diff --git a/assimilation_code/modules/assimilation/assim_tools_mod.f90 b/assimilation_code/modules/assimilation/assim_tools_mod.f90 index cf389236e9..d1b6e2bbfc 100644 --- a/assimilation_code/modules/assimilation/assim_tools_mod.f90 +++ b/assimilation_code/modules/assimilation/assim_tools_mod.f90 @@ -1610,8 +1610,6 @@ subroutine obs_increment_rank_histogram(ens, ens_size, prior_var, & obs, obs_var, obs_inc) !------------------------------------------------------------------------ ! -! Revised 14 November 2008 -! ! Does observation space update by approximating the prior distribution by ! a rank histogram. Prior and posterior are assumed to have 1/(n+1) probability ! mass between each ensemble member. The tails are assumed to be gaussian with @@ -1637,9 +1635,6 @@ subroutine obs_increment_rank_histogram(ens, ens_size, prior_var, & ! and new ensemble members are located so that 1/(n+1) of the mass is between ! each member and on the tails. -! This code is still under development. Please contact Jeff Anderson at -! jla@ucar.edu if you are interested in trying it. - integer, intent(in) :: ens_size real(r8), intent(in) :: ens(ens_size), prior_var, obs, obs_var real(r8), intent(out) :: obs_inc(ens_size) @@ -1698,8 +1693,6 @@ subroutine obs_increment_rank_histogram(ens, ens_size, prior_var, & new_mean_left = var_ratio * (left_mean + prior_var*obs / obs_var) ! REMEMBER, this product has an associated weight which must be taken into account ! See Anderson and Anderson for this weight term (or tutorial kernel filter) - ! NOTE: The constant term has been left off the likelihood so we don't have - ! to divide by sqrt(2 PI) in this expression prod_weight_left = exp(-0.5_r8 * (left_mean**2 / prior_var + & obs**2 / obs_var - new_mean_left**2 / new_var_left)) / & sqrt(prior_var + obs_var) / sqrt(2.0_r8 * PI) @@ -1711,8 +1704,6 @@ subroutine obs_increment_rank_histogram(ens, ens_size, prior_var, & new_var_right = var_ratio * prior_var new_sd_right = sqrt(new_var_right) new_mean_right = var_ratio * (right_mean + prior_var*obs / obs_var) - ! NOTE: The constant term has been left off the likelihood so we don't have - ! to divide by sqrt(2 PI) in this expression prod_weight_right = exp(-0.5_r8 * (right_mean**2 / prior_var + & obs**2 / obs_var - new_mean_right**2 / new_var_right)) / & sqrt(prior_var + obs_var) / sqrt(2.0_r8 * PI)