-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathkorquad_generation.py
79 lines (65 loc) · 2.74 KB
/
korquad_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from transformers import GPT2LMHeadModel, GPT2Config
from new_tokenizer import MyTokenizer
import torch
import kss
import json
data = open('qa_data/KorQuAD_v1.0_dev.json', 'r', encoding='utf-8')
data_json = json.load(data)
vocab_file_path = '../tokenizer/vocab.json'
merge_file_path = '../tokenizer/merges.txt'
korquad_tokenizer = MyTokenizer(vocab_file_path, merge_file_path)
korquad_config = GPT2Config(vocab_size=52005)
korquad_model = GPT2LMHeadModel(korquad_config)
korquad_model_dir = '../model/korquad_model.bin'
korquad_model.load_state_dict(torch.load(korquad_model_dir), strict=False)
korquad_model.to('cpu')
def add_special_tokens_(model, tokenizer, added_tokens):
orig_num_tokens = tokenizer.get_vocab_size()
tokenizer.add_special_tokens(added_tokens)
added_korquad_tokens = ['<answer>', '</answer>', '<question>', '</question>']
add_special_tokens_(korquad_model, korquad_tokenizer, added_korquad_tokens)
unk = korquad_tokenizer.convert_tokens_to_ids('<unk>')
pad = korquad_tokenizer.convert_tokens_to_ids('<pad>')
s_answer = korquad_tokenizer.convert_tokens_to_ids('<answer>')
e_answer = korquad_tokenizer.convert_tokens_to_ids('</answer>')
s_question = korquad_tokenizer.convert_tokens_to_ids('<question>')
e_question = korquad_tokenizer.convert_tokens_to_ids('</question>')
def context_tokenizer(text, tokenizer):
sent_list = kss.split_sentences(text)
tokens = []
for sent in sent_list:
tokenized_sentence = tokenizer.tokenize(sent)
if len(tokens) + len(tokenized_sentence) < 912:
tokens += ['<s>'] + tokenized_sentence + ['</s>']
else:
break
return tokens
def decoding(ids, tokenizer):
return tokenizer.convert_ids_to_tokens(ids)
def get_question_and_answer(model, context, tokenizer):
tokens = context_tokenizer(context, tokenizer)
tokens += ['<question>']
input_ids = torch.tensor(tokenizer.convert_tokens_to_ids(tokens)).unsqueeze(0)
answer_output = model.generate(
input_ids,
max_length=1024,
eos_token_id=e_answer,
pad_token_id=pad,
early_stopping=True,
bad_words_ids=[[unk]]
)
answer_start_idx = len(input_ids.tolist()[0])
decoded_answer = decoding(answer_output.tolist()[0][answer_start_idx:-1], tokenizer)
question = decoded_answer.split('</question>')[0]
answer = decoded_answer.split('<answer>')[1]
return question, answer
result_map = {}
qa_datas = data_json['data']
for qa_data in qa_datas:
paras = qa_data['paragraphs']
for para in paras:
context = para['context'].replace('\n', ' ').strip()
question, answer = get_question_and_answer(korquad_model, context, korquad_tokenizer)
print(context)
print('\tQ:', question)
print('\tA:', answer, '\n\n')