-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathkorquad_evaluation.py
83 lines (67 loc) · 2.98 KB
/
korquad_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from transformers import GPT2LMHeadModel, GPT2Config
from new_tokenizer import MyTokenizer
import torch
import kss
import json
data = open('qa_data/KorQuAD_v1.0_dev.json', 'r', encoding='utf-8')
data_json = json.load(data)
output = open('qa_data/korquad_result.json', 'w', encoding='utf-8')
vocab_file_path = '../tokenizer/vocab.json'
merge_file_path = '../tokenizer/merges.txt'
korquad_tokenizer = MyTokenizer(vocab_file_path, merge_file_path)
korquad_config = GPT2Config(vocab_size=52005, resid_pdrop=0, embd_pdrop=0, attn_pdrop=0, summary_first_dropout=0)
korquad_model = GPT2LMHeadModel(korquad_config)
korquad_model_dir = '../KorGPT-2SampleModel/korquad_model.bin'
korquad_model.load_state_dict(torch.load(korquad_model_dir), strict=False)
korquad_model.to('cpu')
def add_special_tokens_(model, tokenizer, added_tokens):
orig_num_tokens = tokenizer.get_vocab_size()
tokenizer.add_special_tokens(added_tokens)
added_korquad_tokens = ['<answer>', '</answer>', '<question>', '</question>']
add_special_tokens_(korquad_model, korquad_tokenizer, added_korquad_tokens)
unk = korquad_tokenizer.convert_tokens_to_ids('<unk>')
pad = korquad_tokenizer.convert_tokens_to_ids('<pad>')
s_answer = korquad_tokenizer.convert_tokens_to_ids('<answer>')
e_answer = korquad_tokenizer.convert_tokens_to_ids('</answer>')
s_question = korquad_tokenizer.convert_tokens_to_ids('<question>')
e_question = korquad_tokenizer.convert_tokens_to_ids('</question>')
def context_tokenizer(text, tokenizer):
sent_list = kss.split_sentences(text)
tokens = []
for sent in sent_list:
tokenized_sentence = tokenizer.tokenize(text)
if len(tokens) + len(tokenized_sentence) < 912:
tokens += ['<s>'] + tokenized_sentence + ['</s>']
else:
break
return tokens
def decoding(ids, tokenizer):
return tokenizer.convert_ids_to_tokens(ids)
def get_answer(model, context, question, tokenizer):
tokens = context_tokenizer(context, tokenizer)
tokens += ['<question>'] + tokenizer.tokenize(question) + ['</question>'] + ['<answer>']
input_ids = torch.tensor(tokenizer.convert_tokens_to_ids(tokens)).unsqueeze(0)
answer_output = model.generate(
input_ids,
max_length=1024,
eos_token_id=e_answer,
pad_token_id=pad,
early_stopping=True,
bad_words_ids=[[unk]]
)
answer_start_idx = len(input_ids.tolist()[0])
decoded_answer = decoding(answer_output.tolist()[0][answer_start_idx:-1], tokenizer)
return decoded_answer
result_map = {}
qa_datas = data_json['data']
for qa_data in qa_datas:
paras = qa_data['paragraphs']
for para in paras:
context = para['context'].replace('\n', ' ').strip()
qas = para['qas']
for qa in qas:
question_text = qa['question'].replace('\n', ' ').strip()
question_id = qa['id']
result_map[question_id] = get_answer(korquad_model, context, question_text, korquad_tokenizer)
output.write(json.dumps(result_map))
output.close()