-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheit_model.py
443 lines (375 loc) · 16.5 KB
/
eit_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
"""
original code from rwightman:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
from functools import partial
from collections import OrderedDict
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from apex import amp
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class PatchEmbed(nn.Module):
"""
2D Image to Patch Embedding
"""
def __init__(self, img_size=224, pool_size=4, in_c=3, embed_dim=768, norm_layer=None, kernel_size=3, stride_size=1,
use_eit_p=True):
super().__init__()
img_size = (img_size, img_size)
pool_size = (pool_size, pool_size)
self.img_size = img_size
self.patch_size = pool_size
self.grid_size = (img_size[0] // (pool_size[0] * stride_size), img_size[1] // (pool_size[1] * stride_size))
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.use_eit_p = use_eit_p
if use_eit_p:
self.eit_p = EIT_P(in_c=in_c, embed_dim=embed_dim, kernel_size=kernel_size, stride_size=stride_size, pool_size=pool_size[0])
else:
self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=pool_size, stride=pool_size)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
B, C, H, W = x.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
if self.use_eit_p:
x = self.eit_p(x)
else:
x = self.proj(x)
x = rearrange(x, 'B C H W -> B (H W) C')
x = self.norm(x)
return x
class EIT_P(nn.Module):
def __init__(self, kernel_size=3, stride_size=1, pool_size=4, in_c=3, embed_dim=108):
super().__init__()
self.conv = nn.Conv2d(in_c, embed_dim, kernel_size=(kernel_size, kernel_size), stride=(stride_size, stride_size),
padding=(kernel_size // 2, kernel_size // 2))
self.pool = nn.MaxPool2d(pool_size, stride=pool_size)
def forward(self, inputs):
x = self.conv(inputs)
x = self.pool(x)
return x
class EIT_T(nn.Module):
def __init__(self, embed_dim=200, kernel_size=3, eit_t_drop_ratio=0.):
super().__init__()
self.conv1 = nn.Conv2d(embed_dim, embed_dim, kernel_size=(kernel_size, kernel_size), stride=(1, 1),
padding=(kernel_size // 2, kernel_size // 2), bias=False, groups=embed_dim)
self.drop = nn.Dropout(eit_t_drop_ratio)
def forward(self, inputs):
x = inputs[:, 1:, :]
x = rearrange(x, 'B (H W) C -> B C H W', H=int(np.sqrt(x.shape[1])))
x = self.conv1(x)
x = self.drop(x)
x = rearrange(x, 'B C H W -> B (H W) C')
x = torch.cat((rearrange(inputs[:, 0, :], 'B C -> B 1 C'), x), dim=1)
return x
class Attention(nn.Module):
def __init__(self,
dim, # 输入token的dim
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop_ratio=0.,
proj_drop_ratio=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop_ratio)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop_ratio)
def forward(self, x):
# [batch_size, num_patches + 1, total_embed_dim]
B, N, C = x.shape
# qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
# reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
# permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
# [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
# transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
# @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
# @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
# transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
# reshape: -> [batch_size, num_patches + 1, total_embed_dim]
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Mlp(nn.Module):
"""
MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Block(nn.Module):
def __init__(self,
dim,
num_heads,
depth,
layer,
kernel_size=3,
use_eit_t=True,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop_ratio=0.,
attn_drop_ratio=0.,
drop_path_ratio=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
if use_eit_t:
num = int(dim // num_heads * (layer + 1) / depth) * num_heads
self.num_attn_dim = num
self.num_eit_t_dim = dim - num
if layer + 1 == depth:
self.num_attn_dim = dim
self.num_eit_t_dim = 0
else:
self.num_attn_dim = dim
self.num_eit_t_dim = 0
print(self.num_eit_t_dim)
self.attn = Attention(dim=self.num_attn_dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop_ratio=attn_drop_ratio,
proj_drop_ratio=drop_ratio) if self.num_attn_dim != 0 else None
self.eit_t = EIT_T(embed_dim=self.num_eit_t_dim, kernel_size=kernel_size,
eit_t_drop_ratio=attn_drop_ratio) if self.num_eit_t_dim != 0 else None
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)
def forward(self, x):
input = x
x = self.norm1(x)
if self.num_eit_t_dim == 0:
x = self.attn(x)
elif self.num_attn_dim == 0:
x = self.eit_t(x)
else:
x1 = self.eit_t(x[:, :, :self.num_eit_t_dim])
x2 = self.attn(x[:, :, -self.num_attn_dim:])
x = torch.cat((x1, x2), dim=2)
x = input + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class EIT(nn.Module):
def __init__(self, img_size=32, kernel_size=3, stride_size=1, pool_size=4, in_c=3, num_classes=1000,
use_eit_p=True, use_eit_t=True, use_pos_em=False,
embed_dim=250, depth=5, num_heads=10, mlp_ratio=4.0, qkv_bias=True, qk_scale=None,
representation_size=None, drop_ratio=0.2, attn_drop_ratio=0.15, drop_path_ratio=0.2,
embed_layer=PatchEmbed, norm_layer=None,
act_layer=None):
"""
Args:
img_size (int, tuple): input image size
pool_size (int, tuple): patch size
in_c (int): number of input channels
num_classes (int): number of classes for classification head
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
drop_ratio (float): dropout rate
attn_drop_ratio (float): attention dropout rate
drop_path_ratio (float): stochastic depth rate
embed_layer (nn.Module): patch embedding layer
norm_layer: (nn.Module): normalization layer
"""
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_tokens = 1
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.patch_embed = embed_layer(img_size=img_size, kernel_size=kernel_size, stride_size=stride_size, pool_size=pool_size, in_c=in_c,
embed_dim=embed_dim, use_eit_p=use_eit_p)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) if use_pos_em else None
self.pos_drop = nn.Dropout(p=drop_ratio)
dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)] # stochastic depth decay rule
self.blocks = nn.Sequential(*[
Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],
kernel_size=3, norm_layer=norm_layer, act_layer=act_layer, depth=depth, layer=i, use_eit_t=use_eit_t)
for i in range(depth)
])
self.norm = norm_layer(embed_dim)
# Representation layer
if representation_size:
self.has_logits = True
self.num_features = representation_size
self.pre_logits = nn.Sequential(OrderedDict([
("fc", nn.Linear(embed_dim, representation_size)),
("act", nn.Tanh())
]))
else:
self.has_logits = False
self.pre_logits = nn.Identity()
# Classifier head(s)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
# Weight init
if self.pos_embed is not None:
nn.init.trunc_normal_(self.pos_embed, std=0.02)
nn.init.trunc_normal_(self.cls_token, std=0.02)
self.apply(_init_eit_weights)
def forward_features(self, x):
# [B, C, H, W] -> [B, num_patches, embed_dim]
x = self.patch_embed(x) # [B, 196, 768]
# [1, 1, 768] -> [B, 1, 768]
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_token, x), dim=1) # [B, 197, 768]
x = x + self.pos_embed if self.pos_embed is not None else x
x = self.pos_drop(x)
x = self.blocks(x)
x = self.norm(x)
return self.pre_logits(x[:, 0])
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _init_eit_weights(m):
"""
EIT weight initialization
:param m: module
"""
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=.01)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out")
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
nn.init.zeros_(m.bias)
nn.init.ones_(m.weight)
def eit_mini(num_classes: int = 10,
img_size: int = 32,
use_eit_p: bool = True,
use_eit_t: bool = True,
use_pos_em: bool = False,
has_logits: bool = True):
model = EIT(img_size=img_size,
kernel_size=16,
stride_size=4,
pool_size=3,
use_eit_p=use_eit_p,
use_eit_t=use_eit_t,
use_pos_em=use_pos_em,
embed_dim=250,
depth=5,
num_heads=10,
drop_ratio=0., attn_drop_ratio=0., drop_path_ratio=0,
representation_size=768 if has_logits else None,
num_classes=num_classes)
return model
def eit_tiny(num_classes: int = 10,
img_size: int = 32,
use_eit_p: bool = True,
use_eit_t: bool = True,
use_pos_em: bool = False,
has_logits: bool = True):
model = EIT(img_size=img_size,
kernel_size=16,
stride_size=4,
pool_size=3,
use_eit_p=use_eit_p,
use_eit_t=use_eit_t,
use_pos_em=use_pos_em,
embed_dim=330,
depth=8,
num_heads=10,
drop_ratio=0., attn_drop_ratio=0., drop_path_ratio=0.,
representation_size=768 if has_logits else None,
num_classes=num_classes)
return model
def eit_base(num_classes: int = 10,
img_size: int = 32,
use_eit_p: bool = True,
use_eit_t: bool = True,
use_pos_em: bool = False,
has_logits: bool = True):
model = EIT(img_size=img_size,
kernel_size=16,
stride_size=4,
pool_size=3,
use_eit_p=use_eit_p,
use_eit_t=use_eit_t,
use_pos_em=use_pos_em,
embed_dim=400,
depth=10,
num_heads=16,
drop_ratio=0., attn_drop_ratio=0., drop_path_ratio=0.,
representation_size=768 if has_logits else None,
num_classes=num_classes)
return model
def eit_large(num_classes: int = 10,
img_size: int = 32,
use_eit_p: bool = True,
use_eit_t: bool = True,
use_pos_em: bool = False,
has_logits: bool = True):
model = EIT(img_size=img_size,
kernel_size=16,
stride_size=4,
pool_size=3,
use_eit_p=use_eit_p,
use_eit_t=use_eit_t,
use_pos_em=use_pos_em,
embed_dim=464,
depth=12,
num_heads=16,
drop_ratio=0., attn_drop_ratio=0., drop_path_ratio=0.,
representation_size=768 if has_logits else None,
num_classes=num_classes)
return model