-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmultiqc_extra_stats_qc.py
executable file
·361 lines (310 loc) · 11.9 KB
/
multiqc_extra_stats_qc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import sys
import os
import csv
import argparse
import yaml
from glob import glob
class QC:
"""
QC criteria for BPA of WGS projects according to INS-00123 v.25.0
"""
def __init__(self):
self.insert_size = (317, 428)
self.variants = (4800000, 5300000)
self.gc = (40.5, 42.1)
self.percent_mapped = (97.1, 100)
self.cov_10_x = (91, float('inf'))
self.cov_30_x = (58, float('inf'))
self.version = "v.25.0" # Document version INS-00123
def limits(self, metric):
match metric:
case "Coverage ≥10 X":
return self.cov_10_x
case "Coverage ≥30 X":
return self.cov_30_x
case "Unfiltered variants":
return self.variants
case "Average GC %":
return self.gc
case "% Mapped":
return self.percent_mapped
case "Average insert size":
return self.insert_size
case _:
return ("N/A", "N/A")
def pretty_limits(self, metric):
lt, ut = self.limits(metric)
match metric:
case "Coverage ≥10 X" | "Coverage ≥10 X":
return f"≥ {lt} X"
case "Unfiltered variants":
return f"{lt / 1000000:.1f}-{ut / 1000000:.1f} M"
case "Average GC %":
return f"{lt}-{ut} %"
case "% Mapped":
return f"{lt} %"
case "Average insert size":
return f"{lt}-{ut} nt"
case _:
return f"QC thresholds not found"
def pretty_val(self, metric, value):
match metric:
case "Coverage ≥10 X" | "Coverage ≥10 X":
return f"{value} X"
case "Unfiltered variants":
return f"{value / 1000000:.1f} M"
case "Average GC %" | "% Mapped":
return f"{value} %"
case "Average insert size":
return f"{value} nt"
case _:
return f"{value}"
def parse_arguments():
parser = argparse.ArgumentParser(
description="Script to calculate additional metrics and produce custom data files for MultiQC report after WGS analysis with sarek >=3.4.2"
)
parser.add_argument(
"--analysis_dir",
required=True,
help="Path to sarek analysis result folder is located",
)
parser.add_argument("--project", required=True, help="Project name")
args = parser.parse_args()
return args
def find_reports(analysis_dir):
"""
Attempts to locate the necessary reports used to generate the extra metrics to
include in MultiQC report. If some, but not all, reports are found the script
will continue but print a warning.
Args:
analysis_dir (str): Path to the analysis directory where sarek results folder is located.
Returns:
dict: Paths to reports.
None: If no reports where found.
"""
report_folder = os.path.join(analysis_dir, "results/reports/")
search_paths = {
"mosdepth_sum": os.path.join(report_folder, "mosdepth/*/*.md.mosdepth.summary.txt"),
"mosdepth_reg": os.path.join(report_folder, "mosdepth/*/*.md.mosdepth.region.dist.txt"),
"samstat": os.path.join(report_folder, "samtools/*/*.md.cram.stats"),
"snpeff": os.path.join(report_folder, "snpeff/haplotypecaller/*/*_snpEff.csv")
}
report_paths = {
report_type: glob(path) for report_type, path in search_paths.items()
}
missing_reports = [report_type for report_type, paths in report_paths.items() if len(paths) == 0]
if 0 <= len(missing_reports) < 4:
print(f"Using reports in {os.path.dirname(report_folder)}")
for report in missing_reports:
print(f"Warning! No reports found in {search_paths[report]}")
return report_paths
else:
print(f"No reports found in {report_folder}")
return None
def calculate_avg_coverage(reports):
"""
Calculates average autosomal coverage for each sample.
Args:
reports (list): List of paths to Mosdepth summary reports
Returns:
dict: Sample(s) (key), average_coverage (value)
"""
auto_chroms = [f"chr{x}" for x in range(1, 23)]
avg_cov = {}
for report in reports:
sample = os.path.basename(os.path.dirname(report))
bases = 0
length = 0
with open(report) as fin:
cov = csv.reader(fin, delimiter="\t")
header = next(cov)
chrom_index = header.index("chrom")
length_index = header.index("length")
bases_index = header.index("bases")
for row in cov:
if row[chrom_index] in auto_chroms:
bases += int(row[bases_index])
length += int(row[length_index])
avg_cov[sample] = round(bases / length)
return avg_cov
def get_samstats(reports):
"""
Collect precalculated values for average insert size and calculates
average GC % and % mapped reads.
Args:
reports (list): List of paths to Samtools stats reports
Returns:
dict: One dict for each metric
"""
gc_avg, aln_percent, insert_sizes = {}, {}, {}
for report in reports:
sample = os.path.basename(os.path.dirname(report))
total_gc_percentage = 0.0
total_reads = 0.0
with open(report) as fin:
for line in fin:
if line.startswith('GCF') or line.startswith('GCL'):
identifier, gc_percentage, num_reads = line.strip().split('\t')
total_gc_percentage += float(gc_percentage) * float(num_reads)
total_reads += float(num_reads)
elif line.startswith('SN\tinsert size average:'):
insert_avg = round(float(line.strip().split('\t')[2]))
insert_sizes[sample] = insert_avg
elif line.startswith('SN\treads mapped:'):
total_mapped = float(line.strip().split('\t')[2])
gc_avg[sample] = round(total_gc_percentage / total_reads)
aln_percent[sample]= round(total_mapped / total_reads * 100, 1)
return gc_avg, aln_percent, insert_sizes
def extra_genstats_out(sample_data):
"""
Collects data to be presented in the General stats table and format it
to enable yaml output.
Args:
sample_data (dict): Dictionary containing all parsed metrics
Returns:
dict: Metrics for General stats redy for yaml.dump
"""
data = {
"custom_data": {
"extra_stats": {
"plot_type": "generalstats",
"headers": {
"Average_insert_size": {"max": 800, "min": 0, "suffix": "nt"},
"Average_GC_%": {"max": 100, "min": 0, "suffix": "%"},
"Autosomal_coverage": {"suffix": "X"}
},
"data": {}
}
}}
metrics = ["Average insert size", "Average GC %", "Autosomal coverage"]
for metric in metrics:
for sample, value in sample_data[metric].items():
header = "_".join(metric.split())
data["custom_data"]["extra_stats"]["data"].setdefault(sample, {})[header] = value
return data
def QC_out(qc_fail, qc):
"""
Collects samples that failed QC and format it to enable yaml output.
Args:
qc_fail (dict): Metric information for samples that failed QC
qc (QC object): QC thresholds and functions for pretty formatting
Returns:
dict: QC information ready for yaml.dump
Returns:
dict: Metrics for General stats redy for yaml.dump
"""
version = qc.version
yaml_out = {
"id": "qc_list",
"section_name": "QC check",
"plot_type": "html",
"description": f"List of samples that fail QC criteria according to INS-00123 {version}.",
"data": "\n<ul>\n"}
if len(qc_fail) != 0:
for metric in qc_fail:
limits = qc.pretty_limits(metric)
yaml_out["data"] += f"<li>{metric} ({limits})</li>\n<ul>\n"
for sample, value in qc_fail[metric]:
fail_val = qc.pretty_val(metric, value)
yaml_out["data"] += f"<li>{sample} ({fail_val})</li>\n"
yaml_out["data"] += "</ul>\n"
else:
yaml_out["data"] += "<li>All sample passed QC!</li>\n"
yaml_out["data"] += "</ul>"
return yaml_out
def check_qc(data, qc):
"""
Checks QC metrics against specified thresholds.
Args:
data (dict): Dictionary containing all parsed metrics
qc_ranges (QC object): QC thresholds and functions for pretty formating
Returns:
dict: Metric(s), sample(s) and value(s) that failed QC
"""
failed_metrics = {}
for metric in data:
lt, ut = qc.limits(metric)
if lt == "N/A":
continue
for sample, value in data[metric].items():
if not lt <= value <= ut:
failed_metrics.setdefault(metric, []).append((sample, value))
return failed_metrics
def get_x_cov(reports, coverage):
"""
Parse precalculated values for proportion of reference with a specific coverage
from mosdepth report. The proportion is then converted to percentage.
Args:
reports (list): Paths to mosdepth reports
coverage (int): The coverage of interest
Returns:
dict: Percentage at specified coverage per sample
"""
data = {}
for report in reports:
sample = os.path.basename(os.path.dirname(report))
with open(report) as fin:
cov = csv.reader(fin, delimiter="\t")
for row in cov:
cov_region = row[0]
cov_x = int(row[1])
proportion = float(row[2])
if cov_region == "total" and cov_x == coverage:
data[sample] = proportion * 100
return data
def get_number_variants(reports):
"""
Parse precalculated values for number of unfiltered variants from
snpEff reports.
Args:
reports (list): Paths to snpEff reports
Returns:
dict: Number of unfiltered variants per sample
"""
data = {}
for report in reports:
sample = os.path.basename(os.path.dirname(report))
with open(report) as fin:
for line in fin:
if line.startswith("Number_of_variants_before_filter,"):
data[sample] = int(line.strip().split(", ")[1])
return data
def collect_data(reports):
"""
Function to parse and collect all metrics.
Args:
reports (dict): Paths to reports by report type
Returns:
dict: All parsed metrics for each sample
"""
gc_avg, aln_percent, insert_sizes = get_samstats(reports["samstat"])
data = {
"Autosomal coverage": calculate_avg_coverage(reports["mosdepth_sum"]),
"Coverage ≥10 X": get_x_cov(reports["mosdepth_reg"], 10),
"Coverage ≥30 X": get_x_cov(reports["mosdepth_reg"], 30),
"Unfiltered variants": get_number_variants(reports["snpeff"]),
"Average GC %": gc_avg,
"% Mapped": aln_percent,
"Average insert size": insert_sizes
}
return data
def main():
args = parse_arguments()
analysis_dir = args.analysis_dir
project = args.project
qc = QC()
reports = find_reports(analysis_dir)
if not reports:
sys.exit(1)
all_data = collect_data(reports)
qc_fail = check_qc(all_data, qc)
qc_out = QC_out(qc_fail, qc)
extra_genstats = extra_genstats_out(all_data)
outdir = os.path.join(analysis_dir, "multiqc_qc_check")
os.mkdir(outdir)
with open(os.path.join(outdir, "QC_list_mqc.yaml"), "w") as fout:
yaml.dump(qc_out, fout)
with open(os.path.join(outdir, "extra_stats.yaml"), "w") as fout:
yaml.dump(extra_genstats, fout)
if __name__ == "__main__":
main()