-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathlyric_generation.py
54 lines (41 loc) · 1.66 KB
/
lyric_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from transformers import GPT2LMHeadModel, GPT2Config
from new_tokenizer import MyTokenizer
import torch
ATTR_TO_SPECIAL_TOKEN = ['<song>', '</song>']
vocab_file_path = '../tokenizer/vocab.json'
merge_file_path = '../tokenizer/merges.txt'
tokenizer = MyTokenizer(vocab_file_path, merge_file_path)
bos = tokenizer.convert_tokens_to_ids('<s>')
eos = tokenizer.convert_tokens_to_ids('</s>')
pad = tokenizer.convert_tokens_to_ids('<pad>')
unk = tokenizer.convert_tokens_to_ids('<unk>')
config = GPT2Config(vocab_size=52003, resid_pdrop=0, embd_pdrop=0, attn_pdrop=0, summary_first_dropout=0)
model = GPT2LMHeadModel(config)
model_dir = '../KorGPT-2SampleModel/lyric_model.bin'
model.load_state_dict(torch.load(model_dir), strict=False)
model.to('cpu')
def add_special_tokens_(model, tokenizer):
orig_num_tokens = tokenizer.get_vocab_size()
tokenizer.add_special_tokens(ATTR_TO_SPECIAL_TOKEN)
num_added_tokens = len(ATTR_TO_SPECIAL_TOKEN)
model.resize_token_embeddings(new_num_tokens=orig_num_tokens + num_added_tokens + 1)
add_special_tokens_(model, tokenizer)
b_song = tokenizer.convert_tokens_to_ids('<song>')
e_song = tokenizer.convert_tokens_to_ids('</song>')
def encoding(text):
tokens = ['<song>', '<s>'] + tokenizer.tokenize(text)
return torch.tensor(tokenizer.convert_tokens_to_ids(tokens)).unsqueeze(0)
def decoding(ids):
return tokenizer.convert_ids_to_tokens(ids[0])
input_ids = encoding('하늘을 날아')
sample_outputs = model.generate(
input_ids,
do_sample=True,
max_length=1024,
top_k=50,
top_p=0.95,
eos_token_id=e_song,
early_stopping=True,
bad_words_ids=[[unk]]
)
print(decoding(sample_outputs.tolist()))