-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·454 lines (306 loc) · 12.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
import config
from ext import pickle_save, pickle_load
from simu import prop_circuits
from torch import tensor, Tensor, cat, stack
from torch import zeros, ones, eye, randn
from torch import sigmoid, tanh, relu, softmax
from torch import pow, log, sqrt, norm
from torch import float32, no_grad
from torch.nn.init import xavier_normal_
from collections import namedtuple
from math import sqrt as psqrt
##
# FF = namedtuple('FF', 'w b')
FF1 = namedtuple('FF1', 'w')
FF2 = namedtuple('FF2', 'w')
#LSTM = namedtuple('LSTM', 'wf bf wk bk wi bi ws bs')
LSTM = namedtuple('LSTM', 'wf wk wi ws')
#GRU = namedtuple('GRU', 'wk bk wa ba wi bi')
GRU = namedtuple('GRU', 'wk wa wi')
IRNN = namedtuple('IRNN', 'wo bo ws bs')
def make_Llayer(in_size, layer_size):
layer = LSTM(
randn(in_size+layer_size, layer_size, requires_grad=True, dtype=float32),
#zeros(1, layer_size, requires_grad=True, dtype=float32),
randn(in_size+layer_size, layer_size, requires_grad=True, dtype=float32),
#zeros(1, layer_size, requires_grad=True, dtype=float32),
randn(in_size+layer_size, layer_size, requires_grad=True, dtype=float32),
#zeros(1, layer_size, requires_grad=True, dtype=float32),
randn(in_size+layer_size, layer_size, requires_grad=True, dtype=float32),
#zeros(1, layer_size, requires_grad=True, dtype=float32),
)
with no_grad():
for k,v in layer._asdict().items():
if k == 'bf':
v += config.forget_bias
# layer.bf += config.forget_bias
if config.init_xavier:
xavier_normal_(layer.wf)
xavier_normal_(layer.wk)
xavier_normal_(layer.ws)
xavier_normal_(layer.wi, gain=5/3)
return layer
def make_Glayer(in_size, layer_size):
layer = GRU(
randn(in_size+layer_size, layer_size, requires_grad=True, dtype=float32),
#zeros(1, layer_size, requires_grad=True, dtype=float32),
randn(in_size+layer_size, layer_size, requires_grad=True, dtype=float32),
#zeros(1, layer_size, requires_grad=True, dtype=float32),
randn(in_size+layer_size, layer_size, requires_grad=True, dtype=float32),
#zeros(1, layer_size, requires_grad=True, dtype=float32),
)
if config.init_xavier:
xavier_normal_(layer.wk)
xavier_normal_(layer.wa)
xavier_normal_(layer.wi, gain=5/3)
return layer
def make_Ilayer(in_size, layer_size):
wo = randn(in_size+layer_size, layer_size, requires_grad=True, dtype=float32)
ws = randn(in_size+layer_size, layer_size, requires_grad=True, dtype=float32)
if config.init_xavier:
xavier_normal_(wo, gain=psqrt(2))
xavier_normal_(ws, gain=psqrt(2))
with no_grad():
wo[-layer_size:,:] = eye(layer_size, layer_size, requires_grad=True, dtype=float32)
ws[-layer_size:,:] = eye(layer_size, layer_size, requires_grad=True, dtype=float32)
layer = IRNN(
wo,
zeros(1, layer_size, requires_grad=True, dtype=float32),
ws,
zeros(1, layer_size, requires_grad=True, dtype=float32),
)
return layer
def make_Flayer1(in_size, layer_size):
layer = FF1(
randn(in_size, layer_size, requires_grad=True, dtype=float32),
# zeros(1, layer_size, requires_grad=True, dtype=float32),
)
return layer
def make_Flayer2(in_size, layer_size):
layer = FF2(
randn(in_size, layer_size, requires_grad=True, dtype=float32),
# zeros(1, layer_size, requires_grad=True, dtype=float32),
)
if config.init_xavier:
xavier_normal_(layer.w, gain=5/3)
return layer
make_layer = {
'l': make_Llayer,
'g': make_Glayer,
'i': make_Ilayer,
'f1': make_Flayer1,
'f2': make_Flayer2,
}
def prop_Llayer(layer, state, input):
layer_size = layer.wf.size(1)
prev_out = state[:,:layer_size]
state = state[:,layer_size:]
inp = cat([input,prev_out],dim=1)
forget = sigmoid(inp@layer.wf)# + layer.bf)
keep = sigmoid(inp@layer.wk)# + layer.bk)
interm = tanh (inp@layer.wi)# + layer.bi)
show = sigmoid(inp@layer.ws)# + layer.bs)
state = forget*state + keep*interm
out = show*tanh(state)
return out, cat([out,state],dim=1)
def prop_Llayer2(layer, state, input):
inp = cat([input,state],dim=1)
forget = sigmoid(inp@layer.wf + layer.bf)
keep = sigmoid(inp@layer.wk + layer.bk)
interm = tanh (inp@layer.wi + layer.bi)
show = sigmoid(inp @ layer.ws + layer.bs)
state = forget*state + keep*interm
# inp = cat([input,state],dim=1)
out = show*tanh(state)
return out, state
def prop_Glayer(layer, state, input):
inp = cat([input,state],dim=1)
keep = sigmoid(inp@layer.wk)# + layer.bk)
attend = sigmoid(inp@layer.wa)# + layer.ba)
interm = tanh(cat([input,attend*state],dim=1)@layer.wi)# + layer.bi)
state = keep*interm + (1-keep)*state
out = state
return out, state
def prop_Ilayer(layer, state, input):
inp = cat([input,state],dim=1)
out = relu(inp@layer.wo + layer.bo)
state = relu(inp@layer.ws + layer.bs)
return out, state
def prop_Flayer1(layer, inp):
return softmax(inp@layer.w, dim=1) # + layer.b)
def prop_Flayer2(layer, inp):
return tanh(inp @ layer.w)
prop_layer = {
LSTM: prop_Llayer2,
GRU: prop_Glayer,
IRNN: prop_Ilayer,
FF1: prop_Flayer1,
FF2: prop_Flayer2,
}
def make_model(info=None):
if not info: info = config.creation_info
layer_sizes = [e for e in info if type(e)==int]
layer_types = [e for e in info if type(e)==str]
return [make_layer[layer_type](layer_sizes[i], layer_sizes[i+1]) for i,layer_type in enumerate(layer_types)]
def prop_model_nocircuit(model, states, inp):
new_states = []
out = inp
state_ctr = 0
for layer in model:
if type(layer) != FF1 and type(layer) != FF2:
out, state = prop_layer[type(layer)](layer, states[state_ctr], out)
new_states.append(state)
state_ctr += 1
else:
out = prop_layer[type(layer)](layer, out)
# dropout(out, inplace=True)
return out, new_states
def prop_model(model, states, inp):
out, new_states = prop_model_nocircuit(model, states, inp)
if not config.act_classical_rnn:
out = prop_circuits(out, inp)
return out, new_states
def respond_to(model, sequence, states=None): # , wave_state=None):
if not states:
states = empty_states(model)
# if not wave_state:
# wave_state = zeros(1, statevec_size)
response = []
teach = int(config.hm_bars_grouped/config.hm_bars_teacher * len(sequence))
for timestep in sequence[:teach]:
out, states = prop_model(model,states,timestep) # cat([timestep,wave_state],1)) # wave_state = out.view(1,out.size(0)).float()
response.append(out)
for _ in sequence[teach:]:
out, states = prop_model(model,states,out[:config.timestep_size])
response.append(out)
return response, states
def sequence_loss(label, output, do_stack=True):
if do_stack:
label = stack(label,dim=0)
output = stack(output,dim=0)
if config.loss_squared:
loss = pow(label-output,2).sum()
else:
loss = (label-output).abs().sum()
return loss
def sgd(model, lr=None, batch_size=None):
if not lr: lr = config.learning_rate
if not batch_size: batch_size = config.batch_size
with no_grad():
for layer in model:
for param in layer._asdict().values():
if param.requires_grad:
param.grad /=batch_size
if config.gradient_clip:
param.grad.clamp(min=-config.gradient_clip,max=config.gradient_clip)
param -= lr * param.grad
param.grad = None
##
moments, variances = [], []
def adaptive_sgd(model, epoch_nr, lr=None, batch_size=None,
alpha_moment=0.9,alpha_variance=0.999,epsilon=1e-8,
grad_scaling=False):
if not lr: lr = config.learning_rate
if not batch_size: batch_size = config.batch_size
global moments, variances
if not (moments and variances):
for layer in model:
moments.append([zeros(weight.size()) for weight in layer._asdict().values()])
variances.append([zeros(weight.size()) for weight in layer._asdict().values()])
with no_grad():
for _, layer in enumerate(model):
for __, weight in enumerate(getattr(layer,field) for field in layer._fields):
if weight.requires_grad:
lr_ = lr
weight.grad /= batch_size
#print(list(layer._fields)[__],weight.grad)
if moments:
moments[_][__] = alpha_moment * moments[_][__] + (1-alpha_moment) * weight.grad
moment_hat = moments[_][__] / (1-alpha_moment**(epoch_nr+1))
if variances:
variances[_][__] = alpha_variance * variances[_][__] + (1-alpha_variance) * weight.grad**2
variance_hat = variances[_][__] / (1-alpha_variance**(epoch_nr+1))
if grad_scaling:
lr_ *= norm(weight)/norm(weight.grad)
weight -= lr_ * (moment_hat if moments else weight.grad) / ((sqrt(variance_hat)+epsilon) if variances else 1)
weight.grad = None
##
def empty_states(model, batch_size=1):
states = []
for layer in model:
if type(layer) != FF1 and type(layer) != FF2:
state = zeros(batch_size, getattr(layer,layer._fields[0]).size(1))
# if type(layer) == LSTM: # only for regular prop (prop2 is better.)
# state = cat([state]*2,dim=1)
states.append(state)
return states
##
def load_model(path=None, fresh_meta=None, py_serialize=True):
if not path: path = config.model_load_path
if not fresh_meta: fresh_meta = config.fresh_meta
obj = pickle_load(path+'.pk')
if obj:
model, meta = obj
if py_serialize:
model = [type(layer)(*[tensor(getattr(layer,field),requires_grad=True) for field in layer._fields]) for layer in model]
global moments, variances
if fresh_meta:
moments, variances = [], []
else:
moments, variances = meta
if py_serialize:
moments = [[tensor(e) for e in ee] for ee in moments]
variances = [[tensor(e) for e in ee] for ee in variances]
return model
def save_model(model, path=None, py_serialize=True):
if not path: path = config.model_save_path
if py_serialize:
model = [type(layer)(*[getattr(layer,field).detach().numpy() for field in layer._fields]) for layer in model]
meta = [[[e.detach().numpy() for e in ee] for ee in moments],[[e.detach().numpy() for e in ee] for ee in variances]]
else:
meta = [moments,variances]
pickle_save([model,meta],path+'.pk')
def describe_model(model):
return f'{config.in_size} ' + ' '.join(str(type(layer)) + " " + str(getattr(layer, layer._fields[0]).size(1)) for layer in model)
def combine_models(model1, model2, model1_nograd=True):
if model1_nograd:
for layer in model1:
for k,v in layer._asdict().items():
v.requires_grad = False
return model1 + model2
##
def collect_grads(model):
grads = [zeros(param.size()) for layer in model for param in layer._asdict().values()]
ctr = -1
for layer in model:
for field in layer._fields:
ctr += 1
param = getattr(layer,field)
if param.requires_grad:
grads[ctr] += param.grad
param.grad = None
return grads
def give_grads(model, grads):
ctr = -1
for layer in model:
for field in layer._fields:
ctr += 1
param = getattr(layer,field)
if param.grad:
param.grad += grads[ctr]
else: param.grad = grads[ctr]
##
from torch.nn import Module, Parameter
class Convert2TorchModel(Module):
def __init__(self, model):
super(Convert2TorchModel, self).__init__()
for i,layer in enumerate(model):
converted = [Parameter(getattr(layer,field)) for field in layer._fields]
for field, value in zip(layer._fields, converted):
setattr(self,f'layer{i}_{field}',value)
setattr(self,f'type{i}',type(layer))
model[i] = (getattr(self, f'type{layer}'))(converted)
def forward(self, states, inp):
model = [(getattr(self,f'type{layer}'))(getattr(self,param) for param in dir(self) if f'layer{layer}' in param)
for layer in range(len(states))]
prop_model(model, states, inp)