-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval_samples.py
483 lines (422 loc) · 25.9 KB
/
eval_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import argparse
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from sklearn.impute import SimpleImputer
from sklearn.metrics import roc_auc_score
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
from xgboost import XGBClassifier
from evaluate.nn_classifier import FCN, RNN, nnTimeSeriesClassifier
from evaluate.privacy import MIR, NNAA
from evaluate.utility import (TRTR, TRTS, TSRTR, TSTR, TSTR_TRTR,
DiscriminativeScore, PredictiveScore,
TrajectoryVisualizer, TSRTR_Imbalance, tSNE,
tSNE_Analysis)
from helpers.utils import (create_id, flatten_time_dim_if_3d,
get_label_from_2d, get_random_indices,
impute_nan_with_neg_one, impute_nan_with_zero,
is_file_not_on_disk, is_file_on_disk,
is_positive_float, is_positive_integer,
normalize_data, seed_everything, smart_load,
smart_to_numpy, standardize, standardize_data,
timeseries_median_window)
COLUMNS_DICT = {
"mimiciv": {"numerical": [0, 2, 4, 6, 8], "categorical": [1, 3, 5, 7, 9, 10], "categorical_num_classes": [2, 2, 2, 2, 2, 2]},
"mimiciii": {"numerical": [0, 2, 4, 6, 8, 10, 12], "categorical": [1, 3, 5, 7, 9, 11, 13, 14], "categorical_num_classes": [2, 2, 2, 2, 2, 2, 2, 2]},
"eicu": {"numerical": [0, 2, 4, 6], "categorical": [1, 3, 5, 7, 8], "categorical_num_classes": [2, 2, 2, 2, 2]},
}
def parse_arguments():
prs = argparse.ArgumentParser(
prog='eval_samples.py',
description='Evaluate synthetic samples using various metrics',
epilog='Copyright (C) 2023',
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
prs.add_argument(
"--data_name", type=str, required=True,
help="name of the dataset",
)
prs.add_argument(
"--t_sne_num", type=int, default=2000,
help="number of samples to use for t-sne",
)
prs.add_argument(
"--perplexity", type=int, default=30,
help="perplexity for t-sne",
)
prs.add_argument(
"--predictive_iter", type=int, default=5000,
help="number of iterations for predictive score",
)
prs.add_argument(
"--discriminative_iter", type=int, default=2000,
help="number of iterations for discriminative score",
)
prs.add_argument(
"--discri_pred_scaler", type=str, default="standardize",
help="how to preprocess data to train discriminator and predictor",
)
prs.add_argument(
"--sync_path", type=str, required=True,
help="path to load synthetic data"
)
prs.add_argument(
"--train_path", type=is_file_on_disk, required=True,
help="path to load real training data"
)
prs.add_argument(
"--test_path", type=is_file_on_disk, required=True,
help="path to load real test data"
)
prs.add_argument(
"--metric", type=str, required=True,
help="metric to evaluate synthetic data"
),
prs.add_argument(
"--project_name", type=str, default="Tony-results",
help="Project name for wandb"
)
prs.add_argument(
"--entity", type=str, default='gen-ehr',
help="entity for wandb"
)
prs.add_argument(
"--runs", type=int, default=10,
help="whether to evaluate over 10 runs"
)
prs.add_argument(
"--img_name", type=str, default="t-sne.png",
help="name of the image to save",
)
prs.add_argument(
"--seed", type=is_positive_integer, default=2023,
)
prs.add_argument(
"--scoring_metric", type=str, choices=["auprc", "auc"], default="auc",
)
prs.add_argument(
"--mir_threshold", type=is_positive_float, default=0.1,
)
prs.add_argument(
"--privacy_with_real", action="store_true",
help="whether to use real data to evaluate privacy",
)
prs.add_argument(
"--mir_model_name", type=str, default=None,
help="model name for MIR score",
)
args = prs.parse_args()
return args
def reverse_to_nonan_indicator_2d(cum_nonan_indicator):
nonan_indicator = np.concatenate([cum_nonan_indicator[:, :1], cum_nonan_indicator[:, 1:] - cum_nonan_indicator[:, :-1]], axis=1)
return nonan_indicator
def regular_transform_to_features(samples, data_name="eicu"):
assert isinstance(samples, np.ndarray), "samples must be a numpy array"
if data_name == "eicu":
unmasked_samples = np.zeros((samples.shape[0], 5, samples.shape[2]))
for i in range(0, 7, 2):
nan_indicator = np.round(samples[:,i+1,:])
data = np.where(nan_indicator == 1, np.nan, samples[:,i,:])
unmasked_samples[:, int(i/2), :] = data
unmasked_samples[:, 4, :] = np.round(samples[:, -1, :]) # label channel
elif data_name == "mimiciii":
unmasked_samples = np.zeros((samples.shape[0], 8, samples.shape[2]))
for i in range(0, 14, 2):
nan_indicator = np.round(samples[:,i+1,:])
data = np.where(nan_indicator == 1, np.nan, samples[:,i,:])
unmasked_samples[:, int(i/2), :] = data
unmasked_samples[:, 7, :] = np.round(samples[:, -1, :]) # label channel
elif data_name == "mimiciv":
unmasked_samples = np.zeros((samples.shape[0], 6, samples.shape[2]))
for i in range(0, 10, 2):
nan_indicator = np.round(samples[:,i+1,:])
data = np.where(nan_indicator == 1, np.nan, samples[:,i,:])
unmasked_samples[:, int(i/2), :] = data
unmasked_samples[:, 5, :] = np.round(samples[:, -1, :]) # label channel
elif data_name == "hirid":
unmasked_samples = samples # no missing values for hirid so no need to do anything
elif data_name == "eicu_ONEHOT":
unmasked_samples = np.zeros((samples.shape[0], 5, samples.shape[2]))
numerical_idx = 0
for i in range(len(COLUMNS_DICT["eicu"]["numerical"]), samples.shape[1] - 2, 2):
nan_indicator_onehot = torch.tensor(samples[:, [i, i+1], :])
nan_indicator_onehot = F.softmax(nan_indicator_onehot, dim=1)
nan_indicator = torch.argmax(nan_indicator_onehot, dim=1)
nan_indicator = nan_indicator.numpy()
data = np.where(nan_indicator == 1, np.nan, samples[:, numerical_idx, :])
unmasked_samples[:, numerical_idx, :] = data
numerical_idx += 1
mortality_indicator_onehot = samples[:, [-2, -1], :]
mortality_indicator_onehot = F.softmax(torch.tensor(mortality_indicator_onehot), dim=1)
mortality_indicator = torch.argmax(mortality_indicator_onehot, dim=1).numpy()
unmasked_samples[:, 4, :] = mortality_indicator
elif data_name == "mimiciii_ONEHOT":
unmasked_samples = np.zeros((samples.shape[0], 8, samples.shape[2]))
numerical_idx = 0
for i in range(len(COLUMNS_DICT["mimiciii"]["numerical"]), samples.shape[1] - 2, 2):
nan_indicator_onehot = torch.tensor(samples[:, [i, i+1], :])
nan_indicator_onehot = F.softmax(nan_indicator_onehot, dim=1)
nan_indicator = torch.argmax(nan_indicator_onehot, dim=1)
nan_indicator = nan_indicator.numpy()
data = np.where(nan_indicator == 1, np.nan, samples[:, numerical_idx, :])
unmasked_samples[:, numerical_idx, :] = data
numerical_idx += 1
mortality_indicator_onehot = samples[:, [-2, -1], :]
mortality_indicator_onehot = F.softmax(torch.tensor(mortality_indicator_onehot), dim=1)
mortality_indicator = torch.argmax(mortality_indicator_onehot, dim=1).numpy()
unmasked_samples[:, 7, :] = mortality_indicator
elif data_name == "mimiciv_ONEHOT":
unmasked_samples = np.zeros((samples.shape[0], 6, samples.shape[2]))
numerical_idx = 0
for i in range(len(COLUMNS_DICT["mimiciv"]["numerical"]), samples.shape[1] - 2, 2):
nan_indicator_onehot = torch.tensor(samples[:, [i, i+1], :])
nan_indicator_onehot = F.softmax(nan_indicator_onehot, dim=1)
nan_indicator = torch.argmax(nan_indicator_onehot, dim=1)
nan_indicator = nan_indicator.numpy()
data = np.where(nan_indicator == 1, np.nan, samples[:, numerical_idx, :])
unmasked_samples[:, numerical_idx, :] = data
numerical_idx += 1
mortality_indicator_onehot = samples[:, [-2, -1], :]
mortality_indicator_onehot = F.softmax(torch.tensor(mortality_indicator_onehot), dim=1)
mortality_indicator = torch.argmax(mortality_indicator_onehot, dim=1).numpy()
unmasked_samples[:, 5, :] = mortality_indicator
else:
raise ValueError(f"Unknown data name: {data_name}")
return unmasked_samples
if __name__ == "__main__":
args = parse_arguments()
seed_everything(args.seed)
print(f"*** METRIC: {args.metric} ***")
if args.metric in ["discriminative", "predictive", "discriminative-real", "predictive-real"]:
import tensorflow as tf
tf.set_random_seed(args.seed)
print(f"Set tensorflow seed to {args.seed}")
print(f"Synthetic Sample Path: {args.sync_path}")
sync_data, train_data, test_data = smart_load(args.sync_path), smart_load(args.train_path), smart_load(args.test_path)
if args.sync_path.split('.')[-1] != "csv":
if args.data_name in ["eicu", "mimiciii", "mimiciv", "hirid", "eicu_ONEHOT", "mimiciii_ONEHOT", "mimiciv_ONEHOT"]:
sync_data, train_data, test_data = smart_to_numpy(sync_data), smart_to_numpy(train_data), smart_to_numpy(test_data)
if "halo" in args.sync_path: # do not apply regular transform for HALO model, since it requires reverse discretization in a separate file
train_data, test_data = regular_transform_to_features(train_data, args.data_name)[:, :, :sync_data.shape[-1]], regular_transform_to_features(test_data, args.data_name)[:, :, :sync_data.shape[-1]]
else:
sync_data, train_data, test_data = regular_transform_to_features(sync_data, args.data_name), regular_transform_to_features(train_data, args.data_name)[:, :, :sync_data.shape[-1]], regular_transform_to_features(test_data, args.data_name)[:, :, :sync_data.shape[-1]]
X_sync, X_train, X_eval = sync_data[:, :-1, :], train_data[:, :-1, :], test_data[:, :-1, :]
y_sync, y_train, y_eval = get_label_from_2d(sync_data[:, -1, :]), get_label_from_2d(train_data[:, -1, :]), get_label_from_2d(test_data[:, -1, :])
print(f"Class imbalance stats:\nSynthetic: {100*np.mean(y_sync):.2f}%\nReal Train: {100*np.mean(y_train):.3f}%\nReal Test: {100*np.mean(y_eval):.3f}%")
else: # NOTE: other regular time series data doesn't have labels, nor have missingness
X_sync, X_train, X_eval = smart_to_numpy(sync_data), smart_to_numpy(train_data), smart_to_numpy(test_data)
if X_sync.shape[-1] < X_train.shape[-1] or X_sync.shape[-1] < X_eval.shape[-1]:
# adjust shape since some synthetic samples could be shorter than real samples
X_train, X_eval = X_train[:,:,:X_sync.shape[-1]], X_eval[:,:,:X_sync.shape[-1]]
csv_flag = False
else:
csv_flag = True
if args.metric in ["discriminative", "predictive", "discriminative-real", "predictive-real", "nnaa", "mir"]:
iterations = args.runs
else:
iterations = 1
score_arr, AA_test_arr, AA_train_arr = [], [], []
for i in range(iterations):
if args.metric == "nnaa":
sync_data_tmp, train_data_tmp, test_data_tmp = impute_nan_with_neg_one(sync_data), impute_nan_with_neg_one(train_data), impute_nan_with_neg_one(test_data)
sync_data_tmp, train_data_tmp, test_data_tmp = standardize_data(sync_data_tmp, axis=(0,2)), standardize_data(train_data_tmp, axis=(0,2)), standardize_data(test_data_tmp, axis=(0,2))
sync_data_tmp, train_data_tmp, test_data_tmp = flatten_time_dim_if_3d(sync_data_tmp), flatten_time_dim_if_3d(train_data_tmp), flatten_time_dim_if_3d(test_data_tmp)
score = NNAA(synthetic_data = sync_data_tmp if not args.privacy_with_real else train_data_tmp, train_data = train_data_tmp, eval_data = test_data_tmp)
score, AA_test, AA_train = score()
print(f"{args.metric} score: {score}, AA_test: {AA_test}, AA_train: {AA_train}")
AA_test_arr.append(AA_test)
AA_train_arr.append(AA_train)
elif args.metric == "mir":
if args.mir_model_name is not None:
print(f"Model: {args.mir_model_name}")
sync_data_tmp, train_data_tmp, test_data_tmp = impute_nan_with_neg_one(sync_data), impute_nan_with_neg_one(train_data), impute_nan_with_neg_one(test_data)
sync_data_tmp, train_data_tmp, test_data_tmp = normalize_data(sync_data_tmp, axis=(0,2)), normalize_data(train_data_tmp, axis=(0,2)), normalize_data(test_data_tmp, axis=(0,2))
sync_data_tmp, train_data_tmp, test_data_tmp = flatten_time_dim_if_3d(sync_data_tmp), flatten_time_dim_if_3d(train_data_tmp), flatten_time_dim_if_3d(test_data_tmp)
print(sync_data_tmp.shape, train_data_tmp.shape, test_data_tmp.shape)
score = MIR(synthetic_data = sync_data_tmp, train_data = train_data_tmp, eval_data = test_data_tmp, threshold = args.mir_threshold, privacy_with_real = args.privacy_with_real)
score = score()
print(f"{args.metric} score: {score}")
elif args.metric == "trajectory":
if args.data_name == "eicu":
var_dict = {0: "heartrate", 1: "resprate", 2: "spo2", 3: "map"}
elif args.data_name == "mimiciii":
var_dict = {0: "heartrate", 1: "sbp", 2: "dbp", 3: "mbp", 4: "resprate", 5: "temp", 6: "spo2"}
elif args.data_name == "mimiciv":
var_dict = {0: "heartrate", 1: "sbp", 2: "dbp", 3: "resprate", 4: "spo2"}
elif args.data_name == "hirid":
var_dict = {0: "heartrate", 1: "sbp", 2: "dbp", 3: "map", 4: "spo2", 5: "st", 6: "cvp"}
vis = TrajectoryVisualizer(
sync_data = X_sync, real_data = X_eval,
img_name = args.img_name, var_name_dict = var_dict,
sample_size = 5000,
)
vis()
elif args.metric == "nn_tstr/trtr":
X_sync, y_sync, X_eval, y_eval = torch.tensor(impute_nan_with_neg_one(X_sync)), torch.tensor(y_sync), torch.tensor(impute_nan_with_neg_one(X_eval)).float(), torch.tensor(y_eval)
X_train, y_train = torch.tensor(impute_nan_with_neg_one(X_train)), torch.tensor(y_train)
sample_size = min(X_sync.shape[0], X_train.shape[0]) # ensure same sample size
train_indices = np.random.choice(len(X_train), sample_size, replace=False)
sync_indices = np.random.choice(len(X_sync), sample_size, replace=False)
X_sync, X_train, y_sync, y_train = X_sync[sync_indices], X_train[train_indices], y_sync[sync_indices], y_train[train_indices]
assert len(X_sync) == len(X_train)
tstr_auc, trtr_auc = [], []
train_num_steps = 5000
bsz = 128
for i in tqdm(range(1, 11), desc="TSTR..."):
clf = nnTimeSeriesClassifier(model=RNN, X_train=X_sync, y_train=y_sync, bsz=bsz, train_num_steps=train_num_steps, wandb=None)
clf.train()
clf.model.to("cpu") # move to cpu since X_eval could be huge
clf.device = torch.device("cpu")
y_proba = clf.predict_proba(X_eval.to("cpu"))
auc = roc_auc_score(y_eval, y_proba)
tstr_auc.append(auc)
for i in tqdm(range(1, 11), desc="TRTR..."):
clf = nnTimeSeriesClassifier(model=RNN, X_train=X_train, y_train=y_train, bsz=bsz, train_num_steps=train_num_steps, wandb=None)
clf.train()
clf.model.to("cpu")
clf.device = torch.device("cpu")
y_proba = clf.predict_proba(X_eval.to("cpu"))
auc = roc_auc_score(y_eval, y_proba)
trtr_auc.append(auc)
print(f"===== COMPLETE =====\nTSTR AUC: {np.mean(tstr_auc):.3f} $\pm$ {np.std(tstr_auc):.3f}\nTRTR AUC: {np.mean(trtr_auc):.3f} $\pm$ {np.std(trtr_auc):.3f}")
break
elif args.metric == "tstr/trtr":
if csv_flag:
X_train_tmp, X_sync_tmp, X_eval_tmp = train_data.drop("hospital_expire_flag", axis=1), sync_data.drop("hospital_expire_flag", axis=1), test_data.drop("hospital_expire_flag", axis=1)
y_train, y_sync, y_eval = train_data["hospital_expire_flag"], sync_data["hospital_expire_flag"], test_data["hospital_expire_flag"]
imputer = SimpleImputer(missing_values=np.nan, strategy="constant", fill_value=-1)
X_train_tmp = imputer.fit_transform(X_train_tmp)
X_sync_tmp, X_eval_tmp = imputer.transform(X_sync_tmp), imputer.transform(X_eval_tmp)
else:
X_train_tmp, X_sync_tmp, X_eval_tmp = flatten_time_dim_if_3d(X_train), flatten_time_dim_if_3d(X_sync), flatten_time_dim_if_3d(X_eval)
X_train_tmp, X_sync_tmp, X_eval_tmp = impute_nan_with_neg_one(X_train_tmp), impute_nan_with_neg_one(X_sync_tmp), impute_nan_with_neg_one(X_eval_tmp)
visual = TSTR_TRTR(
X_sync = X_sync_tmp, y_sync = y_sync,
X_train = X_train_tmp, y_train = y_train,
X_eval = X_eval_tmp, y_eval = y_eval,
reps = 10,
img_name = args.img_name,
metric = args.scoring_metric,
legend = (args.data_name == "mimiciv"),
)
visual()
break
elif args.metric == "tsrtr":
if csv_flag:
X_train_tmp, X_sync_tmp, X_eval_tmp = train_data.drop("hospital_expire_flag", axis=1), sync_data.drop("hospital_expire_flag", axis=1), test_data.drop("hospital_expire_flag", axis=1)
y_train, y_sync, y_eval = train_data["hospital_expire_flag"], sync_data["hospital_expire_flag"], test_data["hospital_expire_flag"]
imputer = SimpleImputer(missing_values=np.nan, strategy="constant", fill_value=-1)
X_train_tmp = imputer.fit_transform(X_train_tmp)
X_sync_tmp, X_eval_tmp = imputer.transform(X_sync_tmp), imputer.transform(X_eval_tmp)
else:
X_train_tmp, X_sync_tmp, X_eval_tmp = flatten_time_dim_if_3d(X_train), flatten_time_dim_if_3d(X_sync), flatten_time_dim_if_3d(X_eval)
X_train_tmp, X_sync_tmp, X_eval_tmp = impute_nan_with_neg_one(X_train_tmp), impute_nan_with_neg_one(X_sync_tmp), impute_nan_with_neg_one(X_eval_tmp)
visual = TSRTR(
X_sync = X_sync_tmp, y_sync = y_sync,
X_train = X_train_tmp, y_train = y_train,
X_eval = X_eval_tmp, y_eval = y_eval,
reps = 10,
img_name = args.img_name,
metric = args.scoring_metric,
synthetic_percentage = [0.1, 0.3, 0.5, 0.7, 0.9],
# synthetic_percentage = [0.1, 0.2 , 0.3, 0.4, 0.5],
# legend = (args.data_name == "mimiciv"),
legend = True,
# real_train_size = len(X_train) if len(X_train) < 20000 else 20000,
real_train_size = 2000,
)
visual()
break
elif args.metric == "tsrtr_imbalance":
X_train_tmp, X_sync_tmp, X_eval_tmp = flatten_time_dim_if_3d(X_train), flatten_time_dim_if_3d(X_sync), flatten_time_dim_if_3d(X_eval)
X_train_tmp, X_sync_tmp, X_eval_tmp = impute_nan_with_neg_one(X_train_tmp), impute_nan_with_neg_one(X_sync_tmp), impute_nan_with_neg_one(X_eval_tmp)
visual = TSRTR_Imbalance(
X_sync = X_sync_tmp, y_sync = y_sync,
X_train = X_train_tmp, y_train = y_train,
X_eval = X_eval_tmp, y_eval = y_eval,
reps = 10,
img_name = args.img_name,
imbalance_ratio = [0.3, 0.35, 0.4, 0.45, 0.5],
real_sample_size = 2000,
metric = args.scoring_metric,
)
visual()
break
elif args.metric == "t-sne":
X_train, X_sync, X_eval = smart_to_numpy(X_train), smart_to_numpy(X_sync), smart_to_numpy(X_eval)
X_train, X_sync, X_eval = impute_nan_with_neg_one(X_train), impute_nan_with_neg_one(X_sync), impute_nan_with_neg_one(X_eval)
X_train, X_sync, X_eval = standardize_data(X_train, axis=(0,2)), standardize_data(X_sync, axis=(0,2)), standardize_data(X_eval, axis=(0,2))
X_train, X_sync, X_eval = flatten_time_dim_if_3d(X_train), flatten_time_dim_if_3d(X_sync), flatten_time_dim_if_3d(X_eval)
print(f"Dimensions of X_train: {X_train.shape}, X_sync: {X_sync.shape}, X_eval: {X_eval.shape}")
visual = tSNE(
X_train = X_train, X_sync = X_sync, X_eval = X_eval,
perplexity = args.perplexity, n_iter = 300, learning_rate = 'auto',
sample_num=args.t_sne_num, n_components=2, save=True, img_name = args.img_name,
)
visual()
break
elif args.metric == "t-sne-tg":
X_train, X_sync, X_eval = smart_to_numpy(X_train), smart_to_numpy(X_sync), smart_to_numpy(X_eval)
X_train, X_sync, X_eval = impute_nan_with_neg_one(X_train), impute_nan_with_neg_one(X_sync), impute_nan_with_neg_one(X_eval)
X_train, X_sync, X_eval = standardize_data(X_train), standardize_data(X_sync), standardize_data(X_eval)
X_train, X_sync, X_eval = np.transpose(X_train, (0,2,1)), np.transpose(X_sync, (0,2,1)), np.transpose(X_eval, (0,2,1))
print(X_train.shape, X_sync.shape, X_eval.shape)
tSNE_Analysis(
original_test=X_eval, synthetic=X_sync, original_train=X_train,
img_name = args.img_name, sample_num=args.t_sne_num
)
break
elif args.metric == "discriminative":
score = DiscriminativeScore(
original_data = np.transpose(impute_nan_with_neg_one(X_eval), (0, 2, 1)),
synthetic_data = np.transpose(impute_nan_with_neg_one(X_sync), (0, 2, 1)),
iterations = args.discriminative_iter,
scaler = args.discri_pred_scaler,
train_min = np.min(np.transpose(impute_nan_with_neg_one(X_train), (0, 2, 1)), axis=(0,1), keepdims=True),
train_max = np.max(np.transpose(impute_nan_with_neg_one(X_train), (0, 2, 1)), axis=(0,1), keepdims=True),
) # exclude hospital mortality flag
score = score()
print(f"Discriminative Score: {score}")
elif args.metric == "predictive":
score = PredictiveScore(
original_data = np.transpose(impute_nan_with_neg_one(X_eval), (0, 2, 1)),
synthetic_data = np.transpose(impute_nan_with_neg_one(X_sync), (0, 2, 1)),
iterations = args.predictive_iter,
scaler = args.discri_pred_scaler,
train_min = np.min(np.transpose(impute_nan_with_neg_one(X_train), (0, 2, 1)), axis=(0,1), keepdims=True),
train_max = np.max(np.transpose(impute_nan_with_neg_one(X_train), (0, 2, 1)), axis=(0,1), keepdims=True),
)
score = score()
print(f"Predictive Score: {score}")
elif args.metric == "discriminative-real":
score = DiscriminativeScore(
original_data = np.transpose(impute_nan_with_neg_one(X_eval), (0, 2, 1)),
synthetic_data = np.transpose(impute_nan_with_neg_one(X_train), (0, 2, 1)),
iterations = args.discriminative_iter,
scaler = args.discri_pred_scaler,
train_min = np.min(np.transpose(impute_nan_with_neg_one(X_train), (0, 2, 1)), axis=(0,1), keepdims=True),
train_max = np.max(np.transpose(impute_nan_with_neg_one(X_train), (0, 2, 1)), axis=(0,1), keepdims=True),
) # exclude hospital mortality flag
score = score()
print(f"Discriminative Score: {score}")
elif args.metric == "predictive-real":
score = PredictiveScore(
original_data = np.transpose(impute_nan_with_neg_one(X_eval), (0, 2, 1)),
synthetic_data = np.transpose(impute_nan_with_neg_one(X_train), (0, 2, 1)),
iterations = args.predictive_iter,
scaler = args.discri_pred_scaler,
train_min = np.min(np.transpose(impute_nan_with_neg_one(X_train), (0, 2, 1)), axis=(0,1), keepdims=True),
train_max = np.max(np.transpose(impute_nan_with_neg_one(X_train), (0, 2, 1)), axis=(0,1), keepdims=True),
)
score = score()
print(f"Predictive Score: {score}")
else:
raise ValueError(f"Unsupported metric: {args.metric}")
score_arr.append(score)
if "predictive" in args.metric or "discriminative" in args.metric or args.metric == "nnaa" or args.metric == "mir":
if args.metric in ["predictive", "discriminative", "mir"]:
print(f"Average score: {np.mean(score_arr):.3f} $\pm$ {np.std(score_arr):.3f}")
elif args.metric == "nnaa":
print(f"Average score: {np.mean(score_arr):.4f} $\pm$ {np.std(score_arr):.4f}\nAA_train: {np.mean(AA_train_arr):.4f} $\pm$ {np.std(AA_train_arr):.4f}\nAA_test: {np.mean(AA_test_arr):.4f} $\pm$ {np.std(AA_test_arr):.4f}")