-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathnew_tokenizer.py
82 lines (66 loc) · 2.79 KB
/
new_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from tokenizers.implementations import SentencePieceBPETokenizer
from tokenizers.processors import BertProcessing
from transformers.tokenization_utils import PreTrainedTokenizer, PreTrainedTokenizerFast
import json
class MyTokenizer():
def __init__(self, vocab_file_path, merge_file_path):
self.tokenizer = SentencePieceBPETokenizer(vocab_file_path, merge_file_path)
self.unknown_token = self.tokenizer.token_to_id("<unk>")
self._pad_token = "<pad>"
self.pad_token_id = self.tokenizer.token_to_id("<pad>")
self.max_len = 1024
self.max_len_single_sentence = 1024
self.init_kwargs = {}
self.added_tokens_encoder = {}
self.unique_added_tokens_encoder = set()
self.added_tokens_decoder = {}
self.unexpected_sep_token = ['<pad>', '<unk>', '<eos>', '<sos>']
self.encoder = self.tokenizer.get_vocab()
self.decoder = dict(map(reversed, self.encoder.items()))
def tokenize(self, text):
if text in self.unexpected_sep_token:
return text
return self.tokenizer.encode(text).tokens
def convert_tokens_to_ids(self, tokens):
ids = []
if isinstance(tokens, str):
if tokens in self.encoder:
return self.encoder[tokens]
else:
return self.unknown_token
for token in tokens:
if token in self.encoder:
ids.append(self.encoder[token])
else:
ids.append(self.unknown_token)
return ids
def convert_ids_to_tokens(self, ids):
sentence = ''
for id_ in ids:
sentence += self.decoder[id_]
sentence = sentence.replace('▁', ' ')
return sentence.strip()
def build_inputs_with_special_tokens(self, ids):
return ids
def get_vocab_size(self):
return self.tokenizer.get_vocab_size()
def add_special_tokens(self, new_tokens):
self.tokenizer.add_special_tokens(new_tokens)
self.encoder = self.tokenizer.get_vocab()
self.decoder = dict(map(reversed, self.encoder.items()))
def add_tokens(self, new_tokens):
self.tokenizer.add_tokens(new_tokens)
self.encoder = self.tokenizer.get_vocab()
self.decoder = dict(map(reversed, self.encoder.items()))
if __name__ == '__main__':
vocab_file_path = 'tokenizer/vocab.json'
merge_file_path = 'tokenizer/merges.txt'
tokenizer = MyTokenizer(vocab_file_path, merge_file_path)
sentence = "이순신은 조선 중기의 무신이다."
tokens = tokenizer.tokenize(sentence)
print(tokens)
ids = tokenizer.convert_tokens_to_ids(tokens)
print(ids)
ids2 = tokenizer.build_inputs_with_special_tokens(ids)
print(ids2)
print(tokenizer.convert_ids_to_tokens(ids))