-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdockerfile_readMe.txt
134 lines (98 loc) · 5.3 KB
/
dockerfile_readMe.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
Reads:
------
supported tags:
https://gitlab.com/nvidia/container-images/cuda/blob/master/doc/supported-tags.md
check cuda is installed and nvcc
https://arnon.dk/check-cuda-installed/
#install cuda and cudnn
https://gist.github.com/Mahedi-61/2a2f1579d4271717d421065168ce6a73#file-cuda_10-0_installation_on_ubuntu_18-04
set up nvidia docker
---------------------
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker
setting up a docker container
-------------------------------
https://towardsdatascience.com/how-to-properly-use-the-gpu-within-a-docker-container-4c699c78c6d1
stack
--------------
https://stackoverflow.com/questions/25185405/using-gpu-from-a-docker-container
1. Make sure you have installed the NVIDIA driver and Docker engine for your Linux distribution.
To check:
run in terminal:
nvidia-smi
output should be something like:
Thu Nov 5 11:30:19 2020
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 435.21 Driver Version: 435.21 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 105... Off | 00000000:01:00.0 Off | N/A |
| N/A 55C P0 N/A / N/A | 451MiB / 4040MiB | 2% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1006 G /usr/lib/xorg/Xorg 265MiB |
| 0 1286 G /usr/bin/gnome-shell 155MiB |
| 0 2608 G /usr/lib/firefox/firefox 1MiB |
| 0 3911 G /usr/lib/firefox/firefox 1MiB |
| 0 3977 G /usr/lib/firefox/firefox 17MiB |
| 0 5442 G /usr/lib/firefox/firefox 1MiB |
| 0 6133 G /usr/lib/firefox/firefox 1MiB |
| 0 7919 G /usr/lib/firefox/firefox 1MiB |
| 0 7997 G /usr/lib/firefox/firefox 1MiB |
| 0 9068 G /usr/lib/firefox/firefox 1MiB |
+-----------------------------------------------------------------------------+
2.Install CUDA Toolkit
3. set up system and docker repository key
sudo systemctl start docker
sudo systemctl enable docker
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \
&& curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
4. Install nvidia docker2
sudo apt-get update
sudo apt-get install -y nvidia-docker2
sudo systemctl restart docker
sudo docker run --rm --gpus all nvidia/cuda:10.1-base nvidia-smi
output should be something like:
Thu Nov 5 12:40:37 2020
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 435.21 Driver Version: 435.21 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 105... Off | 00000000:01:00.0 Off | N/A |
| N/A 56C P0 N/A / N/A | 720MiB / 4040MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
+-----------------------------------------------------------------------------+
dockerfile:
FROM nvidia/cuda:10.1-base-ubuntu18.04
#install libraries
RUN apt-get update && \
apt-get install -y \
libgdal-dev \
libproj-dev \
libv8-dev \
ssh && \
apt-get clean all
#get Tensorflow in
RUN apt-get update && \
apt install python3-dev python3-pip -y
RUN pip3 install --upgrade pip
RUN pip3 install argparse
RUN pip3 install pillow
RUN pip3 install --upgrade tensorflow
in directory of dockerfile run:
docker build . -t nvidiadocker
check if image is there:
docker image ls | grep nvidiadocker
run container:
docker run --gpus all -it --name nvidiadocker_c -v '/data':'/data' -p 8887:8887 nvidiadocker