroutine \ref slat_geos5_tamp describes the latitudinal shape of VMF-function as displayed in Figure 3 of Molod et al. (2015) \cite molod_et_al_2015. It shows that the enhanced values of VMF in the equatorial region gives opportunity to simulate the QBO-like oscillations in the equatorial zonal winds and lead to more realistic simulations of the equatorial dynamics in GEOS-5 operational and MERRA-2 reanalysis products. For the first vertically extended version of FV3GFS in the stratosphere and mesosphere, this simplified function of VMF allows us to tune the model climate and to evaluate multi-year simulations of FV3GFS with the MERRA-2 and ERA-5 reanalysis products, along with temperature, ozone, and water vapor observations of current satellite missions. After delivery of the UGWP-code, the EMC group developed and tested approach to modulate the zonal mean NGW forcing by 3D-distributions of the total precipitation as a proxy for the excitation of NGWs by convection and the vertically-integrated (surface - tropopause) Turbulent Kinetic Energy (TKE). The verification scores with updated NGW forcing, as reported elsewhere by EMC researchers, display noticeable improvements in the forecast scores produced by FV3GFS configuration extended into the mesosphere. @@ -398,5 +397,4 @@ subroutine cires_ugwp_run(do_ugwp, me, master, im, levs, ntrac, dtp, kdt, lonr end subroutine cires_ugwp_run !! @} -!>@} end module cires_ugwp diff --git a/physics/cires_ugwp_post.F90 b/physics/cires_ugwp_post.F90 index 612db2c0e..483d24c27 100755 --- a/physics/cires_ugwp_post.F90 +++ b/physics/cires_ugwp_post.F90 @@ -1,11 +1,11 @@ !> \file cires_ugwp_post.F90 !! This file contains + +!>\defgroup cires_ugwp_post_mod CIRES UGWP Scheme Post module cires_ugwp_post contains -!>\defgroup cires_ugwp_post CIRES UGWP Scheme Post -!! @{ !> \section arg_table_cires_ugwp_post_init Argument Table !! subroutine cires_ugwp_post_init () @@ -79,5 +79,4 @@ end subroutine cires_ugwp_post_run subroutine cires_ugwp_post_finalize () end subroutine cires_ugwp_post_finalize -!! @} end module cires_ugwp_post diff --git a/physics/docs/ccpp_dox b/physics/docs/ccpp_dox deleted file mode 100644 index b28746a91..000000000 --- a/physics/docs/ccpp_dox +++ /dev/null @@ -1,339 +0,0 @@ -# Doxyfile 1.8.11 -DOXYFILE_ENCODING = UTF-8 -PROJECT_NAME = "GMTB Common Community Physics Package (CCPP) Scientific Documentation" -PROJECT_NUMBER = "Version 1.0" -PROJECT_BRIEF = "" -PROJECT_LOGO = img/dtc_logo.png -OUTPUT_DIRECTORY = doc -CREATE_SUBDIRS = NO -ALLOW_UNICODE_NAMES = NO -OUTPUT_LANGUAGE = English -BRIEF_MEMBER_DESC = YES -REPEAT_BRIEF = NO -ABBREVIATE_BRIEF = -ALWAYS_DETAILED_SEC = NO -INLINE_INHERITED_MEMB = NO -FULL_PATH_NAMES = YES -STRIP_FROM_PATH = -STRIP_FROM_INC_PATH = -SHORT_NAMES = NO -JAVADOC_AUTOBRIEF = NO -QT_AUTOBRIEF = NO -MULTILINE_CPP_IS_BRIEF = NO -INHERIT_DOCS = YES -SEPARATE_MEMBER_PAGES = NO -TAB_SIZE = 4 -ALIASES = -TCL_SUBST = -OPTIMIZE_OUTPUT_FOR_C = NO -OPTIMIZE_OUTPUT_JAVA = NO -OPTIMIZE_FOR_FORTRAN = YES -OPTIMIZE_OUTPUT_VHDL = NO -EXTENSION_MAPPING = .f=FortranFixed \ - .f90=FortranFree \ - .f=FortranFree -MARKDOWN_SUPPORT = YES -AUTOLINK_SUPPORT = YES -BUILTIN_STL_SUPPORT = NO -CPP_CLI_SUPPORT = NO -SIP_SUPPORT = NO -IDL_PROPERTY_SUPPORT = YES -DISTRIBUTE_GROUP_DOC = NO -GROUP_NESTED_COMPOUNDS = NO -SUBGROUPING = YES -INLINE_GROUPED_CLASSES = NO -INLINE_SIMPLE_STRUCTS = NO -TYPEDEF_HIDES_STRUCT = NO -LOOKUP_CACHE_SIZE = 0 -EXTRACT_ALL = NO -EXTRACT_PRIVATE = YES -EXTRACT_PACKAGE = NO -EXTRACT_STATIC = NO -EXTRACT_LOCAL_CLASSES = YES -EXTRACT_LOCAL_METHODS = NO -EXTRACT_ANON_NSPACES = NO -HIDE_UNDOC_MEMBERS = NO -HIDE_UNDOC_CLASSES = NO -HIDE_FRIEND_COMPOUNDS = NO -HIDE_IN_BODY_DOCS = NO -INTERNAL_DOCS = NO - -CASE_SENSE_NAMES = NO - -HIDE_SCOPE_NAMES = NO - -HIDE_COMPOUND_REFERENCE= NO - -SHOW_INCLUDE_FILES = YES - -SHOW_GROUPED_MEMB_INC = NO - -FORCE_LOCAL_INCLUDES = NO - -INLINE_INFO = YES - -SORT_MEMBER_DOCS = YES - -SORT_BRIEF_DOCS = NO -SORT_MEMBERS_CTORS_1ST = NO -SORT_GROUP_NAMES = NO -SORT_BY_SCOPE_NAME = NO -STRICT_PROTO_MATCHING = NO -GENERATE_TODOLIST = YES -GENERATE_TESTLIST = YES -GENERATE_BUGLIST = YES -GENERATE_DEPRECATEDLIST= YES -ENABLED_SECTIONS = -MAX_INITIALIZER_LINES = 30 -SHOW_USED_FILES = YES -SHOW_FILES = YES -SHOW_NAMESPACES = YES -FILE_VERSION_FILTER = -LAYOUT_FILE = ccpp_dox_layout.xml -CITE_BIB_FILES = library.bib -QUIET = NO -WARNINGS = YES -WARN_IF_UNDOCUMENTED = NO -WARN_IF_DOC_ERROR = YES -WARN_NO_PARAMDOC = NO -WARN_AS_ERROR = NO -WARN_FORMAT = -WARN_LOGFILE = -INPUT = txt/mainpage_bootstrapped.txt \ - txt/GFS_RRTMG.txt \ - txt/GFS_SAMFdeep.txt \ - txt/GFS_SAMFshal.txt \ - txt/GFS_HEDMF.txt \ - txt/GFS_ZHAOC.txt \ - txt/GFS_SFCLYR.txt \ - txt/GFS_SFCSICE.txt \ - txt/GFS_NOAH.txt \ - txt/GFS_NSST.txt \ - txt/GFS_GWDPS.txt \ - txt/GFS_GWDC.txt \ - txt/GFS_OZPHYS.txt \ -### Radiation - ../radiation_aerosols.f \ - ../radiation_astronomy.f \ - ../radiation_clouds.f \ - ../radiation_gases.f \ - ../radiation_surface.f \ - ../radlw_datatb.f \ - ../radlw_main.f \ - ../radlw_param.f \ - ../radsw_datatb.f \ - ../radsw_main.f \ - ../radsw_param.f \ - ../GFS_radupdate.f90 \ -### Deep Convection - ../mfdeepcnv.f \ -### Shallow Convection - ../mfshalcnv.f \ -### PBL - ../moninedmf.f \ - ../mfpbl.f \ - ../tridi.f \ -### Microphysics - ../precpd.f \ - ../gscond.f \ -### Land Surface - ../sfc_drv.f \ - ../sflx.f \ - ../sfc_diff.f \ - ../GFS_calpreciptype.f90 \ -### Sea Ice Surface - ../sfc_sice.f \ -### Ocean Surface - ../sfc_nst.f \ - ../module_nst_model.f90 \ - ../module_nst_water_prop.f90 \ - ../module_nst_parameters.f90 \ -### Orographic Gravity Wave - ../gwdps.f \ -### Convective Gravity Wave - ../gwdc.f \ -### Prognostic Ozone - ../ozinterp.f90 \ - ../ozphys.f \ -INPUT_ENCODING = UTF-8 -FILE_PATTERNS = *.f \ - *.f90 \ - *.txt -RECURSIVE = YES -EXCLUDE = -EXCLUDE_SYMLINKS = NO -EXCLUDE_PATTERNS = -EXCLUDE_SYMBOLS = -EXAMPLE_PATH = -EXAMPLE_PATTERNS = -EXAMPLE_RECURSIVE = NO -IMAGE_PATH = img -INPUT_FILTER = -FILTER_PATTERNS = -FILTER_SOURCE_FILES = NO -FILTER_SOURCE_PATTERNS = -USE_MDFILE_AS_MAINPAGE = -SOURCE_BROWSER = YES -INLINE_SOURCES = NO -STRIP_CODE_COMMENTS = YES -REFERENCED_BY_RELATION = YES -REFERENCES_RELATION = YES -REFERENCES_LINK_SOURCE = YES -SOURCE_TOOLTIPS = YES -USE_HTAGS = NO -VERBATIM_HEADERS = YES -#CLANG_ASSISTED_PARSING = NO -#CLANG_OPTIONS = -ALPHABETICAL_INDEX = YES -COLS_IN_ALPHA_INDEX = 5 -IGNORE_PREFIX = -GENERATE_HTML = YES -HTML_OUTPUT = html -HTML_FILE_EXTENSION = .html -HTML_HEADER = -HTML_FOOTER = -HTML_STYLESHEET = -HTML_EXTRA_STYLESHEET = ccpp_dox_extra_style.css -HTML_EXTRA_FILES = -HTML_COLORSTYLE_HUE = 220 -HTML_COLORSTYLE_SAT = 100 -HTML_COLORSTYLE_GAMMA = 80 -HTML_TIMESTAMP = NO -HTML_DYNAMIC_SECTIONS = NO -HTML_INDEX_NUM_ENTRIES = 100 -GENERATE_DOCSET = NO -DOCSET_FEEDNAME = "Doxygen generated docs" -DOCSET_BUNDLE_ID = org.doxygen.Project -DOCSET_PUBLISHER_ID = org.doxygen.Publisher -DOCSET_PUBLISHER_NAME = Publisher -GENERATE_HTMLHELP = NO -CHM_FILE = -HHC_LOCATION = -GENERATE_CHI = NO -CHM_INDEX_ENCODING = -BINARY_TOC = NO -TOC_EXPAND = NO -GENERATE_QHP = NO -QCH_FILE = -QHP_NAMESPACE = org.doxygen.Project -QHP_VIRTUAL_FOLDER = doc -QHP_CUST_FILTER_NAME = -QHP_CUST_FILTER_ATTRS = -QHP_SECT_FILTER_ATTRS = -QHG_LOCATION = -GENERATE_ECLIPSEHELP = NO -ECLIPSE_DOC_ID = org.doxygen.Project -DISABLE_INDEX = YES -GENERATE_TREEVIEW = YES -ENUM_VALUES_PER_LINE = 4 -TREEVIEW_WIDTH = 250 -EXT_LINKS_IN_WINDOW = NO -FORMULA_FONTSIZE = 10 -FORMULA_TRANSPARENT = YES -USE_MATHJAX = YES -MATHJAX_FORMAT = HTML-CSS -MATHJAX_RELPATH = https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1 -MATHJAX_EXTENSIONS = -MATHJAX_CODEFILE = -SEARCHENGINE = YES -SERVER_BASED_SEARCH = NO -EXTERNAL_SEARCH = NO -SEARCHENGINE_URL = -SEARCHDATA_FILE = searchdata.xml -EXTERNAL_SEARCH_ID = -EXTRA_SEARCH_MAPPINGS = -GENERATE_LATEX = YES -LATEX_OUTPUT = latex -LATEX_CMD_NAME = latex -MAKEINDEX_CMD_NAME = makeindex -COMPACT_LATEX = NO -PAPER_TYPE = a4 -EXTRA_PACKAGES = amsmath -LATEX_HEADER = -LATEX_FOOTER = -LATEX_EXTRA_STYLESHEET = -LATEX_EXTRA_FILES = -PDF_HYPERLINKS = YES -USE_PDFLATEX = YES -LATEX_BATCHMODE = NO -LATEX_HIDE_INDICES = NO -LATEX_SOURCE_CODE = NO - -LATEX_BIB_STYLE = plainnat - -LATEX_TIMESTAMP = NO - -GENERATE_RTF = NO - -RTF_OUTPUT = rtf -COMPACT_RTF = NO -RTF_HYPERLINKS = NO -RTF_STYLESHEET_FILE = -RTF_EXTENSIONS_FILE = -RTF_SOURCE_CODE = NO -GENERATE_MAN = NO -MAN_OUTPUT = man -MAN_EXTENSION = .3 -MAN_SUBDIR = -MAN_LINKS = NO -GENERATE_XML = NO -XML_OUTPUT = xml -XML_PROGRAMLISTING = YES -GENERATE_DOCBOOK = NO -DOCBOOK_OUTPUT = docbook -DOCBOOK_PROGRAMLISTING = NO -GENERATE_AUTOGEN_DEF = NO -GENERATE_PERLMOD = NO -PERLMOD_LATEX = NO -PERLMOD_PRETTY = YES -PERLMOD_MAKEVAR_PREFIX = -ENABLE_PREPROCESSING = YES -MACRO_EXPANSION = NO -EXPAND_ONLY_PREDEF = NO -SEARCH_INCLUDES = YES -INCLUDE_PATH = -INCLUDE_FILE_PATTERNS = -PREDEFINED = -EXPAND_AS_DEFINED = -SKIP_FUNCTION_MACROS = YES -TAGFILES = -GENERATE_TAGFILE = -ALLEXTERNALS = NO -EXTERNAL_GROUPS = YES -EXTERNAL_PAGES = YES -PERL_PATH = /usr/bin/perl -CLASS_DIAGRAMS = YES -MSCGEN_PATH = -DIA_PATH = -HIDE_UNDOC_RELATIONS = YES -HAVE_DOT = YES -DOT_NUM_THREADS = 0 -DOT_FONTNAME = Helvetica -DOT_FONTSIZE = 10 -DOT_FONTPATH = -CLASS_GRAPH = YES -COLLABORATION_GRAPH = YES -GROUP_GRAPHS = NO -UML_LOOK = NO -UML_LIMIT_NUM_FIELDS = 10 -TEMPLATE_RELATIONS = NO -INCLUDE_GRAPH = YES -INCLUDED_BY_GRAPH = YES -CALL_GRAPH = YES -CALLER_GRAPH = YES -GRAPHICAL_HIERARCHY = YES -DIRECTORY_GRAPH = YES -DOT_IMAGE_FORMAT = png -INTERACTIVE_SVG = NO -DOT_PATH = -DOTFILE_DIRS = -MSCFILE_DIRS = -DIAFILE_DIRS = -PLANTUML_JAR_PATH = -PLANTUML_INCLUDE_PATH = -DOT_GRAPH_MAX_NODES = 50 -MAX_DOT_GRAPH_DEPTH = 0 -DOT_TRANSPARENT = NO -DOT_MULTI_TARGETS = NO -GENERATE_LEGEND = YES -DOT_CLEANUP = YES diff --git a/physics/docs/ccpp_dox_layout.xml b/physics/docs/ccpp_dox_layout.xml index 527034db2..38112e6d9 100644 --- a/physics/docs/ccpp_dox_layout.xml +++ b/physics/docs/ccpp_dox_layout.xml @@ -2,23 +2,9 @@ - + - - - - - - - - - - - - - - - + diff --git a/physics/docs/ccpp_doxyfile b/physics/docs/ccpp_doxyfile deleted file mode 100644 index 339ddb3f8..000000000 --- a/physics/docs/ccpp_doxyfile +++ /dev/null @@ -1,463 +0,0 @@ -# Doxyfile 1.8.11 -DOXYFILE_ENCODING = UTF-8 -PROJECT_NAME = "Common Community Physics Package (CCPP) Scientific Documentation" -PROJECT_NUMBER = "" -PROJECT_BRIEF = " " -PROJECT_LOGO = img/dtc_logo.png -OUTPUT_DIRECTORY = doc -CREATE_SUBDIRS = NO -ALLOW_UNICODE_NAMES = NO -OUTPUT_LANGUAGE = English -BRIEF_MEMBER_DESC = YES -REPEAT_BRIEF = NO -ABBREVIATE_BRIEF = -ALWAYS_DETAILED_SEC = NO -INLINE_INHERITED_MEMB = NO -FULL_PATH_NAMES = NO -STRIP_FROM_PATH = -STRIP_FROM_INC_PATH = -SHORT_NAMES = NO -JAVADOC_AUTOBRIEF = NO -QT_AUTOBRIEF = NO -MULTILINE_CPP_IS_BRIEF = NO -INHERIT_DOCS = YES -SEPARATE_MEMBER_PAGES = YES -TAB_SIZE = 4 -ALIASES = -TCL_SUBST = -OPTIMIZE_OUTPUT_FOR_C = NO -OPTIMIZE_OUTPUT_JAVA = NO -OPTIMIZE_FOR_FORTRAN = YES -OPTIMIZE_OUTPUT_VHDL = NO -EXTENSION_MAPPING = .f=Fortranfixed \ - .F=Fortranfixed \ - .F90=FortranFree \ - .f90=FortranFree -MARKDOWN_SUPPORT = YES -AUTOLINK_SUPPORT = YES -BUILTIN_STL_SUPPORT = NO -CPP_CLI_SUPPORT = NO -SIP_SUPPORT = NO -IDL_PROPERTY_SUPPORT = YES -DISTRIBUTE_GROUP_DOC = YES -GROUP_NESTED_COMPOUNDS = NO -SUBGROUPING = YES -INLINE_GROUPED_CLASSES = NO -INLINE_SIMPLE_STRUCTS = NO -TYPEDEF_HIDES_STRUCT = YES -LOOKUP_CACHE_SIZE = 0 -EXTRACT_ALL = YES -EXTRACT_PRIVATE = YES -EXTRACT_PACKAGE = YES -EXTRACT_STATIC = YES -EXTRACT_LOCAL_CLASSES = YES -EXTRACT_LOCAL_METHODS = YES -EXTRACT_ANON_NSPACES = YES -HIDE_UNDOC_MEMBERS = NO -HIDE_UNDOC_CLASSES = NO -HIDE_FRIEND_COMPOUNDS = NO -HIDE_IN_BODY_DOCS = NO -INTERNAL_DOCS = YES - -CASE_SENSE_NAMES = NO - -HIDE_SCOPE_NAMES = NO - -HIDE_COMPOUND_REFERENCE= NO - -SHOW_INCLUDE_FILES = NO - -SHOW_GROUPED_MEMB_INC = NO - -FORCE_LOCAL_INCLUDES = NO - -INLINE_INFO = YES - -SORT_MEMBER_DOCS = NO - -SORT_BRIEF_DOCS = NO -SORT_MEMBERS_CTORS_1ST = NO -SORT_GROUP_NAMES = NO -SORT_BY_SCOPE_NAME = NO -STRICT_PROTO_MATCHING = NO -GENERATE_TODOLIST = YES -GENERATE_TESTLIST = YES -GENERATE_BUGLIST = YES -GENERATE_DEPRECATEDLIST= YES -ENABLED_SECTIONS = YES -MAX_INITIALIZER_LINES = 30 -SHOW_USED_FILES = YES -SHOW_FILES = YES -SHOW_NAMESPACES = YES -FILE_VERSION_FILTER = -LAYOUT_FILE = ccpp_dox_layout.xml -CITE_BIB_FILES = library.bib -QUIET = NO -WARNINGS = YES -WARN_IF_UNDOCUMENTED = NO -WARN_IF_DOC_ERROR = YES -WARN_NO_PARAMDOC = NO -WARN_AS_ERROR = NO -WARN_FORMAT = -WARN_LOGFILE = -INPUT = pdftxt/mainpage.txt \ - pdftxt/all_shemes_list.txt \ - pdftxt/GFSv15_suite.txt \ - pdftxt/GFSv15_suite_TKEEDMF.txt \ - pdftxt/CPT_adv_suite.txt \ - pdftxt/GSD_adv_suite.txt \ - pdftxt/GFS_RRTMG.txt \ - pdftxt/GFS_SFCLYR.txt \ - pdftxt/GFS_NSST.txt \ - pdftxt/GFS_NOAH.txt \ - pdftxt/GFS_SFCSICE.txt \ - pdftxt/GFS_HEDMF.txt \ - pdftxt/GFS_SATMEDMF.txt \ - pdftxt/GFS_SATMEDMFVDIFQ.txt \ - pdftxt/GFS_GWDPS.txt \ - pdftxt/GFS_OZPHYS.txt \ - pdftxt/GFS_H2OPHYS.txt \ - pdftxt/GFS_RAYLEIGH.txt \ - pdftxt/GFS_SAMF.txt \ - pdftxt/GFS_SAMFdeep.txt \ - pdftxt/GFS_GWDC.txt \ - pdftxt/UGWPv0.txt \ - pdftxt/GFS_SAMFshal.txt \ - pdftxt/GFDL_cloud.txt \ -### pdftxt/GFS_SURFACE_PERT.txt \ - pdftxt/GFS_CALPRECIPTYPE.txt \ -### pdftxt/rad_cld.txt \ - pdftxt/CPT_CSAW.txt \ - pdftxt/CPT_MG3.txt \ - pdftxt/GSD_MYNN_EDMF.txt \ - pdftxt/GSD_CU_GF_deep.txt \ - pdftxt/GSD_RUCLSM.txt \ - pdftxt/GSD_THOMPSON.txt \ -### pdftxt/GFSphys_namelist.txt \ -### pdftxt/GFS_STOCHY_PHYS.txt \ - pdftxt/suite_input.nml.txt \ - pdftxt/NoahMP.txt \ -### in-core MP - ../gfdl_fv_sat_adj.F90 \ -### time_vary - ../GFS_phys_time_vary.fv3.F90 \ - ../GFS_rad_time_vary.fv3.F90 \ - ../ozne_def.f \ - ../ozinterp.f90 \ - ../h2o_def.f \ - ../h2ointerp.f90 \ - ../aerclm_def.F \ - ../aerinterp.F90 \ - ../iccn_def.F \ - ../iccninterp.F90 \ - ../sfcsub.F \ - ../gcycle.F90 \ -### Radiation - ../radlw_main.f \ - ../radsw_main.f \ - ../radiation_aerosols.f \ - ../radiation_astronomy.f \ - ../radiation_clouds.f \ - ../radiation_gases.f \ - ../radiation_surface.f \ - ../radlw_param.f \ - ../radlw_datatb.f \ - ../radsw_param.f \ - ../radsw_datatb.f \ - ../dcyc2.f \ -### Land Surface - ../sfc_diff.f \ - ../sfc_nst.f \ - ../module_nst_model.f90 \ - ../module_nst_parameters.f90 \ - ../module_nst_water_prop.f90 \ - ../sfc_drv.f \ - ../sflx.f \ - ../namelist_soilveg.f \ - ../set_soilveg.f \ - ../sfc_noahmp_drv.f \ - ../module_sf_noahmplsm.f90 \ - ../module_sf_noahmp_glacier.f90 \ - ../noahmp_tables.f90 \ -### Sea Ice Surface - ../sfc_sice.f \ -### PBL - ../moninedmf.f \ - ../mfpbl.f \ - ../tridi.f \ -### satmedmf - ../satmedmfvdif.F \ - ../mfpblt.f \ - ../mfscu.f \ - ../tridi.f \ -### satmedmfvdifq - ../satmedmfvdifq.F \ - ../mfpbltq.f \ - ../mfscuq.f \ - ../tridi.f \ -### Orographic Gravity Wave - ../gwdps.f \ -### Rayleigh Dampling - ../rayleigh_damp.f \ -### Prognostic Ozone - ../ozphys_2015.f \ -### ../ozphys.f \ -### stratospheric h2o - ../h2ophys.f \ -### Deep Convection - ../samfdeepcnv.f \ -### Convective Gravity Wave - ../gwdc.f \ -### Shallow Convection - ../samfshalcnv.f \ - ../cnvc90.f \ -### Unified Gravity Wave - ../cires_ugwp.F90 \ - ../ugwp_driver_v0.F \ - ../cires_ugwp_triggers.F90 \ -### Microphysics -### ../gscond.f \ -### ../precpd.f \ - ../module_bfmicrophysics.f \ -### GFDL cloud MP - ../gfdl_cloud_microphys.F90 \ - ../module_gfdl_cloud_microphys.F90 \ -### - ../GFS_MP_generic.F90 \ - ../calpreciptype.f90 \ -### stochy -### ../GFS_stochastics.F90 \ -### ../surface_perturbation.F90 \ -### ../../stochastic_physics/stochastic_physics.F90 \ -### CPT - ../m_micro.F90 \ -### ../micro_mg2_0.F90 \ - ../micro_mg3_0.F90 \ - ../micro_mg_utils.F90 \ - ../cldmacro.F \ - ../aer_cloud.F \ - ../cldwat2m_micro.F \ - ../wv_saturation.F \ - ../cs_conv_aw_adj.F90 \ - ../cs_conv.F90 \ -### GSD - ../cu_gf_driver.F90 \ - ../cu_gf_deep.F90 \ - ../cu_gf_sh.F90 \ - ../module_MYNNrad_pre.F90 \ - ../module_MYNNrad_post.F90 \ - ../module_MYNNPBL_wrapper.F90 \ - ../module_bl_mynn.F90 \ -### ../module_MYNNSFC_wrapper.F90 \ -### ../module_sf_mynn.F90 \ - ../sfc_drv_ruc.F90 \ - ../module_sf_ruclsm.F90 \ - ../namelist_soilveg_ruc.F90 \ - ../set_soilveg_ruc.F90 \ - ../module_soil_pre.F90 \ - ../mp_thompson_pre.F90 \ - ../module_mp_thompson_make_number_concentrations.F90 \ - ../mp_thompson.F90 \ - ../module_mp_thompson.F90 \ - ../module_mp_radar.F90 \ - ../mp_thompson_post.F90 \ -### HAFS - ../module_MP_FER_HIRES.F90 \ - ../mp_fer_hires.F90 \ - ../module_mp_fer_hires_pre.F90 \ -### utils - ../funcphys.f90 \ - ../physparam.f \ - ../physcons.F90 \ - ../radcons.f90 \ - ../mersenne_twister.f \ - compns_stochy.F90 - - -INPUT_ENCODING = UTF-8 -FILE_PATTERNS = *.f \ - *.F \ - *.F90 \ - *.f90 \ - *.nml \ - *.txt -RECURSIVE = YES -EXCLUDE = -EXCLUDE_SYMLINKS = NO -EXCLUDE_PATTERNS = -EXCLUDE_SYMBOLS = -EXAMPLE_PATH = ./ -EXAMPLE_PATTERNS = -EXAMPLE_RECURSIVE = NO -IMAGE_PATH = img -INPUT_FILTER = -FILTER_PATTERNS = -FILTER_SOURCE_FILES = NO -FILTER_SOURCE_PATTERNS = -USE_MDFILE_AS_MAINPAGE = -SOURCE_BROWSER = NO -INLINE_SOURCES = NO -STRIP_CODE_COMMENTS = YES -REFERENCED_BY_RELATION = YES -REFERENCES_RELATION = YES -REFERENCES_LINK_SOURCE = YES -SOURCE_TOOLTIPS = YES -USE_HTAGS = NO -VERBATIM_HEADERS = YES -#CLANG_ASSISTED_PARSING = NO -#CLANG_OPTIONS = -ALPHABETICAL_INDEX = NO -COLS_IN_ALPHA_INDEX = 5 -IGNORE_PREFIX = -GENERATE_HTML = YES -HTML_OUTPUT = html -HTML_FILE_EXTENSION = .html -HTML_HEADER = -HTML_FOOTER = -HTML_STYLESHEET = -HTML_EXTRA_STYLESHEET = ccpp_dox_extra_style.css -HTML_EXTRA_FILES = -HTML_COLORSTYLE_HUE = 220 -HTML_COLORSTYLE_SAT = 100 -HTML_COLORSTYLE_GAMMA = 80 -HTML_TIMESTAMP = NO -HTML_DYNAMIC_SECTIONS = NO -HTML_INDEX_NUM_ENTRIES = 100 -GENERATE_DOCSET = NO -DOCSET_FEEDNAME = "Doxygen generated docs" -DOCSET_BUNDLE_ID = org.doxygen.Project -DOCSET_PUBLISHER_ID = org.doxygen.Publisher -DOCSET_PUBLISHER_NAME = Publisher -GENERATE_HTMLHELP = NO -CHM_FILE = -HHC_LOCATION = -GENERATE_CHI = NO -CHM_INDEX_ENCODING = -BINARY_TOC = NO -TOC_EXPAND = NO -GENERATE_QHP = NO -QCH_FILE = -QHP_NAMESPACE = org.doxygen.Project -QHP_VIRTUAL_FOLDER = doc -QHP_CUST_FILTER_NAME = -QHP_CUST_FILTER_ATTRS = -QHP_SECT_FILTER_ATTRS = -QHG_LOCATION = -GENERATE_ECLIPSEHELP = NO -ECLIPSE_DOC_ID = org.doxygen.Project -DISABLE_INDEX = YES -GENERATE_TREEVIEW = YES -ENUM_VALUES_PER_LINE = 4 -TREEVIEW_WIDTH = 250 -EXT_LINKS_IN_WINDOW = NO -FORMULA_FONTSIZE = 10 -FORMULA_TRANSPARENT = YES -USE_MATHJAX = YES -MATHJAX_FORMAT = HTML-CSS -MATHJAX_RELPATH = https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2 -MATHJAX_EXTENSIONS = -MATHJAX_CODEFILE = -SEARCHENGINE = YES -SERVER_BASED_SEARCH = NO -EXTERNAL_SEARCH = NO -SEARCHENGINE_URL = -SEARCHDATA_FILE = searchdata.xml -EXTERNAL_SEARCH_ID = -EXTRA_SEARCH_MAPPINGS = -GENERATE_LATEX = YES -LATEX_OUTPUT = latex -LATEX_CMD_NAME = latex -MAKEINDEX_CMD_NAME = makeindex -COMPACT_LATEX = YES -PAPER_TYPE = a4 -EXTRA_PACKAGES = amsmath -LATEX_HEADER = -LATEX_FOOTER = -LATEX_EXTRA_STYLESHEET = -LATEX_EXTRA_FILES = -PDF_HYPERLINKS = YES -USE_PDFLATEX = YES -LATEX_BATCHMODE = NO -LATEX_HIDE_INDICES = YES -LATEX_SOURCE_CODE = NO - -LATEX_BIB_STYLE = plainnat - -LATEX_TIMESTAMP = NO - -GENERATE_RTF = NO - -RTF_OUTPUT = rtf -COMPACT_RTF = NO -RTF_HYPERLINKS = NO -RTF_STYLESHEET_FILE = -RTF_EXTENSIONS_FILE = -RTF_SOURCE_CODE = NO -GENERATE_MAN = NO -MAN_OUTPUT = man -MAN_EXTENSION = .3 -MAN_SUBDIR = -MAN_LINKS = NO -GENERATE_XML = NO -XML_OUTPUT = xml -XML_PROGRAMLISTING = YES -GENERATE_DOCBOOK = NO -DOCBOOK_OUTPUT = docbook -DOCBOOK_PROGRAMLISTING = NO -GENERATE_AUTOGEN_DEF = NO -GENERATE_PERLMOD = NO -PERLMOD_LATEX = NO -PERLMOD_PRETTY = YES -PERLMOD_MAKEVAR_PREFIX = -ENABLE_PREPROCESSING = NO -MACRO_EXPANSION = NO -EXPAND_ONLY_PREDEF = NO -SEARCH_INCLUDES = YES -INCLUDE_PATH = -INCLUDE_FILE_PATTERNS = -PREDEFINED = CCPP \ - MULTI_GASES \ - 0 -EXPAND_AS_DEFINED = -SKIP_FUNCTION_MACROS = YES -TAGFILES = -GENERATE_TAGFILE = -ALLEXTERNALS = NO -EXTERNAL_GROUPS = YES -EXTERNAL_PAGES = YES -PERL_PATH = /usr/bin/perl -CLASS_DIAGRAMS = YES -MSCGEN_PATH = -DIA_PATH = -HIDE_UNDOC_RELATIONS = NO -HAVE_DOT = YES -DOT_NUM_THREADS = 0 -DOT_FONTNAME = Helvetica -DOT_FONTSIZE = 10 -DOT_FONTPATH = -CLASS_GRAPH = NO -COLLABORATION_GRAPH = NO -GROUP_GRAPHS = YES -UML_LOOK = YES -UML_LIMIT_NUM_FIELDS = 10 -TEMPLATE_RELATIONS = NO -INCLUDE_GRAPH = YES -INCLUDED_BY_GRAPH = NO -CALL_GRAPH = YES -CALLER_GRAPH = NO -GRAPHICAL_HIERARCHY = YES -DIRECTORY_GRAPH = YES -DOT_IMAGE_FORMAT = svg -INTERACTIVE_SVG = NO -DOT_PATH = -DOTFILE_DIRS = -MSCFILE_DIRS = -DIAFILE_DIRS = -PLANTUML_JAR_PATH = -PLANTUML_INCLUDE_PATH = -DOT_GRAPH_MAX_NODES = 200 -MAX_DOT_GRAPH_DEPTH = 0 -DOT_TRANSPARENT = NO -DOT_MULTI_TARGETS = YES -GENERATE_LEGEND = YES -DOT_CLEANUP = YES diff --git a/physics/docs/ccppv3_doxyfile b/physics/docs/ccppv3_doxyfile deleted file mode 100644 index 6933751a4..000000000 --- a/physics/docs/ccppv3_doxyfile +++ /dev/null @@ -1,439 +0,0 @@ -# Doxyfile 1.8.11 -DOXYFILE_ENCODING = UTF-8 -PROJECT_NAME = "Common Community Physics Package (CCPP) Scientific Documentation" -PROJECT_NUMBER = "Version 3.0" -PROJECT_BRIEF = " " -PROJECT_LOGO = img/dtc_logo.png -OUTPUT_DIRECTORY = doc -CREATE_SUBDIRS = NO -ALLOW_UNICODE_NAMES = NO -OUTPUT_LANGUAGE = English -BRIEF_MEMBER_DESC = YES -REPEAT_BRIEF = NO -ABBREVIATE_BRIEF = -ALWAYS_DETAILED_SEC = NO -INLINE_INHERITED_MEMB = NO -FULL_PATH_NAMES = NO -STRIP_FROM_PATH = -STRIP_FROM_INC_PATH = -SHORT_NAMES = NO -JAVADOC_AUTOBRIEF = NO -QT_AUTOBRIEF = NO -MULTILINE_CPP_IS_BRIEF = NO -INHERIT_DOCS = YES -SEPARATE_MEMBER_PAGES = YES -TAB_SIZE = 4 -ALIASES = -TCL_SUBST = -OPTIMIZE_OUTPUT_FOR_C = NO -OPTIMIZE_OUTPUT_JAVA = NO -OPTIMIZE_FOR_FORTRAN = YES -OPTIMIZE_OUTPUT_VHDL = NO -EXTENSION_MAPPING = .f=FortranFree \ - .F90=FortranFree \ - .f90=FortranFree -MARKDOWN_SUPPORT = YES -AUTOLINK_SUPPORT = YES -BUILTIN_STL_SUPPORT = NO -CPP_CLI_SUPPORT = NO -SIP_SUPPORT = NO -IDL_PROPERTY_SUPPORT = YES -DISTRIBUTE_GROUP_DOC = YES -GROUP_NESTED_COMPOUNDS = NO -SUBGROUPING = YES -INLINE_GROUPED_CLASSES = NO -INLINE_SIMPLE_STRUCTS = NO -TYPEDEF_HIDES_STRUCT = YES -LOOKUP_CACHE_SIZE = 0 -EXTRACT_ALL = YES -EXTRACT_PRIVATE = YES -EXTRACT_PACKAGE = YES -EXTRACT_STATIC = YES -EXTRACT_LOCAL_CLASSES = YES -EXTRACT_LOCAL_METHODS = YES -EXTRACT_ANON_NSPACES = YES -HIDE_UNDOC_MEMBERS = NO -HIDE_UNDOC_CLASSES = NO -HIDE_FRIEND_COMPOUNDS = NO -HIDE_IN_BODY_DOCS = NO -INTERNAL_DOCS = YES - -CASE_SENSE_NAMES = NO - -HIDE_SCOPE_NAMES = NO - -HIDE_COMPOUND_REFERENCE= NO - -SHOW_INCLUDE_FILES = NO - -SHOW_GROUPED_MEMB_INC = NO - -FORCE_LOCAL_INCLUDES = NO - -INLINE_INFO = YES - -SORT_MEMBER_DOCS = NO - -SORT_BRIEF_DOCS = NO -SORT_MEMBERS_CTORS_1ST = NO -SORT_GROUP_NAMES = NO -SORT_BY_SCOPE_NAME = NO -STRICT_PROTO_MATCHING = NO -GENERATE_TODOLIST = YES -GENERATE_TESTLIST = YES -GENERATE_BUGLIST = YES -GENERATE_DEPRECATEDLIST= YES -ENABLED_SECTIONS = YES -MAX_INITIALIZER_LINES = 30 -SHOW_USED_FILES = YES -SHOW_FILES = YES -SHOW_NAMESPACES = YES -FILE_VERSION_FILTER = -LAYOUT_FILE = ccpp_dox_layout.xml -CITE_BIB_FILES = library.bib -QUIET = NO -WARNINGS = YES -WARN_IF_UNDOCUMENTED = NO -WARN_IF_DOC_ERROR = YES -WARN_NO_PARAMDOC = NO -WARN_AS_ERROR = NO -WARN_FORMAT = -WARN_LOGFILE = -INPUT = pdftxt/mainpage.txt \ - pdftxt/all_shemes_list.txt \ - pdftxt/GFSv15_suite.txt \ - pdftxt/GFSv15_suite_TKEEDMF.txt \ - pdftxt/CPT_adv_suite.txt \ - pdftxt/GSD_adv_suite.txt \ - pdftxt/GFS_RRTMG.txt \ - pdftxt/GFS_SFCLYR.txt \ - pdftxt/GFS_NSST.txt \ - pdftxt/GFS_NOAH.txt \ - pdftxt/GFS_SFCSICE.txt \ - pdftxt/GFS_HEDMF.txt \ - pdftxt/GFS_SATMEDMF.txt \ - pdftxt/GFS_GWDPS.txt \ - pdftxt/GFS_OZPHYS.txt \ - pdftxt/GFS_H2OPHYS.txt \ - pdftxt/GFS_RAYLEIGH.txt \ - pdftxt/GFS_SAMFdeep.txt \ - pdftxt/GFS_GWDC.txt \ - pdftxt/GFS_SAMFshal.txt \ - pdftxt/GFDL_cloud.txt \ -### pdftxt/GFS_SURFACE_PERT.txt \ - pdftxt/GFS_CALPRECIPTYPE.txt \ -### pdftxt/rad_cld.txt \ - pdftxt/CPT_CSAW.txt \ - pdftxt/CPT_MG3.txt \ - pdftxt/GSD_MYNN_EDMF.txt \ - pdftxt/GSD_CU_GF_deep.txt \ - pdftxt/GSD_RUCLSM.txt \ - pdftxt/GSD_THOMPSON.txt \ -### pdftxt/GFSphys_namelist.txt \ -### pdftxt/GFS_STOCHY_PHYS.txt \ - pdftxt/suite_input.nml.txt \ -### in-core MP - ../gfdl_fv_sat_adj.F90 \ -### time_vary - ../GFS_phys_time_vary.fv3.F90 \ - ../ozne_def.f \ - ../ozinterp.f90 \ - ../h2o_def.f \ - ../h2ointerp.f90 \ - ../aerclm_def.F \ - ../aerinterp.F90 \ - ../iccn_def.F \ - ../iccninterp.F90 \ -### Radiation - ../radlw_main.f \ - ../radsw_main.f \ - ../radiation_aerosols.f \ - ../radiation_astronomy.f \ - ../radiation_clouds.f \ - ../radiation_gases.f \ - ../radiation_surface.f \ - ../radlw_param.f \ - ../radlw_datatb.f \ - ../radsw_param.f \ - ../radsw_datatb.f \ - ../dcyc2.f \ -### Land Surface - ../sfc_diff.f \ - ../sfc_nst.f \ - ../module_nst_model.f90 \ - ../module_nst_parameters.f90 \ - ../module_nst_water_prop.f90 \ - ../sfc_drv.f \ - ../sfcsub.F \ - ../gcycle.F90 \ - ../sflx.f \ - ../namelist_soilveg.f \ - ../set_soilveg.f \ -### Sea Ice Surface - ../sfc_sice.f \ -### PBL - ../moninedmf.f \ - ../mfpbl.f \ - ../tridi.f \ -### satmedmf - ../satmedmfvdif.F \ - ../mfpblt.f \ - ../mfscu.f \ - ../tridi.f \ -### Orographic Gravity Wave - ../gwdps.f \ -### Rayleigh Dampling - ../rayleigh_damp.f \ -### Prognostic Ozone - ../ozphys_2015.f \ -### ../ozphys.f \ -### stratospheric h2o - ../h2ophys.f \ -### Deep Convection - ../samfdeepcnv.f \ -### Convective Gravity Wave - ../gwdc.f \ -### Shallow Convection - ../samfshalcnv.f \ - ../cnvc90.f \ -### Microphysics -### ../gscond.f \ -### ../precpd.f \ - ../module_bfmicrophysics.f \ -### GFDL cloud MP - ../gfdl_cloud_microphys.F90 \ - ../module_gfdl_cloud_microphys.F90 \ -### - ../GFS_MP_generic.F90 \ - ../calpreciptype.f90 \ -### stochy -### ../GFS_stochastics.F90 \ -### ../surface_perturbation.F90 \ -### ../../stochastic_physics/stochastic_physics.F90 \ -### CPT - ../m_micro.F90 \ -### ../micro_mg2_0.F90 \ - ../micro_mg3_0.F90 \ - ../micro_mg_utils.F90 \ - ../cldmacro.F \ - ../aer_cloud.F \ - ../cldwat2m_micro.F \ - ../wv_saturation.F \ - ../cs_conv_aw_adj.F90 \ - ../cs_conv.F90 \ -### GSD - ../cu_gf_driver.F90 \ - ../cu_gf_deep.F90 \ - ../cu_gf_sh.F90 \ - ../module_MYNNrad_pre.F90 \ - ../module_MYNNrad_post.F90 \ - ../module_MYNNPBL_wrapper.F90 \ - ../module_bl_mynn.F90 \ -### ../module_MYNNSFC_wrapper.F90 \ -### ../module_sf_mynn.F90 \ - ../sfc_drv_ruc.F90 \ - ../module_sf_ruclsm.F90 \ - ../namelist_soilveg_ruc.F90 \ - ../set_soilveg_ruc.F90 \ - ../module_soil_pre.F90 \ - ../mp_thompson_pre.F90 \ - ../module_mp_thompson_make_number_concentrations.F90 \ - ../mp_thompson.F90 \ - ../module_mp_thompson.F90 \ - ../module_mp_radar.F90 \ - ../mp_thompson_post.F90 \ -### utils - ../funcphys.f90 \ - ../physparam.f \ - ../physcons.F90 \ - ../radcons.f90 \ - ../mersenne_twister.f \ - compns_stochy.F90 - - -INPUT_ENCODING = UTF-8 -FILE_PATTERNS = *.f \ - *.F90 \ - *.f90 \ - *.nml \ - *.txt -RECURSIVE = YES -EXCLUDE = -EXCLUDE_SYMLINKS = NO -EXCLUDE_PATTERNS = -EXCLUDE_SYMBOLS = -EXAMPLE_PATH = -EXAMPLE_PATTERNS = -EXAMPLE_RECURSIVE = NO -IMAGE_PATH = img -INPUT_FILTER = -FILTER_PATTERNS = -FILTER_SOURCE_FILES = NO -FILTER_SOURCE_PATTERNS = -USE_MDFILE_AS_MAINPAGE = -SOURCE_BROWSER = NO -INLINE_SOURCES = NO -STRIP_CODE_COMMENTS = YES -REFERENCED_BY_RELATION = YES -REFERENCES_RELATION = YES -REFERENCES_LINK_SOURCE = YES -SOURCE_TOOLTIPS = YES -USE_HTAGS = NO -VERBATIM_HEADERS = YES -#CLANG_ASSISTED_PARSING = NO -#CLANG_OPTIONS = -ALPHABETICAL_INDEX = NO -COLS_IN_ALPHA_INDEX = 5 -IGNORE_PREFIX = -GENERATE_HTML = YES -HTML_OUTPUT = html -HTML_FILE_EXTENSION = .html -HTML_HEADER = -HTML_FOOTER = -HTML_STYLESHEET = -HTML_EXTRA_STYLESHEET = ccpp_dox_extra_style.css -HTML_EXTRA_FILES = -HTML_COLORSTYLE_HUE = 220 -HTML_COLORSTYLE_SAT = 100 -HTML_COLORSTYLE_GAMMA = 80 -HTML_TIMESTAMP = NO -HTML_DYNAMIC_SECTIONS = NO -HTML_INDEX_NUM_ENTRIES = 100 -GENERATE_DOCSET = NO -DOCSET_FEEDNAME = "Doxygen generated docs" -DOCSET_BUNDLE_ID = org.doxygen.Project -DOCSET_PUBLISHER_ID = org.doxygen.Publisher -DOCSET_PUBLISHER_NAME = Publisher -GENERATE_HTMLHELP = NO -CHM_FILE = -HHC_LOCATION = -GENERATE_CHI = NO -CHM_INDEX_ENCODING = -BINARY_TOC = NO -TOC_EXPAND = NO -GENERATE_QHP = NO -QCH_FILE = -QHP_NAMESPACE = org.doxygen.Project -QHP_VIRTUAL_FOLDER = doc -QHP_CUST_FILTER_NAME = -QHP_CUST_FILTER_ATTRS = -QHP_SECT_FILTER_ATTRS = -QHG_LOCATION = -GENERATE_ECLIPSEHELP = NO -ECLIPSE_DOC_ID = org.doxygen.Project -DISABLE_INDEX = YES -GENERATE_TREEVIEW = YES -ENUM_VALUES_PER_LINE = 4 -TREEVIEW_WIDTH = 250 -EXT_LINKS_IN_WINDOW = NO -FORMULA_FONTSIZE = 10 -FORMULA_TRANSPARENT = YES -USE_MATHJAX = YES -MATHJAX_FORMAT = HTML-CSS -MATHJAX_RELPATH = https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2 -MATHJAX_EXTENSIONS = -MATHJAX_CODEFILE = -SEARCHENGINE = YES -SERVER_BASED_SEARCH = NO -EXTERNAL_SEARCH = NO -SEARCHENGINE_URL = -SEARCHDATA_FILE = searchdata.xml -EXTERNAL_SEARCH_ID = -EXTRA_SEARCH_MAPPINGS = -GENERATE_LATEX = YES -LATEX_OUTPUT = latex -LATEX_CMD_NAME = latex -MAKEINDEX_CMD_NAME = makeindex -COMPACT_LATEX = YES -PAPER_TYPE = a4 -EXTRA_PACKAGES = amsmath -LATEX_HEADER = -LATEX_FOOTER = -LATEX_EXTRA_STYLESHEET = -LATEX_EXTRA_FILES = -PDF_HYPERLINKS = YES -USE_PDFLATEX = YES -LATEX_BATCHMODE = NO -LATEX_HIDE_INDICES = YES -LATEX_SOURCE_CODE = NO - -LATEX_BIB_STYLE = plainnat - -LATEX_TIMESTAMP = NO - -GENERATE_RTF = NO - -RTF_OUTPUT = rtf -COMPACT_RTF = NO -RTF_HYPERLINKS = NO -RTF_STYLESHEET_FILE = -RTF_EXTENSIONS_FILE = -RTF_SOURCE_CODE = NO -GENERATE_MAN = NO -MAN_OUTPUT = man -MAN_EXTENSION = .3 -MAN_SUBDIR = -MAN_LINKS = NO -GENERATE_XML = NO -XML_OUTPUT = xml -XML_PROGRAMLISTING = YES -GENERATE_DOCBOOK = NO -DOCBOOK_OUTPUT = docbook -DOCBOOK_PROGRAMLISTING = NO -GENERATE_AUTOGEN_DEF = NO -GENERATE_PERLMOD = NO -PERLMOD_LATEX = NO -PERLMOD_PRETTY = YES -PERLMOD_MAKEVAR_PREFIX = -ENABLE_PREPROCESSING = NO -MACRO_EXPANSION = NO -EXPAND_ONLY_PREDEF = NO -SEARCH_INCLUDES = YES -INCLUDE_PATH = -INCLUDE_FILE_PATTERNS = -PREDEFINED = CCPP \ - MULTI_GASES \ - 0 -EXPAND_AS_DEFINED = -SKIP_FUNCTION_MACROS = YES -TAGFILES = -GENERATE_TAGFILE = -ALLEXTERNALS = NO -EXTERNAL_GROUPS = YES -EXTERNAL_PAGES = YES -PERL_PATH = /usr/bin/perl -CLASS_DIAGRAMS = YES -MSCGEN_PATH = -DIA_PATH = -HIDE_UNDOC_RELATIONS = NO -HAVE_DOT = YES -DOT_NUM_THREADS = 0 -DOT_FONTNAME = Helvetica -DOT_FONTSIZE = 10 -DOT_FONTPATH = -CLASS_GRAPH = NO -COLLABORATION_GRAPH = NO -GROUP_GRAPHS = YES -UML_LOOK = YES -UML_LIMIT_NUM_FIELDS = 10 -TEMPLATE_RELATIONS = NO -INCLUDE_GRAPH = YES -INCLUDED_BY_GRAPH = NO -CALL_GRAPH = YES -CALLER_GRAPH = NO -GRAPHICAL_HIERARCHY = YES -DIRECTORY_GRAPH = YES -DOT_IMAGE_FORMAT = svg -INTERACTIVE_SVG = NO -DOT_PATH = -DOTFILE_DIRS = -MSCFILE_DIRS = -DIAFILE_DIRS = -PLANTUML_JAR_PATH = -PLANTUML_INCLUDE_PATH = -DOT_GRAPH_MAX_NODES = 200 -MAX_DOT_GRAPH_DEPTH = 0 -DOT_TRANSPARENT = NO -DOT_MULTI_TARGETS = YES -GENERATE_LEGEND = YES -DOT_CLEANUP = YES diff --git a/physics/docs/ccppv3_fv3_doxyfile b/physics/docs/ccppv3_fv3_doxyfile deleted file mode 100644 index b2b896b9e..000000000 --- a/physics/docs/ccppv3_fv3_doxyfile +++ /dev/null @@ -1,441 +0,0 @@ -# Doxyfile 1.8.11 -DOXYFILE_ENCODING = UTF-8 -PROJECT_NAME = "Common Community Physics Package (CCPP) Scientific Documentation" -PROJECT_NUMBER = "Version 3.0" -PROJECT_BRIEF = " " -PROJECT_LOGO = img/dtc_logo.png -OUTPUT_DIRECTORY = doc -CREATE_SUBDIRS = NO -ALLOW_UNICODE_NAMES = NO -OUTPUT_LANGUAGE = English -BRIEF_MEMBER_DESC = YES -REPEAT_BRIEF = NO -ABBREVIATE_BRIEF = -ALWAYS_DETAILED_SEC = NO -INLINE_INHERITED_MEMB = NO -FULL_PATH_NAMES = NO -STRIP_FROM_PATH = -STRIP_FROM_INC_PATH = -SHORT_NAMES = NO -JAVADOC_AUTOBRIEF = NO -QT_AUTOBRIEF = NO -MULTILINE_CPP_IS_BRIEF = NO -INHERIT_DOCS = YES -SEPARATE_MEMBER_PAGES = YES -TAB_SIZE = 4 -ALIASES = -TCL_SUBST = -OPTIMIZE_OUTPUT_FOR_C = NO -OPTIMIZE_OUTPUT_JAVA = NO -OPTIMIZE_FOR_FORTRAN = YES -OPTIMIZE_OUTPUT_VHDL = NO -EXTENSION_MAPPING = .f=FortranFree \ - .F90=FortranFree \ - .f90=FortranFree -MARKDOWN_SUPPORT = YES -AUTOLINK_SUPPORT = YES -BUILTIN_STL_SUPPORT = NO -CPP_CLI_SUPPORT = NO -SIP_SUPPORT = NO -IDL_PROPERTY_SUPPORT = YES -DISTRIBUTE_GROUP_DOC = YES -GROUP_NESTED_COMPOUNDS = NO -SUBGROUPING = YES -INLINE_GROUPED_CLASSES = NO -INLINE_SIMPLE_STRUCTS = NO -TYPEDEF_HIDES_STRUCT = YES -LOOKUP_CACHE_SIZE = 0 -EXTRACT_ALL = YES -EXTRACT_PRIVATE = YES -EXTRACT_PACKAGE = YES -EXTRACT_STATIC = YES -EXTRACT_LOCAL_CLASSES = YES -EXTRACT_LOCAL_METHODS = YES -EXTRACT_ANON_NSPACES = YES -HIDE_UNDOC_MEMBERS = NO -HIDE_UNDOC_CLASSES = NO -HIDE_FRIEND_COMPOUNDS = NO -HIDE_IN_BODY_DOCS = NO -INTERNAL_DOCS = YES - -CASE_SENSE_NAMES = NO - -HIDE_SCOPE_NAMES = NO - -HIDE_COMPOUND_REFERENCE= NO - -SHOW_INCLUDE_FILES = NO - -SHOW_GROUPED_MEMB_INC = NO - -FORCE_LOCAL_INCLUDES = NO - -INLINE_INFO = YES - -SORT_MEMBER_DOCS = NO - -SORT_BRIEF_DOCS = NO -SORT_MEMBERS_CTORS_1ST = NO -SORT_GROUP_NAMES = NO -SORT_BY_SCOPE_NAME = NO -STRICT_PROTO_MATCHING = NO -GENERATE_TODOLIST = YES -GENERATE_TESTLIST = YES -GENERATE_BUGLIST = YES -GENERATE_DEPRECATEDLIST= YES -ENABLED_SECTIONS = YES -MAX_INITIALIZER_LINES = 30 -SHOW_USED_FILES = YES -SHOW_FILES = YES -SHOW_NAMESPACES = YES -FILE_VERSION_FILTER = -LAYOUT_FILE = ccpp_dox_layout.xml -CITE_BIB_FILES = library.bib -QUIET = NO -WARNINGS = YES -WARN_IF_UNDOCUMENTED = NO -WARN_IF_DOC_ERROR = YES -WARN_NO_PARAMDOC = NO -WARN_AS_ERROR = NO -WARN_FORMAT = -WARN_LOGFILE = -INPUT = pdftxt/mainpage.txt \ - pdftxt/all_shemes_list.txt \ - pdftxt/GFSv15_suite.txt \ - pdftxt/GFSv15_suite_TKEEDMF.txt \ - pdftxt/CPT_adv_suite.txt \ - pdftxt/GSD_adv_suite.txt \ - pdftxt/GFS_RRTMG.txt \ - pdftxt/GFS_SFCLYR.txt \ - pdftxt/GFS_NSST.txt \ - pdftxt/GFS_NOAH.txt \ - pdftxt/GFS_SFCSICE.txt \ - pdftxt/GFS_HEDMF.txt \ - pdftxt/GFS_SATMEDMF.txt \ - pdftxt/GFS_GWDPS.txt \ - pdftxt/GFS_OZPHYS.txt \ - pdftxt/GFS_H2OPHYS.txt \ - pdftxt/GFS_RAYLEIGH.txt \ - pdftxt/GFS_SAMF.txt \ - pdftxt/GFS_SAMFdeep.txt \ - pdftxt/GFS_GWDC.txt \ - pdftxt/GFS_SAMFshal.txt \ - pdftxt/GFDL_cloud.txt \ -### pdftxt/GFS_SURFACE_PERT.txt \ - pdftxt/GFS_CALPRECIPTYPE.txt \ -### pdftxt/rad_cld.txt \ - pdftxt/CPT_CSAW.txt \ - pdftxt/CPT_MG3.txt \ - pdftxt/GSD_MYNN_EDMF.txt \ - pdftxt/GSD_CU_GF_deep.txt \ - pdftxt/GSD_RUCLSM.txt \ - pdftxt/GSD_THOMPSON.txt \ -### pdftxt/GFSphys_namelist.txt \ -### pdftxt/GFS_STOCHY_PHYS.txt \ - pdftxt/suite_input.nml.txt \ -### in-core MP - ../gfdl_fv_sat_adj.F90 \ -### time_vary - ../GFS_phys_time_vary.fv3.F90 \ - ../GFS_rad_time_vary.fv3.F90 \ - ../ozne_def.f \ - ../ozinterp.f90 \ - ../h2o_def.f \ - ../h2ointerp.f90 \ - ../aerclm_def.F \ - ../aerinterp.F90 \ - ../iccn_def.F \ - ../iccninterp.F90 \ - ../sfcsub.F \ - ../gcycle.F90 \ -### Radiation - ../radlw_main.f \ - ../radsw_main.f \ - ../radiation_aerosols.f \ - ../radiation_astronomy.f \ - ../radiation_clouds.f \ - ../radiation_gases.f \ - ../radiation_surface.f \ - ../radlw_param.f \ - ../radlw_datatb.f \ - ../radsw_param.f \ - ../radsw_datatb.f \ - ../dcyc2.f \ -### Land Surface - ../sfc_diff.f \ - ../sfc_nst.f \ - ../module_nst_model.f90 \ - ../module_nst_parameters.f90 \ - ../module_nst_water_prop.f90 \ - ../sfc_drv.f \ - ../sflx.f \ - ../namelist_soilveg.f \ - ../set_soilveg.f \ -### Sea Ice Surface - ../sfc_sice.f \ -### PBL - ../moninedmf.f \ - ../mfpbl.f \ - ../tridi.f \ -### satmedmf - ../satmedmfvdif.F \ - ../mfpblt.f \ - ../mfscu.f \ - ../tridi.f \ -### Orographic Gravity Wave - ../gwdps.f \ -### Rayleigh Dampling - ../rayleigh_damp.f \ -### Prognostic Ozone - ../ozphys_2015.f \ -### ../ozphys.f \ -### stratospheric h2o - ../h2ophys.f \ -### Deep Convection - ../samfdeepcnv.f \ -### Convective Gravity Wave - ../gwdc.f \ -### Shallow Convection - ../samfshalcnv.f \ - ../cnvc90.f \ -### Microphysics -### ../gscond.f \ -### ../precpd.f \ - ../module_bfmicrophysics.f \ -### GFDL cloud MP - ../gfdl_cloud_microphys.F90 \ - ../module_gfdl_cloud_microphys.F90 \ -### - ../GFS_MP_generic.F90 \ - ../calpreciptype.f90 \ -### stochy -### ../GFS_stochastics.F90 \ -### ../surface_perturbation.F90 \ -### ../../stochastic_physics/stochastic_physics.F90 \ -### CPT - ../m_micro.F90 \ -### ../micro_mg2_0.F90 \ - ../micro_mg3_0.F90 \ - ../micro_mg_utils.F90 \ - ../cldmacro.F \ - ../aer_cloud.F \ - ../cldwat2m_micro.F \ - ../wv_saturation.F \ - ../cs_conv_aw_adj.F90 \ - ../cs_conv.F90 \ -### GSD - ../cu_gf_driver.F90 \ - ../cu_gf_deep.F90 \ - ../cu_gf_sh.F90 \ - ../module_MYNNrad_pre.F90 \ - ../module_MYNNrad_post.F90 \ - ../module_MYNNPBL_wrapper.F90 \ - ../module_bl_mynn.F90 \ -### ../module_MYNNSFC_wrapper.F90 \ -### ../module_sf_mynn.F90 \ - ../sfc_drv_ruc.F90 \ - ../module_sf_ruclsm.F90 \ - ../namelist_soilveg_ruc.F90 \ - ../set_soilveg_ruc.F90 \ - ../module_soil_pre.F90 \ - ../mp_thompson_pre.F90 \ - ../module_mp_thompson_make_number_concentrations.F90 \ - ../mp_thompson.F90 \ - ../module_mp_thompson.F90 \ - ../module_mp_radar.F90 \ - ../mp_thompson_post.F90 \ -### utils - ../funcphys.f90 \ - ../physparam.f \ - ../physcons.F90 \ - ../radcons.f90 \ - ../mersenne_twister.f \ - compns_stochy.F90 - - -INPUT_ENCODING = UTF-8 -FILE_PATTERNS = *.f \ - *.F90 \ - *.f90 \ - *.nml \ - *.txt -RECURSIVE = YES -EXCLUDE = -EXCLUDE_SYMLINKS = NO -EXCLUDE_PATTERNS = -EXCLUDE_SYMBOLS = -EXAMPLE_PATH = -EXAMPLE_PATTERNS = -EXAMPLE_RECURSIVE = NO -IMAGE_PATH = img -INPUT_FILTER = -FILTER_PATTERNS = -FILTER_SOURCE_FILES = NO -FILTER_SOURCE_PATTERNS = -USE_MDFILE_AS_MAINPAGE = -SOURCE_BROWSER = NO -INLINE_SOURCES = NO -STRIP_CODE_COMMENTS = YES -REFERENCED_BY_RELATION = YES -REFERENCES_RELATION = YES -REFERENCES_LINK_SOURCE = YES -SOURCE_TOOLTIPS = YES -USE_HTAGS = NO -VERBATIM_HEADERS = YES -#CLANG_ASSISTED_PARSING = NO -#CLANG_OPTIONS = -ALPHABETICAL_INDEX = NO -COLS_IN_ALPHA_INDEX = 5 -IGNORE_PREFIX = -GENERATE_HTML = YES -HTML_OUTPUT = html -HTML_FILE_EXTENSION = .html -HTML_HEADER = -HTML_FOOTER = -HTML_STYLESHEET = -HTML_EXTRA_STYLESHEET = ccpp_dox_extra_style.css -HTML_EXTRA_FILES = -HTML_COLORSTYLE_HUE = 220 -HTML_COLORSTYLE_SAT = 100 -HTML_COLORSTYLE_GAMMA = 80 -HTML_TIMESTAMP = NO -HTML_DYNAMIC_SECTIONS = NO -HTML_INDEX_NUM_ENTRIES = 100 -GENERATE_DOCSET = NO -DOCSET_FEEDNAME = "Doxygen generated docs" -DOCSET_BUNDLE_ID = org.doxygen.Project -DOCSET_PUBLISHER_ID = org.doxygen.Publisher -DOCSET_PUBLISHER_NAME = Publisher -GENERATE_HTMLHELP = NO -CHM_FILE = -HHC_LOCATION = -GENERATE_CHI = NO -CHM_INDEX_ENCODING = -BINARY_TOC = NO -TOC_EXPAND = NO -GENERATE_QHP = NO -QCH_FILE = -QHP_NAMESPACE = org.doxygen.Project -QHP_VIRTUAL_FOLDER = doc -QHP_CUST_FILTER_NAME = -QHP_CUST_FILTER_ATTRS = -QHP_SECT_FILTER_ATTRS = -QHG_LOCATION = -GENERATE_ECLIPSEHELP = NO -ECLIPSE_DOC_ID = org.doxygen.Project -DISABLE_INDEX = YES -GENERATE_TREEVIEW = YES -ENUM_VALUES_PER_LINE = 4 -TREEVIEW_WIDTH = 250 -EXT_LINKS_IN_WINDOW = NO -FORMULA_FONTSIZE = 10 -FORMULA_TRANSPARENT = YES -USE_MATHJAX = YES -MATHJAX_FORMAT = HTML-CSS -MATHJAX_RELPATH = https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2 -MATHJAX_EXTENSIONS = -MATHJAX_CODEFILE = -SEARCHENGINE = YES -SERVER_BASED_SEARCH = NO -EXTERNAL_SEARCH = NO -SEARCHENGINE_URL = -SEARCHDATA_FILE = searchdata.xml -EXTERNAL_SEARCH_ID = -EXTRA_SEARCH_MAPPINGS = -GENERATE_LATEX = YES -LATEX_OUTPUT = latex -LATEX_CMD_NAME = latex -MAKEINDEX_CMD_NAME = makeindex -COMPACT_LATEX = YES -PAPER_TYPE = a4 -EXTRA_PACKAGES = amsmath -LATEX_HEADER = -LATEX_FOOTER = -LATEX_EXTRA_STYLESHEET = -LATEX_EXTRA_FILES = -PDF_HYPERLINKS = YES -USE_PDFLATEX = YES -LATEX_BATCHMODE = NO -LATEX_HIDE_INDICES = YES -LATEX_SOURCE_CODE = NO - -LATEX_BIB_STYLE = plainnat - -LATEX_TIMESTAMP = NO - -GENERATE_RTF = NO - -RTF_OUTPUT = rtf -COMPACT_RTF = NO -RTF_HYPERLINKS = NO -RTF_STYLESHEET_FILE = -RTF_EXTENSIONS_FILE = -RTF_SOURCE_CODE = NO -GENERATE_MAN = NO -MAN_OUTPUT = man -MAN_EXTENSION = .3 -MAN_SUBDIR = -MAN_LINKS = NO -GENERATE_XML = NO -XML_OUTPUT = xml -XML_PROGRAMLISTING = YES -GENERATE_DOCBOOK = NO -DOCBOOK_OUTPUT = docbook -DOCBOOK_PROGRAMLISTING = NO -GENERATE_AUTOGEN_DEF = NO -GENERATE_PERLMOD = NO -PERLMOD_LATEX = NO -PERLMOD_PRETTY = YES -PERLMOD_MAKEVAR_PREFIX = -ENABLE_PREPROCESSING = NO -MACRO_EXPANSION = NO -EXPAND_ONLY_PREDEF = NO -SEARCH_INCLUDES = YES -INCLUDE_PATH = -INCLUDE_FILE_PATTERNS = -PREDEFINED = CCPP \ - MULTI_GASES \ - 0 -EXPAND_AS_DEFINED = -SKIP_FUNCTION_MACROS = YES -TAGFILES = -GENERATE_TAGFILE = -ALLEXTERNALS = NO -EXTERNAL_GROUPS = YES -EXTERNAL_PAGES = YES -PERL_PATH = /usr/bin/perl -CLASS_DIAGRAMS = YES -MSCGEN_PATH = -DIA_PATH = -HIDE_UNDOC_RELATIONS = NO -HAVE_DOT = YES -DOT_NUM_THREADS = 0 -DOT_FONTNAME = Helvetica -DOT_FONTSIZE = 10 -DOT_FONTPATH = -CLASS_GRAPH = NO -COLLABORATION_GRAPH = NO -GROUP_GRAPHS = YES -UML_LOOK = YES -UML_LIMIT_NUM_FIELDS = 10 -TEMPLATE_RELATIONS = NO -INCLUDE_GRAPH = YES -INCLUDED_BY_GRAPH = NO -CALL_GRAPH = YES -CALLER_GRAPH = NO -GRAPHICAL_HIERARCHY = YES -DIRECTORY_GRAPH = YES -DOT_IMAGE_FORMAT = svg -INTERACTIVE_SVG = NO -DOT_PATH = -DOTFILE_DIRS = -MSCFILE_DIRS = -DIAFILE_DIRS = -PLANTUML_JAR_PATH = -PLANTUML_INCLUDE_PATH = -DOT_GRAPH_MAX_NODES = 200 -MAX_DOT_GRAPH_DEPTH = 0 -DOT_TRANSPARENT = NO -DOT_MULTI_TARGETS = YES -GENERATE_LEGEND = YES -DOT_CLEANUP = YES diff --git a/physics/docs/ccppv4_doxyfile b/physics/docs/ccppv5_doxyfile similarity index 86% rename from physics/docs/ccppv4_doxyfile rename to physics/docs/ccppv5_doxyfile index e80b27eb9..1c1046c8c 100644 --- a/physics/docs/ccppv4_doxyfile +++ b/physics/docs/ccppv5_doxyfile @@ -2,7 +2,7 @@ DOXYFILE_ENCODING = UTF-8 PROJECT_NAME = "CCPP Scientific Documentation" PROJECT_NUMBER = "" -PROJECT_BRIEF = "v4.0" +PROJECT_BRIEF = "v5.0.0" PROJECT_LOGO = img/dtc_logo.png OUTPUT_DIRECTORY = doc CREATE_SUBDIRS = NO @@ -103,41 +103,41 @@ WARN_LOGFILE = INPUT = pdftxt/mainpage.txt \ pdftxt/all_shemes_list.txt \ pdftxt/GFSv15p2_suite.txt \ - pdftxt/GFSv15p2_no_nsst_suite.txt \ - pdftxt/suite_FV3_GFS_v15p2.xml.txt \ - pdftxt/suite_FV3_GFS_v15p2_no_nsst.xml.txt \ +### pdftxt/GFSv15p2_no_nsst_suite.txt \ +### pdftxt/suite_FV3_GFS_v15p2.xml.txt \ pdftxt/GFSv16beta_suite.txt \ - pdftxt/GFSv16beta_no_nsst_suite.txt \ - pdftxt/suite_FV3_GFS_v16beta.xml.txt \ - pdftxt/suite_FV3_GFS_v16beta_no_nsst.xml.txt \ +### pdftxt/GFSv16beta_no_nsst_suite.txt \ +### pdftxt/suite_FV3_GFS_v16beta.xml.txt \ pdftxt/GSD_adv_suite.txt \ pdftxt/CPT_adv_suite.txt \ + pdftxt/RRFS_v1alpha_suite.txt \ + pdftxt/RRFS_SGSCLOUD.txt \ pdftxt/GFS_RRTMG.txt \ pdftxt/GFS_SFCLYR.txt \ +### pdftxt/MYNN_SFCLAYER.txt \ pdftxt/GFS_NSST.txt \ pdftxt/GFS_OCEAN.txt \ pdftxt/GFS_NOAH.txt \ pdftxt/GFS_SFCSICE.txt \ pdftxt/GFS_HEDMF.txt \ pdftxt/GFS_SATMEDMFVDIFQ.txt \ -## pdftxt/GFS_NoahMP.txt \ + pdftxt/GFS_NOAHMP.txt \ pdftxt/GFS_UGWPv0.txt \ pdftxt/GFS_GWDPS.txt \ pdftxt/GFS_OZPHYS.txt \ pdftxt/GFS_H2OPHYS.txt \ pdftxt/GFS_RAYLEIGH.txt \ - pdftxt/GFS_SAMF.txt \ pdftxt/GFS_SAMFdeep.txt \ pdftxt/GFS_SAMFshal.txt \ pdftxt/GFDL_cloud.txt \ - pdftxt/GFS_CALPRECIPTYPE.txt \ +### pdftxt/GFS_CALPRECIPTYPE.txt \ ### pdftxt/rad_cld.txt \ pdftxt/CPT_CSAW.txt \ pdftxt/CPT_MG3.txt \ - pdftxt/GSD_MYNN_EDMF.txt \ - pdftxt/GSD_CU_GF_deep.txt \ - pdftxt/GSD_RUCLSM.txt \ - pdftxt/GSD_THOMPSON.txt \ + pdftxt/MYNN_EDMF.txt \ + pdftxt/CU_GF_deep.txt \ + pdftxt/RUCLSM.txt \ + pdftxt/THOMPSON.txt \ ### pdftxt/GFSphys_namelist.txt \ ### pdftxt/GFS_STOCHY_PHYS.txt \ pdftxt/suite_input.nml.txt \ @@ -158,13 +158,17 @@ INPUT = pdftxt/mainpage.txt \ ../sfcsub.F \ ../gcycle.F90 \ ### Radiation -### ../GFS_rrtmg_pre.F90 \ -### ../rrtmg_sw_pre.F90 \ + ../GFS_rrtmg_pre.F90 \ + ../GFS_rrtmg_post.F90 \ + ../GFS_rrtmg_setup.F90 \ + ../rrtmg_sw_pre.F90 \ + ../module_SGSCloud_RadPre.F90 \ + ../module_SGSCloud_RadPost.F90 \ ../radsw_main.f \ -### ../rrtmg_sw_post.F90 \ -### ../rrtmg_lw_pre.F90 \ + ../rrtmg_sw_post.F90 \ + ../rrtmg_lw_pre.F90 \ ../radlw_main.f \ -### ../rrtmg_lw_post.F90 \ + ../rrtmg_lw_post.F90 \ ../radiation_aerosols.f \ ../radiation_astronomy.f \ ../radiation_clouds.f \ @@ -177,15 +181,22 @@ INPUT = pdftxt/mainpage.txt \ ../dcyc2.f \ ### Land Surface ../sfc_diff.f \ - ../sfc_nst.f \ - ../sfc_ocean.F \ - ../module_nst_model.f90 \ - ../module_nst_parameters.f90 \ +### ../module_MYNNSFC_wrapper.F90 \ +### ../module_sf_mynn.F90 \ + ../sfc_nst.f \ + ../sfc_ocean.F \ + ../module_nst_model.f90 \ + ../module_nst_parameters.f90 \ ../module_nst_water_prop.f90 \ - ../sfc_drv.f \ - ../sflx.f \ + ../sfc_drv.f \ + ../sflx.f \ ../namelist_soilveg.f \ ../set_soilveg.f \ + ../sfc_noahmp_drv.f \ + ../module_sf_noahmplsm.f90 \ + ../module_sf_noahmp_glacier.f90 \ + ../noahmp_tables.f90 \ + ../GFS_surface_generic.F90 \ ### Sea Ice Surface ../sfc_sice.f \ ### PBL @@ -193,7 +204,7 @@ INPUT = pdftxt/mainpage.txt \ ../mfpbl.f \ ../tridi.f \ ### satmedmf -## ../satmedmfvdif.F \ +### ../satmedmfvdif.F \ ../satmedmfvdifq.F \ ../mfpbltq.f \ ../mfscuq.f \ @@ -207,7 +218,7 @@ INPUT = pdftxt/mainpage.txt \ ../cires_ugwp_module.F90 \ ../cires_ugwp_utils.F90 \ ../cires_ugwp_solvers.F90 \ -### ../cires_ugwp_post.F90 \ + ../cires_ugwp_post.F90 \ ### ../cires_ugwp_initialize.F90 \ ../cires_vert_wmsdis.F90 \ ../cires_vert_orodis.F90 \ @@ -233,7 +244,6 @@ INPUT = pdftxt/mainpage.txt \ ### GFDL cloud MP ../gfdl_cloud_microphys.F90 \ ../module_gfdl_cloud_microphys.F90 \ -### ../GFS_MP_generic.F90 \ ../calpreciptype.f90 \ ### stochy @@ -242,6 +252,7 @@ INPUT = pdftxt/mainpage.txt \ ### ../../stochastic_physics/stochastic_physics.F90 \ ### CPT ../m_micro.F90 \ + ../m_micro_interstitial.F90 \ ### ../micro_mg2_0.F90 \ ../micro_mg3_0.F90 \ ../micro_mg_utils.F90 \ @@ -251,12 +262,10 @@ INPUT = pdftxt/mainpage.txt \ ../wv_saturation.F \ ../cs_conv_aw_adj.F90 \ ../cs_conv.F90 \ -### GSD ../cu_gf_driver.F90 \ + ../cu_gf_driver_pre.F90 \ ../cu_gf_deep.F90 \ ../cu_gf_sh.F90 \ - ../module_MYNNrad_pre.F90 \ - ../module_MYNNrad_post.F90 \ ../module_MYNNPBL_wrapper.F90 \ ../module_bl_mynn.F90 \ ### ../module_MYNNSFC_wrapper.F90 \ diff --git a/physics/docs/img/MYNN-SFCLAY_call_order.png b/physics/docs/img/MYNN-SFCLAY_call_order.png new file mode 100644 index 000000000..825a4c5e3 Binary files /dev/null and b/physics/docs/img/MYNN-SFCLAY_call_order.png differ diff --git a/physics/docs/img/mesocam.png b/physics/docs/img/mesocam.png new file mode 100644 index 000000000..c0c29bfed Binary files /dev/null and b/physics/docs/img/mesocam.png differ diff --git a/physics/docs/library.bib b/physics/docs/library.bib index dd2b2042e..48ef43910 100644 --- a/physics/docs/library.bib +++ b/physics/docs/library.bib @@ -1,16 +1,127 @@ %% This BibTeX bibliography file was created using BibDesk. %% http://bibdesk.sourceforge.net/ -%% Created for Man Zhang at 2020-03-02 13:10:25 -0700 +%% Created for Man Zhang at 2021-02-03 14:24:42 -0700 %% Saved with string encoding Unicode (UTF-8) +@article{buchard_et_al_2017, + Author = {V. Buchard and C. A. Randles and A. M. da Silva and et al.}, + Date-Added = {2021-02-01 21:33:58 +0000}, + Date-Modified = {2021-02-01 21:37:20 +0000}, + Journal = {J. Climate}, + Pages = {6851-6872}, + Title = {The {MERRA}-2 aerosol reanalysis, 1980 onward. {P}art {II}: Evaluation and case studies}, + Volume = {30}, + Year = {2017}} + +@article{randles_et_al_2017, + Author = {C. A. Randles and A. M. da Silva and V. Buchard and et al.}, + Date-Added = {2021-02-01 21:26:16 +0000}, + Date-Modified = {2021-02-01 21:32:25 +0000}, + Journal = {J. Climate}, + Pages = {6823-6850}, + Title = {The {MERRA}-2 aerosol reanalysis, 1980 onward. {P}art {I}: System description and data assimilation evaluation}, + Volume = {30}, + Year = {2017}} + +@article{colarco_et_al_2010, + Author = {P. Colarco and A. da Silva and M. Chin and T. Diehl}, + Date-Added = {2021-02-01 14:20:20 -0700}, + Date-Modified = {2021-02-01 14:23:22 -0700}, + Journal = {Journal of Geophysical Research}, + Number = {D14207}, + Pages = {25}, + Title = {Online simulations of global aerosol distributions in the {NASA} {GOES-4} model and comparisons to satellite and ground-based aerosol optical depth}, + Volume = {115}, + Year = {2010}} + +@article{zhou_etal_2019, + Author = {L.-J. Zhou and S.-J. Lin and J.-H. Chen and L. M. Harris and X. Chen and S. L. Rees}, + Date-Added = {2021-02-01 21:07:24 +0000}, + Date-Modified = {2021-02-01 21:10:36 +0000}, + Journal = {Bulletin of the American Meteorological Society}, + Pages = {1225-1243}, + Title = {Toward convective-scale prediction within the next generation global prediction system}, + Year = {2019}} + +@article{miguez_et_al_2007, + Author = {G. Miguez-Macho and Y. Fan and C. P. Weaver and R. Walko and A. Robock}, + Date-Added = {2021-01-05 14:42:06 -0700}, + Date-Modified = {2021-01-05 14:50:03 -0700}, + Journal = {Journal of Geophysical Research}, + Number = {D13108}, + Title = {Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation}, + Volume = {112}, + Year = {2007}} + +@article{fan_et_al_2007, + Author = {Y. Fan and G. Miguez-Macho and C. P. Weaver and R. Walko and A. Robock}, + Date-Added = {2021-01-05 14:36:44 -0700}, + Date-Modified = {2021-01-05 14:40:37 -0700}, + Journal = {Journal of Geophysical Research}, + Number = {D10125}, + Title = {Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations}, + Volume = {112}, + Year = {2007}} + +@article{niu_et_al_2005, + Author = {Niu, G.-Y. and Z.-L Yang and R. E. Dickinson and L. E. Gulden}, + Date-Added = {2021-01-05 14:19:03 -0700}, + Date-Modified = {2021-01-05 14:23:29 -0700}, + Journal = {Climate and Dynamics}, + Number = {D21106}, + Title = {A simple {TOPMODEL}-based runoff parameterization ({SIMTOP}) for use in global climate models}, + Volume = {110}, + Year = {2005}} + +@article{monin_and_obukhov_1954, + Author = {A.S.Monin and A.M.Obukhov}, + Date-Added = {2020-11-02 19:17:57 +0000}, + Date-Modified = {2020-11-02 19:19:45 +0000}, + Journal = {Akad. Nauk SSSR}, + Pages = {163-187}, + Title = {Basic laws of turbulent mixing in the atmosphere near the ground}, + Volume = {24}, + Year = {1954}} + +@article{beljaars_et_al_2004, + Author = {A.C.M. Beljaars and A.R.Brown and N. Wood}, + Date-Added = {2020-11-02 19:13:02 +0000}, + Date-Modified = {2020-11-02 19:15:18 +0000}, + Journal = {Quarterly Journal of the Royal Meteorological Society}, + Pages = {1327-1347}, + Title = {A new parameterization of turbulent orographic form drag}, + Volume = {130}, + Year = {2004}} + +@article{steeneveld_et_al_2008, + Author = {G.J. Steeneveld and A. A. M. Holtslag and C.J. Nappo and B.J.H. van de Wiel and L. Mahrt}, + Date-Added = {2020-11-02 19:02:29 +0000}, + Date-Modified = {2020-11-02 19:11:00 +0000}, + Journal = {Journal of Applied Meteorology}, + Pages = {2518-2530}, + Title = {Exploring the possible role of small-scale terrain drag on stable boundary layers over land}, + Volume = {47}, + Year = {2008}} + +@article{fitch_et_al_2012, + Author = {A. C. Fitch and J. B. Olson and J. K. Lundquist and J. Dudhia and A.K. Gupta and J. Michalakes and I. Barstad}, + Date-Added = {2020-11-02 11:19:27 -0700}, + Date-Modified = {2020-11-17 15:48:33 +0000}, + Journal = {Monthly Weather Review}, + Number = {9}, + Pages = {3017-3038}, + Title = {Local and mesoscale impacts of wind farms as parameterized in a mesoscale {NWP} model}, + Volume = {140}, + Year = {2012}} + @article{niu_and_yang_2006, Abstract = { Abstract The presence of ice in soil dramatically alters soil hydrologic and thermal properties. Despite this important role, many recent studies show that explicitly including the hydrologic effects of soil ice in land surface models degrades the simulation of runoff in cold regions. This paper addresses this dilemma by employing the Community Land Model version 2.0 (CLM2.0) developed at the National Center for Atmospheric Research (NCAR) and a simple TOPMODEL-based runoff scheme (SIMTOP). CLM2.0/SIMTOP explicitly computes soil ice content and its modifications to soil hydrologic and thermal properties. However, the frozen soil scheme has a tendency to produce a completely frozen soil (100\% ice content) whenever the soil temperature is below 0$\,^{\circ}$C. The frozen ground prevents infiltration of snowmelt or rainfall, thereby resulting in earlier- and higher-than-observed springtime runoff. This paper presents modifications to the above-mentioned frozen soil scheme that produce more accurate magnitude and seasonality of runoff and soil water storage. These modifications include 1) allowing liquid water to coexist with ice in the soil over a wide range of temperatures below 0$\,^{\circ}$C by using the freezing-point depression equation, 2) computing the vertical water fluxes by introducing the concept of a fractional permeable area, which partitions the model grid into an impermeable part (no vertical water flow) and a permeable part, and 3) using the total soil moisture (liquid water and ice) to calculate the soil matric potential and hydraulic conductivity. The performance of CLM2.0/SIMTOP with these changes has been tested using observed data in cold-region river basins of various spatial scales. Compared to the CLM2.0/SIMTOP frozen soil scheme, the modified scheme produces monthly runoff that compares more favorably with that estimated by the University of New Hampshire--Global Runoff Data Center and a terrestrial water storage change that is in closer agreement with that measured by the Gravity Recovery and Climate Experiment (GRACE) satellites. }, - Author = {Niu, Guo-Yue and Yang, Zong-Liang}, + Author = {Niu, G.-Y. and Yang, Z.-L.}, Date-Added = {2019-10-25 22:35:50 +0000}, Date-Modified = {2019-10-25 22:36:03 +0000}, Doi = {10.1175/JHM538.1}, @@ -26,7 +137,7 @@ @article{niu_and_yang_2006 @article{niu_et_al_2007, Abstract = {Groundwater interacts with soil moisture through the exchanges of water between the unsaturated soil and its underlying aquifer under gravity and capillary forces. Despite its importance, groundwater is not explicitly represented in climate models. This paper developed a simple groundwater model (SIMGM) by representing recharge and discharge processes of the water storage in an unconfined aquifer, which is added as a single integration element below the soil of a land surface model. We evaluated the model against the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage change (ΔS) data. The modeled total water storage (including unsaturated soil water and groundwater) change agrees fairly well with GRACE estimates. The anomaly of the modeled groundwater storage explains most of the GRACE ΔS anomaly in most river basins where the water storage is not affected by snow water or frozen soil. For this reason, the anomaly of the modeled water table depth agrees well with that converted from the GRACE ΔS in most of the river basins. We also investigated the impacts of groundwater dynamics on soil moisture and evapotranspiration through the comparison of SIMGM to an additional model run using gravitational free drainage (FD) as the model's lower boundary condition. SIMGM produced much wetter soil profiles globally and up to 16\% more annual evapotranspiration than FD, most obviously in arid-to-wet transition regions.}, - Author = {Niu, Guo-Yue and Yang, Zong-Liang and Dickinson, Robert E. and Gulden, Lindsey E. and Su, Hua}, + Author = {Niu, G.-Y. and Yang, Z.-L. and Dickinson, R. E. and Gulden, L. E. and Su, H.}, Date-Added = {2019-10-25 22:31:30 +0000}, Date-Modified = {2019-10-25 22:31:41 +0000}, Doi = {10.1029/2006JD007522}, @@ -43,7 +154,7 @@ @article{niu_et_al_2007 @article{niu_et_al_2011, Abstract = {This first paper of the two-part series describes the objectives of the community efforts in improving the Noah land surface model (LSM), documents, through mathematical formulations, the augmented conceptual realism in biophysical and hydrological processes, and introduces a framework for multiple options to parameterize selected processes (Noah-MP). The Noah-MP's performance is evaluated at various local sites using high temporal frequency data sets, and results show the advantages of using multiple optional schemes to interpret the differences in modeling simulations. The second paper focuses on ensemble evaluations with long-term regional (basin) and global scale data sets. The enhanced conceptual realism includes (1) the vegetation canopy energy balance, (2) the layered snowpack, (3) frozen soil and infiltration, (4) soil moisture-groundwater interaction and related runoff production, and (5) vegetation phenology. Sample local-scale validations are conducted over the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site, the W3 catchment of Sleepers River, Vermont, and a French snow observation site. Noah-MP shows apparent improvements in reproducing surface fluxes, skin temperature over dry periods, snow water equivalent (SWE), snow depth, and runoff over Noah LSM version 3.0. Noah-MP improves the SWE simulations due to more accurate simulations of the diurnal variations of the snow skin temperature, which is critical for computing available energy for melting. Noah-MP also improves the simulation of runoff peaks and timing by introducing a more permeable frozen soil and more accurate simulation of snowmelt. We also demonstrate that Noah-MP is an effective research tool by which modeling results for a given process can be interpreted through multiple optional parameterization schemes in the same model framework.}, - Author = {Niu, Guo-Yue and Yang, Zong-Liang and Mitchell, Kenneth E. and Chen, Fei and Ek, Michael B. and Barlage, Michael and Kumar, Anil and Manning, Kevin and Niyogi, Dev and Rosero, Enrique and Tewari, Mukul and Xia, Youlong}, + Author = {Niu, G.-Y. and Yang, Z.-L. and Mitchell, K. E. and et al.}, Date-Added = {2019-10-25 21:50:31 +0000}, Date-Modified = {2019-10-25 21:50:40 +0000}, Doi = {10.1029/2010JD015139}, @@ -51,7 +162,7 @@ @article{niu_et_al_2011 Journal = {Journal of Geophysical Research: Atmospheres}, Keywords = {Noah, land surface model, local scale, multiphysics, evaluation, validation}, Number = {D12}, - Title = {The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements}, + Title = {The community Noah land surface model with multiparameterization options ({Noah-MP}): 1. Model description and evaluation with local-scale measurements}, Url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JD015139}, Volume = {116}, Year = {2011}, @@ -59,7 +170,7 @@ @article{niu_et_al_2011 Bdsk-Url-2 = {https://doi.org/10.1029/2010JD015139}} @article{bechtold_et_al_2014, - Author = {P. Bechtold and N. Semane and P. Lopez and J-P Chaboureau and A. Beljaars and N. Bormann}, + Author = {P. Bechtold and N. Semane and P. Lopez and J.-P. Chaboureau and A. Beljaars and N. Bormann}, Date-Added = {2019-06-13 14:29:21 -0600}, Date-Modified = {2019-06-13 14:38:38 -0600}, Journal = {J. Atmos. Sci.}, @@ -69,12 +180,12 @@ @article{bechtold_et_al_2014 Year = {2014}} @article{freitas_et_al_2018, - Author = {S.R. Freitas and G.A. Grell and A. Molod and M. A. Thompson and W.M. Putman and C. M. Santos e Silva and E. P. Souza}, + Author = {S. R. Freitas and G. A. Grell and A. Molod and et al.}, Date-Added = {2019-06-13 13:51:50 -0600}, Date-Modified = {2019-06-13 14:07:37 -0600}, Journal = {Journal of Advances in Modeling Earth Systems}, Pages = {1266-1289}, - Title = {Assessing the Grell-Freitas convection parameterization in the NASA GEOS modeling system}, + Title = {Assessing the {G}rell-{F}reitas convection parameterization in the {NASA GEOS} modeling system}, Volume = {10}, Year = {2018}} @@ -104,7 +215,7 @@ @article{moorthi_and_suarez_1992 Date-Modified = {2019-06-06 17:56:00 +0000}, Journal = {Monthly Weather Review}, Pages = {978-1002}, - Title = {Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models}, + Title = {Relaxed {A}rakawa-{S}chubert. A parameterization of moist convection for general circulation models}, Volume = {120}, Year = {1992}} @@ -127,7 +238,7 @@ @article{nakanishi_2000 Year = {2000}} @article{Gehne_2019, - Author = {Gehne, Maria and Hamill, Thomas M. and Bates, Gary T. and Pegion, Philip and Kolczynski, Walter}, + Author = {Gehne, M. and Hamill, T. M. and Bates, G. T. and Pegion, P. and Kolczynski, W.}, Date-Added = {2019-05-24 12:46:43 -0600}, Date-Modified = {2019-05-24 12:46:43 -0600}, Doi = {10.1175/mwr-d-18-0057.1}, @@ -162,7 +273,7 @@ @article{Gettelman_2010 Bdsk-Url-2 = {http://dx.doi.org/10.1029/2009jd013797}} @article{HOBBS_1974, - Author = {HOBBS, PETER V.}, + Author = {Hobbs, P. V.}, Date-Added = {2019-05-23 11:07:04 -0600}, Date-Modified = {2019-05-23 11:07:04 -0600}, Doi = {10.1038/251694b0}, @@ -179,7 +290,7 @@ @article{HOBBS_1974 Bdsk-Url-1 = {http://dx.doi.org/10.1038/251694b0}} @article{Pichugina_2008, - Author = {Pichugina, Yelena L. and Tucker, Sara C. and Banta, Robert M. and Brewer, W. Alan and Kelley, Neil D. and Jonkman, Bonnie J. and Newsom, Rob K.}, + Author = {Pichugina, Y. L. and Tucker, S. C. and Banta, R. M. and et al.}, Date-Added = {2019-05-22 11:25:17 -0600}, Date-Modified = {2019-06-05 15:59:49 +0000}, Journal = {Journal of Atmospheric and Oceanic Technology}, @@ -192,7 +303,7 @@ @article{Pichugina_2008 Bdsk-Url-2 = {http://dx.doi.org/10.1175/2008jtecha988.1}} @article{Nielsen_Gammon_2008, - Author = {Nielsen-Gammon, John W. and Powell, Christina L. and Mahoney, M. J. and Angevine, Wayne M. and Senff, Christoph and White, Allen and Berkowitz, Carl and Doran, Christopher and Knupp, Kevin}, + Author = {Nielsen-Gammon, J. W. and Powell, C. L. and Mahoney, M. J. and et al.}, Date-Added = {2019-05-22 11:19:45 -0600}, Date-Modified = {2019-06-05 15:31:19 +0000}, Journal = {Journal of Applied Meteorology and Climatology}, @@ -205,7 +316,7 @@ @article{Nielsen_Gammon_2008 Bdsk-Url-2 = {http://dx.doi.org/10.1175/2007jamc1503.1}} @article{Benjamin_2016b, - Author = {Benjamin, Stanley G. and Brown, John M. and Smirnova, Tatiana G.}, + Author = {Benjamin, S. G. and Brown, J. M. and Smirnova, T. G.}, Date-Added = {2019-05-20 16:32:47 -0600}, Date-Modified = {2019-05-20 16:33:32 -0600}, Doi = {10.1175/waf-d-15-0136.1}, @@ -223,7 +334,7 @@ @article{Benjamin_2016b Bdsk-Url-2 = {http://dx.doi.org/10.1175/waf-d-15-0136.1}} @article{Grell_2002, - Author = {Grell, Georg A. and D{\'e}v{\'e}nyi, Dezs{\H o}}, + Author = {Grell, G. A. and D{\'e}v{\'e}nyi, D.}, Date-Added = {2019-05-20 11:19:25 -0600}, Date-Modified = {2019-05-20 11:19:25 -0600}, Doi = {10.1029/2002gl015311}, @@ -258,7 +369,7 @@ @article{Arakawa_2011 Bdsk-Url-1 = {http://dx.doi.org/10.5194/acp-11-3731-2011}} @article{Jiang_2010, - Author = {Jiang, Hongli and Feingold, Graham and Sorooshian, Armin}, + Author = {Jiang, H-L. and Feingold, G. and Sorooshian, A.}, Date-Added = {2019-05-20 11:01:38 -0600}, Date-Modified = {2019-05-20 11:01:38 -0600}, Doi = {10.1175/2010jas3484.1}, @@ -277,7 +388,7 @@ @article{Jiang_2010 @conference{berry_1968, Address = {Albany, N.Y}, - Author = {E.X. Berry}, + Author = {E. X. Berry}, Booktitle = {1st National Conference on Weather Modification}, Date-Added = {2019-05-20 10:50:44 -0600}, Date-Modified = {2019-05-20 10:54:39 -0600}, @@ -286,7 +397,7 @@ @conference{berry_1968 Year = {1968}} @article{Wilks_2005, - Author = {Wilks, Daniel S.}, + Author = {Wilks, D. S.}, Date-Added = {2019-05-08 14:10:09 -0600}, Date-Modified = {2019-05-08 14:10:09 -0600}, Doi = {10.1256/qj.04.03}, @@ -303,16 +414,16 @@ @article{Wilks_2005 Bdsk-Url-1 = {http://dx.doi.org/10.1256/qj.04.03}} @article{Han_2019, - Author = {J. Han and C.S. Bretherton}, + Author = {J. Han and C. S. Bretherton}, Date-Added = {2019-05-06 20:43:06 -0600}, Date-Modified = {2019-05-06 20:44:39 -0600}, Journal = {Weather and Forecasting}, - Title = {TKE-based Moist Eddy-Diffusivity Mass-Flux (EDMF) Parameterization for Vertical Turbulent Mixing}, + Title = {{TKE}-based Moist Eddy-Diffusivity Mass-Flux ({EDMF}) Parameterization for Vertical Turbulent Mixing}, Volume = {accepted}, Year = {2019}} @article{Thompson_2014, - Author = {Thompson, Gregory and Eidhammer, Trude}, + Author = {Thompson, G. and Eidhammer, T.}, Date-Added = {2019-05-06 19:55:25 -0600}, Date-Modified = {2019-05-06 19:55:25 -0600}, Doi = {10.1175/jas-d-13-0305.1}, @@ -330,7 +441,7 @@ @article{Thompson_2014 Bdsk-Url-2 = {http://dx.doi.org/10.1175/jas-d-13-0305.1}} @article{Thompson_2008, - Author = {Thompson, Gregory and Field, Paul R. and Rasmussen, Roy M. and Hall, William D.}, + Author = {Thompson, G. and Field, P. R. and Rasmussen, R. M. and Hall, W. D.}, Date-Added = {2019-05-06 19:49:48 -0600}, Date-Modified = {2019-05-06 19:49:48 -0600}, Doi = {10.1175/2008mwr2387.1}, @@ -340,7 +451,7 @@ @article{Thompson_2008 Number = {12}, Pages = {5095--5115}, Publisher = {American Meteorological Society}, - Title = {Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization}, + Title = {Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. {P}art {II}: Implementation of a New Snow Parameterization}, Url = {http://dx.doi.org/10.1175/2008MWR2387.1}, Volume = {136}, Year = {2008}, @@ -348,7 +459,7 @@ @article{Thompson_2008 Bdsk-Url-2 = {http://dx.doi.org/10.1175/2008mwr2387.1}} @article{Krinner_2018, - Author = {Krinner, Gerhard and Derksen, Chris and Essery, Richard and Flanner, Mark and Hagemann, Stefan and Clark, Martyn and Hall, Alex and Rott, Helmut and Brutel-Vuilmet, Claire and Kim, Hyungjun and et al.}, + Author = {Krinner, G. and Derksen, C. and Essery, R. and et al.}, Date-Added = {2019-05-06 14:22:35 -0600}, Date-Modified = {2019-05-06 14:22:35 -0600}, Doi = {10.5194/gmd-11-5027-2018}, @@ -358,14 +469,14 @@ @article{Krinner_2018 Number = {12}, Pages = {5027--5049}, Publisher = {Copernicus GmbH}, - Title = {ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks}, + Title = {{ESM-SnowMIP}: assessing snow models and quantifying snow-related climate feedbacks}, Url = {http://dx.doi.org/10.5194/gmd-11-5027-2018}, Volume = {11}, Year = {2018}, Bdsk-Url-1 = {http://dx.doi.org/10.5194/gmd-11-5027-2018}} @article{Rutter_2009, - Author = {Rutter, Nick and Essery, Richard and Pomeroy, John and Altimir, Nuria and Andreadis, Kostas and Baker, Ian and Barr, Alan and Bartlett, Paul and Boone, Aaron and Deng, Huiping and et al.}, + Author = {Rutter, N. and Essery, R. and Pomeroy, J. and et al.}, Date-Added = {2019-05-06 14:22:28 -0600}, Date-Modified = {2019-05-06 14:22:28 -0600}, Doi = {10.1029/2008jd011063}, @@ -374,7 +485,7 @@ @article{Rutter_2009 Month = {Mar}, Number = {D6}, Publisher = {American Geophysical Union (AGU)}, - Title = {Evaluation of forest snow processes models (SnowMIP2)}, + Title = {Evaluation of forest snow processes models ({SnowMIP2})}, Url = {http://dx.doi.org/10.1029/2008JD011063}, Volume = {114}, Year = {2009}, @@ -382,13 +493,13 @@ @article{Rutter_2009 Bdsk-Url-2 = {http://dx.doi.org/10.1029/2008jd011063}} @article{Essery_2009, - Author = {Essery, Richard and Rutter, Nick and Pomeroy, John and Baxter, Robert and St{\"a}hli, Manfred and Gustafsson, David and Barr, Alan and Bartlett, Paul and Elder, Kelly}, + Author = {Essery, R. and Rutter, N. and Pomeroy, J. and et al.}, Date-Added = {2019-05-06 14:20:27 -0600}, Date-Modified = {2019-06-05 16:01:14 +0000}, Journal = {Bulletin of the American Meteorological Society}, Number = {8}, Pages = {1120-1136}, - Title = {SNOWMIP2: An Evaluation of Forest Snow Process Simulations}, + Title = {{SNOWMIP2}: An Evaluation of Forest Snow Process Simulations}, Volume = {90}, Year = {2009}, Bdsk-Url-1 = {http://dx.doi.org/10.1175/2009BAMS2629.1}, @@ -406,7 +517,7 @@ @proceedings{Etchevers_2002 Year = {2002}} @article{Etchevers_2004, - Author = {Etchevers, Pierre and Martin, Eric and Brown, Ross and Fierz, Charles and Lejeune, Yves and Bazile, Eric and Boone, Aaron and Dai, Yong-Jiu and Essery, Richard and Fernandez, Alberto and et al.}, + Author = {Etchevers, P. and Martin, E. and Brown, R. and et al.}, Date-Added = {2019-05-06 14:16:12 -0600}, Date-Modified = {2019-05-06 14:16:12 -0600}, Doi = {10.3189/172756404781814825}, @@ -414,14 +525,14 @@ @article{Etchevers_2004 Journal = {Annals of Glaciology}, Pages = {150--158}, Publisher = {Cambridge University Press (CUP)}, - Title = {Validation of the energy budget of an alpine snowpack simulated by several snow models (Snow MIP project)}, + Title = {Validation of the energy budget of an alpine snowpack simulated by several snow models (Snow {MIP} project)}, Url = {http://dx.doi.org/10.3189/172756404781814825}, Volume = {38}, Year = {2004}, Bdsk-Url-1 = {http://dx.doi.org/10.3189/172756404781814825}} @article{Luo_2003, - Author = {Luo, Lifeng and Robock, Alan and Vinnikov, Konstantin Y. and Schlosser, C. Adam and Slater, Andrew G. and Boone, Aaron and Etchevers, Pierre and Habets, Florence and Noilhan, Joel and Braden, Harald and et al.}, + Author = {Luo, L-F. and Robock, A. and Vinnikov, K. Y. and et al.}, Date-Added = {2019-05-06 14:12:54 -0600}, Date-Modified = {2019-05-06 14:12:54 -0600}, Doi = {10.1175/1525-7541(2003)4<334:eofsos>2.0.co;2}, @@ -431,7 +542,7 @@ @article{Luo_2003 Number = {2}, Pages = {334--351}, Publisher = {American Meteorological Society}, - Title = {Effects of Frozen Soil on Soil Temperature, Spring Infiltration, and Runoff: Results from the PILPS 2(d) Experiment at Valdai, Russia}, + Title = {Effects of Frozen Soil on Soil Temperature, Spring Infiltration, and Runoff: Results from the {PILPS} 2(d) Experiment at {V}aldai, {R}ussia}, Url = {http://dx.doi.org/10.1175/1525-7541(2003)4<334:EOFSOS>2.0.CO;2}, Volume = {4}, Year = {2003}, @@ -439,7 +550,7 @@ @article{Luo_2003 Bdsk-Url-2 = {http://dx.doi.org/10.1175/1525-7541(2003)4%3C334:eofsos%3E2.0.co;2}} @article{Slater_2001, - Author = {Slater, A. G. and Schlosser, C. A. and Desborough, C. E. and Pitman, A. J. and Henderson-Sellers, A. and Robock, A. and Vinnikov, K. Ya and Entin, J. and Mitchell, K. and Chen, F. and et al.}, + Author = {Slater, A. G. and Schlosser, C. A. and Desborough, C. E. and et al.}, Date-Added = {2019-05-06 14:11:52 -0600}, Date-Modified = {2019-05-06 14:11:52 -0600}, Doi = {10.1175/1525-7541(2001)002<0007:trosil>2.0.co;2}, @@ -449,7 +560,7 @@ @article{Slater_2001 Number = {1}, Pages = {7--25}, Publisher = {American Meteorological Society}, - Title = {The Representation of Snow in Land Surface Schemes: Results from PILPS 2(d)}, + Title = {The Representation of Snow in Land Surface Schemes: Results from {PILPS} 2(d)}, Url = {http://dx.doi.org/10.1175/1525-7541(2001)002<0007:TROSIL>2.0.CO;2}, Volume = {2}, Year = {2001}, @@ -457,7 +568,7 @@ @article{Slater_2001 Bdsk-Url-2 = {http://dx.doi.org/10.1175/1525-7541(2001)002%3C0007:trosil%3E2.0.co;2}} @article{Schlosser_1997, - Author = {Schlosser, C. Adam and Robock, Alan and Vinnikov, Konstantin Ya and Speranskaya, Nina A. and Xue, Yongkang}, + Author = {Schlosser, C. A. and Robock, A. and Vinnikov, K. Y. and Speranskaya, N. A. and Xue, Y.-K.}, Date-Added = {2019-05-06 14:10:42 -0600}, Date-Modified = {2019-05-06 14:10:42 -0600}, Doi = {10.1175/1520-0493(1997)125<3279:ylshms>2.0.co;2}, @@ -467,7 +578,7 @@ @article{Schlosser_1997 Number = {12}, Pages = {3279--3296}, Publisher = {American Meteorological Society}, - Title = {18-Year Land-Surface Hydrology Model Simulations for a Midlatitude Grassland Catchment in Valdai, Russia}, + Title = {18-Year Land-Surface Hydrology Model Simulations for a Midlatitude Grassland Catchment in {V}aldai, {R}ussia}, Url = {http://dx.doi.org/10.1175/1520-0493(1997)125<3279:YLSHMS>2.0.CO;2}, Volume = {125}, Year = {1997}, @@ -475,7 +586,7 @@ @article{Schlosser_1997 Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0493(1997)125%3C3279:ylshms%3E2.0.co;2}} @article{Berbery_1999, - Author = {Berbery, Ernesto Hugo and Mitchell, Kenneth E. and Benjamin, Stanley and Smirnova, Tatiana and Ritchie, Harold and Hogue, Richard and Radeva, Ekaterina}, + Author = {Berbery, E. H. and Mitchell, K. E. and Benjamin, S. and Smirnova, T. and Ritchie, H. and Hogue, R. and Radeva, E.}, Date-Added = {2019-05-06 14:08:00 -0600}, Date-Modified = {2019-05-06 14:08:00 -0600}, Doi = {10.1029/1999jd900128}, @@ -493,7 +604,7 @@ @article{Berbery_1999 Bdsk-Url-2 = {http://dx.doi.org/10.1029/1999jd900128}} @article{Benjamin_2004b, - Author = {Benjamin, Stanley G. and Grell, Georg A. and Brown, John M. and Smirnova, Tatiana G. and Bleck, Rainer}, + Author = {Benjamin, S. G. and Grell, G. A. and Brown, J. M. and Smirnova, T. G. and Bleck, R.}, Date-Added = {2019-05-06 14:05:46 -0600}, Date-Modified = {2019-05-06 14:06:43 -0600}, Doi = {10.1175/1520-0493(2004)132<0473:mwpwtr>2.0.co;2}, @@ -503,7 +614,7 @@ @article{Benjamin_2004b Number = {2}, Pages = {473--494}, Publisher = {American Meteorological Society}, - Title = {Mesoscale Weather Prediction with the RUC Hybrid Isentropic--Terrain-Following Coordinate Model}, + Title = {Mesoscale Weather Prediction with the {RUC} Hybrid Isentropic--Terrain-Following Coordinate Model}, Url = {http://dx.doi.org/10.1175/1520-0493(2004)132<0473:MWPWTR>2.0.CO;2}, Volume = {132}, Year = {2004}, @@ -511,7 +622,7 @@ @article{Benjamin_2004b Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0493(2004)132%3C0473:mwpwtr%3E2.0.co;2}} @article{Benjamin_2004a, - Author = {Benjamin, Stanley G. and D{\'e}v{\'e}nyi, Dezs{\"o} and Weygandt, Stephen S. and Brundage, Kevin J. and Brown, John M. and Grell, Georg A. and Kim, Dongsoo and Schwartz, Barry E. and Smirnova, Tatiana G. and Smith, Tracy Lorraine and et al.}, + Author = {Benjamin, S. G. and D{\'e}v{\'e}nyi, D. and Weygandt, S. S. and Brundage, K. J. and Brown, J. M. and Grell, G. A. and Kim, D. and Schwartz, B. E. and Smirnova, T. G. and Smith, T. L. and et al.}, Date-Added = {2019-05-06 14:04:23 -0600}, Date-Modified = {2019-05-06 14:06:36 -0600}, Doi = {10.1175/1520-0493(2004)132<0495:ahactr>2.0.co;2}, @@ -521,7 +632,7 @@ @article{Benjamin_2004a Number = {2}, Pages = {495--518}, Publisher = {American Meteorological Society}, - Title = {An Hourly Assimilation--Forecast Cycle: The RUC}, + Title = {An Hourly Assimilation--Forecast Cycle: The {RUC}}, Url = {http://dx.doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2}, Volume = {132}, Year = {2004}, @@ -529,18 +640,18 @@ @article{Benjamin_2004a Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0493(2004)132%3C0495:ahactr%3E2.0.co;2}} @article{Smirnova_2000, - Author = {Smirnova, Tatiana G. and Brown, John M. and Benjamin, Stanley G. and Kim, Dongsoo}, + Author = {Smirnova, T. G. and Brown, J. M. and Benjamin, S. G. and Kim, D.}, Date-Modified = {2019-06-05 15:32:20 +0000}, Journal = {Journal of Geophysical Research: Atmospheres}, Number = {D3}, Pages = {4077--4086}, - Title = {Parameterization of cold-season processes in the MAPS land-surface scheme}, + Title = {Parameterization of cold-season processes in the {MAPS} land-surface scheme}, Volume = {105}, Year = {2000}, Bdsk-Url-1 = {http://dx.doi.org/10.1029/1999JD901047}} @article{Smirnova_2016, - Author = {Smirnova, Tatiana G. and Brown, John M. and Benjamin, Stanley G. and Kenyon, Jaymes S.}, + Author = {Smirnova, T. G. and Brown, J. M. and Benjamin, S. G. and Kenyon, J. S.}, Date-Added = {2019-05-06 13:55:32 -0600}, Date-Modified = {2019-05-06 13:55:32 -0600}, Doi = {10.1175/mwr-d-15-0198.1}, @@ -550,7 +661,7 @@ @article{Smirnova_2016 Number = {5}, Pages = {1851--1865}, Publisher = {American Meteorological Society}, - Title = {Modifications to the Rapid Update Cycle Land Surface Model (RUC LSM) Available in the Weather Research and Forecasting (WRF) Model}, + Title = {Modifications to the Rapid Update Cycle Land Surface Model ({RUC LSM}) Available in the {W}eather {R}esearch and {F}orecasting ({WRF}) Model}, Url = {http://dx.doi.org/10.1175/MWR-D-15-0198.1}, Volume = {144}, Year = {2016}, @@ -558,7 +669,7 @@ @article{Smirnova_2016 Bdsk-Url-2 = {http://dx.doi.org/10.1175/mwr-d-15-0198.1}} @article{Morrison_2008, - Author = {Morrison, Hugh and Gettelman, Andrew}, + Author = {Morrison, H. and Gettelman, A.}, Date-Added = {2019-05-03 12:49:59 -0600}, Date-Modified = {2019-05-03 12:49:59 -0600}, Doi = {10.1175/2008jcli2105.1}, @@ -568,7 +679,7 @@ @article{Morrison_2008 Number = {15}, Pages = {3642--3659}, Publisher = {American Meteorological Society}, - Title = {A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part I: Description and Numerical Tests}, + Title = {A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the {C}ommunity {A}tmosphere {M}odel, {V}ersion 3 ({CAM3}). {P}art {I}: Description and Numerical Tests}, Url = {http://dx.doi.org/10.1175/2008JCLI2105.1}, Volume = {21}, Year = {2008}, @@ -586,7 +697,7 @@ @article{Gettelman_2015_2 Number = {3}, Pages = {1288--1307}, Publisher = {American Meteorological Society}, - Title = {Advanced Two-Moment Bulk Microphysics for Global Models. Part II: Global Model Solutions and Aerosol--Cloud Interactions*}, + Title = {Advanced Two-Moment Bulk Microphysics for Global Models. {P}art {II}: Global Model Solutions and Aerosol--Cloud Interactions}, Url = {http://dx.doi.org/10.1175/JCLI-D-14-00103.1}, Volume = {28}, Year = {2015}, @@ -604,7 +715,7 @@ @article{Gettelman_2015_1 Number = {3}, Pages = {1268--1287}, Publisher = {American Meteorological Society}, - Title = {Advanced Two-Moment Bulk Microphysics for Global Models. Part I: Off-Line Tests and Comparison with Other Schemes}, + Title = {Advanced Two-Moment Bulk Microphysics for Global Models. {P}art {I}: Off-Line Tests and Comparison with Other Schemes}, Url = {http://dx.doi.org/10.1175/JCLI-D-14-00102.1}, Volume = {28}, Year = {2015}, @@ -612,18 +723,18 @@ @article{Gettelman_2015_1 Bdsk-Url-2 = {http://dx.doi.org/10.1175/jcli-d-14-00102.1}} @techreport{olson_et_al_2019, - Author = {J.B. Olson and J.S.Kenyon and W.A. Angevine and J.M. Brown and M. Pagowski and K. Suselj}, + Author = {J. B. Olson and J. S. Kenyon and W. A. Angevine and J. M. Brown and M. Pagowski and K. Suselj}, Date-Added = {2019-05-01 15:29:00 -0600}, Date-Modified = {2019-05-01 15:32:09 -0600}, Institution = {NOAA OAR GSD-61}, Month = {March}, - Title = {A description of the MYNN-EDMF scheme and the coupling to other components in WRF-ARW}, + Title = {A description of the {MYNN-EDMF} scheme and the coupling to other components in {WRF-ARW}}, Type = {Technical Memorandum}, Year = {2019}} @conference{olson_and_brown_2009, Address = {Omaha, Nebraska}, - Author = {J.B. Olson and J.M.Brown}, + Author = {J. B. Olson and J. M. Brown}, Booktitle = {23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction}, Date-Added = {2019-05-01 15:13:42 -0600}, Date-Modified = {2019-05-01 15:18:06 -0600}, @@ -633,7 +744,7 @@ @conference{olson_and_brown_2009 Year = {2009}} @article{Nakanishi_2006, - Author = {Nakanishi, Mikio and Niino, Hiroshi}, + Author = {Nakanishi, M. and Niino, H.}, Date-Added = {2019-05-01 15:10:22 -0600}, Date-Modified = {2019-05-01 15:10:22 -0600}, Doi = {10.1007/s10546-005-9030-8}, @@ -643,14 +754,14 @@ @article{Nakanishi_2006 Number = {2}, Pages = {397--407}, Publisher = {Springer Nature}, - Title = {An Improved Mellor--Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog}, + Title = {An Improved {M}ellor--{Y}amada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog}, Url = {http://dx.doi.org/10.1007/s10546-005-9030-8}, Volume = {119}, Year = {2006}, Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10546-005-9030-8}} @article{Nakanishi_2004, - Author = {Nakanishi, Mikio and Niino, Hiroshi}, + Author = {Nakanishi, M. and Niino, H.}, Date-Added = {2019-05-01 15:06:36 -0600}, Date-Modified = {2019-05-01 15:06:36 -0600}, Doi = {10.1023/b:boun.0000020164.04146.98}, @@ -660,7 +771,7 @@ @article{Nakanishi_2004 Number = {1}, Pages = {1--31}, Publisher = {Springer Nature}, - Title = {An Improved Mellor--Yamada Level-3 Model with Condensation Physics: Its Design and Verification}, + Title = {An Improved {M}ellor--{Y}amada Level-3 Model with Condensation Physics: Its Design and Verification}, Url = {http://dx.doi.org/10.1023/B:BOUN.0000020164.04146.98}, Volume = {112}, Year = {2004}, @@ -668,7 +779,7 @@ @article{Nakanishi_2004 Bdsk-Url-2 = {http://dx.doi.org/10.1023/b:boun.0000020164.04146.98}} @article{Mellor_1982, - Author = {Mellor, George L. and Yamada, Tetsuji}, + Author = {Mellor, G. L. and Yamada, T.}, Date-Added = {2019-05-01 15:00:12 -0600}, Date-Modified = {2019-05-01 15:00:12 -0600}, Doi = {10.1029/rg020i004p00851}, @@ -685,7 +796,7 @@ @article{Mellor_1982 Bdsk-Url-2 = {http://dx.doi.org/10.1029/rg020i004p00851}} @article{Mellor_1974, - Author = {Mellor, George L. and Yamada, Tetsuji}, + Author = {Mellor, G. L. and Yamada, T.}, Date-Added = {2019-05-01 14:57:26 -0600}, Date-Modified = {2019-05-01 14:57:26 -0600}, Doi = {10.1175/1520-0469(1974)031<1791:ahotcm>2.0.co;2}, @@ -703,7 +814,7 @@ @article{Mellor_1974 Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0469(1974)031%3C1791:ahotcm%3E2.0.co;2}} @article{Nakanish_2001, - Author = {Nakanish, Mikio}, + Author = {Nakanish, M.}, Date-Added = {2019-04-25 11:08:11 -0600}, Date-Modified = {2019-04-25 11:08:11 -0600}, Doi = {10.1023/a:1018915827400}, @@ -713,7 +824,7 @@ @article{Nakanish_2001 Number = {3}, Pages = {349--378}, Publisher = {Springer Nature}, - Title = {Improvement Of The Mellor--Yamada Turbulence Closure Model Based On Large-Eddy Simulation Data}, + Title = {Improvement Of The {M}ellor--{Y}amada Turbulence Closure Model Based On Large-Eddy Simulation Data}, Url = {http://dx.doi.org/10.1023/A:1018915827400}, Volume = {99}, Year = {2001}, @@ -731,7 +842,7 @@ @article{kennedy_and_shapiro_1980 Year = {1980}} @article{Siebesma_2007, - Author = {Siebesma, A. Pier and Soares, Pedro M. M. and Teixeira, Jo{\~a}o}, + Author = {Siebesma, A. P. and Soares, P. M. M. and Teixeira, J.}, Date-Added = {2019-04-24 12:11:29 -0600}, Date-Modified = {2019-04-24 12:11:29 -0600}, Doi = {10.1175/jas3888.1}, @@ -749,7 +860,7 @@ @article{Siebesma_2007 Bdsk-Url-2 = {http://dx.doi.org/10.1175/jas3888.1}} @article{Han_2016, - Author = {Han, Jongil and Witek, Marcin L. and Teixeira, Joao and Sun, Ruiyu and Pan, Hua-Lu and Fletcher, Jennifer K. and Bretherton, Christopher S.}, + Author = {Han, J. and Witek, M. L. and Teixeira, J. and Sun, R. and Pan, H.-L. and Fletcher, J. K. and Bretherton, C. S.}, Date-Added = {2019-04-24 12:08:21 -0600}, Date-Modified = {2019-04-24 12:08:21 -0600}, Doi = {10.1175/waf-d-15-0053.1}, @@ -759,7 +870,7 @@ @article{Han_2016 Number = {1}, Pages = {341--352}, Publisher = {American Meteorological Society}, - Title = {Implementation in the NCEP GFS of a Hybrid Eddy-Diffusivity Mass-Flux (EDMF) Boundary Layer Parameterization with Dissipative Heating and Modified Stable Boundary Layer Mixing}, + Title = {Implementation in the {NCEP} {GFS} of a Hybrid Eddy-Diffusivity Mass-Flux ({EDMF}) Boundary Layer Parameterization with Dissipative Heating and Modified Stable Boundary Layer Mixing}, Url = {http://dx.doi.org/10.1175/WAF-D-15-0053.1}, Volume = {31}, Year = {2016}, @@ -785,7 +896,7 @@ @article{Vickers_2004 Bdsk-Url-2 = {http://dx.doi.org/10.1175/jam2160.1}} @article{Bechtold_1998, - Author = {Bechtold, Peter and Siebesma, Pier}, + Author = {Bechtold, P. and Siebesma, P.}, Date-Added = {2019-04-22 11:24:42 -0600}, Date-Modified = {2019-04-22 11:24:42 -0600}, Doi = {10.1175/1520-0469(1998)055<0888:oarobl>2.0.co;2}, @@ -803,7 +914,7 @@ @article{Bechtold_1998 Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0469(1998)055%3C0888:oarobl%3E2.0.co;2}} @article{Ito_2015, - Author = {Ito, Junshi and Niino, Hiroshi and Nakanishi, Mikio and Moeng, Chin-Hoh}, + Author = {Ito, J. and Niino, H. and Nakanishi, M. and Moeng, C-H.}, Date-Added = {2019-04-22 10:27:42 -0600}, Date-Modified = {2019-04-22 10:27:42 -0600}, Doi = {10.1007/s10546-015-0045-5}, @@ -820,7 +931,7 @@ @article{Ito_2015 Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10546-015-0045-5}} @article{Tripoli_1981, - Author = {Tripoli, Gregory J. and Cotton, William R.}, + Author = {Tripoli, G. J. and Cotton, W. R.}, Date-Added = {2019-04-22 10:18:40 -0600}, Date-Modified = {2019-04-22 10:18:40 -0600}, Doi = {10.1175/1520-0493(1981)109<1094:tuollw>2.0.co;2}, @@ -838,7 +949,7 @@ @article{Tripoli_1981 Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0493(1981)109%3C1094:tuollw%3E2.0.co;2}} @article{NAKANISHI_2009, - Author = {NAKANISHI, Mikio and NIINO, Hiroshi}, + Author = {Nakanishi, M. and Niino, H.}, Date-Added = {2019-04-22 10:00:34 -0600}, Date-Modified = {2019-04-22 10:00:34 -0600}, Doi = {10.2151/jmsj.87.895}, @@ -854,7 +965,7 @@ @article{NAKANISHI_2009 Bdsk-Url-1 = {http://dx.doi.org/10.2151/jmsj.87.895}} @article{Chaboureau_2005, - Author = {Chaboureau, Jean-Pierre}, + Author = {Chaboureau, J.-P.}, Date-Added = {2019-04-21 16:19:12 -0600}, Date-Modified = {2019-04-21 16:19:12 -0600}, Doi = {10.1029/2004jd005645}, @@ -862,7 +973,7 @@ @article{Chaboureau_2005 Journal = {Journal of Geophysical Research}, Number = {D17}, Publisher = {American Geophysical Union (AGU)}, - Title = {Statistical representation of clouds in a regional model and the impact on the diurnal cycle of convection during Tropical Convection, Cirrus and Nitrogen Oxides (TROCCINOX)}, + Title = {Statistical representation of clouds in a regional model and the impact on the diurnal cycle of convection during Tropical Convection, Cirrus and Nitrogen Oxides ({TROCCINOX})}, Url = {http://dx.doi.org/10.1029/2004JD005645}, Volume = {110}, Year = {2005}, @@ -870,7 +981,7 @@ @article{Chaboureau_2005 Bdsk-Url-2 = {http://dx.doi.org/10.1029/2004jd005645}} @article{Chaboureau_2002, - Author = {Chaboureau, Jean-Pierre and Bechtold, Peter}, + Author = {Chaboureau, J.-P. and Bechtold, P.}, Date-Added = {2019-04-21 16:17:45 -0600}, Date-Modified = {2019-04-21 16:17:45 -0600}, Doi = {10.1175/1520-0469(2002)059<2362:ascpdf>2.0.co;2}, @@ -888,7 +999,7 @@ @article{Chaboureau_2002 Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0469(2002)059%3C2362:ascpdf%3E2.0.co;2}} @article{Kuwano_Yoshida_2010, - Author = {Kuwano-Yoshida, Akira and Enomoto, Takeshi and Ohfuchi, Wataru}, + Author = {Kuwano-Yoshida, A. and Enomoto, T. and Ohfuchi, W.}, Date-Added = {2019-04-21 16:12:47 -0600}, Date-Modified = {2019-04-21 16:12:47 -0600}, Doi = {10.1002/qj.660}, @@ -898,7 +1009,7 @@ @article{Kuwano_Yoshida_2010 Number = {651}, Pages = {1583--1597}, Publisher = {Wiley}, - Title = {An improved PDF cloud scheme for climate simulations}, + Title = {An improved {PDF} cloud scheme for climate simulations}, Url = {http://dx.doi.org/10.1002/qj.660}, Volume = {136}, Year = {2010}, @@ -923,7 +1034,7 @@ @article{Sommeria_1977 Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0469(1977)034%3C0344:sscimo%3E2.0.co;2}} @article{Benjamin_2016, - Author = {Benjamin, Stanley G. and Weygandt, Stephen S. and Brown, John M. and Hu, Ming and Alexander, Curtis R. and Smirnova, Tatiana G. and Olson, Joseph B. and James, Eric P. and Dowell, David C. and Grell, Georg A. and et al.}, + Author = {Benjamin, S. G. and Weygandt, S. S. and Brown, J. M. and Hu, M. and Alexander, C. R. and Smirnova, T. G. and Olson, J. B. and James, E. P. and Dowell, D. C. and Grell, G. A. and et al.}, Date-Added = {2019-04-19 11:32:56 -0600}, Date-Modified = {2019-04-19 11:32:56 -0600}, Doi = {10.1175/mwr-d-15-0242.1}, @@ -941,7 +1052,7 @@ @article{Benjamin_2016 Bdsk-Url-2 = {http://dx.doi.org/10.1175/mwr-d-15-0242.1}} @article{Arakawa_2004, - Author = {Arakawa, Akio}, + Author = {Arakawa, A.}, Date-Added = {2019-02-01 17:35:16 -0700}, Date-Modified = {2019-02-01 17:35:16 -0700}, Doi = {10.1175/1520-0442(2004)017<2493:ratcpp>2.0.co;2}, @@ -959,7 +1070,7 @@ @article{Arakawa_2004 Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0442(2004)017%3C2493:ratcpp%3E2.0.co;2}} @article{Thompson_2004, - Author = {Thompson, Gregory and Rasmussen, Roy M. and Manning, Kevin}, + Author = {Thompson, G. and Rasmussen, R. M. and Manning, K.}, Date-Added = {2019-01-22 16:11:17 -0700}, Date-Modified = {2019-01-22 16:11:17 -0700}, Doi = {10.1175/1520-0493(2004)132<0519:efowpu>2.0.co;2}, @@ -969,7 +1080,7 @@ @article{Thompson_2004 Number = {2}, Pages = {519--542}, Publisher = {American Meteorological Society}, - Title = {Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis}, + Title = {Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. {P}art {I}: Description and Sensitivity Analysis}, Url = {http://dx.doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2}, Volume = {132}, Year = {2004}, @@ -977,7 +1088,7 @@ @article{Thompson_2004 Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0493(2004)132%3C0519:efowpu%3E2.0.co;2}} @article{Abdul_Razzak_2000, - Author = {Abdul-Razzak, Hayder and Ghan, Steven J.}, + Author = {Abdul-Razzak, H. and Ghan, S. J.}, Date-Added = {2019-01-22 11:02:36 -0700}, Date-Modified = {2019-06-05 15:28:16 +0000}, Journal = {Journal of Geophysical Research: Atmospheres}, @@ -989,7 +1100,7 @@ @article{Abdul_Razzak_2000 Bdsk-Url-1 = {http://dx.doi.org/10.1029/1999JD901161}} @article{Barahona_2014, - Author = {Barahona, D. and Molod, A. and Bacmeister, J. and Nenes, A. and Gettelman, A. and Morrison, H. and Phillips, V. and Eichmann, A.}, + Author = {Barahona, D. and Molod, A. and Bacmeister, J. and et al.}, Date-Added = {2019-01-22 10:47:07 -0700}, Date-Modified = {2019-01-22 10:47:07 -0700}, Doi = {10.5194/gmd-7-1733-2014}, @@ -999,14 +1110,14 @@ @article{Barahona_2014 Number = {4}, Pages = {1733--1766}, Publisher = {Copernicus GmbH}, - Title = {Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5)}, + Title = {Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model ({GEOS-5})}, Url = {http://dx.doi.org/10.5194/gmd-7-1733-2014}, Volume = {7}, Year = {2014}, Bdsk-Url-1 = {http://dx.doi.org/10.5194/gmd-7-1733-2014}} @article{Barahona_2008, - Author = {Barahona, Donifan and Nenes, Athanasios}, + Author = {Barahona, D. and Nenes, A.}, Date-Added = {2019-01-22 10:12:34 -0700}, Date-Modified = {2019-01-22 10:12:34 -0700}, Doi = {10.1029/2007jd009355}, @@ -1023,7 +1134,7 @@ @article{Barahona_2008 Bdsk-Url-2 = {http://dx.doi.org/10.1029/2007jd009355}} @article{Fountoukis_2005, - Author = {Fountoukis, Christos}, + Author = {Fountoukis, C.}, Date-Added = {2019-01-22 10:07:41 -0700}, Date-Modified = {2019-01-22 10:07:41 -0700}, Doi = {10.1029/2004jd005591}, @@ -1039,7 +1150,7 @@ @article{Fountoukis_2005 Bdsk-Url-2 = {http://dx.doi.org/10.1029/2004jd005591}} @article{Nenes_2003, - Author = {Nenes, Athanasios}, + Author = {Nenes, A.}, Date-Added = {2019-01-22 10:02:59 -0700}, Date-Modified = {2019-01-22 10:02:59 -0700}, Doi = {10.1029/2002jd002911}, @@ -1072,7 +1183,7 @@ @article{Barahona_2009 Bdsk-Url-1 = {http://dx.doi.org/10.5194/acp-9-369-2009}} @article{Smirnova_1997, - Author = {Smirnova, Tatiana G. and Brown, John M. and Benjamin, Stanley G.}, + Author = {Smirnova, T. G. and Brown, J. M. and Benjamin, S. G.}, Date-Added = {2019-01-14 15:20:01 -0700}, Date-Modified = {2019-01-14 15:20:01 -0700}, Doi = {10.1175/1520-0493(1997)125<1870:podsmc>2.0.co;2}, @@ -1090,7 +1201,7 @@ @article{Smirnova_1997 Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0493(1997)125%3C1870:podsmc%3E2.0.co;2}} @article{Gregory_2001, - Author = {Gregory, David}, + Author = {Gregory, D.}, Date-Added = {2018-11-06 11:45:59 -0700}, Date-Modified = {2018-11-06 11:45:59 -0700}, Doi = {10.1002/qj.49712757104}, @@ -1107,7 +1218,7 @@ @article{Gregory_2001 Bdsk-Url-1 = {http://dx.doi.org/10.1002/qj.49712757104}} @article{Pan_1998, - Author = {Pan, Dzong-Ming and Randall, Davi D. A.}, + Author = {Pan, D.-M. and Randall, D. A.}, Date-Added = {2018-11-06 11:43:33 -0700}, Date-Modified = {2018-11-06 11:43:33 -0700}, Doi = {10.1002/qj.49712454714}, @@ -1124,7 +1235,7 @@ @article{Pan_1998 Bdsk-Url-1 = {http://dx.doi.org/10.1002/qj.49712454714}} @article{Arakawa_2013, - Author = {Arakawa, Akio and Wu, Chien-Ming}, + Author = {Arakawa, A. and Wu, C.-M.}, Date-Added = {2018-11-06 11:41:28 -0700}, Date-Modified = {2018-11-06 11:41:28 -0700}, Doi = {10.1175/jas-d-12-0330.1}, @@ -1134,7 +1245,7 @@ @article{Arakawa_2013 Number = {7}, Pages = {1977--1992}, Publisher = {American Meteorological Society}, - Title = {A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part I}, + Title = {A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. {P}art {I}}, Url = {http://dx.doi.org/10.1175/JAS-D-12-0330.1}, Volume = {70}, Year = {2013}, @@ -1142,7 +1253,7 @@ @article{Arakawa_2013 Bdsk-Url-2 = {http://dx.doi.org/10.1175/jas-d-12-0330.1}} @article{Chikira_2010, - Author = {Chikira, Minoru and Sugiyama, Masahiro}, + Author = {Chikira, M. and Sugiyama, M.}, Date-Added = {2018-11-06 11:35:55 -0700}, Date-Modified = {2018-11-06 11:35:55 -0700}, Doi = {10.1175/2010jas3316.1}, @@ -1152,7 +1263,7 @@ @article{Chikira_2010 Number = {7}, Pages = {2171--2193}, Publisher = {American Meteorological Society}, - Title = {A Cumulus Parameterization with State-Dependent Entrainment Rate. Part I: Description and Sensitivity to Temperature and Humidity Profiles}, + Title = {A Cumulus Parameterization with State-Dependent Entrainment Rate. {P}art {I}: Description and Sensitivity to Temperature and Humidity Profiles}, Url = {http://dx.doi.org/10.1175/2010JAS3316.1}, Volume = {67}, Year = {2010}, @@ -1160,7 +1271,7 @@ @article{Chikira_2010 Bdsk-Url-2 = {http://dx.doi.org/10.1175/2010jas3316.1}} @article{Lewis_2005, - Author = {Lewis, John M.}, + Author = {Lewis, J. M.}, Date-Added = {2018-09-21 11:27:20 -0600}, Date-Modified = {2018-09-21 11:27:20 -0600}, Doi = {10.1175/mwr2949.1}, @@ -1178,7 +1289,7 @@ @article{Lewis_2005 Bdsk-Url-2 = {http://dx.doi.org/10.1175/mwr2949.1}} @article{Zhu_2018, - Author = {Zhu, Yuejian and Zhou, Xiaqiong and Li, Wei and Hou, Dingchen and Melhauser, Christopher and Sinsky, Eric and Pe{\~n}a, Malaquias and Fu, Bing and Guan, Hong and Kolczynski, Walter and et al.}, + Author = {Zhu, Y. and Zhou, X. and Li, W. and Hou, D. and Melhauser, C. and Sinsky, E. and Pe{\~n}a, M. and Fu, B. and Guan, H. and Kolczynski, W. and et al.}, Date-Added = {2018-09-07 11:48:50 -0600}, Date-Modified = {2019-06-05 15:33:03 +0000}, Journal = {Journal of Geophysical Research: Atmospheres}, @@ -1191,7 +1302,7 @@ @article{Zhu_2018 Bdsk-Url-2 = {http://dx.doi.org/10.1029/2018jd028506}} @article{Shutts_2005, - Author = {Shutts, Glenn}, + Author = {Shutts, G.}, Date-Added = {2018-09-07 11:46:20 -0600}, Date-Modified = {2018-09-07 11:46:20 -0600}, Doi = {10.1256/qj.04.106}, @@ -1241,12 +1352,12 @@ @article{buizza_et_al_1999 Date-Modified = {2018-09-05 13:43:07 -0600}, Journal = {Quarterly Journal of the Royal Meteorological Society}, Pages = {2887-2908}, - Title = {Stochastic representation of model uncertainties in the ECMWF ensemble prediction system}, + Title = {Stochastic representation of model uncertainties in the {ECMWF} ensemble prediction system}, Volume = {125}, Year = {1999}} @article{donahue_and_caldwell_2018, - Author = {A.S. Donahue and P.M. Caldwell}, + Author = {A. S. Donahue and P. M. Caldwell}, Date-Added = {2018-08-22 11:38:12 -0600}, Date-Modified = {2018-08-22 11:42:12 -0600}, Journal = {Journal of Advances in Modeling Earth Systems}, @@ -1256,7 +1367,7 @@ @article{donahue_and_caldwell_2018 Year = {2018}} @article{tompkins_and_berner_2008, - Author = {A.M. Tompkins and J. Berner}, + Author = {A. M. Tompkins and J. Berner}, Date-Added = {2018-08-21 16:39:36 -0600}, Date-Modified = {2018-08-21 20:28:30 -0600}, Journal = {J. Geophys. Res.}, @@ -1266,7 +1377,7 @@ @article{tompkins_and_berner_2008 Year = {2008}} @techreport{palmer_et_al_2009, - Author = {T.N. Palmer and R. Buizza and F. Doblas-Reyes and T. Jung and M. Leutbecher and G.J. Shutts and M. Steinheimer and A. Weisheimer}, + Author = {T. N. Palmer and R. Buizza and F. Doblas-Reyes and T. Jung and M. Leutbecher and G. J. Shutts and M. Steinheimer and A. Weisheimer}, Date-Added = {2018-08-21 16:35:56 -0600}, Date-Modified = {2018-08-21 16:39:32 -0600}, Institution = {ECMWF}, @@ -1281,7 +1392,7 @@ @article{berner_et_al_2009 Date-Modified = {2018-08-21 16:33:44 -0600}, Journal = {J. Atmos. Sci.}, Pages = {603-626}, - Title = {A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system}, + Title = {A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the {ECMWF} ensemble prediction system}, Volume = {66}, Year = {2009}} @@ -1291,7 +1402,7 @@ @article{schuur_et_al_2012 Date-Modified = {2018-08-21 10:40:09 -0600}, Journal = {Journal of Applied Meteorology and Climatology}, Pages = {763-779}, - Title = {Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals}, + Title = {Classification of precipitation types during transitional winter weather using the {RUC} model and polarimetric radar retrievals}, Volume = {51}, Year = {2012}} @@ -1336,7 +1447,7 @@ @conference{baldwin_et_al_1994 Date-Modified = {2018-08-21 10:01:46 -0600}, Organization = {Amer. Meteor. Soc.}, Pages = {30-31}, - Title = {Precipitation type prediction using a decision tree approach with NMC's mesoscale Eta Model}, + Title = {Precipitation type prediction using a decision tree approach with {NMC}'s mesoscale {E}ta Model}, Year = {1994}} @techreport{cullen_and_salmond_2002, @@ -1345,7 +1456,7 @@ @techreport{cullen_and_salmond_2002 Date-Modified = {2018-08-02 20:08:03 +0000}, Institution = {ECMWF}, Number = {357}, - Title = {On the use of a predictor-corrector scheme to couple the dynamics with the physical parametrizations in the ECMWF model}, + Title = {On the use of a predictor-corrector scheme to couple the dynamics with the physical parametrizations in the {ECMWF} model}, Type = {Tech. Memo}, Year = {2002}} @@ -1365,7 +1476,7 @@ @proceedings{beljaars_1991 Date-Added = {2018-07-27 22:06:59 +0000}, Date-Modified = {2018-07-27 22:30:21 +0000}, Organization = {ECMWF}, - Publisher = {the ECMWF Seminar on Numerical Methods in Atmospheric Models}, + Publisher = {the {ECMWF} Seminar on Numerical Methods in Atmospheric Models}, Title = {Numerical schemes for parameterizations}, Year = {1991}} @@ -1384,7 +1495,7 @@ @article{fritts_and_nastrom_1980 Date-Modified = {2018-07-26 22:42:09 +0000}, Journal = {J. Atmos. Sci.}, Pages = {111-127}, - Title = {Sources of mesoscale variability of gravity waves. Part II: frontal, convective, and jet stream excitation}, + Title = {Sources of mesoscale variability of gravity waves. {P}art {II}: frontal, convective, and jet stream excitation}, Volume = {49}, Year = {1980}} @@ -1394,14 +1505,14 @@ @proceedings{wmo_greenhouse_gas_bulletin_2017 Month = {October 2017}, Number = {13}, Organization = {World Meteorological Organization}, - Title = {WMO greenhouse gas bulletin}, + Title = {{WMO} greenhouse gas bulletin}, Year = {2017}} @article{soloviev_and_vershinsky_1982, - Author = {A.V. Soloviev and N.V. Vershinsky}, + Author = {A. V. Soloviev and N. V. Vershinsky}, Date-Added = {2018-07-22 01:43:03 +0000}, Date-Modified = {2018-07-22 01:47:32 +0000}, - Journal = {Deep Sea Research Part A. Oceanographic Research Papers}, + Journal = {Deep Sea Research {P}art {A}. Oceanographic Research Papers}, Number = {12}, Pages = {1437-1449}, Title = {The vertical structure of the thin surface layer of the ocean under conditions of low wind speed}, @@ -1420,17 +1531,17 @@ @article{zeng_and_beljaars_2005 Year = {2005}} @article{mccormack_et_al_2008, - Author = {J.P. McCormack and K.W. Hoppel and D.E. Siskind}, + Author = {J. P. McCormack and K. W. Hoppel and D. E. Siskind}, Date-Added = {2018-07-20 17:19:45 +0000}, Date-Modified = {2018-07-20 17:22:12 +0000}, Journal = {Atmos. Chem. Phys.}, Pages = {7519-7532}, - Title = {Parameterization of middle atmospheric water vapor photochemistry for high-altitude NWP and data assimilation}, + Title = {Parameterization of middle atmospheric water vapor photochemistry for high-altitude {NWP} and data assimilation}, Volume = {8}, Year = {2008}} @techreport{long_1986, - Author = {P.J. Long}, + Author = {P. J. Long}, Date-Added = {2018-07-18 22:00:29 +0000}, Date-Modified = {2018-07-18 22:03:03 +0000}, Institution = {U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center}, @@ -1440,7 +1551,7 @@ @techreport{long_1986 Year = {1986}} @techreport{long_1984, - Author = {P.J. Long}, + Author = {P. J. Long}, Date-Added = {2018-07-18 21:57:22 +0000}, Date-Modified = {2018-07-18 22:00:25 +0000}, Institution = {U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center}, @@ -1458,7 +1569,7 @@ @manual{miyakoda_and_sirutis_1986 Year = {1986}} @article{chen_and_lin_2011, - Author = {J.-H Chen and S.-J Lin}, + Author = {J.-H. Chen and S.-J. Lin}, Date-Added = {2018-07-18 19:04:23 +0000}, Date-Modified = {2018-07-18 19:10:04 +0000}, Journal = {Geophysical Research Letters}, @@ -1469,7 +1580,7 @@ @article{chen_and_lin_2011 Year = {2011}} @article{lord_et_al_1984, - Author = {S.J. Lord and H.E. Willoughby and J.M. Piotrowicz}, + Author = {S. J. Lord and H. E. Willoughby and J. M. Piotrowicz}, Date-Added = {2018-07-18 18:50:27 +0000}, Date-Modified = {2018-07-18 18:54:09 +0000}, Journal = {J. Atmos. Sci.}, @@ -1481,7 +1592,7 @@ @article{lord_et_al_1984 Year = {1984}} @article{krueger_et_al_1995, - Author = {S.K. Krueger and Q. Fu and K. N. Liou and H-N. S. Chin}, + Author = {S. K. Krueger and Q. Fu and K. N. Liou and H.-N. S. Chin}, Date-Added = {2018-07-18 18:46:23 +0000}, Date-Modified = {2018-07-18 18:49:52 +0000}, Journal = {Journal of Applied Meteorology}, @@ -1497,12 +1608,12 @@ @article{zheng_et_al_2017 Date-Modified = {2018-07-18 17:45:38 +0000}, Journal = {Monthly Weather Review}, Pages = {3969-3987}, - Title = {Improving the stable surface layer in the NCEP Global Forecast System}, + Title = {Improving the stable surface layer in the {NCEP} {G}lobal {F}orecast {S}ystem}, Volume = {145}, Year = {2017}} @article{hong_et_al_2004, - Author = {S-Y. Hong and J. Dudhia and S-H. Chen}, + Author = {S-Y. Hong and J. Dudhia and S.-H. Chen}, Date-Added = {2018-07-06 19:29:40 +0000}, Date-Modified = {2018-07-06 19:36:23 +0000}, Journal = {Monthly Weather Review}, @@ -1512,7 +1623,7 @@ @article{hong_et_al_2004 Year = {2004}} @article{heymsfield_and_donner_1990, - Author = {A. J. Heymsfield and L.J. Donner}, + Author = {A. J. Heymsfield and L. J. Donner}, Date-Added = {2018-07-06 18:58:01 +0000}, Date-Modified = {2018-07-06 19:00:50 +0000}, Journal = {J. Atmos. Sci.}, @@ -1528,7 +1639,7 @@ @article{deng_and_mace_2008 Date-Modified = {2018-07-06 19:01:59 +0000}, Journal = {Geophysical Research Letters}, Number = {L17808}, - Title = {Cirrus cloud microphysical properties and air motion statistics using cloud radar Doppler moments: water content, partical size, and sedimentation relationships}, + Title = {Cirrus cloud microphysical properties and air motion statistics using cloud radar {D}oppler moments: water content, partical size, and sedimentation relationships}, Volume = {35}, Year = {2008}} @@ -1538,23 +1649,23 @@ @article{lin_et_al_1994 Date-Modified = {2018-07-06 19:01:30 +0000}, Journal = {Monthly Weather Review}, Pages = {1575-1593}, - Title = {A class of the van Leer-type transport schemes and its application to the moisture transport in a general circulation model}, + Title = {A class of the van {L}eer-type transport schemes and its application to the moisture transport in a general circulation model}, Volume = {122}, Year = {1994}} @article{rutledge_and_hobbs_1984, - Author = {S.A. Rutledge and P.V. Hobbs}, + Author = {S. A. Rutledge and P. V. Hobbs}, Date-Added = {2018-07-05 16:45:48 +0000}, Date-Modified = {2018-07-05 16:49:04 +0000}, Journal = {J. Atmos. Sci.}, Number = {20}, Pages = {2949-2972}, - Title = {The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: a diagnostic modeling study of precipitation development in narrow cold-frontal rainbands}, + Title = {The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. {XII}: a diagnostic modeling study of precipitation development in narrow cold-frontal rainbands}, Volume = {41}, Year = {1984}} @article{chen_and_lin_2013, - Author = {J-H. Chen and S-J. Lin}, + Author = {J.-H. Chen and S.-J. Lin}, Date-Added = {2018-07-03 18:13:27 +0000}, Date-Modified = {2018-07-03 18:17:40 +0000}, Journal = {J. Climate}, @@ -1571,7 +1682,7 @@ @inproceedings{untch_et_al_1999 Date-Modified = {2018-02-28 15:50:58 +0000}, Pages = {45-52}, Publisher = {Netherlands}, - Title = {Increased stratospheric resolution in the ECMWF forecasting system}, + Title = {Increased stratospheric resolution in the {ECMWF} forecasting system}, Year = {1999}} @article{dethof_and_holm_2004, @@ -1580,7 +1691,7 @@ @article{dethof_and_holm_2004 Date-Modified = {2018-02-26 22:56:19 +0000}, Journal = {Quarterly Journal of the Royal Meteorological Society}, Pages = {2851-2872}, - Title = {Ozone assimilation in the ERA-40 reanalysis project}, + Title = {Ozone assimilation in the {ERA-40} reanalysis project}, Volume = {130}, Year = {2004}} @@ -1609,7 +1720,7 @@ @article{john_and_buehler_2004 Date-Added = {2018-02-26 22:38:57 +0000}, Date-Modified = {2018-02-26 22:41:05 +0000}, Journal = {Geophysical Research Letters}, - Title = {The impact of ozone lines on AMSU-B radiances}, + Title = {The impact of ozone lines on {AMSU-B} radiances}, Volume = {31}, Year = {2004}} @@ -1619,7 +1730,7 @@ @article{derber_and_wu_1998 Date-Modified = {2018-02-26 22:37:30 +0000}, Journal = {Monthly Weather Review}, Pages = {2287-2299}, - Title = {The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system}, + Title = {The use of {TOVS} cloud-cleared radiances in the {NCEP} {SSI} analysis system}, Volume = {126}, Year = {1998}} @@ -1688,12 +1799,12 @@ @book{pond_and_pickard_1983 Year = {1983}} @article{zeng_et_al_1998, - Author = {X. Zeng and M. Zhao and R.E. Dickinson}, + Author = {X. Zeng and M. Zhao and R. E. Dickinson}, Date-Added = {2018-02-13 23:09:56 +0000}, Date-Modified = {2018-02-13 23:12:08 +0000}, Journal = {J. Climate}, Pages = {2628-2644}, - Title = {Intercomparison of bulk aerodynamic algorithm for the comutation of sea surface Fluxes using TOGA COARE and TAO data}, + Title = {Intercomparison of bulk aerodynamic algorithm for the comutation of sea surface Fluxes using {TOGA} {COARE} and {TAO} data}, Volume = {11}, Year = {1998}} @@ -1703,7 +1814,7 @@ @article{dorman_and_sellers_1989 Date-Modified = {2018-02-01 00:02:39 +0000}, Journal = {Journal of Applied Meteorology}, Pages = {833-855}, - Title = {A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the simple biosphere model (SiB)}, + Title = {A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the simple biosphere model ({S}i{B})}, Volume = {28}, Year = {1989}} @@ -1713,7 +1824,7 @@ @misc{zobler_1999 Date-Modified = {2018-01-31 23:56:02 +0000}, Howpublished = {Available on-line [http://www.daac.ornl.gov]}, Month = {1999}, - Title = {Global soil types, 1-Degree Grid (Zobler). Dataset}} + Title = {Global soil types, 1-Degree Grid ({Z}obler). Dataset}} @techreport{zobler_1986, Address = {New York, New York, USA}, @@ -1726,13 +1837,13 @@ @techreport{zobler_1986 Year = {1986}} @article{hirsch_et_al_2015, - Author = {A. L. Hirsch and A.J. Pitman and J. Kala and R. Lorenz and M. G. Donat}, + Author = {A. L. Hirsch and A. J. Pitman and J. Kala and R. Lorenz and M. G. Donat}, Date-Added = {2018-01-31 23:30:18 +0000}, Date-Modified = {2018-01-31 23:32:47 +0000}, Journal = {Earth Interactions}, Number = {12}, Pages = {1-24}, - Title = {Modulation of land-use change impacts on temperature extremes via land-atmosphere coupling over Australia}, + Title = {Modulation of land-use change impacts on temperature extremes via land-atmosphere coupling over {A}ustralia}, Volume = {19}, Year = {2015}} @@ -1777,7 +1888,7 @@ @article{andersen_and_shepherd_2014 Year = {2014}} @article{guillod_et_al_2015, - Author = {B.P. Guillod and B. Orlowsky and D. G. Miralles and A. J. Teuling and S. I. Seneviratne}, + Author = {B. P. Guillod and B. Orlowsky and D. G. Miralles and A. J. Teuling and S. I. Seneviratne}, Date-Added = {2018-01-31 22:46:31 +0000}, Date-Modified = {2018-01-31 22:55:08 +0000}, Journal = {Nature Communications}, @@ -1792,7 +1903,7 @@ @article{milovac_et_al_2016 Date-Modified = {2018-01-31 22:43:31 +0000}, Journal = {J. Geophys. Res. Atmos.}, Pages = {624-649}, - Title = {Investigation of PBL schemes combining the WRF model simulations with scanning waver vapor differential absorption lidar measurements}, + Title = {Investigation of {PBL} schemes combining the {WRF} model simulations with scanning waver vapor differential absorption lidar measurements}, Volume = {121}, Year = {2016}} @@ -1802,7 +1913,7 @@ @article{paimazumder_and_done_2016 Date-Modified = {2018-01-31 22:33:52 +0000}, Journal = {J. Geophys. Res. Atmos.}, Pages = {12581-12592}, - Title = {Potential predictability sources of the 2012 U.S. drought in observations and a regional model ensemble}, + Title = {Potential predictability sources of the 2012 {U.S.} drought in observations and a regional model ensemble}, Volume = {121}, Year = {2016}} @@ -1827,7 +1938,7 @@ @article{ek_and_holtslag_2004 Year = {2004}} @article{ek_and_mahrt_1994, - Author = {M. Ek and L. Mahrt}, + Author = {M. B. Ek and L. Mahrt}, Date-Added = {2018-01-31 17:41:59 +0000}, Date-Modified = {2018-01-31 17:43:53 +0000}, Journal = {Monthly Weather Review}, @@ -1842,12 +1953,12 @@ @article{zheng_et_al_2012 Date-Modified = {2018-01-29 23:51:19 +0000}, Journal = {J. Geophys. Res.}, Number = {D06117}, - Title = {Improvement of daytime land surface skin temperature over arid regions in the NCEP GFS model and its impact on satellite data assimilation}, + Title = {Improvement of daytime land surface skin temperature over arid regions in the {NCEP} {GFS} model and its impact on satellite data assimilation}, Volume = {117}, Year = {2012}} @article{zeng_and_dickinson_1998, - Author = {X. Zeng and R.E. Dickinson}, + Author = {X. Zeng and R. E. Dickinson}, Date-Added = {2018-01-29 23:46:03 +0000}, Date-Modified = {2018-01-29 23:47:43 +0000}, Journal = {J. Climate}, @@ -1859,12 +1970,12 @@ @article{zeng_and_dickinson_1998 @conference{zheng_et_al_2009, Address = {Omaha, Nebraska}, Author = {W. Zheng and H. Wei and J. Meng and M. Ek and K. Mitchell and J. Derber and X. Zeng and Z. Wang}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBWLi4vLi4vLi4vLi4vLi4vRGVza3RvcC9OT0FIX0xTTS9JbXByb3ZlbWVudF9vZl9MYW5kX1N1cmZhY2VfU2tpbl9UZW1wZXJhdHVyZV9pbl9OQy5wZGZPEQIgAAAAAAIgAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADT4djXSCsAAANl5rUfSW1wcm92ZW1lbnRfb2ZfTGFuZCMzNjVGRjBGLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2X/D9aQ780AAAAAAAAAAAAFAAMAAAkgAAAAAAAAAAAAAAAAAAAACE5PQUhfTFNNABAACAAA0+ItNwAAABEACAAA1pFSPQAAAAEAEANl5rUAD8YgAA/GDwAGL94AAgBRTWFjaW50b3NoIEhEOlVzZXJzOgBtYW4uemhhbmc6AERlc2t0b3A6AE5PQUhfTFNNOgBJbXByb3ZlbWVudF9vZl9MYW5kIzM2NUZGMEYucGRmAAAOAG4ANgBJAG0AcAByAG8AdgBlAG0AZQBuAHQAXwBvAGYAXwBMAGEAbgBkAF8AUwB1AHIAZgBhAGMAZQBfAFMAawBpAG4AXwBUAGUAbQBwAGUAcgBhAHQAdQByAGUAXwBpAG4AXwBOAEMALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAFdVc2Vycy9tYW4uemhhbmcvRGVza3RvcC9OT0FIX0xTTS9JbXByb3ZlbWVudF9vZl9MYW5kX1N1cmZhY2VfU2tpbl9UZW1wZXJhdHVyZV9pbl9OQy5wZGYAABMAAS8AABUAAgAQ//8AAAAIAA0AGgAkAH0AAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACoQ==}, Date-Added = {2018-01-26 22:19:06 +0000}, Date-Modified = {2018-01-29 23:51:37 +0000}, - Organization = {The 23rd Conference on Weather Analysis and Forecasting (WAF)/19th Conference on Numerical Weather Prediction(NWP)}, - Title = {Improvement of land surface skin temperature in NCEP Operational NWP models and its impact on satellite Data Assimilation}, - Year = {2009}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBWLi4vLi4vLi4vLi4vLi4vRGVza3RvcC9OT0FIX0xTTS9JbXByb3ZlbWVudF9vZl9MYW5kX1N1cmZhY2VfU2tpbl9UZW1wZXJhdHVyZV9pbl9OQy5wZGZPEQIgAAAAAAIgAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADT4djXSCsAAANl5rUfSW1wcm92ZW1lbnRfb2ZfTGFuZCMzNjVGRjBGLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2X/D9aQ780AAAAAAAAAAAAFAAMAAAkgAAAAAAAAAAAAAAAAAAAACE5PQUhfTFNNABAACAAA0+ItNwAAABEACAAA1pFSPQAAAAEAEANl5rUAD8YgAA/GDwAGL94AAgBRTWFjaW50b3NoIEhEOlVzZXJzOgBtYW4uemhhbmc6AERlc2t0b3A6AE5PQUhfTFNNOgBJbXByb3ZlbWVudF9vZl9MYW5kIzM2NUZGMEYucGRmAAAOAG4ANgBJAG0AcAByAG8AdgBlAG0AZQBuAHQAXwBvAGYAXwBMAGEAbgBkAF8AUwB1AHIAZgBhAGMAZQBfAFMAawBpAG4AXwBUAGUAbQBwAGUAcgBhAHQAdQByAGUAXwBpAG4AXwBOAEMALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAFdVc2Vycy9tYW4uemhhbmcvRGVza3RvcC9OT0FIX0xTTS9JbXByb3ZlbWVudF9vZl9MYW5kX1N1cmZhY2VfU2tpbl9UZW1wZXJhdHVyZV9pbl9OQy5wZGYAABMAAS8AABUAAgAQ//8AAAAIAA0AGgAkAH0AAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACoQ==}} + Organization = {The 23rd Conference on Weather Analysis and Forecasting ({WAF})/19th Conference on Numerical Weather Prediction({NWP})}, + Title = {Improvement of land surface skin temperature in {NCEP} Operational {NWP} models and its impact on satellite Data Assimilation}, + Year = {2009}} @article{chen_et_al_1997, Author = {F. Chen and Z. Janjic and K. Mitchell}, @@ -1873,7 +1984,7 @@ @article{chen_et_al_1997 Journal = {Boundary-Layer Meteorology}, Number = {3}, Pages = {391-421}, - Title = {Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model}, + Title = {Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the {NCEP} mesoscale {E}ta model}, Volume = {85}, Year = {1997}} @@ -1902,7 +2013,7 @@ @article{arakawa_and_wu_2013 Date-Modified = {2018-01-24 18:57:10 +0000}, Journal = {J. Atmos. Sci.}, Pages = {1977-1992}, - Title = {A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I}, + Title = {A unified representation of deep moist convection in numerical modeling of the atmosphere. {P}art {I}}, Volume = {70}, Year = {2013}} @@ -1912,12 +2023,12 @@ @article{han_et_al_2017 Date-Modified = {2018-01-24 18:53:21 +0000}, Journal = {Weather and Forecasting}, Pages = {2005-2017}, - Title = {Updates in the NCEP GFS cumulus convective schemes with scale and aerosol awareness}, + Title = {Updates in the {NCEP} {GFS} cumulus convective schemes with scale and aerosol awareness}, Volume = {32}, Year = {2017}} @article{grell_and_freitas_2014, - Author = {G.A. Grell and S.R. Freitas}, + Author = {G. A. Grell and S. R. Freitas}, Date-Added = {2018-01-24 18:44:56 +0000}, Date-Modified = {2018-01-24 18:47:21 +0000}, Journal = {Atmos. Chem. Phys.}, @@ -1933,7 +2044,7 @@ @article{Koren_et_al_1999 Journal = {J. Geophys. Res.}, Number = {D16}, Pages = {19569-19585}, - Title = {A parameterization of snowpack and frozen ground intended for NCEP weather and climate models}, + Title = {A parameterization of snowpack and frozen ground intended for {NCEP} weather and climate models}, Volume = {104}, Year = {1999}} @@ -1944,7 +2055,7 @@ @article{ek_et_al_2003 Journal = {J. Geophys. Res.}, Number = {D22}, Pages = {8851}, - Title = {Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model}, + Title = {Implementation of {N}oah land-surface model advances in the {NCEP} operational mesoscale {E}ta model}, Volume = {108}, Year = {2003}} @@ -1965,7 +2076,7 @@ @article{raisanen_and_barker_2004 Date-Modified = {2016-10-11 20:53:35 +0000}, Journal = {Quarterly Journal of the Royal Meteorological Society}, Pages = {2069-2085}, - Title = {Evaluation and optimization of sampling errors for the Monte Carlo Independent Column Approximation}, + Title = {Evaluation and optimization of sampling errors for the {M}onte {C}arlo {I}ndependent {C}olumn {A}pproximation}, Volume = {130}, Year = {2004}} @@ -1996,7 +2107,7 @@ @article{raisanen_2002 Date-Modified = {2016-10-11 20:41:23 +0000}, Journal = {Quarterly Journal of the Royal Meteorological Society}, Pages = {2397-2416}, - Title = {Two-stream approximations revisited: A new improvement and tests with GCM data}, + Title = {Two-stream approximations revisited: A new improvement and tests with {GCM} data}, Volume = {128}, Year = {2002}} @@ -2011,13 +2122,13 @@ @article{king_and_harshvardhan_1986 Year = {1986}} @url{Li_2015, - Author = {Xu Li}, + Author = {X. Li}, Title = {The development of the NSST within the NCEP GFS/CFS}, Url = {http://cpo.noaa.gov/sites/cpo/MAPP/workshops/rtf_technical_ws/presentations/21_Xu_Li.pdf}, Bdsk-Url-1 = {http://cpo.noaa.gov/sites/cpo/MAPP/workshops/rtf_technical_ws/presentations/21_Xu_Li.pdf}} @webpage{li_and_derber_2009, - Author = {Xu Li and John Derber}, + Author = {X. Li and J. Derber}, Date-Modified = {2020-02-24 17:06:35 +0000}, Title = {Near Sea Surface Temperatures (NSST) Analysis in NCEP GFS}, Url = {http://data.jcsda.org/Workshops/6th-workshop-onDA/Session-4/JCSDA_2008_Li.pdf}, @@ -2066,7 +2177,7 @@ @article{liou_1973 Date-Modified = {2016-06-21 17:22:03 +0000}, Journal = {Journal of the Atmospheric Sciences}, Pages = {1303-1326}, - Title = {A numerical experiment on Chandrasekhar's discrete-ordinate method for radiative transfer: Applications to cloudy and hazy atmospheres}, + Title = {A numerical experiment on {C}handrasekhar's discrete-ordinate method for radiative transfer: Applications to cloudy and hazy atmospheres}, Volume = {30}, Year = {1973}} @@ -2086,23 +2197,24 @@ @article{joseph_et_al_1976 Date-Modified = {2016-06-21 16:50:31 +0000}, Journal = {Journal of the Atmospheric Sciences}, Pages = {2452-2459}, - Title = {The Delta-Eddington approximation for radiative flux transfer}, + Title = {The {D}elta-{E}ddington approximation for radiative flux transfer}, Volume = {33}, Year = {1976}} @article{iacono_et_al_2008, Annote = {doi:10.1029/2008JD009944}, - Author = {M.J. Iacono and J.S. Delamere and E.J. Mlawer and M. W. Shephard and S. A. Clough and W.D. Collins}, + Author = {M. J. Iacono and J. S. Delamere and E. J. Mlawer and M. W. Shephard and S. A. Clough and W. D. Collins}, Date-Added = {2016-06-19 23:25:28 +0000}, Date-Modified = {2016-06-19 23:32:46 +0000}, Journal = {J. Geophys. Res.}, - Title = {Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models}, + Title = {Radiative forcing by long-lived greenhouse gases: Calculations with the {AER} radiative transfer models}, Volume = {113}, Year = {2008}} @article{grant_2001, Abstract = {A closure for the fluxes of mass, heat, and moisture at cloud base in the cumulus-capped boundary layer is developed. The cloud-base mass flux is obtained from a simplifed turbulence kinetic energy (TKE) budget for the sub-cloud layer, in which cumulus convection is assumed to be associated with a transport of TKE from the sub-cloud layer to the cloud layer.The heat and moisture fluxes are obtained from a jump model based on the virtual-potential-temperature equation. A key part of this parametrization is the parametrization of the virtual-temperature flux at the top of the transition zone between the sub-cloud and cloud layers.It is argued that pressure fluctuations must be responsible for the transport of TKE from the cloud layer to the sub-cloud layer.}, Author = {A. L. M. Grant}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvR3JhbnQvMjAwMS5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAoiV4IMjAwMS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARgJuNOHLk4AAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABUdyYW50AAAQAAgAANHneLIAAAARAAgAANOHgq4AAAABABgAKIleAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AEdyYW50OgAyMDAxLnBkZgAADgASAAgAMgAwADAAMQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9HcmFudC8yMDAxLnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Date-Added = {2016-06-15 22:11:22 +0000}, Date-Modified = {2018-07-06 19:02:34 +0000}, Doi = {10.1002/qj.49712757209}, @@ -2116,13 +2228,13 @@ @article{grant_2001 Url = {http://dx.doi.org/10.1002/qj.49712757209}, Volume = {127}, Year = {2001}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvR3JhbnQvMjAwMS5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAoiV4IMjAwMS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARgJuNOHLk4AAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABUdyYW50AAAQAAgAANHneLIAAAARAAgAANOHgq4AAAABABgAKIleAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AEdyYW50OgAyMDAxLnBkZgAADgASAAgAMgAwADAAMQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9HcmFudC8yMDAxLnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Bdsk-Url-1 = {http://dx.doi.org/10.1002/qj.49712757209}} @article{zhang_and_wu_2003, Abstract = {Abstract This study uses a 2D cloud-resolving model to investigate the vertical transport of horizontal momentum and to understand the role of a convection-generated perturbation pressure field in the momentum transport by convective systems during part of the Tropical Ocean and Global Atmosphere Coupled Ocean?Atmosphere Response Experiment (TOGA COARE) Intensive Observation Period. It shows that convective updrafts transport a significant amount of momentum vertically. This transport is downgradient in the easterly wind regime, but upgradient during a westerly wind burst. The differences in convective momentum transport between easterly and westerly wind regimes are examined. The perturbation pressure gradient accounts for an important part of the apparent momentum source. In general it is opposite in sign to the product of cloud mass flux and the vertical wind shear, with smaller magnitude. Examination of the dynamic forcing to the pressure field demonstrates that the linear forcing representing the interaction between the convective updrafts and the large-scale wind shear is the dominant term, while the nonlinear forcing is of secondary importance. Thus, parameterization schemes taking into account the linear interaction between the convective updrafts and the large-scale wind shear can capture the essential features of the perturbation pressure field. The parameterization scheme for momentum transport by Zhang and Cho is evaluated using the model simulation data. The parameterized pressure gradient force using the scheme is in excellent agreement with the simulated one. The parameterized apparent momentum source is also in good agreement with the model simulation. Other parameterization methods for the pressure gradient are also discussed.}, Annote = {doi: 10.1175/1520-0469(2003)060<1120:CMTAPP>2.0.CO;2}, - Author = {Zhang, Guang J. and Wu, Xiaoqing}, + Author = {Zhang, G. J. and Wu, X. Q.}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvWmhhbmcvMjAwMy5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAqjuYIMjAwMy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrUP9K0L8MAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABVpoYW5nAAAQAAgAANHneLIAAAARAAgAANK0kjMAAAABABgAKo7mAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AFpoYW5nOgAyMDAzLnBkZgAADgASAAgAMgAwADAAMwAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9aaGFuZy8yMDAzLnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Booktitle = {Journal of the Atmospheric Sciences}, Da = {2003/05/01}, Date-Added = {2016-06-14 23:39:50 +0000}, @@ -2141,13 +2253,13 @@ @article{zhang_and_wu_2003 Url = {http://dx.doi.org/10.1175/1520-0469(2003)060<1120:CMTAPP>2.0.CO;2}, Volume = {60}, Year = {2003}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvWmhhbmcvMjAwMy5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAqjuYIMjAwMy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrUP9K0L8MAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABVpoYW5nAAAQAAgAANHneLIAAAARAAgAANK0kjMAAAABABgAKo7mAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AFpoYW5nOgAyMDAzLnBkZgAADgASAAgAMgAwADAAMwAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9aaGFuZy8yMDAzLnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Bdsk-Url-1 = {http://dx.doi.org/10.1175/1520-0469(2003)060%3C1120:CMTAPP%3E2.0.CO;2}} @article{fritsch_and_chappell_1980, Abstract = {Abstract A parameterization formulation for incorporating the effects of midlatitude deep convection into mesoscale-numerical models is presented. The formulation is based on the hypothesis that the buoyant energy available to a parcel, in combination with a prescribed period of time for the convection to remove that energy, can be used to regulate the amount of convection in a mesoscale numerical model grid element. Individual clouds are represented as entraining moist updraft and downdraft plumes. The fraction of updraft condensate evaporated in moist downdrafts is determined from an empirical relationship between the vertical shear of the horizontal wind and precipitation efficiency. Vertical transports of horizontal momentum and warming by compensating subsidence are included in the parameterization. Since updraft and downdraft areas are sometimes a substantial fraction of mesoscale model grid-element areas, grid-point temperatures (adjusted for convection) are an area-weighted mean of updraft, downdraft and environmental temperatures.}, Annote = {doi: 10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2}, Author = {Fritsch, J. M. and Chappell, C. F.}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBDLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvRnJpdHNjaC8xOTgwLnBkZk8RAcoAAAAAAcoAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAARCuMwgxOTgwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEKs103xvpgAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAHRnJpdHNjaAAAEAAIAADR53iyAAAAEQAIAADTfMQGAAAAAQAYARCuMwAobJYAKGyLAChnewAbXgcAAphcAAIAXU1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBGcml0c2NoOgAxOTgwLnBkZgAADgASAAgAMQA5ADgAMAAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9Gcml0c2NoLzE5ODAucGRmABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGoAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOA==}, Booktitle = {Journal of the Atmospheric Sciences}, Da = {1980/08/01}, Date = {1980/08/01}, @@ -2162,18 +2274,18 @@ @article{fritsch_and_chappell_1980 Number = {8}, Pages = {1722--1733}, Publisher = {American Meteorological Society}, - Title = {Numerical Prediction of Convectively Driven Mesoscale Pressure Systems. Part I: Convective Parameterization}, + Title = {Numerical Prediction of Convectively Driven Mesoscale Pressure Systems. {P}art {I}: Convective Parameterization}, Ty = {JOUR}, Url = {http://dx.doi.org/10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2}, Volume = {37}, Year = {1980}, Year1 = {1980}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBDLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvRnJpdHNjaC8xOTgwLnBkZk8RAcoAAAAAAcoAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAARCuMwgxOTgwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEKs103xvpgAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAHRnJpdHNjaAAAEAAIAADR53iyAAAAEQAIAADTfMQGAAAAAQAYARCuMwAobJYAKGyLAChnewAbXgcAAphcAAIAXU1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBGcml0c2NoOgAxOTgwLnBkZgAADgASAAgAMQA5ADgAMAAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9Gcml0c2NoLzE5ODAucGRmABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGoAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOA==}, Bdsk-Url-1 = {http://dx.doi.org/10.1175/1520-0469(1980)037%3C1722:NPOCDM%3E2.0.CO;2}} @article{bechtold_et_al_2008, - Abstract = {Advances in simulating atmospheric variability with the ECMWF model are presented that stem from revisions of the convection and diffusion parametrizations. The revisions concern in particular the introduction of a variable convective adjustment time-scale, a convective entrainment rate proportional to the environmental relative humidity, as well as free tropospheric diffusion coefficients for heat and momentum based on Monin--Obukhov functional dependencies.The forecasting system is evaluated against analyses and observations using high-resolution medium-range deterministic and ensemble forecasts, monthly and seasonal integrations, and decadal integrations with coupled atmosphere-ocean models. The results show a significantly higher and more realistic level of model activity in terms of the amplitude of tropical and extratropical mesoscale, synoptic and planetary perturbations. Importantly, with the higher variability and reduced bias not only the probabilistic scores are improved, but also the midlatitude deterministic scores in the short and medium ranges. Furthermore, for the first time the model is able to represent a realistic spectrum of convectively coupled equatorial Kelvin and Rossby waves, and maintains a realistic amplitude of the Madden--Julian oscillation (MJO) during monthly forecasts. However, the propagation speed of the MJO is slower than observed. The higher tropical tropospheric wave activity also results in better stratospheric temperatures and winds through the deposition of momentum.The partitioning between convective and resolved precipitation is unaffected by the model changes with roughly 62% of the total global precipitation being of the convective type. Finally, the changes in convection and diffusion parametrizations resulted in a larger spread of the ensemble forecasts, which allowed the amplitude of the initial perturbations in the ensemble prediction system to decrease by 30%. Copyright {\copyright} 2008 Royal Meteorological Society}, - Author = {Bechtold, Peter and K{\"o}hler, Martin and Jung, Thomas and Doblas-Reyes, Francisco and Leutbecher, Martin and Rodwell, Mark J. and Vitart, Frederic and Balsamo, Gianpaolo}, + Abstract = {Advances in simulating atmospheric variability with the {ECMWF} model are presented that stem from revisions of the convection and diffusion parametrizations. The revisions concern in particular the introduction of a variable convective adjustment time-scale, a convective entrainment rate proportional to the environmental relative humidity, as well as free tropospheric diffusion coefficients for heat and momentum based on Monin--Obukhov functional dependencies.The forecasting system is evaluated against analyses and observations using high-resolution medium-range deterministic and ensemble forecasts, monthly and seasonal integrations, and decadal integrations with coupled atmosphere-ocean models. The results show a significantly higher and more realistic level of model activity in terms of the amplitude of tropical and extratropical mesoscale, synoptic and planetary perturbations. Importantly, with the higher variability and reduced bias not only the probabilistic scores are improved, but also the midlatitude deterministic scores in the short and medium ranges. Furthermore, for the first time the model is able to represent a realistic spectrum of convectively coupled equatorial Kelvin and Rossby waves, and maintains a realistic amplitude of the Madden--Julian oscillation (MJO) during monthly forecasts. However, the propagation speed of the MJO is slower than observed. The higher tropical tropospheric wave activity also results in better stratospheric temperatures and winds through the deposition of momentum.The partitioning between convective and resolved precipitation is unaffected by the model changes with roughly 62% of the total global precipitation being of the convective type. Finally, the changes in convection and diffusion parametrizations resulted in a larger spread of the ensemble forecasts, which allowed the amplitude of the initial perturbations in the ensemble prediction system to decrease by 30%. Copyright {\copyright} 2008 Royal Meteorological Society}, + Author = {Bechtold, P. and K{\"o}hler, M. and Jung, T. and Doblas-Reyes, F. and Leutbecher, M. and Rodwell, M. J. and Vitart, F. and Balsamo, G.}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBELi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQmVjaHRvbGQvMjAwOC5wZGZPEQHMAAAAAAHMAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAobfkIMjAwOC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARZce9OEjEwAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAACEJlY2h0b2xkABAACAAA0ed4sgAAABEACAAA04TgrAAAAAEAGAAobfkAKGyWAChsiwAoZ3sAG14HAAKYXAACAF5NYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAQmVjaHRvbGQ6ADIwMDgucGRmAA4AEgAIADIAMAAwADgALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEtVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQmVjaHRvbGQvMjAwOC5wZGYAABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGsAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOw==}, Date-Added = {2016-06-14 23:11:58 +0000}, Date-Modified = {2016-06-14 23:11:58 +0000}, Doi = {10.1002/qj.289}, @@ -2183,16 +2295,16 @@ @article{bechtold_et_al_2008 Number = {634}, Pages = {1337--1351}, Publisher = {John Wiley & Sons, Ltd.}, - Title = {Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales}, + Title = {Advances in simulating atmospheric variability with the {ECMWF} model: From synoptic to decadal time-scales}, Url = {http://dx.doi.org/10.1002/qj.289}, Volume = {134}, Year = {2008}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBELi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQmVjaHRvbGQvMjAwOC5wZGZPEQHMAAAAAAHMAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAobfkIMjAwOC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARZce9OEjEwAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAACEJlY2h0b2xkABAACAAA0ed4sgAAABEACAAA04TgrAAAAAEAGAAobfkAKGyWAChsiwAoZ3sAG14HAAKYXAACAF5NYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAQmVjaHRvbGQ6ADIwMDgucGRmAA4AEgAIADIAMAAwADgALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEtVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQmVjaHRvbGQvMjAwOC5wZGYAABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGsAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOw==}, Bdsk-Url-1 = {http://dx.doi.org/10.1002/qj.289}} @article{han_and_pan_2011, Annote = {doi: 10.1175/WAF-D-10-05038.1}, - Author = {Han, Jongil and Pan, Hua-Lu}, + Author = {Han, J. and Pan, H.-L.}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxA/Li4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSGFuLzIwMTEucGRmTxEBvgAAAAABvgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAWsT5CDIwMTEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADC1cfTGvlvAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAANIYW4AABAACAAA0ed4sgAAABEACAAA0xtNzwAAAAEAGABaxPkAKGyWAChsiwAoZ3sAG14HAAKYXAACAFlNYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoASGFuOgAyMDExLnBkZgAADgASAAgAMgAwADEAMQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIARlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9IYW4vMjAxMS5wZGYAEwABLwAAFQACAA3//wAAAAgADQAaACQAZgAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIo}, Booktitle = {Weather and Forecasting}, Da = {2011/08/01}, Date = {2011/08/01}, @@ -2207,28 +2319,28 @@ @article{han_and_pan_2011 Number = {4}, Pages = {520--533}, Publisher = {American Meteorological Society}, - Title = {Revision of Convection and Vertical Diffusion Schemes in the NCEP Global Forecast System}, + Title = {Revision of Convection and Vertical Diffusion Schemes in the {NCEP} {G}lobal {F}orecast {S}ystem}, Ty = {JOUR}, Url = {http://dx.doi.org/10.1175/WAF-D-10-05038.1}, Volume = {26}, Year = {2011}, Year1 = {2011}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxA/Li4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSGFuLzIwMTEucGRmTxEBvgAAAAABvgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAWsT5CDIwMTEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADC1cfTGvlvAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAANIYW4AABAACAAA0ed4sgAAABEACAAA0xtNzwAAAAEAGABaxPkAKGyWAChsiwAoZ3sAG14HAAKYXAACAFlNYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoASGFuOgAyMDExLnBkZgAADgASAAgAMgAwADEAMQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIARlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9IYW4vMjAxMS5wZGYAEwABLwAAFQACAA3//wAAAAgADQAaACQAZgAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIo}, Bdsk-Url-1 = {http://dx.doi.org/10.1175/WAF-D-10-05038.1}} @article{pan_and_wu_1995, - Author = {Pan, H. -L. and W.-S. Wu}, + Author = {Pan, H.-L. and W.-S. Wu}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxA/Li4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvUGFuLzE5OTUucGRmTxEBvgAAAAABvgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAwtTNCDE5OTUucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADCtU/TGvMJAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAANQYW4AABAACAAA0ed4sgAAABEACAAA0xtHaQAAAAEAGADC1M0AKGyWAChsiwAoZ3sAG14HAAKYXAACAFlNYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAUGFuOgAxOTk1LnBkZgAADgASAAgAMQA5ADkANQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIARlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9QYW4vMTk5NS5wZGYAEwABLwAAFQACAA3//wAAAAgADQAaACQAZgAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIo}, Date-Added = {2016-06-14 23:06:41 +0000}, Date-Modified = {2016-06-14 23:06:41 +0000}, Journal = {NMC Office Note, No. 409}, Pages = {40pp}, - Title = {Implementing a Mass Flux Convection Parameterization Package for the NMC Medium-Range Forecast Model}, - Year = {1995}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxA/Li4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvUGFuLzE5OTUucGRmTxEBvgAAAAABvgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAwtTNCDE5OTUucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADCtU/TGvMJAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAANQYW4AABAACAAA0ed4sgAAABEACAAA0xtHaQAAAAEAGADC1M0AKGyWAChsiwAoZ3sAG14HAAKYXAACAFlNYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAUGFuOgAxOTk1LnBkZgAADgASAAgAMQA5ADkANQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIARlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9QYW4vMTk5NS5wZGYAEwABLwAAFQACAA3//wAAAAgADQAaACQAZgAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIo}} + Title = {Implementing a Mass Flux Convection Parameterization Package for the {NMC} Medium-Range Forecast Model}, + Year = {1995}} @article{grell_1993, Annote = {doi: 10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2}, - Author = {Grell, Georg A.}, + Author = {Grell, G. A.}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvR3JlbGwvMTk5My5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAoie0IMTk5My5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMK4dtMa9LMAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABUdyZWxsAAAQAAgAANHneLIAAAARAAgAANMbSRMAAAABABgAKIntAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AEdyZWxsOgAxOTkzLnBkZgAADgASAAgAMQA5ADkAMwAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9HcmVsbC8xOTkzLnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Booktitle = {Monthly Weather Review}, Da = {1993/03/01}, Date = {1993/03/01}, @@ -2249,11 +2361,11 @@ @article{grell_1993 Volume = {121}, Year = {1993}, Year1 = {1993}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvR3JlbGwvMTk5My5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAoie0IMTk5My5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMK4dtMa9LMAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABUdyZWxsAAAQAAgAANHneLIAAAARAAgAANMbSRMAAAABABgAKIntAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AEdyZWxsOgAxOTkzLnBkZgAADgASAAgAMQA5ADkAMwAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9HcmVsbC8xOTkzLnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Bdsk-Url-1 = {http://dx.doi.org/10.1175/1520-0493(1993)121%3C0764:PEOAUB%3E2.0.CO;2}} @article{arakawa_and_schubert_1974, - Author = {Arakawa, A and Schubert, WH}, + Author = {Arakawa, A. and Schubert, W. H.}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBDLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQXJha2F3YS8xOTc0LnBkZk8RAcoAAAAAAcoAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAAChtVQgxOTc0LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKG1ctM8h9AAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAHQXJha2F3YQAAEAAIAADR53iyAAAAEQAIAAC0z4RkAAAAAQAYAChtVQAobJYAKGyLAChnewAbXgcAAphcAAIAXU1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBBcmFrYXdhOgAxOTc0LnBkZgAADgASAAgAMQA5ADcANAAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9BcmFrYXdhLzE5NzQucGRmABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGoAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOA==}, Date-Added = {2016-06-14 23:04:30 +0000}, Date-Modified = {2018-07-18 19:00:17 +0000}, Isi = {A1974S778800004}, @@ -2263,10 +2375,9 @@ @article{arakawa_and_schubert_1974 Journal = {Journal of the Atmospheric Sciences}, Pages = {674--701}, Times-Cited = {1300}, - Title = {Interaction of a cumulus cloud ensemble with the large-scale environment, Part I}, + Title = {Interaction of a cumulus cloud ensemble with the large-scale environment, {P}art {I}}, Volume = {31}, Year = {1974}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBDLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQXJha2F3YS8xOTc0LnBkZk8RAcoAAAAAAcoAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAAChtVQgxOTc0LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKG1ctM8h9AAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAHQXJha2F3YQAAEAAIAADR53iyAAAAEQAIAAC0z4RkAAAAAQAYAChtVQAobJYAKGyLAChnewAbXgcAAphcAAIAXU1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBBcmFrYXdhOgAxOTc0LnBkZgAADgASAAgAMQA5ADcANAAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9BcmFrYXdhLzE5NzQucGRmABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGoAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOA==}, Bdsk-Url-1 = {http://ws.isiknowledge.com/cps/openurl/service?url_ver=Z39.88-2004&rft_id=info:ut/A1974S778800004}} @article{harshvardhan_et_al_1989, @@ -2297,7 +2408,7 @@ @article{mccormack_et_al_2006 Date-Modified = {2016-06-06 17:37:45 +0000}, Journal = {Atmos. Chem. Phys.}, Pages = {4943-4972}, - Title = {CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models}, + Title = {{CHEM2D-OPP}: A new linearized gas-phase ozone photochemistry parameterization for high-altitude {NWP} and climate models}, Volume = {6}, Year = {2006}} @@ -2307,7 +2418,7 @@ @article{kim_1996 Date-Modified = {2016-06-01 20:21:44 +0000}, Journal = {J. Climate}, Pages = {2698-2717}, - Title = {Representation of subgrid-scale orographic effects in a general circulation model. Part I: Impact on the dynamics of simulated January climate}, + Title = {Representation of subgrid-scale orographic effects in a general circulation model. {P}art {I}: Impact on the dynamics of simulated January climate}, Volume = {9}, Year = {1996}} @@ -2391,7 +2502,7 @@ @inbook{sundqvist_1988 Date-Modified = {2016-05-24 23:03:22 +0000}, Pages = {433-461}, Publisher = {M. E. Schlesinger, Ed., Reidel}, - Title = {Physically-based modeling and simulation of climate and climatic changes, Part I}, + Title = {Physically-based modeling and simulation of climate and climatic changes, {P}art {I}}, Year = {1988}} @misc{Rogers_1979, @@ -2425,22 +2536,22 @@ @booklet{kessler_1969 Year = {1969}} @article{rutledge_and_hobbs_1983, - Author = {S.A. Rutledge and P.V. Hobbs}, + Author = {S. A. Rutledge and P. V. Hobbs}, Date-Added = {2016-05-24 04:07:48 +0000}, Date-Modified = {2016-05-24 04:10:43 +0000}, Journal = {J. Atmos. Sci.}, Pages = {1185-1206}, - Title = {The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones. VIII: A model for the 'seeder-feeder' process in warm-frontal rainbands}, + Title = {The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones. {VIII}: A model for the 'seeder-feeder' process in warm-frontal rainbands}, Volume = {40}, Year = {1983}} @article{zhao_and_carr_1997, - Author = {Q. Zhao and F.H. Carr}, + Author = {Q. Zhao and F. H. Carr}, Date-Added = {2016-05-24 03:57:40 +0000}, Date-Modified = {2016-05-24 04:02:27 +0000}, Journal = {Monthly Weather Review}, Pages = {1931-1953}, - Title = {A prognostic cloud scheme for operational NWP models}, + Title = {A prognostic cloud scheme for operational {NWP} models}, Volume = {125}, Year = {1997}} @@ -2472,7 +2583,7 @@ @article{chun_et_al_2004 Journal = {J. Climate}, Keywords = {convective gwd}, Pages = {3530-3547}, - Title = {Impact of a convectively forced gravity wave drag parameterization in NCAR CCM3}, + Title = {Impact of a convectively forced gravity wave drag parameterization in {NCAR CCM3}}, Volume = {17}, Year = {2004}} @@ -2488,7 +2599,7 @@ @article{chun_and_baik_1998 Year = {1998}} @article{akmaev_1991, - Author = {R.A. Akmaev}, + Author = {R. A. Akmaev}, Date-Added = {2016-05-20 20:41:25 +0000}, Date-Modified = {2016-05-20 20:44:22 +0000}, Journal = {Monthly Weather Review}, @@ -2499,7 +2610,8 @@ @article{akmaev_1991 @article{siebesma_et_al_2007, Abstract = {A better conceptual understanding and more realistic parameterizations of convective boundary layers in climate and weather prediction models have been major challenges in meteorological research. In particular, parameterizations of the dry convective boundary layer, in spite of the absence of water phase-changes and its consequent simplicity as compared to moist convection, typically suffer from problems in attempting to represent realistically the boundary layer growth and what is often referred to as countergradient fluxes. The eddy-diffusivity (ED) approach has been relatively successful in representing some characteristics of neutral boundary layers and surface layers in general. The mass-flux (MF) approach, on the other hand, has been used for the parameterization of shallow and deep moist convection. In this paper, a new approach that relies on a combination of the ED and MF parameterizations (EDMF) is proposed for the dry convective boundary layer. It is shown that the EDMF approach follows naturally from a decomposition of the turbulent fluxes into 1) a part that includes strong organized updrafts, and 2) a remaining turbulent field. At the basis of the EDMF approach is the concept that nonlocal subgrid transport due to the strong updrafts is taken into account by the MF approach, while the remaining transport is taken into account by an ED closure. Large-eddy simulation (LES) results of the dry convective boundary layer are used to support the theoretical framework of this new approach and to determine the parameters of the EDMF model. The performance of the new formulation is evaluated against LES results, and it is shown that the EDMF closure is able to reproduce the main properties of dry convective boundary layers in a realistic manner. Furthermore, it will be shown that this approach has strong advantages over the more traditional countergradient approach, especially in the entrainment layer. As a result, this EDMF approach opens the way to parameterize the clear and cumulus-topped boundary layer in a simple and unified way.}, - Author = {Siebesma, A. Pier and Soares, Pedro M. M. and Teixeira, Joao}, + Author = {Siebesma, A. P. and Soares, P. M. M. and Teixeira, J.}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBELi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU2llYmVzbWEvMjAwNy5wZGZPEQHMAAAAAAHMAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAqYEwIMjAwNy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACphyMc7+4hQREYgQ0FSTwACAAUAAAkgAAAAAAAAAAAAAAAAAAAACFNpZWJlc21hABAACAAA0ed4sgAAABEACAAAxzxd+AAAAAEAGAAqYEwAKGyWAChsiwAoZ3sAG14HAAKYXAACAF5NYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAU2llYmVzbWE6ADIwMDcucGRmAA4AEgAIADIAMAAwADcALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEtVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU2llYmVzbWEvMjAwNy5wZGYAABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGsAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOw==}, Date-Added = {2016-05-20 17:17:49 +0000}, Date-Modified = {2016-05-20 17:17:49 +0000}, Doi = {DOI 10.1175/JAS3888.1}, @@ -2513,12 +2625,12 @@ @article{siebesma_et_al_2007 Title = {A combined eddy-diffusivity mass-flux approach for the convective boundary layer}, Volume = {64}, Year = {2007}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBELi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU2llYmVzbWEvMjAwNy5wZGZPEQHMAAAAAAHMAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAqYEwIMjAwNy5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACphyMc7+4hQREYgQ0FSTwACAAUAAAkgAAAAAAAAAAAAAAAAAAAACFNpZWJlc21hABAACAAA0ed4sgAAABEACAAAxzxd+AAAAAEAGAAqYEwAKGyWAChsiwAoZ3sAG14HAAKYXAACAF5NYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAU2llYmVzbWE6ADIwMDcucGRmAA4AEgAIADIAMAAwADcALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEtVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU2llYmVzbWEvMjAwNy5wZGYAABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGsAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOw==}, Bdsk-Url-1 = {http://ws.isiknowledge.com/cps/openurl/service?url_ver=Z39.88-2004&rft_id=info:ut/000245742600011}} @article{soares_et_al_2004, Abstract = {Recently, a new consistent way of parametrizing simultaneously local and non-local turbulent transport for the convective atmospheric boundary layer has been proposed and tested for the clear boundary layer. This approach assumes that in the convective boundary layer the subgrid-scale fluxes result from two different mixing scales: small eddies, that are parametrized by an eddy-diffusivity approach, and thermals, which are represented by a mass-flux contribution. Since the interaction between the cloud layer and the underlying sub-cloud layer predominantly takes place through strong updraughts, this approach offers an interesting avenue of establishing a unified description of the turbulent transport in the cumulus-topped boundary layer. This paper explores the possibility of such a new approach for the cumulus-topped boundary layer. In the sub-cloud and cloud layers, the mass-flux term represents the effect of strong updraughts. These are modelled by a simple entraining parcel, which determines the mean properties of the strong updraughts, the boundary-layer height, the lifting condensation level and cloud top. The residual smaller-scale turbulent transport is parametrized with an eddy-diffusivity approach that uses a turbulent kinetic energy closure. The new scheme is implemented and tested in the research model MesoNH. Copyright {\copyright} 2004 Royal Meteorological Society}, Author = {Soares, P. M. M. and Miranda, P. M. A. and Siebesma, A. P. and Teixeira, J.}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBCLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU29hcmVzLzIwMDQucGRmTxEBxgAAAAABxgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAWIC2CDIwMDQucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYf6DSsqNwAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAAZTb2FyZXMAEAAIAADR53iyAAAAEQAIAADSswXgAAAAAQAYAFiAtgAobJYAKGyLAChnewAbXgcAAphcAAIAXE1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBTb2FyZXM6ADIwMDQucGRmAA4AEgAIADIAMAAwADQALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAElVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU29hcmVzLzIwMDQucGRmAAATAAEvAAAVAAIADf//AAAACAANABoAJABpAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjM=}, Date-Added = {2016-05-20 17:17:49 +0000}, Date-Modified = {2016-05-20 17:17:49 +0000}, Doi = {10.1256/qj.03.223}, @@ -2532,11 +2644,11 @@ @article{soares_et_al_2004 Url = {http://dx.doi.org/10.1256/qj.03.223}, Volume = {130}, Year = {2004}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBCLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU29hcmVzLzIwMDQucGRmTxEBxgAAAAABxgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAWIC2CDIwMDQucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYf6DSsqNwAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAAZTb2FyZXMAEAAIAADR53iyAAAAEQAIAADSswXgAAAAAQAYAFiAtgAobJYAKGyLAChnewAbXgcAAphcAAIAXE1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBTb2FyZXM6ADIwMDQucGRmAA4AEgAIADIAMAAwADQALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAElVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvU29hcmVzLzIwMDQucGRmAAATAAEvAAAVAAIADf//AAAACAANABoAJABpAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjM=}, Bdsk-Url-1 = {http://dx.doi.org/10.1256/qj.03.223}} @article{troen_and_mahrt_1986, - Author = {Troen, IB and Mahrt, L.}, + Author = {Troen, I. B. and Mahrt, L.}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvVHJvZW4vMTk4Ni5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAABNeegIMTk4Ni5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE13kNKUWwUAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABVRyb2VuAAAQAAgAANHneLIAAAARAAgAANKUvXUAAAABABgATXnoAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AFRyb2VuOgAxOTg2LnBkZgAADgASAAgAMQA5ADgANgAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9Ucm9lbi8xOTg2LnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Date-Added = {2016-05-20 17:17:49 +0000}, Date-Modified = {2016-05-20 17:17:49 +0000}, Doi = {10.1007/BF00122760}, @@ -2550,13 +2662,13 @@ @article{troen_and_mahrt_1986 Url = {http://dx.doi.org/10.1007/BF00122760}, Volume = {37}, Year = {1986}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvVHJvZW4vMTk4Ni5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAABNeegIMTk4Ni5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE13kNKUWwUAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAABVRyb2VuAAAQAAgAANHneLIAAAARAAgAANKUvXUAAAABABgATXnoAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AFRyb2VuOgAxOTg2LnBkZgAADgASAAgAMQA5ADgANgAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9Ucm9lbi8xOTg2LnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Bdsk-Url-1 = {http://dx.doi.org/10.1007/BF00122760}} @article{macvean_and_mason_1990, Abstract = {Abstract In a recent paper, Kuo and Schubert demonstrated the lack of observational support for the relevance of the criterion for cloud-top entrainment instability proposed by Randall and by Deardorff. Here we derive a new criterion, based on a model of the instability as resulting from the energy released close to cloud top, by Mixing between saturated boundary-layer air and unsaturated air from above the capping inversion. The condition is derived by considering the net conversion from potential to kinetic energy in a system consisting of two layers of fluid straddling cloud-top, when a small amount of mixing occurs between these layers. This contrasts with previous analyses, which only considered the change in buoyancy of the cloud layer when unsaturated air is mixed into it. In its most general form, this new criterion depends on the ratio of the depths of the layers involved in the mixing. It is argued that, for a self-sustaining instability, there must be a net release of kinetic energy on the same depth and time scales as the entrainment process itself. There are two plausible ways in which this requirement may be satisfied. Either one takes the depths of the layers involved in the mixing to each be comparable to the vertical scale of the entrainment process, which is typically of order tens of meters or less, or alternatively, one must allow for the efficiency with which energy released by mixing through a much deeper lower layer becomes available to initiate further entrainment. In both cases the same criterion for instability results. This criterion is much more restrictive than that proposed by Randall and by Deardorff; furthermore, the observational data is then consistent with the predictions of the current theory. Further analysis provides estimates of the turbulent fluxes associated with cloud-top entrainment instability. This analysis effectively constitutes an energetically consistent turbulence closure for models of boundary layers with cloud. The implications for such numerical models are discussed. Comparisons are also made with other possible criteria for cloud-top entrainment instability which have recently been suggested.}, Annote = {doi: 10.1175/1520-0469(1990)047<1012:CTEITS>2.0.CO;2}, Author = {MacVean, M. K. and Mason, P. J.}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBDLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTWFjVmVhbi8xOTkwLnBkZk8RAcoAAAAAAcoAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAAFx8zwgxOTkwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXHyn0rkkRQAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAHTWFjVmVhbgAAEAAIAADR53iyAAAAEQAIAADSuYa1AAAAAQAYAFx8zwAobJYAKGyLAChnewAbXgcAAphcAAIAXU1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBNYWNWZWFuOgAxOTkwLnBkZgAADgASAAgAMQA5ADkAMAAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9NYWNWZWFuLzE5OTAucGRmABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGoAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOA==}, Booktitle = {Journal of the Atmospheric Sciences}, Da = {1990/04/01}, Date-Added = {2016-05-20 17:16:05 +0000}, @@ -2575,11 +2687,11 @@ @article{macvean_and_mason_1990 Url = {http://dx.doi.org/10.1175/1520-0469(1990)047<1012:CTEITS>2.0.CO;2}, Volume = {47}, Year = {1990}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBDLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTWFjVmVhbi8xOTkwLnBkZk8RAcoAAAAAAcoAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAAFx8zwgxOTkwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXHyn0rkkRQAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAHTWFjVmVhbgAAEAAIAADR53iyAAAAEQAIAADSuYa1AAAAAQAYAFx8zwAobJYAKGyLAChnewAbXgcAAphcAAIAXU1hY2ludG9zaCBIRDpVc2VyczoAZ3JhbnRmOgBDbG91ZFN0YXRpb246AGZpcmxfbGlicmFyeToAZmlybF9saWJyYXJ5X2ZpbGVzOgBNYWNWZWFuOgAxOTkwLnBkZgAADgASAAgAMQA5ADkAMAAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9NYWNWZWFuLzE5OTAucGRmABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGoAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOA==}, Bdsk-Url-1 = {http://dx.doi.org/10.1175/1520-0469(1990)047%3C1012:CTEITS%3E2.0.CO;2}} @article{louis_1979, - Author = {Louis, JF}, + Author = {Louis, J. F.}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTG91aXMvMTk3OS5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAonogIMTk3OS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiej8FuU4pQREYgQ0FSTwACAAUAAAkgAAAAAAAAAAAAAAAAAAAABUxvdWlzAAAQAAgAANHneLIAAAARAAgAAMFutfoAAAABABgAKJ6IAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AExvdWlzOgAxOTc5LnBkZgAADgASAAgAMQA5ADcAOQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9Mb3Vpcy8xOTc5LnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Date-Added = {2016-05-20 17:15:52 +0000}, Date-Modified = {2016-05-20 17:15:52 +0000}, Isi = {A1979HT69700004}, @@ -2592,12 +2704,12 @@ @article{louis_1979 Title = {A PARAMETRIC MODEL OF VERTICAL EDDY FLUXES IN THE ATMOSPHERE}, Volume = {17}, Year = {1979}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBBLi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTG91aXMvMTk3OS5wZGZPEQHEAAAAAAHEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAonogIMTk3OS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiej8FuU4pQREYgQ0FSTwACAAUAAAkgAAAAAAAAAAAAAAAAAAAABUxvdWlzAAAQAAgAANHneLIAAAARAAgAAMFutfoAAAABABgAKJ6IAChslgAobIsAKGd7ABteBwACmFwAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AExvdWlzOgAxOTc5LnBkZgAADgASAAgAMQA5ADcAOQAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIASFVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9Mb3Vpcy8xOTc5LnBkZgATAAEvAAAVAAIADf//AAAACAANABoAJABoAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAjA=}, Bdsk-Url-1 = {http://ws.isiknowledge.com/cps/openurl/service?url_ver=Z39.88-2004&rft_id=info:ut/A1979HT69700004}} @article{lock_et_al_2000, Abstract = {A new boundary layer turbulent mixing scheme has been developed for use in the UKMO weather forecasting and climate prediction models. This includes a representation of nonlocal mixing (driven by both surface fluxes and cloud-top processes) in unstable layers, either coupled to or decoupled from the surface, and an explicit entrainment parameterization. The scheme is formulated in moist conserved variables so that it can treat both dry and cloudy layers. Details of the scheme and examples of its performance in single-column model tests are presented.}, - Author = {Lock, AP and Brown, AR and Bush, MR and Martin, GM and Smith, RNB}, + Author = {Lock, A. P. and Brown, A. R. and Bush, M. R. and Martin, G. M. and Smith, R.N.B.}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBALi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTG9jay8yMDAwLnBkZk8RAcAAAAAAAcAAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAACibewgyMDAwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJuLywPrPAAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAETG9jawAQAAgAANHneLIAAAARAAgAAMsETawAAAABABgAKJt7AChslgAobIsAKGd7ABteBwACmFwAAgBaTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AExvY2s6ADIwMDAucGRmAA4AEgAIADIAMAAwADAALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEdVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTG9jay8yMDAwLnBkZgAAEwABLwAAFQACAA3//wAAAAgADQAaACQAZwAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIr}, Date-Added = {2016-05-20 17:15:36 +0000}, Date-Modified = {2016-05-20 17:15:36 +0000}, Isi = {000089461100008}, @@ -2610,13 +2722,13 @@ @article{lock_et_al_2000 Title = {A new boundary layer mixing scheme. {P}art {I}: Scheme description and single-column model tests}, Volume = {128}, Year = {2000}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBALi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTG9jay8yMDAwLnBkZk8RAcAAAAAAAcAAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAACibewgyMDAwLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJuLywPrPAAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAETG9jawAQAAgAANHneLIAAAARAAgAAMsETawAAAABABgAKJt7AChslgAobIsAKGd7ABteBwACmFwAAgBaTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AExvY2s6ADIwMDAucGRmAA4AEgAIADIAMAAwADAALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEdVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvTG9jay8yMDAwLnBkZgAAEwABLwAAFQACAA3//wAAAAgADQAaACQAZwAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIr}, Bdsk-Url-1 = {http://ws.isiknowledge.com/cps/openurl/service?url_ver=Z39.88-2004&rft_id=info:ut/000089461100008}} @article{hong_and_pan_1996, Abstract = {Abstract In this paper, the incorporation of a simple atmospheric boundary layer diffusion scheme into the NCEP Medium-Range Forecast Model is described. A boundary layer diffusion package based on the Troen and Mahrt nonlocal diffusion concept has been tested for possible operational implementation. The results from this approach are compared with those from the local diffusion approach, which is the current operational scheme, and verified against FIFE observations during 9?10 August 1987. The comparisons between local and nonlocal approaches are extended to the forecast for a heavy rain case of 15?17 May 1995. The sensitivity of both the boundary layer development and the precipitation forecast to the tuning parameters in the nonlocal diffusion scheme is also investigated. Special attention is given to the interaction of boundary layer processes with precipitation physics. Some results of parallel runs during August 1995 are also presented.}, Annote = {doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2}, - Author = {Hong, Song-You and Pan, Hua-Lu}, + Author = {Hong, S.-Y. and Pan, H.-L.}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBALi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSG9uZy8xOTk2LnBkZk8RAcAAAAAAAcAAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAAE18FggxOTk2LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATXvY0pRb8QAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAESG9uZwAQAAgAANHneLIAAAARAAgAANKUvmEAAAABABgATXwWAChslgAobIsAKGd7ABteBwACmFwAAgBaTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AEhvbmc6ADE5OTYucGRmAA4AEgAIADEAOQA5ADYALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEdVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSG9uZy8xOTk2LnBkZgAAEwABLwAAFQACAA3//wAAAAgADQAaACQAZwAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIr}, Booktitle = {Monthly Weather Review}, Da = {1996/10/01}, Date = {1996/10/01}, @@ -2637,13 +2749,13 @@ @article{hong_and_pan_1996 Volume = {124}, Year = {1996}, Year1 = {1996}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBALi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSG9uZy8xOTk2LnBkZk8RAcAAAAAAAcAAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAANHnJFJIKwAAAE18FggxOTk2LnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATXvY0pRb8QAAAAAAAAAAAAIABQAACSAAAAAAAAAAAAAAAAAAAAAESG9uZwAQAAgAANHneLIAAAARAAgAANKUvmEAAAABABgATXwWAChslgAobIsAKGd7ABteBwACmFwAAgBaTWFjaW50b3NoIEhEOlVzZXJzOgBncmFudGY6AENsb3VkU3RhdGlvbjoAZmlybF9saWJyYXJ5OgBmaXJsX2xpYnJhcnlfZmlsZXM6AEhvbmc6ADE5OTYucGRmAA4AEgAIADEAOQA5ADYALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEdVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSG9uZy8xOTk2LnBkZgAAEwABLwAAFQACAA3//wAAAAgADQAaACQAZwAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIr}, Bdsk-Url-1 = {http://dx.doi.org/10.1175/1520-0493(1996)124%3C2322:NBLVDI%3E2.0.CO;2}} @article{han_and_pan_2006, Abstract = {Abstract A parameterization of the convection-induced pressure gradient force (PGF) in convective momentum transport (CMT) is tested for hurricane intensity forecasting using NCEP's operational Global Forecast System (GFS) and its nested Regional Spectral Model (RSM). In the parameterization the PGF is assumed to be proportional to the product of the cloud mass flux and vertical wind shear. Compared to control forecasts using the present operational GFS and RSM where the PGF effect in CMT is taken into account empirically, the new PGF parameterization helps increase hurricane intensity by reducing the vertical momentum exchange, giving rise to a closer comparison to the observations. In addition, the new PGF parameterization forecasts not only show more realistically organized precipitation patterns with enhanced hurricane intensity but also reduce the forecast track error. Nevertheless, the model forecasts with the new PGF parameterization still largely underpredict the observed intensity. One of the many possible reasons for the large underprediction may be the absence of hurricane initialization in the models.}, Annote = {doi: 10.1175/MWR3090.1}, - Author = {Han, Jongil and Pan, Hua-Lu}, + Author = {Han, J. and Pan, H.-L.}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxA/Li4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSGFuLzIwMDYucGRmTxEBvgAAAAABvgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAWsT5CDIwMDYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABazFjStCvVAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAANIYW4AABAACAAA0ed4sgAAABEACAAA0rSORQAAAAEAGABaxPkAKGyWAChsiwAoZ3sAG14HAAKYXAACAFlNYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoASGFuOgAyMDA2LnBkZgAADgASAAgAMgAwADAANgAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIARlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9IYW4vMjAwNi5wZGYAEwABLwAAFQACAA3//wAAAAgADQAaACQAZgAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIo}, Booktitle = {Monthly Weather Review}, Da = {2006/02/01}, Date-Added = {2016-05-20 17:11:17 +0000}, @@ -2662,11 +2774,11 @@ @article{han_and_pan_2006 Url = {http://dx.doi.org/10.1175/MWR3090.1}, Volume = {134}, Year = {2006}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxA/Li4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvSGFuLzIwMDYucGRmTxEBvgAAAAABvgACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAA0eckUkgrAAAAWsT5CDIwMDYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABazFjStCvVAAAAAAAAAAAAAgAFAAAJIAAAAAAAAAAAAAAAAAAAAANIYW4AABAACAAA0ed4sgAAABEACAAA0rSORQAAAAEAGABaxPkAKGyWAChsiwAoZ3sAG14HAAKYXAACAFlNYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoASGFuOgAyMDA2LnBkZgAADgASAAgAMgAwADAANgAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIARlVzZXJzL2dyYW50Zi9DbG91ZFN0YXRpb24vZmlybF9saWJyYXJ5L2ZpcmxfbGlicmFyeV9maWxlcy9IYW4vMjAwNi5wZGYAEwABLwAAFQACAA3//wAAAAgADQAaACQAZgAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAIo}, Bdsk-Url-1 = {http://dx.doi.org/10.1175/MWR3090.1}} @article{businger_et_al_1971, - Author = {Businger, JA and Wyngaard, JC and Izumi, Y and Bradley, EF}, + Author = {Businger, J. A. and Wyngaard, J. C. and Izumi, Y. and Bradley, E. F.}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBELi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQnVzaW5nZXIvMTk3MS5wZGZPEQHMAAAAAAHMAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAodUUIMTk3MS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACh1cbTPIxwAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAACEJ1c2luZ2VyABAACAAA0ed4sgAAABEACAAAtM+FjAAAAAEAGAAodUUAKGyWAChsiwAoZ3sAG14HAAKYXAACAF5NYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAQnVzaW5nZXI6ADE5NzEucGRmAA4AEgAIADEAOQA3ADEALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEtVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQnVzaW5nZXIvMTk3MS5wZGYAABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGsAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOw==}, Date-Added = {2016-05-20 17:10:50 +0000}, Date-Modified = {2018-07-18 18:58:08 +0000}, Isi = {A1971I822800004}, @@ -2679,11 +2791,10 @@ @article{businger_et_al_1971 Title = {Flux-profile relationships in the atmospheric surface layer}, Volume = {28}, Year = {1971}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBELi4vLi4vQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQnVzaW5nZXIvMTk3MS5wZGZPEQHMAAAAAAHMAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAADR5yRSSCsAAAAodUUIMTk3MS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACh1cbTPIxwAAAAAAAAAAAACAAUAAAkgAAAAAAAAAAAAAAAAAAAACEJ1c2luZ2VyABAACAAA0ed4sgAAABEACAAAtM+FjAAAAAEAGAAodUUAKGyWAChsiwAoZ3sAG14HAAKYXAACAF5NYWNpbnRvc2ggSEQ6VXNlcnM6AGdyYW50ZjoAQ2xvdWRTdGF0aW9uOgBmaXJsX2xpYnJhcnk6AGZpcmxfbGlicmFyeV9maWxlczoAQnVzaW5nZXI6ADE5NzEucGRmAA4AEgAIADEAOQA3ADEALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAEtVc2Vycy9ncmFudGYvQ2xvdWRTdGF0aW9uL2ZpcmxfbGlicmFyeS9maXJsX2xpYnJhcnlfZmlsZXMvQnVzaW5nZXIvMTk3MS5wZGYAABMAAS8AABUAAgAN//8AAAAIAA0AGgAkAGsAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACOw==}, Bdsk-Url-1 = {http://ws.isiknowledge.com/cps/openurl/service?url_ver=Z39.88-2004&rft_id=info:ut/A1971I822800004}} @article{xu_and_randall_1996, - Author = {K-M. Xu and D. A. Randall}, + Author = {K.-M. Xu and D. A. Randall}, Date-Added = {2016-05-20 16:22:45 +0000}, Date-Modified = {2016-05-20 16:24:47 +0000}, Journal = {J. Atmos. Sci.}, @@ -2707,7 +2818,7 @@ @article{clough_et_al_1992 Year = {1992}} @techreport{chou_and_suarez_1999, - Author = {M.D. Chou and M. J. Suarez}, + Author = {M. D. Chou and M. J. Suarez}, Date-Added = {2016-05-20 15:27:31 +0000}, Date-Modified = {2016-05-20 15:30:02 +0000}, Institution = {NASA}, @@ -2717,7 +2828,7 @@ @techreport{chou_and_suarez_1999 Year = {1999}} @article{sato_et_al_1993, - Author = {M. Sato and J.E. Hansan and M. P. McCormick and J. B. Pollack}, + Author = {M. Sato and J. E. Hansan and M. P. McCormick and J. B. Pollack}, Date-Added = {2016-05-20 04:23:08 +0000}, Date-Modified = {2018-02-20 19:58:29 +0000}, Journal = {J. Geophys. Res.}, @@ -2735,7 +2846,7 @@ @article{chin_et_al_2000 Month = {October}, Number = {D20}, Pages = {24671-24687}, - Title = {Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties}, + Title = {Atmospheric sulfur cycle simulated in the global model {GOCART}: Model description and global properties}, Volume = {105}, Year = {2000}} @@ -2745,17 +2856,17 @@ @article{hess_et_al_1998 Date-Modified = {2016-05-20 15:08:21 +0000}, Journal = {Bull. Am. Meteor. Soc.}, Pages = {831-844}, - Title = {Optical properties of aerosols and clouds: The software package OPAC.}, + Title = {Optical properties of aerosols and clouds: The software package {OPAC}}, Volume = {79}, Year = {1998}} @article{iacono_et_al_2000, - Author = {M.J. Iacono and E.J. Mlawer and S. A. Clough and J.-J. Morcrette}, + Author = {M. J. Iacono and E. J. Mlawer and S. A. Clough and J.-J. Morcrette}, Date-Added = {2016-05-20 03:45:26 +0000}, Date-Modified = {2016-05-20 15:08:59 +0000}, Journal = {J. Geophys. Res.}, Pages = {14873-14890}, - Title = {Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3}, + Title = {Impact of an improved longwave radiation model, {RRTM}, on the energy budget and thermodynamic properties of the {NCAR} community climate model, {CCM3}}, Volume = {105}, Year = {2000}} @@ -2765,32 +2876,32 @@ @article{clough_et_al_2005 Date-Modified = {2016-05-20 15:10:30 +0000}, Journal = {J. Quant. Spectrosc. Radiat. Transfer}, Pages = {233-244}, - Title = {Atmospheric radiative transfer modeling: A summary of the AER codes}, + Title = {Atmospheric radiative transfer modeling: A summary of the {AER} codes}, Volume = {91}, Year = {2005}} @article{heymsfield_and_mcfarquhar_1996, - Author = {A.J. Heymsfield and G. M. McFarquhar}, + Author = {A. J. Heymsfield and G. M. McFarquhar}, Date-Added = {2016-05-20 03:35:53 +0000}, Date-Modified = {2016-05-24 17:35:50 +0000}, Journal = {J. Atmos. Sci.}, Pages = {2424-2451}, - Title = {High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands}, + Title = {High albedos of cirrus in the tropical {P}acific warm pool: Microphysical interpretations from {CEPEX} and from {K}wajalein, {M}arshall {I}slands}, Volume = {53}, Year = {1996}} @article{mlawer_et_al_1997, - Author = {E.J. Mlawer and S.J. Taubman and P.D. Brown and M. J. Iacono and S. A. Clough}, + Author = {E. J. Mlawer and S. J. Taubman and P. D. Brown and M. J. Iacono and S. A. Clough}, Date-Added = {2016-05-20 03:32:32 +0000}, Date-Modified = {2016-05-20 15:12:05 +0000}, Journal = {J. Geophys. Res.}, Number = {16663-16682}, - Title = {Radiative transfer for inhomogenerous atmospheres: RRTM, a validated correlated-k model for the longwave}, + Title = {Radiative transfer for inhomogenerous atmospheres: {RRTM}, a validated correlated-k model for the longwave}, Volume = {102}, Year = {1997}} @article{Schwarzkopf_and_Fels_1991, - Author = {M.D. Schwarzkopf and S.B. Fels}, + Author = {M. D. Schwarzkopf and S. B. Fels}, Date-Added = {2016-05-20 03:29:16 +0000}, Date-Modified = {2016-05-20 15:12:19 +0000}, Journal = {J. Geophys. Res.}, @@ -2800,46 +2911,46 @@ @article{Schwarzkopf_and_Fels_1991 Year = {1991}} @article{briegleb_1992, - Author = {B.P. Briegleb}, + Author = {B. P. Briegleb}, Date-Added = {2016-05-20 03:09:50 +0000}, Date-Modified = {2016-05-20 15:12:27 +0000}, Journal = {J. Geophys. Res.}, Pages = {7603-7612}, - Title = {Delta-Eddington approximation for solar radiation in the NCAR community climate model}, + Title = {Delta-Eddington approximation for solar radiation in the {NCAR} community climate model}, Volume = {97}, Year = {1992}} @conference{alpert_et_al_1988, Address = {Baltimore, MD}, - Author = {J. Alpert and M. Kanamitsu and P.M. Caplan and J.G. Sela and G. H. White and E. Kalnay}, + Author = {J. C. Alpert and M. Kanamitsu and P. M. Caplan and J. G. Sela and G. H. White and E. Kalnay}, Date-Added = {2016-05-19 22:40:01 +0000}, Date-Modified = {2018-10-26 15:54:19 -0600}, Organization = {Eighth Conf. on Numerical Weather Prediction, Amer. Meteor. Soc.}, Pages = {726-733}, - Title = {Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model}, + Title = {Mountain induced gravity wave drag parameterization in the {NMC} medium-range forecast model}, Year = {1988}} @conference{alpert_et_al_1996, Address = {Norfolk}, - Author = {J.C. Alpert and S-Y. Hong and Y-J. Kim}, + Author = {J. C. Alpert and S-Y. Hong and Y-J. Kim}, Date-Added = {2016-05-19 22:36:02 +0000}, Date-Modified = {2016-05-20 15:14:15 +0000}, Organization = {11 Conf. on NWP}, Pages = {322-323}, - Title = {Sensitivity of cyclogenesis to lower troposphere enhancement of gravity wave drag using the EMC MRF}, + Title = {Sensitivity of cyclogenesis to lower troposphere enhancement of gravity wave drag using the {EMC MRF}}, Year = {1996}} @conference{alpert_2006, - Author = {J.C. Alpert}, + Author = {J. C. Alpert}, Booktitle = {20th Conf. WAF/16 Conf. NWP}, Date-Added = {2016-05-19 21:24:23 +0000}, Date-Modified = {2016-05-20 15:14:34 +0000}, Number = {P2.4}, - Title = {Sub-grid scale mountain blocking at NCEP}, + Title = {Sub-grid scale mountain blocking at {NCEP}}, Year = {2006}} @article{ebert_and_curry_1992, - Author = {E.E. Ebert and J.A. Curry}, + Author = {E. E. Ebert and J. A. Curry}, Date-Added = {2016-05-19 21:19:00 +0000}, Date-Modified = {2016-05-20 15:12:43 +0000}, Journal = {J. Geophys. Res.}, @@ -2870,17 +2981,18 @@ @article{kim_and_arakawa_1995 @techreport{hou_et_al_2002, Author = {Y. Hou and S. Moorthi and K. Campana}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxAiLi4vLi4vemhhbmctbGliL2hvdV9ldF9hbF8yMDAyLnBkZk8RAdwAAAAAAdwAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAM/T1mZIKwAAAFKkjRJob3VfZXRfYWxfMjAwMi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUqai02OGCgAAAAAAAAAAAAIAAgAACSAAAAAAAAAAAAAAAAAAAAAJemhhbmctbGliAAAQAAgAAM/UKsYAAAARAAgAANNj2moAAAABABgAUqSNAE1lSgAj19QACTbFAAk2xAACZvkAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBtYW56aGFuZzoARG9jdW1lbnRzOgBNYW4uWmhhbmc6AGdtdGItZG9jOgB6aGFuZy1saWI6AGhvdV9ldF9hbF8yMDAyLnBkZgAADgAmABIAaABvAHUAXwBlAHQAXwBhAGwAXwAyADAAMAAyAC4AcABkAGYADwAaAAwATQBhAGMAaQBuAHQAbwBzAGgAIABIAEQAEgBIVXNlcnMvbWFuemhhbmcvRG9jdW1lbnRzL01hbi5aaGFuZy9nbXRiLWRvYy96aGFuZy1saWIvaG91X2V0X2FsXzIwMDIucGRmABMAAS8AABUAAgAP//8AAAAIAA0AGgAkAEkAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACKQ==}, Date-Added = {2016-05-19 19:52:22 +0000}, Date-Modified = {2016-05-20 15:14:59 +0000}, Institution = {NCEP}, Number = {441}, Title = {Parameterization of Solar Radiation Transfer}, Type = {office note}, - Year = {2002}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxAiLi4vLi4vemhhbmctbGliL2hvdV9ldF9hbF8yMDAyLnBkZk8RAdwAAAAAAdwAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAM/T1mZIKwAAAFKkjRJob3VfZXRfYWxfMjAwMi5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUqai02OGCgAAAAAAAAAAAAIAAgAACSAAAAAAAAAAAAAAAAAAAAAJemhhbmctbGliAAAQAAgAAM/UKsYAAAARAAgAANNj2moAAAABABgAUqSNAE1lSgAj19QACTbFAAk2xAACZvkAAgBbTWFjaW50b3NoIEhEOlVzZXJzOgBtYW56aGFuZzoARG9jdW1lbnRzOgBNYW4uWmhhbmc6AGdtdGItZG9jOgB6aGFuZy1saWI6AGhvdV9ldF9hbF8yMDAyLnBkZgAADgAmABIAaABvAHUAXwBlAHQAXwBhAGwAXwAyADAAMAAyAC4AcABkAGYADwAaAAwATQBhAGMAaQBuAHQAbwBzAGgAIABIAEQAEgBIVXNlcnMvbWFuemhhbmcvRG9jdW1lbnRzL01hbi5aaGFuZy9nbXRiLWRvYy96aGFuZy1saWIvaG91X2V0X2FsXzIwMDIucGRmABMAAS8AABUAAgAP//8AAAAIAA0AGgAkAEkAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAACKQ==}} + Year = {2002}} @article{hu_and_stamnes_1993, - Author = {Y.X. Hu and K. Stamnes}, + Author = {Y. X. Hu and K. Stamnes}, + Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxAnLi4vLi4vemhhbmctbGliL2h1X2FuZF9zdGFtbmVzXzE5OTMucGRmTxEB8AAAAAAB8AACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAAz9PWZkgrAAAAUqSNF2h1X2FuZF9zdGFtbmVzXzE5OTMucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSpJHTY3R+AAAAAAAAAAAAAgACAAAJIAAAAAAAAAAAAAAAAAAAAAl6aGFuZy1saWIAABAACAAAz9QqxgAAABEACAAA02PI3gAAAAEAGABSpI0ATWVKACPX1AAJNsUACTbEAAJm+QACAGBNYWNpbnRvc2ggSEQ6VXNlcnM6AG1hbnpoYW5nOgBEb2N1bWVudHM6AE1hbi5aaGFuZzoAZ210Yi1kb2M6AHpoYW5nLWxpYjoAaHVfYW5kX3N0YW1uZXNfMTk5My5wZGYADgAwABcAaAB1AF8AYQBuAGQAXwBzAHQAYQBtAG4AZQBzAF8AMQA5ADkAMwAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIATVVzZXJzL21hbnpoYW5nL0RvY3VtZW50cy9NYW4uWmhhbmcvZ210Yi1kb2MvemhhbmctbGliL2h1X2FuZF9zdGFtbmVzXzE5OTMucGRmAAATAAEvAAAVAAIAD///AAAACAANABoAJABOAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAkI=}, Date-Added = {2016-05-19 19:31:56 +0000}, Date-Modified = {2016-05-20 15:13:12 +0000}, Journal = {J. Climate}, @@ -2888,11 +3000,10 @@ @article{hu_and_stamnes_1993 Pages = {728-742}, Title = {An accurate parameterization of the radiative properties of water clouds suitable for use in climate models}, Volume = {6}, - Year = {1993}, - Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxAnLi4vLi4vemhhbmctbGliL2h1X2FuZF9zdGFtbmVzXzE5OTMucGRmTxEB8AAAAAAB8AACAAAMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAAz9PWZkgrAAAAUqSNF2h1X2FuZF9zdGFtbmVzXzE5OTMucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSpJHTY3R+AAAAAAAAAAAAAgACAAAJIAAAAAAAAAAAAAAAAAAAAAl6aGFuZy1saWIAABAACAAAz9QqxgAAABEACAAA02PI3gAAAAEAGABSpI0ATWVKACPX1AAJNsUACTbEAAJm+QACAGBNYWNpbnRvc2ggSEQ6VXNlcnM6AG1hbnpoYW5nOgBEb2N1bWVudHM6AE1hbi5aaGFuZzoAZ210Yi1kb2M6AHpoYW5nLWxpYjoAaHVfYW5kX3N0YW1uZXNfMTk5My5wZGYADgAwABcAaAB1AF8AYQBuAGQAXwBzAHQAYQBtAG4AZQBzAF8AMQA5ADkAMwAuAHAAZABmAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIATVVzZXJzL21hbnpoYW5nL0RvY3VtZW50cy9NYW4uWmhhbmcvZ210Yi1kb2MvemhhbmctbGliL2h1X2FuZF9zdGFtbmVzXzE5OTMucGRmAAATAAEvAAAVAAIAD///AAAACAANABoAJABOAAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAkI=}} + Year = {1993}} @article{alexander_et_al_2010, - Author = {Alexander, M. J. and Geller, M. and McLandress, C. and Polavarapu, S. and Preusse, P. and Sassi, F. and Sato, K. and Eckermann, S. and Ern, M. and Hertzog, A. and Kawatani, Y. and Pulido, M. and Shaw, T. A. and Sigmond, M. and Vincent, R. and Watanabe, S.}, + Author = {Alexander, M. J. and Geller, M. and McLandress, C. and et al.}, Doi = {10.1002/qj.637}, Eprint = {https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.637}, Journal = {Quarterly Journal of the Royal Meteorological Society}, @@ -2936,7 +3047,7 @@ @article{weinstock_1984 Bdsk-Url-2 = {http://dx.doi.org/10.1029/JA089iA01p00345}} @article{holton_1983, - Author = {Holton, James R.}, + Author = {Holton, J. R.}, Doi = {10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2}, Eprint = {https://doi.org/10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2}, Journal = {Journal of the Atmospheric Sciences}, @@ -2950,7 +3061,7 @@ @article{holton_1983 Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0469(1983)040%3C2497:TIOGWB%3E2.0.CO;2}} @article{geller_et_al_2013, - Author = {Geller, M. A. and Alexander, M. Joan and Love, P. T. and Bacmeister, J. and Ern, M. and Hertzog, A. and Manzini, E. and Preusse, P. and Sato, K. and Scaife, A. A. and Zhou, T.}, + Author = {Geller, M. A. and Alexander, M. J. and Love, P. T. and et al.}, Doi = {10.1175/JCLI-D-12-00545.1}, Eprint = {https://doi.org/10.1175/JCLI-D-12-00545.1}, Journal = {Journal of Climate}, @@ -2978,23 +3089,23 @@ @article{garcia_et_al_2017 Bdsk-Url-2 = {http://dx.doi.org/10.1175/JAS-D-16-0104.1}} @inproceedings{yudin_et_al_2016, - Author = {Yudin, V.A. and Akmaev, R.A. and Fuller-Rowell, T.J. and Alpert, J.C.}, + Author = {Yudin, V. A. and Akmaev, R. A. and Fuller-Rowell, T. J. and Alpert, J. C.}, Booktitle = {International SPARC Gravity Wave Symposium}, Number = {1}, Pages = {012024}, - Title = {Gravity wave physics in the NOAA Environmental Modeling System}, + Title = {Gravity wave physics in the {NOAA} Environmental Modeling System}, Volume = {48}, Year = {2016}} @inproceedings{alpert_et_al_2018, - Author = {Alpert, Jordan C and Yudin, Valery and Fuller-Rowell, Tim and Akmaev, Rashid A}, + Author = {Alpert, J. C. and Yudin, V. A. and Fuller-Rowell, T. J. and Akmaev, R. A.}, Booktitle = {98th American Meteorological Society Annual Meeting}, Organization = {AMS}, - Title = {Integrating Unified Gravity Wave Physics Research into the Next Generation Global Prediction System for NCEP Research to Operations}, + Title = {Integrating Unified Gravity Wave Physics Research into the Next Generation Global Prediction System for {NCEP} Research to Operations}, Year = {2018}} @article{eckermann_2011, - Author = {Eckermann, Stephen D.}, + Author = {Eckermann, S. D.}, Doi = {10.1175/2011JAS3684.1}, Eprint = {https://doi.org/10.1175/2011JAS3684.1}, Journal = {Journal of the Atmospheric Sciences}, @@ -3022,22 +3133,22 @@ @article{lott_et_al_2012 Bdsk-Url-2 = {http://dx.doi.org/10.1029/2012GL051001}} @conference{yudin_et_al_2018, - Author = {Yudin, V. A and Akmaev, R. A. and Alpert, J. C. and Fuller-Rowell T. J., and Karol S. I.}, + Author = {Yudin, V. A. and Akmaev, R. A. and Alpert, J. C. and Fuller-Rowell T. J., and Karol S. I.}, Booktitle = {25th Conference on Numerical Weather Prediction}, Date-Added = {2018-06-04 10:50:44 -0600}, Date-Modified = {2018-06-04 10:54:39 -0600}, Editor = {Am. Meteorol. Soc.}, - Title = {Gravity Wave Physics and Dynamics in the FV3-based Atmosphere Models Extended into the Mesosphere}, + Title = {Gravity Wave Physics and Dynamics in the {FV3}-based Atmosphere Models Extended into the Mesosphere}, Year = {2018}} @article{hines_1997, - Author = {Colin O. Hines}, + Author = {C. O. Hines}, Doi = {https://doi.org/10.1016/S1364-6826(96)00080-6}, Issn = {1364-6826}, Journal = {Journal of Atmospheric and Solar-Terrestrial Physics}, Number = {4}, Pages = {387 - 400}, - Title = {Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation}, + Title = {Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. {P}art {II}: Broad and quasi monochromatic spectra, and implementation}, Url = {http://www.sciencedirect.com/science/article/pii/S1364682696000806}, Volume = {59}, Year = {1997}, @@ -3059,7 +3170,7 @@ @article{alexander_and_dunkerton_1999 Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0469(1999)056%3C4167:ASPOMF%3E2.0.CO;2}} @article{scinocca_2003, - Author = {Scinocca, John F.}, + Author = {Scinocca, J. F.}, Doi = {10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2}, Eprint = {https://doi.org/10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2}, Journal = {Journal of the Atmospheric Sciences}, @@ -3073,7 +3184,7 @@ @article{scinocca_2003 Bdsk-Url-2 = {http://dx.doi.org/10.1175/1520-0469(2003)060%3C0667:AASNGW%3E2.0.CO;2}} @article{shaw_and_shepherd_2009, - Author = {Shaw, Tiffany A. and Shepherd, Theodore G.}, + Author = {Shaw, T. A. and Shepherd, T. G.}, Doi = {10.1175/2009JAS3051.1}, Eprint = {https://doi.org/10.1175/2009JAS3051.1}, Journal = {Journal of the Atmospheric Sciences}, @@ -3092,7 +3203,7 @@ @article{molod_et_al_2015 Journal = {Geoscientific Model Development}, Number = {5}, Pages = {1339--1356}, - Title = {Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2}, + Title = {Development of the {GEOS-5} atmospheric general circulation model: evolution from {MERRA} to {MERRA2}}, Url = {https://www.geosci-model-dev.net/8/1339/2015/}, Volume = {8}, Year = {2015}, @@ -3100,7 +3211,7 @@ @article{molod_et_al_2015 Bdsk-Url-2 = {http://dx.doi.org/10.5194/gmd-8-1339-2015}} @article{richter_et_al_2010, - Author = {Richter, Jadwiga H. and Sassi, Fabrizio and Garcia, Rolando R.}, + Author = {Richter, J. H. and Sassi, F. and Garcia, R. R.}, Doi = {10.1175/2009JAS3112.1}, Eprint = {https://doi.org/10.1175/2009JAS3112.1}, Journal = {Journal of the Atmospheric Sciences}, @@ -3114,14 +3225,14 @@ @article{richter_et_al_2010 Bdsk-Url-2 = {http://dx.doi.org/10.1175/2009JAS3112.1}} @article{richter_et_al_2014, - Author = {Richter, Jadwiga H. and Solomon, Abraham and Bacmeister, Julio T.}, + Author = {Richter, J. H. and Solomon, A. and Bacmeister, J. T.}, Doi = {10.1002/2013MS000303}, Eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2013MS000303}, Journal = {Journal of Advances in Modeling Earth Systems}, Keywords = {climate modeling, vertical resolution, modeling, climate, global circulation model, general circulation model}, Number = {2}, Pages = {357-383}, - Title = {Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5}, + Title = {Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the {C}ommunity {A}tmosphere {M}odel, version 5}, Url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013MS000303}, Volume = {6}, Year = {2014}, @@ -3129,13 +3240,14 @@ @article{richter_et_al_2014 Bdsk-Url-2 = {http://dx.doi.org/10.1002/2013MS000303}} @article{gelaro_et_al_2017, - Author = {Gelaro, et al.}, + Author = {R. Gelaro and W. McCarty and M. J. Suarez and R. Todling and et al.}, + Date-Modified = {2021-02-03 21:24:37 +0000}, Doi = {10.1175/JCLI-D-16-0758.1}, Eprint = {https://doi.org/10.1175/JCLI-D-16-0758.1}, Journal = {Journal of Climate}, Number = {14}, Pages = {5419-5454}, - Title = {The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)}, + Title = {The {M}odern-{E}ra {R}etrospective {A}nalysis for {R}esearch and {A}pplications, {V}ersion 2 ({MERRA-2})}, Url = {https://doi.org/10.1175/JCLI-D-16-0758.1}, Volume = {30}, Year = {2017}, @@ -3157,7 +3269,7 @@ @article{garcia_et_al_2007 Bdsk-Url-2 = {http://dx.doi.org/10.1029/2006JD007485}} @article{eckermann_et_al_2009, - Author = {Stephen D. Eckermann and Karl W. Hoppel and Lawrence Coy and John P. McCormack and David E. Siskind and Kim Nielsen and Andrew Kochenash and Michael H. Stevens and Christoph R. Englert and Werner Singer and Mark Hervig}, + Author = {Eckermann, S. D. and K. W. Hoppel and L. Coy and J. P. McCormack and D. E. Siskind and K. Nielsen and A. Kochenash and M. H. Stevens and C. R. Englert and W. Singer and M. Hervig}, Doi = {https://doi.org/10.1016/j.jastp.2008.09.036}, Issn = {1364-6826}, Journal = {Journal of Atmospheric and Solar-Terrestrial Physics}, @@ -3173,7 +3285,7 @@ @article{eckermann_et_al_2009 Bdsk-Url-2 = {https://doi.org/10.1016/j.jastp.2008.09.036}} @inproceedings{alpert_et_al_2019, - Author = {Alpert, Jordan C and Yudin, Valery A and Strobach, Edward}, + Author = {Alpert, J. C. and Yudin, V. A. and Strobach, E.}, Booktitle = {AGU Fall Meeting 2019}, Organization = {AGU}, Title = {Atmospheric Gravity Wave Sources Correlated with Resolved-scale GW Activity and Sub-grid Scale Parameterization in the FV3gfs Model}, @@ -3185,7 +3297,7 @@ @article{ern_et_al_2018 Journal = {Earth System Science Data}, Number = {2}, Pages = {857--892}, - Title = {GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings}, + Title = {{GRACILE}: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings}, Url = {https://www.earth-syst-sci-data.net/10/857/2018/}, Volume = {10}, Year = {2018}, @@ -3193,7 +3305,22 @@ @article{ern_et_al_2018 Bdsk-Url-2 = {http://dx.doi.org/10.5194/essd-10-857-2018}} @inproceedings{yudin_et_al_2019, - Author = {Yudin V.A. , S. I. Karol, R.A. Akmaev, T. Fuller-Rowell, D. Kleist, A. Kubaryk, and C. Thompson}, + Author = {Yudin, V. A. and S. I. Karol and R. A. Akmaev and et al.}, Booktitle = {Space Weather Workshop}, Title = {Longitudinal Variability of Wave Dynamics in Weather Models Extended into the Mesosphere and Thermosphere}, Year = {2019}} + +@comment{BibDesk Static Groups{ + + + + + + group name + Group + keys + + + + +}} diff --git a/physics/docs/pdftxt/CPT_adv_suite.txt b/physics/docs/pdftxt/CPT_adv_suite.txt index 26d514d51..72afcefe7 100644 --- a/physics/docs/pdftxt/CPT_adv_suite.txt +++ b/physics/docs/pdftxt/CPT_adv_suite.txt @@ -18,13 +18,12 @@ The csawmg physics suite uses the parameterizations in the following order: - \ref GFS_SAMFshal - \ref CPT_MG3 - \ref mod_cs_conv_aw_adj - - \ref GFS_CALPRECIPTYPE \section sdf_cpt_suite Suite Definition File \code - + diff --git a/physics/docs/pdftxt/GSD_CU_GF_deep.txt b/physics/docs/pdftxt/CU_GF_deep.txt similarity index 96% rename from physics/docs/pdftxt/GSD_CU_GF_deep.txt rename to physics/docs/pdftxt/CU_GF_deep.txt index 05e3cf39e..a17b58d07 100644 --- a/physics/docs/pdftxt/GSD_CU_GF_deep.txt +++ b/physics/docs/pdftxt/CU_GF_deep.txt @@ -1,5 +1,5 @@ /** -\page GSD_CU_GF Grell-Freitas Scale and Aerosol Aware Convection Scheme +\page CU_GF Grell-Freitas Scale and Aerosol Aware Convection Scheme \section gfcu_descrip Description The Grell-Freitas (GF) scheme as described in Grell and Freitas (2014, GF1) \cite grell_and_freitas_2014 and @@ -31,7 +31,7 @@ transition as grid spacing decreases into a shallow convection scheme precipitating convective cloud and shallow convective clouds \section intra_rough_gf Intraphysics Communication -The GF scheme passes cloud hydrometeors to the grid-scale microphysics scheme (\ref GSD_THOMPSON ) through detrainment from each +The GF scheme passes cloud hydrometeors to the grid-scale microphysics scheme (\ref THOMPSON ) through detrainment from each convective cloud layer containing convective cloud. The detrained condensate interacts with short- and longwave radiation by contributing to the "opaqueness" to radiation of each grid layer. Additionally, detrained condensate is added to any existing condensate, to be treated by the complex grid-scale microphysics scheme. This allows for a crude emulation of stratiform precipitation regions diff --git a/physics/docs/pdftxt/NoahMP.txt b/physics/docs/pdftxt/GFS_NOAHMP.txt similarity index 56% rename from physics/docs/pdftxt/NoahMP.txt rename to physics/docs/pdftxt/GFS_NOAHMP.txt index f42aaaa00..7a3636b5f 100644 --- a/physics/docs/pdftxt/NoahMP.txt +++ b/physics/docs/pdftxt/GFS_NOAHMP.txt @@ -20,20 +20,6 @@ The CCPP interface to the NoahMP LSM is a driving software layer on top of the a Note that noahmp_glacer() and noahmp_sflx() are the actual NoahMP codes. -\section Default NoahMP LSM Options used in UFS atmosphere -+ Dynamic Vegetation (opt_dveg): 2 [On] -+ Canopy Stomatal Resistance (opt_crs): 1 [Ball-Berry] -+ Soil Moisture Factor for Stomatal Resistance (opt_btr): 1 [Noah soil moisture] -+ Runoff and Groundwater (opt_run): 1 [topmodel with groundwater (Niu et al. 2007 \cite niu_et_al_2007)] -+ Surface Layer Drag Coeff (opt_sfc): 1 [Monin-Obukhov] -+ Supercooled Liquid Water or Ice Fraction (opt_frz): 1 [no iteration (Niu and Yang, 2006 \cite niu_and_yang_2006)] -+ Frozen Soil Permeability (opt_inf): 1 [linear effects, more permeable (Niu and Yang, 2006, \cite niu_and_yang_2006)] -+ Radiation Transfer (opt_rad): 1 [modified two-stream (gap = f(solar angle, 3d structure ...)<1-fveg)] -+ Ground Snow Surface Albedo (opt_alb): 2 [class] -+ Partitioning Precipitation into Rainfall & Snowfall (opt_snf): 4 [use microphysics output] -+ Lower Boundary Condition of Soil Temperature (opt_tbot): 2 [tbot at zbot (8m) read from a file (original Noah)] -+ Snow/Soil Temperature Time Scheme (only layer 1) (opt_stc): 1 [semi-implicit; flux top boundary condition] - \section intra_noahmp Intraphysics Communication + GFS NoahMP LSM Driver (\ref arg_table_noahmpdrv_run) \section gen_al_noahmp General Algorithm of Driver diff --git a/physics/docs/pdftxt/GFS_SAMF.txt b/physics/docs/pdftxt/GFS_SAMF.txt deleted file mode 100644 index 192f1f9a1..000000000 --- a/physics/docs/pdftxt/GFS_SAMF.txt +++ /dev/null @@ -1,9 +0,0 @@ -/** -\page GFS_SAMF GFS Scale-Aware Simplified Arakawa-Schubert (sa-SAS) Convection Scheme - -\section des_samf Description - -\section intra_samf Intraphysics Communication - - -*/ diff --git a/physics/docs/pdftxt/GFS_UGWPv0.txt b/physics/docs/pdftxt/GFS_UGWPv0.txt index e6ea3b6f4..82cd06f68 100644 --- a/physics/docs/pdftxt/GFS_UGWPv0.txt +++ b/physics/docs/pdftxt/GFS_UGWPv0.txt @@ -1,5 +1,5 @@ /** -\page GFS_UGWP_v0 CIRES Unified Gravity Wave Physics Scheme - Version 0 +\page GFS_UGWP_v0 Unified Gravity Wave Physics Scheme - Version 0 \section des_UGWP Description Gravity waves (GWs) are generated by a variety of sources in the atmosphere diff --git a/physics/docs/pdftxt/GFSv15p2_suite.txt b/physics/docs/pdftxt/GFSv15p2_suite.txt index 944fd49f1..4b4f71181 100644 --- a/physics/docs/pdftxt/GFSv15p2_suite.txt +++ b/physics/docs/pdftxt/GFSv15p2_suite.txt @@ -21,113 +21,269 @@ The GFS_v15p2 physics suite uses the parameterizations in the following order: - \ref GFS_SAMFdeep - \ref GFS_SAMFshal - \ref GFDL_cloud - - \ref GFS_CALPRECIPTYPE \section sdf_gfsv15p2 Suite Definition File -- For NEMSIO initialization data: \subpage suite_FV3_GFS_v15p2_xml +\code + + + + + + + fv_sat_adj + + + + + GFS_time_vary_pre + GFS_rrtmg_setup + GFS_rad_time_vary + GFS_phys_time_vary + + + + + GFS_suite_interstitial_rad_reset + GFS_rrtmg_pre + rrtmg_sw_pre + rrtmg_sw + rrtmg_sw_post + rrtmg_lw_pre + rrtmg_lw + rrtmg_lw_post + GFS_rrtmg_post + + + + + GFS_suite_interstitial_phys_reset + GFS_suite_stateout_reset + get_prs_fv3 + GFS_suite_interstitial_1 + GFS_surface_generic_pre + GFS_surface_composites_pre + dcyc2t3 + GFS_surface_composites_inter + GFS_suite_interstitial_2 + + + + sfc_diff + GFS_surface_loop_control_part1 + sfc_nst_pre + sfc_nst + sfc_nst_post + lsm_noah + sfc_sice + GFS_surface_loop_control_part2 + + + + GFS_surface_composites_post + sfc_diag + sfc_diag_post + GFS_surface_generic_post + GFS_PBL_generic_pre + hedmf + GFS_PBL_generic_post + GFS_GWD_generic_pre + cires_ugwp + cires_ugwp_post + GFS_GWD_generic_post + rayleigh_damp + GFS_suite_stateout_update + ozphys_2015 + h2ophys + get_phi_fv3 + GFS_suite_interstitial_3 + GFS_DCNV_generic_pre + samfdeepcnv + GFS_DCNV_generic_post + GFS_SCNV_generic_pre + samfshalcnv + GFS_SCNV_generic_post + GFS_suite_interstitial_4 + cnvc90 + GFS_MP_generic_pre + gfdl_cloud_microphys + GFS_MP_generic_post + maximum_hourly_diagnostics + + + + + GFS_stochastics + phys_tend + + + + +\endcode + \section gfs15p2_nml_opt_des Namelist -- \b &gfs_physics_nml -\n \c fhzero = 6 -\n \c h2o_phys = .true. -\n \c ldiag3d = .false. -\n \c fhcyc = 24 -\n \c use_ufo = .true. -\n \c pre_rad = .false. -\n \c ncld = 5 -\n \c imp_physics = 11 -\n \c pdfcld = .false. -\n \c fhswr = 3600. -\n \c fhlwr = 3600. -\n \c ialb = 1 -\n \c iems = 1 -\n \c iaer = 111 -\n \c ico2 = 2 -\n \c isubc_sw = 2 -\n \c isubc_lw = 2 -\n \c isol = 2 -\n \c lwhtr = .true. -\n \c swhtr = .true. -\n \c cnvgwd = .true. -\n \c shal_cnv = .true. -\n \c cal_pre = .false. -\n \c redrag = .true. -\n \c dspheat = .true. -\n \c hybedmf = .true. -\n \c random_clds = .false. -\n \c trans_trac = .true. -\n \c cnvcld = .true. -\n \c imfshalcnv = 2 -\n \c imfdeepcnv = 2 -\n \c cdmbgwd = 3.5,0.25 [1.0,1.2] [0.2,2.5] [0.125,3.0] ! [C768] [C384] [C192] [C96]L64 -\n \c prslrd0 = 0. -\n \c ivegsrc = 1 -\n \c isot = 1 -\n \c debug = .false. -\n \c oz_phys = .F. -\n \c oz_phys_2015 = .T. -\n \c nstf_name = @[NSTF_NAME] -\n \c nst_anl = .true. -\n \c psautco = 0.0008,0.0005 -\n \c prautco = 0.00015,0.00015 -\n \c lgfdlmprad = .true. -\n \c effr_in = .true. -\n \c do_sppt = .false. -\n \c do_shum = .false. -\n \c do_skeb = .false. -\n \c do_sfcperts = .false. - -- \b &gfdl_cloud_microphysics_nml -\n \c sedi_transport = .true. -\n \c do_sedi_heat = .false. -\n \c rad_snow = .true. -\n \c rad_graupel = .true. -\n \c rad_rain = .true. -\n \c const_vi = .F. -\n \c const_vs = .F. -\n \c const_vg = .F. -\n \c const_vr = .F. -\n \c vi_max = 1. -\n \c vs_max = 2. -\n \c vg_max = 12. -\n \c vr_max = 12. -\n \c qi_lim = 1. -\n \c prog_ccn = .false. -\n \c do_qa = .true. -\n \c fast_sat_adj = .true. -\n \c tau_l2v = 225. -\n \c tau_v2l = 150. -\n \c tau_g2v = 900. -\n \c rthresh = 10.e-6 -\n \c dw_land = 0.16 -\n \c dw_ocean = 0.10 -\n \c ql_gen = 1.0e-3 -\n \c ql_mlt = 1.0e-3 -\n \c qi0_crt = 8.0E-5 -\n \c qs0_crt = 1.0e-3 -\n \c tau_i2s = 1000. -\n \c c_psaci = 0.05 -\n \c c_pgacs = 0.01 -\n \c rh_inc = 0.30 -\n \c rh_inr = 0.30 -\n \c rh_ins = 0.30 -\n \c ccn_l = 300. -\n \c ccn_o = 100. -\n \c c_paut = 0.5 -\n \c c_cracw = 0.8 -\n \c use_ppm = .false. -\n \c use_ccn = .true. -\n \c mono_prof = .true. -\n \c z_slope_liq = .true. -\n \c z_slope_ice = .true. -\n \c de_ice = .false. -\n \c fix_negative = .true. -\n \c icloud_f = 1 -\n \c mp_time = 150. - -\note nstf_name = \f$[2,0,0,0,0]^1 [2,1,0,0,0]^2 \f$ -- \f$^1\f$ NSST is on and coupled with spin up off -- \f$^2\f$ NSST is on and coupled with spin up on +\code +&gfs_physics_nml + cdmbgwd = 3.5,0.25 + cal_pre = .false. + cnvcld = .true. + cnvgwd = .true. + debug = .false. + do_myjpbl = .false. + do_myjsfc = .false. + do_sfcperts = .false. + do_shum = .false. + do_skeb = .false. + do_sppt = .false. + do_tofd = .false. + do_ugwp = .false. + do_ysu = .false. + dspheat = .true. + effr_in = .true. + fhcyc = 0.0 + fhlwr = 3600.0 + fhswr = 3600.0 + fhzero = 6.0 + h2o_phys = .true. + hybedmf = .true. + iaer = 111 + ialb = 1 + iau_inc_files = '' + ico2 = 2 + iems = 1 + imfdeepcnv = 2 + imfshalcnv = 2 + imp_physics = 11 + iopt_alb = 2 + iopt_btr = 1 + iopt_crs = 1 + iopt_dveg = 2 + iopt_frz = 1 + iopt_inf = 1 + iopt_rad = 1 + iopt_run = 1 + iopt_sfc = 1 + iopt_snf = 4 + iopt_stc = 1 + iopt_tbot = 2 + isol = 2 + isot = 1 + isubc_lw = 2 + isubc_sw = 2 + ivegsrc = 1 + ldiag3d = .false. + ldiag_ugwp = .false. + lgfdlmprad = .true. + lheatstrg = .false. + lsm = 1 + lwhtr = .true. + ncld = 5 + nsradar_reset = 3600 + nst_anl = .true. + nstf_name* = 2, 1, 0, 0, 0 + oz_phys = .false. + oz_phys_2015 = .true. + pdfcld = .false. + pre_rad = .false. + prslrd0 = 0.0 + random_clds = .false. + redrag = .true. + satmedmf = .false. + shal_cnv = .true. + shinhong = .false. + swhtr = .true. + trans_trac = .true. + use_ufo = .true. + xkzm_h = 1.0 + xkzm_m = 1.0 + xkzminv = 0.3 +/ + +&gfdl_cloud_microphysics_nml + sedi_transport = .true. + do_sedi_heat = .false. + rad_snow = .true. + rad_graupel = .true. + rad_rain = .true. + const_vi = .F. + const_vs = .F. + const_vg = .F. + const_vr = .F. + vi_max = 1. + vs_max = 2. + vg_max = 12. + vr_max = 12. + qi_lim = 1. + prog_ccn = .false. + do_qa = .true. + fast_sat_adj = .true. + tau_l2v = 225. + tau_v2l = 150. + tau_g2v = 900. + rthresh = 1e-05 + dw_land = 0.16 + dw_ocean = 0.10 + ql_gen = 1.0e-3 + ql_mlt = 1.0e-3 + qi0_crt = 8.0E-5 + qs0_crt = 1.0e-3 + tau_i2s = 1000. + c_psaci = 0.05 + c_pgacs = 0.01 + rh_inc = 0.30 + rh_inr = 0.30 + rh_ins = 0.30 + ccn_l = 300. + ccn_o = 100. + c_paut = 0.5 + c_cracw = 0.8 + use_ppm = .false. + use_ccn = .true. + mono_prof = .true. + z_slope_liq = .true. + z_slope_ice = .true. + de_ice = .false. + fix_negative = .true. + icloud_f = 1 + mp_time = 90. + +/ + +&cires_ugwp_nml + knob_ugwp_azdir = 2, 4, 4, 4 + knob_ugwp_doaxyz = 1 + knob_ugwp_doheat = 1 + knob_ugwp_dokdis = 1 + knob_ugwp_effac = 1, 1, 1, 1 + knob_ugwp_ndx4lh = 1 + knob_ugwp_solver = 2 + knob_ugwp_source = 1, 1, 0, 0 + knob_ugwp_stoch = 0, 0, 0, 0 + knob_ugwp_version = 0 + knob_ugwp_wvspec = 1, 25, 25, 25 + launch_level = 25 +/ + +&nam_sfcperts + iseed_sfc = 0 + nsfcpert = 6 + pertalb = -999.0 + pertlai = -999.0 + pertshc = -999.0 + pertvegf = -999.0 + pertz0 = -999.0 + pertzt = -999.0 + sfc_lscale = 500000 + sfc_tau = 21600 + sppt_land = .false. +/ + + +\endcode + +- nstf_name = \f$[2,0,0,0,0]^1 [2,1,0,0,0]^2 \f$ + - \f$^1\f$ NSST is on and coupled with spin up off + - \f$^2\f$ NSST is on and coupled with spin up on */ diff --git a/physics/docs/pdftxt/GFSv16beta_suite.txt b/physics/docs/pdftxt/GFSv16beta_suite.txt index 8389d0c40..4ad277df7 100644 --- a/physics/docs/pdftxt/GFSv16beta_suite.txt +++ b/physics/docs/pdftxt/GFSv16beta_suite.txt @@ -24,153 +24,252 @@ The GFS_v16beta physics suite uses the parameterizations in the following order: - \ref GFS_SAMFdeep - \ref GFS_SAMFshal - \ref GFDL_cloud - - \ref GFS_CALPRECIPTYPE \section sdf_gfsv16b Suite Definition File -- For NEMSIO initialization data: \subpage suite_FV3_GFS_v16beta_xml +\code + + + + + + + fv_sat_adj + + + + + GFS_time_vary_pre + GFS_rrtmg_setup + GFS_rad_time_vary + GFS_phys_time_vary + + + + + GFS_suite_interstitial_rad_reset + GFS_rrtmg_pre + rrtmg_sw_pre + rrtmg_sw + rrtmg_sw_post + rrtmg_lw_pre + rrtmg_lw + rrtmg_lw_post + GFS_rrtmg_post + + + + + GFS_suite_interstitial_phys_reset + GFS_suite_stateout_reset + get_prs_fv3 + GFS_suite_interstitial_1 + GFS_surface_generic_pre + GFS_surface_composites_pre + dcyc2t3 + GFS_surface_composites_inter + GFS_suite_interstitial_2 + + + + sfc_diff + GFS_surface_loop_control_part1 + sfc_nst_pre + sfc_nst + sfc_nst_post + lsm_noah + sfc_sice + GFS_surface_loop_control_part2 + + + + GFS_surface_composites_post + sfc_diag + sfc_diag_post + GFS_surface_generic_post + GFS_PBL_generic_pre + satmedmfvdifq + GFS_PBL_generic_post + GFS_GWD_generic_pre + cires_ugwp + cires_ugwp_post + GFS_GWD_generic_post + rayleigh_damp + GFS_suite_stateout_update + ozphys_2015 + h2ophys + GFS_DCNV_generic_pre + get_phi_fv3 + GFS_suite_interstitial_3 + samfdeepcnv + GFS_DCNV_generic_post + GFS_SCNV_generic_pre + samfshalcnv + GFS_SCNV_generic_post + GFS_suite_interstitial_4 + cnvc90 + GFS_MP_generic_pre + gfdl_cloud_microphys + GFS_MP_generic_post + maximum_hourly_diagnostics + + + + + GFS_stochastics + + + + +\endcode -\section gfs16beta_nml_opt_des Namelist -- \b &gfs_physics_nml -\n \c fhzero = 6 -\n \c h2o_phys = .true. -\n \c ldiag3d = .false. -\n \c fhcyc = 24 -\n \c use_ufo = .true. -\n \c pre_rad = .false. -\n \c ncld = 5 -\n \c imp_physics = 11 -\n \c pdfcld = .false. -\n \c fhswr = 3600. -\n \c fhlwr = 3600. -\n \c ialb = 1 -\n \c iems = 1 -\n \c iaer = 5111 -\n \c icliq_sw = 2 -\n \c iovr_lw = 3 -\n \c iovr_sw = 3 -\n \c ico2 = 2 -\n \c isubc_sw = 2 -\n \c isubc_lw = 2 -\n \c isol = 2 -\n \c lwhtr = .true. -\n \c swhtr = .true. -\n \c cnvgwd = .true. -\n \c shal_cnv = .true. -\n \c cal_pre = .false. -\n \c redrag = .true. -\n \c dspheat = .true. -\n \c hybedmf = .false. -\n \c satmedmf = .true. -\n \c isatmedmf = 1 -\n \c lheatstrg = .true. -\n \c random_clds = .false. -\n \c trans_trac = .true. -\n \c cnvcld = .true. -\n \c imfshalcnv = 2 -\n \c imfdeepcnv = 2 -\n \c cdmbgwd = 4.0,0.15,1.0,1.0 [1.1,0.72,1.0,1.0] [0.23,1.5,1.0,1.0] [0.14,1.8,1.0,1.0] ! [C768] [C384] [C192] [C96]L64 -\n \c prslrd0 = 0. -\n \c ivegsrc = 1 -\n \c isot = 1 -\n \c lsoil = 4 -\n \c lsm = 1 -\n \c iopt_dveg = 1 -\n \c iopt_crs = 1 -\n \c iopt_btr = 1 -\n \c iopt_run = 1 -\n \c iopt_sfc = 1 -\n \c iopt_frz = 1 -\n \c iopt_inf = 1 -\n \c iopt_rad = 1 -\n \c iopt_alb = 2 -\n \c iopt_snf = 4 -\n \c iopt_tbot = 2 -\n \c iopt_stc = 1 -\n \c debug = .false. -\n \c oz_phys = .F. -\n \c oz_phys_2015 = .T. -\n \c nstf_name = @[NSTF_NAME] -\n \c nst_anl = .true. -\n \c psautco = 0.0008,0.0005 -\n \c prautco = 0.00015,0.00015 -\n \c lgfdlmprad = .true. -\n \c effr_in = .true. -\n \c ldiag_ugwp = .false. -\n \c do_ugwp = .false. -\n \c do_tofd = .true. -\n \c do_sppt = .false. -\n \c do_shum = .false. -\n \c do_skeb = .false. -\n \c do_sfcperts = .false. +\section gfs16beta_nml_opt_des Namelist + +\code +&gfs_physics_nml + fhzero = 6 + h2o_phys = .true. + ldiag3d = .false. + fhcyc = 24 + use_ufo = .true. + pre_rad = .false. + ncld = 5 + imp_physics = 11 + pdfcld = .false. + fhswr = 3600. + fhlwr = 3600. + ialb = 1 + iems = 1 + iaer = 5111 + icliq_sw = 2 + iovr_lw = 3 + iovr_sw = 3 + ico2 = 2 + isubc_sw = 2 + isubc_lw = 2 + isol = 2 + lwhtr = .true. + swhtr = .true. + cnvgwd = .true. + shal_cnv = .true. + cal_pre = .false. + redrag = .true. + dspheat = .true. + hybedmf = .false. + satmedmf = .true. + isatmedmf = 1 + lheatstrg = .true. + random_clds = .false. + trans_trac = .true. + cnvcld = .true. + imfshalcnv = 2 + imfdeepcnv = 2 + cdmbgwd = 4.0,0.15,1.0,1.0 + prslrd0 = 0. + ivegsrc = 1 + isot = 1 + lsoil = 4 + lsm = 1 + iopt_dveg = 1 + iopt_crs = 1 + iopt_btr = 1 + iopt_run = 1 + iopt_sfc = 1 + iopt_frz = 1 + iopt_inf = 1 + iopt_rad = 1 + iopt_alb = 2 + iopt_snf = 4 + iopt_tbot = 2 + iopt_stc = 1 + debug = .false. + oz_phys = .F. + oz_phys_2015 = .T. + nstf_name = @[NSTF_NAME] + nst_anl = .true. + psautco = 0.0008,0.0005 + prautco = 0.00015,0.00015 + lgfdlmprad = .true. + effr_in = .true. + ldiag_ugwp = .false. + do_ugwp = .false. + do_tofd = .true. + do_sppt = .false. + do_shum = .false. + do_skeb = .false. + do_sfcperts = .false. +/ -- \b &gfdl_cloud_microphysics_nml -\n \c sedi_transport = .true. -\n \c do_sedi_heat = .false. -\n \c rad_snow = .true. -\n \c rad_graupel = .true. -\n \c rad_rain = .true. -\n \c const_vi = .F. -\n \c const_vs = .F. -\n \c const_vg = .F. -\n \c const_vr = .F. -\n \c vi_max = 1. -\n \c vs_max = 2. -\n \c vg_max = 12. -\n \c vr_max = 12. -\n \c qi_lim = 1. -\n \c prog_ccn = .false. -\n \c do_qa = .true. -\n \c fast_sat_adj = .true. -\n \c tau_l2v = 225. -\n \c tau_v2l = 150. -\n \c tau_g2v = 900. -\n \c rthresh = 10.e-6 -\n \c dw_land = 0.16 -\n \c dw_ocean = 0.10 -\n \c ql_gen = 1.0e-3 -\n \c ql_mlt = 1.0e-3 -\n \c qi0_crt = 8.0E-5 -\n \c qs0_crt = 1.0e-3 -\n \c tau_i2s = 1000. -\n \c c_psaci = 0.05 -\n \c c_pgacs = 0.01 -\n \c rh_inc = 0.30 -\n \c rh_inr = 0.30 -\n \c rh_ins = 0.30 -\n \c ccn_l = 300. -\n \c ccn_o = 100. -\n \c c_paut = 0.5 -\n \c c_cracw = 0.8 -\n \c use_ppm = .false. -\n \c use_ccn = .true. -\n \c mono_prof = .true. -\n \c z_slope_liq = .true. -\n \c z_slope_ice = .true. -\n \c de_ice = .false. -\n \c fix_negative = .true. -\n \c icloud_f = 1 -\n \c mp_time = 150. -\n \c reiflag = 2 +&gfdl_cloud_microphysics_nml + sedi_transport = .true. + do_sedi_heat = .false. + rad_snow = .true. + rad_graupel = .true. + rad_rain = .true. + const_vi = .F. + const_vs = .F. + const_vg = .F. + const_vr = .F. + vi_max = 1. + vs_max = 2. + vg_max = 12. + vr_max = 12. + qi_lim = 1. + prog_ccn = .false. + do_qa = .true. + fast_sat_adj = .true. + tau_l2v = 225. + tau_v2l = 150. + tau_g2v = 900. + rthresh = 10.e-6 + dw_land = 0.16 + dw_ocean = 0.10 + ql_gen = 1.0e-3 + ql_mlt = 1.0e-3 + qi0_crt = 8.0E-5 + qs0_crt = 1.0e-3 + tau_i2s = 1000. + c_psaci = 0.05 + c_pgacs = 0.01 + rh_inc = 0.30 + rh_inr = 0.30 + rh_ins = 0.30 + ccn_l = 300. + ccn_o = 100. + c_paut = 0.5 + c_cracw = 0.8 + use_ppm = .false. + use_ccn = .true. + mono_prof = .true. + z_slope_liq = .true. + z_slope_ice = .true. + de_ice = .false. + fix_negative = .true. + icloud_f = 1 + mp_time = 150. + reiflag = 2 +/ +&cires_ugwp_nml + knob_ugwp_solver = 2 + knob_ugwp_source = 1,1,0,0 + knob_ugwp_wvspec = 1,25,25,25 + knob_ugwp_azdir = 2,4,4,4 + knob_ugwp_stoch = 0,0,0,0 + knob_ugwp_effac = 1,1,1,1 + knob_ugwp_doaxyz = 1 + knob_ugwp_doheat = 1 + knob_ugwp_dokdis = 1 + knob_ugwp_ndx4lh = 1 + knob_ugwp_version = 0 + launch_level = 27 +/ -- \b &cires_ugwp_nml -\n \c knob_ugwp_solver = 2 -\n \c knob_ugwp_source = 1,1,0,0 -\n \c knob_ugwp_wvspec = 1,25,25,25 -\n \c knob_ugwp_azdir = 2,4,4,4 -\n \c knob_ugwp_stoch = 0,0,0,0 -\n \c knob_ugwp_effac = 1,1,1,1 -\n \c knob_ugwp_doaxyz = 1 -\n \c knob_ugwp_doheat = 1 -\n \c knob_ugwp_dokdis = 1 -\n \c knob_ugwp_ndx4lh = 1 -\n \c knob_ugwp_version = 0 -\n \c launch_level = 27 +\endcode -\note nstf_name = \f$[2,0,0,0,0]^1 [2,1,0,0,0]^2\f$ -- \f$^1\f$ NSST is on and coupled with spin up off -- \f$^2\f$ NSST is on and coupled with spin up on +- nstf_name = \f$[2,0,0,0,0]^1 [2,1,0,0,0]^2\f$ + - \f$^1\f$ NSST is on and coupled with spin up off + - \f$^2\f$ NSST is on and coupled with spin up on */ diff --git a/physics/docs/pdftxt/GSD_adv_suite.txt b/physics/docs/pdftxt/GSD_adv_suite.txt index 39c5ebd20..733f05954 100644 --- a/physics/docs/pdftxt/GSD_adv_suite.txt +++ b/physics/docs/pdftxt/GSD_adv_suite.txt @@ -16,23 +16,22 @@ The GSD_v1 physics suite uses the parameterizations in the following order: - \ref GFS_RRTMG - \ref GFS_SFCLYR - \ref GFS_NSST - - \ref GSD_RUCLSM - - \ref GSD_MYNNEDMF + - \ref RUCLSM + - \ref MYNNEDMF - \ref GFS_UGWP_v0 - \ref GFS_RAYLEIGH - \ref GFS_OZPHYS - \ref GFS_H2OPHYS - - \ref GSD_CU_GF + - \ref CU_GF - \ref cu_gf_deep_group - \ref cu_gf_sh_group - - \ref GSD_THOMPSON - - \ref GFS_CALPRECIPTYPE + - \ref THOMPSON \section sdf_gsdsuite Suite Definition File \code - + diff --git a/physics/docs/pdftxt/GSD_MYNN_EDMF.txt b/physics/docs/pdftxt/MYNN_EDMF.txt similarity index 80% rename from physics/docs/pdftxt/GSD_MYNN_EDMF.txt rename to physics/docs/pdftxt/MYNN_EDMF.txt index ff2db411d..aebe6b9fb 100644 --- a/physics/docs/pdftxt/GSD_MYNN_EDMF.txt +++ b/physics/docs/pdftxt/MYNN_EDMF.txt @@ -1,12 +1,12 @@ /** -\page GSD_MYNNEDMF GSD MYNN-EDMF Boundary Layer and Shallow Cloud Scheme +\page MYNNEDMF MYNN-EDMF Boundary Layer and Shallow Cloud Scheme \section mynnedmf_descrip Description The Mellor-Yamada-Nakanishi-Niino (Nakanishi and Niino 2009 \cite NAKANISHI_2009) eddy diffusivity-mass flux (EDMF) scheme was implemented into CCPP to introduce an alternative turbulent kinetic energy (TKE)-based planetary boundary layer (PBL) scheme which could -serve as a candidate PBL parameterization for the next-generation unified forecast system. -The MYNN-EDMF is currently emplyed in NOAA's operational Rapid Refresh (RAP; Benjamin et al.2016 \cite Benjamin_2016) +serve as a candidate PBL parameterization for future operational implementations of the Unified Forecast System. +The MYNN-EDMF is currently employed in NOAA's operational Rapid Refresh (RAP; Benjamin et al.2016 \cite Benjamin_2016) and High-Resolution Rapid Refresh (HRRR) forecast systems. The original MYNN scheme was demonstrated to be an improvement over predecessor Mellor-Yamada-type @@ -22,9 +22,9 @@ were tuned to a database of LES as opposed to observational data. The MYNN-EDMF scheme has been extensively developed to improve upon the forecast skill of the original MYNN, largely driven by requirements to improve forecast skill in support of the NOAA's National Weather Service (NWS), the Federal Aviation Administration (FAA) and users within the renewable-energy industry.Specifically, fundamental -changes were made to the formulation of the mixing lengths and representation of SGS clouds, but new components have also -been added to improve to representation of non-local mixing, the turbulence interaction with clouds, and the coupling to other -model components (i.e., radiation). A description of the changes to the MYNN scheme are described in Olson et al.(2019) +changes were made to the formulation of the mixing lengths and representation of subgrid-scale(SGS) clouds, but new components have also +been added to improve the representation of non-local mixing, the turbulence interaction with clouds, and the coupling to other +model components (i.e., radiation). A description of the changes to the MYNN scheme are available in Olson et al.(2019) \cite olson_et_al_2019. @@ -34,7 +34,7 @@ model components (i.e., radiation). A description of the changes to the MYNN sch \sa gsd_mynnrad_pre \sa gsd_mynnrad_post -The subgrid-scale(SGS) clouds produced by the MYNN-EDMF are coupled to the longwave and shortwave radiation schemes +The SGS clouds produced by the MYNN-EDMF scheme are coupled to the longwave and shortwave radiation schemes if the namelist parameter \p icloud_bl is set to 1. In this case, the SGS cloud fraction, \p CLDFRA_BL, and the SGS cloud-mixing ratio, \b QC_BL, are added to the microphysics arrays within the radiation driver (mynnrad_pre_run()). The following two steps are performed: @@ -42,7 +42,7 @@ The following two steps are performed: (1) the cloud fraction of the resolved-scale clouds are computed, using Xu and Randal (1996) \cite xu_and_randall_1996 by default; -(2) if the resolved-scale cloud liquid and ice, \f$q_c\f$ and \f$q_i\f$, is less than \f$10^{-6}kg kg^{-1}\f$ and +(2) if the resolved-scale cloud liquid (\f$q_c\f$) or ice ( \f$q_i\f$), is less than \f$10^{-6}kg kg^{-1}\f$ and \f$10^{-8}kg kg^{-1}\f$, respectively, and there exists a nonzero SGS cloud fraction, then the SGS components are added to their respective resolved-scale components by a temperature weighting, according to linear approximation of Hobbs et al.(1974) \cite HOBBS_1974 : @@ -62,10 +62,10 @@ This allows us to only use one 3-D array for both SGS cloud water and ice. The u values of \f$q_c, q_i\f$ and \p CLDFRA are restored, so the SGS clouds do not impact the resolved-scale moisture budget. -The GSD MYNN-EDMF CCPP-compliant interface: +The MYNN-EDMF CCPP-compliant interface: \ref arg_table_mynnedmf_wrapper_run -\section gen_mynnedmf_conv GSD MYNN-EDMF Scheme General Algorithm +\section gen_mynnedmf_conv MYNN-EDMF Scheme General Algorithm \image html MYNN-EDMF_call_order.png "Figure 1.The order of subroutines within the MYNN-EDMF (Courtesy of J.B. Olson). The green rectangles within the main subroutine (mynn_bl_driver()) represent subroutine calls. The blue rectangles represent tasks coded within the main driver. A brief description is shown on the right " width=10cm diff --git a/physics/docs/pdftxt/MYNN_SFCLAYER.txt b/physics/docs/pdftxt/MYNN_SFCLAYER.txt new file mode 100644 index 000000000..301bdb5cd --- /dev/null +++ b/physics/docs/pdftxt/MYNN_SFCLAYER.txt @@ -0,0 +1,52 @@ +/** +\page SFC_MYNNSFL MYNN Surface Layer Scheme +\section mynnsfclayer_descrip Description + +The surface layer scheme controls the degree of coupling between the model surface and the atmosphere. +Traditionally, surface layer schemes have been developed to be paired with certain PBL schemes, but this +pairing is too narrow-scoped, since the surface layer physics should be equally as integrated with the +land-surface model (LSM), modern gravity wave drag suites, and wave models. The expansion of model complexity, +such as the inclusion of subgrid-scale landuse variations, vertically distributed sources of drag [i.e., wind +farm drag (Fitch et al. 2012 \cite fitch_et_al_2012 ), small-scale gravity wave drag (Steeneveld et al. 2008 \cite steeneveld_et_al_2008) and topographic form +drag (Beljaars et al. 2004) \cite beljaars_et_al_2004 ], requires that surface layer scheme be developed within a broader context so +assumptions made across all model components are physically consistent. + +The MYNN surface layer scheme was originally developed for the Mellor-Yamada-Nakanishi-Niino (MYNN)-Eddy Diffusivity-Mass +Flux (EDMF) scheme (Nakanishi and Niino 2009 \cite NAKANISHI_2009, Olson et al. 2019 \cite olson_et_al_2019) and has been used in NOAA's operational +Rapid Refresh (RAP; Benjamin et al. 2016 \cite Benjamin_2016 ) and High-Resolution Rapid Refresh (HRRR) forecast systems since 2014. During this time, the scheme has undergone significant development in tandem with other components of the +forecast systems. More recently, several new features have been added in order to accommodate different +capabilities in the Common Community Physics Package (CCPP) (Heinzeller et al. 2019). This updated version of the +surface layer scheme is a candidate to be used in the Rapid Refresh Forecast System (RRFS), which is a component of +NOAA's Unified Forecast System, and a successor to the RAP/HRRR forecast systems. + +The surface layer schemes in CCPP only compute transfer coefficients and pass them to other modules that +compute the surface fluxes and 2-m and 10-m diagnostics. Therefore, switches were added to bypass the calculation +of surface fluxes and diagnostics for typical use, but kept as an option to used in idealized model configurations. + +The surface layer physics represented by the scheme utilizes traditional Monin-Obukhov stability theory (MOST) +(Monin and Obukhov 1954 \cite monin_and_obukhov_1954 ), which is not novel, but still represents a respectable performance benchmark. This scheme +is built in a modular sense, which allows for flexible testing of a variety of different subcomponents within +the MOST-type bulk-flux algorithm. The specific subcomponents that exploit this modular design include the +specification of the surface roughness lengths, the scalar roughness lengths, and the flux-profile relationships +(a.k.a. stability functions). The configuration options for testing different forms of these subcomponents will +be discussed below. + +\section intra_mynnsfc Intraphysics Communication + +The surface-layer scheme is call directly after the radiation and prior to the surface modules (land-surface, sea-ice, and sea-surface temperature +models). The surface layer scheme and the surface modules collectively calculate the necessary input for the boundary-layer schemes (beyond the +basic state variables): u*, z/L, surface heat and moisture fluxes. + +\ref arg_table_mynnsfc_wrapper_run + +\section gen_mynnsfclay MYNN Surface Layer Scheme General Algorithm + +\image html MYNN-SFCLAY_call_order.png "Figure 1.The order of operations within the MYNN surface layer scheme (Courtesy of J.B. Olson)." width=10cm + +Within the MYNN surface layer scheme, there is a dependency check for the first timestep. If true, several arrays are initialized at every +i point. This is done because (1) some variables are calculated in schemes called after the surface layer call and (2) some variables are used within +iterative processes and may not be specified until later in the surface layer scheme. The main order of operations and hightlight relevant subroutines +in sfclay1d_mynn(). + + +*/ diff --git a/physics/docs/pdftxt/RRFS_SGSCLOUD.txt b/physics/docs/pdftxt/RRFS_SGSCLOUD.txt new file mode 100644 index 000000000..2f199c6ce --- /dev/null +++ b/physics/docs/pdftxt/RRFS_SGSCLOUD.txt @@ -0,0 +1,23 @@ +/** +\page SGSCLOUD_page Subgrid-scale Cloud Pre-radiation Interstitial +\section rrfs_sgscloud_descrip Description + +This interstitial module adds the subgrid-scale cloud information to the resolved-scale (microphysics) clouds. This procedure is required when using microphysics schemes that only produce clouds in fully saturated grid cells, like the Thompson microphysics scheme, and when using boundary layer and convection schemes that produce subgrid-scale cloud information (mixing ratio and cloud fraction). This allows the subgrid-scale cloud information to be assembled into the rest of the cloud information prior to calling the radiation schemes. + +\section intra_rrfssgs Intraphysics Communication +- sgscloud_radpre_run(): \ref arg_table_sgscloud_radpre_run + +\section gen_rrfssgs SGSCLOUD Pre-radiation Interstitial General Algorithm + +The order of procedures is outlined below: +\n 1) Back up the original qc and qi in "save arrays" qc_save and qi_save. +\n 2) Partition the condensate from the convection scheme into liquid and ice. +\n 3) Use Xu and Randall (1996) \cite xu_and_randall_1996 cloud fraction for the convection scheme subgrid clouds. Note that the MYNN-EDMF PBL scheme subgrid clouds input into this scheme are already partitioned into qc and qi and already have assigned cloud fractions. +\n 4) Add the subgrid cloud mixing ratio and cloud fraction to the original (resolved-scale) qc, qi and cloud fraction coming from the microphysics scheme. Note this information is only added to grid cells when resolved-scale clouds are below a very small threshold value. +\n 5) Recompute the diagnostic high, mid, low, total and boundary layer clouds to be consistent with the clouds seen by the radiation scheme. + +To provide a cloud fraction at t=0 (before the boundary layer or convection schemes are called), Xu and Randall (1996) \cite xu_and_randall_1996 cloud fraction is used. After the radiation schemes are called, module_SGSCloud_RadPost.F90 is called to restore the original qc and qi from qc_save and qi_save. + + + +*/ diff --git a/physics/docs/pdftxt/RRFS_v1alpha_suite.txt b/physics/docs/pdftxt/RRFS_v1alpha_suite.txt new file mode 100644 index 000000000..9edbefdb0 --- /dev/null +++ b/physics/docs/pdftxt/RRFS_v1alpha_suite.txt @@ -0,0 +1,210 @@ +/** +\page RRFS_v1alpha_page RRFS_v1alpha Suite + +\section RRFS_v1alpha_suite_overview Overview + +Suite RRFS_v1alpha is one of the supported suites for use in the UFS Short-Range Weather Application +(UFS SRW App). This suite is most applicable for runs at 3-km resolution since it does not parameterize +deep convection. + +The RRFS_v1alpha physics suite uses the parameterizations in the following order: + - \ref SGSCLOUD_page + - \ref GFS_RRTMG + - \ref GFS_SFCLYR + - \ref GFS_NSST + - \ref NoahMP + - \ref MYNNEDMF + - \ref GFS_UGWP_v0 + - \ref GFS_RAYLEIGH + - \ref GFS_OZPHYS + - \ref GFS_H2OPHYS + - \ref THOMPSON + +\section sdf_rrfssuite Suite Definition File +\code + + + + + + + GFS_time_vary_pre + GFS_rrtmg_setup + GFS_rad_time_vary + GFS_phys_time_vary + + + + + GFS_suite_interstitial_rad_reset + sgscloud_radpre + GFS_rrtmg_pre + rrtmg_sw_pre + rrtmg_sw + rrtmg_sw_post + rrtmg_lw_pre + rrtmg_lw + sgscloud_radpost + rrtmg_lw_post + GFS_rrtmg_post + + + + + GFS_suite_interstitial_phys_reset + GFS_suite_stateout_reset + get_prs_fv3 + GFS_suite_interstitial_1 + GFS_surface_generic_pre + GFS_surface_composites_pre + dcyc2t3 + GFS_surface_composites_inter + GFS_suite_interstitial_2 + + + + sfc_diff + GFS_surface_loop_control_part1 + sfc_nst_pre + sfc_nst + sfc_nst_post + noahmpdrv + sfc_sice + GFS_surface_loop_control_part2 + + + + GFS_surface_composites_post + sfc_diag + sfc_diag_post + GFS_surface_generic_post + mynnedmf_wrapper + GFS_GWD_generic_pre + cires_ugwp + cires_ugwp_post + GFS_GWD_generic_post + rayleigh_damp + GFS_suite_stateout_update + ozphys_2015 + h2ophys + get_phi_fv3 + GFS_suite_interstitial_3 + GFS_suite_interstitial_4 + GFS_MP_generic_pre + mp_thompson_pre + mp_thompson + mp_thompson_post + GFS_MP_generic_post + maximum_hourly_diagnostics + + + + + GFS_stochastics + + + + +\encode + +\section rrfs_nml_option Namelist +\code +&gfs_physics_nml + bl_mynn_edmf = 1 + bl_mynn_edmf_mom = 1 + bl_mynn_tkeadvect = .true. + cal_pre = .false. + cdmbgwd = 3.5,0.25 + cnvcld = .false. + cnvgwd = .false. + cplflx = .false. + debug = .false. + do_deep = .false. + do_mynnedmf = .true. + do_mynnsfclay = .false. + do_sfcperts = .false. + do_shum = .false. + do_skeb = .false. + do_sppt = .false. + dspheat = .true. + effr_in = .true. + fhcyc = 0.0 + fhlwr = 1200.0 + fhswr = 1200.0 + fhzero = 1.0 + h2o_phys = .true. + hybedmf = .false. + iaer = 111 + ialb = 1 + iau_delthrs = 6 + iau_inc_files = '' + iaufhrs = 30 + icloud_bl = 1 + ico2 = 2 + iems = 1 + imfdeepcnv = -1 + imfshalcnv = -1 + imp_physics = 8 + iopt_alb = 2 + iopt_btr = 1 + iopt_crs = 1 + iopt_dveg = 2 + iopt_frz = 1 + iopt_inf = 1 + iopt_rad = 1 + iopt_run = 1 + iopt_sfc = 1 + iopt_snf = 4 + iopt_stc = 1 + iopt_tbot = 2 + isol = 2 + isot = 1 + isubc_lw = 2 + isubc_sw = 2 + ivegsrc = 1 + ldiag3d = .false. + lheatstrg = .false. + lradar = .true. + lsm = 2 + lsoil_lsm = 4 + ltaerosol = .true. + lwhtr = .true. + ncld = 5 + nsradar_reset = 3600 + nst_anl = .true. + nstf_name = 2,1,0,0,0 + oz_phys = .false. + oz_phys_2015 = .true. + pdfcld = .false. + pre_rad = .false. + prslrd0 = 0.0 + random_clds = .false. + redrag = .true. + satmedmf = .false. + shal_cnv = .false. + swhtr = .true. + trans_trac = .true. + ttendlim = -999 + use_ufo = .true. + +/ + +&cires_ugwp_nml + knob_ugwp_azdir = 2,4,4,4 + knob_ugwp_doaxyz = 1 + knob_ugwp_doheat = 1 + knob_ugwp_dokdis = 1 + knob_ugwp_effac = 1,1,1,1 + knob_ugwp_ndx4lh = 1 + knob_ugwp_solver = 2 + knob_ugwp_source = 1,1,0,0 + knob_ugwp_stoch = 0,0,0,0 + knob_ugwp_version = 0 + knob_ugwp_wvspec = 1,25,25,25 + launch_level = 25 + +/ +\endcode + + +*/ diff --git a/physics/docs/pdftxt/GSD_RUCLSM.txt b/physics/docs/pdftxt/RUCLSM.txt similarity index 98% rename from physics/docs/pdftxt/GSD_RUCLSM.txt rename to physics/docs/pdftxt/RUCLSM.txt index 4d98faef8..bf45ff4b3 100644 --- a/physics/docs/pdftxt/GSD_RUCLSM.txt +++ b/physics/docs/pdftxt/RUCLSM.txt @@ -1,6 +1,6 @@ /** -\page GSD_RUCLSM GSD RUC Land Surface Model -\section ruclsm_descrip Description +\page RUCLSM RUC Land Surface Model +\section ruclsm_descrip Description The land surface model (LSM) was originally developed as part of the NOAA Rapid Update Cycle (RUC) model development effort; with ongoing modifications, it is now used as an option for the WRF community model. The RUC model and its WRF-based NOAA successor, the Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR), are hourly updated and have an emphasis on short-range, near-surface forecasts including aviation-impact variables and pre-convective environment. Therefore, coupling to this LSM (hereafter the RUC LSM) has been critical to provide more accurate lower boundary conditions. @@ -46,7 +46,7 @@ to soil particles and does not participate in moisture transport. - \b Frozen \b soil \b physics algorithm RUC LSM has a different approach to take into account freezing and thawing processes in soil. - Treatment of \b mixed \b phase \b precipitation -It accounts for mixed phase precipitation provided by \ref GSD_THOMPSON used in RAP and HRRR. +It accounts for mixed phase precipitation provided by \ref THOMPSON used in RAP and HRRR. - Simple treatment of \b sea \c ice which solves heat diffusion in sea ice and allows evolving snow cover on top of sea ice - sub-grid-scale \b heterogeneity of surface parameters in RUC LSM With the certain level of confidence in the skill of the model, the next requirement is to provide land static fields and surface diff --git a/physics/docs/pdftxt/GSD_THOMPSON.txt b/physics/docs/pdftxt/THOMPSON.txt similarity index 95% rename from physics/docs/pdftxt/GSD_THOMPSON.txt rename to physics/docs/pdftxt/THOMPSON.txt index 525d3bedc..8f16ce55b 100644 --- a/physics/docs/pdftxt/GSD_THOMPSON.txt +++ b/physics/docs/pdftxt/THOMPSON.txt @@ -1,9 +1,9 @@ /** -\page GSD_THOMPSON Thompson Aerosol-Aware Microphysics Scheme +\page THOMPSON Thompson Aerosol-Aware Microphysics Scheme \section thompson_descrp Description -The GSD RAP/HRRR microphysics implementation represents the most aggressive attempt to include explicit prediction of +The RAP/HRRR microphysics implementation represents the most aggressive attempt to include explicit prediction of cloud and precipitation microphysical processes in the NCEP operational forecast model suite. The RAP and HRRR are important guidance to NWS aviation forecasts, and any microphysics improvements are aimed at least in part, to improve that guidance. The scheme is particularly beneficial for aircraft icing forecasts. @@ -50,7 +50,7 @@ precipitation particles, and fall speeds of precipitation hydrometeors. The rain with small values associated with fall speeds (and allowing the model to parameterize the behavior) of drizzle. The forecast precipitation type is based on what prognostic precipitation type actually reaches the surface (Benjamin et al.(2016) \cite Benjamin_2016b ) -# Advantages of the GSD Thompson Scheme and Updating Cloud Fields +# Advantages of the Thompson Scheme and Updating Cloud Fields Some of the more general advantages of the upgraded MP scheme implementation in the RAP on the model's cloud and precipitation forecasts are listed below. diff --git a/physics/docs/pdftxt/all_shemes_list.txt b/physics/docs/pdftxt/all_shemes_list.txt index 4d7d08e90..03b2ccd9b 100644 --- a/physics/docs/pdftxt/all_shemes_list.txt +++ b/physics/docs/pdftxt/all_shemes_list.txt @@ -3,111 +3,124 @@ \section allscheme_overview Physical Parameterizations -In the CCPP, each parameterization is in its own modern Fortran module, which facilitates model development and -code maintenance. While some individual parameterization can be invoked for the SCM, most users will assemble the -parameterizations in suites. - -- \b Radiation - - \subpage GFS_RRTMG - -- \b PBL \b and \b Turbulence - - \subpage GFS_HEDMF - - \subpage GFS_SATMEDMF - - \subpage GFS_SATMEDMFVDIFQ - - \subpage GSD_MYNNEDMF - -- \b Land \b Surface \b Model - - \subpage GFS_NOAH - - \subpage GSD_RUCLSM - - \subpage NoahMP - -- \b Cumulus \b Parameterizations - - \subpage GFS_SAMF - - \subpage GFS_SAMFdeep - - \subpage GFS_SAMFshal - - \subpage CSAW_scheme - - \subpage GSD_CU_GF - - \ref cu_gf_deep_group - - \ref cu_gf_sh_group - -- \b Microphysics - - \subpage GFDL_cloud - - \subpage CPT_MG3 - - \subpage GSD_THOMPSON - -- \b Ozone \b Photochemical \b Production \b and \b Loss - - \subpage GFS_OZPHYS - -- \b Water \b Vapor \b Photochemical \b Production \b and \b Loss - - \subpage GFS_H2OPHYS - -- \b Gravity \b Wave \b Drag - - \subpage GFS_UGWP_v0 - - \subpage GFS_GWDPS - -- \b Surface \b Layer \b and \b Simplified \b Ocean \b and \b Sea \b Ice \b Representation - - \subpage GFS_SFCLYR - - \subpage GFS_NSST - - \subpage GFS_OCEAN - - \subpage GFS_SFCSICE - -- \b Others - - \subpage GFS_RAYLEIGH - - \subpage GFS_CALPRECIPTYPE - -In addition to the physical schemes themselves, this scientific documentation also covers four modules that define physics/radiation functions, parameters and constants: - - \ref func_phys - - \ref phy_sparam - - \ref physcons - - \ref radcons - -The input information for the physics include the values of the gridbox mean prognostic variables (wind components, temperature, +In the CCPP, each parameterization is in its own modern Fortran module (i.e., CCPP-compliant; see rules for scheme to considered CCPP-compliant at + CCPP-Compliant Physics Parameterizations ), +which facilitates model development and code maintenance. Additionally, we are listing any pre- and post- interstitials that must accompany the scheme. While some individual parameterization can be invoked for the SCM, most host models will assemble the parameterizations in suites. + + +\b Radiation + - \subpage GFS_RRTMG + + CCPP-compliant modules: rrtmg_sw_pre / rrtmg_sw / rrtmg_sw_post / rrtmg_lw_pre / rrtmg_lw / rrtmg_lw_post / dcyc2t3 + - \subpage SGSCLOUD_page + + CCPP-compliant module: sgscloud_radpre + +\b PBL \b and \b Turbulence + - \subpage GFS_HEDMF + + CCPP-compliant module: \ref hedmf + - \subpage GFS_SATMEDMFVDIFQ + + CCPP-compliant module: \ref satmedmfvdifq + - \subpage MYNNEDMF + + CCPP-compliant module: mynnedmf_wrapper + +\b Land \b Surface \b Model + - \subpage GFS_NOAH + + CCPP-compliant module: lsm_noah + - \subpage RUCLSM + + CCPP-compliant module: lsm_ruc + - \subpage NoahMP + + CCPP-compliant module: \ref noahmpdrv + +\b Cumulus \b Parameterizations + - \subpage GFS_SAMFdeep + + CCPP-compliant module: \ref samfdeepcnv + - \subpage GFS_SAMFshal + + CCPP-compliant module: \ref samfshalcnv + - \subpage CSAW_scheme + + CCPP-compliant modules: cs_conv_pre / cs_conv / cs_conv_post / cs_conv_aw_adj + - \subpage CU_GF + + CCPP-compliant modules: \ref cu_gf_driver_pre / cu_gf_driver + +\b Microphysics + - \subpage GFDL_cloud + + CCPP-compliant modules: fv_sat_adj / gfdl_cloud_microphys + - \subpage CPT_MG3 + + CCPP-compliant modules: \ref m_micro_pre / m_micro / \ref m_micro_post + - \subpage THOMPSON + + CCPP-compliant modules: mp_thompson_pre / mp_thompson / mp_thompson_post + +\b Ozone \b Photochemical \b Production \b and \b Loss + - \subpage GFS_OZPHYS + + CCPP-compliant module: ozphys_2015 + +\b Water \b Vapor \b Photochemical \b Production \b and \b Loss + - \subpage GFS_H2OPHYS + + CCPP-compliant module: h2ophys + +\b Gravity \b Wave \b Drag + - \subpage GFS_UGWP_v0 + + CCPP-compliant modules: cires_ugwp / cires_ugwp_post + +\b Surface \b Layer + - \subpage GFS_SFCLYR + + CCPP-compliant module: sfc_diff + +\b Simplified \b Ocean \b and \b Sea \b Ice \b Representation + - \subpage GFS_NSST + + CCPP-compliant modules: sfc_nst_pre / sfc_nst / sfc_nst_post + - \subpage GFS_OCEAN + + CCPP-compliant module: sfc_ocean + - \subpage GFS_SFCSICE + + CCPP-compliant module: sfc_sice + +\b Others + - \subpage GFS_RAYLEIGH + + CCPP-compliant module: rayleigh_damp + +The input information for the parameterizations includes the values of the gridbox mean prognostic variables (wind components, temperature, specific humidity, cloud fraction, water contents for cloud liquid, cloud ice, rain, snow, graupel, and ozone concentration), the provisional dynamical tendencies for the same variables and various surface fields, both fixed and variable. The time integration of the physics suites is based on the following: -- The tendencies from the different physical processes are computed by the parameterizations or derived in separate interstitial routines +- The tendencies from the different physical processes are computed by the parameterizations or derived in separate interstitial routines. - The first part of the suite, comprised of the parameterizations for radiation, surface layer, surface (land, ocean, and sea ice), boundary layer, -orographic gravity wave drag, and Rayleigh damping, is computed using a hybrid of parallel and sequential splitting described in Donahue and Caldwell(2018) +and Rayleigh damping, is computed using a hybrid of parallel and sequential splitting described in Donahue and Caldwell (2018) \cite donahue_and_caldwell_2018, a method in which the various parameterizations use the same model state as input but are impacted by the preceding parameterizations. The tendencies from the various parameterizations are then added together and used to update the model state. -- The surface parameterizations (land, ocean and sea ice) are invoked twice in a loop, with the first time to create a guess, and the second time to +- The surface parameterizations (land, ocean and sea ice) are invoked twice in a subcycling loop, with the first time to create a guess, and the second time to produce the tendencies. -- The second part of the physics suite, comprised of the parameterizations of ozone, stratospheric water vapor, deep convection, convective gravity wave drag, -shallow convection, and microphysics, is computed using sequential splitting in the order listed above, in which the model state is updated between calls +- The second part of the physics suite, comprised of the parameterizations of gravity wave physics, ozone, stratospheric water vapor, deep and shallow convection (if using), + and microphysics, is computed using sequential splitting in the order listed above, in which the model state is updated between calls to the parameterization. - If the in-core saturation adjustment is used (\p do_sat_adj=.true.), it is invoked at shorter timesteps along with the dynamical solver. \section allsuite_overview Physics Suites -The CCPP includes the suite GFS_v15p2, which has the same parameterizations used in the GFS v15 implemented operationally in June 2019, and suite -GFS_v16beta, i.e., the beta version of the suite planned for GFS v16 to be implemented operationally in 2021. Suite GFS_v16beta is identical to -Suite GFS_v15p2 except for an update in the PBL parameterization (Han et al. 2019 \cite Han_2019 ). Additionally, CCPP v4 includes two -developmental suites which are undergoing testing to inform future implementations of the UFS. Suite csawmg differs from GFS_v15p2 as it -contains different convection and microphysics schemes made available through a NOAA Climate Process Team (CPT) with components developed -at multiple research centers and universities, including Colorado State, Utah, NASA, NCAR, and EMC. Suite GSD_v1 differs from GFS_v15p2 as it -uses the convection, microphysics, and boundary layer schemes employed in the Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR \cite Benjamin_2016 ) -operational models and was assembled by NOAA/GSD. An assessment of an earlier version of these suites can be found in - the UFS portal -and in the DTC website . Two variant suites labelled as \a no_nsst are simplification of GFS_v15p2 and GFS_v16beta. -This simplification is needed when the UFS is initialized with files in GRIdded Binary Edition 2 (GRIB2) format instead of files in NOAA Environmental Modeling -System (NEMS) Input/Output (NEMSIO) format because the fields necesary to predict (SST) are not available in the GRIB2 files. +There are two publicly supported host models that use CCPP v5: the UFS Weather Model used in the Short Range Weather Application (SRW App) and the +CCPP Single Column Model (SCM). The SRW App supports the use of suites GFS_v15p2 and RRFS_v1alpha, while the SCM supports the use of suites +GFS_v15p2, GFS_v16beta, RRFS_v1alpha, csawmg and GSD_v1. Suite GFS_v15p2 is an operational suite that invokes the parameterizations used in the GFS v15 +implemented operationally in June 2019. Other suites are experimental, and targeted for future UFS operational implementations. It should be noted +that suite RRFS_v1alpha does not include a convective parameterization scheme and is targeted for convective-allowing resolutions of 3-km grid +spacing. The other suites are primarily targeted for medium-range weather and subseasonal-to-seasonal scales of grid spacing 13-km and coarser. +The forcing datasets included in the CCPP SCM v5.0 public release were created by averaging observations and large-eddy simulations over seas that are +too coarse to resolve convection. Therefore, best results will be obtained with be obtained with the CCPP SCM v5.0 when using suites that include parameterized +convection. Table 1. Physics suite options included in this documentation. \tableofcontents -| Physics suites | GFS_v15p2 | GFS_v16beta | csawmg | GSD_v1 | GFS_v15p2_no_nsst | GFS_v16beta_no_nsst | -|------------------|----------------------|--------------------------|---------------------|---------------------------------------------|-------------------------|---------------------------| -| Deep Cu | \ref GFS_SAMFdeep | \ref GFS_SAMFdeep | \ref CSAW_scheme | \ref GSD_CU_GF | \ref GFS_SAMFdeep | \ref GFS_SAMFdeep | -| Shallow Cu | \ref GFS_SAMFshal | \ref GFS_SAMFshal | \ref GFS_SAMFshal | \ref GSD_MYNNEDMF and \ref cu_gf_sh_group | \ref GFS_SAMFshal | \ref GFS_SAMFshal | -| Microphysics | \ref GFDL_cloud | \ref GFDL_cloud | \ref CPT_MG3 | \ref GSD_THOMPSON | \ref GFDL_cloud | \ref GFDL_cloud | -| PBL/TURB | \ref GFS_HEDMF | \ref GFS_SATMEDMFVDIFQ | \ref GFS_HEDMF | \ref GSD_MYNNEDMF | \ref GFS_HEDMF | \ref GFS_SATMEDMFVDIFQ | -| Radiation | \ref GFS_RRTMG | \ref GFS_RRTMG | \ref GFS_RRTMG | \ref GFS_RRTMG | \ref GFS_RRTMG | \ref GFS_RRTMG | -| Surface Layer | \ref GFS_SFCLYR | \ref GFS_SFCLYR | \ref GFS_SFCLYR | \ref GFS_SFCLYR | \ref GFS_SFCLYR | \ref GFS_SFCLYR | -| Land | \ref GFS_NOAH | \ref GFS_NOAH | \ref GFS_NOAH | \ref GSD_RUCLSM | \ref GFS_NOAH | \ref GFS_NOAH | -| Gravity Wave Drag| \ref GFS_UGWP_v0 | \ref GFS_UGWP_v0 | \ref GFS_UGWP_v0 | \ref GFS_UGWP_v0 | \ref GFS_UGWP_v0 | \ref GFS_UGWP_v0 | -| Ocean | \ref GFS_NSST | \ref GFS_NSST | \ref GFS_NSST | \ref GFS_NSST | \ref GFS_OCEAN | \ref GFS_OCEAN | -| Ozone | \ref GFS_OZPHYS | \ref GFS_OZPHYS | \ref GFS_OZPHYS | \ref GFS_OZPHYS | \ref GFS_OZPHYS | \ref GFS_OZPHYS | -| Water Vapor | \ref GFS_H2OPHYS | \ref GFS_H2OPHYS | \ref GFS_H2OPHYS | \ref GFS_H2OPHYS | \ref GFS_H2OPHYS | \ref GFS_H2OPHYS | +| Physics suites | GFS_v15p2 | GFS_v16beta | csawmg | GSD_v1 | RRFS_v1alpha | +|------------------|----------------------|--------------------------|---------------------|---------------------------------------------|--------------------| +| HOST Model | SCM, SRW | SCM | SCM | SCM | SCM, SRW | +| Deep Cu | \ref GFS_SAMFdeep | \ref GFS_SAMFdeep | \ref CSAW_scheme | \ref CU_GF | \a off | +| Shallow Cu | \ref GFS_SAMFshal | \ref GFS_SAMFshal | \ref GFS_SAMFshal | \ref MYNNEDMF and \ref cu_gf_sh_group | \ref MYNNEDMF | +| Microphysics | \ref GFDL_cloud | \ref GFDL_cloud | \ref CPT_MG3 | \ref THOMPSON | \ref THOMPSON | +| PBL/TURB | \ref GFS_HEDMF | \ref GFS_SATMEDMFVDIFQ | \ref GFS_HEDMF | \ref MYNNEDMF | \ref MYNNEDMF | +| Radiation | \ref GFS_RRTMG | \ref GFS_RRTMG | \ref GFS_RRTMG | \ref GFS_RRTMG | \ref GFS_RRTMG and \ref SGSCLOUD_page | +| Surface Layer | \ref GFS_SFCLYR | \ref GFS_SFCLYR | \ref GFS_SFCLYR | \ref GFS_SFCLYR | \ref GFS_SFCLYR | +| Land | \ref GFS_NOAH | \ref GFS_NOAH | \ref GFS_NOAH | \ref RUCLSM | \ref NoahMP | +| Gravity Wave Drag| \ref GFS_UGWP_v0 | \ref GFS_UGWP_v0 | \ref GFS_UGWP_v0 | \ref GFS_UGWP_v0 | \ref GFS_UGWP_v0 | +| Ocean | \ref GFS_NSST or \ref GFS_OCEAN | \ref GFS_NSST or \ref GFS_OCEAN | \ref GFS_NSST | \ref GFS_NSST | \ref GFS_NSST | +| Ozone | \ref GFS_OZPHYS | \ref GFS_OZPHYS | \ref GFS_OZPHYS | \ref GFS_OZPHYS | \ref GFS_OZPHYS | +| Water Vapor | \ref GFS_H2OPHYS | \ref GFS_H2OPHYS | \ref GFS_H2OPHYS | \ref GFS_H2OPHYS | \ref GFS_H2OPHYS | \tableofcontents diff --git a/physics/docs/pdftxt/mainpage.txt b/physics/docs/pdftxt/mainpage.txt index fdf7d1294..315d907f9 100644 --- a/physics/docs/pdftxt/mainpage.txt +++ b/physics/docs/pdftxt/mainpage.txt @@ -1,25 +1,32 @@ /** \mainpage Introduction -Welcome to the scientific documentation for the parameterizations and suites available in the Common -Community Physics Package (CCPP) v4. +Welcome to the scientific documentation for the parameterizations available in the Common +Community Physics Package (CCPP) v5.0.0 and the suites that can be configured using them. + +\image html mesocam.png " " width=10cm The CCPP-Physics is envisioned to contain parameterizations used in NOAA's Unified Forecast System (UFS) -applications for weather through seasonal prediction timescales, encompassing operational schemes as well as -developmental schemes under consideration for upcoming -operational implementations. This version contains all parameterizations of the current operational GFS, -plus additional developmental schemes. There are four suites supported for use with the Single Column Model (SCM) -developed by the Development Testbed Center (GFS_v15p2, GFS_v16beta, GSD_v1, and csawmg), and four suites -supported for use with the atmospheric component of the UFS (i.e., GFS_v15p2, GFS_v15p2_no_nsst, GFS_v16beta and -GFS_v16beta_no_nsst). The variants labelled as \a no_nsst are a simplification of GFS_v15p2 and GFS_v16beta suites -. This simplification is needed when the UFS is initialized with files in GRIdded Binary Edition 2 (GRIB2) -format instead of files in NOAA Environmental Modeling System (NEMS) Input/Output (NEMSIO) format because the -fields necessary to predict (SST) are not available in the GRIB2 files. +applications for weather through seasonal prediction timescales, encompassing the current operational GFS schemes as well as +developmental schemes under consideration for upcoming operational implementations. New in this release is +suite RRFS_v1alpha, which is being tested in the UFS Short-Range Weather Application for future use +in the convective-allowing Rapid Refresh Forecast System (RRFS), slated for operational implementation +in 2023. Convection-allowing models allow us to begin to resolve the fine details within storm systems that are +necessary for the accurate predition of high-impact events such as tornadoes, flash floods, and winter weather. +Experience gained from the development of earlier operational and experimental convective-allowing models (CAMs), +such as the High Resolution Rapid Refresh (HRRR) and HRRR Ensemble (HRRRE), the North American Mesoscale Forecast +System (NAM) nests, the NSSL Experimental Warn-on-Forecast System for ensembles (NEWS-e), the NCAR experimental +CAM ensemble, and GFDL's FV3-based CAM efforts, guide this process. + +The CCPP parameterizations are aggregated in suites by the host models. The CCPP Single Column Model (SCM), developed +by the Development Testbed Center, supports suites GFS_v15p2, GFS_v16beta, GSD_v1, csawmg, and RRFS_v1alpha, while the +UFS Short-Range Weather Application supports suites GFS_v15p2 and RRFS_v1alpha. The UFS Medium-Range Weather Application +is not intended for use with CCPP v5.0.0. In this website you will find documentation on various aspects of each parameterization, including a high-level overview of its function, the input/output argument list, and a description of the algorithm. -The latest CCPP public release is Version 4.0 (March 2020), and more details on it may be found on the +More details about this and other CCPP releases may be found on the CCPP website hosted by the Developmental Testbed Center (DTC). diff --git a/physics/docs/pdftxt/suite_FV3_GFS_v15p2.xml.txt b/physics/docs/pdftxt/suite_FV3_GFS_v15p2.xml.txt index 4074ddfc7..2ec63092e 100644 --- a/physics/docs/pdftxt/suite_FV3_GFS_v15p2.xml.txt +++ b/physics/docs/pdftxt/suite_FV3_GFS_v15p2.xml.txt @@ -1,10 +1,10 @@ /** -\page suite_FV3_GFS_v15p2_xml suite_FV3_GFS_v15p2.xml +\page FV3_GFS_v15p2_sdf GFS_v15p2 Suite Definition File \code - + @@ -72,9 +72,9 @@ GFS_suite_stateout_update ozphys_2015 h2ophys - GFS_DCNV_generic_pre get_phi_fv3 GFS_suite_interstitial_3 + GFS_DCNV_generic_pre samfdeepcnv GFS_DCNV_generic_post GFS_SCNV_generic_pre @@ -91,10 +91,12 @@ GFS_stochastics + phys_tend + \endcode */ diff --git a/physics/docs/pdftxt/suite_FV3_GFS_v15p2_no_nsst.xml.txt b/physics/docs/pdftxt/suite_FV3_GFS_v15p2_no_nsst.xml.txt index 7a60f5e1c..44f8e8296 100644 --- a/physics/docs/pdftxt/suite_FV3_GFS_v15p2_no_nsst.xml.txt +++ b/physics/docs/pdftxt/suite_FV3_GFS_v15p2_no_nsst.xml.txt @@ -4,7 +4,7 @@ \code - + diff --git a/physics/docs/pdftxt/suite_FV3_GFS_v16beta.xml.txt b/physics/docs/pdftxt/suite_FV3_GFS_v16beta.xml.txt index 4abafe01a..fb14b32b5 100644 --- a/physics/docs/pdftxt/suite_FV3_GFS_v16beta.xml.txt +++ b/physics/docs/pdftxt/suite_FV3_GFS_v16beta.xml.txt @@ -4,7 +4,7 @@ \code - + diff --git a/physics/docs/pdftxt/suite_FV3_GFS_v16beta_no_nsst.xml.txt b/physics/docs/pdftxt/suite_FV3_GFS_v16beta_no_nsst.xml.txt index e783be1f9..0cc7a08da 100644 --- a/physics/docs/pdftxt/suite_FV3_GFS_v16beta_no_nsst.xml.txt +++ b/physics/docs/pdftxt/suite_FV3_GFS_v16beta_no_nsst.xml.txt @@ -4,7 +4,7 @@ \code - + diff --git a/physics/docs/pdftxt/suite_FV3_RRFS_v1beta.xml.txt b/physics/docs/pdftxt/suite_FV3_RRFS_v1beta.xml.txt new file mode 100644 index 000000000..681e9d21c --- /dev/null +++ b/physics/docs/pdftxt/suite_FV3_RRFS_v1beta.xml.txt @@ -0,0 +1,91 @@ +/** +\page FV3_RRFS_v1beta_sdf RRFS_v1beta Suite Definition File + +\code + + + + + + + GFS_time_vary_pre + GFS_rrtmg_setup + GFS_rad_time_vary + GFS_phys_time_vary + + + + + GFS_suite_interstitial_rad_reset + sgscloud_radpre + GFS_rrtmg_pre + rrtmg_sw_pre + rrtmg_sw + rrtmg_sw_post + rrtmg_lw_pre + rrtmg_lw + sgscloud_radpost + rrtmg_lw_post + GFS_rrtmg_post + + + + + GFS_suite_interstitial_phys_reset + GFS_suite_stateout_reset + get_prs_fv3 + GFS_suite_interstitial_1 + GFS_surface_generic_pre + GFS_surface_composites_pre + dcyc2t3 + GFS_surface_composites_inter + GFS_suite_interstitial_2 + + + + mynnsfc_wrapper + GFS_surface_loop_control_part1 + sfc_nst_pre + sfc_nst + sfc_nst_post + noahmpdrv + sfc_sice + GFS_surface_loop_control_part2 + + + + GFS_surface_composites_post + sfc_diag + sfc_diag_post + GFS_surface_generic_post + mynnedmf_wrapper + GFS_GWD_generic_pre + cires_ugwp + cires_ugwp_post + GFS_GWD_generic_post + rayleigh_damp + GFS_suite_stateout_update + ozphys_2015 + h2ophys + get_phi_fv3 + GFS_suite_interstitial_3 + GFS_suite_interstitial_4 + GFS_MP_generic_pre + mp_thompson_pre + mp_thompson + mp_thompson_post + GFS_MP_generic_post + maximum_hourly_diagnostics + + + + + GFS_stochastics + + + + + +\endcode + +*/ diff --git a/physics/docs/pdftxt/suite_input.nml.txt b/physics/docs/pdftxt/suite_input.nml.txt index 2565c58eb..4cc5f7b15 100644 --- a/physics/docs/pdftxt/suite_input.nml.txt +++ b/physics/docs/pdftxt/suite_input.nml.txt @@ -3,82 +3,98 @@ The SCM and the UFS Atmosphere access runtime configurations from file \c input.nml. This file contains various namelists records that control aspects of the I/O, dynamics, physics etc. Most physics-related options are in -reords \b &gfs_physics_nml and \b &cires_ugwp_nml. When using the GFDL microphysics scheme, variables in namelist -\b &gfdl_cloud_microphysics_nml are also used. Additional specifications for stochastic physics are in -namelists \b &stochy_nam and \b &nam_sfcperts. +records \b &gfs_physics_nml. Some schemes have their own namelist records as described below. + +- Namelist \b &gfs_physics_nml pertains to all of the suites used, but some of the variables are only relevant for specific +parameterizations. Its variables are defined in file GFS_typedefs.F90 in the host model. - Namelist \b &gfdl_cloud_microphysics_nml is only relevant when the GFDL microphysics is used, and its variables are defined in module_gfdl_cloud_microphys.F90. - Namelist \b &cires_ugwp_nml specifies options for the use of CIRES Unified Gravity Wave Physics Version 0. -- Namelist \b &gfs_physics_nml pertains to all of the suites used, but some of the variables are only relevant for specific -parameterizations. Its variables are defined in file GFS_typedefs.F90 in the host model. +- Namelist \b &nam_sfcperts specifies whether and how stochastic perturbations are used in the Noah Land Surface Model. -- Namelist \b &stochy_nam specifies options for the use of SPPT, SKEB and SHUM, while namelist \b &nam_sfcperts specifies whether -and how stochastic perturbations are used in the Noah Land Surface Model. +Both the SDF and the input.nml contain information about how to specify the physics suite. Some +of this information is redundant, and the user must make sure they are compatible.The safest +practice is to use the SDF and namelist provided for each suite, since those are supported +configurations. Changes to the SDF must be accompanied by corresponding changes to the namelist. +While there is not a one-to-one correspondence between the namelist and the SDF, the tables below +show some variables in the namelist that must match the SDF. -
NML Description
option DDT in Host Model Description Default Value -
\b &gfs_physics_nml -
fhzero gfs_control_type hour between clearing of diagnostic buckets 0.0 -
h2o_phys gfs_control_type flag for stratosphere h2o scheme .false. -
ldiag3d gfs_control_type flag for 3D diagnostic fields .false. -
lssav gfs_control_type logical flag for storing diagnostics .false. -
cplflx gfs_control_type logical flag for cplflx collection .false. -
cplwav gfs_control_type logical flag for cplwav collection .false. -
cplchm gfs_control_type logical flag for chemistry collection .false. -
lsidea gfs_control_type logical flag for idealized physics .false. -
oz_phys gfs_control_type flag for old (2006) ozone physics .true. -
oz_phys_2015 gfs_control_type flag for new (2015) ozone physics .false. -
fhcyc gfs_control_type frequency for surface data cycling in hours 0.0 -
use_ufo gfs_control_type flag for using unfiltered orography surface option .false. -
pre_rad gfs_control_type flag for testing purpose .false. -
ncld gfs_control_type number of hydrometeors 1 -
imp_physics gfs_control_type choice of microphysics scheme: \n +
Option CCPP scheme or interstitial Description Default Value +
\b General \b options +
fhzero GFS_phys_time_vary hour between clearing of diagnostic buckets 0.0 +
h2o_phys h2ophys flag for stratosphere h2o scheme .false. +
ldiag3d see \a GFS_typedefs.F90 flag for 3D diagnostic fields .false. +
qdiag3d see \a GFS_typedefs.F90 flag for 3D tracer diagnostic fields .false. +
lssav see \a GFS_typedefs.F90 flag for storing diagnostics .false. +
cplflx see \a GFS_typedefs.F90 flag for using fluxes provided by an external model .false. +
cplwav see \a GFS_typedefs.F90 flag for using information produced by an external ocean wave model .false. +
cplchm see \a GFS_typedefs.F90 flag for coupled chemistry diagnostics .false. +
cplwav2atm see \a GFS_typedefs.F90 flag for wave to atm coupling .false. +
lsidea rayleigh_damp flag for idealized physics .false. +
oz_phys_2015 ozphys_2015 flag for new (2015) ozone physics .false. +
fhcyc GFS_phys_time_vary frequency for surface data cycling in hours 0.0 +
use_ufo GFS_phys_time_vary flag for using unfiltered orography surface option .false. +
ncld see \a GFS_typedefs.F90 number of hydrometeors 1 +
do_mynnsfclay see \a GFS_typedefs.F90 flag to activate MYNN-SFCLAY scheme .false. +
prslrd0 rayleigh_damp pressure level above which to apply Rayleigh damping 0.0d0 +
ral_ts rayleigh_damp time scale for Rayleigh damping in days 0.0d0 +
do_sppt GFS_stochastics flag for stochastic SPPT option .false. +
do_shum GFS_stochastics flag for stochastic SHUM option .false. +
do_skeb GFS_stochastics flag for stochastic SKEB option .false. +
do_sfcperts GFS_rrtmg_pre flag for stochastic surface perturbations option .false. +
imp_physics choice of microphysics scheme choice of microphysics scheme: \n
  • 11: GFDL microphysics scheme
  • 8: Thompson microphysics scheme
  • 10: Morrison-Gettelman microphysics scheme
99 -
pdfcld gfs_control_type flag for PDF clouds .false. -
fhswr gfs_control_type frequency for shortwave radiation (secs) 3600. -
fhlwr gfs_control_type frequency for longwave radiation (secs) 3600. -
levr gfs_control_type number of vertical levels for radiation calculations -99 -
nfxr gfs_control_type second dimension of radiation input/output array fluxr 39+6 -
iflip gfs_control_type control flag for vertical index direction \n +
\b Parameters \b related \b to \b radiation \b scheme \b options +
pdfcld GFS_rrtmg_pre flag for PDF clouds .false. +
fhswr rrtmg_sw frequency for shortwave radiation (secs) 3600. +
fhlwr rrtmg_lw frequency for longwave radiation (secs) 3600. +
levr GFS_rrtmg_setup number of vertical levels for radiation calculations -99 +
nfxr GFS_rrtmg_pre second dimension of radiation input/output array fluxr 39+6 +
iflip GFS_rrtmg_setup control flag for vertical index direction \n
  • 0: index from TOA to surface
  • 1: index from surface to TOA
1 -
icliq_sw gfs_control_type sw optical property for liquid clouds \n +
icliq_sw rrtmg_sw sw optical property for liquid clouds \n
  • 0: input cloud optical depth, ignoring iswcice setting
  • 1: cloud optical property scheme based on Hu and Stamnes (1993) \cite hu_and_stamnes_1993 method
  • 2: cloud optical property scheme based on Hu and Stamnes (1993) \cite hu_and_stamnes_1993 - updated
1 -
iovr_sw gfs_control_type control flag for cloud overlap in SW radiation \n +
iovr_sw rrtmg_sw control flag for cloud overlap in SW radiation \n
  • 0: random overlapping clouds
  • 1: max/ran overlapping clouds
  • 2: maximum overlap clouds (mcica only)
  • 3: decorrelation-length overlap (mcica only) +
  • 4: exponential overlapping method +
  • 5: exponential-random overlapping method
1 -
iovr_lw gfs_control_type control flag for cloud overlap in LW radiation \n +
iovr_lw rrtmg_lw control flag for cloud overlap in LW radiation \n
  • 0: random overlapping clouds
  • 1: max/ran overlapping clouds
  • 2: maximum overlap clouds (mcica only)
  • 3: decorrelation-length overlap (mcica only) +
  • 4: exponential overlapping method +
  • 5: exponential-random overlapping method
1 -
ictm gfs_control_type external data time/date control flag \n +
ictm GFS_rrtmg_setup external data time/date control flag \n
  • -2: same as 0, but superimpose seasonal cycle from climatology data set
  • -1: use user provided external data for the forecast time, no extrapolation @@ -88,31 +104,31 @@ and how stochastic perturbations are used in the Noah Land Surface Model.
  • yyyy1: use yyyy data for the forecast. if needed, do extrapolation to match the fcst time
1 -
crick_proof gfs_control_type control flag for eliminating CRICK \n +
crick_proof GFS_rrtmg_setup control flag for eliminating CRICK \n
  • .true.: apply layer smoothing to eliminate CRICK
  • .false.: do not apply layer smoothing
.false. -
ccnorm gfs_control_type control flag for in-cloud condensate mixing ratio \n +
ccnorm GFS_rrtmg_setup control flag for in-cloud condensate mixing ratio \n
  • .true.: normalize cloud condensate
  • .false.: not normalize cloud condensate
.false. -
norad_precip gfs_control_type control flag for not using precip in radiation (Ferrier scheme) \n +
norad_precip GFS_rrtmg_setup control flag for not using precip in radiation (Ferrier scheme) \n
  • .true.: snow/rain has no impact on radiation
  • .false.: snow/rain has impact on radiation
.false. -
ialb gfs_control_type SW surface albedo control flag: \n +
ialb GFS_rrtmg_setup SW surface albedo control flag: \n
  • 0: using climatology surface albedo scheme for SW
  • 1: using MODIS based land surface albedo for SW
0 -
iems gfs_control_type LW surface emissivity control flag (ab 2-digit integer) : \n +
iems GFS_rrtmg_setup LW surface emissivity control flag (ab 2-digit integer) : \n
  • a: =0 set surface air/ground t same for LW radiation
  • =1 set surface air/ground t diff for LW radiation @@ -121,7 +137,7 @@ and how stochastic perturbations are used in the Noah Land Surface Model.
  • =2 future development (not yet)
0 -
iaer gfs_control_type 4-digit aerosol flag (dabc for aermdl, volcanic, LW, SW): \n +
iaer GFS_rrtmg_setup 4-digit aerosol flag (dabc for aermdl, volcanic, LW, SW): \n
  • d:tropospheric aerosol model scheme flag \n =0 or none, opac-climatology aerosol scheme \n @@ -136,28 +152,28 @@ and how stochastic perturbations are used in the Noah Land Surface Model. =1 include tropospheric aerosol in SW
1 -
ico2 gfs_control_type \f$CO_2\f$ data source control flag:\n +
ico2 GFS_rrtmg_setup \f$CO_2\f$ data source control flag:\n
  • 0: prescribed value (380 ppmv)
  • 1: yearly global averaged annual mean from observations
  • 2: monthly 15 degree horizontal resolution from observations
0 -
isubc_sw gfs_control_type subgrid cloud approximation control flag in SW radiation: \n +
isubc_sw rrtmg_sw subgrid cloud approximation control flag in SW radiation: \n
  • 0: no McICA approximation in SW radiation
  • 1: use McICA with prescribed permutation seeds (test mode)
  • 2: use McICA with randomly generated permutation seeds
0 -
isubc_lw gfs_control_type subgrid cloud approximation control flag in LW radiation: \n +
isubc_lw rrtmg_lw subgrid cloud approximation control flag in LW radiation: \n
  • 0: no McICA approximation in LW radiation
  • 1: use McICA with prescribed permutatition seeds (test mode)
  • 2: use McICA with randomly generated permutation seeds
0 -
isol gfs_control_type solar constant scheme control flag: \n +
isol GFS_rrtmg_setup solar constant scheme control flag: \n
  • 0: fixed value = 1366.0 \f$W m^{-2}\f$ (old standard)
  • 10: fixed value = 1360.8 \f$W m^{-2}\f$ (new standard) @@ -167,31 +183,11 @@ and how stochastic perturbations are used in the Noah Land Surface Model.
  • 4: CMIP5 TIM-scale TSI table (monthly) with 11-yr cycle approximation
0 -
lwhtr gfs_control_type logical flag for output of longwave heating rate .true. -
swhtr gfs_control_type logical flag for output of shortwave heating rate .true. -
cnvgwd gfs_control_type logical flag for convective gravity wave drag scheme dependent on maxval(cdmbgwd(3:4) == 0.0) .false. -
shal_cnv gfs_control_type logical flag for calling shallow convection .false. -
lmfshal gfs_control_type flag for mass-flux shallow convection scheme in the cloud fraction calculation shal_cnv .and. (imfshalcnv > 0) -
lmfdeep2 gfs_control_type flag for mass-flux deep convection scheme in the cloud fraction calculation imfdeepcnv == 2 .or. 3 .or.4 -
cal_pre gfs_control_type logical flag for calling precipitation type algorithm .false. -
redrag gfs_control_type logical flag for applying reduced drag coefficient for high wind over sea in GFS surface layer scheme .false. -
dspheat gfs_control_type logical flag for using TKE dissipative heating to temperature tendency in hybrid EDMF and TKE-EDMF schemes .false. -
hybedmf gfs_control_type logical flag for calling hybrid EDMF PBL scheme .false. -
satmedmf gfs_control_type logical flag for calling TKE EDMF PBL scheme .false. -
isatmedmf gfs_control_type flag for scale-aware TKE-based moist EDMF scheme \n -
    -
  • 0: initial version of satmedmf (Nov.2018) -
  • 1: updated version of satmedmf (as of May 2019) -
-
0 -
do_mynnedmf gfs_control_type flag to activate MYNN-EDMF scheme .false. -
random_clds gfs_control_type logical flag for whether clouds are random .false. -
trans_trac gfs_control_type logical flag for convective transport of tracers .false. -
lheatstrg gfs_control_type logical flag for canopy heat storage parameterization .false. -
shinhong gfs_control_type flag for scale-aware Shinhong PBL scheme .false. -
do_ysu gfs_control_type flag for YSU PBL scheme .false. -
cnvcld gfs_control_type logical flag for convective cloud .false. -
imfshalcnv gfs_control_type flag for mass flux shallow convective scheme:\n +
lwhtr rrtmg_lw flag for output of longwave heating rate .true. +
swhtr rrtmg_sw flag for output of shortwave heating rate .true. +
nhfrad GFS_time_vary_pre number of timesteps for which to call radiation on physics timestep (coldstarts) 0 +
\b Parameters \b related \b to \b cumulus \b schemes +
imfshalcnv choice of shallow convective scheme flag for mass flux shallow convective scheme:\n
  • 1:July 2010 version of mass-flux shallow convective scheme (operational as of 2016)
  • 2: scale- & aerosol-aware mass-flux shallow convective scheme (2017) @@ -201,7 +197,7 @@ and how stochastic perturbations are used in the Noah Land Surface Model.
  • -1: no shallow convection used
1 -
imfdeepcnv gfs_control_type flag for mass-flux deep convective scheme:\n +
imfdeepcnv choice of deep convective scheme flag for mass-flux deep convective scheme:\n
  • -1: Chikira-Sugiyama deep convection (with \b cscnv = .T.)
  • 1: July 2010 version of SAS convective scheme (operational version as of 2016) @@ -210,311 +206,246 @@ and how stochastic perturbations are used in the Noah Land Surface Model.
  • 4: new Tiedtke scheme (CAPS)
1 -
lgfdlmprad gfs_control_type flag for GFDL mp scheme and radiation consistency .false. -
cdmbgwd(4) gfs_control_type multiplication factors for mountain blocking(1), orographic gravity wave drag(2) -
    -
  • [1]: GWDPS mountain blocking -
  • [2]: GWDPS orographic gravity wave drag -
  • [3]: the modulation total momentum flux of NGWs by intensities of the total precipitation -
  • [4]: TKE for future tests and applications -
-
2.0,0.25,1.0,1.0 -
prslrd0 gfs_control_type pressure level above which to apply Rayleigh damping 0.0d0 -
lsm gfs_control_type flag for land surface model to use \n -
    -
  • 1: Noah LSM -
  • 2: RUC LSM -
-
1 -
lsoil gfs_control_type number of soil layers 4 -
ivegsrc gfs_control_type flag for vegetation type dataset choice: \n +
do_deep see \a GFS_typedefs.F90 consistency check for deep convection .true. +
shal_cnv GFS_suite_interstitial flag for calling shallow convection .false. +
lmfshal GFS_rrtmg_pre flag for mass-flux shallow convection scheme in the cloud fraction calculation shal_cnv .and. (imfshalcnv > 0) +
lmfdeep2 GFS_rrtmg_pre flag for mass-flux deep convection scheme in the cloud fraction calculation imfdeepcnv == 2 .or. 3 .or.4 +
random_clds GFS_phys_time_vary flag for whether clouds are random .false. +
trans_trac GFS_suite_interstitial flag for convective transport of tracers .false. +
cal_pre GFS_phys_time_vary or GFS_MP_generic flag for calling precipitation type algorithm .false. +
shcnvcw \ref samfshalcnv flag for shallow convective cloud .false. +
cscnv cs_conv flag for Chikira-Sugiyama deep convection .false. +
do_aw cs_conv flag for Arakawa-Wu scale-awere adjustment .false. +
do_shoc cs_conv flag for Simplified Hihger-order Closure (SHOC) .false. +
do_awdd cs_conv flag to enable treating convective tendencies following Arakwaw-Wu for downdrafts (2013) .false. +
cs_parm(10) cs_conv tunable parameters for Chikira-Sugiyama convection 8.0,4.0,1.0e3,3.5e3,20.0,1.0,-999.,1.,0.6,0. +
\b Parameters \b related \b to \b PBL \b scheme \b options +
do_mynnedmf mynnedmf_wrapper* flag to activate MYNN-EDMF scheme .false. +
do_myjsfc myjpbl_wrapper flag for MYJ surface layer scheme .false +
dspheat \ref satmedmfvdifq, \ref hedmf flag for using TKE dissipative heating to temperature tendency in hybrid EDMF and TKE-EDMF schemes .false. +
satmedmf \ref satmedmfvdifq flag for calling scale-ware TKE-based EDMF PBL scheme .false. +
isatmedmf \ref satmedmfvdifq flag for scale-aware TKE-based moist EDMF scheme \n
    -
  • 0: USGS -
  • 1: IGBP(20 category) -
  • 2: UMD (13 category) -
-
2 -
isot gfs_control_type flag for soil type dataset choice:\n -
    -
  • 0: Zobler soil type (9 category) -
  • 1: STATSGO soil type (19 category) -
-
0 -
mom4ice gfs_control_type flag controls mom4 sea ice .false. -
debug gfs_control_type flag for debug printout .false. -
nstf_name(5) gfs_control_type NSST related paramters:\n -
    -
  • nstf_name(1): 0=NSST off, 1= NSST on but uncoupled, 2= NSST on and coupled -
  • nstf_name(2): 1=NSST spin up on, 0=NSST spin up off -
  • nstf_name(3): 1=NSST analysis on, 0=NSST analysis off -
  • nstf_name(4): zsea1 in mm -
  • nstf_name(5): zesa2 in mm -
-
/0,0,1,0,5/ -
nst_anl gfs_control_type flag for NSST analysis in gcycle/sfcsub .false. -
effr_in gfs_control_type logical flag for using input cloud effective radii calculation .false. -
aero_in gfs_control_type logical flag for using aerosols in Morrison-Gettelman microphysics .false. -
iau_delthrs gfs_control_type incremental analysis update (IAU) time interval in hours 6 -
iaufhrs gfs_control_type forecast hours associated with increment files -1 -
\b Parameters \b Specific \b to \b csawmg \b Suite -
crtrh(3) gfs_control_type critical relative humidity at the surface, PBL top and at the top of the atmosphere 0.90,0.90,0.90 -
cscnv gfs_control_type logical flag for Chikira-Sugiyama deep convection .false. -
do_aw gfs_control_type flag for Arakawa-Wu scale-awere adjustment .false. -
do_awdd gfs_control_type flag to enable treating convective tendencies following Arakwaw-Wu for downdrafts (2013) .false. -
do_sb_physics gfs_control_type logical flag for SB2001 autoconversion or accretion .true. -
do_cldice gfs_control_type flag for cloud ice processes for MG microphysics .true. -
hetfrz_classnuc gfs_control_type flag for heterogeneous freezing for MG microphysics .false. -
mg_nccons gfs_control_type flag for constant droplet concentration for MG microphysics .false. -
mg_nicons gfs_control_type flag for constant ice concentration for MG microphysics .false. -
mg_ngcons gfs_control_type flag for constant graupel concentration for MG microphysics .false. -
sed_supersat gfs_control_type flag for allowing supersaturation after sedimentation for MG microphysics .true. -
mg_do_graupel gfs_control_type flag for turning on prognostic graupel (with fprcp=2) .true. -
mg_do_hail gfs_control_type flag for turning on prognostic hail (with fprcp=2) .false. -
shcnvcw gfs_control_type logical flag for shallow convective cloud .false. -
xkzm_h gfs_control_type background vertical diffusion for heat and q 1.0d0 -
xkzm_m gfs_control_type background vertical diffusion for momentum 1.0d0 -
xkzm_s gfs_control_type sigma threshold for background mom. diffusion 1.0d0 -
xkzminv gfs_control_type maximum background value of heat diffusivity in the inversion layer 0.3 -
microp_uniform gfs_control_type logical flag for uniform subcolumns for MG microphysics .true. -
mg_do_ice_gmao gfs_control_type logical flag for turning on gmao ice autoconversion in MG microphysics .false. -
mg_do_liq_liu gfs_control_type logical flag for turning on Liu liquid treatment in MG microphysics .true. -
mg_dcs gfs_control_type autoconversion size threshold for cloud ice to snow in MG microphysics 200.0 -
mg_alf gfs_control_type tuning factor for alphas (alpha = 1 - critical relative humidity) 1.0 -
mg_ts_auto_ice(2) gfs_control_type autoconversion time scale for ice in MG microphysics 180.0,180.0 -
mg_qcvar gfs_control_type cloud water relative variance in MG microphysics 1.0 -
mg_rhmini gfs_control_type relative humidity threshold parameter for nucleating ice 1.01 -
mg_ncnst gfs_control_type constant droplet num concentration \f$m^{-3}\f$ 100.e6 -
mg_ninst gfs_control_type constant ice num concentration \f$m^{-3}\f$ 0.15e6 -
mg_ngnst gfs_control_type constant graupel/hail num concertration \f$m^{-3}\f$ 0.10e6 -
mg_berg_eff_factor gfs_control_type berg efficiency factor 2.0 -
mg_qcmin(2) gfs_control_type min liquid and ice mixing ratio in MG macro clouds 1.0d-9, 1.0d-9 -
mg_precip_frac_method gfs_control_type type of precipitation fraction method 'max_overlap' -
fprcp gfs_control_type number of frozen precipitation species in MG microphysics \n -
    -
  • 0: no prognostic rain and snow -
  • 1: MG2 -
  • 2: MG3 +
  • 0: initial version of satmedmf (Nov.2018) +
  • 1: updated version of satmedmf (as of May 2019)
-
0 -
pdfflag gfs_control_type pdf flag for MG macro physics 4 -
cs_parm(10) gfs_control_type tunable parameters for Chikira-Sugiyama convection 8.0,4.0,1.0e3,3.5e3,20.0,1.0,-999.,1.,0.6,0. -
iccn gfs_control_type flag for using IN and CCN forcing in MG2/3 microphysics .false. -
rhcmax gfs_control_type maximum critical relative humidity 0.9999999 -
\b Parameters \b Specific \b to \b GSD_v0 \b Suite -
ltaerosol gfs_control_type logical flag for using aerosol climotology in Thompson MP scheme .false. -
lradar gfs_control_type logical flag for computing radar reflectivity in Thompson MP scheme .false. -
ttendlim gfs_control_type temperature tendency limiter per time step in K/s, set to < 0 to deactivate -999.0 -
do_mynnsfclay gfs_control_type flag to activate MYNN-SFCLAY scheme .false. -
grav_settling gfs_control_type flag to activate gravitational settling of cloud droplets as described in Nakanishi (2000) \cite nakanishi_2000 0 -
bl_mynn_mixlength gfs_control_type flag for different version of mixing length formulation \n + 0 +
hybedmf \ref hedmf flag for calling hybrid EDMF PBL scheme .false. +
shinhong shinhongvdif flag for scale-aware Shinhong PBL scheme .false. +
do_ysu see \a GFS_typedefs.F90 flag for YSU PBL scheme .false. +
debug see \a GFS_typedefs.F90 flag for debug printout .false. +
xkzm_h \ref satmedmfvdifq, \ref hedmf background vertical diffusion for heat and q 1.0d0 +
xkzm_m \ref satmedmfvdifq, \ref hedmf background vertical diffusion for momentum 1.0d0 +
xkzm_s \ref satmedmfvdifq, \ref hedmf sigma threshold for background mom. diffusion 1.0d0 +
xkzminv \ref hedmf maximum background value of heat diffusivity in the inversion layer 0.3 +
moninq_fac \ref hedmf atmosphere diffusivity coefficient factor 1.0 +
dspfac \ref satmedmfvdifq TKE dissipative heating factor 1.0 +
bl_upfr \ref satmedmfvdifq updraft fraction in boundary layer mass flux scheme 0.13 +
bl_dnfr \ref satmedmfvdifq downdraft fraction in boundary layer mass flux scheme 0.1 +
grav_settling mynnedmf_wrapper flag to activate gravitational settling of cloud droplets as described in Nakanishi (2000) \cite nakanishi_2000 0 +
bl_mynn_mixlength mynnedmf_wrapper flag for different version of mixing length formulation \n
  • 0: Original form from Nakanishi and Niino (2009) \cite NAKANISHI_2009 . NO scale-awareness is applied to the master mixing length, regardless of "scaleware" setting
  • 1: HRRR operational form 201609-201807. Designed to work without the mass-flux scheme. Uses BouLac mixing length in free atmosphere.
  • 2: HRRR operational form 201807-present. Designed to be compatible with mass-flux scheme activated (default)
2 -
bl_mynn_edmf gfs_control_type flag to activate the mass-flux scheme \n +
bl_mynn_edmf mynnedmf_wrapper flag to activate the mass-flux scheme \n
  • 0: deactivate mass-flux scheme
  • 1: activate dynamic multiplume mass-flux scheme
0 -
bl_mynn_edmf_mom gfs_control_type flag to activate the transport of momentum \n +
bl_mynn_edmf_mom mynnedmf_wrapper flag to activate the transport of momentum \n
  • 0: deactivate momentum transport in mass-flux scheme
  • 1: activate momentum transport in dynamic multiplume mass-flux scheme. \p bl_mynn_edmf must be set to 1
1 -
bl_mynn_edmf_tke gfs_control_type flag to activate the transport of TKE \n +
bl_mynn_edmf_tke mynnedmf_wrapper flag to activate the transport of TKE \n
  • 0: deactivate TKE transport in mass-flux scheme
  • 1: activate TKE transport in dynamic multiplume mass-flux scheme. \p bl_mynn_edmf must be set to 1
0 -
bl_mynn_edmf_part gfs_control_type flag to partitioning the MF and ED areas 0 -
bl_mynn_edmf_tkeadvect gfs_control_type activate computation of TKE advection (not yet in use for FV3) \n +
bl_mynn_edmf_part mynnedmf_wrapper flag to partitioning the MF and ED areas 0 +
bl_mynn_edmf_tkeadvect mynnedmf_wrapper activate computation of TKE advection (not yet in use for FV3) \n
  • false: deactivate TKE advection
  • true: activate TKE advection
.false. -
bl_mynn_edmf_tkebudget gfs_control_type flag to activate TKE budget 0 -
bl_mynn_edmf_cloudpdf gfs_control_type flag to determine which cloud PDF to use \n +
bl_mynn_edmf_tkebudget mynnedmf_wrapper flag to activate TKE budget 0 +
bl_mynn_edmf_cloudpdf mynnedmf_wrapper flag to determine which cloud PDF to use \n
  • 0: use Sommeria-Deardorff subgrid cloud PDF
  • 1: use Kuwano-Yoshida subgrid cloud PDF
  • 2: use modified Chaboureau-Bechtold subgrid cloud PDF
2 -
bl_mynn_edmf_cloudmix gfs_control_type flag to activate mixing of cloud species \n +
bl_mynn_edmf_cloudmix mynnedmf_wrapper flag to activate mixing of cloud species \n
  • 0: deactivate the mixing of any water species mixing ratios
  • 1: activate the mixing of all water species mixing ratios
1 -
bl_mynn_mixqt gfs_control_type flag to mix total water or individual species \n +
bl_mynn_mixqt mynnedmf_wrapper flag to mix total water or individual species \n
  • 0: mix individual water species separately
  • 1: DO NOT USE
0 -
icloud_bl gfs_control_type flag to coupling SGS clouds to radiation \n +
icloud_bl mynnedmf_wrapper flag to coupling SGS clouds to radiation \n
  • 0: deactivate coupling subgrid clouds to radiation
  • 1: activate subgrid cloud coupling to radiation (highly suggested)
1 -
lsoil_lsm gfs_control_type number of soil layers internal to land surface model -1 -
ldiag_ugwp GFS_control_type flag for CIRES UGWP diagnostics .false. -
do_ugwp GFS_control_type flag for CIRES UGWP revised OGW -
    -
  • .T.: revised gwdps_v0 -
  • .F.: GFS operational orographic gwdps -
-
.false. -
do_tofd GFS_control_type flag for turbulent orographic form drag .false. -
do_sppt gfs_control_type flag for stochastic SPPT option .false. -
do_shum gfs_control_type flag for stochastic SHUM option .false. -
do_skeb gfs_control_type flag for stochastic SKEB option .false. -
do_sfcperts gfs_control_type flag for stochastic surface perturbations option .false. -
\b &nam_sfcperts -
nsfcpert gfs_control_type number of weights for stochastic surface perturbation 0 -
pertz0 gfs_control_type magnitude of perturbation of momentum roughness length -999. -
pertzt gfs_control_type magnitude of perturbation of heat to momentum roughness length ratio -999. -
pertshc gfs_control_type magnitude of perturbation of soil hydraulic conductivity -999. -
pertlai gfs_control_type magnitude of perturbation of leaf area index -999. -
pertalb gfs_control_type magnitude of surface albedo perturbation -999. -
pertvegf gfs_control_type magnitude of perturbation of vegetation fraction -999. -
iseed_sfc compns_stochy_mod random seeds (if 0 use system clock) 0 -
sfc_tau compns_stochy_mod time scales -999. -
sfc_lscale compns_stochy_mod length scales -999. -
sppt_land compns_stochy_mod .false. -
\b &stochy_nam -
use_zmtnblck compns_stochy_mod flag for mountain blocking. .T. = do not apply perturbations below the dividing streamline that is diagnosed by the gravity wave drag, mountain blocking scheme .false. -
ntrunc compns_stochy_mod spectral resolution (e.g. T126) of random patterns -999 -
lon_s, lat_s compns_stochy_mod number of longitude and latitude point for the Gaussian grid -999 -
fhstoch compns_stochy_mod forecast hour to write out random pattern in order to restart the pattern for a different forecast (used in DA), file is stoch_out.F -999.0 -
stochini compns_stochy_mod set to true if wanting to read in a previous random pattern (input file need to be named \c stoch_ini) .false. -
sppt compns_stochy_mod amplitude of random patterns -999. -
sppt_tau compns_stochy_mod decorrelation timescales in seconds -999. -
sppt_lscale compns_stochy_mod decorrelation spatial scales in meters -999. -
sppt_logit compns_stochy_mod logit transform for SPPT to bounded interval [-1,+1] .false. -
iseed_sppt compns_stochy_mod seeds for setting the random number sequence (ignored if \c stochini is true) 0 -
sppt_sigtop1, sppt_sigtop2 compns_stochy_mod sigma levels to taper perturbations to zeros 0.1, 0.025 -
sppt_sfclimit compns_stochy_mod reduce amplitude of SPPT near surface (lowest 2 levels) .false. -
shum compns_stochy_mod amplitude of stochastic boundary layer specific humidity perturbations -999. -
shum_tau compns_stochy_mod decorrelation time scales in seconds -999. -
shum_lscale compns_stochy_mod decorrelation spatial scales in meters -999. -
shum_sigefold compns_stochy_mod e-folding lengthscale (in units of sigma) of specific humidity perturbations 0.2 -
skeb compns_stochy_mod stochastic KE backscatter amplitude -999. -
skeb_tau compns_stochy_mod decorrelation timescales in seconds -999. -
skeb_lscale compns_stochy_mod decorrelation spatial scales in meter -999. -
iseed_skeb compns_stochy_mod seeds for setting the random number sequnce (ignored if \c stochini is true) 0 -
skeb_vfilt compns_stochy_mod 0 -
skebnorm compns_stochy_mod 0: random pattern is stream function,1: pattern is kenorm, 2: pattern is vorticity 0 -
skeb_varspect_opt compns_stochy_mod Gaussian or power law variance spectrum for SKEB (0: Gaussian, 1: power law) 0 -
skeb_npass compns_stochy_mod number of passes of smoother for dissipation estimate 11 -
skeb_vdof compns_stochy_mod the number of degrees of freedom in the vertical for the SKEB random pattern 5 -
skeb_sigtop1, skeb_sigtop2 compns_stochy_mod sigma levels to taper perturbations to zeros 0.1, 0.025 -
skebint compns_stochy_mod 0 -
\b &gfdl_cloud_microphysics_nml -
sedi_transport gfdl_cloud_microphys_mod logical flag for turning on horizontal momentum transport during sedimentation .true. -
do_sedi_w gfdl_cloud_microphys_mod \a .true. to turn on vertical motion transport during sedimentation. (not supported in GFS physics) .false. -
do_sedi_heat gfdl_cloud_microphys_mod logical flag for turning on horizontal heat transport during sedimentation .true. -
rad_snow gfdl_cloud_microphys_mod logical flag for considering snow in cloud fraction calculation .true. -
rad_graupel gfdl_cloud_microphys_mod logical flag for considering graupel in cloud fraction calculation .true. -
rad_rain gfdl_cloud_microphys_mod logical flag for considering rain in cloud fraction calculation .true. -
cld_min gfdl_cloud_microphys_mod minimum cloud fraction. If total cloud condensate exceeds 1.0e-6 kg/kg, cloud fraction cannot be less than \p cld_min 0.05 -
const_vi gfdl_cloud_microphys_mod logical flag for using constant cloud ice fall speed .false. -
const_vs gfdl_cloud_microphys_mod logical flag for using constant snow fall speed .false. -
const_vg gfdl_cloud_microphys_mod logical flag for using constant graupel fall speed .false. -
const_vr gfdl_cloud_microphys_mod logical flag for using constant rain fall speed .false. -
vi_fac gfdl_cloud_microphys_mod tunable factor for cloud ice fall or the constant cloud ice fall speed when \p const_vi is .true. 1. -
vr_fac gfdl_cloud_microphys_mod tunable factor for rain fall or the constant rain fall speed when \p const_vr is .true. 1. -
vs_fac gfdl_cloud_microphys_mod tunable factor for snow fall or the constant snow fall speed when \p const_vs is .true. 1. -
vg_fac gfdl_cloud_microphys_mod tunable factor for graupel fall or the constant graupel fall speed when \p const_vg is .true. 1. -
vi_max gfdl_cloud_microphys_mod maximum fall speed for cloud ice 0.5 -
vs_max gfdl_cloud_microphys_mod maximum fall speed for snow 5.0 -
vg_max gfdl_cloud_microphys_mod maximum fall speed for graupel 8.0 -
vr_max gfdl_cloud_microphys_mod maximum fall speed for rain 12.0 -
qi_lim gfdl_cloud_microphys_mod cloud ice limiter to prevent large ice built up in cloud ice freezing and deposition 1. -
prog_ccn gfdl_cloud_microphys_mod logical flag for activating prognostic CCN (not supported in GFS Physics) .false. -
do_qa gfdl_cloud_microphys_mod \a .true. to activate inline cloud fraction diagnosis in fast saturation adjustment. \a .false. to activate inline cloud fraction diagnosis in major cloud microphysics .true. -
fast_sat_adj gfdl_cloud_microphys_mod logical flag for adjusting cloud water evaporation (cloud water -> water vapor), cloud water freezing (cloud water -> cloud ice), cloud ice deposition (water vapor -> cloud ice) when fast saturation adjustment is activated (\b do_sat_adj = .true. in \b fv_core_nml block) .true. -
tau_l2v gfdl_cloud_microphys_mod time scale for evaporation of cloud water to water vapor. Increasing(decreasing) \p tau_l2v can decrease(boost) deposition of cloud water to water vapor 300. -
tau_v2l gfdl_cloud_microphys_mod time scale for condensation of water vapor to cloud water. Increasing(decreasing) \p tau_v2l can decrease(boost) condensation of water vapor to cloud water 150. -
tau_g2v gfdl_cloud_microphys_mod time scale for sublimation of graupel to water vapor. Increasing(decreasing) \p tau_g2v can decrease(boost) sublimation of graupel to water vapor 900. -
tau_g2r gfdl_cloud_microphys_mod time scale for graupel melting. Increasing(decreasing) \p tau_g2r can decrease(boost) melting of graupel to rain (graupel-> rain) 600. -
tau_v2g gfdl_cloud_microphys_mod time scale for deposition of water vapor to graupel. Increasing(decreasing) \p tau_v2g can decrease(boost) deposition of water vapor to graupel (water vapor -> graupel) 21600. -
tau_l2r gfdl_cloud_microphys_mod time scale for autoconversion of cloud water to rain. Increasing(decreasing) \p tau_l2r can decrese(boost) autoconversion of cloud water to rain (cloud water -> rain) 900. -
tau_r2g gfdl_cloud_microphys_mod time scale for freezing of rain to graupel. Increasing(decreasing) \p tau_r2g can decrease(boost) freezing of rain to graupel (rain->graupel) 900. -
tau_i2s gfdl_cloud_microphys_mod time scale for autoconversion of cloud ice to snow. Increasing(decreasing) \p tau_i2s can decrease(boost) autoconversion of cloud ice to snow (cloud ice -> snow) 1000. -
tau_imlt gfdl_cloud_microphys_mod time scale for cloud ice melting. Increasing(decreasing) \p tau_imlt can decrease(boost) melting of cloud ice to cloud water or rain (cloud ice -> cloud water or rain) 600. -
tau_smlt gfdl_cloud_microphys_mod time scale for snow melting. Increasing(decreasing) \p tau_smlt can decrease(boost) melting of snow to cloud water or rain (snow-> cloud water or rain) 900. -
rthresh gfdl_cloud_microphys_mod critical cloud water radius for autoconversion (cloud water -> rain). Increasing(decreasing) of \p rthresh makes the autoconversion harder(easier) 10.0e-6 -
dw_land gfdl_cloud_microphys_mod base value for subgrid deviation/variability over land 0.20 -
dw_ocean gfdl_cloud_microphys_mod base value for subgrid deviation/variability over ocean 0.10 -
ql_gen gfdl_cloud_microphys_mod maximum value for cloud water generated from condensation of water vapor (water vapor-> cloud water) 1.0e-3 -
qi_gen gfdl_cloud_microphys_mod maximum value of cloud ice generated from deposition of water vapor (water vapor->cloud ice) or freezing(cloud water -> cloud ice). Increasing(decreasing) \p qi_gen can increas(decrease) cloud ice 1.82e-6 -
ql_mlt gfdl_cloud_microphys_mod maximum value of cloud water allowed from melted cloud ice (cloud ice -> cloud water or rain). Exceedance of which will become rain. Increasing(decreasing) \p ql_mlt can increase(decrease) cloud water and decrease(increase) rain 2.0e-3 -
qs_mlt gfdl_cloud_microphys_mod maximum value of cloud water allowed from melted snow (snow -> cloud water or rain). Exceedance of which will become rain. Increasing(decreasing) \p qs_mlt can increas(decrease) cloud water and decrease (increase) rain 1.0e-6 -
ql0_max gfdl_cloud_microphys_mod threshold of cloud water to rain autoconversion (cloud water -> rain). Increasing(decreasing) \p ql0_max can increase(decrease) rain and decrease(increase) cloud water 2.0e-3 -
qi0_max gfdl_cloud_microphys_mod maximum value of cloud ice generated from other sources like convection. Exceedance of which will become snow. Increasing(decreasing) \p qi0_max can increase(decrease) cloud ice and decrease(increase) snow 1.0e-4 -
qi0_crt gfdl_cloud_microphys_mod threshold of cloud ice to snow autoconversion (cloud ice -> snow). Increasing(decreasing) \p qi0_crt can increase(decrease) cloud ice and decrease(increase) snow 1.0e-4 -
qs0_crt gfdl_cloud_microphys_mod threshold of snow to graupel autoconversion (snow -> graupel). Increasing(decreasing) \p qs0_crt can increase(decrease) snow and decrease(increase) graupel 1.0e-3 -
qc_crt gfdl_cloud_microphys_mod minimum value of cloud condensate to allow partial cloudiness. Partial cloud can only exist when total cloud condensate exceeds \p qc_crt 5.0e-8 -
c_psaci gfdl_cloud_microphys_mod accretion efficiency of cloud ice to snow (cloud ice -> snow). Increasing(decreasing) of \p c_psaci can boost(decrease) the accretion of cloud ice to snow 0.02 -
c_pgacs gfdl_cloud_microphys_mod accretion efficiency of snow to graupel (snow -> graupel). Increasing(decreasing) of \p c_pgacs can boost(decrease) the accretion of snow to graupel 2.0e-3 -
rh_inc gfdl_cloud_microphys_mod relative humidity increment for complete evaporation of cloud water and cloud ice 0.25 -
rh_inr gfdl_cloud_microphys_mod relative humidity increment for sublimation of snow 0.25 -
rh_ins gfdl_cloud_microphys_mod relative humidity increment for minimum evaporation of rain 0.25 -
rthresh gfdl_cloud_microphys_mod critical cloud water radius for autoconversion(cloud water->rain). Increasing(decreasing) of \p rthresh makes the autoconversion harder(easier) 1.0e-5 -
ccn_l gfdl_cloud_microphys_mod base CCN over land. Increasing(decreasing) \p ccn_l can on the one hand boost(decrease) the autoconversion of cloud water to rain, on the other hand make the autoconversion harder(easier). The unit is \f$cm^{-3}\f$ 270. -
ccn_o gfdl_cloud_microphys_mod base CCN over ocean. Increasing(decreasing) \p ccn_o can on the one hand boost(decrease) the autoconversion of cloud water to rain, on the other hand make the autoconversion harder(easier). The unit is \f$cm^{-3}\f$ 90. -
c_paut gfdl_cloud_microphys_mod autoconversion efficiency of cloud water to rain (cloud water -> rain). Increasing(decreasing) of \p c_paut can boost(decrease) the autoconversion of cloud water to rain 0.55 -
c_cracw gfdl_cloud_microphys_mod accretion efficiency of cloud water to rain (cloud water -> rain). Increasing(decreasing) of \p c_cracw can boost(decrease) the accretion of cloud water to rain 0.9 -
sat_adj0 gfdl_cloud_microphys_mod adjust factor for condensation of water vapor to cloud water (water vapor->cloud water) and deposition of water vapor to cloud ice 0.9 -
use_ppm gfdl_cloud_microphys_mod \e true to use PPM fall scheme; \e false to use time-implicit monotonic fall scheme .false. -
use_ccn gfdl_cloud_microphys_mod \e true to compute prescribed CCN. It should be .true. when \p prog_ccn = .false. .false. -
mono_prof gfdl_cloud_microphys_mod \e true to turn on terminal fall with monotonic PPM scheme. This is used together with \p use_ppm=.true. .true. -
z_slope_liq gfdl_cloud_microphys_mod \e true to turn on vertically subgrid linear monotonic slope for autoconversion of cloud water to rain .true. -
z_slope_ice gfdl_cloud_microphys_mod \e true to turn on vertically subgrid linear monotonic slope for autoconversion of cloud ice to snow .false. -
de_ice gfdl_cloud_microphys_mod \e true to convert excessive cloud ice to snow to prevent ice over-built from other sources like convection scheme (not supported in GFS physics) .false. -
fix_negative gfdl_cloud_microphys_mod \e true to fix negative water species using nearby points .false. -
icloud_f gfdl_cloud_microphys_mod flag (0,1,or 2) for cloud fraction diagnostic scheme 0 -
irain_f gfdl_cloud_microphys_mod flag (0 or 1) for cloud water autoconversion to rain scheme. 0: with subgrid variability; 1: no subgrid variability 0 -
mp_time gfdl_cloud_microphys_mod time step of GFDL cloud microphysics (MP). If \p mp_time isn't divisible by physics time step or is larger than physics time step, the actual MP time step becomes \p dt/NINT[dt/MIN(dt,mp_time)] 150. -
alin gfdl_cloud_microphys_mod parameter \a a in Lin et al.(1983). Constant in empirical formula for \f$U_R\f$. Increasing(decreasing) \p alin can boost(decrease) accretion of cloud water by rain and rain evaporation 842. -
clin gfdl_cloud_microphys_mod parameter \a c in Lin et al.(1983). Constant in empirical formula for \f$U_S\f$. Increasing(decreasing) \p clin can boost(decrease) accretion of cloud water by snow, accretion of cloud ice by snow, snow sublimation and deposition, and snow melting 4.8 -
t_min gfdl_cloud_microphys_mod temperature threshold for instant deposition. Deposit all water vapor to cloud ice when temperature is lower than \p t_min 178. -
t_sub gfdl_cloud_microphys_mod temperature threshold for sublimation. Cloud ice, snow or graupel stops(starts) sublimation when temperature is lower(higher) then \p t_sub 184. -
mp_print gfdl_cloud_microphys_mod \a .true. to turn on GFDL cloud microphysics debugging print out. (not supported in GFS physics) .false. -
\b &cires_ugwp_nml -
knob_ugwp_version cires_ugwp_module parameter selects a version of the UGWP implementation in FV3GFS-127L \n +
\b Parameters \b related \b to \b surface \b perturbation \b options +
nsfcpert GFS_surface_generic_pre number of weights for stochastic surface perturbation 0 +
pertz0 GFS_surface_generic_pre magnitude of perturbation of momentum roughness length -999. +
pertzt GFS_surface_generic_pre magnitude of perturbation of heat to momentum roughness length ratio -999. +
pertshc GFS_surface_generic_pre magnitude of perturbation of soil hydraulic conductivity -999. +
pertlai GFS_surface_generic_pre magnitude of perturbation of leaf area index -999. +
pertalb GFS_surface_generic_pre magnitude of surface albedo perturbation -999. +
pertvegf GFS_surface_generic_pre magnitude of perturbation of vegetation fraction -999. +
\b Parameters \b related \b to \b microphysics \b scheme \b options +
lradar gfdl_cloud_microphys flag for computing radar reflectivity in Thompson MP scheme .false. +
sedi_transport gfdl_cloud_microphys flag for turning on horizontal momentum transport during sedimentation .true. +
do_sedi_w gfdl_cloud_microphys \a .true. to turn on vertical motion transport during sedimentation. (not supported in GFS physics) .false. +
do_sedi_heat gfdl_cloud_microphys flag for turning on horizontal heat transport during sedimentation .true. +
rad_snow gfdl_cloud_microphys flag for considering snow in cloud fraction calculation .true. +
rad_graupel gfdl_cloud_microphys flag for considering graupel in cloud fraction calculation .true. +
rad_rain gfdl_cloud_microphys flag for considering rain in cloud fraction calculation .true. +
cld_min gfdl_cloud_microphys minimum cloud fraction. If total cloud condensate exceeds 1.0e-6 kg/kg, cloud fraction cannot be less than \p cld_min 0.05 +
const_vi gfdl_cloud_microphys flag for using constant cloud ice fall speed .false. +
const_vs gfdl_cloud_microphys flag for using constant snow fall speed .false. +
const_vg gfdl_cloud_microphys flag for using constant graupel fall speed .false. +
const_vr gfdl_cloud_microphys flag for using constant rain fall speed .false. +
vi_fac gfdl_cloud_microphys tunable factor for cloud ice fall or the constant cloud ice fall speed when \p const_vi is .true. 1. +
vr_fac gfdl_cloud_microphys tunable factor for rain fall or the constant rain fall speed when \p const_vr is .true. 1. +
vs_fac gfdl_cloud_microphys tunable factor for snow fall or the constant snow fall speed when \p const_vs is .true. 1. +
vg_fac gfdl_cloud_microphys tunable factor for graupel fall or the constant graupel fall speed when \p const_vg is .true. 1. +
vi_max gfdl_cloud_microphys maximum fall speed for cloud ice 0.5 +
vs_max gfdl_cloud_microphys maximum fall speed for snow 5.0 +
vg_max gfdl_cloud_microphys maximum fall speed for graupel 8.0 +
vr_max gfdl_cloud_microphys maximum fall speed for rain 12.0 +
qi_lim gfdl_cloud_microphys cloud ice limiter to prevent large ice built up in cloud ice freezing and deposition 1. +
prog_ccn gfdl_cloud_microphys flag for activating prognostic CCN (not supported in GFS Physics) .false. +
do_qa gfdl_cloud_microphys \a .true. to activate inline cloud fraction diagnosis in fast saturation adjustment. \a .false. to activate inline cloud fraction diagnosis in major cloud microphysics .true. +
fast_sat_adj gfdl_cloud_microphys flag for adjusting cloud water evaporation (cloud water -> water vapor), cloud water freezing (cloud water -> cloud ice), cloud ice deposition (water vapor -> cloud ice) when fast saturation adjustment is activated (\b do_sat_adj = .true. in \b fv_core_nml block) .true. +
tau_l2v gfdl_cloud_microphys time scale for evaporation of cloud water to water vapor. Increasing(decreasing) \p tau_l2v can decrease(boost) deposition of cloud water to water vapor 300. +
tau_v2l gfdl_cloud_microphys time scale for condensation of water vapor to cloud water. Increasing(decreasing) \p tau_v2l can decrease(boost) condensation of water vapor to cloud water 150. +
tau_g2v gfdl_cloud_microphys time scale for sublimation of graupel to water vapor. Increasing(decreasing) \p tau_g2v can decrease(boost) sublimation of graupel to water vapor 900. +
tau_g2r gfdl_cloud_microphys time scale for graupel melting. Increasing(decreasing) \p tau_g2r can decrease(boost) melting of graupel to rain (graupel-> rain) 600. +
tau_v2g gfdl_cloud_microphys time scale for deposition of water vapor to graupel. Increasing(decreasing) \p tau_v2g can decrease(boost) deposition of water vapor to graupel (water vapor -> graupel) 21600. +
tau_l2r gfdl_cloud_microphys time scale for autoconversion of cloud water to rain. Increasing(decreasing) \p tau_l2r can decrese(boost) autoconversion of cloud water to rain (cloud water -> rain) 900. +
tau_r2g gfdl_cloud_microphys time scale for freezing of rain to graupel. Increasing(decreasing) \p tau_r2g can decrease(boost) freezing of rain to graupel (rain->graupel) 900. +
tau_i2s gfdl_cloud_microphys time scale for autoconversion of cloud ice to snow. Increasing(decreasing) \p tau_i2s can decrease(boost) autoconversion of cloud ice to snow (cloud ice -> snow) 1000. +
tau_imlt gfdl_cloud_microphys time scale for cloud ice melting. Increasing(decreasing) \p tau_imlt can decrease(boost) melting of cloud ice to cloud water or rain (cloud ice -> cloud water or rain) 600. +
tau_smlt gfdl_cloud_microphys time scale for snow melting. Increasing(decreasing) \p tau_smlt can decrease(boost) melting of snow to cloud water or rain (snow-> cloud water or rain) 900. +
rthresh gfdl_cloud_microphys critical cloud water radius for autoconversion (cloud water -> rain). Increasing(decreasing) of \p rthresh makes the autoconversion harder(easier) 10.0e-6 +
dw_land gfdl_cloud_microphys base value for subgrid deviation/variability over land 0.20 +
dw_ocean gfdl_cloud_microphys base value for subgrid deviation/variability over ocean 0.10 +
ql_gen gfdl_cloud_microphys maximum value for cloud water generated from condensation of water vapor (water vapor-> cloud water) 1.0e-3 +
qi_gen gfdl_cloud_microphys maximum value of cloud ice generated from deposition of water vapor (water vapor->cloud ice) or freezing(cloud water -> cloud ice). Increasing(decreasing) \p qi_gen can increas(decrease) cloud ice 1.82e-6 +
ql_mlt gfdl_cloud_microphys maximum value of cloud water allowed from melted cloud ice (cloud ice -> cloud water or rain). Exceedance of which will become rain. Increasing(decreasing) \p ql_mlt can increase(decrease) cloud water and decrease(increase) rain 2.0e-3 +
qs_mlt gfdl_cloud_microphys maximum value of cloud water allowed from melted snow (snow -> cloud water or rain). Exceedance of which will become rain. Increasing(decreasing) \p qs_mlt can increas(decrease) cloud water and decrease (increase) rain 1.0e-6 +
ql0_max gfdl_cloud_microphys threshold of cloud water to rain autoconversion (cloud water -> rain). Increasing(decreasing) \p ql0_max can increase(decrease) rain and decrease(increase) cloud water 2.0e-3 +
qi0_max gfdl_cloud_microphys maximum value of cloud ice generated from other sources like convection. Exceedance of which will become snow. Increasing(decreasing) \p qi0_max can increase(decrease) cloud ice and decrease(increase) snow 1.0e-4 +
qi0_crt gfdl_cloud_microphys threshold of cloud ice to snow autoconversion (cloud ice -> snow). Increasing(decreasing) \p qi0_crt can increase(decrease) cloud ice and decrease(increase) snow 1.0e-4 +
qs0_crt gfdl_cloud_microphys threshold of snow to graupel autoconversion (snow -> graupel). Increasing(decreasing) \p qs0_crt can increase(decrease) snow and decrease(increase) graupel 1.0e-3 +
qc_crt gfdl_cloud_microphys minimum value of cloud condensate to allow partial cloudiness. Partial cloud can only exist when total cloud condensate exceeds \p qc_crt 5.0e-8 +
c_psaci gfdl_cloud_microphys accretion efficiency of cloud ice to snow (cloud ice -> snow). Increasing(decreasing) of \p c_psaci can boost(decrease) the accretion of cloud ice to snow 0.02 +
c_pgacs gfdl_cloud_microphys accretion efficiency of snow to graupel (snow -> graupel). Increasing(decreasing) of \p c_pgacs can boost(decrease) the accretion of snow to graupel 2.0e-3 +
rh_inc gfdl_cloud_microphys relative humidity increment for complete evaporation of cloud water and cloud ice 0.25 +
rh_inr gfdl_cloud_microphys relative humidity increment for sublimation of snow 0.25 +
rh_ins gfdl_cloud_microphys relative humidity increment for minimum evaporation of rain 0.25 +
rthresh gfdl_cloud_microphys critical cloud water radius for autoconversion(cloud water->rain). Increasing(decreasing) of \p rthresh makes the autoconversion harder(easier) 1.0e-5 +
ccn_l gfdl_cloud_microphys base CCN over land. Increasing(decreasing) \p ccn_l can on the one hand boost(decrease) the autoconversion of cloud water to rain, on the other hand make the autoconversion harder(easier). The unit is \f$cm^{-3}\f$ 270. +
ccn_o gfdl_cloud_microphys base CCN over ocean. Increasing(decreasing) \p ccn_o can on the one hand boost(decrease) the autoconversion of cloud water to rain, on the other hand make the autoconversion harder(easier). The unit is \f$cm^{-3}\f$ 90. +
c_paut gfdl_cloud_microphys autoconversion efficiency of cloud water to rain (cloud water -> rain). Increasing(decreasing) of \p c_paut can boost(decrease) the autoconversion of cloud water to rain 0.55 +
c_cracw gfdl_cloud_microphys accretion efficiency of cloud water to rain (cloud water -> rain). Increasing(decreasing) of \p c_cracw can boost(decrease) the accretion of cloud water to rain 0.9 +
sat_adj0 gfdl_cloud_microphys adjust factor for condensation of water vapor to cloud water (water vapor->cloud water) and deposition of water vapor to cloud ice 0.9 +
use_ppm gfdl_cloud_microphys \e true to use PPM fall scheme; \e false to use time-implicit monotonic fall scheme .false. +
use_ccn gfdl_cloud_microphys \e true to compute prescribed CCN. It should be .true. when \p prog_ccn = .false. .false. +
mono_prof gfdl_cloud_microphys \e true to turn on terminal fall with monotonic PPM scheme. This is used together with \p use_ppm=.true. .true. +
z_slope_liq gfdl_cloud_microphys \e true to turn on vertically subgrid linear monotonic slope for autoconversion of cloud water to rain .true. +
z_slope_ice gfdl_cloud_microphys \e true to turn on vertically subgrid linear monotonic slope for autoconversion of cloud ice to snow .false. +
de_ice gfdl_cloud_microphys \e true to convert excessive cloud ice to snow to prevent ice over-built from other sources like convection scheme (not supported in GFS physics) .false. +
fix_negative gfdl_cloud_microphys \e true to fix negative water species using nearby points .false. +
icloud_f gfdl_cloud_microphys flag (0,1,or 2) for cloud fraction diagnostic scheme 0 +
irain_f gfdl_cloud_microphys flag (0 or 1) for cloud water autoconversion to rain scheme. 0: with subgrid variability; 1: no subgrid variability 0 +
mp_time gfdl_cloud_microphys time step of GFDL cloud microphysics (MP). If \p mp_time isn't divisible by physics time step or is larger than physics time step, the actual MP time step becomes \p dt/NINT[dt/MIN(dt,mp_time)] 150. +
alin gfdl_cloud_microphys parameter \a a in Lin et al.(1983). Constant in empirical formula for \f$U_R\f$. Increasing(decreasing) \p alin can boost(decrease) accretion of cloud water by rain and rain evaporation 842. +
clin gfdl_cloud_microphys parameter \a c in Lin et al.(1983). Constant in empirical formula for \f$U_S\f$. Increasing(decreasing) \p clin can boost(decrease) accretion of cloud water by snow, accretion of cloud ice by snow, snow sublimation and deposition, and snow melting 4.8 +
t_min gfdl_cloud_microphys temperature threshold for instant deposition. Deposit all water vapor to cloud ice when temperature is lower than \p t_min 178. +
t_sub gfdl_cloud_microphys temperature threshold for sublimation. Cloud ice, snow or graupel stops(starts) sublimation when temperature is lower(higher) then \p t_sub 184. +
mp_print gfdl_cloud_microphys \a .true. to turn on GFDL cloud microphysics debugging print out. (not supported in GFS physics) .false. +
ltaerosol mp_thompson flag for using aerosol climotology in Thompson MP scheme .false. +
ttendlim mp_thompson temperature tendency limiter per time step in K/s, set to < 0 to deactivate -999.0 +
effr_in gfdl_cloud_microphys, mp_thompson, m_micro flag for using input cloud effective radii calculation .false. +
cnvcld see \a GFS_typedefs.F90 flag for convective cloud .false. +
lgfdlmprad GFS_rrtmg_pre flag for GFDL mp scheme and radiation consistency .false. +
do_sb_physics m_micro flag for SB2001 autoconversion or accretion .true. +
do_cldice m_micro flag for cloud ice processes for MG microphysics .true. +
hetfrz_classnuc m_micro flag for heterogeneous freezing for MG microphysics .false. +
mg_nccons m_micro flag for constant droplet concentration for MG microphysics .false. +
mg_nicons m_micro flag for constant ice concentration for MG microphysics .false. +
mg_ngcons m_micro flag for constant graupel concentration for MG microphysics .false. +
sed_supersat m_micro flag for allowing supersaturation after sedimentation for MG microphysics .true. +
mg_do_graupel m_micro flag for turning on prognostic graupel (with fprcp=2) .true. +
mg_do_hail m_micro flag for turning on prognostic hail (with fprcp=2) .false. +
microp_uniform m_micro flag for uniform subcolumns for MG microphysics .true. +
mg_do_ice_gmao m_micro flag for turning on gmao ice autoconversion in MG microphysics .false. +
mg_do_liq_liu m_micro flag for turning on Liu liquid treatment in MG microphysics .true. +
mg_dcs m_micro autoconversion size threshold for cloud ice to snow in MG microphysics 200.0 +
mg_ts_auto_ice(2) m_micro autoconversion time scale for ice in MG microphysics 180.0,180.0 +
mg_qcvar m_micro cloud water relative variance in MG microphysics 1.0 +
mg_rhmini m_micro relative humidity threshold parameter for nucleating ice 1.01 +
mg_ncnst m_micro constant droplet num concentration \f$m^{-3}\f$ 100.e6 +
mg_ninst m_micro constant ice num concentration \f$m^{-3}\f$ 0.15e6 +
mg_ngnst m_micro constant graupel/hail num concertration \f$m^{-3}\f$ 0.10e6 +
mg_berg_eff_factor m_micro berg efficiency factor 2.0 +
mg_precip_frac_method m_micro type of precipitation fraction method 'max_overlap' +
fprcp m_micro number of frozen precipitation species in MG microphysics \n +
    +
  • 0: no prognostic rain and snow +
  • 1: MG2 +
  • 2: MG3 +
+
0 +
pdfflag m_micro pdf flag for MG macro physics 4 +
iccn m_micro flag for using IN and CCN forcing in MG2/3 microphysics .false. +
iaerclm m_micro flag for initializing aerosol data .false. +
rhcmax m_micro maximum critical relative humidity 0.9999999 +
aero_in m_micro flag for using aerosols in Morrison-Gettelman microphysics .false. +
\b Parameters \b related \b to \b gravity \b drag \b scheme \b options +
knob_ugwp_version cires_ugwp parameter selects a version of the UGWP implementation in FV3GFS-127L \n
  • 0: default version delivered to EMC in Jan 2019 for implementation
  • 1: version of UGWP under development that plans to consider the physics-based sources of NGWs (\b knob_ugwp_wvspec [2:4]), options for stochastic and deterministic excitation of waves (\b knob_ugwp_stoch), and switches between different UGWP schemes (\b knob_ugwp_solver)
0 -
knob_ugwp_doaxyz cires_ugwp_module parameter controls application of the momentum deposition for NGW-schemes \n +
knob_ugwp_doaxyz cires_ugwp parameter controls application of the momentum deposition for NGW-schemes \n
  • 0: the momentum tendencies due to NGWs are calculated, but tendencies do not change the horizontal winds
  • 1: default value; it changes the horizontal momentum tendencies and horizontal winds
1 -
knob_ugwp_doheat cires_ugwp_module parameter controls application of the heat deposition for NGW-schemes \n +
knob_ugwp_doheat cires_ugwp parameter controls application of the heat deposition for NGW-schemes \n
  • 0: the temperature tendencies due to NGWs are calculated but tendencies do not change the temperature state
  • 1: default value; it changes the temperature tendencies and kinetic temperature
1 -
knob_ugwp_dokdis cires_ugwp_module parameter controls application of the eddy diffusion due to instability of NGWs \n +
knob_ugwp_dokdis cires_ugwp parameter controls application of the eddy diffusion due to instability of NGWs \n
  • 0: the eddy diffusion tendencies due to NGWs are calculated but tendencies do not change the model state vector
  • 1: it computes eddy diffusion coefficient due to instability of NGWs; in UGWP v0, eddy viscosity, heat conductivity and tracer diffusion are not activated
0 -
knob_ugwp_solver cires_ugwp_module parameter controls the selection of UGWP-solvers(wave propagation, dissipation and wave breaking) for NGWs \n +
knob_ugwp_solver cires_ugwp parameter controls the selection of UGWP-solvers(wave propagation, dissipation and wave breaking) for NGWs \n
  • 1: represents the discrete multi-wave solver with background dissipation and linear wave saturation
  • 2: represents the spectral deterministic solver with background dissipation and spectral saturation @@ -522,28 +453,196 @@ and how stochastic perturbations are used in the Noah Land Surface Model.
  • 4: represents the spectral solver with background dissipation, extension of Doppler Spread Theory of Hines (1997)
1 -
knob_ugwp_ndx4lh cires_ugwp_module parameter controls the selection of the horizontal wavenumber(wavelength) for NGW schemes \n +
knob_ugwp_ndx4lh cires_ugwp parameter controls the selection of the horizontal wavenumber(wavelength) for NGW schemes \n
  • 1: selects the \f$4xdx\f$ sub-grid wavelength, where dx is the horizontal resolution of the model configuration (C96-400km; C768-52km)
2 -
knob_ugwp_wvspec cires_ugwp_module four-dimensional array defines number of waves in each arimuthal propagation (as defined by knob_ugwp_azdir) for GWs excited due to the following four sources: \n +
knob_ugwp_wvspec cires_ugwp four-dimensional array defines number of waves in each arimuthal propagation (as defined by knob_ugwp_azdir) for GWs excited due to the following four sources: \n (1) sub-grid orography (\b knob_ugwp_wvspec[1]=1), \n (2) convective (\b knob_ugwp_wvspec[2]=25), \n (3) frontal (\b knob_ugwp_wvspec[3]=25) activity, \n (4) \b knob_ugwp_wvspec[4] represents number of wave excited by dynamical imbalances that may mimic both convective and front-jet mechanisms of GW triggering. \n In UGWP v0, first two elements of the array, \b knob_ugwp_wvspec(1:2), control number of waves for stationary (OGW) and nonstationary waves (NGWs). 1,32,32,32 -
knob_ugwp_azdir cires_ugwp_module four-dimensional array that defines number of azimuths for propagation of GWs triggered by four types of physics-based sources (orography, convection, front-jets, and dynamical imbalance). In UGWP v0, first two elements of the array, \b knob_ugwp_azdir(1:2), control number of azimuths for OGW and NGWs respectively. +
knob_ugwp_azdir cires_ugwp four-dimensional array that defines number of azimuths for propagation of GWs triggered by four types of physics-based sources (orography, convection, front-jets, and dynamical imbalance). In UGWP v0, first two elements of the array, \b knob_ugwp_azdir(1:2), control number of azimuths for OGW and NGWs respectively. 2,4,4,4 -
knob_ugwp_stoch cires_ugwp_module four-dimensional array that control stochastic selection of GWs triggered by four types of physics-based sources. \n +
knob_ugwp_stoch cires_ugwp four-dimensional array that control stochastic selection of GWs triggered by four types of physics-based sources. \n Default values:0,0,0,0 - reflect determinstic selection of GW parameters without stochastic selection 0,0,0,0 -
knob_ugwp_effac cires_ugwp_module four-dimensional array that control efficiency of GWs triggerd by four types of physics-based sources. \n +
knob_ugwp_effac cires_ugwp four-dimensional array that control efficiency of GWs triggerd by four types of physics-based sources. \n Default values: 1.,1.,1.,1. - reflect that calculated GW-tendencies will be applied for the model state. 1.,1.,1.,1. -
launch_level cires_ugwp_module parameter has been introduced by EMC during implementation. It defines the interface model level from the surface at which NGWs are launched. \n +
launch_level cires_ugwp parameter has been introduced by EMC during implementation. It defines the interface model level from the surface at which NGWs are launched. \n Default value for FV3GFS-64L, launch_level=25 and for FV3GFS-128L, launch_level=52. 55 +
ldiag_ugwp cires_ugwp flag for CIRES UGWP diagnostics .false. +
do_ugwp cires_ugwp flag for CIRES UGWP revised OGW \n +
    +
  • .T.: revised gwdps_v0 +
  • .F.: GFS operational orographic gwdps +
+
.false.; The CIRES Unified Gravity Wave Physics (cires_ugwp) scheme is used in GFSv15p2 and GFSv16beta SDFs with do_ugwp=F in the namelist. In this setting, the cires_ugwp calls the operational GFS v15.2 orographic gravity wave drag (gwdps) scheme. When do_ugwp=.T., the cires_ugwp scheme calls an experimental orographic gravity wave (gwdps_v0) +
do_tofd cires_ugwp flag for turbulent orographic form drag .false. +
cnvgwd cires_ugwp flag for convective gravity wave drag scheme dependent on maxval(cdmbgwd(3:4) == 0.0) .false. +
cdmbgwd(4) cires_ugwp multiplication factors for mountain blocking(1), orographic gravity wave drag(2) +
    +
  • [1]: GWDPS mountain blocking +
  • [2]: GWDPS orographic gravity wave drag +
  • [3]: the modulation total momentum flux of NGWs by intensities of the total precipitation +
  • [4]: TKE for future tests and applications +
+
2.0,0.25,1.0,1.0 +
do_cnvgwd gwdc flag for convective GWD cnvgwd .and. maxval(cdmbgwd(3:4)) == 0.0 +
nmtvr cires_ugwp number of topographic variables such as variance etc used in the GWD parameterization-10 more added if GSL orographic drag scheme is used 14 +
cgwf cires_ugwp ,gwdc multiplication factor for convective GWD 0.5d0,0.05d0 +
do_gwd see \a GFS_typedefs.F90 flag for gravity wave drag maxval(cdmbgwd) > 0.0 +
gwd_opt drag_suite flag for GWD scheme \n +
    +
  • 1: original GFS GWD +
  • 3: GSL drag suite +
  • 33: GSL drag suite with extra output +
  • +
+
1 +
\b Parameters \b related \b to \b LSM \b options +
lsm see \a GFS_typedefs.F90 flag for land surface model to use \n +
    +
  • 1: Noah LSM +
  • 2: NoahMP LSM +
  • 3: RUC LSM +
+
1 +
lsoil lsm_noah number of soil layers 4 +
rdlai lsm_ruc flag to read leaf area index from input files .false. +
ivegsrc lsm_noah, lsm_ruc, \ref noahmpdrv, sfc_diff flag for vegetation type dataset choice: \n +
    +
  • 0: USGS +
  • 1: IGBP(20 category): IGBP must be selected if NoahMP is used +
  • 2: UMD (13 category) +
+
2 +
isot lsm_noah, lsm_ruc, \ref noahmpdrv flag for soil type dataset choice:\n +
    +
  • 0: Zobler soil type (9 category) +
  • 1: STATSGO soil type (19 category): STATSGO must be selected if NoahMP is used +
+
0 + +
iopt_dveg \ref noahmpdrv options for dynamic vegetation \n +
    +
  • 1: off (use table LAI; use FVEG = SHDFAC from input) +
  • 2: on (together with \a iopt_crs = 1) +
  • 3: off (use table LAI; calculate FVEG) +
  • 4: off (use table LAI; use maximum vegetation fraction) +
  • 5: on (use maximum vegetation fraction) +
  • 6: on (use FVEG = SHDFAC from input) +
  • 7: off (use input LAI; use FVEG = SHDFAC from input) +
  • 8: off (use input LAI; calculate FVEG) +
  • 9: off (use input LAI; use maximum vegetation fraction) +
+
4 +
iopt_crs \ref noahmpdrv options for canopy stomatal resistance \n +
    +
  • 1: Ball-Berry +
  • 2: Jarvis +
+
1 +
iopt_btr \ref noahmpdrv options for soil moisture factor for stomatal resistance \n +
    +
  • 1: Noah (soil moisture) +
  • 2: CLM (matric potential) +
  • 3: SSIB (matric potential) +
+
1 +
iopt_run \ref noahmpdrv options for runoff and groundwater \n +
    +
  • 1: TOPMODEL with groundwater (Niu et al. 2007 \cite niu_et_al_2007) +
  • 2: TOPMODEL with an equilibrium water table (Niu et al. 2005 \cite niu_et_al_2005) +
  • 3: original surface and subsurface runoff (free drainage) +
  • 4: bats surface and subsurface runoff (free drainage) +
  • 5: Miguez-macho&Fan groundwater scheme (Miguez-Macho et al. 2007 \cite miguez_et_al_2007; Fan et al. 2007 \cite fan_et_al_2007; needs further testing for public use) +
+
3 +
iopt_sfc \ref noahmpdrv options for surface layer drag coeff (CH&CM) \n +
    +
  • 1: m-o +
  • 2: original Noah (Chen et al. 1997 \cite chen_et_al_1997) +
+
1 +
iopt_frz \ref noahmpdrv options for supercooled liquid water (or ice fraction) \n +
    +
  • 1: no interation (Niu and Yang (2006) \cite niu_and_yang_2006 ) +
  • 2: Koren's iteration +
+
1 +
iopt_inf \ref noahmpdrv options for frozen soil permeability \n +
    +
  • 1: linear effects, more permeable (Niu and Yang (2006) \cite niu_and_yang_2006) +
  • 2: nonlinear effects, less permeable (old) +
+
1 +
iopt_rad \ref noahmpdrv options for radiation transfer \n +
    +
  • 1: modified two-stream (gap = f(solar angle, 3d structure ...)<1-fveg) +
  • 2: two-stream applied to grid-cell (gap = 0) +
  • 3: two-stream applied to vegetated fraction (gap=1-FVEG) +
+
3 +
iopt_alb \ref noahmpdrv options for ground snow surface albedo \n +
    +
  • 1: BATS +
  • 2: CLASS +
+
2 +
iopt_snf \ref noahmpdrv options for partitioning precipitation into rainfall and snowfall \n +
    +
  • 1: Jordan (1991) +
  • 2: BATS: when sfctmp < tfrz+2.2 +
  • 3: sfctmp < tfrz +
  • 4: use WRF microphysics output +
+
1 +
iopt_tbot \ref noahmpdrv options for lower boundary condition of soil temperature \n +
    +
  • 1: zero heat flux from bottom (zbot and tbot not used) +
  • 2: tbot at zbot (8m) read from a file (original Noah) +
+
2 +
iopt_stc \ref noahmpdrv options for snow/soil temperature time scheme (only layer 1) \n +
    +
  • 1: semi-implicit; flux top boundary condition +
  • 2: full implicit (original Noah); temperature top boundary condition +
  • 3: same as 1, but fsno for ts calculation (generally improve snow; v3.7) +
+
1 + +
nstf_name(5) sfc_nst NSST related paramters:\n +
    +
  • nstf_name(1): 0=NSST off, 1= NSST on but uncoupled, 2= NSST on and coupled +
  • nstf_name(2): 1=NSST spin up on, 0=NSST spin up off +
  • nstf_name(3): 1=NSST analysis on, 0=NSST analysis off +
  • nstf_name(4): zsea1 in mm +
  • nstf_name(5): zesa2 in mm +
+
/0,0,1,0,5/ +
\b Parameters \b related \b to \b other \b surface \b scheme \b options +
nst_anl GFS_phys_time_vary flag for NSST analysis in gcycle/sfcsub .false. +
frac_grid fractional grid flag for fractional grid .false. +
min_lakeice fractional grid minimum lake ice value 0.15d0 +
min_seaice fractional grid minimum sea ice value 1.0d-11 +
min_lake_height fractional grid minimum lake height value 250.0 +
sfc_z0_type sfc_diff surface roughness options over ocean \n +
    +
  • 0: no change +
  • 6: areodynamical roughness over water with input 10-m wind +
  • 7: slightly decrease Cd for higher wind speed compared to 6 +
  • negative when cplwav2atm=.true. - i.e. two way wave coupling +
+
0 +
redrag sfc_diff flag for applying reduced drag coefficient for high wind over sea in GFS surface layer scheme .false. +
lheatstrg GFS_surface_generic_post flag for canopy heat storage parameterization .false. +
z0fac GFS_surface_generic_post surface roughness fraction factor 0.3 +
e0fac GFS_surface_generic_post latent heat flux fraction factor relative to sensible heat flux,e.g., e0fac=0.5 indicates that canopy heat storage for latent heat flux is 50% of that for sensible heat flux 0.5
*/ diff --git a/physics/module_MYNNSFC_wrapper.F90 b/physics/module_MYNNSFC_wrapper.F90 index 496db7580..391a14d4c 100644 --- a/physics/module_MYNNSFC_wrapper.F90 +++ b/physics/module_MYNNSFC_wrapper.F90 @@ -17,7 +17,7 @@ end subroutine mynnsfc_wrapper_init subroutine mynnsfc_wrapper_finalize () end subroutine mynnsfc_wrapper_finalize -!>\defgroup gsd_mynn_sfc GSD MYNN Surface Layer Scheme Module +!>\defgroup mynn_sfc GSD MYNN Surface Layer Scheme Module !> \brief This scheme (1) performs pre-mynnsfc work, (2) runs the mynn sfc layer scheme, and (3) performs post-mynnsfc work !! \section arg_table_mynnsfc_wrapper_run Argument Table !! \htmlinclude mynnsfc_wrapper_run.html diff --git a/physics/module_SGSCloud_RadPre.F90 b/physics/module_SGSCloud_RadPre.F90 index 5a1a2744f..95dc93907 100644 --- a/physics/module_SGSCloud_RadPre.F90 +++ b/physics/module_SGSCloud_RadPre.F90 @@ -6,6 +6,7 @@ !! scale) qc, qi and cloud fraction coming from the microphysics scheme. !! 4) Recompute the diagnostic high, mid, low, total and bl clouds to be consistent with radiation +!> \defgroup sgsrad_group GSD sgscloud_radpre_run Module module sgscloud_radpre contains @@ -16,9 +17,7 @@ end subroutine sgscloud_radpre_init subroutine sgscloud_radpre_finalize () end subroutine sgscloud_radpre_finalize -!> \defgroup sgsrad_group GSD sgscloud_radpre_run Module -!> \ingroup sgscloud_radpre -!! This interstitial code adds the subgrid clouds to the resolved-scale clouds +!> This interstitial code adds the subgrid clouds to the resolved-scale clouds !! if there is no resolved-scale clouds in that particular grid box. It can also !! specify a cloud fraction for resolved-scale clouds, using Xu-Randall (1996), !! if desired. diff --git a/physics/module_gfdl_cloud_microphys.F90 b/physics/module_gfdl_cloud_microphys.F90 index 5750d27fd..da332728f 100644 --- a/physics/module_gfdl_cloud_microphys.F90 +++ b/physics/module_gfdl_cloud_microphys.F90 @@ -1,6 +1,6 @@ !> \file gfdl_cloud_microphys.F90 !! This file contains the full GFDL cloud microphysics (Chen and Lin (2013) -!! \cite chen_and_lin_2013 and Zhou et al. 2019 \cite zhou2019toward). +!! \cite chen_and_lin_2013 and Zhou et al. 2019 \cite zhou_etal_2019). !! The module is paired with 'gfdl_fv_sat_adj', which performs the "fast" !! processes !>author Shian-Jiann Lin, Linjiong Zhou diff --git a/physics/module_sf_mynn.F90 b/physics/module_sf_mynn.F90 index 94b118521..94f26fda8 100644 --- a/physics/module_sf_mynn.F90 +++ b/physics/module_sf_mynn.F90 @@ -2,7 +2,7 @@ !! This file contains !WRF:MODEL_LAYER:PHYSICS ! -!>\ingroup gsd_mynn_sfc +!>\ingroup mynn_sfc !>\defgroup module_sf_mynn_mod GSD MYNN SFC Module MODULE module_sf_mynn @@ -122,13 +122,12 @@ MODULE module_sf_mynn CONTAINS !------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !> Fill the PSIM and PSIH tables. The subroutine "psi_init" was leveraged from !! module_sf_sfclayrev.F, leveraging the work from Pedro Jimenez. !! This subroutine returns a blended form from Dyer and Hicks (1974) !! and Grachev et al (2000) for unstable conditions and the form !! from Cheng and Brutsaert (2005) for stable conditions. - SUBROUTINE mynn_sf_init_driver(allowed_to_read) LOGICAL, INTENT(in) :: allowed_to_read @@ -138,7 +137,7 @@ SUBROUTINE mynn_sf_init_driver(allowed_to_read) END SUBROUTINE mynn_sf_init_driver !------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !! This subroutine SUBROUTINE SFCLAY_mynn( & U3D,V3D,T3D,QV3D,P3D,dz8w, & !in @@ -495,7 +494,7 @@ SUBROUTINE SFCLAY_mynn( & END SUBROUTINE SFCLAY_MYNN !------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !! This subroutine calculates u*, z/L, and the exchange coefficients !! which are passed to subsequent scheme to calculate the fluxes. !! This scheme has options to calculate the fluxes and near-surface @@ -2138,7 +2137,7 @@ SUBROUTINE SFCLAY1D_mynn( & END SUBROUTINE SFCLAY1D_mynn !------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !> This subroutine returns the thermal and moisture roughness lengths !! from Zilitinkevich (1995) and Zilitinkevich et al. (2001) over !! land and water, respectively. @@ -2210,6 +2209,7 @@ SUBROUTINE zilitinkevich_1995(Z_0,Zt,Zq,restar,ustar,KARMAN,& END SUBROUTINE zilitinkevich_1995 !-------------------------------------------------------------------- +!>\ingroup mynn_sfc SUBROUTINE davis_etal_2008(Z_0,ustar) !a.k.a. : Donelan et al. (2004) @@ -2240,7 +2240,7 @@ SUBROUTINE davis_etal_2008(Z_0,ustar) END SUBROUTINE davis_etal_2008 !-------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !>This formulation for roughness length was designed account for. !!wave steepness. SUBROUTINE Taylor_Yelland_2001(Z_0,ustar,wsp10) @@ -2266,7 +2266,7 @@ SUBROUTINE Taylor_Yelland_2001(Z_0,ustar,wsp10) END SUBROUTINE Taylor_Yelland_2001 !-------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !>This version of Charnock's relation employs a varying !! Charnock parameter, similar to COARE3.0 [Fairall et al. (2003)]. !! The Charnock parameter CZC is varied from .011 to .018. @@ -2291,7 +2291,7 @@ SUBROUTINE charnock_1955(Z_0,ustar,wsp10,visc,zu) END SUBROUTINE charnock_1955 !-------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !> This version of Charnock's relation employs a varying !!Charnock parameter, taken from COARE 3.5 [Edson et al. (2001, JPO)]. !!The Charnock parameter CZC is varied from about .005 to .028 @@ -2319,7 +2319,7 @@ SUBROUTINE edson_etal_2013(Z_0,ustar,wsp10,visc,zu) END SUBROUTINE edson_etal_2013 !-------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !> This formulation for the thermal and moisture roughness lengths !! (Zt and Zq) relates them to Z0 via the roughness Reynolds number (Ren). !!This formula comes from Fairall et al. (2003). It is modified from @@ -2352,7 +2352,7 @@ SUBROUTINE garratt_1992(Zt,Zq,Z_0,Ren,landsea) END SUBROUTINE garratt_1992 !-------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !>This formulation for thermal and moisture roughness length (Zt and Zq) !! as a function of the roughness Reynolds number (Ren) comes from the !! COARE3.0 formulation, empirically derived from COARE and HEXMAX data @@ -2400,7 +2400,7 @@ SUBROUTINE fairall_etal_2003(Zt,Zq,Ren,ustar,visc,rstoch,spp_pbl) END SUBROUTINE fairall_etal_2003 !-------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !> This formulation for thermal and moisture roughness length (Zt and Zq) !! as a function of the roughness Reynolds number (Ren) comes from the !! COARE 3.5/4.0 formulation, empirically derived from COARE and HEXMAX data @@ -2429,7 +2429,7 @@ SUBROUTINE fairall_etal_2014(Zt,Zq,Ren,ustar,visc,rstoch,spp_pbl) END SUBROUTINE fairall_etal_2014 !-------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !> This is a modified version of Yang et al (2002 QJRMS, 2008 JAMC) !! and Chen et al (2010, J of Hydromet). Although it was originally !! designed for arid regions with bare soil, it is modified @@ -2487,6 +2487,7 @@ SUBROUTINE Yang_2008(Z_0,Zt,Zq,ustar,tstar,qst,Ren,visc) END SUBROUTINE Yang_2008 !-------------------------------------------------------------------- ! Taken from the GFS (sfc_diff.f) for comparison +!>\ingroup mynn_sfc SUBROUTINE GFS_z0_lnd(z0max,shdmax,z1,vegtype,ivegsrc,z0pert) REAL, INTENT(OUT) :: z0max @@ -2546,6 +2547,7 @@ SUBROUTINE GFS_z0_lnd(z0max,shdmax,z1,vegtype,ivegsrc,z0pert) END SUBROUTINE GFS_z0_lnd !-------------------------------------------------------------------- ! Taken from the GFS (sfc_diff.f) for comparison +!>\ingroup mynn_sfc SUBROUTINE GFS_zt_lnd(ztmax,z0max,sigmaf,ztpert,ustar_lnd) REAL, INTENT(OUT) :: ztmax @@ -2573,6 +2575,7 @@ SUBROUTINE GFS_zt_lnd(ztmax,z0max,sigmaf,ztpert,ustar_lnd) END SUBROUTINE GFS_zt_lnd !-------------------------------------------------------------------- +!>\ingroup mynn_sfc SUBROUTINE GFS_z0_ocn(z0rl_ocn,ustar_ocn,WSPD,z1,sfc_z0_type,redrag) REAL, INTENT(OUT) :: z0rl_ocn @@ -2625,6 +2628,7 @@ SUBROUTINE GFS_z0_ocn(z0rl_ocn,ustar_ocn,WSPD,z1,sfc_z0_type,redrag) END SUBROUTINE GFS_z0_ocn !-------------------------------------------------------------------- +!>\ingroup mynn_sfc SUBROUTINE GFS_zt_ocn(ztmax,z0rl_ocn,restar,WSPD,z1,sfc_z0_type) REAL, INTENT(OUT) :: ztmax @@ -2667,9 +2671,9 @@ SUBROUTINE GFS_zt_ocn(ztmax,z0rl_ocn,restar,WSPD,z1,sfc_z0_type) END SUBROUTINE GFS_zt_ocn !-------------------------------------------------------------------- +!>\ingroup mynn_sfc !! add fitted z0,zt curves for hurricane application (used in HWRF/HMON) !! Weiguo Wang, 2019-0425 - SUBROUTINE znot_m_v6(uref, znotm) use machine , only : kind_phys IMPLICIT NONE @@ -2716,6 +2720,7 @@ SUBROUTINE znot_m_v6(uref, znotm) END SUBROUTINE znot_m_v6 !-------------------------------------------------------------------- +!>\ingroup mynn_sfc SUBROUTINE znot_t_v6(uref, znott) IMPLICIT NONE @@ -2780,7 +2785,7 @@ SUBROUTINE znot_t_v6(uref, znott) END SUBROUTINE znot_t_v6 !------------------------------------------------------------------- - +!>\ingroup mynn_sfc SUBROUTINE znot_m_v7(uref, znotm) IMPLICIT NONE @@ -2828,6 +2833,7 @@ SUBROUTINE znot_m_v7(uref, znotm) END SUBROUTINE znot_m_v7 !-------------------------------------------------------------------- +!>\ingroup mynn_sfc SUBROUTINE znot_t_v7(uref, znott) IMPLICIT NONE @@ -2894,7 +2900,7 @@ SUBROUTINE znot_t_v7(uref, znott) END SUBROUTINE znot_t_v7 !-------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !> This is taken from Andreas (2002; J. of Hydromet) and !! Andreas et al. (2005; BLM). !! @@ -2945,7 +2951,7 @@ SUBROUTINE Andreas_2002(Z_0,bvisc,ustar,Zt,Zq) END SUBROUTINE Andreas_2002 !-------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !> This subroutine returns the stability functions based off !! of Hogstrom (1996). SUBROUTINE PSI_Hogstrom_1996(psi_m, psi_h, zL, Zt, Z_0, Za) @@ -2981,7 +2987,7 @@ SUBROUTINE PSI_Hogstrom_1996(psi_m, psi_h, zL, Zt, Z_0, Za) END SUBROUTINE PSI_Hogstrom_1996 !-------------------------------------------------------------------- -!> \ingroup module_sf_mynn_mod +!> \ingroup mynn_sfc !> This subroutine returns the stability functions based off !! of Hogstrom (1996), but with different constants compatible !! with Dyer and Hicks (1970/74?). This formulation is used for @@ -3020,7 +3026,7 @@ SUBROUTINE PSI_DyerHicks(psi_m, psi_h, zL, Zt, Z_0, Za) END SUBROUTINE PSI_DyerHicks !-------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !> This subroutine returns the stability functions based off !! of Beljaar and Holtslag 1991, which is an extension of Holtslag !! and Debruin 1989. @@ -3051,7 +3057,7 @@ SUBROUTINE PSI_Beljaars_Holtslag_1991(psi_m, psi_h, zL) END SUBROUTINE PSI_Beljaars_Holtslag_1991 !-------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !> This subroutine returns the stability functions come from !! Zilitinkevich and Esau (2007, BM), which are formulatioed from the !! "generalized similarity theory" and tuned to the LES DATABASE64 @@ -3082,7 +3088,7 @@ SUBROUTINE PSI_Zilitinkevich_Esau_2007(psi_m, psi_h, zL) END SUBROUTINE PSI_Zilitinkevich_Esau_2007 !-------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !> This subroutine returns the flux-profile relationships !! of Businger el al. 1971. SUBROUTINE PSI_Businger_1971(psi_m, psi_h, zL) @@ -3114,7 +3120,7 @@ SUBROUTINE PSI_Businger_1971(psi_m, psi_h, zL) END SUBROUTINE PSI_Businger_1971 !-------------------------------------------------------------------- -!>\ingroup module_sf_mynn_mod +!>\ingroup mynn_sfc !> This subroutine returns flux-profile relatioships based off !!of Lobocki (1993), which is derived from the MY-level 2 model. !!Suselj and Sood (2010) applied the surface layer length scales @@ -3147,12 +3153,12 @@ SUBROUTINE PSI_Suselj_Sood_2010(psi_m, psi_h, zL) END SUBROUTINE PSI_Suselj_Sood_2010 !-------------------------------------------------------------------- +!>\ingroup mynn_sfc +!! This subroutine returns the stability functions based off +!! of Cheng and Brutseart (2005, BLM), for use in stable conditions only. +!! The returned values are the combination of psi((za+zo)/L) - psi(z0/L) SUBROUTINE PSI_CB2005(psim1,psih1,zL,z0L) - ! This subroutine returns the stability functions based off - ! of Cheng and Brutseart (2005, BLM), for use in stable conditions only. - ! The returned values are the combination of psi((za+zo)/L) - psi(z0/L) - IMPLICIT NONE REAL, INTENT(IN) :: zL,z0L REAL, INTENT(OUT) :: psim1,psih1 @@ -3166,12 +3172,12 @@ SUBROUTINE PSI_CB2005(psim1,psih1,zL,z0L) END SUBROUTINE PSI_CB2005 !-------------------------------------------------------------------- +!>\ingroup mynn_sfc +!! This subroutine returns a more robust z/L that best matches +!! the z/L from Hogstrom (1996) for unstable conditions and Beljaars +!! and Holtslag (1991) for stable conditions. SUBROUTINE Li_etal_2010(zL, Rib, zaz0, z0zt) - !This subroutine returns a more robust z/L that best matches - !the z/L from Hogstrom (1996) for unstable conditions and Beljaars - !and Holtslag (1991) for stable conditions. - IMPLICIT NONE REAL, INTENT(OUT) :: zL REAL, INTENT(IN) :: Rib, zaz0, z0zt @@ -3227,14 +3233,14 @@ SUBROUTINE Li_etal_2010(zL, Rib, zaz0, z0zt) END SUBROUTINE Li_etal_2010 !------------------------------------------------------------------- +!>\ingroup mynn_sfc +!! This iterative algorithm was taken from the revised sufacelayer +!! scheme in WRF-ARW, written by Pedro Jimenez and Jimy Dudhia and +!! summarized in Jimenez et al. (2012, MWR). This function was adapted +!! to input the thermal roughness length, zt, (as well as z0) because +!! zt is necessary input for the Dyer-Hicks functions used in MYNN. REAL function zolri(ri,za,z0,zt,zol1) - ! This iterative algorithm was taken from the revised surface layer - ! scheme in WRF-ARW, written by Pedro Jimenez and Jimy Dudhia and - ! summarized in Jimenez et al. (2012, MWR). This function was adapted - ! to input the thermal roughness length, zt, (as well as z0) because - ! zt is necessary input for the Dyer-Hicks functions used in MYNN. - IMPLICIT NONE REAL, INTENT(IN) :: ri,za,z0,zt,zol1 REAL :: x1,x2,fx1,fx2 @@ -3281,6 +3287,7 @@ REAL function zolri(ri,za,z0,zt,zol1) return end function !------------------------------------------------------------------- +!>\ingroup mynn_sfc REAL function zolri2(zol2,ri2,za,z0,zt) ! INPUT: ================================= @@ -3322,6 +3329,7 @@ REAL function zolri2(zol2,ri2,za,z0,zt) return end function !==================================================================== +!>\ingroup mynn_sfc SUBROUTINE psi_init INTEGER :: N @@ -3342,7 +3350,8 @@ SUBROUTINE psi_init END SUBROUTINE psi_init ! ================================================================== ! ... integrated similarity functions ... -! +! +!>\ingroup mynn_sfc REAL function psim_stable_full(zolf) REAL :: zolf @@ -3352,6 +3361,7 @@ REAL function psim_stable_full(zolf) return end function +!>\ingroup mynn_sfc REAL function psih_stable_full(zolf) REAL :: zolf @@ -3361,6 +3371,7 @@ REAL function psih_stable_full(zolf) return end function +!>\ingroup mynn_sfc REAL function psim_unstable_full(zolf) REAL :: zolf,x,ym,psimc,psimk @@ -3377,6 +3388,7 @@ REAL function psim_unstable_full(zolf) return end function +!>\ingroup mynn_sfc REAL function psih_unstable_full(zolf) REAL :: zolf,y,yh,psihc,psihk @@ -3395,6 +3407,7 @@ REAL function psih_unstable_full(zolf) !================================================================= ! look-up table functions !================================================================= +!>\ingroup mynn_sfc REAL function psim_stable(zolf) integer :: nzol real :: rzol,zolf @@ -3410,6 +3423,7 @@ REAL function psim_stable(zolf) return end function +!>\ingroup mynn_sfc REAL function psih_stable(zolf) integer :: nzol real :: rzol,zolf @@ -3425,6 +3439,7 @@ REAL function psih_stable(zolf) return end function +!>\ingroup mynn_sfc REAL function psim_unstable(zolf) integer :: nzol real :: rzol,zolf @@ -3440,6 +3455,7 @@ REAL function psim_unstable(zolf) return end function +!>\ingroup mynn_sfc REAL function psih_unstable(zolf) integer :: nzol real :: rzol,zolf diff --git a/physics/module_sf_noahmplsm.f90 b/physics/module_sf_noahmplsm.f90 index f6d742d3d..7efd2b4e8 100644 --- a/physics/module_sf_noahmplsm.f90 +++ b/physics/module_sf_noahmplsm.f90 @@ -2,6 +2,7 @@ !! This file contains the NoahMP land surface model. !>\ingroup NoahMP_LSM +!! module module_sf_noahmplsm #ifndef CCPP use module_wrf_utl @@ -71,23 +72,23 @@ module module_sf_noahmplsm ! =====================================options for different schemes================================ ! **recommended - integer :: dveg ! options for dynamic vegetation: + integer :: dveg !< options for dynamic vegetation: ! 1 -> off (use table lai; use fveg = shdfac from input) ! 2 -> on (together with opt_crs = 1) ! 3 -> off (use table lai; calculate fveg) ! **4 -> off (use table lai; use maximum vegetation fraction) ! **5 -> on (use maximum vegetation fraction) - integer :: opt_crs ! options for canopy stomatal resistance + integer :: opt_crs !< options for canopy stomatal resistance ! **1 -> ball-berry ! 2 -> jarvis - integer :: opt_btr ! options for soil moisture factor for stomatal resistance + integer :: opt_btr !< options for soil moisture factor for stomatal resistance ! **1 -> noah (soil moisture) ! 2 -> clm (matric potential) ! 3 -> ssib (matric potential) - integer :: opt_run ! options for runoff and groundwater + integer :: opt_run !< options for runoff and groundwater ! **1 -> topmodel with groundwater (niu et al. 2007 jgr) ; ! 2 -> topmodel with an equilibrium water table (niu et al. 2005 jgr) ; ! 3 -> original surface and subsurface runoff (free drainage) @@ -95,39 +96,39 @@ module module_sf_noahmplsm ! 5 -> miguez-macho&fan groundwater scheme (miguez-macho et al. 2007 jgr; fan et al. 2007 jgr) ! (needs further testing for public use) - integer :: opt_sfc ! options for surface layer drag coeff (ch & cm) + integer :: opt_sfc !< options for surface layer drag coeff (ch & cm) ! **1 -> m-o ! **2 -> original noah (chen97) ! **3 -> myj consistent; 4->ysu consistent. mb: removed in v3.7 for further testing - integer :: opt_frz ! options for supercooled liquid water (or ice fraction) + integer :: opt_frz !< options for supercooled liquid water (or ice fraction) ! **1 -> no iteration (niu and yang, 2006 jhm) ! 2 -> koren's iteration - integer :: opt_inf ! options for frozen soil permeability + integer :: opt_inf !< options for frozen soil permeability ! **1 -> linear effects, more permeable (niu and yang, 2006, jhm) ! 2 -> nonlinear effects, less permeable (old) - integer :: opt_rad ! options for radiation transfer + integer :: opt_rad !< options for radiation transfer ! 1 -> modified two-stream (gap = f(solar angle, 3d structure ...)<1-fveg) ! 2 -> two-stream applied to grid-cell (gap = 0) ! **3 -> two-stream applied to vegetated fraction (gap=1-fveg) - integer :: opt_alb ! options for ground snow surface albedo + integer :: opt_alb !< options for ground snow surface albedo ! 1 -> bats ! **2 -> class - integer :: opt_snf ! options for partitioning precipitation into rainfall & snowfall + integer :: opt_snf !< options for partitioning precipitation into rainfall & snowfall ! **1 -> jordan (1991) ! 2 -> bats: when sfctmp sfctmp < tfrz ! 4 -> use wrf microphysics output - integer :: opt_tbot ! options for lower boundary condition of soil temperature + integer :: opt_tbot !< options for lower boundary condition of soil temperature ! 1 -> zero heat flux from bottom (zbot and tbot not used) ! **2 -> tbot at zbot (8m) read from a file (original noah) - integer :: opt_stc ! options for snow/soil temperature time scheme (only layer 1) + integer :: opt_stc !< options for snow/soil temperature time scheme (only layer 1) ! **1 -> semi-implicit; flux top boundary condition ! 2 -> full implicit (original noah); temperature top boundary condition ! 3 -> same as 1, but fsno for ts calculation (generally improves snow; v3.7) @@ -136,23 +137,23 @@ module module_sf_noahmplsm ! physical constants: ! !------------------------------------------------------------------------------------------! - real, parameter :: grav = 9.80616 !acceleration due to gravity (m/s2) - real, parameter :: sb = 5.67e-08 !stefan-boltzmann constant (w/m2/k4) - real, parameter :: vkc = 0.40 !von karman constant - real, parameter :: tfrz = 273.16 !freezing/melting point (k) - real, parameter :: hsub = 2.8440e06 !latent heat of sublimation (j/kg) - real, parameter :: hvap = 2.5104e06 !latent heat of vaporization (j/kg) - real, parameter :: hfus = 0.3336e06 !latent heat of fusion (j/kg) - real, parameter :: cwat = 4.188e06 !specific heat capacity of water (j/m3/k) - real, parameter :: cice = 2.094e06 !specific heat capacity of ice (j/m3/k) - real, parameter :: cpair = 1004.64 !heat capacity dry air at const pres (j/kg/k) - real, parameter :: tkwat = 0.6 !thermal conductivity of water (w/m/k) - real, parameter :: tkice = 2.2 !thermal conductivity of ice (w/m/k) - real, parameter :: tkair = 0.023 !thermal conductivity of air (w/m/k) (not used mb: 20140718) - real, parameter :: rair = 287.04 !gas constant for dry air (j/kg/k) - real, parameter :: rw = 461.269 !gas constant for water vapor (j/kg/k) - real, parameter :: denh2o = 1000. !density of water (kg/m3) - real, parameter :: denice = 917. !density of ice (kg/m3) + real, parameter :: grav = 9.80616 !< acceleration due to gravity (m/s2) + real, parameter :: sb = 5.67e-08 !< stefan-boltzmann constant (w/m2/k4) + real, parameter :: vkc = 0.40 !< von karman constant + real, parameter :: tfrz = 273.16 !< freezing/melting point (k) + real, parameter :: hsub = 2.8440e06 !< latent heat of sublimation (j/kg) + real, parameter :: hvap = 2.5104e06 !< latent heat of vaporization (j/kg) + real, parameter :: hfus = 0.3336e06 !< latent heat of fusion (j/kg) + real, parameter :: cwat = 4.188e06 !< specific heat capacity of water (j/m3/k) + real, parameter :: cice = 2.094e06 !< specific heat capacity of ice (j/m3/k) + real, parameter :: cpair = 1004.64 !< heat capacity dry air at const pres (j/kg/k) + real, parameter :: tkwat = 0.6 !< thermal conductivity of water (w/m/k) + real, parameter :: tkice = 2.2 !< thermal conductivity of ice (w/m/k) + real, parameter :: tkair = 0.023 !< thermal conductivity of air (w/m/k) (not used mb: 20140718) + real, parameter :: rair = 287.04 !< gas constant for dry air (j/kg/k) + real, parameter :: rw = 461.269 !< gas constant for water vapor (j/kg/k) + real, parameter :: denh2o = 1000. !< density of water (kg/m3) + real, parameter :: denice = 917. !< density of ice (kg/m3) integer, private, parameter :: mband = 2 @@ -168,21 +169,21 @@ module module_sf_noahmplsm integer :: isice integer :: eblforest - real :: ch2op !maximum intercepted h2o per unit lai+sai (mm) - real :: dleaf !characteristic leaf dimension (m) - real :: z0mvt !momentum roughness length (m) - real :: hvt !top of canopy (m) - real :: hvb !bottom of canopy (m) - real :: den !tree density (no. of trunks per m2) - real :: rc !tree crown radius (m) - real :: mfsno !snowmelt m parameter () - real :: saim(12) !monthly stem area index, one-sided - real :: laim(12) !monthly leaf area index, one-sided - real :: sla !single-side leaf area per kg [m2/kg] - real :: dilefc !coeficient for leaf stress death [1/s] - real :: dilefw !coeficient for leaf stress death [1/s] - real :: fragr !fraction of growth respiration !original was 0.3 - real :: ltovrc !leaf turnover [1/s] + real :: ch2op !< maximum intercepted h2o per unit lai+sai (mm) + real :: dleaf !< characteristic leaf dimension (m) + real :: z0mvt !< momentum roughness length (m) + real :: hvt !< top of canopy (m) + real :: hvb !< bottom of canopy (m) + real :: den !< tree density (no. of trunks per m2) + real :: rc !< tree crown radius (m) + real :: mfsno !< snowmelt m parameter () + real :: saim(12) !< monthly stem area index, one-sided + real :: laim(12) !< monthly leaf area index, one-sided + real :: sla !< single-side leaf area per kg [m2/kg] + real :: dilefc !< coeficient for leaf stress death [1/s] + real :: dilefw !< coeficient for leaf stress death [1/s] + real :: fragr !< fraction of growth respiration !original was 0.3 + real :: ltovrc !< leaf turnover [1/s] real :: c3psn !photosynthetic pathway: 0. = c4, 1. = c3 real :: kc25 !co2 michaelis-menten constant at 25c (pa) @@ -754,6 +755,7 @@ end subroutine noahmp_sflx !== begin atm ====================================================================================== !>\ingroup NoahMP_LSM +!> re-process atmospheric forcing subroutine atm (parameters,sfcprs ,sfctmp ,q2 , & prcpconv,prcpnonc ,prcpshcv,prcpsnow,prcpgrpl,prcphail , & soldn ,cosz ,thair ,qair , & @@ -901,6 +903,7 @@ end subroutine atm !== begin phenology ================================================================================ !>\ingroup NoahMP_LSM +!> vegetation phenology considering vegeation canopy being buries by snow and evolution in time subroutine phenology (parameters,vegtyp , snowh , tv , lat , yearlen , julian , & !in lai , sai , troot , elai , esai , igs) @@ -1001,6 +1004,7 @@ end subroutine phenology !== begin precip_heat ============================================================================== !>\ingroup NoahMP_LSM +!> subroutine precip_heat (parameters,iloc ,jloc ,vegtyp ,dt ,uu ,vv , & !in elai ,esai ,fveg ,ist , & !in bdfall ,rain ,snow ,fp , & !in @@ -1231,6 +1235,7 @@ end subroutine precip_heat !== begin error ==================================================================================== !>\ingroup NoahMP_LSM +!> check surface energy balance and water balance subroutine error (parameters,swdown ,fsa ,fsr ,fira ,fsh ,fcev , & fgev ,fctr ,ssoil ,beg_wb ,canliq ,canice , & sneqv ,wa ,smc ,dzsnso ,prcp ,ecan , & @@ -1425,6 +1430,12 @@ end subroutine error !== begin energy =================================================================================== !>\ingroup NoahMP_LSM +!> we use different approaches to deal with subgrid features of radiation transfer and turbulent +!! transfer. we use 'tile' approach to compute turbulent fluxes, while we use modified two- +!! stream to compute radiation transfer. tile approach, assemblying vegetation canopies together, +!! may expose too much ground surfaces (either covered by snow or grass) to solar radiation. the +!! modified two-stream assumes vegetation covers fully the gridcell but with gaps between tree +!! crowns. subroutine energy (parameters,ice ,vegtyp ,ist ,nsnow ,nsoil , & !in isnow ,dt ,rhoair ,sfcprs ,qair , & !in sfctmp ,thair ,lwdn ,uu ,vv ,zref , & !in @@ -6917,14 +6928,14 @@ subroutine soilwater (parameters,nsoil ,nsnow ,dt ,zsoil ,dzsnso , & !in runsrf ,qdrain ,runsub ,wcnd ,fcrmax ) !out ! ---------------------------------------------------------------------- -! calculate surface runoff and soil moisture. +!> calculate surface runoff and soil moisture. ! ---------------------------------------------------------------------- ! ---------------------------------------------------------------------- implicit none ! ---------------------------------------------------------------------- ! input type (noahmp_parameters), intent(in) :: parameters - integer, intent(in) :: iloc !grid index + integer, intent(in) :: iloc !< grid index integer, intent(in) :: jloc !grid index integer, intent(in) :: nsoil !no. of soil layers integer, intent(in) :: nsnow !maximum no. of snow layers @@ -7173,22 +7184,22 @@ end subroutine soilwater !>\ingroup NoahMP_LSM subroutine zwteq (parameters,nsoil ,nsnow ,zsoil ,dzsnso ,sh2o ,zwt) ! ---------------------------------------------------------------------- -! calculate equilibrium water table depth (niu et al., 2005) +!> calculate equilibrium water table depth (niu et al., 2005 \cite niu_et_al_2005) ! ---------------------------------------------------------------------- implicit none ! ---------------------------------------------------------------------- ! input type (noahmp_parameters), intent(in) :: parameters - integer, intent(in) :: nsoil !no. of soil layers - integer, intent(in) :: nsnow !maximum no. of snow layers - real, dimension(1:nsoil), intent(in) :: zsoil !depth of soil layer-bottom [m] - real, dimension(-nsnow+1:nsoil), intent(in) :: dzsnso !snow/soil layer depth [m] - real, dimension(1:nsoil), intent(in) :: sh2o !soil liquid water content [m3/m3] + integer, intent(in) :: nsoil !< no. of soil layers + integer, intent(in) :: nsnow !< maximum no. of snow layers + real, dimension(1:nsoil), intent(in) :: zsoil !< depth of soil layer-bottom [m] + real, dimension(-nsnow+1:nsoil), intent(in) :: dzsnso !< snow/soil layer depth [m] + real, dimension(1:nsoil), intent(in) :: sh2o !< soil liquid water content [m3/m3] ! output - real, intent(out) :: zwt !water table depth [m] + real, intent(out) :: zwt !< water table depth [m] ! locals @@ -7232,7 +7243,7 @@ subroutine infil (parameters,nsoil ,dt ,zsoil ,sh2o ,sice , & !in sicemax,qinsur , & !in pddum ,runsrf ) !out ! -------------------------------------------------------------------------------- -! compute inflitration rate at soil surface and surface runoff +!> compute inflitration rate at soil surface and surface runoff ! -------------------------------------------------------------------------------- implicit none ! -------------------------------------------------------------------------------- @@ -7335,9 +7346,9 @@ subroutine srt (parameters,nsoil ,zsoil ,dt ,pddum ,etrani , & !in rhstt ,ai ,bi ,ci ,qdrain , & !out wcnd ) !out ! ---------------------------------------------------------------------- -! calculate the right hand side of the time tendency term of the soil -! water diffusion equation. also to compute ( prepare ) the matrix -! coefficients for the tri-diagonal matrix of the implicit time scheme. +!> calculate the right hand side of the time tendency term of the soil +!! water diffusion equation. also to compute ( prepare ) the matrix +!! coefficients for the tri-diagonal matrix of the implicit time scheme. ! ---------------------------------------------------------------------- implicit none ! ---------------------------------------------------------------------- @@ -7470,7 +7481,7 @@ subroutine sstep (parameters,nsoil ,nsnow ,dt ,zsoil ,dzsnso , & !in wplus ) !out ! ---------------------------------------------------------------------- -! calculate/update soil moisture content values +!> calculate/update soil moisture content values ! ---------------------------------------------------------------------- implicit none ! ---------------------------------------------------------------------- @@ -7577,7 +7588,7 @@ end subroutine sstep !>\ingroup NoahMP_LSM subroutine wdfcnd1 (parameters,wdf,wcnd,smc,fcr) ! ---------------------------------------------------------------------- -! calculate soil water diffusivity and soil hydraulic conductivity. +!> calculate soil water diffusivity and soil hydraulic conductivity. ! ---------------------------------------------------------------------- implicit none ! ---------------------------------------------------------------------- @@ -7616,7 +7627,7 @@ end subroutine wdfcnd1 !>\ingroup NoahMP_LSM subroutine wdfcnd2 (parameters,wdf,wcnd,smc,sice) ! ---------------------------------------------------------------------- -! calculate soil water diffusivity and soil hydraulic conductivity. +!> calculate soil water diffusivity and soil hydraulic conductivity. ! ---------------------------------------------------------------------- implicit none ! ---------------------------------------------------------------------- @@ -7844,6 +7855,8 @@ end subroutine groundwater !== begin shallowwatertable ======================================================================== !>\ingroup NoahMP_LSM +!>diagnoses water table depth and computes recharge when the water table is within the resolved soil layers, +!!according to the miguez-macho&fan scheme subroutine shallowwatertable (parameters,nsnow ,nsoil ,zsoil, dt , & !in dzsnso ,smceq ,iloc ,jloc , & !in smc ,wtd ,smcwtd ,rech, qdrain ) !inout @@ -8107,7 +8120,7 @@ subroutine co2flux (parameters,nsnow ,nsoil ,vegtyp ,igs ,dt , & !in gpp ,npp ,nee ,autors ,heters , & !out totsc ,totlb ) !out ! ----------------------------------------------------------------------------------------- -! the original code is from re dickinson et al.(1998), modifed by guo-yue niu, 2004 +!> the original code is from re dickinson et al.(1998), modifed by guo-yue niu, 2004 ! ----------------------------------------------------------------------------------------- implicit none ! ----------------------------------------------------------------------------------------- @@ -8472,20 +8485,20 @@ subroutine noahmp_options(idveg ,iopt_crs ,iopt_btr ,iopt_run ,iopt_sfc implicit none - integer, intent(in) :: idveg !dynamic vegetation (1 -> off ; 2 -> on) with opt_crs = 1 - integer, intent(in) :: iopt_crs !canopy stomatal resistance (1-> ball-berry; 2->jarvis) - integer, intent(in) :: iopt_btr !soil moisture factor for stomatal resistance (1-> noah; 2-> clm; 3-> ssib) - integer, intent(in) :: iopt_run !runoff and groundwater (1->simgm; 2->simtop; 3->schaake96; 4->bats) - integer, intent(in) :: iopt_sfc !surface layer drag coeff (ch & cm) (1->m-o; 2->chen97) - integer, intent(in) :: iopt_frz !supercooled liquid water (1-> ny06; 2->koren99) - integer, intent(in) :: iopt_inf !frozen soil permeability (1-> ny06; 2->koren99) - integer, intent(in) :: iopt_rad !radiation transfer (1->gap=f(3d,cosz); 2->gap=0; 3->gap=1-fveg) - integer, intent(in) :: iopt_alb !snow surface albedo (1->bats; 2->class) - integer, intent(in) :: iopt_snf !rainfall & snowfall (1-jordan91; 2->bats; 3->noah) - integer, intent(in) :: iopt_tbot !lower boundary of soil temperature (1->zero-flux; 2->noah) - - integer, intent(in) :: iopt_stc !snow/soil temperature time scheme (only layer 1) - ! 1 -> semi-implicit; 2 -> full implicit (original noah) + integer, intent(in) :: idveg !< dynamic vegetation (1 -> off ; 2 -> on) with opt_crs = 1 + integer, intent(in) :: iopt_crs !< canopy stomatal resistance (1-> ball-berry; 2->jarvis) + integer, intent(in) :: iopt_btr !< soil moisture factor for stomatal resistance (1-> noah; 2-> clm; 3-> ssib) + integer, intent(in) :: iopt_run !< runoff and groundwater (1->simgm; 2->simtop; 3->schaake96; 4->bats) + integer, intent(in) :: iopt_sfc !< surface layer drag coeff (ch & cm) (1->m-o; 2->chen97) + integer, intent(in) :: iopt_frz !< supercooled liquid water (1-> ny06; 2->koren99) + integer, intent(in) :: iopt_inf !< frozen soil permeability (1-> ny06; 2->koren99) + integer, intent(in) :: iopt_rad !< radiation transfer (1->gap=f(3d,cosz); 2->gap=0; 3->gap=1-fveg) + integer, intent(in) :: iopt_alb !< snow surface albedo (1->bats; 2->class) + integer, intent(in) :: iopt_snf !< rainfall & snowfall (1-jordan91; 2->bats; 3->noah) + integer, intent(in) :: iopt_tbot !< lower boundary of soil temperature (1->zero-flux; 2->noah) + + integer, intent(in) :: iopt_stc ! semi-implicit; 2 -> full implicit (original noah) ! ------------------------------------------------------------------------------------------------- diff --git a/physics/radiation_aerosols.f b/physics/radiation_aerosols.f index f732c37ef..bd2cfd52d 100644 --- a/physics/radiation_aerosols.f +++ b/physics/radiation_aerosols.f @@ -127,7 +127,6 @@ !> \ingroup rad !! \defgroup module_radiation_aerosols module_radiation_aerosols -!> @{ !! This module contains climatological atmospheric aerosol schemes for !! radiation computations. !! @@ -766,8 +765,6 @@ end subroutine wrt_aerlog !> This subroutine defines the one wavenumber solar fluxes based on toa !! solar spectral distribution, and define the one wavenumber IR fluxes !! based on black-body emission distribution at a predefined temperature. -!>\section gel_set_spec General Algorithm -!-------------------------------- subroutine set_spectrum !................................ ! --- inputs: (module constants) @@ -915,7 +912,6 @@ end subroutine aer_init !! !!\section gen_clim_aerinit General Algorithm !!@{ -!----------------------------------- subroutine clim_aerinit & & ( solfwv, eirfwv, me & ! --- inputs & ) ! --- outputs @@ -4525,4 +4521,3 @@ end subroutine aer_property_gocart !..........................................! end module module_radiation_aerosols ! !==========================================! -!> @} diff --git a/physics/radiation_clouds.f b/physics/radiation_clouds.f index f6d7e32cb..c4d67759e 100644 --- a/physics/radiation_clouds.f +++ b/physics/radiation_clouds.f @@ -3071,7 +3071,7 @@ end subroutine progclduni !> \param mtop (IX,3),vertical indices for low, mid, hi cloud tops !> \param mbot (IX,3),vertical indices for low, mid, hi cloud bases !! -!>\section detail Detailed Algorithm +!>\section detail_gethml Detailed Algorithm !! @{ subroutine gethml & & ( plyr, ptop1, cldtot, cldcnv, dz, de_lgth, & ! --- inputs: @@ -3512,7 +3512,7 @@ end subroutine get_alpha_dcorr !> : 1 = latitude and day of year varying value (AER; Oreopoulos, et al., 2012) !> /param decorr_con : decorrelation length constant !! -!>\section detail Detailed Algorithm +!>\section detail_get_alpha_exp Detailed Algorithm !! @{ subroutine get_alpha_exp(nlon, nlay, dzlay, iovrlp, latdeg, & & juldat, yearlen, cldf, alpha) diff --git a/physics/rrtmg_lw_post.F90 b/physics/rrtmg_lw_post.F90 index af83c5cc7..f6a7ac70d 100644 --- a/physics/rrtmg_lw_post.F90 +++ b/physics/rrtmg_lw_post.F90 @@ -1,10 +1,10 @@ -!>\file rrtmg_lw_post +!>\file rrtmg_lw_post.F90 !!This file contains + +!>\defgroup rrtmg_lw_post_mod GFS RRTMG Scheme Post module rrtmg_lw_post contains -!>\defgroup rrtmg_lw_post GFS RRTMG scheme post -!! @{ !> \section arg_table_rrtmg_lw_post_init Argument Table !! subroutine rrtmg_lw_post_init() @@ -83,5 +83,4 @@ end subroutine rrtmg_lw_post_run subroutine rrtmg_lw_post_finalize () end subroutine rrtmg_lw_post_finalize -!! @} end module rrtmg_lw_post diff --git a/physics/rrtmg_lw_pre.F90 b/physics/rrtmg_lw_pre.F90 index 7de02eed1..5ce91ddcd 100644 --- a/physics/rrtmg_lw_pre.F90 +++ b/physics/rrtmg_lw_pre.F90 @@ -1,11 +1,11 @@ !>\file rrtmg_lw_pre.f90 !! This file contains a call to module_radiation_surface::setemis() to !! setup surface emissivity for LW radiation. + +!>\defgroup rrtmg_lw_pre_mod GFS RRTMG scheme pre module rrtmg_lw_pre contains -!>\defgroup rrtmg_lw_pre GFS RRTMG scheme pre -!! @{ !> \section arg_table_rrtmg_lw_pre_init Argument Table !! subroutine rrtmg_lw_pre_init () @@ -53,5 +53,5 @@ end subroutine rrtmg_lw_pre_run !! subroutine rrtmg_lw_pre_finalize () end subroutine rrtmg_lw_pre_finalize -!! @} + end module rrtmg_lw_pre diff --git a/physics/rrtmg_sw_post.F90 b/physics/rrtmg_sw_post.F90 index b0ab31129..ad6b92bad 100644 --- a/physics/rrtmg_sw_post.F90 +++ b/physics/rrtmg_sw_post.F90 @@ -1,10 +1,10 @@ -!>\file rrtmg_sw_post +!>\file rrtmg_sw_post.F90 !! This file contains + +!>\defgroup rrtmg_sw_post GFS RRTMG Scheme Post module rrtmg_sw_post contains -!>\defgroup rrtmg_sw_post GFS RRTMG scheme post -!! @{ !> \section arg_table_rrtmg_sw_post_init Argument Table !! subroutine rrtmg_sw_post_init () @@ -130,5 +130,5 @@ end subroutine rrtmg_sw_post_run !! subroutine rrtmg_sw_post_finalize () end subroutine rrtmg_sw_post_finalize -!! @} + end module rrtmg_sw_post diff --git a/physics/rrtmg_sw_pre.F90 b/physics/rrtmg_sw_pre.F90 index 05e8d4c7b..f428dd4b2 100644 --- a/physics/rrtmg_sw_pre.F90 +++ b/physics/rrtmg_sw_pre.F90 @@ -1,11 +1,11 @@ !>\file rrtmg_sw_pre.f90 !! This file contains a subroutine to module_radiation_surface::setalb() to !! setup surface albedo for SW radiation. + +!>\defgroup rrtmg_sw_pre_mod GFS RRTMG scheme Pre module rrtmg_sw_pre contains -!>\defgroup rrtmg_sw_pre GFS RRTMG scheme Pre -!! @{ !> \section arg_table_rrtmg_sw_pre_init Argument Table !! subroutine rrtmg_sw_pre_init () @@ -97,5 +97,4 @@ end subroutine rrtmg_sw_pre_run subroutine rrtmg_sw_pre_finalize () end subroutine rrtmg_sw_pre_finalize -!! @} end module rrtmg_sw_pre diff --git a/physics/satmedmfvdifq.F b/physics/satmedmfvdifq.F index 63a67c810..f980e704e 100644 --- a/physics/satmedmfvdifq.F +++ b/physics/satmedmfvdifq.F @@ -3,11 +3,7 @@ !! computes subgrid vertical turbulence mixing using scale-aware TKE-based moist !! eddy-diffusion mass-flux (TKE-EDMF) parameterization (by Jongil Han). - module satmedmfvdifq - - contains - -!> \defgroup satmedmfvdifq GFS Scale-aware TKE-based Moist Eddy-Diffusivity Mass-flux (TKE-EDMF, updated version) Scheme Module +!> \defgroup mod_satmedmfvdifq GFS Scale-aware TKE-based Moist Eddy-Diffusivity Mass-flux (TKE-EDMF, updated version) Scheme Module !! @{ !! \brief This subroutine contains all of the logic for the !! scale-aware TKE-based moist eddy-diffusion mass-flux (TKE-EDMF, updated version) scheme. @@ -15,6 +11,10 @@ module satmedmfvdifq !! Updated version of satmedmfvdif.f (May 2019) to have better low level !! inversion, to reduce the cold bias in lower troposphere, !! and to reduce the negative wind speed bias in upper troposphere + module satmedmfvdifq + + contains + !> \section arg_table_satmedmfvdifq_init Argument Table !! \htmlinclude satmedmfvdifq_init.html diff --git a/physics/sfc_noahmp_drv.f b/physics/sfc_noahmp_drv.f index bdba632bf..966f1bdec 100644 --- a/physics/sfc_noahmp_drv.f +++ b/physics/sfc_noahmp_drv.f @@ -1,7 +1,7 @@ !> \file sfc_noahmp_drv.f !! This file contains the NoahMP land surface scheme driver. -!>\defgroup NoahMP_LSM NoahMP LSM Model +!>\defgroup NoahMP_LSM GFS NoahMP LSM Model !! \brief This is the NoahMP LSM driver module, with the functionality of !! preparing variables to run the NoahMP LSM subroutine noahmp_sflx(), calling NoahMP LSM and post-processing !! variables for return to the parent model suite including unit conversion, as well @@ -68,12 +68,8 @@ end subroutine noahmpdrv_finalize !! - Call penman() to calculate potential evaporation. !! - Calculate the surface specific humidity and convert surface sensible and latent heat fluxes in W m-2 from their kinematic values. !! - If a "guess" run, restore the land-related prognostic fields. -! ! -!----------------------------------- subroutine noahmpdrv_run & -!................................... -! --- inputs: - & ( im, km, itime, ps, u1, v1, t1, q1, soiltyp, vegtype, & + & ( im, km, itime, ps, u1, v1, t1, q1, soiltyp, vegtype, & !--- inputs & sigmaf, sfcemis, dlwflx, dswsfc, snet, delt, tg3, cm, ch, & & prsl1, prslki, zf, dry, wind, slopetyp, & & shdmin, shdmax, snoalb, sfalb, flag_iter, flag_guess, & @@ -83,21 +79,14 @@ subroutine noahmpdrv_run & & rainn_mp, rainc_mp, snow_mp, graupel_mp, ice_mp, & & con_hvap, con_cp, con_jcal, rhoh2o, con_eps, con_epsm1, & & con_fvirt, con_rd, con_hfus, & - -! --- in/outs: - & weasd, snwdph, tskin, tprcp, srflag, smc, stc, slc, & + & weasd, snwdph, tskin, tprcp, srflag, smc, stc, slc, & !--- in/outs & canopy, trans, tsurf, zorl, & - -! --- Noah MP specific - - & snowxy, tvxy, tgxy, canicexy, canliqxy, eahxy, tahxy, cmxy,& + & snowxy, tvxy, tgxy, canicexy, canliqxy, eahxy, tahxy, cmxy,& !--- Noah MP specific & chxy, fwetxy, sneqvoxy, alboldxy, qsnowxy, wslakexy, zwtxy,& & waxy, wtxy, tsnoxy, zsnsoxy, snicexy, snliqxy, lfmassxy, & & rtmassxy, stmassxy, woodxy, stblcpxy, fastcpxy, xlaixy, & & xsaixy, taussxy, smoiseq, smcwtdxy, deeprechxy, rechxy, & - -! --- outputs: - & sncovr1, qsurf, gflux, drain, evap, hflx, ep, runoff, & + & sncovr1, qsurf, gflux, drain, evap, hflx, ep, runoff, & !--- outputs & cmm, chh, evbs, evcw, sbsno, snowc, stm, snohf, & & smcwlt2, smcref2, wet1, t2mmp, q2mp, errmsg, errflg) ! diff --git a/physics/sfcsub.F b/physics/sfcsub.F index a2d846aee..4995c0453 100644 --- a/physics/sfcsub.F +++ b/physics/sfcsub.F @@ -41,23 +41,6 @@ end module sfccyc_module !>\ingroup mod_GFS_phys_time_vary !! This subroutine reads or interpolates surface climatology data in analysis !! and forecast mode. -!!\param lugb the unit number used in this subprogram -!!\param len number of points on which sfccyc operates -!!\param lsoil number of soil layers -!!\param sig1t sigma level 1 temperature for dead start. it should be on gaussian -!! grid. If not dead start, no need for dimension but set to zero as -!! in the example below. -!!\param deltsfc = fhcyc, frequcy for surface data cycling in hours -!!\param iy,im,id,ih year, month, day, and hour of initial state -!!\param fh forecast hour -!!\param rla, rlo latitude and longitudes of the len points -!!\param slmsk -!!\param orog -!!\param orog_uf -!!\param use_ufo -!!\param nst_anl -!! - subroutine sfccycle(lugb,len,lsoil,sig1t,deltsfc & &, iy,im,id,ih,fh & &, rla, rlo, slmask,orog,orog_uf,use_ufo,nst_anl &