-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsearchindex.js
1 lines (1 loc) · 561 KB
/
searchindex.js
1
Search.setIndex({docnames:["aboutus","citing","documentation-style-guide","gotchas","index","install","modules/abc","modules/algebras","modules/assumptions/ask","modules/assumptions/assume","modules/assumptions/index","modules/assumptions/predicates","modules/assumptions/refine","modules/calculus/index","modules/categories","modules/codegen","modules/combinatorics/fp_groups","modules/combinatorics/graycode","modules/combinatorics/group_constructs","modules/combinatorics/index","modules/combinatorics/named_groups","modules/combinatorics/partitions","modules/combinatorics/pc_groups","modules/combinatorics/perm_groups","modules/combinatorics/permutations","modules/combinatorics/polyhedron","modules/combinatorics/prufer","modules/combinatorics/subsets","modules/combinatorics/tensor_can","modules/combinatorics/testutil","modules/combinatorics/util","modules/concrete","modules/core","modules/crypto","modules/diffgeom","modules/discrete","modules/evalf","modules/functions/combinatorial","modules/functions/elementary","modules/functions/index","modules/functions/special","modules/geometry/curves","modules/geometry/ellipses","modules/geometry/entities","modules/geometry/index","modules/geometry/lines","modules/geometry/plane","modules/geometry/points","modules/geometry/polygons","modules/geometry/utils","modules/holonomic/about","modules/holonomic/convert","modules/holonomic/index","modules/holonomic/internal","modules/holonomic/operations","modules/holonomic/represent","modules/holonomic/uses","modules/index","modules/integrals/g-functions","modules/integrals/integrals","modules/interactive","modules/liealgebras/index","modules/logic","modules/matrices/common","modules/matrices/dense","modules/matrices/expressions","modules/matrices/immutablematrices","modules/matrices/index","modules/matrices/matrices","modules/matrices/sparse","modules/matrices/sparsetools","modules/ntheory","modules/numeric-computation","modules/parsing","modules/physics/continuum_mechanics/beam","modules/physics/continuum_mechanics/beam_problems","modules/physics/continuum_mechanics/index","modules/physics/control/control","modules/physics/control/index","modules/physics/control/lti","modules/physics/hep/index","modules/physics/hydrogen","modules/physics/index","modules/physics/matrices","modules/physics/mechanics/advanced","modules/physics/mechanics/api/body","modules/physics/mechanics/api/expr_manip","modules/physics/mechanics/api/kane_lagrange","modules/physics/mechanics/api/linearize","modules/physics/mechanics/api/part_bod","modules/physics/mechanics/api/printing","modules/physics/mechanics/api/system","modules/physics/mechanics/autolev_parser","modules/physics/mechanics/examples","modules/physics/mechanics/examples/bicycle_example","modules/physics/mechanics/examples/lin_pend_nonmin_example","modules/physics/mechanics/examples/rollingdisc_example","modules/physics/mechanics/examples/rollingdisc_example_kane","modules/physics/mechanics/examples/rollingdisc_example_kane_constraints","modules/physics/mechanics/examples/rollingdisc_example_lagrange","modules/physics/mechanics/index","modules/physics/mechanics/kane","modules/physics/mechanics/lagrange","modules/physics/mechanics/linearize","modules/physics/mechanics/masses","modules/physics/mechanics/reference","modules/physics/mechanics/sympy_mechanics_for_autolev_users","modules/physics/mechanics/symsystem","modules/physics/optics/gaussopt","modules/physics/optics/index","modules/physics/optics/medium","modules/physics/optics/polarization","modules/physics/optics/utils","modules/physics/optics/waves","modules/physics/paulialgebra","modules/physics/qho_1d","modules/physics/quantum/anticommutator","modules/physics/quantum/cartesian","modules/physics/quantum/cg","modules/physics/quantum/circuitplot","modules/physics/quantum/commutator","modules/physics/quantum/constants","modules/physics/quantum/dagger","modules/physics/quantum/gate","modules/physics/quantum/grover","modules/physics/quantum/hilbert","modules/physics/quantum/index","modules/physics/quantum/innerproduct","modules/physics/quantum/operator","modules/physics/quantum/operatorset","modules/physics/quantum/piab","modules/physics/quantum/qapply","modules/physics/quantum/qft","modules/physics/quantum/qubit","modules/physics/quantum/represent","modules/physics/quantum/shor","modules/physics/quantum/spin","modules/physics/quantum/state","modules/physics/quantum/tensorproduct","modules/physics/secondquant","modules/physics/sho","modules/physics/units/dimensions","modules/physics/units/examples","modules/physics/units/index","modules/physics/units/philosophy","modules/physics/units/prefixes","modules/physics/units/quantities","modules/physics/units/unitsystem","modules/physics/vector/advanced","modules/physics/vector/api/classes","modules/physics/vector/api/fieldfunctions","modules/physics/vector/api/functions","modules/physics/vector/api/kinematics","modules/physics/vector/api/printing","modules/physics/vector/fields","modules/physics/vector/index","modules/physics/vector/kinematics","modules/physics/vector/vectors","modules/physics/wigner","modules/plotting","modules/polys/agca","modules/polys/basics","modules/polys/domainmatrix","modules/polys/domainsintro","modules/polys/domainsref","modules/polys/index","modules/polys/internals","modules/polys/literature","modules/polys/reference","modules/polys/ringseries","modules/polys/solvers","modules/polys/wester","modules/printing","modules/rewriting","modules/series/formal","modules/series/fourier","modules/series/index","modules/series/limitseq","modules/series/sequences","modules/series/series","modules/sets","modules/simplify/fu","modules/simplify/hyperexpand","modules/simplify/index","modules/simplify/simplify","modules/solvers/diophantine","modules/solvers/inequalities","modules/solvers/ode","modules/solvers/pde","modules/solvers/solvers","modules/solvers/solveset","modules/stats","modules/tensor/array","modules/tensor/index","modules/tensor/index_methods","modules/tensor/indexed","modules/tensor/tensor","modules/tensor/toperators","modules/testing/index","modules/testing/pytest","modules/testing/randtest","modules/testing/runtests","modules/utilities/autowrap","modules/utilities/codegen","modules/utilities/decorator","modules/utilities/enumerative","modules/utilities/index","modules/utilities/iterables","modules/utilities/lambdify","modules/utilities/memoization","modules/utilities/misc","modules/utilities/pkgdata","modules/utilities/source","modules/utilities/timeutils","modules/vector/api/classes","modules/vector/api/orienterclasses","modules/vector/api/vectorfunctions","modules/vector/basics","modules/vector/coordsys","modules/vector/examples","modules/vector/fields","modules/vector/index","modules/vector/intro","modules/vector/vector_integration","outreach","special_topics/classification","special_topics/finite_diff_derivatives","special_topics/index","special_topics/intro","tutorial/basic_operations","tutorial/calculus","tutorial/gotchas","tutorial/index","tutorial/intro","tutorial/manipulation","tutorial/matrices","tutorial/preliminaries","tutorial/printing","tutorial/simplification","tutorial/solvers","wiki"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":2,"sphinx.domains.rst":2,"sphinx.domains.std":1,sphinx:56},filenames:["aboutus.rst","citing.rst","documentation-style-guide.rst","gotchas.rst","index.rst","install.rst","modules/abc.rst","modules/algebras.rst","modules/assumptions/ask.rst","modules/assumptions/assume.rst","modules/assumptions/index.rst","modules/assumptions/predicates.rst","modules/assumptions/refine.rst","modules/calculus/index.rst","modules/categories.rst","modules/codegen.rst","modules/combinatorics/fp_groups.rst","modules/combinatorics/graycode.rst","modules/combinatorics/group_constructs.rst","modules/combinatorics/index.rst","modules/combinatorics/named_groups.rst","modules/combinatorics/partitions.rst","modules/combinatorics/pc_groups.rst","modules/combinatorics/perm_groups.rst","modules/combinatorics/permutations.rst","modules/combinatorics/polyhedron.rst","modules/combinatorics/prufer.rst","modules/combinatorics/subsets.rst","modules/combinatorics/tensor_can.rst","modules/combinatorics/testutil.rst","modules/combinatorics/util.rst","modules/concrete.rst","modules/core.rst","modules/crypto.rst","modules/diffgeom.rst","modules/discrete.rst","modules/evalf.rst","modules/functions/combinatorial.rst","modules/functions/elementary.rst","modules/functions/index.rst","modules/functions/special.rst","modules/geometry/curves.rst","modules/geometry/ellipses.rst","modules/geometry/entities.rst","modules/geometry/index.rst","modules/geometry/lines.rst","modules/geometry/plane.rst","modules/geometry/points.rst","modules/geometry/polygons.rst","modules/geometry/utils.rst","modules/holonomic/about.rst","modules/holonomic/convert.rst","modules/holonomic/index.rst","modules/holonomic/internal.rst","modules/holonomic/operations.rst","modules/holonomic/represent.rst","modules/holonomic/uses.rst","modules/index.rst","modules/integrals/g-functions.rst","modules/integrals/integrals.rst","modules/interactive.rst","modules/liealgebras/index.rst","modules/logic.rst","modules/matrices/common.rst","modules/matrices/dense.rst","modules/matrices/expressions.rst","modules/matrices/immutablematrices.rst","modules/matrices/index.rst","modules/matrices/matrices.rst","modules/matrices/sparse.rst","modules/matrices/sparsetools.rst","modules/ntheory.rst","modules/numeric-computation.rst","modules/parsing.rst","modules/physics/continuum_mechanics/beam.rst","modules/physics/continuum_mechanics/beam_problems.rst","modules/physics/continuum_mechanics/index.rst","modules/physics/control/control.rst","modules/physics/control/index.rst","modules/physics/control/lti.rst","modules/physics/hep/index.rst","modules/physics/hydrogen.rst","modules/physics/index.rst","modules/physics/matrices.rst","modules/physics/mechanics/advanced.rst","modules/physics/mechanics/api/body.rst","modules/physics/mechanics/api/expr_manip.rst","modules/physics/mechanics/api/kane_lagrange.rst","modules/physics/mechanics/api/linearize.rst","modules/physics/mechanics/api/part_bod.rst","modules/physics/mechanics/api/printing.rst","modules/physics/mechanics/api/system.rst","modules/physics/mechanics/autolev_parser.rst","modules/physics/mechanics/examples.rst","modules/physics/mechanics/examples/bicycle_example.rst","modules/physics/mechanics/examples/lin_pend_nonmin_example.rst","modules/physics/mechanics/examples/rollingdisc_example.rst","modules/physics/mechanics/examples/rollingdisc_example_kane.rst","modules/physics/mechanics/examples/rollingdisc_example_kane_constraints.rst","modules/physics/mechanics/examples/rollingdisc_example_lagrange.rst","modules/physics/mechanics/index.rst","modules/physics/mechanics/kane.rst","modules/physics/mechanics/lagrange.rst","modules/physics/mechanics/linearize.rst","modules/physics/mechanics/masses.rst","modules/physics/mechanics/reference.rst","modules/physics/mechanics/sympy_mechanics_for_autolev_users.rst","modules/physics/mechanics/symsystem.rst","modules/physics/optics/gaussopt.rst","modules/physics/optics/index.rst","modules/physics/optics/medium.rst","modules/physics/optics/polarization.rst","modules/physics/optics/utils.rst","modules/physics/optics/waves.rst","modules/physics/paulialgebra.rst","modules/physics/qho_1d.rst","modules/physics/quantum/anticommutator.rst","modules/physics/quantum/cartesian.rst","modules/physics/quantum/cg.rst","modules/physics/quantum/circuitplot.rst","modules/physics/quantum/commutator.rst","modules/physics/quantum/constants.rst","modules/physics/quantum/dagger.rst","modules/physics/quantum/gate.rst","modules/physics/quantum/grover.rst","modules/physics/quantum/hilbert.rst","modules/physics/quantum/index.rst","modules/physics/quantum/innerproduct.rst","modules/physics/quantum/operator.rst","modules/physics/quantum/operatorset.rst","modules/physics/quantum/piab.rst","modules/physics/quantum/qapply.rst","modules/physics/quantum/qft.rst","modules/physics/quantum/qubit.rst","modules/physics/quantum/represent.rst","modules/physics/quantum/shor.rst","modules/physics/quantum/spin.rst","modules/physics/quantum/state.rst","modules/physics/quantum/tensorproduct.rst","modules/physics/secondquant.rst","modules/physics/sho.rst","modules/physics/units/dimensions.rst","modules/physics/units/examples.rst","modules/physics/units/index.rst","modules/physics/units/philosophy.rst","modules/physics/units/prefixes.rst","modules/physics/units/quantities.rst","modules/physics/units/unitsystem.rst","modules/physics/vector/advanced.rst","modules/physics/vector/api/classes.rst","modules/physics/vector/api/fieldfunctions.rst","modules/physics/vector/api/functions.rst","modules/physics/vector/api/kinematics.rst","modules/physics/vector/api/printing.rst","modules/physics/vector/fields.rst","modules/physics/vector/index.rst","modules/physics/vector/kinematics.rst","modules/physics/vector/vectors.rst","modules/physics/wigner.rst","modules/plotting.rst","modules/polys/agca.rst","modules/polys/basics.rst","modules/polys/domainmatrix.rst","modules/polys/domainsintro.rst","modules/polys/domainsref.rst","modules/polys/index.rst","modules/polys/internals.rst","modules/polys/literature.rst","modules/polys/reference.rst","modules/polys/ringseries.rst","modules/polys/solvers.rst","modules/polys/wester.rst","modules/printing.rst","modules/rewriting.rst","modules/series/formal.rst","modules/series/fourier.rst","modules/series/index.rst","modules/series/limitseq.rst","modules/series/sequences.rst","modules/series/series.rst","modules/sets.rst","modules/simplify/fu.rst","modules/simplify/hyperexpand.rst","modules/simplify/index.rst","modules/simplify/simplify.rst","modules/solvers/diophantine.rst","modules/solvers/inequalities.rst","modules/solvers/ode.rst","modules/solvers/pde.rst","modules/solvers/solvers.rst","modules/solvers/solveset.rst","modules/stats.rst","modules/tensor/array.rst","modules/tensor/index.rst","modules/tensor/index_methods.rst","modules/tensor/indexed.rst","modules/tensor/tensor.rst","modules/tensor/toperators.rst","modules/testing/index.rst","modules/testing/pytest.rst","modules/testing/randtest.rst","modules/testing/runtests.rst","modules/utilities/autowrap.rst","modules/utilities/codegen.rst","modules/utilities/decorator.rst","modules/utilities/enumerative.rst","modules/utilities/index.rst","modules/utilities/iterables.rst","modules/utilities/lambdify.rst","modules/utilities/memoization.rst","modules/utilities/misc.rst","modules/utilities/pkgdata.rst","modules/utilities/source.rst","modules/utilities/timeutils.rst","modules/vector/api/classes.rst","modules/vector/api/orienterclasses.rst","modules/vector/api/vectorfunctions.rst","modules/vector/basics.rst","modules/vector/coordsys.rst","modules/vector/examples.rst","modules/vector/fields.rst","modules/vector/index.rst","modules/vector/intro.rst","modules/vector/vector_integration.rst","outreach.rst","special_topics/classification.rst","special_topics/finite_diff_derivatives.rst","special_topics/index.rst","special_topics/intro.rst","tutorial/basic_operations.rst","tutorial/calculus.rst","tutorial/gotchas.rst","tutorial/index.rst","tutorial/intro.rst","tutorial/manipulation.rst","tutorial/matrices.rst","tutorial/preliminaries.rst","tutorial/printing.rst","tutorial/simplification.rst","tutorial/solvers.rst","wiki.rst"],objects:{"":{sympy:[57,0,0,"-"]},"sympy.algebras":{Quaternion:[7,1,1,""]},"sympy.algebras.Quaternion":{add:[7,2,1,""],exp:[7,2,1,""],from_axis_angle:[7,2,1,""],from_rotation_matrix:[7,2,1,""],integrate:[7,2,1,""],inverse:[7,2,1,""],mul:[7,2,1,""],norm:[7,2,1,""],normalize:[7,2,1,""],pow:[7,2,1,""],pow_cos_sin:[7,2,1,""],rotate_point:[7,2,1,""],to_axis_angle:[7,2,1,""],to_rotation_matrix:[7,2,1,""]},"sympy.assumptions":{ask:[8,0,0,"-"],assume:[9,0,0,"-"],predicates:[11,0,0,"-"],refine:[12,0,0,"-"]},"sympy.assumptions.ask":{AssumptionKeys:[8,1,1,""],ask:[8,3,1,""],ask_full_inference:[8,3,1,""],compute_known_facts:[8,3,1,""],register_handler:[8,3,1,""],remove_handler:[8,3,1,""]},"sympy.assumptions.assume":{AppliedPredicate:[9,1,1,""],AssumptionsContext:[9,1,1,""],Predicate:[9,1,1,""],UndefinedPredicate:[9,1,1,""],assuming:[9,3,1,""]},"sympy.assumptions.assume.AppliedPredicate":{"function":[9,2,1,""],arg:[9,2,1,""],arguments:[9,2,1,""]},"sympy.assumptions.assume.AssumptionsContext":{add:[9,2,1,""]},"sympy.assumptions.assume.Predicate":{eval:[9,2,1,""],handler:[9,4,1,""],register:[9,2,1,""],register_many:[9,2,1,""]},"sympy.assumptions.predicates.calculus":{FinitePredicate:[11,1,1,""],InfinitePredicate:[11,1,1,""]},"sympy.assumptions.predicates.calculus.FinitePredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.calculus.InfinitePredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.common":{CommutativePredicate:[11,1,1,""],IsTruePredicate:[11,1,1,""]},"sympy.assumptions.predicates.common.CommutativePredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.common.IsTruePredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices":{ComplexElementsPredicate:[11,1,1,""],DiagonalPredicate:[11,1,1,""],FullRankPredicate:[11,1,1,""],IntegerElementsPredicate:[11,1,1,""],InvertiblePredicate:[11,1,1,""],LowerTriangularPredicate:[11,1,1,""],NormalPredicate:[11,1,1,""],OrthogonalPredicate:[11,1,1,""],PositiveDefinitePredicate:[11,1,1,""],RealElementsPredicate:[11,1,1,""],SingularPredicate:[11,1,1,""],SquarePredicate:[11,1,1,""],SymmetricPredicate:[11,1,1,""],TriangularPredicate:[11,1,1,""],UnitTriangularPredicate:[11,1,1,""],UnitaryPredicate:[11,1,1,""],UpperTriangularPredicate:[11,1,1,""]},"sympy.assumptions.predicates.matrices.ComplexElementsPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.DiagonalPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.FullRankPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.IntegerElementsPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.InvertiblePredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.LowerTriangularPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.NormalPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.OrthogonalPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.PositiveDefinitePredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.RealElementsPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.SingularPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.SquarePredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.SymmetricPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.TriangularPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.UnitTriangularPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.UnitaryPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.matrices.UpperTriangularPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.ntheory":{CompositePredicate:[11,1,1,""],EvenPredicate:[11,1,1,""],OddPredicate:[11,1,1,""],PrimePredicate:[11,1,1,""]},"sympy.assumptions.predicates.ntheory.CompositePredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.ntheory.EvenPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.ntheory.OddPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.ntheory.PrimePredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.order":{NegativePredicate:[11,1,1,""],NonNegativePredicate:[11,1,1,""],NonPositivePredicate:[11,1,1,""],NonZeroPredicate:[11,1,1,""],ZeroPredicate:[11,1,1,""]},"sympy.assumptions.predicates.order.NegativePredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.order.NonNegativePredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.order.NonPositivePredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.order.NonZeroPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.order.ZeroPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.sets":{AlgebraicPredicate:[11,1,1,""],AntihermitianPredicate:[11,1,1,""],ComplexPredicate:[11,1,1,""],ExtendedRealPredicate:[11,1,1,""],HermitianPredicate:[11,1,1,""],ImaginaryPredicate:[11,1,1,""],IntegerPredicate:[11,1,1,""],IrrationalPredicate:[11,1,1,""],RationalPredicate:[11,1,1,""],RealPredicate:[11,1,1,""],TranscendentalPredicate:[11,1,1,""]},"sympy.assumptions.predicates.sets.AlgebraicPredicate":{AlgebraicHandler:[11,4,1,""],handler:[11,4,1,""]},"sympy.assumptions.predicates.sets.AntihermitianPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.sets.ComplexPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.sets.ExtendedRealPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.sets.HermitianPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.sets.ImaginaryPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.sets.IntegerPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.sets.IrrationalPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.sets.RationalPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.sets.RealPredicate":{handler:[11,4,1,""]},"sympy.assumptions.predicates.sets.TranscendentalPredicate":{handler:[11,4,1,""]},"sympy.assumptions.refine":{refine:[12,3,1,""],refine_Pow:[12,3,1,""],refine_abs:[12,3,1,""],refine_arg:[12,3,1,""],refine_atan2:[12,3,1,""],refine_im:[12,3,1,""],refine_matrixelement:[12,3,1,""],refine_re:[12,3,1,""],refine_sign:[12,3,1,""]},"sympy.calculus":{euler:[13,0,0,"-"],finite_diff:[13,0,0,"-"],singularities:[13,0,0,"-"],util:[13,0,0,"-"]},"sympy.calculus.euler":{euler_equations:[13,3,1,""]},"sympy.calculus.finite_diff":{apply_finite_diff:[13,3,1,""],as_finite_diff:[13,3,1,""],differentiate_finite:[13,3,1,""],finite_diff_weights:[13,3,1,""]},"sympy.calculus.singularities":{is_decreasing:[13,3,1,""],is_increasing:[13,3,1,""],is_monotonic:[13,3,1,""],is_strictly_decreasing:[13,3,1,""],is_strictly_increasing:[13,3,1,""],monotonicity_helper:[13,3,1,""],singularities:[13,3,1,""]},"sympy.calculus.util":{AccumBounds:[13,4,1,""],AccumulationBounds:[13,1,1,""],continuous_domain:[13,3,1,""],function_range:[13,3,1,""],is_convex:[13,3,1,""],lcim:[13,3,1,""],maximum:[13,3,1,""],minimum:[13,3,1,""],not_empty_in:[13,3,1,""],periodicity:[13,3,1,""],stationary_points:[13,3,1,""]},"sympy.calculus.util.AccumulationBounds":{delta:[13,2,1,""],intersection:[13,2,1,""],max:[13,2,1,""],mid:[13,2,1,""],min:[13,2,1,""]},"sympy.categories":{Category:[14,1,1,""],CompositeMorphism:[14,1,1,""],Diagram:[14,1,1,""],IdentityMorphism:[14,1,1,""],Morphism:[14,1,1,""],NamedMorphism:[14,1,1,""],Object:[14,1,1,""],diagram_drawing:[14,0,0,"-"]},"sympy.categories.Category":{commutative_diagrams:[14,2,1,""],name:[14,2,1,""],objects:[14,2,1,""]},"sympy.categories.CompositeMorphism":{codomain:[14,2,1,""],components:[14,2,1,""],domain:[14,2,1,""],flatten:[14,2,1,""]},"sympy.categories.Diagram":{conclusions:[14,2,1,""],hom:[14,2,1,""],is_subdiagram:[14,2,1,""],objects:[14,2,1,""],premises:[14,2,1,""],subdiagram_from_objects:[14,2,1,""]},"sympy.categories.Morphism":{codomain:[14,2,1,""],compose:[14,2,1,""],domain:[14,2,1,""]},"sympy.categories.NamedMorphism":{name:[14,2,1,""]},"sympy.categories.diagram_drawing":{ArrowStringDescription:[14,1,1,""],DiagramGrid:[14,1,1,""],XypicDiagramDrawer:[14,1,1,""],preview_diagram:[14,3,1,""],xypic_draw_diagram:[14,3,1,""]},"sympy.categories.diagram_drawing.DiagramGrid":{height:[14,2,1,""],morphisms:[14,2,1,""],width:[14,2,1,""]},"sympy.categories.diagram_drawing.XypicDiagramDrawer":{draw:[14,2,1,""]},"sympy.codegen":{algorithms:[15,0,0,"-"],approximations:[15,0,0,"-"],ast:[15,0,0,"-"],cfunctions:[15,0,0,"-"],cnodes:[15,0,0,"-"],cutils:[15,0,0,"-"],cxxnodes:[15,0,0,"-"],fnodes:[15,0,0,"-"],futils:[15,0,0,"-"],matrix_nodes:[15,0,0,"-"],pyutils:[15,0,0,"-"],rewriting:[15,0,0,"-"]},"sympy.codegen.algorithms":{newtons_method:[15,3,1,""],newtons_method_function:[15,3,1,""]},"sympy.codegen.approximations":{SeriesApprox:[15,1,1,""],SumApprox:[15,1,1,""]},"sympy.codegen.ast":{Assignment:[15,1,1,""],AssignmentBase:[15,1,1,""],Attribute:[15,1,1,""],AugmentedAssignment:[15,1,1,""],BreakToken:[15,1,1,""],CodeBlock:[15,1,1,""],Comment:[15,1,1,""],ComplexType:[15,1,1,""],ContinueToken:[15,1,1,""],Declaration:[15,1,1,""],Element:[15,1,1,""],FloatBaseType:[15,1,1,""],FloatType:[15,1,1,""],For:[15,1,1,""],FunctionCall:[15,1,1,""],FunctionDefinition:[15,1,1,""],FunctionPrototype:[15,1,1,""],IntBaseType:[15,1,1,""],Node:[15,1,1,""],NoneToken:[15,1,1,""],Pointer:[15,1,1,""],Print:[15,1,1,""],QuotedString:[15,1,1,""],Return:[15,1,1,""],Scope:[15,1,1,""],SignedIntType:[15,1,1,""],Stream:[15,1,1,""],String:[15,1,1,""],Token:[15,1,1,""],Type:[15,1,1,""],UnsignedIntType:[15,1,1,""],Variable:[15,1,1,""],While:[15,1,1,""],aug_assign:[15,3,1,""]},"sympy.codegen.ast.CodeBlock":{cse:[15,2,1,""],topological_sort:[15,2,1,""]},"sympy.codegen.ast.FloatBaseType":{cast_nocheck:[15,4,1,""]},"sympy.codegen.ast.FloatType":{cast_nocheck:[15,2,1,""],decimal_dig:[15,2,1,""],dig:[15,2,1,""],eps:[15,2,1,""],max:[15,2,1,""],max_exponent:[15,2,1,""],min_exponent:[15,2,1,""],tiny:[15,2,1,""]},"sympy.codegen.ast.Node":{attr_params:[15,2,1,""]},"sympy.codegen.ast.Token":{kwargs:[15,2,1,""]},"sympy.codegen.ast.Type":{cast_check:[15,2,1,""],from_expr:[15,2,1,""]},"sympy.codegen.ast.Variable":{as_Declaration:[15,2,1,""],deduced:[15,2,1,""]},"sympy.codegen.cfunctions":{Cbrt:[15,1,1,""],Sqrt:[15,1,1,""],exp2:[15,1,1,""],expm1:[15,1,1,""],fma:[15,1,1,""],hypot:[15,1,1,""],log10:[15,1,1,""],log1p:[15,1,1,""],log2:[15,1,1,""]},"sympy.codegen.cfunctions.Cbrt":{fdiff:[15,2,1,""]},"sympy.codegen.cfunctions.Sqrt":{fdiff:[15,2,1,""]},"sympy.codegen.cfunctions.exp2":{fdiff:[15,2,1,""]},"sympy.codegen.cfunctions.expm1":{fdiff:[15,2,1,""]},"sympy.codegen.cfunctions.fma":{fdiff:[15,2,1,""]},"sympy.codegen.cfunctions.hypot":{fdiff:[15,2,1,""]},"sympy.codegen.cfunctions.log10":{fdiff:[15,2,1,""]},"sympy.codegen.cfunctions.log1p":{fdiff:[15,2,1,""]},"sympy.codegen.cfunctions.log2":{fdiff:[15,2,1,""]},"sympy.codegen.cnodes":{"goto":[15,1,1,""],CommaOperator:[15,1,1,""],Label:[15,1,1,""],PostDecrement:[15,1,1,""],PostIncrement:[15,1,1,""],PreDecrement:[15,1,1,""],PreIncrement:[15,1,1,""],alignof:[15,3,1,""],sizeof:[15,3,1,""],struct:[15,1,1,""],union:[15,1,1,""]},"sympy.codegen.cutils":{render_as_source_file:[15,3,1,""]},"sympy.codegen.cxxnodes":{using:[15,1,1,""]},"sympy.codegen.fnodes":{ArrayConstructor:[15,1,1,""],Do:[15,1,1,""],Extent:[15,1,1,""],FortranReturn:[15,1,1,""],GoTo:[15,1,1,""],ImpliedDoLoop:[15,1,1,""],Module:[15,1,1,""],Program:[15,1,1,""],Subroutine:[15,1,1,""],SubroutineCall:[15,1,1,""],allocated:[15,3,1,""],array:[15,3,1,""],bind_C:[15,3,1,""],cmplx:[15,1,1,""],dimension:[15,3,1,""],dsign:[15,1,1,""],isign:[15,1,1,""],kind:[15,1,1,""],lbound:[15,3,1,""],literal_dp:[15,1,1,""],literal_sp:[15,1,1,""],merge:[15,1,1,""],reshape:[15,3,1,""],shape:[15,3,1,""],size:[15,3,1,""],use:[15,1,1,""],use_rename:[15,1,1,""]},"sympy.codegen.futils":{render_as_module:[15,3,1,""]},"sympy.codegen.matrix_nodes":{MatrixSolve:[15,1,1,""]},"sympy.codegen.pyutils":{render_as_module:[15,3,1,""]},"sympy.codegen.rewriting":{Optimization:[15,1,1,""],ReplaceOptim:[15,1,1,""],create_expand_pow_optimization:[15,3,1,""],optimize:[15,3,1,""]},"sympy.combinatorics":{generators:[24,0,0,"-"],graycode:[17,0,0,"-"],group_constructs:[18,0,0,"-"],named_groups:[20,0,0,"-"],partitions:[21,0,0,"-"],perm_groups:[23,0,0,"-"],permutations:[24,0,0,"-"],polyhedron:[25,0,0,"-"],prufer:[26,0,0,"-"],subsets:[27,0,0,"-"],tensor_can:[28,0,0,"-"],testutil:[29,0,0,"-"],util:[30,0,0,"-"]},"sympy.combinatorics.generators":{alternating:[24,2,1,""],cyclic:[24,2,1,""],dihedral:[24,2,1,""],symmetric:[24,2,1,""]},"sympy.combinatorics.graycode":{GrayCode:[17,1,1,""],bin_to_gray:[17,2,1,""],get_subset_from_bitstring:[17,2,1,""],gray_to_bin:[17,2,1,""],graycode_subsets:[17,2,1,""],random_bitstring:[17,2,1,""]},"sympy.combinatorics.graycode.GrayCode":{current:[17,2,1,""],generate_gray:[17,2,1,""],n:[17,2,1,""],next:[17,2,1,""],rank:[17,2,1,""],selections:[17,2,1,""],skip:[17,2,1,""],unrank:[17,2,1,""]},"sympy.combinatorics.group_constructs":{DirectProduct:[18,3,1,""]},"sympy.combinatorics.named_groups":{AbelianGroup:[20,3,1,""],AlternatingGroup:[20,3,1,""],CyclicGroup:[20,3,1,""],DihedralGroup:[20,3,1,""],SymmetricGroup:[20,3,1,""]},"sympy.combinatorics.partitions":{IntegerPartition:[21,1,1,""],Partition:[21,1,1,""],RGS_enum:[21,3,1,""],RGS_generalized:[21,3,1,""],RGS_rank:[21,3,1,""],RGS_unrank:[21,3,1,""],random_integer_partition:[21,3,1,""]},"sympy.combinatorics.partitions.IntegerPartition":{as_dict:[21,2,1,""],as_ferrers:[21,2,1,""],conjugate:[21,2,1,""],next_lex:[21,2,1,""],prev_lex:[21,2,1,""]},"sympy.combinatorics.partitions.Partition":{RGS:[21,2,1,""],from_rgs:[21,2,1,""],partition:[21,2,1,""],rank:[21,2,1,""],sort_key:[21,2,1,""]},"sympy.combinatorics.perm_groups":{PermutationGroup:[23,1,1,""]},"sympy.combinatorics.perm_groups.PermutationGroup":{__contains__:[23,2,1,""],__eq__:[23,2,1,""],__mul__:[23,2,1,""],__new__:[23,2,1,""],__weakref__:[23,4,1,""],_coset_representative:[23,2,1,""],_distinct_primes_lemma:[23,2,1,""],_elements:[23,2,1,""],_eval_is_alt_sym_monte_carlo:[23,2,1,""],_eval_is_alt_sym_naive:[23,2,1,""],_p_elements_group:[23,2,1,""],_random_pr_init:[23,2,1,""],_sylow_alt_sym:[23,2,1,""],_union_find_merge:[23,2,1,""],_union_find_rep:[23,2,1,""],_verify:[23,2,1,""],abelian_invariants:[23,2,1,""],base:[23,2,1,""],baseswap:[23,2,1,""],basic_orbits:[23,2,1,""],basic_stabilizers:[23,2,1,""],basic_transversals:[23,2,1,""],center:[23,2,1,""],centralizer:[23,2,1,""],commutator:[23,2,1,""],composition_series:[23,2,1,""],conjugacy_class:[23,2,1,""],conjugacy_classes:[23,2,1,""],contains:[23,2,1,""],coset_factor:[23,2,1,""],coset_rank:[23,2,1,""],coset_table:[23,2,1,""],coset_transversal:[23,2,1,""],coset_unrank:[23,2,1,""],degree:[23,2,1,""],derived_series:[23,2,1,""],derived_subgroup:[23,2,1,""],elements:[23,2,1,""],generate:[23,2,1,""],generate_dimino:[23,2,1,""],generate_schreier_sims:[23,2,1,""],generator_product:[23,2,1,""],generators:[23,2,1,""],identity:[23,2,1,""],index:[23,2,1,""],is_abelian:[23,2,1,""],is_alt_sym:[23,2,1,""],is_alternating:[23,2,1,""],is_cyclic:[23,2,1,""],is_elementary:[23,2,1,""],is_nilpotent:[23,2,1,""],is_normal:[23,2,1,""],is_perfect:[23,2,1,""],is_polycyclic:[23,2,1,""],is_primitive:[23,2,1,""],is_solvable:[23,2,1,""],is_subgroup:[23,2,1,""],is_symmetric:[23,2,1,""],is_transitive:[23,2,1,""],is_trivial:[23,2,1,""],lower_central_series:[23,2,1,""],make_perm:[23,2,1,""],max_div:[23,2,1,""],minimal_block:[23,2,1,""],minimal_blocks:[23,2,1,""],normal_closure:[23,2,1,""],orbit:[23,2,1,""],orbit_rep:[23,2,1,""],orbit_transversal:[23,2,1,""],orbits:[23,2,1,""],order:[23,2,1,""],pointwise_stabilizer:[23,2,1,""],polycyclic_group:[23,2,1,""],presentation:[23,2,1,""],random:[23,2,1,""],random_pr:[23,2,1,""],random_stab:[23,2,1,""],schreier_sims:[23,2,1,""],schreier_sims_incremental:[23,2,1,""],schreier_sims_random:[23,2,1,""],schreier_vector:[23,2,1,""],stabilizer:[23,2,1,""],strong_gens:[23,2,1,""],strong_presentation:[23,2,1,""],subgroup:[23,2,1,""],subgroup_search:[23,2,1,""],sylow_subgroup:[23,2,1,""],transitivity_degree:[23,2,1,""]},"sympy.combinatorics.permutations":{Cycle:[24,1,1,""],Permutation:[24,1,1,""],_af_parity:[24,3,1,""]},"sympy.combinatorics.permutations.Cycle":{list:[24,2,1,""]},"sympy.combinatorics.permutations.Permutation":{apply:[24,2,1,""],array_form:[24,2,1,""],ascents:[24,2,1,""],atoms:[24,2,1,""],cardinality:[24,2,1,""],commutator:[24,2,1,""],commutes_with:[24,2,1,""],cycle_structure:[24,2,1,""],cycles:[24,2,1,""],cyclic_form:[24,2,1,""],descents:[24,2,1,""],from_inversion_vector:[24,2,1,""],from_sequence:[24,2,1,""],full_cyclic_form:[24,2,1,""],get_adjacency_distance:[24,2,1,""],get_adjacency_matrix:[24,2,1,""],get_positional_distance:[24,2,1,""],get_precedence_distance:[24,2,1,""],get_precedence_matrix:[24,2,1,""],index:[24,2,1,""],inversion_vector:[24,2,1,""],inversions:[24,2,1,""],is_Empty:[24,2,1,""],is_Identity:[24,2,1,""],is_Singleton:[24,2,1,""],is_even:[24,2,1,""],is_odd:[24,2,1,""],josephus:[24,2,1,""],length:[24,2,1,""],list:[24,2,1,""],max:[24,2,1,""],min:[24,2,1,""],mul_inv:[24,2,1,""],next_lex:[24,2,1,""],next_nonlex:[24,2,1,""],next_trotterjohnson:[24,2,1,""],order:[24,2,1,""],parity:[24,2,1,""],random:[24,2,1,""],rank:[24,2,1,""],rank_nonlex:[24,2,1,""],rank_trotterjohnson:[24,2,1,""],resize:[24,2,1,""],rmul:[24,2,1,""],rmul_with_af:[24,2,1,""],runs:[24,2,1,""],signature:[24,2,1,""],size:[24,2,1,""],support:[24,2,1,""],transpositions:[24,2,1,""],unrank_lex:[24,2,1,""],unrank_nonlex:[24,2,1,""],unrank_trotterjohnson:[24,2,1,""]},"sympy.combinatorics.polyhedron":{Polyhedron:[25,1,1,""]},"sympy.combinatorics.polyhedron.Polyhedron":{array_form:[25,2,1,""],corners:[25,2,1,""],cyclic_form:[25,2,1,""],edges:[25,2,1,""],faces:[25,2,1,""],pgroup:[25,2,1,""],reset:[25,2,1,""],rotate:[25,2,1,""],size:[25,2,1,""],vertices:[25,2,1,""]},"sympy.combinatorics.prufer":{Prufer:[26,1,1,""]},"sympy.combinatorics.prufer.Prufer":{edges:[26,2,1,""],next:[26,2,1,""],nodes:[26,2,1,""],prev:[26,2,1,""],prufer_rank:[26,2,1,""],prufer_repr:[26,2,1,""],rank:[26,2,1,""],size:[26,2,1,""],to_prufer:[26,2,1,""],to_tree:[26,2,1,""],tree_repr:[26,2,1,""],unrank:[26,2,1,""]},"sympy.combinatorics.subsets":{Subset:[27,1,1,""],ksubsets:[27,2,1,""]},"sympy.combinatorics.subsets.Subset":{bitlist_from_subset:[27,2,1,""],cardinality:[27,2,1,""],iterate_binary:[27,2,1,""],iterate_graycode:[27,2,1,""],next_binary:[27,2,1,""],next_gray:[27,2,1,""],next_lexicographic:[27,2,1,""],prev_binary:[27,2,1,""],prev_gray:[27,2,1,""],prev_lexicographic:[27,2,1,""],rank_binary:[27,2,1,""],rank_gray:[27,2,1,""],rank_lexicographic:[27,2,1,""],size:[27,2,1,""],subset:[27,2,1,""],subset_from_bitlist:[27,2,1,""],subset_indices:[27,2,1,""],superset:[27,2,1,""],superset_size:[27,2,1,""],unrank_binary:[27,2,1,""],unrank_gray:[27,2,1,""]},"sympy.combinatorics.tensor_can":{bsgs_direct_product:[28,3,1,""],canonicalize:[28,3,1,""],double_coset_can_rep:[28,3,1,""],get_symmetric_group_sgs:[28,3,1,""]},"sympy.combinatorics.testutil":{_cmp_perm_lists:[29,3,1,""],_naive_list_centralizer:[29,3,1,""],_verify_bsgs:[29,3,1,""],_verify_centralizer:[29,3,1,""],_verify_normal_closure:[29,3,1,""]},"sympy.combinatorics.util":{_base_ordering:[30,3,1,""],_check_cycles_alt_sym:[30,3,1,""],_distribute_gens_by_base:[30,3,1,""],_handle_precomputed_bsgs:[30,3,1,""],_orbits_transversals_from_bsgs:[30,3,1,""],_remove_gens:[30,3,1,""],_strip:[30,3,1,""],_strong_gens_from_distr:[30,3,1,""]},"sympy.concrete.expr_with_intlimits":{ExprWithIntLimits:[31,1,1,""]},"sympy.concrete.expr_with_intlimits.ExprWithIntLimits":{change_index:[31,2,1,""],has_empty_sequence:[31,2,1,""],index:[31,2,1,""],reorder:[31,2,1,""],reorder_limit:[31,2,1,""]},"sympy.concrete.expr_with_limits":{ExprWithLimits:[59,1,1,""]},"sympy.concrete.expr_with_limits.ExprWithLimits":{"function":[59,2,1,""],bound_symbols:[59,2,1,""],free_symbols:[59,2,1,""],has_finite_limits:[59,2,1,""],has_reversed_limits:[59,2,1,""],is_number:[59,2,1,""],limits:[59,2,1,""],variables:[59,2,1,""]},"sympy.concrete.gosper":{gosper_normal:[31,3,1,""],gosper_sum:[31,3,1,""],gosper_term:[31,3,1,""]},"sympy.concrete.products":{Product:[31,1,1,""],product:[31,3,1,""]},"sympy.concrete.products.Product":{is_convergent:[31,2,1,""],reverse_order:[31,2,1,""]},"sympy.concrete.summations":{Sum:[31,1,1,""],summation:[31,3,1,""]},"sympy.concrete.summations.Sum":{euler_maclaurin:[31,2,1,""],eval_zeta_function:[31,2,1,""],is_absolutely_convergent:[31,2,1,""],is_convergent:[31,2,1,""],reverse_order:[31,2,1,""]},"sympy.core":{"function":[32,0,0,"-"],add:[32,0,0,"-"],assumptions:[32,0,0,"-"],basic:[32,0,0,"-"],cache:[32,0,0,"-"],compatibility:[32,0,0,"-"],containers:[32,0,0,"-"],core:[32,0,0,"-"],evalf:[32,0,0,"-"],expr:[32,0,0,"-"],exprtools:[32,0,0,"-"],kind:[32,0,0,"-"],mod:[32,0,0,"-"],mul:[32,0,0,"-"],multidimensional:[32,0,0,"-"],numbers:[32,0,0,"-"],power:[32,0,0,"-"],relational:[32,0,0,"-"],singleton:[32,0,0,"-"],symbol:[32,0,0,"-"],sympify:[32,0,0,"-"]},"sympy.core.add":{Add:[32,1,1,""]},"sympy.core.add.Add":{as_coeff_Add:[32,2,1,""],as_coeff_add:[32,2,1,""],as_coefficients_dict:[32,2,1,""],as_content_primitive:[32,2,1,""],as_numer_denom:[32,2,1,""],as_real_imag:[32,2,1,""],as_two_terms:[32,2,1,""],class_key:[32,2,1,""],extract_leading_order:[32,2,1,""],flatten:[32,2,1,""],primitive:[32,2,1,""]},"sympy.core.basic":{Atom:[32,1,1,""],Basic:[32,1,1,""]},"sympy.core.basic.Basic":{args:[32,2,1,""],as_content_primitive:[32,2,1,""],as_dummy:[32,2,1,""],assumptions0:[32,2,1,""],atoms:[32,2,1,""],canonical_variables:[32,2,1,""],class_key:[32,2,1,""],compare:[32,2,1,""],count:[32,2,1,""],count_ops:[32,2,1,""],doit:[32,2,1,""],dummy_eq:[32,2,1,""],find:[32,2,1,""],free_symbols:[32,2,1,""],fromiter:[32,2,1,""],func:[32,2,1,""],has:[32,2,1,""],is_comparable:[32,2,1,""],match:[32,2,1,""],matches:[32,2,1,""],rcall:[32,2,1,""],refine:[32,2,1,""],replace:[32,2,1,""],rewrite:[32,2,1,""],simplify:[32,2,1,""],sort_key:[32,2,1,""],subs:[32,2,1,""],xreplace:[32,2,1,""]},"sympy.core.cache":{__cacheit:[32,3,1,""]},"sympy.core.compatibility":{as_int:[32,3,1,""],is_sequence:[32,3,1,""],iterable:[32,3,1,""],ordered:[32,3,1,""]},"sympy.core.containers":{Dict:[32,1,1,""],Tuple:[32,1,1,""]},"sympy.core.containers.Dict":{args:[32,2,1,""],get:[32,2,1,""],items:[32,2,1,""],keys:[32,2,1,""],values:[32,2,1,""]},"sympy.core.containers.Tuple":{index:[32,2,1,""],tuple_count:[32,2,1,""]},"sympy.core.evalf":{EvalfMixin:[32,1,1,""],N:[32,3,1,""],PrecisionExhausted:[32,1,1,""]},"sympy.core.evalf.EvalfMixin":{evalf:[32,2,1,""],n:[32,2,1,""]},"sympy.core.expr":{AtomicExpr:[32,1,1,""],Expr:[32,1,1,""],UnevaluatedExpr:[32,1,1,""]},"sympy.core.expr.Expr":{apart:[32,2,1,""],args_cnc:[32,2,1,""],as_coeff_Add:[32,2,1,""],as_coeff_Mul:[32,2,1,""],as_coeff_add:[32,2,1,""],as_coeff_exponent:[32,2,1,""],as_coeff_mul:[32,2,1,""],as_coefficient:[32,2,1,""],as_coefficients_dict:[32,2,1,""],as_content_primitive:[32,2,1,""],as_expr:[32,2,1,""],as_independent:[32,2,1,""],as_leading_term:[32,2,1,""],as_numer_denom:[32,2,1,""],as_ordered_factors:[32,2,1,""],as_ordered_terms:[32,2,1,""],as_poly:[32,2,1,""],as_powers_dict:[32,2,1,""],as_real_imag:[32,2,1,""],as_terms:[32,2,1,""],aseries:[32,2,1,""],cancel:[32,2,1,""],coeff:[32,2,1,""],collect:[32,2,1,""],combsimp:[32,2,1,""],compute_leading_term:[32,2,1,""],conjugate:[32,2,1,""],could_extract_minus_sign:[32,2,1,""],count_ops:[32,2,1,""],equals:[32,2,1,""],expand:[32,2,1,""],expr_free_symbols:[32,2,1,""],extract_additively:[32,2,1,""],extract_branch_factor:[32,2,1,""],extract_multiplicatively:[32,2,1,""],factor:[32,2,1,""],fourier_series:[32,2,1,""],fps:[32,2,1,""],gammasimp:[32,2,1,""],getO:[32,2,1,""],getn:[32,2,1,""],integrate:[32,2,1,""],invert:[32,2,1,""],is_algebraic_expr:[32,2,1,""],is_constant:[32,2,1,""],is_meromorphic:[32,2,1,""],is_number:[32,2,1,""],is_polynomial:[32,2,1,""],is_rational_function:[32,2,1,""],leadterm:[32,2,1,""],limit:[32,2,1,""],lseries:[32,2,1,""],normal:[32,2,1,""],nseries:[32,2,1,""],nsimplify:[32,2,1,""],powsimp:[32,2,1,""],primitive:[32,2,1,""],radsimp:[32,2,1,""],ratsimp:[32,2,1,""],removeO:[32,2,1,""],round:[32,2,1,""],separate:[32,2,1,""],series:[32,2,1,""],taylor_term:[32,2,1,""],together:[32,2,1,""],trigsimp:[32,2,1,""]},"sympy.core.exprtools":{factor_terms:[32,3,1,""],gcd_terms:[32,3,1,""]},"sympy.core.function":{Derivative:[32,1,1,""],Function:[32,1,1,""],FunctionClass:[32,1,1,""],Lambda:[32,1,1,""],PoleError:[32,1,1,""],Subs:[32,1,1,""],WildFunction:[32,1,1,""],count_ops:[32,3,1,""],diff:[32,3,1,""],expand:[32,3,1,""],expand_complex:[32,3,1,""],expand_func:[32,3,1,""],expand_log:[32,3,1,""],expand_mul:[32,3,1,""],expand_multinomial:[32,3,1,""],expand_power_base:[32,3,1,""],expand_power_exp:[32,3,1,""],expand_trig:[32,3,1,""],nfloat:[32,3,1,""]},"sympy.core.function.Derivative":{_diff_wrt:[32,2,1,""],_sort_variable_count:[32,2,1,""],as_finite_difference:[32,2,1,""],doit_numerically:[32,2,1,""]},"sympy.core.function.Function":{as_base_exp:[32,2,1,""],fdiff:[32,2,1,""],is_singular:[32,2,1,""]},"sympy.core.function.FunctionClass":{nargs:[32,2,1,""]},"sympy.core.function.Lambda":{bound_symbols:[32,2,1,""],expr:[32,2,1,""],is_identity:[32,2,1,""],signature:[32,2,1,""],variables:[32,2,1,""]},"sympy.core.function.Subs":{bound_symbols:[32,2,1,""],expr:[32,2,1,""],point:[32,2,1,""],variables:[32,2,1,""]},"sympy.core.kind":{BooleanKind:[32,4,1,""],Kind:[32,1,1,""],NumberKind:[32,4,1,""]},"sympy.core.mod":{Mod:[32,1,1,""]},"sympy.core.mul":{Mul:[32,1,1,""],prod:[32,3,1,""]},"sympy.core.mul.Mul":{as_coeff_Mul:[32,2,1,""],as_coefficients_dict:[32,2,1,""],as_content_primitive:[32,2,1,""],as_ordered_factors:[32,2,1,""],as_two_terms:[32,2,1,""],flatten:[32,2,1,""]},"sympy.core.multidimensional":{vectorize:[32,1,1,""]},"sympy.core.numbers":{Catalan:[32,1,1,""],ComplexInfinity:[32,1,1,""],EulerGamma:[32,1,1,""],Exp1:[32,1,1,""],Float:[32,1,1,""],GoldenRatio:[32,1,1,""],Half:[32,1,1,""],ImaginaryUnit:[32,1,1,""],Infinity:[32,1,1,""],Integer:[32,1,1,""],NaN:[32,1,1,""],NegativeInfinity:[32,1,1,""],NegativeOne:[32,1,1,""],Number:[32,1,1,""],NumberSymbol:[32,1,1,""],One:[32,1,1,""],Pi:[32,1,1,""],Rational:[32,1,1,""],RealNumber:[32,4,1,""],TribonacciConstant:[32,1,1,""],Zero:[32,1,1,""],igcd:[32,3,1,""],ilcm:[32,3,1,""],mod_inverse:[32,3,1,""],seterr:[32,3,1,""]},"sympy.core.numbers.Number":{as_coeff_Add:[32,2,1,""],as_coeff_Mul:[32,2,1,""],cofactors:[32,2,1,""],gcd:[32,2,1,""],lcm:[32,2,1,""]},"sympy.core.numbers.NumberSymbol":{approximation:[32,2,1,""]},"sympy.core.numbers.Rational":{as_coeff_Add:[32,2,1,""],as_coeff_Mul:[32,2,1,""],as_content_primitive:[32,2,1,""],factors:[32,2,1,""],limit_denominator:[32,2,1,""]},"sympy.core.numbers.Zero":{as_coeff_Mul:[32,2,1,""]},"sympy.core.power":{Pow:[32,1,1,""],integer_log:[32,3,1,""],integer_nthroot:[32,3,1,""]},"sympy.core.power.Pow":{as_base_exp:[32,2,1,""],as_content_primitive:[32,2,1,""]},"sympy.core.relational":{Eq:[32,4,1,""],Equality:[32,1,1,""],Ge:[32,4,1,""],GreaterThan:[32,1,1,""],Gt:[32,4,1,""],Le:[32,4,1,""],LessThan:[32,1,1,""],Lt:[32,4,1,""],Ne:[32,4,1,""],Rel:[32,4,1,""],Relational:[32,1,1,""],StrictGreaterThan:[32,1,1,""],StrictLessThan:[32,1,1,""],Unequality:[32,1,1,""]},"sympy.core.relational.Equality":{as_poly:[32,2,1,""],integrate:[32,2,1,""]},"sympy.core.relational.Relational":{canonical:[32,2,1,""],equals:[32,2,1,""],lhs:[32,2,1,""],negated:[32,2,1,""],reversed:[32,2,1,""],reversedsign:[32,2,1,""],rhs:[32,2,1,""]},"sympy.core.singleton":{Singleton:[32,1,1,""],SingletonRegistry:[32,1,1,""]},"sympy.core.symbol":{"var":[32,3,1,""],Dummy:[32,1,1,""],Symbol:[32,1,1,""],Wild:[32,1,1,""],symbols:[32,3,1,""]},"sympy.core.sympify":{sympify:[32,3,1,""]},"sympy.crypto":{crypto:[33,0,0,"-"]},"sympy.crypto.crypto":{AZ:[33,3,1,""],bifid5_square:[33,3,1,""],bifid6_square:[33,3,1,""],check_and_join:[33,3,1,""],cycle_list:[33,3,1,""],decipher_affine:[33,3,1,""],decipher_atbash:[33,3,1,""],decipher_bifid5:[33,3,1,""],decipher_bifid6:[33,3,1,""],decipher_bifid:[33,3,1,""],decipher_elgamal:[33,3,1,""],decipher_gm:[33,3,1,""],decipher_hill:[33,3,1,""],decipher_kid_rsa:[33,3,1,""],decipher_railfence:[33,3,1,""],decipher_rot13:[33,3,1,""],decipher_rsa:[33,3,1,""],decipher_shift:[33,3,1,""],decipher_vigenere:[33,3,1,""],decode_morse:[33,3,1,""],dh_private_key:[33,3,1,""],dh_public_key:[33,3,1,""],dh_shared_key:[33,3,1,""],elgamal_private_key:[33,3,1,""],elgamal_public_key:[33,3,1,""],encipher_affine:[33,3,1,""],encipher_atbash:[33,3,1,""],encipher_bifid5:[33,3,1,""],encipher_bifid6:[33,3,1,""],encipher_bifid:[33,3,1,""],encipher_elgamal:[33,3,1,""],encipher_gm:[33,3,1,""],encipher_hill:[33,3,1,""],encipher_kid_rsa:[33,3,1,""],encipher_railfence:[33,3,1,""],encipher_rot13:[33,3,1,""],encipher_rsa:[33,3,1,""],encipher_shift:[33,3,1,""],encipher_substitution:[33,3,1,""],encipher_vigenere:[33,3,1,""],encode_morse:[33,3,1,""],gm_private_key:[33,3,1,""],gm_public_key:[33,3,1,""],kid_rsa_private_key:[33,3,1,""],kid_rsa_public_key:[33,3,1,""],lfsr_autocorrelation:[33,3,1,""],lfsr_connection_polynomial:[33,3,1,""],lfsr_sequence:[33,3,1,""],padded_key:[33,3,1,""],rsa_private_key:[33,3,1,""],rsa_public_key:[33,3,1,""]},"sympy.diffgeom":{BaseCovarDerivativeOp:[34,1,1,""],BaseScalarField:[34,1,1,""],BaseVectorField:[34,1,1,""],Commutator:[34,1,1,""],CoordSystem:[34,1,1,""],CoordinateSymbol:[34,1,1,""],CovarDerivativeOp:[34,1,1,""],Differential:[34,1,1,""],LieDerivative:[34,1,1,""],Manifold:[34,1,1,""],Patch:[34,1,1,""],Point:[34,1,1,""],TensorProduct:[34,1,1,""],WedgeProduct:[34,1,1,""],intcurve_diffequ:[34,3,1,""],intcurve_series:[34,3,1,""],metric_to_Christoffel_1st:[34,3,1,""],metric_to_Christoffel_2nd:[34,3,1,""],metric_to_Ricci_components:[34,3,1,""],metric_to_Riemann_components:[34,3,1,""],twoform_to_matrix:[34,3,1,""],vectors_in_basis:[34,3,1,""]},"sympy.diffgeom.CoordSystem":{base_oneform:[34,2,1,""],base_oneforms:[34,2,1,""],base_scalar:[34,2,1,""],base_scalars:[34,2,1,""],base_vector:[34,2,1,""],base_vectors:[34,2,1,""],coord_function:[34,2,1,""],coord_functions:[34,2,1,""],coord_tuple_transform_to:[34,2,1,""],jacobian:[34,2,1,""],jacobian_determinant:[34,2,1,""],jacobian_matrix:[34,2,1,""],point:[34,2,1,""],point_to_coords:[34,2,1,""],transform:[34,2,1,""],transformation:[34,2,1,""]},"sympy.diffgeom.Point":{coords:[34,2,1,""]},"sympy.discrete":{convolutions:[35,0,0,"-"],transforms:[35,0,0,"-"]},"sympy.discrete.convolutions":{convolution:[35,3,1,""],convolution_fft:[35,3,1,""],convolution_fwht:[35,3,1,""],convolution_ntt:[35,3,1,""],convolution_subset:[35,3,1,""],covering_product:[35,3,1,""],intersecting_product:[35,3,1,""]},"sympy.discrete.transforms":{fft:[35,3,1,""],fwht:[35,3,1,""],ifft:[35,3,1,""],ifwht:[35,3,1,""],intt:[35,3,1,""],inverse_mobius_transform:[35,3,1,""],mobius_transform:[35,3,1,""],ntt:[35,3,1,""]},"sympy.functions.combinatorial.factorials":{FallingFactorial:[37,1,1,""],MultiFactorial:[37,1,1,""],RisingFactorial:[37,1,1,""],binomial:[37,1,1,""],factorial2:[37,1,1,""],factorial:[37,1,1,""],subfactorial:[37,1,1,""]},"sympy.functions.combinatorial.numbers":{bell:[37,1,1,""],bernoulli:[37,1,1,""],catalan:[37,1,1,""],euler:[37,1,1,""],fibonacci:[37,1,1,""],genocchi:[37,1,1,""],harmonic:[37,1,1,""],lucas:[37,1,1,""],nC:[37,3,1,""],nP:[37,3,1,""],nT:[37,3,1,""],partition:[37,1,1,""],stirling:[37,3,1,""],tribonacci:[37,1,1,""]},"sympy.functions.elementary.complexes":{Abs:[38,1,1,""],arg:[38,1,1,""],conjugate:[38,1,1,""],im:[38,1,1,""],periodic_argument:[38,1,1,""],polar_lift:[38,1,1,""],principal_branch:[38,1,1,""],re:[38,1,1,""],sign:[38,1,1,""]},"sympy.functions.elementary.complexes.Abs":{fdiff:[38,2,1,""]},"sympy.functions.elementary.complexes.im":{as_real_imag:[38,2,1,""]},"sympy.functions.elementary.complexes.re":{as_real_imag:[38,2,1,""]},"sympy.functions.elementary.exponential":{LambertW:[38,1,1,""],exp:[38,1,1,""],exp_polar:[38,1,1,""],log:[38,1,1,""]},"sympy.functions.elementary.exponential.LambertW":{fdiff:[38,2,1,""]},"sympy.functions.elementary.exponential.exp":{as_real_imag:[38,2,1,""],base:[38,2,1,""],fdiff:[38,2,1,""],taylor_term:[38,2,1,""]},"sympy.functions.elementary.exponential.log":{as_base_exp:[38,2,1,""],as_real_imag:[38,2,1,""],fdiff:[38,2,1,""],inverse:[38,2,1,""],taylor_term:[38,2,1,""]},"sympy.functions.elementary.hyperbolic":{HyperbolicFunction:[38,1,1,""],acosh:[38,1,1,""],acoth:[38,1,1,""],acsch:[38,1,1,""],asech:[38,1,1,""],asinh:[38,1,1,""],atanh:[38,1,1,""],cosh:[38,1,1,""],coth:[38,1,1,""],csch:[38,1,1,""],sech:[38,1,1,""],sinh:[38,1,1,""],tanh:[38,1,1,""]},"sympy.functions.elementary.hyperbolic.acosh":{inverse:[38,2,1,""]},"sympy.functions.elementary.hyperbolic.acoth":{inverse:[38,2,1,""]},"sympy.functions.elementary.hyperbolic.acsch":{inverse:[38,2,1,""]},"sympy.functions.elementary.hyperbolic.asech":{inverse:[38,2,1,""]},"sympy.functions.elementary.hyperbolic.asinh":{inverse:[38,2,1,""]},"sympy.functions.elementary.hyperbolic.atanh":{inverse:[38,2,1,""]},"sympy.functions.elementary.hyperbolic.coth":{inverse:[38,2,1,""]},"sympy.functions.elementary.hyperbolic.csch":{fdiff:[38,2,1,""],taylor_term:[38,2,1,""]},"sympy.functions.elementary.hyperbolic.sinh":{as_real_imag:[38,2,1,""],fdiff:[38,2,1,""],inverse:[38,2,1,""],taylor_term:[38,2,1,""]},"sympy.functions.elementary.hyperbolic.tanh":{inverse:[38,2,1,""]},"sympy.functions.elementary.integers":{RoundFunction:[38,1,1,""],ceiling:[38,1,1,""],floor:[38,1,1,""],frac:[38,1,1,""]},"sympy.functions.elementary.miscellaneous":{IdentityFunction:[38,1,1,""],Max:[38,1,1,""],Min:[38,1,1,""],cbrt:[38,3,1,""],real_root:[38,3,1,""],root:[38,3,1,""],sqrt:[38,3,1,""]},"sympy.functions.elementary.piecewise":{ExprCondPair:[38,1,1,""],Piecewise:[38,1,1,""],piecewise_fold:[38,3,1,""]},"sympy.functions.elementary.piecewise.ExprCondPair":{cond:[38,2,1,""],expr:[38,2,1,""]},"sympy.functions.elementary.piecewise.Piecewise":{_eval_integral:[38,2,1,""],as_expr_set_pairs:[38,2,1,""],doit:[38,2,1,""],eval:[38,2,1,""],piecewise_integrate:[38,2,1,""]},"sympy.functions.elementary.trigonometric":{acos:[38,1,1,""],acot:[38,1,1,""],acsc:[38,1,1,""],asec:[38,1,1,""],asin:[38,1,1,""],atan2:[38,1,1,""],atan:[38,1,1,""],cos:[38,1,1,""],cot:[38,1,1,""],csc:[38,1,1,""],sec:[38,1,1,""],sin:[38,1,1,""],sinc:[38,1,1,""],tan:[38,1,1,""]},"sympy.functions.elementary.trigonometric.acos":{inverse:[38,2,1,""]},"sympy.functions.elementary.trigonometric.acot":{inverse:[38,2,1,""]},"sympy.functions.elementary.trigonometric.acsc":{inverse:[38,2,1,""]},"sympy.functions.elementary.trigonometric.asec":{inverse:[38,2,1,""]},"sympy.functions.elementary.trigonometric.asin":{inverse:[38,2,1,""]},"sympy.functions.elementary.trigonometric.atan":{inverse:[38,2,1,""]},"sympy.functions.elementary.trigonometric.cot":{inverse:[38,2,1,""]},"sympy.functions.elementary.trigonometric.tan":{inverse:[38,2,1,""]},"sympy.functions.special":{bessel:[40,0,0,"-"],beta_functions:[40,0,0,"-"],elliptic_integrals:[40,0,0,"-"],error_functions:[40,0,0,"-"],gamma_functions:[40,0,0,"-"],mathieu_functions:[40,0,0,"-"],polynomials:[40,0,0,"-"],singularity_functions:[40,0,0,"-"],zeta_functions:[40,0,0,"-"]},"sympy.functions.special.bessel":{AiryBase:[40,1,1,""],BesselBase:[40,1,1,""],airyai:[40,1,1,""],airyaiprime:[40,1,1,""],airybi:[40,1,1,""],airybiprime:[40,1,1,""],besseli:[40,1,1,""],besselj:[40,1,1,""],besselk:[40,1,1,""],bessely:[40,1,1,""],hankel1:[40,1,1,""],hankel2:[40,1,1,""],jn:[40,1,1,""],jn_zeros:[40,3,1,""],marcumq:[40,1,1,""],yn:[40,1,1,""]},"sympy.functions.special.bessel.BesselBase":{argument:[40,2,1,""],order:[40,2,1,""]},"sympy.functions.special.beta_functions":{beta:[40,1,1,""]},"sympy.functions.special.bsplines":{bspline_basis:[40,3,1,""],bspline_basis_set:[40,3,1,""],interpolating_spline:[40,3,1,""]},"sympy.functions.special.delta_functions":{DiracDelta:[40,1,1,""],Heaviside:[40,1,1,""]},"sympy.functions.special.delta_functions.DiracDelta":{eval:[40,2,1,""],fdiff:[40,2,1,""],is_simple:[40,2,1,""]},"sympy.functions.special.delta_functions.Heaviside":{eval:[40,2,1,""],fdiff:[40,2,1,""]},"sympy.functions.special.elliptic_integrals":{elliptic_e:[40,1,1,""],elliptic_f:[40,1,1,""],elliptic_k:[40,1,1,""],elliptic_pi:[40,1,1,""]},"sympy.functions.special.error_functions":{Chi:[40,1,1,""],Ci:[40,1,1,""],E1:[40,3,1,""],Ei:[40,1,1,""],FresnelIntegral:[40,1,1,""],Li:[40,1,1,""],Shi:[40,1,1,""],Si:[40,1,1,""],erf2:[40,1,1,""],erf2inv:[40,1,1,""],erf:[40,1,1,""],erfc:[40,1,1,""],erfcinv:[40,1,1,""],erfi:[40,1,1,""],erfinv:[40,1,1,""],expint:[40,1,1,""],fresnelc:[40,1,1,""],fresnels:[40,1,1,""],li:[40,1,1,""]},"sympy.functions.special.error_functions.erf":{inverse:[40,2,1,""]},"sympy.functions.special.error_functions.erfc":{inverse:[40,2,1,""]},"sympy.functions.special.error_functions.erfcinv":{inverse:[40,2,1,""]},"sympy.functions.special.error_functions.erfinv":{inverse:[40,2,1,""]},"sympy.functions.special.gamma_functions":{digamma:[40,1,1,""],gamma:[40,1,1,""],loggamma:[40,1,1,""],lowergamma:[40,1,1,""],multigamma:[40,1,1,""],polygamma:[40,1,1,""],trigamma:[40,1,1,""],uppergamma:[40,1,1,""]},"sympy.functions.special.hyper":{appellf1:[40,1,1,""],hyper:[40,1,1,""],meijerg:[40,1,1,""]},"sympy.functions.special.hyper.hyper":{ap:[40,2,1,""],argument:[40,2,1,""],bq:[40,2,1,""],convergence_statement:[40,2,1,""],eta:[40,2,1,""],radius_of_convergence:[40,2,1,""]},"sympy.functions.special.hyper.meijerg":{an:[40,2,1,""],aother:[40,2,1,""],ap:[40,2,1,""],argument:[40,2,1,""],bm:[40,2,1,""],bother:[40,2,1,""],bq:[40,2,1,""],delta:[40,2,1,""],get_period:[40,2,1,""],integrand:[40,2,1,""],is_number:[40,2,1,""],nu:[40,2,1,""]},"sympy.functions.special.mathieu_functions":{MathieuBase:[40,1,1,""],mathieuc:[40,1,1,""],mathieucprime:[40,1,1,""],mathieus:[40,1,1,""],mathieusprime:[40,1,1,""]},"sympy.functions.special.polynomials":{assoc_laguerre:[40,1,1,""],assoc_legendre:[40,1,1,""],chebyshevt:[40,1,1,""],chebyshevt_root:[40,1,1,""],chebyshevu:[40,1,1,""],chebyshevu_root:[40,1,1,""],gegenbauer:[40,1,1,""],hermite:[40,1,1,""],jacobi:[40,1,1,""],jacobi_normalized:[40,3,1,""],laguerre:[40,1,1,""],legendre:[40,1,1,""]},"sympy.functions.special.singularity_functions":{SingularityFunction:[40,1,1,""]},"sympy.functions.special.singularity_functions.SingularityFunction":{eval:[40,2,1,""],fdiff:[40,2,1,""]},"sympy.functions.special.spherical_harmonics":{Ynm:[40,1,1,""],Ynm_c:[40,3,1,""],Znm:[40,1,1,""]},"sympy.functions.special.tensor_functions":{Eijk:[40,3,1,""],KroneckerDelta:[40,1,1,""],LeviCivita:[40,1,1,""],eval_levicivita:[40,3,1,""]},"sympy.functions.special.tensor_functions.KroneckerDelta":{eval:[40,2,1,""],indices_contain_equal_information:[40,2,1,""],is_above_fermi:[40,2,1,""],is_below_fermi:[40,2,1,""],is_only_above_fermi:[40,2,1,""],is_only_below_fermi:[40,2,1,""],killable_index:[40,2,1,""],preferred_index:[40,2,1,""]},"sympy.functions.special.zeta_functions":{dirichlet_eta:[40,1,1,""],lerchphi:[40,1,1,""],polylog:[40,1,1,""],stieltjes:[40,1,1,""],zeta:[40,1,1,""]},"sympy.geometry":{curve:[41,0,0,"-"],ellipse:[42,0,0,"-"],entity:[43,0,0,"-"],line:[45,0,0,"-"],plane:[46,0,0,"-"],point:[47,0,0,"-"],polygon:[48,0,0,"-"],util:[49,0,0,"-"]},"sympy.geometry.curve":{Curve:[41,1,1,""]},"sympy.geometry.curve.Curve":{ambient_dimension:[41,2,1,""],arbitrary_point:[41,2,1,""],free_symbols:[41,2,1,""],functions:[41,2,1,""],length:[41,2,1,""],limits:[41,2,1,""],parameter:[41,2,1,""],plot_interval:[41,2,1,""],rotate:[41,2,1,""],scale:[41,2,1,""],translate:[41,2,1,""]},"sympy.geometry.ellipse":{Circle:[42,1,1,""],Ellipse:[42,1,1,""]},"sympy.geometry.ellipse.Circle":{circumference:[42,2,1,""],equation:[42,2,1,""],intersection:[42,2,1,""],radius:[42,2,1,""],reflect:[42,2,1,""],scale:[42,2,1,""],vradius:[42,2,1,""]},"sympy.geometry.ellipse.Ellipse":{apoapsis:[42,2,1,""],arbitrary_point:[42,2,1,""],area:[42,2,1,""],auxiliary_circle:[42,2,1,""],bounds:[42,2,1,""],center:[42,2,1,""],circumference:[42,2,1,""],director_circle:[42,2,1,""],eccentricity:[42,2,1,""],encloses_point:[42,2,1,""],equation:[42,2,1,""],evolute:[42,2,1,""],foci:[42,2,1,""],focus_distance:[42,2,1,""],hradius:[42,2,1,""],intersection:[42,2,1,""],is_tangent:[42,2,1,""],major:[42,2,1,""],minor:[42,2,1,""],normal_lines:[42,2,1,""],periapsis:[42,2,1,""],plot_interval:[42,2,1,""],polar_second_moment_of_area:[42,2,1,""],random_point:[42,2,1,""],reflect:[42,2,1,""],rotate:[42,2,1,""],scale:[42,2,1,""],second_moment_of_area:[42,2,1,""],section_modulus:[42,2,1,""],semilatus_rectum:[42,2,1,""],tangent_lines:[42,2,1,""],vradius:[42,2,1,""]},"sympy.geometry.entity":{GeometryEntity:[43,1,1,""]},"sympy.geometry.entity.GeometryEntity":{ambient_dimension:[43,2,1,""],bounds:[43,2,1,""],encloses:[43,2,1,""],intersection:[43,2,1,""],is_similar:[43,2,1,""],parameter_value:[43,2,1,""],reflect:[43,2,1,""],rotate:[43,2,1,""],scale:[43,2,1,""],translate:[43,2,1,""]},"sympy.geometry.line":{Line2D:[45,1,1,""],Line3D:[45,1,1,""],Line:[45,1,1,""],LinearEntity2D:[45,1,1,""],LinearEntity3D:[45,1,1,""],LinearEntity:[45,1,1,""],Ray2D:[45,1,1,""],Ray3D:[45,1,1,""],Ray:[45,1,1,""],Segment2D:[45,1,1,""],Segment3D:[45,1,1,""],Segment:[45,1,1,""]},"sympy.geometry.line.Line":{contains:[45,2,1,""],distance:[45,2,1,""],equals:[45,2,1,""],plot_interval:[45,2,1,""]},"sympy.geometry.line.Line2D":{coefficients:[45,2,1,""],equation:[45,2,1,""]},"sympy.geometry.line.Line3D":{equation:[45,2,1,""]},"sympy.geometry.line.LinearEntity":{ambient_dimension:[45,2,1,""],angle_between:[45,2,1,""],arbitrary_point:[45,2,1,""],are_concurrent:[45,2,1,""],bisectors:[45,2,1,""],contains:[45,2,1,""],direction:[45,2,1,""],intersection:[45,2,1,""],is_parallel:[45,2,1,""],is_perpendicular:[45,2,1,""],is_similar:[45,2,1,""],length:[45,2,1,""],p1:[45,2,1,""],p2:[45,2,1,""],parallel_line:[45,2,1,""],perpendicular_line:[45,2,1,""],perpendicular_segment:[45,2,1,""],points:[45,2,1,""],projection:[45,2,1,""],random_point:[45,2,1,""],smallest_angle_between:[45,2,1,""]},"sympy.geometry.line.LinearEntity2D":{bounds:[45,2,1,""],perpendicular_line:[45,2,1,""],slope:[45,2,1,""]},"sympy.geometry.line.LinearEntity3D":{direction_cosine:[45,2,1,""],direction_ratio:[45,2,1,""]},"sympy.geometry.line.Ray":{contains:[45,2,1,""],distance:[45,2,1,""],equals:[45,2,1,""],plot_interval:[45,2,1,""],source:[45,2,1,""]},"sympy.geometry.line.Ray2D":{closing_angle:[45,2,1,""],xdirection:[45,2,1,""],ydirection:[45,2,1,""]},"sympy.geometry.line.Ray3D":{xdirection:[45,2,1,""],ydirection:[45,2,1,""],zdirection:[45,2,1,""]},"sympy.geometry.line.Segment":{contains:[45,2,1,""],distance:[45,2,1,""],equals:[45,2,1,""],length:[45,2,1,""],midpoint:[45,2,1,""],perpendicular_bisector:[45,2,1,""],plot_interval:[45,2,1,""]},"sympy.geometry.plane":{Plane:[46,1,1,""]},"sympy.geometry.plane.Plane":{angle_between:[46,2,1,""],arbitrary_point:[46,2,1,""],are_concurrent:[46,2,1,""],distance:[46,2,1,""],equals:[46,2,1,""],equation:[46,2,1,""],intersection:[46,2,1,""],is_coplanar:[46,2,1,""],is_parallel:[46,2,1,""],is_perpendicular:[46,2,1,""],normal_vector:[46,2,1,""],p1:[46,2,1,""],parallel_plane:[46,2,1,""],parameter_value:[46,2,1,""],perpendicular_line:[46,2,1,""],perpendicular_plane:[46,2,1,""],projection:[46,2,1,""],projection_line:[46,2,1,""],random_point:[46,2,1,""]},"sympy.geometry.point":{Point2D:[47,1,1,""],Point3D:[47,1,1,""],Point:[47,1,1,""]},"sympy.geometry.point.Point":{affine_rank:[47,2,1,""],ambient_dimension:[47,2,1,""],are_coplanar:[47,2,1,""],canberra_distance:[47,2,1,""],distance:[47,2,1,""],dot:[47,2,1,""],equals:[47,2,1,""],evalf:[47,2,1,""],intersection:[47,2,1,""],is_collinear:[47,2,1,""],is_concyclic:[47,2,1,""],is_nonzero:[47,2,1,""],is_scalar_multiple:[47,2,1,""],is_zero:[47,2,1,""],length:[47,2,1,""],midpoint:[47,2,1,""],n:[47,2,1,""],origin:[47,2,1,""],orthogonal_direction:[47,2,1,""],project:[47,2,1,""],taxicab_distance:[47,2,1,""],unit:[47,2,1,""]},"sympy.geometry.point.Point2D":{bounds:[47,2,1,""],coordinates:[47,2,1,""],rotate:[47,2,1,""],scale:[47,2,1,""],transform:[47,2,1,""],translate:[47,2,1,""],x:[47,2,1,""],y:[47,2,1,""]},"sympy.geometry.point.Point3D":{are_collinear:[47,2,1,""],coordinates:[47,2,1,""],direction_cosine:[47,2,1,""],direction_ratio:[47,2,1,""],intersection:[47,2,1,""],scale:[47,2,1,""],transform:[47,2,1,""],translate:[47,2,1,""],x:[47,2,1,""],y:[47,2,1,""],z:[47,2,1,""]},"sympy.geometry.polygon":{Polygon:[48,1,1,""],RegularPolygon:[48,1,1,""],Triangle:[48,1,1,""]},"sympy.geometry.polygon.Polygon":{angles:[48,2,1,""],arbitrary_point:[48,2,1,""],area:[48,2,1,""],bisectors:[48,2,1,""],bounds:[48,2,1,""],centroid:[48,2,1,""],cut_section:[48,2,1,""],distance:[48,2,1,""],encloses_point:[48,2,1,""],first_moment_of_area:[48,2,1,""],intersection:[48,2,1,""],is_convex:[48,2,1,""],perimeter:[48,2,1,""],plot_interval:[48,2,1,""],polar_second_moment_of_area:[48,2,1,""],second_moment_of_area:[48,2,1,""],section_modulus:[48,2,1,""],sides:[48,2,1,""],vertices:[48,2,1,""]},"sympy.geometry.polygon.RegularPolygon":{angles:[48,2,1,""],apothem:[48,2,1,""],area:[48,2,1,""],args:[48,2,1,""],center:[48,2,1,""],centroid:[48,2,1,""],circumcenter:[48,2,1,""],circumcircle:[48,2,1,""],circumradius:[48,2,1,""],encloses_point:[48,2,1,""],exterior_angle:[48,2,1,""],incircle:[48,2,1,""],inradius:[48,2,1,""],interior_angle:[48,2,1,""],length:[48,2,1,""],radius:[48,2,1,""],reflect:[48,2,1,""],rotate:[48,2,1,""],rotation:[48,2,1,""],scale:[48,2,1,""],spin:[48,2,1,""],vertices:[48,2,1,""]},"sympy.geometry.polygon.Triangle":{altitudes:[48,2,1,""],bisectors:[48,2,1,""],circumcenter:[48,2,1,""],circumcircle:[48,2,1,""],circumradius:[48,2,1,""],eulerline:[48,2,1,""],excenters:[48,2,1,""],exradii:[48,2,1,""],incenter:[48,2,1,""],incircle:[48,2,1,""],inradius:[48,2,1,""],is_equilateral:[48,2,1,""],is_isosceles:[48,2,1,""],is_right:[48,2,1,""],is_scalene:[48,2,1,""],is_similar:[48,2,1,""],medial:[48,2,1,""],medians:[48,2,1,""],nine_point_circle:[48,2,1,""],orthocenter:[48,2,1,""],vertices:[48,2,1,""]},"sympy.geometry.util":{are_similar:[49,3,1,""],centroid:[49,3,1,""],convex_hull:[49,3,1,""],idiff:[49,3,1,""],intersection:[49,3,1,""]},"sympy.holonomic.holonomic":{DifferentialOperator:[55,1,1,""],DifferentialOperatorAlgebra:[55,1,1,""],DifferentialOperators:[55,3,1,""],HolonomicFunction:[55,1,1,""],_convert_poly_rat_alg:[53,3,1,""],_create_table:[53,3,1,""],expr_to_holonomic:[51,3,1,""],from_hyper:[51,3,1,""],from_meijerg:[51,3,1,""]},"sympy.holonomic.holonomic.DifferentialOperator":{is_singular:[55,2,1,""]},"sympy.holonomic.holonomic.HolonomicFunction":{composition:[54,2,1,""],diff:[54,2,1,""],evalf:[54,2,1,""],integrate:[54,2,1,""],series:[54,2,1,""],to_expr:[54,2,1,""],to_hyper:[54,2,1,""],to_meijerg:[54,2,1,""],to_sequence:[54,2,1,""]},"sympy.integrals":{intpoly:[59,0,0,"-"],meijerint:[58,0,0,"-"],meijerint_doc:[58,0,0,"-"],transforms:[59,0,0,"-"]},"sympy.integrals.deltafunctions":{deltaintegrate:[59,3,1,""]},"sympy.integrals.heurisch":{components:[59,3,1,""],heurisch:[59,3,1,""]},"sympy.integrals.integrals":{Integral:[59,1,1,""],integrate:[59,3,1,""],line_integrate:[59,3,1,""]},"sympy.integrals.integrals.Integral":{as_sum:[59,2,1,""],doit:[59,2,1,""],free_symbols:[59,2,1,""],is_commutative:[59,5,1,""],principal_value:[59,2,1,""],transform:[59,2,1,""]},"sympy.integrals.intpoly":{polytope_integrate:[59,3,1,""]},"sympy.integrals.manualintegrate":{integral_steps:[59,3,1,""],manualintegrate:[59,3,1,""]},"sympy.integrals.meijerint":{_CoeffExpValueError:[58,6,1,""],_check_antecedents:[58,3,1,""],_check_antecedents_1:[58,3,1,""],_check_antecedents_inversion:[58,3,1,""],_condsimp:[58,3,1,""],_create_lookup_table:[58,3,1,""],_dummy:[58,3,1,""],_dummy_:[58,3,1,""],_eval_cond:[58,3,1,""],_exponents:[58,3,1,""],_find_splitting_points:[58,3,1,""],_flip_g:[58,3,1,""],_functions:[58,3,1,""],_get_coeff_exp:[58,3,1,""],_guess_expansion:[58,3,1,""],_inflate_fox_h:[58,3,1,""],_inflate_g:[58,3,1,""],_int0oo:[58,3,1,""],_int0oo_1:[58,3,1,""],_int_inversion:[58,3,1,""],_is_analytic:[58,3,1,""],_meijerint_definite_2:[58,3,1,""],_meijerint_definite_3:[58,3,1,""],_meijerint_definite_4:[58,3,1,""],_meijerint_indefinite_1:[58,3,1,""],_mul_args:[58,3,1,""],_mul_as_two_parts:[58,3,1,""],_my_principal_branch:[58,3,1,""],_mytype:[58,3,1,""],_rewrite1:[58,3,1,""],_rewrite2:[58,3,1,""],_rewrite_inversion:[58,3,1,""],_rewrite_saxena:[58,3,1,""],_rewrite_saxena_1:[58,3,1,""],_rewrite_single:[58,3,1,""],_split_mul:[58,3,1,""],meijerint_definite:[58,3,1,""],meijerint_indefinite:[58,3,1,""],meijerint_inversion:[58,3,1,""]},"sympy.integrals.quadrature":{gauss_chebyshev_t:[59,3,1,""],gauss_chebyshev_u:[59,3,1,""],gauss_gen_laguerre:[59,3,1,""],gauss_hermite:[59,3,1,""],gauss_jacobi:[59,3,1,""],gauss_laguerre:[59,3,1,""],gauss_legendre:[59,3,1,""],gauss_lobatto:[59,3,1,""]},"sympy.integrals.rationaltools":{ratint:[59,3,1,""],ratint_logpart:[59,3,1,""],ratint_ratpart:[59,3,1,""]},"sympy.integrals.risch":{NonElementaryIntegral:[59,1,1,""],risch_integrate:[59,3,1,""]},"sympy.integrals.singularityfunctions":{singularityintegrate:[59,3,1,""]},"sympy.integrals.transforms":{CosineTransform:[59,1,1,""],FourierTransform:[59,1,1,""],HankelTransform:[59,1,1,""],IntegralTransform:[59,1,1,""],IntegralTransformError:[59,6,1,""],InverseCosineTransform:[59,1,1,""],InverseFourierTransform:[59,1,1,""],InverseHankelTransform:[59,1,1,""],InverseLaplaceTransform:[59,1,1,""],InverseMellinTransform:[59,1,1,""],InverseSineTransform:[59,1,1,""],LaplaceTransform:[59,1,1,""],MellinTransform:[59,1,1,""],SineTransform:[59,1,1,""],_fourier_transform:[59,3,1,""],cosine_transform:[59,3,1,""],fourier_transform:[59,3,1,""],hankel_transform:[59,3,1,""],inverse_cosine_transform:[59,3,1,""],inverse_fourier_transform:[59,3,1,""],inverse_hankel_transform:[59,3,1,""],inverse_laplace_transform:[59,3,1,""],inverse_mellin_transform:[59,3,1,""],inverse_sine_transform:[59,3,1,""],laplace_transform:[59,3,1,""],mellin_transform:[59,3,1,""],sine_transform:[59,3,1,""]},"sympy.integrals.transforms.IntegralTransform":{"function":[59,2,1,""],doit:[59,2,1,""],function_variable:[59,2,1,""],transform_variable:[59,2,1,""]},"sympy.integrals.trigonometry":{trigintegrate:[59,3,1,""]},"sympy.interactive":{printing:[60,0,0,"-"],session:[60,0,0,"-"]},"sympy.interactive.printing":{init_printing:[60,3,1,""]},"sympy.interactive.session":{enable_automatic_int_sympification:[60,3,1,""],enable_automatic_symbols:[60,3,1,""],init_ipython_session:[60,3,1,""],init_python_session:[60,3,1,""],init_session:[60,3,1,""],int_to_Integer:[60,3,1,""]},"sympy.liealgebras.cartan_matrix":{CartanMatrix:[61,3,1,""]},"sympy.liealgebras.cartan_type":{CartanType_generator:[61,1,1,""],Standard_Cartan:[61,1,1,""]},"sympy.liealgebras.cartan_type.Standard_Cartan":{rank:[61,2,1,""],series:[61,2,1,""]},"sympy.liealgebras.dynkin_diagram":{DynkinDiagram:[61,3,1,""]},"sympy.liealgebras.root_system":{RootSystem:[61,1,1,""]},"sympy.liealgebras.root_system.RootSystem":{add_as_roots:[61,2,1,""],add_simple_roots:[61,2,1,""],all_roots:[61,2,1,""],cartan_matrix:[61,2,1,""],dynkin_diagram:[61,2,1,""],root_space:[61,2,1,""],simple_roots:[61,2,1,""]},"sympy.liealgebras.type_a":{TypeA:[61,1,1,""]},"sympy.liealgebras.type_a.TypeA":{basic_root:[61,2,1,""],basis:[61,2,1,""],cartan_matrix:[61,2,1,""],dimension:[61,2,1,""],highest_root:[61,2,1,""],lie_algebra:[61,2,1,""],positive_roots:[61,2,1,""],roots:[61,2,1,""],simple_root:[61,2,1,""]},"sympy.liealgebras.type_b":{TypeB:[61,1,1,""]},"sympy.liealgebras.type_b.TypeB":{basic_root:[61,2,1,""],basis:[61,2,1,""],cartan_matrix:[61,2,1,""],dimension:[61,2,1,""],lie_algebra:[61,2,1,""],positive_roots:[61,2,1,""],roots:[61,2,1,""],simple_root:[61,2,1,""]},"sympy.liealgebras.type_c":{TypeC:[61,1,1,""]},"sympy.liealgebras.type_c.TypeC":{basic_root:[61,2,1,""],basis:[61,2,1,""],cartan_matrix:[61,2,1,""],dimension:[61,2,1,""],lie_algebra:[61,2,1,""],positive_roots:[61,2,1,""],roots:[61,2,1,""],simple_root:[61,2,1,""]},"sympy.liealgebras.type_d":{TypeD:[61,1,1,""]},"sympy.liealgebras.type_d.TypeD":{basic_root:[61,2,1,""],basis:[61,2,1,""],cartan_matrix:[61,2,1,""],dimension:[61,2,1,""],lie_algebra:[61,2,1,""],positive_roots:[61,2,1,""],roots:[61,2,1,""],simple_root:[61,2,1,""]},"sympy.liealgebras.type_e":{TypeE:[61,1,1,""]},"sympy.liealgebras.type_e.TypeE":{basic_root:[61,2,1,""],basis:[61,2,1,""],cartan_matrix:[61,2,1,""],dimension:[61,2,1,""],positive_roots:[61,2,1,""],roots:[61,2,1,""],simple_root:[61,2,1,""]},"sympy.liealgebras.type_f":{TypeF:[61,1,1,""]},"sympy.liealgebras.type_f.TypeF":{basic_root:[61,2,1,""],basis:[61,2,1,""],cartan_matrix:[61,2,1,""],dimension:[61,2,1,""],positive_roots:[61,2,1,""],roots:[61,2,1,""],simple_root:[61,2,1,""]},"sympy.liealgebras.type_g":{TypeG:[61,1,1,""]},"sympy.liealgebras.type_g.TypeG":{basis:[61,2,1,""],cartan_matrix:[61,2,1,""],dimension:[61,2,1,""],positive_roots:[61,2,1,""],roots:[61,2,1,""],simple_root:[61,2,1,""]},"sympy.liealgebras.weyl_group":{WeylGroup:[61,1,1,""]},"sympy.liealgebras.weyl_group.WeylGroup":{coxeter_diagram:[61,2,1,""],delete_doubles:[61,2,1,""],element_order:[61,2,1,""],generators:[61,2,1,""],group_name:[61,2,1,""],group_order:[61,2,1,""],matrix_form:[61,2,1,""]},"sympy.logic":{inference:[62,0,0,"-"]},"sympy.logic.boolalg":{And:[62,1,1,""],BooleanFalse:[62,1,1,""],BooleanTrue:[62,1,1,""],Equivalent:[62,1,1,""],ITE:[62,1,1,""],Implies:[62,1,1,""],Nand:[62,1,1,""],Nor:[62,1,1,""],Not:[62,1,1,""],Or:[62,1,1,""],POSform:[62,3,1,""],SOPform:[62,3,1,""],Xor:[62,1,1,""],bool_map:[62,3,1,""],is_cnf:[62,3,1,""],is_dnf:[62,3,1,""],simplify_logic:[62,3,1,""],to_cnf:[62,3,1,""],to_dnf:[62,3,1,""]},"sympy.logic.boolalg.BooleanFalse":{as_set:[62,2,1,""]},"sympy.logic.boolalg.BooleanTrue":{as_set:[62,2,1,""]},"sympy.logic.inference":{satisfiable:[62,3,1,""]},"sympy.matrices":{common:[63,0,0,"-"],expressions:[65,0,0,"-"],immutable:[66,0,0,"-"],matrices:[68,0,0,"-"],sparse:[69,0,0,"-"],sparsetools:[70,0,0,"-"]},"sympy.matrices.common":{MatrixCommon:[63,1,1,""]},"sympy.matrices.common.MatrixCommon":{C:[63,2,1,""],H:[63,2,1,""],T:[63,2,1,""],__abs__:[63,2,1,""],__add__:[63,2,1,""],__getitem__:[63,2,1,""],__len__:[63,2,1,""],__mul__:[63,2,1,""],__pow__:[63,2,1,""],__weakref__:[63,4,1,""],adjoint:[63,2,1,""],applyfunc:[63,2,1,""],as_real_imag:[63,2,1,""],atoms:[63,2,1,""],col:[63,2,1,""],col_del:[63,2,1,""],col_insert:[63,2,1,""],col_join:[63,2,1,""],companion:[63,2,1,""],conjugate:[63,2,1,""],diag:[63,2,1,""],diagonal:[63,2,1,""],evalf:[63,2,1,""],expand:[63,2,1,""],extract:[63,2,1,""],eye:[63,2,1,""],free_symbols:[63,2,1,""],get_diag_blocks:[63,2,1,""],has:[63,2,1,""],hstack:[63,2,1,""],is_anti_symmetric:[63,2,1,""],is_diagonal:[63,2,1,""],is_hermitian:[63,2,1,""],is_lower:[63,2,1,""],is_lower_hessenberg:[63,2,1,""],is_square:[63,2,1,""],is_strongly_diagonally_dominant:[63,2,1,""],is_symbolic:[63,2,1,""],is_symmetric:[63,2,1,""],is_upper:[63,2,1,""],is_upper_hessenberg:[63,2,1,""],is_weakly_diagonally_dominant:[63,2,1,""],is_zero_matrix:[63,2,1,""],jordan_block:[63,2,1,""],lower_triangular:[63,2,1,""],multiply:[63,2,1,""],multiply_elementwise:[63,2,1,""],n:[63,2,1,""],ones:[63,2,1,""],permute:[63,2,1,""],permute_cols:[63,2,1,""],permute_rows:[63,2,1,""],pow:[63,2,1,""],refine:[63,2,1,""],replace:[63,2,1,""],reshape:[63,2,1,""],rmultiply:[63,2,1,""],rot90:[63,2,1,""],row:[63,2,1,""],row_del:[63,2,1,""],row_insert:[63,2,1,""],row_join:[63,2,1,""],shape:[63,2,1,""],simplify:[63,2,1,""],subs:[63,2,1,""],todok:[63,2,1,""],tolist:[63,2,1,""],trace:[63,2,1,""],transpose:[63,2,1,""],upper_triangular:[63,2,1,""],values:[63,2,1,""],vec:[63,2,1,""],vech:[63,2,1,""],vstack:[63,2,1,""],wilkinson:[63,2,1,""],xreplace:[63,2,1,""],zeros:[63,2,1,""]},"sympy.matrices.dense":{DenseMatrix:[64,1,1,""],GramSchmidt:[68,3,1,""],Matrix:[64,4,1,""],MutableDenseMatrix:[64,1,1,""],casoratian:[68,3,1,""],diag:[68,3,1,""],eye:[68,3,1,""],hessian:[68,3,1,""],jordan_cell:[68,3,1,""],list2numpy:[68,3,1,""],matrix2numpy:[68,3,1,""],matrix_multiply_elementwise:[68,3,1,""],ones:[68,3,1,""],randMatrix:[68,3,1,""],rot_axis1:[68,3,1,""],rot_axis2:[68,3,1,""],rot_axis3:[68,3,1,""],symarray:[68,3,1,""],wronskian:[68,3,1,""],zeros:[68,3,1,""]},"sympy.matrices.dense.DenseMatrix":{LDLdecomposition:[64,2,1,""],as_immutable:[64,2,1,""],as_mutable:[64,2,1,""],cholesky:[64,2,1,""],equals:[64,2,1,""],lower_triangular_solve:[64,2,1,""],upper_triangular_solve:[64,2,1,""]},"sympy.matrices.dense.MutableDenseMatrix":{col_op:[64,2,1,""],col_swap:[64,2,1,""],copyin_list:[64,2,1,""],copyin_matrix:[64,2,1,""],fill:[64,2,1,""],row_op:[64,2,1,""],row_swap:[64,2,1,""],simplify:[64,2,1,""],zip_row_op:[64,2,1,""]},"sympy.matrices.expressions":{CompanionMatrix:[65,1,1,""],FunctionMatrix:[65,1,1,""],HadamardPower:[65,1,1,""],HadamardProduct:[65,1,1,""],Identity:[65,1,1,""],Inverse:[65,1,1,""],MatAdd:[65,1,1,""],MatMul:[65,1,1,""],MatPow:[65,1,1,""],MatrixExpr:[65,1,1,""],MatrixPermute:[65,1,1,""],MatrixSet:[65,1,1,""],MatrixSymbol:[65,1,1,""],PermutationMatrix:[65,1,1,""],Trace:[65,1,1,""],Transpose:[65,1,1,""],ZeroMatrix:[65,1,1,""],blockmatrix:[65,0,0,"-"]},"sympy.matrices.expressions.MatrixExpr":{T:[65,2,1,""],as_coeff_Mul:[65,2,1,""],as_explicit:[65,2,1,""],as_mutable:[65,2,1,""],equals:[65,2,1,""],from_index_summation:[65,2,1,""]},"sympy.matrices.expressions.blockmatrix":{BlockDiagMatrix:[65,1,1,""],BlockMatrix:[65,1,1,""],block_collapse:[65,3,1,""]},"sympy.matrices.expressions.blockmatrix.BlockDiagMatrix":{get_diag_blocks:[65,2,1,""]},"sympy.matrices.expressions.blockmatrix.BlockMatrix":{LDUdecomposition:[65,2,1,""],LUdecomposition:[65,2,1,""],UDLdecomposition:[65,2,1,""],schur:[65,2,1,""],transpose:[65,2,1,""]},"sympy.matrices.immutable":{ImmutableDenseMatrix:[66,1,1,""],ImmutableMatrix:[66,4,1,""],ImmutableSparseMatrix:[69,1,1,""]},"sympy.matrices.immutable.ImmutableDenseMatrix":{is_diagonalizable:[66,2,1,""]},"sympy.matrices.immutable.ImmutableSparseMatrix":{is_diagonalizable:[69,2,1,""]},"sympy.matrices.matrices":{MatrixBase:[68,1,1,""],MatrixCalculus:[68,1,1,""],MatrixDeterminant:[68,1,1,""],MatrixEigen:[68,1,1,""],MatrixError:[68,1,1,""],MatrixReductions:[68,1,1,""],MatrixSubspaces:[68,1,1,""],NonSquareMatrixError:[68,1,1,""],ShapeError:[68,1,1,""],a2idx:[68,3,1,""]},"sympy.matrices.matrices.MatrixBase":{D:[68,2,1,""],LDLdecomposition:[68,2,1,""],LDLsolve:[68,2,1,""],LUdecomposition:[68,2,1,""],LUdecompositionFF:[68,2,1,""],LUdecomposition_Simple:[68,2,1,""],LUsolve:[68,2,1,""],QRdecomposition:[68,2,1,""],QRsolve:[68,2,1,""],add:[68,2,1,""],analytic_func:[68,2,1,""],cholesky:[68,2,1,""],cholesky_solve:[68,2,1,""],condition_number:[68,2,1,""],connected_components:[68,2,1,""],connected_components_decomposition:[68,2,1,""],copy:[68,2,1,""],cross:[68,2,1,""],diagonal_solve:[68,2,1,""],dot:[68,2,1,""],dual:[68,2,1,""],exp:[68,2,1,""],gauss_jordan_solve:[68,2,1,""],inv:[68,2,1,""],inv_mod:[68,2,1,""],inverse_ADJ:[68,2,1,""],inverse_BLOCK:[68,2,1,""],inverse_CH:[68,2,1,""],inverse_GE:[68,2,1,""],inverse_LDL:[68,2,1,""],inverse_LU:[68,2,1,""],inverse_QR:[68,2,1,""],irregular:[68,2,1,""],is_nilpotent:[68,2,1,""],key2bounds:[68,2,1,""],key2ij:[68,2,1,""],log:[68,2,1,""],lower_triangular_solve:[68,2,1,""],norm:[68,2,1,""],normalized:[68,2,1,""],pinv:[68,2,1,""],pinv_solve:[68,2,1,""],print_nonzero:[68,2,1,""],project:[68,2,1,""],rank_decomposition:[68,2,1,""],singular_value_decomposition:[68,2,1,""],solve:[68,2,1,""],solve_least_squares:[68,2,1,""],table:[68,2,1,""],upper_hessenberg_decomposition:[68,2,1,""],upper_triangular_solve:[68,2,1,""]},"sympy.matrices.matrices.MatrixCalculus":{diff:[68,2,1,""],integrate:[68,2,1,""],jacobian:[68,2,1,""],limit:[68,2,1,""]},"sympy.matrices.matrices.MatrixDeterminant":{adjugate:[68,2,1,""],charpoly:[68,2,1,""],cofactor:[68,2,1,""],cofactor_matrix:[68,2,1,""],det:[68,2,1,""],minor:[68,2,1,""],minor_submatrix:[68,2,1,""],per:[68,2,1,""]},"sympy.matrices.matrices.MatrixEigen":{bidiagonal_decomposition:[68,2,1,""],bidiagonalize:[68,2,1,""],diagonalize:[68,2,1,""],eigenvals:[68,2,1,""],eigenvects:[68,2,1,""],is_diagonalizable:[68,2,1,""],is_indefinite:[68,2,1,""],is_negative_definite:[68,2,1,""],is_negative_semidefinite:[68,2,1,""],is_positive_definite:[68,2,1,""],is_positive_semidefinite:[68,2,1,""],jordan_form:[68,2,1,""],left_eigenvects:[68,2,1,""],singular_values:[68,2,1,""]},"sympy.matrices.matrices.MatrixReductions":{echelon_form:[68,2,1,""],elementary_col_op:[68,2,1,""],elementary_row_op:[68,2,1,""],is_echelon:[68,2,1,""],rank:[68,2,1,""],rref:[68,2,1,""]},"sympy.matrices.matrices.MatrixSubspaces":{columnspace:[68,2,1,""],nullspace:[68,2,1,""],orthogonalize:[68,2,1,""],rowspace:[68,2,1,""]},"sympy.matrices.sparse":{MutableSparseMatrix:[69,1,1,""],SparseMatrix:[69,1,1,""]},"sympy.matrices.sparse.MutableSparseMatrix":{col_join:[69,2,1,""],col_op:[69,2,1,""],col_swap:[69,2,1,""],fill:[69,2,1,""],row_join:[69,2,1,""],row_op:[69,2,1,""],row_swap:[69,2,1,""],zip_row_op:[69,2,1,""]},"sympy.matrices.sparse.SparseMatrix":{CL:[69,2,1,""],LDLdecomposition:[69,2,1,""],RL:[69,2,1,""],applyfunc:[69,2,1,""],as_immutable:[69,2,1,""],as_mutable:[69,2,1,""],cholesky:[69,2,1,""],col_list:[69,2,1,""],liupc:[69,2,1,""],nnz:[69,2,1,""],row_list:[69,2,1,""],row_structure_symbolic_cholesky:[69,2,1,""],scalar_multiply:[69,2,1,""],solve:[69,2,1,""],solve_least_squares:[69,2,1,""]},"sympy.matrices.sparsetools":{_csrtodok:[70,2,1,""],_doktocsr:[70,2,1,""],banded:[70,2,1,""]},"sympy.ntheory":{bbp_pi:[71,0,0,"-"],continued_fraction:[71,0,0,"-"],digits:[71,0,0,"-"],ecm:[71,0,0,"-"],egyptian_fraction:[71,0,0,"-"],factor_:[71,0,0,"-"],generate:[71,0,0,"-"],mobius:[71,1,1,""],modular:[71,0,0,"-"],multinomial:[71,0,0,"-"],partitions_:[71,0,0,"-"],primetest:[71,0,0,"-"],qs:[71,0,0,"-"],residue_ntheory:[71,0,0,"-"]},"sympy.ntheory.bbp_pi":{pi_hex_digits:[71,3,1,""]},"sympy.ntheory.continued_fraction":{continued_fraction:[71,3,1,""],continued_fraction_convergents:[71,3,1,""],continued_fraction_iterator:[71,3,1,""],continued_fraction_periodic:[71,3,1,""],continued_fraction_reduce:[71,3,1,""]},"sympy.ntheory.digits":{count_digits:[71,3,1,""],digits:[71,3,1,""],is_palindromic:[71,3,1,""]},"sympy.ntheory.ecm":{ecm:[71,3,1,""]},"sympy.ntheory.egyptian_fraction":{egyptian_fraction:[71,3,1,""]},"sympy.ntheory.factor_":{abundance:[71,3,1,""],antidivisor_count:[71,3,1,""],antidivisors:[71,3,1,""],core:[71,3,1,""],digits:[71,3,1,""],divisor_count:[71,3,1,""],divisor_sigma:[71,1,1,""],divisors:[71,3,1,""],factorint:[71,3,1,""],factorrat:[71,3,1,""],is_abundant:[71,3,1,""],is_amicable:[71,3,1,""],is_deficient:[71,3,1,""],is_mersenne_prime:[71,3,1,""],is_perfect:[71,3,1,""],mersenne_prime_exponent:[71,3,1,""],multiplicity:[71,3,1,""],perfect_power:[71,3,1,""],pollard_pm1:[71,3,1,""],pollard_rho:[71,3,1,""],primefactors:[71,3,1,""],primenu:[71,1,1,""],primeomega:[71,1,1,""],proper_divisor_count:[71,3,1,""],proper_divisors:[71,3,1,""],reduced_totient:[71,1,1,""],smoothness:[71,3,1,""],smoothness_p:[71,3,1,""],totient:[71,1,1,""],trailing:[71,3,1,""],udivisor_count:[71,3,1,""],udivisor_sigma:[71,1,1,""],udivisors:[71,3,1,""]},"sympy.ntheory.generate":{Sieve:[71,1,1,""],composite:[71,3,1,""],compositepi:[71,3,1,""],cycle_length:[71,3,1,""],nextprime:[71,3,1,""],prevprime:[71,3,1,""],prime:[71,3,1,""],primepi:[71,3,1,""],primerange:[71,3,1,""],primorial:[71,3,1,""],randprime:[71,3,1,""]},"sympy.ntheory.generate.Sieve":{extend:[71,2,1,""],extend_to_no:[71,2,1,""],mobiusrange:[71,2,1,""],primerange:[71,2,1,""],search:[71,2,1,""],totientrange:[71,2,1,""]},"sympy.ntheory.modular":{crt1:[71,3,1,""],crt2:[71,3,1,""],crt:[71,3,1,""],solve_congruence:[71,3,1,""],symmetric_residue:[71,3,1,""]},"sympy.ntheory.multinomial":{binomial_coefficients:[71,3,1,""],binomial_coefficients_list:[71,3,1,""],multinomial_coefficients:[71,3,1,""],multinomial_coefficients_iterator:[71,3,1,""]},"sympy.ntheory.partitions_":{npartitions:[71,3,1,""]},"sympy.ntheory.primetest":{is_euler_pseudoprime:[71,3,1,""],is_extra_strong_lucas_prp:[71,3,1,""],is_gaussian_prime:[71,3,1,""],is_lucas_prp:[71,3,1,""],is_square:[71,3,1,""],is_strong_lucas_prp:[71,3,1,""],isprime:[71,3,1,""],mr:[71,3,1,""]},"sympy.ntheory.qs":{qs:[71,3,1,""]},"sympy.ntheory.residue_ntheory":{discrete_log:[71,3,1,""],is_nthpow_residue:[71,3,1,""],is_primitive_root:[71,3,1,""],is_quad_residue:[71,3,1,""],jacobi_symbol:[71,3,1,""],legendre_symbol:[71,3,1,""],n_order:[71,3,1,""],nthroot_mod:[71,3,1,""],primitive_root:[71,3,1,""],quadratic_residues:[71,3,1,""],sqrt_mod:[71,3,1,""],sqrt_mod_iter:[71,3,1,""]},"sympy.parsing":{sym_expr:[73,0,0,"-"]},"sympy.parsing.latex":{LaTeXParsingError:[73,1,1,""],parse_latex:[73,3,1,""]},"sympy.parsing.mathematica":{mathematica:[73,3,1,""]},"sympy.parsing.maxima":{parse_maxima:[73,3,1,""]},"sympy.parsing.sym_expr":{SymPyExpression:[73,1,1,""]},"sympy.parsing.sym_expr.SymPyExpression":{convert_to_c:[73,2,1,""],convert_to_expr:[73,2,1,""],convert_to_fortran:[73,2,1,""],convert_to_python:[73,2,1,""],return_expr:[73,2,1,""]},"sympy.parsing.sympy_parser":{auto_number:[73,3,1,""],auto_symbol:[73,3,1,""],convert_xor:[73,3,1,""],eval_expr:[73,3,1,""],factorial_notation:[73,3,1,""],function_exponentiation:[73,3,1,""],implicit_application:[73,3,1,""],implicit_multiplication:[73,3,1,""],implicit_multiplication_application:[73,3,1,""],lambda_notation:[73,3,1,""],parse_expr:[73,3,1,""],rationalize:[73,3,1,""],repeated_decimals:[73,3,1,""],split_symbols:[73,3,1,""],split_symbols_custom:[73,3,1,""],standard_transformations:[73,5,1,""],stringify_expr:[73,3,1,""]},"sympy.physics":{control:[78,0,0,"-"],hydrogen:[81,0,0,"-"],matrices:[83,0,0,"-"],mechanics:[100,0,0,"-"],paulialgebra:[114,0,0,"-"],qho_1d:[115,0,0,"-"],secondquant:[139,0,0,"-"],sho:[140,0,0,"-"],vector:[155,0,0,"-"],wigner:[158,0,0,"-"]},"sympy.physics.continuum_mechanics":{beam:[74,0,0,"-"]},"sympy.physics.continuum_mechanics.beam":{Beam3D:[74,1,1,""],Beam:[74,1,1,""]},"sympy.physics.continuum_mechanics.beam.Beam":{applied_loads:[74,2,1,""],apply_load:[74,2,1,""],apply_support:[74,2,1,""],area:[74,2,1,""],bending_moment:[74,2,1,""],boundary_conditions:[74,2,1,""],cross_section:[74,2,1,""],deflection:[74,2,1,""],draw:[74,2,1,""],elastic_modulus:[74,2,1,""],join:[74,2,1,""],length:[74,2,1,""],load:[74,2,1,""],max_bmoment:[74,2,1,""],max_deflection:[74,2,1,""],max_shear_force:[74,2,1,""],plot_bending_moment:[74,2,1,""],plot_deflection:[74,2,1,""],plot_loading_results:[74,2,1,""],plot_shear_force:[74,2,1,""],plot_slope:[74,2,1,""],point_cflexure:[74,2,1,""],reaction_loads:[74,2,1,""],remove_load:[74,2,1,""],second_moment:[74,2,1,""],shear_force:[74,2,1,""],shear_stress:[74,2,1,""],slope:[74,2,1,""],solve_for_reaction_loads:[74,2,1,""],variable:[74,2,1,""]},"sympy.physics.continuum_mechanics.beam.Beam3D":{apply_load:[74,2,1,""],apply_moment_load:[74,2,1,""],area:[74,2,1,""],axial_force:[74,2,1,""],axial_stress:[74,2,1,""],bending_moment:[74,2,1,""],boundary_conditions:[74,2,1,""],deflection:[74,2,1,""],load_vector:[74,2,1,""],moment_load_vector:[74,2,1,""],plot_shear_force:[74,2,1,""],polar_moment:[74,2,1,""],second_moment:[74,2,1,""],shear_force:[74,2,1,""],shear_modulus:[74,2,1,""],shear_stress:[74,2,1,""],slope:[74,2,1,""],solve_for_reaction_loads:[74,2,1,""],torsional_moment:[74,2,1,""]},"sympy.physics.control":{lti:[79,0,0,"-"]},"sympy.physics.control.lti":{Feedback:[79,1,1,""],Parallel:[79,1,1,""],Series:[79,1,1,""],TransferFunction:[79,1,1,""]},"sympy.physics.control.lti.Feedback":{"var":[79,2,1,""],den:[79,2,1,""],doit:[79,2,1,""],num:[79,2,1,""]},"sympy.physics.control.lti.Parallel":{"var":[79,2,1,""],doit:[79,2,1,""],is_biproper:[79,2,1,""],is_proper:[79,2,1,""],is_strictly_proper:[79,2,1,""]},"sympy.physics.control.lti.Series":{"var":[79,2,1,""],doit:[79,2,1,""],is_biproper:[79,2,1,""],is_proper:[79,2,1,""],is_strictly_proper:[79,2,1,""]},"sympy.physics.control.lti.TransferFunction":{"var":[79,2,1,""],dc_gain:[79,2,1,""],den:[79,2,1,""],expand:[79,2,1,""],is_biproper:[79,2,1,""],is_proper:[79,2,1,""],is_stable:[79,2,1,""],is_strictly_proper:[79,2,1,""],num:[79,2,1,""],poles:[79,2,1,""],zeros:[79,2,1,""]},"sympy.physics.hep":{gamma_matrices:[80,0,0,"-"]},"sympy.physics.hep.gamma_matrices":{extract_type_tens:[80,3,1,""],gamma_trace:[80,3,1,""],kahane_simplify:[80,3,1,""],simplify_gpgp:[80,3,1,""]},"sympy.physics.hydrogen":{E_nl:[81,3,1,""],E_nl_dirac:[81,3,1,""],Psi_nlm:[81,3,1,""],R_nl:[81,3,1,""]},"sympy.physics.matrices":{mdft:[83,3,1,""],mgamma:[83,3,1,""],msigma:[83,3,1,""],pat_matrix:[83,3,1,""]},"sympy.physics.mechanics":{body:[85,0,0,"-"],find_dynamicsymbols:[86,3,1,""],kane:[87,0,0,"-"],lagrange:[87,0,0,"-"],linearize:[88,0,0,"-"],msubs:[86,3,1,""],particle:[89,0,0,"-"],rigidbody:[89,0,0,"-"],system:[91,0,0,"-"]},"sympy.physics.mechanics.body":{Body:[85,1,1,""]},"sympy.physics.mechanics.body.Body":{apply_force:[85,2,1,""],apply_torque:[85,2,1,""]},"sympy.physics.mechanics.functions":{Lagrangian:[89,3,1,""],angular_momentum:[89,3,1,""],inertia:[89,3,1,""],inertia_of_point_mass:[89,3,1,""],kinetic_energy:[89,3,1,""],linear_momentum:[89,3,1,""],potential_energy:[89,3,1,""]},"sympy.physics.mechanics.kane":{KanesMethod:[87,1,1,""]},"sympy.physics.mechanics.kane.KanesMethod":{auxiliary_eqs:[87,2,1,""],forcing:[87,2,1,""],forcing_full:[87,2,1,""],kanes_equations:[87,2,1,""],kindiffdict:[87,2,1,""],linearize:[87,2,1,""],mass_matrix:[87,2,1,""],mass_matrix_full:[87,2,1,""],rhs:[87,2,1,""],to_linearizer:[87,2,1,""]},"sympy.physics.mechanics.lagrange":{LagrangesMethod:[87,1,1,""]},"sympy.physics.mechanics.lagrange.LagrangesMethod":{forcing:[87,2,1,""],forcing_full:[87,2,1,""],form_lagranges_equations:[87,2,1,""],linearize:[87,2,1,""],mass_matrix:[87,2,1,""],mass_matrix_full:[87,2,1,""],rhs:[87,2,1,""],solve_multipliers:[87,2,1,""],to_linearizer:[87,2,1,""]},"sympy.physics.mechanics.linearize":{Linearizer:[88,1,1,""]},"sympy.physics.mechanics.linearize.Linearizer":{linearize:[88,2,1,""]},"sympy.physics.mechanics.particle":{Particle:[89,1,1,""]},"sympy.physics.mechanics.particle.Particle":{angular_momentum:[89,2,1,""],kinetic_energy:[89,2,1,""],linear_momentum:[89,2,1,""],mass:[89,2,1,""],parallel_axis:[89,2,1,""],point:[89,2,1,""],potential_energy:[89,2,1,""]},"sympy.physics.mechanics.rigidbody":{RigidBody:[89,1,1,""]},"sympy.physics.mechanics.rigidbody.RigidBody":{angular_momentum:[89,2,1,""],central_inertia:[89,2,1,""],kinetic_energy:[89,2,1,""],linear_momentum:[89,2,1,""],parallel_axis:[89,2,1,""],potential_energy:[89,2,1,""]},"sympy.physics.mechanics.system":{SymbolicSystem:[91,1,1,""]},"sympy.physics.mechanics.system.SymbolicSystem":{alg_con:[91,2,1,""],bodies:[91,2,1,""],comb_explicit_rhs:[91,2,1,""],comb_implicit_mat:[91,2,1,""],comb_implicit_rhs:[91,2,1,""],compute_explicit_form:[91,2,1,""],constant_symbols:[91,2,1,""],coordinates:[91,2,1,""],dyn_implicit_mat:[91,2,1,""],dyn_implicit_rhs:[91,2,1,""],dynamic_symbols:[91,2,1,""],kin_explicit_rhs:[91,2,1,""],loads:[91,2,1,""],speeds:[91,2,1,""],states:[91,2,1,""]},"sympy.physics.optics":{gaussopt:[108,0,0,"-"],medium:[110,0,0,"-"],polarization:[111,0,0,"-"],utils:[112,0,0,"-"],waves:[113,0,0,"-"]},"sympy.physics.optics.gaussopt":{BeamParameter:[108,1,1,""],CurvedMirror:[108,1,1,""],CurvedRefraction:[108,1,1,""],FlatMirror:[108,1,1,""],FlatRefraction:[108,1,1,""],FreeSpace:[108,1,1,""],GeometricRay:[108,1,1,""],RayTransferMatrix:[108,1,1,""],ThinLens:[108,1,1,""],conjugate_gauss_beams:[108,3,1,""],gaussian_conj:[108,3,1,""],geometric_conj_ab:[108,3,1,""],geometric_conj_af:[108,3,1,""],geometric_conj_bf:[108,3,1,""],rayleigh2waist:[108,3,1,""],waist2rayleigh:[108,3,1,""]},"sympy.physics.optics.gaussopt.BeamParameter":{divergence:[108,2,1,""],gouy:[108,2,1,""],q:[108,2,1,""],radius:[108,2,1,""],w:[108,2,1,""],w_0:[108,2,1,""],waist_approximation_limit:[108,2,1,""]},"sympy.physics.optics.gaussopt.GeometricRay":{angle:[108,2,1,""],height:[108,2,1,""]},"sympy.physics.optics.gaussopt.RayTransferMatrix":{A:[108,2,1,""],B:[108,2,1,""],C:[108,2,1,""],D:[108,2,1,""]},"sympy.physics.optics.medium":{Medium:[110,1,1,""]},"sympy.physics.optics.medium.Medium":{intrinsic_impedance:[110,2,1,""],permeability:[110,2,1,""],permittivity:[110,2,1,""],refractive_index:[110,2,1,""],speed:[110,2,1,""]},"sympy.physics.optics.polarization":{half_wave_retarder:[111,3,1,""],jones_2_stokes:[111,3,1,""],jones_vector:[111,3,1,""],linear_polarizer:[111,3,1,""],mueller_matrix:[111,3,1,""],phase_retarder:[111,3,1,""],polarizing_beam_splitter:[111,3,1,""],quarter_wave_retarder:[111,3,1,""],reflective_filter:[111,3,1,""],stokes_vector:[111,3,1,""],transmissive_filter:[111,3,1,""]},"sympy.physics.optics.utils":{brewster_angle:[112,3,1,""],critical_angle:[112,3,1,""],deviation:[112,3,1,""],fresnel_coefficients:[112,3,1,""],hyperfocal_distance:[112,3,1,""],lens_formula:[112,3,1,""],lens_makers_formula:[112,3,1,""],mirror_formula:[112,3,1,""],refraction_angle:[112,3,1,""],transverse_magnification:[112,3,1,""]},"sympy.physics.optics.waves":{TWave:[113,1,1,""]},"sympy.physics.optics.waves.TWave":{amplitude:[113,2,1,""],angular_velocity:[113,2,1,""],frequency:[113,2,1,""],phase:[113,2,1,""],speed:[113,2,1,""],time_period:[113,2,1,""],wavelength:[113,2,1,""],wavenumber:[113,2,1,""]},"sympy.physics.paulialgebra":{evaluate_pauli_product:[114,3,1,""]},"sympy.physics.qho_1d":{E_n:[115,3,1,""],coherent_state:[115,3,1,""],psi_n:[115,3,1,""]},"sympy.physics.quantum":{anticommutator:[116,0,0,"-"],cartesian:[117,0,0,"-"],cg:[118,0,0,"-"],circuitplot:[119,0,0,"-"],commutator:[120,0,0,"-"],constants:[121,0,0,"-"],dagger:[122,0,0,"-"],gate:[123,0,0,"-"],grover:[124,0,0,"-"],hilbert:[125,0,0,"-"],innerproduct:[127,0,0,"-"],operator:[128,0,0,"-"],operatorset:[129,0,0,"-"],piab:[130,0,0,"-"],qapply:[131,0,0,"-"],qft:[132,0,0,"-"],qubit:[133,0,0,"-"],represent:[134,0,0,"-"],shor:[135,0,0,"-"],spin:[136,0,0,"-"],state:[137,0,0,"-"],tensorproduct:[138,0,0,"-"]},"sympy.physics.quantum.anticommutator":{AntiCommutator:[116,1,1,""]},"sympy.physics.quantum.anticommutator.AntiCommutator":{doit:[116,2,1,""]},"sympy.physics.quantum.cartesian":{PositionBra3D:[117,1,1,""],PositionKet3D:[117,1,1,""],PositionState3D:[117,1,1,""],PxBra:[117,1,1,""],PxKet:[117,1,1,""],PxOp:[117,1,1,""],XBra:[117,1,1,""],XKet:[117,1,1,""],XOp:[117,1,1,""],YOp:[117,1,1,""],ZOp:[117,1,1,""]},"sympy.physics.quantum.cartesian.PositionState3D":{position_x:[117,2,1,""],position_y:[117,2,1,""],position_z:[117,2,1,""]},"sympy.physics.quantum.cartesian.PxBra":{momentum:[117,2,1,""]},"sympy.physics.quantum.cartesian.PxKet":{momentum:[117,2,1,""]},"sympy.physics.quantum.cartesian.XBra":{position:[117,2,1,""]},"sympy.physics.quantum.cartesian.XKet":{position:[117,2,1,""]},"sympy.physics.quantum.cg":{CG:[118,1,1,""],Wigner3j:[118,1,1,""],Wigner6j:[118,1,1,""],Wigner9j:[118,1,1,""],cg_simp:[118,3,1,""]},"sympy.physics.quantum.circuitplot":{CircuitPlot:[119,1,1,""],CreateCGate:[119,3,1,""],Mx:[119,1,1,""],Mz:[119,1,1,""],circuit_plot:[119,3,1,""],labeller:[119,3,1,""]},"sympy.physics.quantum.circuitplot.CircuitPlot":{control_line:[119,2,1,""],control_point:[119,2,1,""],not_point:[119,2,1,""],one_qubit_box:[119,2,1,""],swap_point:[119,2,1,""],two_qubit_box:[119,2,1,""],update:[119,2,1,""]},"sympy.physics.quantum.commutator":{Commutator:[120,1,1,""]},"sympy.physics.quantum.commutator.Commutator":{doit:[120,2,1,""]},"sympy.physics.quantum.constants":{HBar:[121,1,1,""]},"sympy.physics.quantum.dagger":{Dagger:[122,1,1,""]},"sympy.physics.quantum.gate":{CGate:[123,1,1,""],CGateS:[123,1,1,""],CNOT:[123,4,1,""],CNotGate:[123,1,1,""],Gate:[123,1,1,""],H:[123,4,1,""],HadamardGate:[123,1,1,""],IdentityGate:[123,1,1,""],OneQubitGate:[123,1,1,""],Phase:[123,4,1,""],PhaseGate:[123,1,1,""],S:[123,4,1,""],SWAP:[123,4,1,""],SwapGate:[123,1,1,""],T:[123,4,1,""],TGate:[123,1,1,""],TwoQubitGate:[123,1,1,""],UGate:[123,1,1,""],X:[123,4,1,""],XGate:[123,1,1,""],Y:[123,4,1,""],YGate:[123,1,1,""],Z:[123,4,1,""],ZGate:[123,1,1,""],gate_simp:[123,3,1,""],gate_sort:[123,3,1,""],normalized:[123,3,1,""],random_circuit:[123,3,1,""]},"sympy.physics.quantum.gate.CGate":{controls:[123,2,1,""],decompose:[123,2,1,""],eval_controls:[123,2,1,""],gate:[123,2,1,""],min_qubits:[123,2,1,""],nqubits:[123,2,1,""],plot_gate:[123,2,1,""],targets:[123,2,1,""]},"sympy.physics.quantum.gate.CNotGate":{controls:[123,2,1,""],gate:[123,2,1,""],min_qubits:[123,2,1,""],targets:[123,2,1,""]},"sympy.physics.quantum.gate.Gate":{get_target_matrix:[123,2,1,""],min_qubits:[123,2,1,""],nqubits:[123,2,1,""],targets:[123,2,1,""]},"sympy.physics.quantum.gate.SwapGate":{decompose:[123,2,1,""]},"sympy.physics.quantum.gate.UGate":{get_target_matrix:[123,2,1,""],targets:[123,2,1,""]},"sympy.physics.quantum.grover":{OracleGate:[124,1,1,""],WGate:[124,1,1,""],apply_grover:[124,3,1,""],grover_iteration:[124,3,1,""],superposition_basis:[124,3,1,""]},"sympy.physics.quantum.grover.OracleGate":{search_function:[124,2,1,""],targets:[124,2,1,""]},"sympy.physics.quantum.hilbert":{ComplexSpace:[125,1,1,""],DirectSumHilbertSpace:[125,1,1,""],FockSpace:[125,1,1,""],HilbertSpace:[125,1,1,""],L2:[125,1,1,""],TensorPowerHilbertSpace:[125,1,1,""],TensorProductHilbertSpace:[125,1,1,""]},"sympy.physics.quantum.hilbert.DirectSumHilbertSpace":{eval:[125,2,1,""],spaces:[125,2,1,""]},"sympy.physics.quantum.hilbert.HilbertSpace":{dimension:[125,2,1,""]},"sympy.physics.quantum.hilbert.TensorProductHilbertSpace":{eval:[125,2,1,""],spaces:[125,2,1,""]},"sympy.physics.quantum.innerproduct":{InnerProduct:[127,1,1,""]},"sympy.physics.quantum.operator":{DifferentialOperator:[128,1,1,""],HermitianOperator:[128,1,1,""],IdentityOperator:[128,1,1,""],Operator:[128,1,1,""],OuterProduct:[128,1,1,""],UnitaryOperator:[128,1,1,""]},"sympy.physics.quantum.operator.DifferentialOperator":{"function":[128,2,1,""],expr:[128,2,1,""],free_symbols:[128,2,1,""],variables:[128,2,1,""]},"sympy.physics.quantum.operator.OuterProduct":{bra:[128,2,1,""],ket:[128,2,1,""]},"sympy.physics.quantum.operatorset":{operators_to_state:[129,3,1,""],state_to_operators:[129,3,1,""]},"sympy.physics.quantum.piab":{PIABBra:[130,1,1,""],PIABHamiltonian:[130,1,1,""],PIABKet:[130,1,1,""]},"sympy.physics.quantum.qapply":{qapply:[131,3,1,""]},"sympy.physics.quantum.qft":{IQFT:[132,1,1,""],QFT:[132,1,1,""],Rk:[132,4,1,""],RkGate:[132,1,1,""]},"sympy.physics.quantum.qft.IQFT":{decompose:[132,2,1,""]},"sympy.physics.quantum.qft.QFT":{decompose:[132,2,1,""]},"sympy.physics.quantum.qubit":{IntQubit:[133,1,1,""],IntQubitBra:[133,1,1,""],Qubit:[133,1,1,""],QubitBra:[133,1,1,""],matrix_to_density:[133,3,1,""],matrix_to_qubit:[133,3,1,""],measure_all:[133,3,1,""],measure_all_oneshot:[133,3,1,""],measure_partial:[133,3,1,""],measure_partial_oneshot:[133,3,1,""],qubit_to_matrix:[133,3,1,""]},"sympy.physics.quantum.represent":{enumerate_states:[134,3,1,""],get_basis:[134,3,1,""],integrate_result:[134,3,1,""],rep_expectation:[134,3,1,""],rep_innerproduct:[134,3,1,""],represent:[134,3,1,""]},"sympy.physics.quantum.shor":{CMod:[135,1,1,""],period_find:[135,3,1,""],shor:[135,3,1,""]},"sympy.physics.quantum.shor.CMod":{N:[135,2,1,""],a:[135,2,1,""],t:[135,2,1,""]},"sympy.physics.quantum.spin":{J2Op:[136,1,1,""],JxBra:[136,1,1,""],JxBraCoupled:[136,1,1,""],JxKet:[136,1,1,""],JxKetCoupled:[136,1,1,""],JyBra:[136,1,1,""],JyBraCoupled:[136,1,1,""],JyKet:[136,1,1,""],JyKetCoupled:[136,1,1,""],JzBra:[136,1,1,""],JzBraCoupled:[136,1,1,""],JzKet:[136,1,1,""],JzKetCoupled:[136,1,1,""],JzOp:[136,1,1,""],Rotation:[136,1,1,""],WignerD:[136,1,1,""],couple:[136,3,1,""],uncouple:[136,3,1,""]},"sympy.physics.quantum.spin.Rotation":{D:[136,2,1,""],d:[136,2,1,""]},"sympy.physics.quantum.state":{Bra:[137,1,1,""],BraBase:[137,1,1,""],Ket:[137,1,1,""],KetBase:[137,1,1,""],OrthogonalBra:[137,1,1,""],OrthogonalKet:[137,1,1,""],OrthogonalState:[137,1,1,""],State:[137,1,1,""],StateBase:[137,1,1,""],TimeDepBra:[137,1,1,""],TimeDepKet:[137,1,1,""],TimeDepState:[137,1,1,""],Wavefunction:[137,1,1,""]},"sympy.physics.quantum.state.StateBase":{dual:[137,2,1,""],dual_class:[137,2,1,""],operators:[137,2,1,""]},"sympy.physics.quantum.state.TimeDepState":{label:[137,2,1,""],time:[137,2,1,""]},"sympy.physics.quantum.state.Wavefunction":{expr:[137,2,1,""],is_commutative:[137,2,1,""],is_normalized:[137,2,1,""],limits:[137,2,1,""],norm:[137,2,1,""],normalize:[137,2,1,""],prob:[137,2,1,""],variables:[137,2,1,""]},"sympy.physics.quantum.tensorproduct":{TensorProduct:[138,1,1,""],tensor_product_simp:[138,3,1,""]},"sympy.physics.secondquant":{AnnihilateBoson:[139,1,1,""],AnnihilateFermion:[139,1,1,""],AntiSymmetricTensor:[139,1,1,""],B:[139,4,1,""],BBra:[139,4,1,""],BKet:[139,4,1,""],Bd:[139,4,1,""],BosonicBasis:[139,1,1,""],Commutator:[139,1,1,""],CreateBoson:[139,1,1,""],CreateFermion:[139,1,1,""],Dagger:[139,1,1,""],F:[139,4,1,""],FBra:[139,4,1,""],FKet:[139,4,1,""],Fd:[139,4,1,""],FixedBosonicBasis:[139,1,1,""],FockState:[139,1,1,""],FockStateBosonBra:[139,1,1,""],FockStateBosonKet:[139,1,1,""],FockStateBra:[139,1,1,""],FockStateFermionBra:[139,1,1,""],FockStateFermionKet:[139,1,1,""],FockStateKet:[139,1,1,""],InnerProduct:[139,1,1,""],KroneckerDelta:[139,1,1,""],NO:[139,1,1,""],PermutationOperator:[139,1,1,""],VarBosonicBasis:[139,1,1,""],apply_operators:[139,3,1,""],contraction:[139,3,1,""],evaluate_deltas:[139,3,1,""],matrix_rep:[139,3,1,""],simplify_index_permutations:[139,3,1,""],substitute_dummies:[139,3,1,""],wicks:[139,3,1,""]},"sympy.physics.secondquant.AnnihilateBoson":{apply_operator:[139,2,1,""]},"sympy.physics.secondquant.AnnihilateFermion":{apply_operator:[139,2,1,""],is_only_q_annihilator:[139,2,1,""],is_only_q_creator:[139,2,1,""],is_q_annihilator:[139,2,1,""],is_q_creator:[139,2,1,""]},"sympy.physics.secondquant.AntiSymmetricTensor":{doit:[139,2,1,""],lower:[139,2,1,""],symbol:[139,2,1,""],upper:[139,2,1,""]},"sympy.physics.secondquant.Commutator":{doit:[139,2,1,""],eval:[139,2,1,""]},"sympy.physics.secondquant.CreateBoson":{apply_operator:[139,2,1,""]},"sympy.physics.secondquant.CreateFermion":{apply_operator:[139,2,1,""],is_only_q_annihilator:[139,2,1,""],is_only_q_creator:[139,2,1,""],is_q_annihilator:[139,2,1,""],is_q_creator:[139,2,1,""]},"sympy.physics.secondquant.Dagger":{eval:[139,2,1,""]},"sympy.physics.secondquant.FixedBosonicBasis":{index:[139,2,1,""],state:[139,2,1,""]},"sympy.physics.secondquant.InnerProduct":{bra:[139,2,1,""],ket:[139,2,1,""]},"sympy.physics.secondquant.KroneckerDelta":{eval:[139,2,1,""],indices_contain_equal_information:[139,2,1,""],is_above_fermi:[139,2,1,""],is_below_fermi:[139,2,1,""],is_only_above_fermi:[139,2,1,""],is_only_below_fermi:[139,2,1,""],killable_index:[139,2,1,""],preferred_index:[139,2,1,""]},"sympy.physics.secondquant.NO":{doit:[139,2,1,""],get_subNO:[139,2,1,""],has_q_annihilators:[139,2,1,""],has_q_creators:[139,2,1,""],iter_q_annihilators:[139,2,1,""],iter_q_creators:[139,2,1,""]},"sympy.physics.secondquant.PermutationOperator":{get_permuted:[139,2,1,""]},"sympy.physics.secondquant.VarBosonicBasis":{index:[139,2,1,""],state:[139,2,1,""]},"sympy.physics.sho":{E_nl:[140,3,1,""],R_nl:[140,3,1,""]},"sympy.physics.units":{dimensions:[141,0,0,"-"],prefixes:[145,0,0,"-"],quantities:[146,0,0,"-"],unitsystem:[147,0,0,"-"],util:[146,0,0,"-"]},"sympy.physics.units.dimensions":{Dimension:[141,1,1,""],DimensionSystem:[141,1,1,""]},"sympy.physics.units.dimensions.Dimension":{has_integer_powers:[141,2,1,""],is_dimensionless:[141,2,1,""]},"sympy.physics.units.dimensions.DimensionSystem":{can_transf_matrix:[141,2,1,""],dim:[141,2,1,""],dim_can_vector:[141,2,1,""],dim_vector:[141,2,1,""],inv_can_transf_matrix:[141,2,1,""],is_consistent:[141,2,1,""],is_dimensionless:[141,2,1,""],list_can_dims:[141,2,1,""],print_dim_base:[141,2,1,""],sort_dims:[141,2,1,""]},"sympy.physics.units.prefixes":{Prefix:[145,1,1,""]},"sympy.physics.units.quantities":{Quantity:[146,1,1,""]},"sympy.physics.units.quantities.Quantity":{abbrev:[146,2,1,""],convert_to:[146,2,1,""],free_symbols:[146,2,1,""],scale_factor:[146,2,1,""],set_global_relative_scale_factor:[146,2,1,""]},"sympy.physics.units.unitsystem":{UnitSystem:[147,1,1,""]},"sympy.physics.units.unitsystem.UnitSystem":{dim:[147,2,1,""],extend:[147,2,1,""],is_consistent:[147,2,1,""],print_unit_base:[147,2,1,""]},"sympy.physics.units.util":{convert_to:[146,3,1,""]},"sympy.physics.vector":{dynamicsymbols:[151,3,1,""],functions:[152,0,0,"-"],point:[152,0,0,"-"]},"sympy.physics.vector.dyadic":{Dyadic:[149,1,1,""]},"sympy.physics.vector.dyadic.Dyadic":{applyfunc:[149,2,1,""],cross:[149,2,1,""],doit:[149,2,1,""],dot:[149,2,1,""],dt:[149,2,1,""],express:[149,2,1,""],func:[149,2,1,""],simplify:[149,2,1,""],subs:[149,2,1,""],to_matrix:[149,2,1,""],xreplace:[149,2,1,""]},"sympy.physics.vector.fieldfunctions":{curl:[150,3,1,""],divergence:[150,3,1,""],gradient:[150,3,1,""],is_conservative:[150,3,1,""],is_solenoidal:[150,3,1,""],scalar_potential:[150,3,1,""],scalar_potential_difference:[150,3,1,""]},"sympy.physics.vector.frame":{CoordinateSym:[149,1,1,""],ReferenceFrame:[149,1,1,""]},"sympy.physics.vector.frame.ReferenceFrame":{ang_acc_in:[149,2,1,""],ang_vel_in:[149,2,1,""],dcm:[149,2,1,""],orient:[149,2,1,""],orient_axis:[149,2,1,""],orient_body_fixed:[149,2,1,""],orient_explicit:[149,2,1,""],orient_quaternion:[149,2,1,""],orient_space_fixed:[149,2,1,""],orientnew:[149,2,1,""],partial_velocity:[149,2,1,""],set_ang_acc:[149,2,1,""],set_ang_vel:[149,2,1,""],variable_map:[149,2,1,""],x:[149,2,1,""],y:[149,2,1,""],z:[149,2,1,""]},"sympy.physics.vector.functions":{cross:[151,3,1,""],dot:[151,3,1,""],express:[151,3,1,""],get_motion_params:[152,3,1,""],kinematic_equations:[152,3,1,""],outer:[151,3,1,""],partial_velocity:[152,3,1,""],time_derivative:[151,3,1,""]},"sympy.physics.vector.point":{Point:[152,1,1,""]},"sympy.physics.vector.point.Point":{a1pt_theory:[152,2,1,""],a2pt_theory:[152,2,1,""],acc:[152,2,1,""],locatenew:[152,2,1,""],partial_velocity:[152,2,1,""],pos_from:[152,2,1,""],set_acc:[152,2,1,""],set_pos:[152,2,1,""],set_vel:[152,2,1,""],v1pt_theory:[152,2,1,""],v2pt_theory:[152,2,1,""],vel:[152,2,1,""]},"sympy.physics.vector.printing":{init_vprinting:[153,3,1,""],vlatex:[153,3,1,""],vpprint:[153,3,1,""],vprint:[153,3,1,""]},"sympy.physics.vector.vector":{Vector:[149,1,1,""]},"sympy.physics.vector.vector.Vector":{applyfunc:[149,2,1,""],cross:[149,2,1,""],diff:[149,2,1,""],doit:[149,2,1,""],dot:[149,2,1,""],dt:[149,2,1,""],express:[149,2,1,""],free_symbols:[149,2,1,""],func:[149,2,1,""],magnitude:[149,2,1,""],normalize:[149,2,1,""],outer:[149,2,1,""],separate:[149,2,1,""],simplify:[149,2,1,""],subs:[149,2,1,""],to_matrix:[149,2,1,""],xreplace:[149,2,1,""]},"sympy.physics.wigner":{clebsch_gordan:[158,3,1,""],dot_rot_grad_Ynm:[158,3,1,""],gaunt:[158,3,1,""],racah:[158,3,1,""],wigner_3j:[158,3,1,""],wigner_6j:[158,3,1,""],wigner_9j:[158,3,1,""],wigner_d:[158,3,1,""],wigner_d_small:[158,3,1,""]},"sympy.plotting":{plot:[159,0,0,"-"],pygletplot:[159,0,0,"-"]},"sympy.plotting.plot":{BaseBackend:[159,1,1,""],BaseSeries:[159,1,1,""],Line2DBaseSeries:[159,1,1,""],Line3DBaseSeries:[159,1,1,""],LineOver1DRangeSeries:[159,1,1,""],MatplotlibBackend:[159,1,1,""],Parametric2DLineSeries:[159,1,1,""],Parametric3DLineSeries:[159,1,1,""],ParametricSurfaceSeries:[159,1,1,""],Plot:[159,1,1,""],PlotGrid:[159,1,1,""],SurfaceBaseSeries:[159,1,1,""],SurfaceOver2DRangeSeries:[159,1,1,""],TextBackend:[159,1,1,""],plot3d:[159,3,1,""],plot3d_parametric_line:[159,3,1,""],plot3d_parametric_surface:[159,3,1,""],plot:[159,3,1,""],plot_parametric:[159,3,1,""]},"sympy.plotting.plot.LineOver1DRangeSeries":{get_segments:[159,2,1,""]},"sympy.plotting.plot.MatplotlibBackend":{process_series:[159,2,1,""]},"sympy.plotting.plot.Parametric2DLineSeries":{get_segments:[159,2,1,""]},"sympy.plotting.plot.Plot":{append:[159,2,1,""],extend:[159,2,1,""]},"sympy.plotting.plot_implicit":{ImplicitSeries:[159,1,1,""],plot_implicit:[159,3,1,""]},"sympy.plotting.textplot":{textplot:[159,3,1,""]},"sympy.polys":{polyconfig:[166,0,0,"-"],polyoptions:[166,0,0,"-"],solvers:[170,0,0,"-"]},"sympy.polys.agca.extensions":{ExtensionElement:[160,1,1,""],MonogenicFiniteExtension:[160,1,1,""]},"sympy.polys.agca.extensions.ExtensionElement":{inverse:[160,2,1,""]},"sympy.polys.agca.extensions.MonogenicFiniteExtension":{dtype:[160,4,1,""]},"sympy.polys.agca.homomorphisms":{ModuleHomomorphism:[160,1,1,""],homomorphism:[160,3,1,""]},"sympy.polys.agca.homomorphisms.ModuleHomomorphism":{image:[160,2,1,""],is_injective:[160,2,1,""],is_isomorphism:[160,2,1,""],is_surjective:[160,2,1,""],is_zero:[160,2,1,""],kernel:[160,2,1,""],quotient_codomain:[160,2,1,""],quotient_domain:[160,2,1,""],restrict_codomain:[160,2,1,""],restrict_domain:[160,2,1,""]},"sympy.polys.agca.ideals":{Ideal:[160,1,1,""]},"sympy.polys.agca.ideals.Ideal":{contains:[160,2,1,""],depth:[160,2,1,""],height:[160,2,1,""],intersect:[160,2,1,""],is_maximal:[160,2,1,""],is_primary:[160,2,1,""],is_prime:[160,2,1,""],is_principal:[160,2,1,""],is_radical:[160,2,1,""],is_whole_ring:[160,2,1,""],is_zero:[160,2,1,""],product:[160,2,1,""],quotient:[160,2,1,""],radical:[160,2,1,""],reduce_element:[160,2,1,""],saturate:[160,2,1,""],subset:[160,2,1,""],union:[160,2,1,""]},"sympy.polys.agca.modules":{FreeModule:[160,1,1,""],FreeModuleElement:[160,1,1,""],Module:[160,1,1,""],QuotientModule:[160,1,1,""],QuotientModuleElement:[160,1,1,""],SubModule:[160,1,1,""],SubQuotientModule:[160,1,1,""]},"sympy.polys.agca.modules.FreeModule":{basis:[160,2,1,""],convert:[160,2,1,""],dtype:[160,4,1,""],identity_hom:[160,2,1,""],is_submodule:[160,2,1,""],is_zero:[160,2,1,""],multiply_ideal:[160,2,1,""],quotient_module:[160,2,1,""]},"sympy.polys.agca.modules.Module":{contains:[160,2,1,""],convert:[160,2,1,""],identity_hom:[160,2,1,""],is_submodule:[160,2,1,""],is_zero:[160,2,1,""],multiply_ideal:[160,2,1,""],quotient_module:[160,2,1,""],submodule:[160,2,1,""],subset:[160,2,1,""]},"sympy.polys.agca.modules.QuotientModule":{convert:[160,2,1,""],dtype:[160,4,1,""],identity_hom:[160,2,1,""],is_submodule:[160,2,1,""],is_zero:[160,2,1,""],quotient_hom:[160,2,1,""],submodule:[160,2,1,""]},"sympy.polys.agca.modules.QuotientModuleElement":{eq:[160,2,1,""]},"sympy.polys.agca.modules.SubModule":{convert:[160,2,1,""],identity_hom:[160,2,1,""],in_terms_of_generators:[160,2,1,""],inclusion_hom:[160,2,1,""],intersect:[160,2,1,""],is_full_module:[160,2,1,""],is_submodule:[160,2,1,""],is_zero:[160,2,1,""],module_quotient:[160,2,1,""],multiply_ideal:[160,2,1,""],quotient_module:[160,2,1,""],reduce_element:[160,2,1,""],submodule:[160,2,1,""],syzygy_module:[160,2,1,""],union:[160,2,1,""]},"sympy.polys.agca.modules.SubQuotientModule":{is_full_module:[160,2,1,""],quotient_hom:[160,2,1,""]},"sympy.polys.constructor":{construct_domain:[168,3,1,""]},"sympy.polys.densearith":{dmp_abs:[166,3,1,""],dmp_add:[166,3,1,""],dmp_add_ground:[166,3,1,""],dmp_add_mul:[166,3,1,""],dmp_add_term:[166,3,1,""],dmp_div:[166,3,1,""],dmp_expand:[166,3,1,""],dmp_exquo:[166,3,1,""],dmp_exquo_ground:[166,3,1,""],dmp_ff_div:[166,3,1,""],dmp_l1_norm:[166,3,1,""],dmp_max_norm:[166,3,1,""],dmp_mul:[166,3,1,""],dmp_mul_ground:[166,3,1,""],dmp_mul_term:[166,3,1,""],dmp_neg:[166,3,1,""],dmp_pdiv:[166,3,1,""],dmp_pexquo:[166,3,1,""],dmp_pow:[166,3,1,""],dmp_pquo:[166,3,1,""],dmp_prem:[166,3,1,""],dmp_quo:[166,3,1,""],dmp_quo_ground:[166,3,1,""],dmp_rem:[166,3,1,""],dmp_rr_div:[166,3,1,""],dmp_sqr:[166,3,1,""],dmp_sub:[166,3,1,""],dmp_sub_ground:[166,3,1,""],dmp_sub_mul:[166,3,1,""],dmp_sub_term:[166,3,1,""],dup_lshift:[166,3,1,""],dup_rshift:[166,3,1,""]},"sympy.polys.densebasic":{dmp_LC:[166,3,1,""],dmp_TC:[166,3,1,""],dmp_apply_pairs:[166,3,1,""],dmp_convert:[166,3,1,""],dmp_copy:[166,3,1,""],dmp_deflate:[166,3,1,""],dmp_degree:[166,3,1,""],dmp_degree_in:[166,3,1,""],dmp_degree_list:[166,3,1,""],dmp_eject:[166,3,1,""],dmp_exclude:[166,3,1,""],dmp_from_dict:[166,3,1,""],dmp_from_sympy:[166,3,1,""],dmp_ground:[166,3,1,""],dmp_ground_LC:[166,3,1,""],dmp_ground_TC:[166,3,1,""],dmp_ground_nth:[166,3,1,""],dmp_ground_p:[166,3,1,""],dmp_grounds:[166,3,1,""],dmp_include:[166,3,1,""],dmp_inflate:[166,3,1,""],dmp_inject:[166,3,1,""],dmp_list_terms:[166,3,1,""],dmp_multi_deflate:[166,3,1,""],dmp_negative_p:[166,3,1,""],dmp_nest:[166,3,1,""],dmp_normal:[166,3,1,""],dmp_nth:[166,3,1,""],dmp_one:[166,3,1,""],dmp_one_p:[166,3,1,""],dmp_permute:[166,3,1,""],dmp_positive_p:[166,3,1,""],dmp_raise:[166,3,1,""],dmp_slice:[166,3,1,""],dmp_strip:[166,3,1,""],dmp_swap:[166,3,1,""],dmp_terms_gcd:[166,3,1,""],dmp_to_dict:[166,3,1,""],dmp_to_tuple:[166,3,1,""],dmp_true_LT:[166,3,1,""],dmp_validate:[166,3,1,""],dmp_zero:[166,3,1,""],dmp_zero_p:[166,3,1,""],dmp_zeros:[166,3,1,""],dup_random:[166,3,1,""],dup_reverse:[166,3,1,""]},"sympy.polys.densetools":{dmp_clear_denoms:[166,3,1,""],dmp_compose:[166,3,1,""],dmp_diff:[166,3,1,""],dmp_diff_eval_in:[166,3,1,""],dmp_diff_in:[166,3,1,""],dmp_eval:[166,3,1,""],dmp_eval_in:[166,3,1,""],dmp_eval_tail:[166,3,1,""],dmp_ground_content:[166,3,1,""],dmp_ground_extract:[166,3,1,""],dmp_ground_monic:[166,3,1,""],dmp_ground_primitive:[166,3,1,""],dmp_ground_trunc:[166,3,1,""],dmp_integrate:[166,3,1,""],dmp_integrate_in:[166,3,1,""],dmp_lift:[166,3,1,""],dmp_revert:[166,3,1,""],dmp_trunc:[166,3,1,""],dup_content:[166,3,1,""],dup_decompose:[166,3,1,""],dup_extract:[166,3,1,""],dup_mirror:[166,3,1,""],dup_monic:[166,3,1,""],dup_primitive:[166,3,1,""],dup_real_imag:[166,3,1,""],dup_scale:[166,3,1,""],dup_shift:[166,3,1,""],dup_sign_variations:[166,3,1,""],dup_transform:[166,3,1,""]},"sympy.polys.dispersion":{dispersion:[168,3,1,""],dispersionset:[168,3,1,""]},"sympy.polys.distributedmodules":{sdm_LC:[166,3,1,""],sdm_LM:[166,3,1,""],sdm_LT:[166,3,1,""],sdm_add:[166,3,1,""],sdm_deg:[166,3,1,""],sdm_ecart:[166,3,1,""],sdm_from_dict:[166,3,1,""],sdm_from_vector:[166,3,1,""],sdm_groebner:[166,3,1,""],sdm_monomial_deg:[166,3,1,""],sdm_monomial_divides:[166,3,1,""],sdm_monomial_mul:[166,3,1,""],sdm_mul_term:[166,3,1,""],sdm_nf_mora:[166,3,1,""],sdm_spoly:[166,3,1,""],sdm_to_dict:[166,3,1,""],sdm_to_vector:[166,3,1,""],sdm_zero:[166,3,1,""]},"sympy.polys.domains":{AlgebraicField:[164,1,1,""],ComplexField:[164,1,1,""],ExpressionDomain:[164,1,1,""],FiniteField:[164,1,1,""],FractionField:[164,1,1,""],GMPYFiniteField:[164,1,1,""],GMPYIntegerRing:[164,1,1,""],GMPYRationalField:[164,1,1,""],IntegerRing:[164,1,1,""],PolynomialRing:[164,1,1,""],PythonFiniteField:[164,1,1,""],PythonIntegerRing:[164,1,1,""],PythonRational:[164,1,1,""],PythonRationalField:[164,1,1,""],RationalField:[164,1,1,""],RealField:[164,1,1,""]},"sympy.polys.domains.AlgebraicField":{algebraic_field:[164,2,1,""],denom:[164,2,1,""],dtype:[164,4,1,""],ext:[164,4,1,""],from_AlgebraicField:[164,2,1,""],from_GaussianIntegerRing:[164,2,1,""],from_GaussianRationalField:[164,2,1,""],from_QQ_gmpy:[164,2,1,""],from_QQ_python:[164,2,1,""],from_RealField:[164,2,1,""],from_ZZ_gmpy:[164,2,1,""],from_ZZ_python:[164,2,1,""],from_sympy:[164,2,1,""],get_ring:[164,2,1,""],is_negative:[164,2,1,""],is_nonnegative:[164,2,1,""],is_nonpositive:[164,2,1,""],is_positive:[164,2,1,""],mod:[164,4,1,""],numer:[164,2,1,""],orig_ext:[164,4,1,""],to_sympy:[164,2,1,""]},"sympy.polys.domains.ComplexField":{almosteq:[164,2,1,""],from_sympy:[164,2,1,""],gcd:[164,2,1,""],get_exact:[164,2,1,""],get_ring:[164,2,1,""],is_negative:[164,2,1,""],is_nonnegative:[164,2,1,""],is_nonpositive:[164,2,1,""],is_positive:[164,2,1,""],lcm:[164,2,1,""],to_sympy:[164,2,1,""]},"sympy.polys.domains.ExpressionDomain":{Expression:[164,1,1,""],denom:[164,2,1,""],dtype:[164,4,1,""],from_ExpressionDomain:[164,2,1,""],from_FractionField:[164,2,1,""],from_GaussianIntegerRing:[164,2,1,""],from_GaussianRationalField:[164,2,1,""],from_PolynomialRing:[164,2,1,""],from_QQ_gmpy:[164,2,1,""],from_QQ_python:[164,2,1,""],from_RealField:[164,2,1,""],from_ZZ_gmpy:[164,2,1,""],from_ZZ_python:[164,2,1,""],from_sympy:[164,2,1,""],get_field:[164,2,1,""],get_ring:[164,2,1,""],is_negative:[164,2,1,""],is_nonnegative:[164,2,1,""],is_nonpositive:[164,2,1,""],is_positive:[164,2,1,""],numer:[164,2,1,""],to_sympy:[164,2,1,""]},"sympy.polys.domains.FiniteField":{characteristic:[164,2,1,""],from_FF_gmpy:[164,2,1,""],from_FF_python:[164,2,1,""],from_QQ_gmpy:[164,2,1,""],from_QQ_python:[164,2,1,""],from_RealField:[164,2,1,""],from_ZZ_gmpy:[164,2,1,""],from_ZZ_python:[164,2,1,""],from_sympy:[164,2,1,""],get_field:[164,2,1,""],to_sympy:[164,2,1,""]},"sympy.polys.domains.FractionField":{denom:[164,2,1,""],factorial:[164,2,1,""],from_AlgebraicField:[164,2,1,""],from_FractionField:[164,2,1,""],from_GaussianIntegerRing:[164,2,1,""],from_GaussianRationalField:[164,2,1,""],from_PolynomialRing:[164,2,1,""],from_QQ_gmpy:[164,2,1,""],from_QQ_python:[164,2,1,""],from_RealField:[164,2,1,""],from_ZZ_gmpy:[164,2,1,""],from_ZZ_python:[164,2,1,""],from_sympy:[164,2,1,""],get_ring:[164,2,1,""],is_negative:[164,2,1,""],is_nonnegative:[164,2,1,""],is_nonpositive:[164,2,1,""],is_positive:[164,2,1,""],numer:[164,2,1,""],to_sympy:[164,2,1,""]},"sympy.polys.domains.GMPYIntegerRing":{factorial:[164,2,1,""],from_FF_gmpy:[164,2,1,""],from_FF_python:[164,2,1,""],from_QQ_gmpy:[164,2,1,""],from_QQ_python:[164,2,1,""],from_RealField:[164,2,1,""],from_ZZ_gmpy:[164,2,1,""],from_ZZ_python:[164,2,1,""],from_sympy:[164,2,1,""],gcd:[164,2,1,""],gcdex:[164,2,1,""],lcm:[164,2,1,""],sqrt:[164,2,1,""],to_sympy:[164,2,1,""]},"sympy.polys.domains.GMPYRationalField":{denom:[164,2,1,""],div:[164,2,1,""],exquo:[164,2,1,""],factorial:[164,2,1,""],from_GaussianRationalField:[164,2,1,""],from_QQ_gmpy:[164,2,1,""],from_QQ_python:[164,2,1,""],from_RealField:[164,2,1,""],from_ZZ_gmpy:[164,2,1,""],from_ZZ_python:[164,2,1,""],from_sympy:[164,2,1,""],get_ring:[164,2,1,""],numer:[164,2,1,""],quo:[164,2,1,""],rem:[164,2,1,""],to_sympy:[164,2,1,""]},"sympy.polys.domains.IntegerRing":{algebraic_field:[164,2,1,""],from_AlgebraicField:[164,2,1,""],get_field:[164,2,1,""],log:[164,2,1,""]},"sympy.polys.domains.PolynomialRing":{factorial:[164,2,1,""],from_AlgebraicField:[164,2,1,""],from_FractionField:[164,2,1,""],from_GaussianIntegerRing:[164,2,1,""],from_GaussianRationalField:[164,2,1,""],from_GlobalPolynomialRing:[164,2,1,""],from_PolynomialRing:[164,2,1,""],from_QQ_gmpy:[164,2,1,""],from_QQ_python:[164,2,1,""],from_RealField:[164,2,1,""],from_ZZ_gmpy:[164,2,1,""],from_ZZ_python:[164,2,1,""],from_sympy:[164,2,1,""],gcd:[164,2,1,""],gcdex:[164,2,1,""],get_field:[164,2,1,""],is_negative:[164,2,1,""],is_nonnegative:[164,2,1,""],is_nonpositive:[164,2,1,""],is_positive:[164,2,1,""],is_unit:[164,2,1,""],lcm:[164,2,1,""],to_sympy:[164,2,1,""]},"sympy.polys.domains.RationalField":{algebraic_field:[164,2,1,""],from_AlgebraicField:[164,2,1,""]},"sympy.polys.domains.RealField":{almosteq:[164,2,1,""],from_sympy:[164,2,1,""],gcd:[164,2,1,""],get_exact:[164,2,1,""],get_ring:[164,2,1,""],lcm:[164,2,1,""],to_rational:[164,2,1,""],to_sympy:[164,2,1,""]},"sympy.polys.domains.compositedomain":{CompositeDomain:[164,1,1,""]},"sympy.polys.domains.compositedomain.CompositeDomain":{drop:[164,2,1,""],inject:[164,2,1,""]},"sympy.polys.domains.domain":{Domain:[164,1,1,""]},"sympy.polys.domains.domain.Domain":{abs:[164,2,1,""],add:[164,2,1,""],algebraic_field:[164,2,1,""],almosteq:[164,2,1,""],characteristic:[164,2,1,""],cofactors:[164,2,1,""],convert:[164,2,1,""],convert_from:[164,2,1,""],denom:[164,2,1,""],div:[164,2,1,""],drop:[164,2,1,""],dtype:[164,4,1,""],evalf:[164,2,1,""],exquo:[164,2,1,""],frac_field:[164,2,1,""],from_AlgebraicField:[164,2,1,""],from_ComplexField:[164,2,1,""],from_ExpressionDomain:[164,2,1,""],from_FF_gmpy:[164,2,1,""],from_FF_python:[164,2,1,""],from_FractionField:[164,2,1,""],from_GlobalPolynomialRing:[164,2,1,""],from_MonogenicFiniteExtension:[164,2,1,""],from_PolynomialRing:[164,2,1,""],from_QQ_gmpy:[164,2,1,""],from_QQ_python:[164,2,1,""],from_RealField:[164,2,1,""],from_ZZ_gmpy:[164,2,1,""],from_ZZ_python:[164,2,1,""],from_sympy:[164,2,1,""],gcd:[164,2,1,""],gcdex:[164,2,1,""],get_exact:[164,2,1,""],get_field:[164,2,1,""],get_ring:[164,2,1,""],half_gcdex:[164,2,1,""],has_assoc_Field:[164,4,1,""],has_assoc_Ring:[164,4,1,""],inject:[164,2,1,""],invert:[164,2,1,""],is_Field:[164,4,1,""],is_PID:[164,4,1,""],is_Ring:[164,4,1,""],is_negative:[164,2,1,""],is_nonnegative:[164,2,1,""],is_nonpositive:[164,2,1,""],is_one:[164,2,1,""],is_positive:[164,2,1,""],is_zero:[164,2,1,""],lcm:[164,2,1,""],log:[164,2,1,""],map:[164,2,1,""],mul:[164,2,1,""],n:[164,2,1,""],neg:[164,2,1,""],numer:[164,2,1,""],of_type:[164,2,1,""],old_frac_field:[164,2,1,""],old_poly_ring:[164,2,1,""],one:[164,4,1,""],poly_ring:[164,2,1,""],pos:[164,2,1,""],pow:[164,2,1,""],quo:[164,2,1,""],rem:[164,2,1,""],revert:[164,2,1,""],sqrt:[164,2,1,""],sub:[164,2,1,""],to_sympy:[164,2,1,""],tp:[164,2,1,""],unify:[164,2,1,""],zero:[164,4,1,""]},"sympy.polys.domains.domainelement":{DomainElement:[164,1,1,""]},"sympy.polys.domains.domainelement.DomainElement":{parent:[164,2,1,""]},"sympy.polys.domains.expressiondomain.ExpressionDomain":{Expression:[164,1,1,""]},"sympy.polys.domains.field":{Field:[164,1,1,""]},"sympy.polys.domains.field.Field":{div:[164,2,1,""],exquo:[164,2,1,""],gcd:[164,2,1,""],get_field:[164,2,1,""],get_ring:[164,2,1,""],is_unit:[164,2,1,""],lcm:[164,2,1,""],quo:[164,2,1,""],rem:[164,2,1,""],revert:[164,2,1,""]},"sympy.polys.domains.gaussiandomains":{GaussianDomain:[164,1,1,""],GaussianElement:[164,1,1,""],GaussianInteger:[164,1,1,""],GaussianIntegerRing:[164,1,1,""],GaussianRational:[164,1,1,""],GaussianRationalField:[164,1,1,""]},"sympy.polys.domains.gaussiandomains.GaussianDomain":{from_AlgebraicField:[164,2,1,""],from_QQ_gmpy:[164,2,1,""],from_QQ_python:[164,2,1,""],from_ZZ_gmpy:[164,2,1,""],from_ZZ_python:[164,2,1,""],from_sympy:[164,2,1,""],inject:[164,2,1,""],is_negative:[164,2,1,""],is_nonnegative:[164,2,1,""],is_nonpositive:[164,2,1,""],is_positive:[164,2,1,""],to_sympy:[164,2,1,""]},"sympy.polys.domains.gaussiandomains.GaussianElement":{"new":[164,2,1,""],parent:[164,2,1,""],quadrant:[164,2,1,""]},"sympy.polys.domains.gaussiandomains.GaussianIntegerRing":{dtype:[164,4,1,""],from_GaussianIntegerRing:[164,2,1,""],from_GaussianRationalField:[164,2,1,""],gcd:[164,2,1,""],get_field:[164,2,1,""],get_ring:[164,2,1,""],lcm:[164,2,1,""],normalize:[164,2,1,""]},"sympy.polys.domains.gaussiandomains.GaussianRationalField":{as_AlgebraicField:[164,2,1,""],denom:[164,2,1,""],dtype:[164,4,1,""],from_GaussianIntegerRing:[164,2,1,""],from_GaussianRationalField:[164,2,1,""],get_field:[164,2,1,""],get_ring:[164,2,1,""],numer:[164,2,1,""]},"sympy.polys.domains.mpelements":{ComplexElement:[164,1,1,""],RealElement:[164,1,1,""]},"sympy.polys.domains.quotientring":{QuotientRing:[164,1,1,""]},"sympy.polys.domains.ring":{Ring:[164,1,1,""]},"sympy.polys.domains.ring.Ring":{denom:[164,2,1,""],div:[164,2,1,""],exquo:[164,2,1,""],free_module:[164,2,1,""],get_ring:[164,2,1,""],ideal:[164,2,1,""],invert:[164,2,1,""],numer:[164,2,1,""],quo:[164,2,1,""],quotient_ring:[164,2,1,""],rem:[164,2,1,""],revert:[164,2,1,""]},"sympy.polys.domains.simpledomain":{SimpleDomain:[164,1,1,""]},"sympy.polys.domains.simpledomain.SimpleDomain":{inject:[164,2,1,""]},"sympy.polys.euclidtools":{dmp_cancel:[166,3,1,""],dmp_content:[166,3,1,""],dmp_discriminant:[166,3,1,""],dmp_euclidean_prs:[166,3,1,""],dmp_ff_prs_gcd:[166,3,1,""],dmp_gcd:[166,3,1,""],dmp_gcdex:[166,3,1,""],dmp_half_gcdex:[166,3,1,""],dmp_inner_gcd:[166,3,1,""],dmp_inner_subresultants:[166,3,1,""],dmp_invert:[166,3,1,""],dmp_lcm:[166,3,1,""],dmp_primitive:[166,3,1,""],dmp_primitive_prs:[166,3,1,""],dmp_prs_resultant:[166,3,1,""],dmp_qq_collins_resultant:[166,3,1,""],dmp_qq_heu_gcd:[166,3,1,""],dmp_resultant:[166,3,1,""],dmp_rr_prs_gcd:[166,3,1,""],dmp_subresultants:[166,3,1,""],dmp_zz_collins_resultant:[166,3,1,""],dmp_zz_heu_gcd:[166,3,1,""],dmp_zz_modular_resultant:[166,3,1,""]},"sympy.polys.factortools":{dmp_ext_factor:[166,3,1,""],dmp_factor_list:[166,3,1,""],dmp_factor_list_include:[166,3,1,""],dmp_irreducible_p:[166,3,1,""],dmp_trial_division:[166,3,1,""],dmp_zz_diophantine:[166,3,1,""],dmp_zz_factor:[166,3,1,""],dmp_zz_mignotte_bound:[166,3,1,""],dmp_zz_wang:[166,3,1,""],dmp_zz_wang_hensel_lifting:[166,3,1,""],dmp_zz_wang_lead_coeffs:[166,3,1,""],dmp_zz_wang_non_divisors:[166,3,1,""],dmp_zz_wang_test_points:[166,3,1,""],dup_cyclotomic_p:[166,3,1,""],dup_gf_factor:[166,3,1,""],dup_zz_cyclotomic_factor:[166,3,1,""],dup_zz_cyclotomic_poly:[166,3,1,""],dup_zz_factor:[166,3,1,""],dup_zz_factor_sqf:[166,3,1,""],dup_zz_hensel_lift:[166,3,1,""],dup_zz_hensel_step:[166,3,1,""],dup_zz_irreducible_p:[166,3,1,""],dup_zz_zassenhaus:[166,3,1,""]},"sympy.polys.fglmtools":{matrix_fglm:[166,3,1,""]},"sympy.polys.fields":{FracElement:[164,1,1,""],FracField:[164,1,1,""],field:[164,3,1,""],sfield:[164,3,1,""],vfield:[164,3,1,""],xfield:[164,3,1,""]},"sympy.polys.fields.FracElement":{diff:[164,2,1,""]},"sympy.polys.galoistools":{gf_LC:[166,3,1,""],gf_Qbasis:[166,3,1,""],gf_Qmatrix:[166,3,1,""],gf_TC:[166,3,1,""],gf_add:[166,3,1,""],gf_add_ground:[166,3,1,""],gf_add_mul:[166,3,1,""],gf_berlekamp:[166,3,1,""],gf_cofactors:[166,3,1,""],gf_compose:[166,3,1,""],gf_compose_mod:[166,3,1,""],gf_crt1:[166,3,1,""],gf_crt2:[166,3,1,""],gf_crt:[166,3,1,""],gf_csolve:[166,3,1,""],gf_degree:[166,3,1,""],gf_diff:[166,3,1,""],gf_div:[166,3,1,""],gf_eval:[166,3,1,""],gf_expand:[166,3,1,""],gf_exquo:[166,3,1,""],gf_factor:[166,3,1,""],gf_factor_sqf:[166,3,1,""],gf_from_dict:[166,3,1,""],gf_from_int_poly:[166,3,1,""],gf_gcd:[166,3,1,""],gf_gcdex:[166,3,1,""],gf_int:[166,3,1,""],gf_irreducible:[166,3,1,""],gf_irreducible_p:[166,3,1,""],gf_lcm:[166,3,1,""],gf_lshift:[166,3,1,""],gf_monic:[166,3,1,""],gf_mul:[166,3,1,""],gf_mul_ground:[166,3,1,""],gf_multi_eval:[166,3,1,""],gf_neg:[166,3,1,""],gf_normal:[166,3,1,""],gf_pow:[166,3,1,""],gf_pow_mod:[166,3,1,""],gf_quo:[166,3,1,""],gf_quo_ground:[166,3,1,""],gf_random:[166,3,1,""],gf_rem:[166,3,1,""],gf_rshift:[166,3,1,""],gf_shoup:[166,3,1,""],gf_sqf_list:[166,3,1,""],gf_sqf_p:[166,3,1,""],gf_sqf_part:[166,3,1,""],gf_sqr:[166,3,1,""],gf_strip:[166,3,1,""],gf_sub:[166,3,1,""],gf_sub_ground:[166,3,1,""],gf_sub_mul:[166,3,1,""],gf_to_dict:[166,3,1,""],gf_to_int_poly:[166,3,1,""],gf_trace_map:[166,3,1,""],gf_trunc:[166,3,1,""],gf_value:[166,3,1,""],gf_zassenhaus:[166,3,1,""]},"sympy.polys.groebnertools":{groebner:[166,3,1,""],is_groebner:[166,3,1,""],is_minimal:[166,3,1,""],is_reduced:[166,3,1,""],red_groebner:[166,3,1,""],spoly:[166,3,1,""]},"sympy.polys.matrices.ddm":{DDM:[162,1,1,""]},"sympy.polys.matrices.ddm.DDM":{add:[162,2,1,""],charpoly:[162,2,1,""],det:[162,2,1,""],inv:[162,2,1,""],lu:[162,2,1,""],lu_solve:[162,2,1,""],matmul:[162,2,1,""],neg:[162,2,1,""],rref:[162,2,1,""],sub:[162,2,1,""]},"sympy.polys.matrices.domainmatrix":{DomainMatrix:[162,1,1,""]},"sympy.polys.matrices.domainmatrix.DomainMatrix":{add:[162,2,1,""],charpoly:[162,2,1,""],convert_to:[162,2,1,""],det:[162,2,1,""],eye:[162,2,1,""],from_Matrix:[162,2,1,""],from_list_sympy:[162,2,1,""],from_rep:[162,2,1,""],hstack:[162,2,1,""],inv:[162,2,1,""],lu:[162,2,1,""],lu_solve:[162,2,1,""],matmul:[162,2,1,""],mul:[162,2,1,""],neg:[162,2,1,""],nullspace:[162,2,1,""],pow:[162,2,1,""],rref:[162,2,1,""],sub:[162,2,1,""],to_Matrix:[162,2,1,""],to_dense:[162,2,1,""],to_field:[162,2,1,""],to_sparse:[162,2,1,""],unify:[162,2,1,""],zeros:[162,2,1,""]},"sympy.polys.matrices.sdm":{SDM:[162,1,1,""]},"sympy.polys.modulargcd":{_modgcd_multivariate_p:[166,3,1,""],func_field_modgcd:[166,3,1,""],modgcd_bivariate:[166,3,1,""],modgcd_multivariate:[166,3,1,""],modgcd_univariate:[166,3,1,""]},"sympy.polys.monomials":{Monomial:[168,1,1,""],itermonomials:[168,3,1,""],monomial_count:[168,3,1,""]},"sympy.polys.monomials.Monomial":{as_expr:[168,2,1,""],gcd:[168,2,1,""],lcm:[168,2,1,""]},"sympy.polys.numberfields":{AlgebraicNumber:[168,1,1,""],field_isomorphism:[168,3,1,""],isolate:[168,3,1,""],minimal_polynomial:[168,3,1,""],minpoly:[168,3,1,""],primitive_element:[168,3,1,""],to_number_field:[168,3,1,""]},"sympy.polys.numberfields.AlgebraicNumber":{as_expr:[168,2,1,""],as_poly:[168,2,1,""],coeffs:[168,2,1,""],is_aliased:[168,2,1,""],native_coeffs:[168,2,1,""],to_algebraic_integer:[168,2,1,""]},"sympy.polys.orderings":{GradedLexOrder:[168,1,1,""],LexOrder:[168,1,1,""],MonomialOrder:[168,1,1,""],ReversedGradedLexOrder:[168,1,1,""]},"sympy.polys.orthopolys":{chebyshevt_poly:[168,3,1,""],chebyshevu_poly:[168,3,1,""],gegenbauer_poly:[168,3,1,""],hermite_poly:[168,3,1,""],jacobi_poly:[168,3,1,""],laguerre_poly:[168,3,1,""],legendre_poly:[168,3,1,""],spherical_bessel_fn:[168,3,1,""]},"sympy.polys.partfrac":{apart:[168,3,1,""],apart_list:[168,3,1,""],assemble_partfrac_list:[168,3,1,""]},"sympy.polys.polyclasses":{ANP:[164,1,1,""],DMF:[164,1,1,""],DMP:[164,1,1,""]},"sympy.polys.polyclasses.ANP":{LC:[164,2,1,""],TC:[164,2,1,""],is_ground:[164,2,1,""],is_one:[164,2,1,""],is_zero:[164,2,1,""],pow:[164,2,1,""],to_dict:[164,2,1,""],to_list:[164,2,1,""],to_sympy_dict:[164,2,1,""],to_sympy_list:[164,2,1,""],to_tuple:[164,2,1,""],unify:[164,2,1,""]},"sympy.polys.polyclasses.DMF":{add:[164,2,1,""],cancel:[164,2,1,""],denom:[164,2,1,""],exquo:[164,2,1,""],frac_unify:[164,2,1,""],half_per:[164,2,1,""],invert:[164,2,1,""],is_one:[164,2,1,""],is_zero:[164,2,1,""],mul:[164,2,1,""],neg:[164,2,1,""],numer:[164,2,1,""],per:[164,2,1,""],poly_unify:[164,2,1,""],pow:[164,2,1,""],quo:[164,2,1,""],sub:[164,2,1,""]},"sympy.polys.polyclasses.DMP":{LC:[164,2,1,""],TC:[164,2,1,""],abs:[164,2,1,""],add:[164,2,1,""],add_ground:[164,2,1,""],all_coeffs:[164,2,1,""],all_monoms:[164,2,1,""],all_terms:[164,2,1,""],cancel:[164,2,1,""],clear_denoms:[164,2,1,""],coeffs:[164,2,1,""],cofactors:[164,2,1,""],compose:[164,2,1,""],content:[164,2,1,""],convert:[164,2,1,""],count_complex_roots:[164,2,1,""],count_real_roots:[164,2,1,""],decompose:[164,2,1,""],deflate:[164,2,1,""],degree:[164,2,1,""],degree_list:[164,2,1,""],diff:[164,2,1,""],discriminant:[164,2,1,""],div:[164,2,1,""],eject:[164,2,1,""],eval:[164,2,1,""],exclude:[164,2,1,""],exquo:[164,2,1,""],exquo_ground:[164,2,1,""],factor_list:[164,2,1,""],factor_list_include:[164,2,1,""],from_dict:[164,2,1,""],from_list:[164,2,1,""],from_sympy_list:[164,2,1,""],gcd:[164,2,1,""],gcdex:[164,2,1,""],gff_list:[164,2,1,""],half_gcdex:[164,2,1,""],homogeneous_order:[164,2,1,""],homogenize:[164,2,1,""],inject:[164,2,1,""],integrate:[164,2,1,""],intervals:[164,2,1,""],invert:[164,2,1,""],is_cyclotomic:[164,2,1,""],is_ground:[164,2,1,""],is_homogeneous:[164,2,1,""],is_irreducible:[164,2,1,""],is_linear:[164,2,1,""],is_monic:[164,2,1,""],is_monomial:[164,2,1,""],is_one:[164,2,1,""],is_primitive:[164,2,1,""],is_quadratic:[164,2,1,""],is_sqf:[164,2,1,""],is_zero:[164,2,1,""],l1_norm:[164,2,1,""],lcm:[164,2,1,""],lift:[164,2,1,""],max_norm:[164,2,1,""],monic:[164,2,1,""],monoms:[164,2,1,""],mul:[164,2,1,""],mul_ground:[164,2,1,""],neg:[164,2,1,""],norm:[164,2,1,""],nth:[164,2,1,""],pdiv:[164,2,1,""],per:[164,2,1,""],permute:[164,2,1,""],pexquo:[164,2,1,""],pow:[164,2,1,""],pquo:[164,2,1,""],prem:[164,2,1,""],primitive:[164,2,1,""],quo:[164,2,1,""],quo_ground:[164,2,1,""],refine_root:[164,2,1,""],rem:[164,2,1,""],resultant:[164,2,1,""],revert:[164,2,1,""],shift:[164,2,1,""],slice:[164,2,1,""],sqf_list:[164,2,1,""],sqf_list_include:[164,2,1,""],sqf_norm:[164,2,1,""],sqf_part:[164,2,1,""],sqr:[164,2,1,""],sturm:[164,2,1,""],sub:[164,2,1,""],sub_ground:[164,2,1,""],subresultants:[164,2,1,""],terms:[164,2,1,""],terms_gcd:[164,2,1,""],to_dict:[164,2,1,""],to_exact:[164,2,1,""],to_field:[164,2,1,""],to_list:[164,2,1,""],to_ring:[164,2,1,""],to_sympy_dict:[164,2,1,""],to_sympy_list:[164,2,1,""],to_tuple:[164,2,1,""],total_degree:[164,2,1,""],transform:[164,2,1,""],trunc:[164,2,1,""],unify:[164,2,1,""]},"sympy.polys.polyconfig":{setup:[166,3,1,""]},"sympy.polys.polyerrors":{BasePolynomialError:[166,1,1,""],CoercionFailed:[166,1,1,""],ComputationFailed:[166,1,1,""],DomainError:[166,1,1,""],EvaluationFailed:[166,1,1,""],ExactQuotientFailed:[166,1,1,""],ExtraneousFactors:[166,1,1,""],FlagError:[166,1,1,""],GeneratorsError:[166,1,1,""],GeneratorsNeeded:[166,1,1,""],HeuristicGCDFailed:[166,1,1,""],HomomorphismFailed:[166,1,1,""],IsomorphismFailed:[166,1,1,""],MultivariatePolynomialError:[166,1,1,""],NotAlgebraic:[166,1,1,""],NotInvertible:[166,1,1,""],NotReversible:[166,1,1,""],OperationNotSupported:[166,1,1,""],OptionError:[166,1,1,""],PolificationFailed:[166,1,1,""],PolynomialError:[166,1,1,""],RefinementFailed:[166,1,1,""],UnificationFailed:[166,1,1,""],UnivariatePolynomialError:[166,1,1,""]},"sympy.polys.polyfuncs":{horner:[168,3,1,""],interpolate:[168,3,1,""],symmetrize:[168,3,1,""],viete:[168,3,1,""]},"sympy.polys.polyoptions":{Options:[166,1,1,""],build_options:[166,3,1,""]},"sympy.polys.polyoptions.Options":{clone:[166,2,1,""]},"sympy.polys.polyroots":{roots:[168,3,1,""]},"sympy.polys.polytools":{GroebnerBasis:[168,1,1,""],LC:[168,3,1,""],LM:[168,3,1,""],LT:[168,3,1,""],Poly:[168,1,1,""],PurePoly:[168,1,1,""],cancel:[168,3,1,""],cofactors:[168,3,1,""],compose:[168,3,1,""],content:[168,3,1,""],count_roots:[168,3,1,""],decompose:[168,3,1,""],degree:[168,3,1,""],degree_list:[168,3,1,""],discriminant:[168,3,1,""],div:[168,3,1,""],exquo:[168,3,1,""],factor:[168,3,1,""],factor_list:[168,3,1,""],gcd:[168,3,1,""],gcd_list:[168,3,1,""],gcdex:[168,3,1,""],gff:[168,3,1,""],gff_list:[168,3,1,""],groebner:[168,3,1,""],ground_roots:[168,3,1,""],half_gcdex:[168,3,1,""],intervals:[168,3,1,""],invert:[168,3,1,""],is_zero_dimensional:[168,3,1,""],lcm:[168,3,1,""],lcm_list:[168,3,1,""],monic:[168,3,1,""],nroots:[168,3,1,""],nth_power_roots_poly:[168,3,1,""],parallel_poly_from_expr:[168,3,1,""],pdiv:[168,3,1,""],pexquo:[168,3,1,""],poly:[168,3,1,""],poly_from_expr:[168,3,1,""],pquo:[168,3,1,""],prem:[168,3,1,""],primitive:[168,3,1,""],quo:[168,3,1,""],real_roots:[168,3,1,""],reduced:[168,3,1,""],refine_root:[168,3,1,""],rem:[168,3,1,""],resultant:[168,3,1,""],sqf:[168,3,1,""],sqf_list:[168,3,1,""],sqf_norm:[168,3,1,""],sqf_part:[168,3,1,""],sturm:[168,3,1,""],subresultants:[168,3,1,""],terms_gcd:[168,3,1,""],trunc:[168,3,1,""]},"sympy.polys.polytools.GroebnerBasis":{contains:[168,2,1,""],fglm:[168,2,1,""],is_zero_dimensional:[168,2,1,""],reduce:[168,2,1,""]},"sympy.polys.polytools.Poly":{"new":[168,2,1,""],EC:[168,2,1,""],EM:[168,2,1,""],ET:[168,2,1,""],LC:[168,2,1,""],LM:[168,2,1,""],LT:[168,2,1,""],TC:[168,2,1,""],abs:[168,2,1,""],add:[168,2,1,""],add_ground:[168,2,1,""],all_coeffs:[168,2,1,""],all_monoms:[168,2,1,""],all_roots:[168,2,1,""],all_terms:[168,2,1,""],as_dict:[168,2,1,""],as_expr:[168,2,1,""],as_list:[168,2,1,""],as_poly:[168,2,1,""],cancel:[168,2,1,""],clear_denoms:[168,2,1,""],coeff_monomial:[168,2,1,""],coeffs:[168,2,1,""],cofactors:[168,2,1,""],compose:[168,2,1,""],content:[168,2,1,""],count_roots:[168,2,1,""],decompose:[168,2,1,""],deflate:[168,2,1,""],degree:[168,2,1,""],degree_list:[168,2,1,""],diff:[168,2,1,""],discriminant:[168,2,1,""],dispersion:[168,2,1,""],dispersionset:[168,2,1,""],div:[168,2,1,""],domain:[168,2,1,""],eject:[168,2,1,""],eval:[168,2,1,""],exclude:[168,2,1,""],exquo:[168,2,1,""],exquo_ground:[168,2,1,""],factor_list:[168,2,1,""],factor_list_include:[168,2,1,""],free_symbols:[168,2,1,""],free_symbols_in_domain:[168,2,1,""],from_dict:[168,2,1,""],from_expr:[168,2,1,""],from_list:[168,2,1,""],from_poly:[168,2,1,""],gcd:[168,2,1,""],gcdex:[168,2,1,""],gen:[168,2,1,""],get_domain:[168,2,1,""],get_modulus:[168,2,1,""],gff_list:[168,2,1,""],ground_roots:[168,2,1,""],half_gcdex:[168,2,1,""],has_only_gens:[168,2,1,""],homogeneous_order:[168,2,1,""],homogenize:[168,2,1,""],inject:[168,2,1,""],integrate:[168,2,1,""],intervals:[168,2,1,""],invert:[168,2,1,""],is_cyclotomic:[168,2,1,""],is_ground:[168,2,1,""],is_homogeneous:[168,2,1,""],is_irreducible:[168,2,1,""],is_linear:[168,2,1,""],is_monic:[168,2,1,""],is_monomial:[168,2,1,""],is_multivariate:[168,2,1,""],is_one:[168,2,1,""],is_primitive:[168,2,1,""],is_quadratic:[168,2,1,""],is_sqf:[168,2,1,""],is_univariate:[168,2,1,""],is_zero:[168,2,1,""],l1_norm:[168,2,1,""],lcm:[168,2,1,""],length:[168,2,1,""],lift:[168,2,1,""],ltrim:[168,2,1,""],match:[168,2,1,""],max_norm:[168,2,1,""],monic:[168,2,1,""],monoms:[168,2,1,""],mul:[168,2,1,""],mul_ground:[168,2,1,""],neg:[168,2,1,""],norm:[168,2,1,""],nroots:[168,2,1,""],nth:[168,2,1,""],nth_power_roots_poly:[168,2,1,""],one:[168,2,1,""],pdiv:[168,2,1,""],per:[168,2,1,""],pexquo:[168,2,1,""],pow:[168,2,1,""],pquo:[168,2,1,""],prem:[168,2,1,""],primitive:[168,2,1,""],quo:[168,2,1,""],quo_ground:[168,2,1,""],rat_clear_denoms:[168,2,1,""],real_roots:[168,2,1,""],refine_root:[168,2,1,""],rem:[168,2,1,""],reorder:[168,2,1,""],replace:[168,2,1,""],resultant:[168,2,1,""],retract:[168,2,1,""],revert:[168,2,1,""],root:[168,2,1,""],set_domain:[168,2,1,""],set_modulus:[168,2,1,""],shift:[168,2,1,""],slice:[168,2,1,""],sqf_list:[168,2,1,""],sqf_list_include:[168,2,1,""],sqf_norm:[168,2,1,""],sqf_part:[168,2,1,""],sqr:[168,2,1,""],sturm:[168,2,1,""],sub:[168,2,1,""],sub_ground:[168,2,1,""],subresultants:[168,2,1,""],terms:[168,2,1,""],terms_gcd:[168,2,1,""],termwise:[168,2,1,""],to_exact:[168,2,1,""],to_field:[168,2,1,""],to_ring:[168,2,1,""],total_degree:[168,2,1,""],transform:[168,2,1,""],trunc:[168,2,1,""],unify:[168,2,1,""],unit:[168,2,1,""],zero:[168,2,1,""]},"sympy.polys.polytools.PurePoly":{free_symbols:[168,2,1,""]},"sympy.polys.rationaltools":{together:[168,3,1,""]},"sympy.polys.ring_series":{_tan1:[169,3,1,""],mul_xin:[169,3,1,""],pow_xin:[169,3,1,""],rs_LambertW:[169,3,1,""],rs_asin:[169,3,1,""],rs_atan:[169,3,1,""],rs_atanh:[169,3,1,""],rs_compose_add:[169,3,1,""],rs_cos:[169,3,1,""],rs_cos_sin:[169,3,1,""],rs_cosh:[169,3,1,""],rs_cot:[169,3,1,""],rs_diff:[169,3,1,""],rs_exp:[169,3,1,""],rs_fun:[169,3,1,""],rs_hadamard_exp:[169,3,1,""],rs_integrate:[169,3,1,""],rs_is_puiseux:[169,3,1,""],rs_log:[169,3,1,""],rs_mul:[169,3,1,""],rs_newton:[169,3,1,""],rs_nth_root:[169,3,1,""],rs_pow:[169,3,1,""],rs_puiseux2:[169,3,1,""],rs_puiseux:[169,3,1,""],rs_series_from_list:[169,3,1,""],rs_series_inversion:[169,3,1,""],rs_series_reversion:[169,3,1,""],rs_sin:[169,3,1,""],rs_sinh:[169,3,1,""],rs_square:[169,3,1,""],rs_subs:[169,3,1,""],rs_tan:[169,3,1,""],rs_tanh:[169,3,1,""],rs_trunc:[169,3,1,""]},"sympy.polys.rings":{PolyElement:[164,1,1,""],PolyRing:[164,1,1,""],ring:[164,3,1,""],sring:[164,3,1,""],vring:[164,3,1,""],xring:[164,3,1,""]},"sympy.polys.rings.PolyElement":{"const":[164,2,1,""],almosteq:[164,2,1,""],cancel:[164,2,1,""],coeff:[164,2,1,""],coeffs:[164,2,1,""],content:[164,2,1,""],copy:[164,2,1,""],degree:[164,2,1,""],degrees:[164,2,1,""],diff:[164,2,1,""],div:[164,2,1,""],imul_num:[164,2,1,""],itercoeffs:[164,2,1,""],itermonoms:[164,2,1,""],iterterms:[164,2,1,""],leading_expv:[164,2,1,""],leading_monom:[164,2,1,""],leading_term:[164,2,1,""],listcoeffs:[164,2,1,""],listmonoms:[164,2,1,""],listterms:[164,2,1,""],monic:[164,2,1,""],monoms:[164,2,1,""],primitive:[164,2,1,""],square:[164,2,1,""],strip_zero:[164,2,1,""],tail_degree:[164,2,1,""],tail_degrees:[164,2,1,""],terms:[164,2,1,""]},"sympy.polys.rings.PolyRing":{add:[164,2,1,""],add_gens:[164,2,1,""],compose:[164,2,1,""],drop:[164,2,1,""],drop_to_ground:[164,2,1,""],index:[164,2,1,""],monomial_basis:[164,2,1,""],mul:[164,2,1,""]},"sympy.polys.rootoftools":{ComplexRootOf:[168,1,1,""],RootOf:[168,1,1,""],RootSum:[168,1,1,""],rootof:[168,3,1,""]},"sympy.polys.rootoftools.ComplexRootOf":{_all_roots:[168,2,1,""],_complexes_index:[168,2,1,""],_complexes_sorted:[168,2,1,""],_count_roots:[168,2,1,""],_eval_evalf:[168,2,1,""],_eval_is_imaginary:[168,2,1,""],_eval_is_real:[168,2,1,""],_get_complexes:[168,2,1,""],_get_complexes_sqf:[168,2,1,""],_get_interval:[168,2,1,""],_get_reals:[168,2,1,""],_get_reals_sqf:[168,2,1,""],_get_roots:[168,2,1,""],_indexed_root:[168,2,1,""],_new:[168,2,1,""],_postprocess_root:[168,2,1,""],_preprocess_roots:[168,2,1,""],_real_roots:[168,2,1,""],_reals_index:[168,2,1,""],_reals_sorted:[168,2,1,""],_refine_complexes:[168,2,1,""],_reset:[168,2,1,""],_roots_trivial:[168,2,1,""],_set_interval:[168,2,1,""],all_roots:[168,2,1,""],clear_cache:[168,2,1,""],eval_approx:[168,2,1,""],eval_rational:[168,2,1,""],real_roots:[168,2,1,""]},"sympy.polys.rootoftools.RootSum":{"new":[168,2,1,""]},"sympy.polys.solvers":{_solve_lin_sys:[170,3,1,""],_solve_lin_sys_component:[170,3,1,""],eqs_to_matrix:[170,3,1,""],solve_lin_sys:[170,3,1,""],sympy_eqs_to_ring:[170,3,1,""]},"sympy.polys.specialpolys":{cyclotomic_poly:[168,3,1,""],interpolating_poly:[168,3,1,""],random_poly:[168,3,1,""],swinnerton_dyer_poly:[168,3,1,""],symmetric_poly:[168,3,1,""]},"sympy.printing":{aesaracode:[172,0,0,"-"],c:[172,0,0,"-"],codeprinter:[172,0,0,"-"],conventions:[172,0,0,"-"],cxx:[172,0,0,"-"],fortran:[172,0,0,"-"],gtk:[172,0,0,"-"],jscode:[172,0,0,"-"],julia:[172,0,0,"-"],lambdarepr:[172,0,0,"-"],latex:[172,0,0,"-"],maple:[172,0,0,"-"],mathematica:[172,0,0,"-"],mathml:[172,0,0,"-"],octave:[172,0,0,"-"],precedence:[172,0,0,"-"],pretty:[172,0,0,"-"],preview:[172,0,0,"-"],printer:[172,0,0,"-"],pycode:[172,0,0,"-"],python:[172,0,0,"-"],rcode:[172,0,0,"-"],repr:[172,0,0,"-"],rust:[172,0,0,"-"],str:[172,0,0,"-"],tree:[172,0,0,"-"]},"sympy.printing.aesaracode":{AesaraPrinter:[172,1,1,""],aesara_code:[172,3,1,""],aesara_function:[172,3,1,""],dim_handling:[172,3,1,""]},"sympy.printing.aesaracode.AesaraPrinter":{doprint:[172,2,1,""],printmethod:[172,4,1,""]},"sympy.printing.c":{C89CodePrinter:[172,1,1,""],C99CodePrinter:[172,1,1,""],ccode:[172,3,1,""],known_functions_C89:[172,5,1,""],known_functions_C99:[172,5,1,""],print_ccode:[172,3,1,""]},"sympy.printing.c.C89CodePrinter":{indent_code:[172,2,1,""],printmethod:[172,4,1,""]},"sympy.printing.c.C99CodePrinter":{printmethod:[172,4,1,""]},"sympy.printing.codeprinter":{AssignmentError:[172,6,1,""],CodePrinter:[172,1,1,""],cxxcode:[172,3,1,""]},"sympy.printing.codeprinter.CodePrinter":{doprint:[172,2,1,""],printmethod:[172,4,1,""]},"sympy.printing.conventions":{split_super_sub:[172,3,1,""]},"sympy.printing.cxx":{CXX11CodePrinter:[172,1,1,""],CXX98CodePrinter:[172,1,1,""]},"sympy.printing.cxx.CXX11CodePrinter":{printmethod:[172,4,1,""]},"sympy.printing.cxx.CXX98CodePrinter":{printmethod:[172,4,1,""]},"sympy.printing.dot":{dotprint:[172,3,1,""]},"sympy.printing.fortran":{FCodePrinter:[172,1,1,""],fcode:[172,3,1,""],print_fcode:[172,3,1,""]},"sympy.printing.fortran.FCodePrinter":{indent_code:[172,2,1,""],printmethod:[172,4,1,""]},"sympy.printing.gtk":{print_gtk:[172,3,1,""]},"sympy.printing.jscode":{JavascriptCodePrinter:[172,1,1,""],jscode:[172,3,1,""],known_functions:[172,5,1,""]},"sympy.printing.jscode.JavascriptCodePrinter":{indent_code:[172,2,1,""],printmethod:[172,4,1,""]},"sympy.printing.julia":{JuliaCodePrinter:[172,1,1,""],julia_code:[172,3,1,""],known_fcns_src1:[172,5,1,""],known_fcns_src2:[172,5,1,""]},"sympy.printing.julia.JuliaCodePrinter":{indent_code:[172,2,1,""],printmethod:[172,4,1,""]},"sympy.printing.lambdarepr":{LambdaPrinter:[172,1,1,""],lambdarepr:[172,3,1,""]},"sympy.printing.lambdarepr.LambdaPrinter":{printmethod:[172,4,1,""]},"sympy.printing.latex":{LatexPrinter:[172,1,1,""],accepted_latex_functions:[172,5,1,""],latex:[172,3,1,""],print_latex:[172,3,1,""]},"sympy.printing.latex.LatexPrinter":{parenthesize_super:[172,2,1,""],printmethod:[172,4,1,""]},"sympy.printing.maple":{MapleCodePrinter:[172,1,1,""],maple_code:[172,3,1,""],print_maple_code:[172,3,1,""]},"sympy.printing.maple.MapleCodePrinter":{printmethod:[172,4,1,""]},"sympy.printing.mathematica":{MCodePrinter:[172,1,1,""],known_functions:[172,5,1,""],mathematica_code:[172,3,1,""]},"sympy.printing.mathematica.MCodePrinter":{printmethod:[172,4,1,""]},"sympy.printing.mathml":{MathMLContentPrinter:[172,1,1,""],MathMLPresentationPrinter:[172,1,1,""],MathMLPrinterBase:[172,1,1,""],mathml:[172,3,1,""],print_mathml:[172,3,1,""]},"sympy.printing.mathml.MathMLContentPrinter":{mathml_tag:[172,2,1,""],printmethod:[172,4,1,""]},"sympy.printing.mathml.MathMLPresentationPrinter":{mathml_tag:[172,2,1,""],printmethod:[172,4,1,""]},"sympy.printing.mathml.MathMLPrinterBase":{doprint:[172,2,1,""]},"sympy.printing.octave":{OctaveCodePrinter:[172,1,1,""],known_fcns_src1:[172,5,1,""],known_fcns_src2:[172,5,1,""],octave_code:[172,3,1,""]},"sympy.printing.octave.OctaveCodePrinter":{indent_code:[172,2,1,""],printmethod:[172,4,1,""]},"sympy.printing.precedence":{PRECEDENCE:[172,5,1,""],PRECEDENCE_FUNCTIONS:[172,5,1,""],PRECEDENCE_VALUES:[172,5,1,""],precedence:[172,3,1,""]},"sympy.printing.pretty":{pretty:[172,0,0,"-"],pretty_symbology:[172,0,0,"-"],stringpict:[172,0,0,"-"]},"sympy.printing.pretty.pretty":{PrettyPrinter:[172,1,1,""],pretty:[172,3,1,""],pretty_print:[172,3,1,""]},"sympy.printing.pretty.pretty.PrettyPrinter":{printmethod:[172,4,1,""]},"sympy.printing.pretty.pretty_symbology":{G:[172,3,1,""],U:[172,3,1,""],VF:[172,3,1,""],annotated:[172,3,1,""],atoms_table:[172,5,1,""],digit_2txt:[172,5,1,""],frac:[172,5,1,""],g:[172,3,1,""],greek_letters:[172,5,1,""],hobj:[172,3,1,""],pretty_atom:[172,3,1,""],pretty_symbol:[172,3,1,""],pretty_try_use_unicode:[172,3,1,""],pretty_use_unicode:[172,3,1,""],root:[172,5,1,""],sub:[172,5,1,""],sup:[172,5,1,""],symb_2txt:[172,5,1,""],vobj:[172,3,1,""],xobj:[172,3,1,""],xstr:[172,3,1,""],xsym:[172,3,1,""]},"sympy.printing.pretty.stringpict":{prettyForm:[172,1,1,""],stringPict:[172,1,1,""]},"sympy.printing.pretty.stringpict.prettyForm":{apply:[172,2,1,""]},"sympy.printing.pretty.stringpict.stringPict":{above:[172,2,1,""],below:[172,2,1,""],height:[172,2,1,""],left:[172,2,1,""],leftslash:[172,2,1,""],next:[172,2,1,""],parens:[172,2,1,""],render:[172,2,1,""],right:[172,2,1,""],root:[172,2,1,""],stack:[172,2,1,""],terminal_width:[172,2,1,""],width:[172,2,1,""]},"sympy.printing.preview":{preview:[172,3,1,""]},"sympy.printing.printer":{Printer:[172,1,1,""]},"sympy.printing.printer.Printer":{_print:[172,2,1,""],doprint:[172,2,1,""],printmethod:[172,4,1,""],set_global_settings:[172,2,1,""]},"sympy.printing.pycode":{MpmathPrinter:[172,1,1,""],pycode:[172,3,1,""]},"sympy.printing.rcode":{RCodePrinter:[172,1,1,""],known_functions:[172,5,1,""],print_rcode:[172,3,1,""],rcode:[172,3,1,""]},"sympy.printing.rcode.RCodePrinter":{indent_code:[172,2,1,""],printmethod:[172,4,1,""]},"sympy.printing.repr":{ReprPrinter:[172,1,1,""],srepr:[172,3,1,""]},"sympy.printing.repr.ReprPrinter":{emptyPrinter:[172,2,1,""],printmethod:[172,4,1,""],reprify:[172,2,1,""]},"sympy.printing.rust":{RustCodePrinter:[172,1,1,""],known_functions:[172,5,1,""],rust_code:[172,3,1,""]},"sympy.printing.rust.RustCodePrinter":{indent_code:[172,2,1,""],printmethod:[172,4,1,""]},"sympy.printing.str":{StrPrinter:[172,1,1,""],sstr:[172,3,1,""],sstrrepr:[172,3,1,""]},"sympy.printing.str.StrPrinter":{printmethod:[172,4,1,""]},"sympy.printing.tree":{pprint_nodes:[172,3,1,""],print_node:[172,3,1,""],print_tree:[172,3,1,""],tree:[172,3,1,""]},"sympy.series.acceleration":{richardson:[179,3,1,""],shanks:[179,3,1,""]},"sympy.series.formal":{FiniteFormalPowerSeries:[174,1,1,""],FormalPowerSeries:[174,1,1,""],FormalPowerSeriesCompose:[174,1,1,""],FormalPowerSeriesInverse:[174,1,1,""],FormalPowerSeriesProduct:[174,1,1,""],compute_fps:[174,3,1,""],exp_re:[174,3,1,""],fps:[174,3,1,""],hyper_algorithm:[174,3,1,""],hyper_re:[174,3,1,""],rational_algorithm:[174,3,1,""],rational_independent:[174,3,1,""],rsolve_hypergeometric:[174,3,1,""],simpleDE:[174,3,1,""],solve_de:[174,3,1,""]},"sympy.series.formal.FormalPowerSeries":{coeff_bell:[174,2,1,""],compose:[174,2,1,""],infinite:[174,2,1,""],integrate:[174,2,1,""],inverse:[174,2,1,""],polynomial:[174,2,1,""],product:[174,2,1,""],truncate:[174,2,1,""]},"sympy.series.formal.FormalPowerSeriesCompose":{"function":[174,2,1,""]},"sympy.series.formal.FormalPowerSeriesInverse":{"function":[174,2,1,""]},"sympy.series.formal.FormalPowerSeriesProduct":{"function":[174,2,1,""]},"sympy.series.fourier":{FourierSeries:[175,1,1,""],fourier_series:[175,3,1,""]},"sympy.series.fourier.FourierSeries":{scale:[175,2,1,""],scalex:[175,2,1,""],shift:[175,2,1,""],shiftx:[175,2,1,""],sigma_approximation:[175,2,1,""],truncate:[175,2,1,""]},"sympy.series.gruntz":{SubsSet:[179,1,1,""],build_expression_tree:[179,3,1,""],calculate_series:[179,3,1,""],compare:[179,3,1,""],gruntz:[179,3,1,""],limitinf:[179,3,1,""],mrv:[179,3,1,""],mrv_leadterm:[179,3,1,""],mrv_max1:[179,3,1,""],mrv_max3:[179,3,1,""],rewrite:[179,3,1,""],sign:[179,3,1,""]},"sympy.series.gruntz.SubsSet":{copy:[179,2,1,""],do_subs:[179,2,1,""],meets:[179,2,1,""],union:[179,2,1,""]},"sympy.series.limits":{Limit:[179,1,1,""],limit:[179,3,1,""]},"sympy.series.limits.Limit":{doit:[179,2,1,""]},"sympy.series.limitseq":{difference_delta:[177,3,1,""],dominant:[177,3,1,""],limit_seq:[177,3,1,""]},"sympy.series.order":{Order:[179,1,1,""]},"sympy.series.order.Order":{contains:[179,2,1,""]},"sympy.series.residues":{residue:[179,3,1,""]},"sympy.series.sequences":{EmptySequence:[178,1,1,""],SeqAdd:[178,1,1,""],SeqBase:[178,1,1,""],SeqFormula:[178,1,1,""],SeqMul:[178,1,1,""],SeqPer:[178,1,1,""],sequence:[178,3,1,""]},"sympy.series.sequences.EmptySequence":{coeff_mul:[178,2,1,""]},"sympy.series.sequences.SeqAdd":{reduce:[178,2,1,""]},"sympy.series.sequences.SeqBase":{coeff:[178,2,1,""],coeff_mul:[178,2,1,""],find_linear_recurrence:[178,2,1,""],free_symbols:[178,2,1,""],gen:[178,2,1,""],interval:[178,2,1,""],length:[178,2,1,""],start:[178,2,1,""],stop:[178,2,1,""],variables:[178,2,1,""]},"sympy.series.sequences.SeqFormula":{coeff_mul:[178,2,1,""]},"sympy.series.sequences.SeqMul":{reduce:[178,2,1,""]},"sympy.series.sequences.SeqPer":{coeff_mul:[178,2,1,""]},"sympy.series.series":{series:[179,3,1,""]},"sympy.sets":{conditionset:[180,0,0,"-"],fancysets:[180,0,0,"-"],powerset:[180,0,0,"-"],sets:[180,0,0,"-"]},"sympy.sets.conditionset":{ConditionSet:[180,1,1,""]},"sympy.sets.fancysets":{CartesianComplexRegion:[180,1,1,""],ComplexRegion:[180,1,1,""],Complexes:[180,1,1,""],ImageSet:[180,1,1,""],Integers:[180,1,1,""],Naturals0:[180,1,1,""],Naturals:[180,1,1,""],PolarComplexRegion:[180,1,1,""],Range:[180,1,1,""],Reals:[180,1,1,""],normalize_theta_set:[180,3,1,""]},"sympy.sets.fancysets.ComplexRegion":{a_interval:[180,2,1,""],b_interval:[180,2,1,""],from_real:[180,2,1,""],psets:[180,2,1,""],sets:[180,2,1,""]},"sympy.sets.fancysets.Range":{as_relational:[180,2,1,""],reversed:[180,2,1,""]},"sympy.sets.powerset":{PowerSet:[180,1,1,""]},"sympy.sets.sets":{Complement:[180,1,1,""],EmptySet:[180,1,1,""],FiniteSet:[180,1,1,""],Intersection:[180,1,1,""],Interval:[180,1,1,""],ProductSet:[180,1,1,""],Set:[180,1,1,""],SymmetricDifference:[180,1,1,""],Union:[180,1,1,""],UniversalSet:[180,1,1,""],imageset:[180,3,1,""]},"sympy.sets.sets.Complement":{as_relational:[180,2,1,""],reduce:[180,2,1,""]},"sympy.sets.sets.FiniteSet":{as_relational:[180,2,1,""]},"sympy.sets.sets.Intersection":{as_relational:[180,2,1,""]},"sympy.sets.sets.Interval":{Lopen:[180,2,1,""],Ropen:[180,2,1,""],as_relational:[180,2,1,""],end:[180,2,1,""],is_left_unbounded:[180,2,1,""],is_right_unbounded:[180,2,1,""],left:[180,2,1,""],left_open:[180,2,1,""],open:[180,2,1,""],right:[180,2,1,""],right_open:[180,2,1,""],start:[180,2,1,""]},"sympy.sets.sets.ProductSet":{is_iterable:[180,2,1,""]},"sympy.sets.sets.Set":{boundary:[180,2,1,""],closure:[180,2,1,""],complement:[180,2,1,""],contains:[180,2,1,""],inf:[180,2,1,""],interior:[180,2,1,""],intersect:[180,2,1,""],intersection:[180,2,1,""],is_closed:[180,2,1,""],is_disjoint:[180,2,1,""],is_open:[180,2,1,""],is_proper_subset:[180,2,1,""],is_proper_superset:[180,2,1,""],is_subset:[180,2,1,""],is_superset:[180,2,1,""],isdisjoint:[180,2,1,""],issubset:[180,2,1,""],issuperset:[180,2,1,""],measure:[180,2,1,""],powerset:[180,2,1,""],sup:[180,2,1,""],symmetric_difference:[180,2,1,""],union:[180,2,1,""]},"sympy.sets.sets.SymmetricDifference":{as_relational:[180,2,1,""]},"sympy.sets.sets.Union":{as_relational:[180,2,1,""]},"sympy.simplify":{combsimp:[184,0,0,"-"],cse_main:[184,0,0,"-"],epathtools:[184,0,0,"-"],hyperexpand:[184,0,0,"-"],hyperexpand_doc:[182,0,0,"-"],powsimp:[184,0,0,"-"],radsimp:[184,0,0,"-"],ratsimp:[184,0,0,"-"],simplify:[3,0,0,"-"],sqrtdenest:[184,0,0,"-"],traversaltools:[184,0,0,"-"],trigsimp:[184,0,0,"-"]},"sympy.simplify.combsimp":{combsimp:[184,3,1,""]},"sympy.simplify.cse_main":{cse:[184,3,1,""],opt_cse:[184,3,1,""],tree_cse:[184,3,1,""]},"sympy.simplify.epathtools":{EPath:[184,1,1,""],epath:[184,3,1,""]},"sympy.simplify.epathtools.EPath":{apply:[184,2,1,""],select:[184,2,1,""]},"sympy.simplify.fu":{TR0:[181,3,1,""],TR10:[181,3,1,""],TR10i:[181,3,1,""],TR111:[181,3,1,""],TR11:[181,3,1,""],TR12:[181,3,1,""],TR12i:[181,3,1,""],TR13:[181,3,1,""],TR14:[181,3,1,""],TR15:[181,3,1,""],TR16:[181,3,1,""],TR1:[181,3,1,""],TR22:[181,3,1,""],TR2:[181,3,1,""],TR2i:[181,3,1,""],TR3:[181,3,1,""],TR4:[181,3,1,""],TR5:[181,3,1,""],TR6:[181,3,1,""],TR7:[181,3,1,""],TR8:[181,3,1,""],TR9:[181,3,1,""],TRmorrie:[181,3,1,""],TRpower:[181,3,1,""],fu:[181,3,1,""]},"sympy.simplify.hyperexpand":{hyperexpand:[184,3,1,""]},"sympy.simplify.powsimp":{powdenest:[184,3,1,""],powsimp:[184,3,1,""]},"sympy.simplify.radsimp":{collect:[184,3,1,""],collect_const:[184,3,1,""],collect_sqrt:[184,3,1,""],fraction:[184,3,1,""],rad_rationalize:[184,3,1,""],radsimp:[184,3,1,""],rcollect:[184,3,1,""]},"sympy.simplify.ratsimp":{ratsimp:[184,3,1,""],ratsimpmodprime:[184,3,1,""]},"sympy.simplify.simplify":{besselsimp:[184,3,1,""],hypersimilar:[184,3,1,""],hypersimp:[184,3,1,""],kroneckersimp:[184,3,1,""],logcombine:[184,3,1,""],nsimplify:[184,3,1,""],nthroot:[184,3,1,""],posify:[184,3,1,""],separatevars:[184,3,1,""],simplify:[184,3,1,""]},"sympy.simplify.sqrtdenest":{sqrtdenest:[184,3,1,""]},"sympy.simplify.traversaltools":{use:[184,3,1,""]},"sympy.simplify.trigsimp":{trigsimp:[184,3,1,""]},"sympy.solvers":{inequalities:[186,0,0,"-"],ode:[187,0,0,"-"],pde:[188,0,0,"-"],recurr:[189,0,0,"-"],solveset:[190,0,0,"-"]},"sympy.solvers.deutils":{ode_order:[189,3,1,""]},"sympy.solvers.diophantine.diophantine":{BinaryQuadratic:[185,1,1,""],CubicThue:[185,1,1,""],DiophantineEquationType:[185,1,1,""],DiophantineSolutionSet:[185,1,1,""],GeneralPythagorean:[185,1,1,""],GeneralSumOfEvenPowers:[185,1,1,""],GeneralSumOfSquares:[185,1,1,""],HomogeneousGeneralQuadratic:[185,1,1,""],HomogeneousTernaryQuadratic:[185,1,1,""],HomogeneousTernaryQuadraticNormal:[185,1,1,""],InhomogeneousGeneralQuadratic:[185,1,1,""],InhomogeneousTernaryQuadratic:[185,1,1,""],Linear:[185,1,1,""],PQa:[185,3,1,""],Univariate:[185,1,1,""],base_solution_linear:[185,3,1,""],classify_diop:[185,3,1,""],cornacchia:[185,3,1,""],descent:[185,3,1,""],diop_DN:[185,3,1,""],diop_bf_DN:[185,3,1,""],diop_general_pythagorean:[185,3,1,""],diop_general_sum_of_even_powers:[185,3,1,""],diop_general_sum_of_squares:[185,3,1,""],diop_linear:[185,3,1,""],diop_quadratic:[185,3,1,""],diop_solve:[185,3,1,""],diop_ternary_quadratic:[185,3,1,""],diop_ternary_quadratic_normal:[185,3,1,""],diophantine:[185,3,1,""],divisible:[185,3,1,""],equivalent:[185,3,1,""],find_DN:[185,3,1,""],gaussian_reduce:[185,3,1,""],holzer:[185,3,1,""],ldescent:[185,3,1,""],merge_solution:[185,3,1,""],parametrize_ternary_quadratic:[185,3,1,""],partition:[185,3,1,""],power_representation:[185,3,1,""],prime_as_sum_of_two_squares:[185,3,1,""],reconstruct:[185,3,1,""],sqf_normal:[185,3,1,""],square_factor:[185,3,1,""],sum_of_four_squares:[185,3,1,""],sum_of_powers:[185,3,1,""],sum_of_squares:[185,3,1,""],sum_of_three_squares:[185,3,1,""],transformation_to_DN:[185,3,1,""],transformation_to_normal:[185,3,1,""]},"sympy.solvers.diophantine.diophantine.DiophantineEquationType":{matches:[185,2,1,""]},"sympy.solvers.inequalities":{reduce_abs_inequalities:[186,3,1,""],reduce_abs_inequality:[186,3,1,""],reduce_inequalities:[186,3,1,""],reduce_rational_inequalities:[186,3,1,""],solve_poly_inequalities:[186,3,1,""],solve_poly_inequality:[186,3,1,""],solve_rational_inequalities:[186,3,1,""],solve_univariate_inequality:[186,3,1,""]},"sympy.solvers.ode":{allhints:[187,5,1,""],checkinfsol:[187,3,1,""],checkodesol:[187,3,1,""],classify_ode:[187,3,1,""],constantsimp:[187,3,1,""],dsolve:[187,3,1,""],homogeneous_order:[187,3,1,""],infinitesimals:[187,3,1,""],ode:[187,0,0,"-"]},"sympy.solvers.ode.ode":{_handle_Integral:[187,3,1,""],_linear_2eq_order1_type6:[187,3,1,""],_linear_2eq_order1_type7:[187,3,1,""],_nonlinear_2eq_order1_type1:[187,3,1,""],_nonlinear_2eq_order1_type2:[187,3,1,""],_nonlinear_2eq_order1_type3:[187,3,1,""],_nonlinear_2eq_order1_type4:[187,3,1,""],_nonlinear_2eq_order1_type5:[187,3,1,""],_nonlinear_3eq_order1_type1:[187,3,1,""],_nonlinear_3eq_order1_type2:[187,3,1,""],_nonlinear_3eq_order1_type3:[187,3,1,""],_nonlinear_3eq_order1_type4:[187,3,1,""],_nonlinear_3eq_order1_type5:[187,3,1,""],_undetermined_coefficients_match:[187,3,1,""],constant_renumber:[187,3,1,""],lie_heuristic_abaco1_product:[187,3,1,""],lie_heuristic_abaco1_simple:[187,3,1,""],lie_heuristic_abaco2_similar:[187,3,1,""],lie_heuristic_abaco2_unique_general:[187,3,1,""],lie_heuristic_abaco2_unique_unknown:[187,3,1,""],lie_heuristic_bivariate:[187,3,1,""],lie_heuristic_chi:[187,3,1,""],lie_heuristic_function_sum:[187,3,1,""],lie_heuristic_linear:[187,3,1,""],ode_1st_exact:[187,3,1,""],ode_1st_homogeneous_coeff_best:[187,3,1,""],ode_1st_homogeneous_coeff_subs_dep_div_indep:[187,3,1,""],ode_1st_homogeneous_coeff_subs_indep_div_dep:[187,3,1,""],ode_1st_power_series:[187,3,1,""],ode_2nd_linear_airy:[187,3,1,""],ode_2nd_linear_bessel:[187,3,1,""],ode_2nd_power_series_ordinary:[187,3,1,""],ode_2nd_power_series_regular:[187,3,1,""],ode_Liouville:[187,3,1,""],ode_lie_group:[187,3,1,""],ode_linear_coefficients:[187,3,1,""],ode_nth_linear_constant_coeff_homogeneous:[187,3,1,""],ode_nth_linear_constant_coeff_undetermined_coefficients:[187,3,1,""],ode_nth_linear_constant_coeff_variation_of_parameters:[187,3,1,""],ode_nth_order_reducible:[187,3,1,""],ode_separable:[187,3,1,""],ode_separable_reduced:[187,3,1,""],ode_sol_simplicity:[187,3,1,""],odesimp:[187,3,1,""]},"sympy.solvers.ode.single":{AlmostLinear:[187,1,1,""],Bernoulli:[187,1,1,""],Factorable:[187,1,1,""],FirstLinear:[187,1,1,""],NthAlgebraic:[187,1,1,""],RiccatiSpecial:[187,1,1,""]},"sympy.solvers.ode.systems":{canonical_odes:[187,3,1,""],dsolve_system:[187,3,1,""],linear_ode_to_matrix:[187,3,1,""],linodesolve:[187,3,1,""],linodesolve_type:[187,3,1,""],matrix_exp:[187,3,1,""],matrix_exp_jordan_form:[187,3,1,""]},"sympy.solvers.pde":{checkpdesol:[188,3,1,""],classify_pde:[188,3,1,""],pde_1st_linear_constant_coeff:[188,3,1,""],pde_1st_linear_constant_coeff_homogeneous:[188,3,1,""],pde_1st_linear_variable_coeff:[188,3,1,""],pde_separate:[188,3,1,""],pde_separate_add:[188,3,1,""],pde_separate_mul:[188,3,1,""],pdsolve:[188,3,1,""]},"sympy.solvers.polysys":{solve_poly_system:[189,3,1,""],solve_triangulated:[189,3,1,""]},"sympy.solvers.recurr":{rsolve:[189,3,1,""],rsolve_hyper:[189,3,1,""],rsolve_poly:[189,3,1,""],rsolve_ratio:[189,3,1,""]},"sympy.solvers.solvers":{checksol:[189,3,1,""],nsolve:[189,3,1,""],solve:[189,3,1,""],solve_linear:[189,3,1,""],solve_linear_system:[189,3,1,""],solve_linear_system_LU:[189,3,1,""],solve_undetermined_coeffs:[189,3,1,""],unrad:[189,3,1,""]},"sympy.solvers.solveset":{_is_exponential:[190,3,1,""],_is_logarithmic:[190,3,1,""],_solve_exponential:[190,3,1,""],_solve_logarithm:[190,3,1,""],_transolve:[190,3,1,""],domain_check:[190,3,1,""],invert_complex:[190,3,1,""],invert_real:[190,3,1,""],linear_eq_to_matrix:[190,3,1,""],linsolve:[190,3,1,""],nonlinsolve:[190,3,1,""],solveset:[190,3,1,""],solveset_complex:[190,3,1,""],solveset_real:[190,3,1,""],solvify:[190,3,1,""]},"sympy.stats":{Arcsin:[191,3,1,""],Benini:[191,3,1,""],Bernoulli:[191,3,1,""],BernoulliProcess:[191,1,1,""],Beta:[191,3,1,""],BetaBinomial:[191,3,1,""],BetaNoncentral:[191,3,1,""],BetaPrime:[191,3,1,""],Binomial:[191,3,1,""],BoundedPareto:[191,3,1,""],Cauchy:[191,3,1,""],CentralMoment:[191,1,1,""],Chi:[191,3,1,""],ChiNoncentral:[191,3,1,""],ChiSquared:[191,3,1,""],Coin:[191,3,1,""],ContinuousMarkovChain:[191,1,1,""],ContinuousRV:[191,3,1,""],Covariance:[191,1,1,""],CrossCovarianceMatrix:[191,1,1,""],Dagum:[191,3,1,""],Die:[191,3,1,""],DiscreteMarkovChain:[191,1,1,""],DiscreteUniform:[191,3,1,""],E:[191,3,1,""],Erlang:[191,3,1,""],ExGaussian:[191,3,1,""],Expectation:[191,1,1,""],ExpectationMatrix:[191,1,1,""],Exponential:[191,3,1,""],FDistribution:[191,3,1,""],FiniteRV:[191,3,1,""],FisherZ:[191,3,1,""],Frechet:[191,3,1,""],Gamma:[191,3,1,""],GammaInverse:[191,3,1,""],GammaProcess:[191,1,1,""],GeneralizedMultivariateLogGamma:[191,3,1,""],GeneralizedMultivariateLogGammaOmega:[191,3,1,""],Geometric:[191,3,1,""],Gompertz:[191,3,1,""],Gumbel:[191,3,1,""],Hermite:[191,3,1,""],Hypergeometric:[191,3,1,""],JointRV:[191,3,1,""],Kumaraswamy:[191,3,1,""],Laplace:[191,3,1,""],Levy:[191,3,1,""],LogLogistic:[191,3,1,""],LogNormal:[191,3,1,""],Logarithmic:[191,3,1,""],Logistic:[191,3,1,""],Lomax:[191,3,1,""],MatrixGamma:[191,3,1,""],MatrixNormal:[191,3,1,""],Maxwell:[191,3,1,""],Moment:[191,1,1,""],Moyal:[191,3,1,""],Multinomial:[191,3,1,""],MultivariateBeta:[191,3,1,""],MultivariateEwens:[191,3,1,""],MultivariateLaplace:[191,3,1,""],MultivariateNormal:[191,3,1,""],MultivariateT:[191,3,1,""],Nakagami:[191,3,1,""],NegativeBinomial:[191,3,1,""],NegativeMultinomial:[191,3,1,""],Normal:[191,3,1,""],NormalGamma:[191,3,1,""],P:[191,3,1,""],Pareto:[191,3,1,""],Poisson:[191,3,1,""],PoissonProcess:[191,1,1,""],PowerFunction:[191,3,1,""],Probability:[191,1,1,""],QuadraticU:[191,3,1,""],Rademacher:[191,3,1,""],RaisedCosine:[191,3,1,""],Rayleigh:[191,3,1,""],Reciprocal:[191,3,1,""],ShiftedGompertz:[191,3,1,""],Skellam:[191,3,1,""],StudentT:[191,3,1,""],Trapezoidal:[191,3,1,""],Triangular:[191,3,1,""],Uniform:[191,3,1,""],UniformSum:[191,3,1,""],Variance:[191,1,1,""],VarianceMatrix:[191,1,1,""],VonMises:[191,3,1,""],Wald:[191,3,1,""],Weibull:[191,3,1,""],WienerProcess:[191,1,1,""],WignerSemicircle:[191,3,1,""],Wishart:[191,3,1,""],YuleSimon:[191,3,1,""],Zeta:[191,3,1,""],cmoment:[191,3,1,""],correlation:[191,3,1,""],coskewness:[191,3,1,""],covariance:[191,3,1,""],crv:[191,0,0,"-"],crv_types:[191,0,0,"-"],density:[191,3,1,""],entropy:[191,3,1,""],factorial_moment:[191,3,1,""],frv:[191,0,0,"-"],frv_types:[191,0,0,"-"],given:[191,3,1,""],kurtosis:[191,3,1,""],marginal_distribution:[191,3,1,""],median:[191,3,1,""],moment:[191,3,1,""],rv:[191,0,0,"-"],sample:[191,3,1,""],sample_iter:[191,3,1,""],skewness:[191,3,1,""],std:[191,3,1,""],variance:[191,3,1,""],where:[191,3,1,""]},"sympy.stats.BernoulliProcess":{expectation:[191,2,1,""],probability:[191,2,1,""]},"sympy.stats.DiscreteMarkovChain":{absorbing_probabilities:[191,2,1,""],canonical_form:[191,2,1,""],communication_classes:[191,2,1,""],decompose:[191,2,1,""],fixed_row_vector:[191,2,1,""],fundamental_matrix:[191,2,1,""],limiting_distribution:[191,2,1,""],sample:[191,2,1,""],stationary_distribution:[191,2,1,""],transition_probabilities:[191,2,1,""]},"sympy.stats.compound_rv":{CompoundDistribution:[191,1,1,""]},"sympy.stats.crv":{ContinuousDomain:[191,1,1,""],ContinuousPSpace:[191,1,1,""]},"sympy.stats.crv_types":{NormalPSpace:[191,1,1,""]},"sympy.stats.crv_types.sympy.stats":{Die:[191,3,1,""],Normal:[191,3,1,""]},"sympy.stats.frv":{FiniteDomain:[191,1,1,""],FinitePSpace:[191,1,1,""]},"sympy.stats.frv_types":{DiePSpace:[191,1,1,""]},"sympy.stats.rv":{ConditionalDomain:[191,1,1,""],PSpace:[191,1,1,""],ProductDomain:[191,1,1,""],ProductPSpace:[191,1,1,""],RandomDomain:[191,1,1,""],RandomSymbol:[191,1,1,""],SingleDomain:[191,1,1,""],SinglePSpace:[191,1,1,""],pspace:[191,3,1,""],random_symbols:[191,3,1,""],rs_swap:[191,3,1,""],sampling_E:[191,3,1,""],sampling_P:[191,3,1,""],sampling_density:[191,3,1,""]},"sympy.tensor":{array:[192,0,0,"-"],index_methods:[194,0,0,"-"],indexed:[195,0,0,"-"],tensor:[196,0,0,"-"],toperators:[197,0,0,"-"]},"sympy.tensor.array":{ImmutableDenseNDimArray:[192,1,1,""],ImmutableSparseNDimArray:[192,1,1,""],MutableDenseNDimArray:[192,1,1,""],MutableSparseNDimArray:[192,1,1,""],derive_by_array:[192,3,1,""],permutedims:[192,3,1,""],tensorcontraction:[192,3,1,""],tensordiagonal:[192,3,1,""],tensorproduct:[192,3,1,""]},"sympy.tensor.index_methods":{get_contraction_structure:[194,3,1,""],get_indices:[194,3,1,""]},"sympy.tensor.indexed":{Idx:[195,1,1,""],Indexed:[195,1,1,""],IndexedBase:[195,1,1,""]},"sympy.tensor.indexed.Idx":{label:[195,2,1,""],lower:[195,2,1,""],upper:[195,2,1,""]},"sympy.tensor.indexed.Indexed":{base:[195,2,1,""],indices:[195,2,1,""],ranges:[195,2,1,""],rank:[195,2,1,""],shape:[195,2,1,""]},"sympy.tensor.indexed.IndexedBase":{label:[195,2,1,""],offset:[195,2,1,""],shape:[195,2,1,""],strides:[195,2,1,""]},"sympy.tensor.tensor":{TensAdd:[196,1,1,""],TensExpr:[196,1,1,""],TensMul:[196,1,1,""],TensorHead:[196,1,1,""],TensorIndex:[196,1,1,""],TensorIndexType:[196,1,1,""],TensorSymmetry:[196,1,1,""],TensorType:[196,1,1,""],_TensorManager:[196,1,1,""],canon_bp:[196,3,1,""],riemann_cyclic:[196,3,1,""],riemann_cyclic_replace:[196,3,1,""],tensorsymmetry:[196,3,1,""]},"sympy.tensor.tensor.TensAdd":{canon_bp:[196,2,1,""],contract_metric:[196,2,1,""]},"sympy.tensor.tensor.TensExpr":{get_matrix:[196,2,1,""],replace_with_arrays:[196,2,1,""]},"sympy.tensor.tensor.TensMul":{canon_bp:[196,2,1,""],contract_metric:[196,2,1,""],get_free_indices:[196,2,1,""],get_indices:[196,2,1,""],perm2tensor:[196,2,1,""],sorted_components:[196,2,1,""],split:[196,2,1,""]},"sympy.tensor.tensor.TensorHead":{commutes_with:[196,2,1,""]},"sympy.tensor.tensor.TensorSymmetry":{direct_product:[196,2,1,""],fully_symmetric:[196,2,1,""],no_symmetry:[196,2,1,""],riemann:[196,2,1,""]},"sympy.tensor.tensor._TensorManager":{clear:[196,2,1,""],comm_i2symbol:[196,2,1,""],comm_symbols2i:[196,2,1,""],get_comm:[196,2,1,""],set_comm:[196,2,1,""],set_comms:[196,2,1,""]},"sympy.tensor.toperators":{PartialDerivative:[197,1,1,""]},"sympy.testing":{pytest:[199,0,0,"-"],randtest:[200,0,0,"-"],runtests:[201,0,0,"-"]},"sympy.testing.pytest":{SKIP:[199,3,1,""],ignore_warnings:[199,3,1,""],nocache_fail:[199,3,1,""],raises:[199,3,1,""],warns:[199,3,1,""],warns_deprecated_sympy:[199,3,1,""]},"sympy.testing.randtest":{random_complex_number:[200,3,1,""],test_derivative_numerically:[200,3,1,""],verify_numerically:[200,3,1,""]},"sympy.testing.runtests":{PyTestReporter:[201,1,1,""],Reporter:[201,1,1,""],SymPyDocTestFinder:[201,1,1,""],SymPyDocTestRunner:[201,1,1,""],SymPyOutputChecker:[201,1,1,""],SymPyTestResults:[201,1,1,""],convert_to_native_paths:[201,3,1,""],doctest:[201,3,1,""],get_sympy_dir:[201,3,1,""],raise_on_deprecated:[201,3,1,""],run_all_tests:[201,3,1,""],run_in_subprocess_with_hash_randomization:[201,3,1,""],split_list:[201,3,1,""],sympytestfile:[201,3,1,""],test:[201,3,1,""]},"sympy.testing.runtests.PyTestReporter":{write:[201,2,1,""]},"sympy.testing.runtests.SymPyDocTestRunner":{run:[201,2,1,""]},"sympy.testing.runtests.SymPyOutputChecker":{check_output:[201,2,1,""]},"sympy.testing.runtests.SymPyTestResults":{attempted:[201,4,1,""],failed:[201,4,1,""]},"sympy.utilities":{autowrap:[202,0,0,"-"],codegen:[203,0,0,"-"],decorator:[204,0,0,"-"],enumerative:[205,0,0,"-"],iterables:[207,0,0,"-"],lambdify:[208,0,0,"-"],memoization:[209,0,0,"-"],misc:[210,0,0,"-"],pkgdata:[211,0,0,"-"],source:[212,0,0,"-"],timeutils:[213,0,0,"-"]},"sympy.utilities.autowrap":{CodeWrapper:[202,1,1,""],CythonCodeWrapper:[202,1,1,""],DummyWrapper:[202,1,1,""],F2PyCodeWrapper:[202,1,1,""],UfuncifyCodeWrapper:[202,1,1,""],autowrap:[202,3,1,""],binary_function:[202,3,1,""],ufuncify:[202,3,1,""]},"sympy.utilities.autowrap.CythonCodeWrapper":{dump_pyx:[202,2,1,""]},"sympy.utilities.autowrap.UfuncifyCodeWrapper":{dump_c:[202,2,1,""]},"sympy.utilities.codegen":{Argument:[203,1,1,""],CCodeGen:[203,1,1,""],CodeGen:[203,1,1,""],DataType:[203,1,1,""],FCodeGen:[203,1,1,""],JuliaCodeGen:[203,1,1,""],OctaveCodeGen:[203,1,1,""],OutputArgument:[203,1,1,""],Result:[203,1,1,""],Routine:[203,1,1,""],RustCodeGen:[203,1,1,""],codegen:[203,3,1,""],get_default_datatype:[203,3,1,""],make_routine:[203,3,1,""]},"sympy.utilities.codegen.CCodeGen":{dump_c:[203,2,1,""],dump_h:[203,2,1,""],get_prototype:[203,2,1,""]},"sympy.utilities.codegen.CodeGen":{dump_code:[203,2,1,""],routine:[203,2,1,""],write:[203,2,1,""]},"sympy.utilities.codegen.FCodeGen":{dump_f95:[203,2,1,""],dump_h:[203,2,1,""],get_interface:[203,2,1,""]},"sympy.utilities.codegen.JuliaCodeGen":{dump_jl:[203,2,1,""],routine:[203,2,1,""]},"sympy.utilities.codegen.OctaveCodeGen":{dump_m:[203,2,1,""],routine:[203,2,1,""]},"sympy.utilities.codegen.Routine":{result_variables:[203,2,1,""],variables:[203,2,1,""]},"sympy.utilities.codegen.RustCodeGen":{dump_rs:[203,2,1,""],get_prototype:[203,2,1,""],routine:[203,2,1,""]},"sympy.utilities.decorator":{"public":[204,3,1,""],conserve_mpmath_dps:[204,3,1,""],doctest_depends_on:[204,3,1,""],memoize_property:[204,3,1,""],no_attrs_in_subclass:[204,1,1,""],threaded:[204,3,1,""],threaded_factory:[204,3,1,""],xthreaded:[204,3,1,""]},"sympy.utilities.enumerative":{MultisetPartitionTraverser:[205,1,1,""],factoring_visitor:[205,3,1,""],list_visitor:[205,3,1,""],multiset_partitions_taocp:[205,3,1,""]},"sympy.utilities.enumerative.MultisetPartitionTraverser":{count_partitions:[205,2,1,""],enum_all:[205,2,1,""],enum_large:[205,2,1,""],enum_range:[205,2,1,""],enum_small:[205,2,1,""]},"sympy.utilities.iterables":{binary_partitions:[207,3,1,""],bracelets:[207,3,1,""],capture:[207,3,1,""],common_prefix:[207,3,1,""],common_suffix:[207,3,1,""],connected_components:[207,3,1,""],dict_merge:[207,3,1,""],filter_symbols:[207,3,1,""],flatten:[207,3,1,""],generate_bell:[207,3,1,""],generate_derangements:[207,3,1,""],generate_involutions:[207,3,1,""],generate_oriented_forest:[207,3,1,""],group:[207,3,1,""],has_dups:[207,3,1,""],has_variety:[207,3,1,""],ibin:[207,3,1,""],interactive_traversal:[207,3,1,""],iproduct:[207,3,1,""],is_palindromic:[207,3,1,""],kbins:[207,3,1,""],least_rotation:[207,3,1,""],minlex:[207,3,1,""],multiset:[207,3,1,""],multiset_combinations:[207,3,1,""],multiset_partitions:[207,3,1,""],multiset_permutations:[207,3,1,""],necklaces:[207,3,1,""],numbered_symbols:[207,3,1,""],ordered_partitions:[207,3,1,""],partitions:[207,3,1,""],permute_signs:[207,3,1,""],postfixes:[207,3,1,""],postorder_traversal:[207,3,1,""],prefixes:[207,3,1,""],reshape:[207,3,1,""],rotate_left:[207,3,1,""],rotate_right:[207,3,1,""],rotations:[207,3,1,""],roundrobin:[207,3,1,""],runs:[207,3,1,""],sift:[207,3,1,""],signed_permutations:[207,3,1,""],strongly_connected_components:[207,3,1,""],subsets:[207,3,1,""],take:[207,3,1,""],topological_sort:[207,3,1,""],unflatten:[207,3,1,""],uniq:[207,3,1,""],variations:[207,3,1,""]},"sympy.utilities.lambdify":{implemented_function:[208,3,1,""],lambdastr:[208,3,1,""],lambdify:[208,3,1,""]},"sympy.utilities.memoization":{assoc_recurrence_memo:[209,3,1,""],recurrence_memo:[209,3,1,""]},"sympy.utilities.misc":{debug:[210,3,1,""],debug_decorator:[210,3,1,""],filldedent:[210,3,1,""],find_executable:[210,3,1,""],func_name:[210,3,1,""],ordinal:[210,3,1,""],rawlines:[210,3,1,""],replace:[210,3,1,""],strlines:[210,3,1,""],translate:[210,3,1,""]},"sympy.utilities.pkgdata":{get_resource:[211,3,1,""]},"sympy.utilities.source":{get_class:[212,3,1,""],get_mod_func:[212,3,1,""],source:[212,3,1,""]},"sympy.utilities.timeutils":{timed:[213,3,1,""]},"sympy.vector":{curl:[216,3,1,""],divergence:[216,3,1,""],express:[216,3,1,""],gradient:[216,3,1,""],is_conservative:[216,3,1,""],is_solenoidal:[216,3,1,""],matrix_to_vector:[216,3,1,""],scalar_potential:[216,3,1,""],scalar_potential_difference:[216,3,1,""]},"sympy.vector.coordsysrect":{CoordSys3D:[214,1,1,""]},"sympy.vector.coordsysrect.CoordSys3D":{__init__:[214,2,1,""],create_new:[214,2,1,""],locate_new:[214,2,1,""],orient_new:[214,2,1,""],orient_new_axis:[214,2,1,""],orient_new_body:[214,2,1,""],orient_new_quaternion:[214,2,1,""],orient_new_space:[214,2,1,""],position_wrt:[214,2,1,""],rotation_matrix:[214,2,1,""],scalar_map:[214,2,1,""]},"sympy.vector.deloperator":{Del:[214,1,1,""]},"sympy.vector.deloperator.Del":{cross:[214,2,1,""],dot:[214,2,1,""],gradient:[214,2,1,""]},"sympy.vector.dyadic":{Dyadic:[214,1,1,""]},"sympy.vector.dyadic.Dyadic":{components:[214,2,1,""],cross:[214,2,1,""],dot:[214,2,1,""],to_matrix:[214,2,1,""]},"sympy.vector.implicitregion":{ImplicitRegion:[214,1,1,""]},"sympy.vector.implicitregion.ImplicitRegion":{multiplicity:[214,2,1,""],rational_parametrization:[214,2,1,""],regular_point:[214,2,1,""],singular_points:[214,2,1,""]},"sympy.vector.integrals":{ParametricIntegral:[214,1,1,""],vector_integrate:[216,3,1,""]},"sympy.vector.orienters":{AxisOrienter:[215,1,1,""],BodyOrienter:[215,1,1,""],Orienter:[215,1,1,""],QuaternionOrienter:[215,1,1,""],SpaceOrienter:[215,1,1,""]},"sympy.vector.orienters.AxisOrienter":{__init__:[215,2,1,""],rotation_matrix:[215,2,1,""]},"sympy.vector.orienters.BodyOrienter":{__init__:[215,2,1,""]},"sympy.vector.orienters.Orienter":{rotation_matrix:[215,2,1,""]},"sympy.vector.orienters.QuaternionOrienter":{__init__:[215,2,1,""]},"sympy.vector.orienters.SpaceOrienter":{__init__:[215,2,1,""]},"sympy.vector.parametricregion":{ParametricRegion:[214,1,1,""]},"sympy.vector.vector":{Vector:[214,1,1,""]},"sympy.vector.vector.Vector":{components:[214,2,1,""],cross:[214,2,1,""],dot:[214,2,1,""],magnitude:[214,2,1,""],normalize:[214,2,1,""],outer:[214,2,1,""],projection:[214,2,1,""],separate:[214,2,1,""],to_matrix:[214,2,1,""]},sympy:{abc:[6,0,0,"-"],algebras:[7,0,0,"-"],assumptions:[10,0,0,"-"],calculus:[13,0,0,"-"],categories:[14,0,0,"-"],diffgeom:[34,0,0,"-"],discrete:[35,0,0,"-"],functions:[39,0,0,"-"],holonomic:[52,0,0,"-"],integrals:[59,0,0,"-"],interactive:[60,0,0,"-"],liealgebras:[61,0,0,"-"],logic:[62,0,0,"-"],matrices:[67,0,0,"-"],parsing:[73,0,0,"-"],physics:[82,0,0,"-"],polys:[168,0,0,"-"],solvers:[189,0,0,"-"],stats:[191,0,0,"-"],tensor:[193,0,0,"-"],testing:[198,0,0,"-"],utilities:[206,0,0,"-"],vector:[221,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","function","Python function"],"4":["py","attribute","Python attribute"],"5":["py","data","Python data"],"6":["py","exception","Python exception"]},objtypes:{"0":"py:module","1":"py:class","2":"py:method","3":"py:function","4":"py:attribute","5":"py:data","6":"py:exception"},terms:{"000":[17,36,59,133,207],"0000":17,"000000000000":3,"00000000000000":[32,36,140,172,191],"00000000000000e":32,"0000000154172579002800188521596734869":40,"00001":133,"0001":[17,36],"00010":17,"000100000000000000":32,"00011001011":207,"00011010011":207,"0001111011":207,"0001953125":74,"00026102":59,"000507214304613640":72,"000507214304614":72,"00053":108,"00070025":54,"001":[17,36,108,207],"0010":17,"00100":32,"00100000000000000":108,"00101413072159615":108,"0011":[17,27],"00138541666666667":74,"00141":24,"00210803120913829":108,"0023152":59,"003":36,"0033":112,"00453":59,"004707066000264604":15,"0063339426292673":40,"00689500421922113448":158,"00708":94,"00756":94,"00906":59,"010":[17,207],"0100":17,"0101":[17,133],"010389":59,"010399":59,"011":[17,133,207],"0110":17,"0111":[17,133],"01197":71,"012":32,"012297":36,"012345":24,"01375162659678":54,"014895573969924817587":40,"016":181,"0174533":92,"0175000000000000":31,"0189":35,"0190":24,"02005":112,"020884341620842555705":37,"02671848900111377452242355235388489324562":40,"02841027019385211055596446229489549303819644288109756659334461284756482337867831":36,"02_03_40_42":35,"034":33,"035999037":81,"035999037000":81,"04166666666667e":74,"045":167,"04516378011749278484458888919":40,"0472":59,"050584":59,"052":189,"05426074":72,"05433146":72,"05440211":72,"054525080242173562897":40,"05457162000000e":121,"05457162d":15,"05555555":158,"0555556377366884":81,"0555558020932949":81,"0555562951740285":81,"05892":94,"0603":94,"0652795784357498247001125598":40,"06e":108,"08333333333333e":74,"08346052231061726610939702133":40,"084489":59,"087":167,"0874989834394464":229,"0904":68,"0909":207,"091999668350375232456":36,"0935077":13,"095":40,"0973":59,"099419756723640344491":40,"099609":32,"0998334166468":229,"0_0":55,"0_1":55,"0d0":[15,172],"0o121":71,"0o171":71,"0th":[13,33,40],"0x10e8900d0":38,"0x12":60,"0xfa":71,"100":[3,15,17,21,31,32,33,36,40,48,55,63,68,71,159,163,169,171,172,179,189,190,207,229],"1000":[3,15,17,33,36,65,71,106,144,145,146,158,171,172,181],"10000":[15,36,71,72,74,189],"100000":[36,71],"1000000":[32,71],"10000000":[36,168],"1000000000":36,"100000000000000":36,"100000000000000000000":32,"100000000000000000000000000000":36,"100000000000000005551115123126":36,"10000000001":71,"1000001":37,"1001":17,"1002":191,"100500":42,"1007":33,"1009":71,"101":[17,71,133,207],"1010":17,"1010203040506070809":71,"1010381":71,"1011":17,"1012":81,"10120":235,"1016":24,"102":[23,68],"1024":[23,172,191],"10279":235,"103":[1,23],"1031":33,"103993":71,"104":36,"10431":71,"104348":71,"104755":168,"1048":0,"105":[40,71,168,185],"10517083333333":54,"106":71,"107":167,"108":[30,71,75],"108208000e3":142,"108270":42,"10877":71,"109":[71,167,185],"1090":[13,168],"1092":168,"10kn":74,"10n":72,"10pt":[60,153,172],"10sin":73,"110":[17,187,189,202,207],"1100":17,"1101":17,"11010011000":207,"1101111000":207,"1103":36,"110896":71,"111":[17,35,42,71,207],"1110":17,"1111":17,"1111339":71,"1118":71,"112":[166,169],"1121416371":15,"113":[36,71,185],"11337":59,"1137796":185,"113820":71,"114":[23,71],"1159":71,"11590":71,"115975":37,"116":[158,167],"1169":181,"117":[23,40],"1177":181,"1178":71,"1179":167,"11895":59,"1193":33,"1197":167,"11_0_0_intro":191,"11_2_6_stationary_and_limiting_distribut":191,"11_4_0_brownian_motion_wiener_process":191,"120":[31,32,37,38,54,71,74,75,169,171,172,174,187,226,230],"1200":158,"12000":74,"121":[32,37,71,149,189],"1211":35,"1215":167,"122":[33,35,40],"1224":[37,71],"1225":68,"12288":223,"122921448543883967430908091422761898618349713604256384403202282756086473494959648313841":71,"123":[32,37,42,136,149,199,207,214,215],"1231":167,"1231026625769":71,"1234":[71,185],"12345":[15,36],"123456":[15,32,71],"123456789":32,"123456789012345646":15,"123456789012345649":15,"12345678901234567890":3,"12345678910111213141516":71,"123_456":32,"124":[167,229],"124a":188,"125":[32,36,59,71,178,185],"12500":32,"1250000":110,"12500000000000000000":32,"125000000000000000000000000000":36,"125000416028342":81,"125002080189006":81,"125e":74,"126":[68,71,171],"127":[33,71],"127750":205,"128":[23,37,40,42,71,167,172],"1283":35,"1294585930293":185,"1296":26,"1296959":40,"1299709":71,"12e":32,"12kn":75,"12mm":14,"130":42,"130198866629986772369127970337":36,"131":[40,149],"131072":168,"132":[30,37,149],"1336":36,"134":68,"135":[0,71],"1350":74,"136":[32,68],"137":[37,68,81],"1373651":71,"13750":74,"138":71,"1381":33,"1385":37,"139":166,"13y":185,"140":71,"1401":168,"1405":94,"1407633717262338957430697921446883":71,"141":81,"14112001":229,"1415":36,"1415926535":36,"14159265358979":[36,40,189],"141592653589793":32,"141592653589793238462643383279502884197169399375105820974944592307816406286208":36,"141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068":229,"14159265358979323846264338328":36,"141592653589793238462643d0":172,"1415926535897932d0":172,"14159265358979d0":15,"141592654":32,"1416":158,"142":[0,167],"14219":35,"1428":158,"14285278320312500000":3,"142857":3,"142857142857143":3,"143":[3,118,158],"1430":37,"14358881":54,"144":[37,59,74,158],"147":46,"1482":71,"149":[37,71],"149896229":[110,113],"150":[68,185],"151":21,"15141":235,"1515151515151":112,"15154262241479":71,"152":71,"1521":37,"153":171,"15423094826093":71,"15494982830181068512":[2,40],"15502":35,"1551":68,"1553":33,"15555":35,"15605338197184":40,"15625":146,"157":[59,71,75,167],"1570":185,"15707":59,"1577":33,"158":[68,75],"160":[3,167],"1600":75,"160249952256379":169,"161":33,"16109":71,"163":[0,184],"1633833":207,"16437732":0,"165":[168,191,207],"1666666":158,"166666666666667":169,"16667":59,"167":68,"16843009":71,"1684e":189,"169":168,"1692":68,"16sn6uv":0,"170":[45,191],"172870711":40,"1729":185,"175":[42,68,166,167],"176":187,"1764":71,"1768":37,"17737":71,"17805383034794561964694160130":40,"1786":71,"1787":71,"179143454621291692285822705344":40,"180":[48,157,167],"1800":[7,33],"18014398509481984":[32,184],"1816":59,"1827":214,"1829":71,"184":[13,187],"18525034196069722536":40,"187":[144,167],"1870":35,"1889":59,"18891601900395472":15,"189":166,"18971":71,"1901":33,"19016":59,"190347":167,"190413":167,"19093197":40,"191":[16,190],"1914":68,"192":61,"1920":33,"1921":71,"19287309935246":189,"1929":33,"193":68,"1931127624":0,"19351":35,"19404":35,"1944":160,"195":37,"1952":144,"1953":40,"19548":235,"1955":105,"1957":158,"1958":[71,158],"1959":158,"1962":71,"1963":187,"1965":[2,40,63],"1967":[33,167],"1968":80,"1969":[2,33,40,58,167,182],"197":37,"1970":[14,68],"1971":[167,187],"1972":71,"1973":[16,33,155],"1974":174,"1977":144,"1978":[17,23,144,167],"1979":[49,144],"198":68,"1980":[71,207],"1981":[31,167],"1982":[59,158],"1983":[105,205],"1985":[59,87,105,149,214],"1988":[13,118,136,167],"1989":[2,167,189],"199":16,"1990":[24,58,182,214],"1991":[16,167],"1992":[71,167,189],"1993":167,"1994":[0,24,166,167,168],"1994a":0,"1995":[0,37,167,184,189],"1996":[167,182,189,214],"1997":[31,58,71,167,182],"1998":[167,185],"1999":[24,68,69,167,171],"1_0":55,"1_1":55,"1cm":14,"1d0":15,"1e11":71,"1e16":32,"1e20":32,"1e23":[32,71],"1e3":71,"1e5":15,"1gaurangtandon":0,"1st":[13,24,71,187,188,210,230],"1st_exact":2,"1st_exact_integr":187,"1st_homogeneous_coeff":187,"1st_homogeneous_coeff_subs_dep_div_indep_integr":187,"1st_homogeneous_coeff_subs_indep_div_dep_integr":187,"1st_linear_constant_coeff_homogen":188,"1st_linear_constant_coeff_integr":188,"1st_linear_integr":187,"1us":72,"1x1":[70,191],"1x3":68,"200":[33,63,68,71,74,214],"2000":[15,59,71,167],"20000":71,"20000000":[36,168],"20000000000000":3,"2000000000000002":3,"2000061035":3,"2001":[24,71,167],"2002":[35,160,167,169],"2003":[15,158,167,172,185],"2004":[167,185],"2005":[16,22,59,71,168],"2006":[0,33,181],"2007":[0,71,105,205],"20071116100808":33,"2008":[0,68,158,167,168,172],"2009":[0,71,158],"2010":[0,26,188,207],"2011":[0,17,24,58,71,155,181],"2012":[0,32],"2013":[0,34,44,63,236],"2014":[0,190,191],"2015":[0,59,190],"2016":0,"2017":[0,1,158],"2018":0,"2019":0,"2020":[0,42],"20205690315959":40,"2021":[0,167],"202916782076162456022877024859":71,"203":[21,37],"2048":[33,71,172],"205":[37,58,182],"2057":35,"206":[164,168],"207":185,"2079":168,"208":[36,168],"20833333333333e":74,"208341":71,"2084":105,"2093":59,"2097152":168,"20conic":214,"20e9":75,"20kn":[74,75],"20on":214,"20point":214,"20th":160,"210":[36,71,185],"211":[58,71,168,182,187],"2111":73,"2112166839943":71,"2112723729365330143":40,"21147":37,"212":[33,59,167],"213":68,"21306132":15,"214":144,"21477639576571":71,"216":[68,166],"2161":185,"217":[59,167],"218332":207,"21875":59,"21938393439552":40,"219383934395520":40,"220":[71,168],"2204":166,"2209":81,"221":187,"2211":0,"22140257085069":54,"22169":59,"222":35,"22252":59,"22285":59,"223":167,"224":[7,142,167],"22468879468420441":110,"2247":59,"225":[37,71,167],"22553956329232":54,"225607735_dixon_result":167,"22564264":191,"226":23,"227":23,"22740742820168557599192443603787379946077222541710":40,"22827":37,"229":71,"230":[168,189],"2307":68,"231":[71,149],"233":[71,167,187],"2331v2":207,"23364418":191,"234":71,"234137346_on_a_multivariate_log":191,"2345":185,"23456789123456789":32,"23456789123457":32,"235":37,"235625382192159":112,"236":71,"237":167,"2376":1,"238":71,"240":[167,174,216],"243":[23,40,189],"2434931":71,"247":[167,189],"2478":181,"248":71,"2489":71,"249":167,"250":[3,71,185],"2500000":110,"25000000000000000000":3,"2507191691":71,"2514261_algebraic_and_geometric_reasoning_using_dixon_result":167,"25146":146,"252":71,"253":24,"2531":24,"25314":24,"253140":24,"255":71,"256":[15,23,71,168,172],"25645121643901801":71,"257":[2,71,189],"2580":71,"25882":59,"259":68,"25e":75,"26390":36,"264":[68,189],"265":168,"26629073187415":31,"268":37,"2690882":68,"2700":[7,74],"2702765":37,"2709077133180915240135586837960864768806330782747":71,"2715":168,"27261":68,"274":37,"27433":59,"2753":33,"27720":37,"27844411169911":189,"27852":59,"27879516692116952268509756941098324140300059345163":40,"2788":71,"279":168,"2794155":229,"27_number":71,"27_theorem":223,"27s_constant":32,"27s_law":181,"27s_method":15,"27s_sampling_formula":191,"27s_strongly_connected_components_algorithm":207,"27s_theorem":190,"27s_totient_funct":71,"27s_z":191,"280":37,"2809":108,"281":24,"28333333333333":31,"284":[24,71],"285":[71,189],"287":71,"288037795340032417959588909060233922890":[2,40],"288716":205,"289":189,"28902548222223624241":36,"2899":59,"28and_hyperbol":168,"28continu":191,"28cryptosystem":33,"28group_theori":23,"28mathemat":[24,32,180],"28mathematical_const":32,"28number":32,"28number_theori":21,"28order":38,"28permutation_group_theori":23,"28physic":128,"28set_theori":180,"28x":71,"290":[189,216],"290764986058437":40,"291":32,"29128599706266":36,"2912859970626635404072825905956005414986193682745":36,"29136443417283":40,"2916666666667":75,"292":71,"2943":59,"2948":190,"29541":59,"296":189,"297":[167,168],"299792458":[110,113,146],"29999999999999998890":32,"29_method":168,"2achaljain":0,"2c_and_li":71,"2c_x_":71,"2d_1":191,"2f_1":166,"2f_log_x":71,"2fbfb0055738":33,"2j_2":[37,174],"2j_3":158,"2l_1":158,"2l_2":158,"2l_3":158,"2nd":[13,24,33,40,71,106,187,192,207],"2nd_hypergeometr":187,"2nd_hypergeometric_integr":187,"2nd_nonlinear_autonomous_conserv":187,"2nd_nonlinear_autonomous_conserved_integr":187,"2toru":0,"2x1":108,"2x2":[23,65,70,108,187],"2x_":185,"2xy":[166,233],"300":[63,68,71,154,159,169,222],"3000":48,"300000":146,"30000000000000000000":32,"30030":33,"301":[182,185],"30247":37,"303":0,"304":[167,168],"305":31,"30589":68,"306":33,"30625":68,"307":32,"308":182,"3096":191,"31018228":0,"31043527":0,"311":[32,71],"31131631":0,"31184621":0,"312":[33,149,189,214,215],"3125":[48,191],"31250":74,"313":152,"31413":59,"31417":36,"315":189,"317843553417859":112,"3192":71,"3193":59,"320":32,"321":46,"322248":31,"322255":31,"323":[40,71],"3233":33,"3239":71,"324":[71,167],"3243f6a8885a30":71,"3251":68,"32555634906645":40,"3267000013":71,"327":[35,187],"3275":168,"32767":71,"32768":172,"329":187,"330":167,"33062":71,"331":54,"33102":71,"33215":71,"333":[35,71],"3333":59,"33333":[36,59],"33333333333333":75,"333333333333333":[36,163,184],"333333333333333314830":32,"333333333333333333333":32,"33333333333333333333333333333":163,"33387803":0,"335":32,"3358":59,"336":7,"33795":59,"33810762":0,"33998":59,"3400000000000":3,"341":45,"34105":37,"34211":191,"342923500":65,"343415678363698242195300815958":40,"345":24,"34559056":0,"3456":185,"346":36,"34635637913639":36,"34665576869e":36,"34747534407696":38,"34785":59,"348":68,"348645229818821":112,"34985849706254":54,"350":[31,89],"3506":59,"35144226":0,"353":[35,68],"355":[36,71,167],"356":[59,189],"357947691":54,"35958639":0,"3600":[7,37],"3602879701896397":32,"362":59,"3627":81,"363":[42,71,167],"364":42,"36414270":0,"3674160":23,"369":33,"37049710":0,"376":167,"377":71,"379":[71,168],"37907135":0,"379238":71,"37933":191,"381":71,"38177329":208,"38177329068":208,"3827":71,"384":35,"38530589":0,"387":35,"391":190,"39158356":0,"39267e":189,"3927":59,"393":185,"39439":59,"396":[36,92],"397":167,"39764993382373624267":37,"399":184,"39923708":0,"3aintegr":59,"3aissu":59,"3aopen":59,"3f_1":166,"3j_2":[37,174],"3kn":74,"3rd":[13,24,38,71,106,168,189,190,192,207],"3rdslasher":0,"3x1":68,"3x3":[47,68,218,226],"3xy":185,"3xyz":73,"400":[74,159,168],"4000":[74,75],"4002723175":191,"404":185,"409":191,"4096":37,"4096000":16,"41002011":191,"41152":112,"41211849":229,"412214747707527":137,"41230258795639848808323405461146104203453483447240":40,"413":33,"4140":37,"4142135623731":[172,189],"414645":168,"415":35,"41577":59,"41624341514535":38,"417":[59,184],"41710346":0,"420":[71,185],"4200":71,"423":68,"42525":37,"42658":59,"429":[37,172],"432":45,"43466557686937456435688527675040625802564660517371780402481729089536555417949051890403879840079255169295922593080322634775209689623239873322471161642996440906533187938298969649928516003704476137795166849228875":36,"43586954":0,"43608":59,"43683678":0,"4398":0,"4410317":71,"4418":81,"44224957030741":169,"4423":71,"4428829381583662470158809900606936986146216893757":36,"44288293815837":36,"4429":36,"444":35,"445":[2,167],"44542":185,"44626032":15,"44721":59,"448":7,"44929042":0,"4493":59,"450":68,"45022599":0,"45136923488338":40,"45279":191,"4536":71,"456":[2,32,167],"4579":169,"45896":59,"4596":32,"45960141378007":54,"463":[16,105],"46354827":0,"4641":54,"4641991":71,"46792545969349058":189,"46847915":0,"4701":191,"4701sum07":191,"472":191,"473":24,"47450":71,"4753701529":71,"478":167,"47832466":0,"479001599":71,"47s":71,"4856615":207,"4857018":207,"4862":37,"4869863":71,"488253406075340754500223503357":40,"490":[16,24],"4915":32,"49182424008069":54,"49299":185,"49315059":208,"49801566811835604271":[2,40],"4ac":185,"4th":[37,54,68,71,106],"4x1":[111,191],"4x4":[47,70,111,191],"4xy":[154,222],"500":[16,36,89],"5000":[36,74],"50000":71,"50000000000000":[32,36],"500000000000000":79,"50000000000000000000000000000":36,"500006656595360":81,"5020":2,"50232379629182":40,"504":[36,167],"5040":[37,54,168,169,226],"504067061906928":36,"50406706190692837199":36,"505":167,"50891":0,"50923695405127":40,"50u":72,"51041666666667e":74,"5109":59,"511":37,"5112118495813":142,"512":[23,40],"51290447":0,"514":[16,22,167],"5140":201,"515":40,"5173168":40,"5206120":0,"5236":59,"525":48,"5253":59,"5269":37,"52818775009509558395695966887":71,"53087":59,"530e":108,"5394769":71,"5404319552844595":32,"542":23,"544":158,"5459":71,"54911392":0,"55203744279187":40,"55271367880050e":13,"555":35,"55556":59,"558":187,"55998576005696":108,"5648024145755525987042919132":40,"567":38,"5706":32,"5718":[13,71],"5728":32,"574":71,"57721566490153286060651209008240243104215933593992":36,"577215664901533":36,"5772157":32,"577377951366403":112,"5777":71,"579":37,"58602":191,"5880":37,"588469032184":189,"590":167,"5915587277":71,"5917":59,"5937424601":54,"59375e":74,"5992":1,"5b7c3e8ee5b40332abdb206c":235,"5c52":71,"5th":[106,166],"5x5":33,"6000":32,"6004799503160655":184,"60090908":191,"600e":32,"60123853010113e":36,"609":37,"609344":146,"60e2":32,"60n":33,"61051":54,"6116978":210,"6125":68,"617":71,"618":73,"61801875":0,"61825902074169104140626429133247528291577794512415":40,"62349":59,"625":[48,223],"625000":110,"625146415202697":40,"62963085040767e":146,"6349839002":179,"635":36,"635564016364870":38,"636":33,"639985":[71,166],"643":[35,71],"6435":37,"643501108793284":38,"6449340668":179,"64493406684823":36,"6460":71,"64613129282185e":36,"64705":191,"648":191,"64872063859684":54,"65092319930185633889":40,"651354770181179":112,"65215":59,"6545":168,"65504":15,"65536":[168,171,172],"65537":[71,171],"6569866":229,"657":181,"65714157":191,"658921776708929":112,"659097795948":142,"659936":40,"660539060e":146,"662":63,"66317":71,"6634255":168,"6659":190,"666":35,"666666666666667":[74,75],"66666666666667":75,"668":7,"6707":68,"6711f12":191,"6720":168,"676":185,"67721":59,"67894":15,"68052998":0,"6832579186":191,"686":205,"6868680200532414":2,"6881721793":179,"689":59,"6931396564":179,"6931471805599453094172321215":179,"6931471806":179,"693147255559946":36,"69512633":0,"69629":168,"6963328":191,"6984":184,"6988699669998001":71,"699":13,"6th":[17,71],"6x6":33,"700000000000000":191,"701":142,"7048138294":179,"706":[13,68],"7060005655815754299976961394452809":71,"7063":59,"707106781186548":38,"70711":59,"7083333333333":75,"709563092":0,"71109":59,"712":59,"71318":168,"7143":191,"71440865":191,"715":[118,158,172],"71827974413517":54,"718281828":32,"7182818284":36,"718281828459045235360287d0":172,"7182818284590452d0":172,"71828182845905":54,"7182818285":179,"718281835":71,"720":[174,187,207],"721":167,"72463":59,"729":166,"730":59,"730061685774":189,"73071763923152794095062":40,"73205080756887729352744634151":168,"73205080756888":168,"73908513321516064165531208767387340401341175890076":189,"739085133215161":189,"74126166983329d":15,"744":164,"74720545502474":40,"750":37,"7506":191,"7523":190,"7535":0,"754":32,"756":71,"7568025":229,"7582":69,"760939574180767":40,"761":37,"76151866":191,"7635":40,"7649":32,"7655283165378005676":40,"766":15,"767":35,"771561":54,"7717":1,"7746":59,"775":0,"7751":59,"77617143":191,"777":[26,35],"778":26,"779":26,"7845":59,"7854":59,"789":[32,71],"797":33,"799333555511111":71,"7_f64":172,"7o38":158,"805":168,"809":59,"809709509409109":71,"8100":191,"816477005968898":112,"818":144,"81879421395609":40,"82211796209193":54,"823":33,"82842712474619":229,"82842712475":233,"831":71,"83333":59,"83711":37,"8375":59,"8392867552141611326":32,"84092844":72,"84119981":72,"84147098":[72,208,229],"8414709848078965":208,"846749014511809332450147":37,"850908514477849":112,"861136":168,"86113631159405258":168,"86114":59,"86400":146,"86458333333333e":74,"865474033102":15,"865474033111":15,"865477135298":15,"86602":59,"867263818209":15,"869604401089358618834491d0":172,"87174":59,"8724366472624298171":40,"877":37,"884":185,"8857165":0,"88679245283019":108,"888":35,"888888877777777":71,"88889":59,"8a975c1405bd35c65993abf5a4edb667c1db":71,"8am":33,"8kn":75,"8xy":166,"900":7,"90097":59,"9071":71,"90929743":[208,229],"909449841483":40,"909672693737":15,"912285":[71,166],"914148152112161":71,"91596559":32,"9179":71,"920":185,"9215":166,"921_":32,"92242131492155809316615998938":40,"926093295503462":112,"92753330865999":108,"932":181,"9330":37,"9369318":185,"93gauss_quadratur":59,"93hadamard_transform":35,"93jacobi_quadratur":59,"93johnson":207,"93lagrange_equ":13,"93laguerre_quadratur":59,"93lobatto_rul":59,"93mascheroni_const":32,"93rabin_primality_test":71,"93schmidt_process":68,"93simon_distribut":191,"93trotter_algorithm":207,"93tukey_fft_algorithm":35,"9405":166,"9424":71,"945":[164,169],"9487171":54,"951":36,"954":71,"956":36,"9562288417661":36,"95678796130331164628399634646042209010610577945815":36,"95892427":229,"9603":166,"96593":59,"967":59,"9696":190,"9712":0,"971843958291041":112,"9780470316887":191,"97851":59,"9801":36,"9804659461513846513":71,"981":59,"98101184":15,"982":105,"983":59,"983697455232980674869851942390639915940":37,"9855e":59,"986":185,"987":71,"989":71,"9891e30":142,"98935825":229,"9900":37,"99009901":71,"9904":59,"991":71,"991052601328069":40,"9927":59,"995322265018952734162069256367":40,"99862803482534211706798214808651328230664709384460955058223172535940812848111745":36,"999":36,"9999":199,"999999984582742099719981147840":40,"99999999999999991611392":32,"99999999999999999999":32,"\u00f3scar":0,"\u00f8yvind":0,"\u010dert\u00edk":[0,1],"\u0142ukasz":0,"\u015bwirski":0,"\u0161":1,"\u0161uppa":0,"\u03b1":[2,158,171],"\u03b2":[15,158],"\u03b3":[158,230,238],"\u03b3\u2081":15,"\u03b3\u2082":15,"\u03b4":111,"\u03b8":[60,111,190],"\u03bb":235,"\u03bd":233,"\u03c0":[36,111,172,190,230,233,238,239],"\u03c7":111,"\u03c8":111,"\u1d62":172,"\u1d63":172,"\u1d64":172,"\u1d65":172,"\u1d66":172,"\u1d67":172,"\u1d68":172,"\u1d69":172,"\u1d6a":172,"\u2070":172,"\u2071":172,"\u2074":172,"\u2075":172,"\u2076":172,"\u2077":172,"\u2078":172,"\u2079":172,"\u207f":172,"\u2080":172,"\u2081":172,"\u2082":172,"\u2083":172,"\u2084":172,"\u2085":172,"\u2086":172,"\u2087":172,"\u2088":172,"\u2089":172,"\u2090":172,"\u2091":172,"\u2092":172,"\u2093":172,"\u2095":172,"\u2096":172,"\u2097":172,"\u2098":172,"\u2099":172,"\u209a":172,"\u209b":172,"\u209c":172,"\u2102":[172,239],"\u2115":172,"\u2115\u2080":172,"\u211a":[160,172],"\u211d":[172,239],"\u2124":[171,172,190,239],"\u212f":[15,111,158,172,230,233,235,238,239],"\u2148":[111,158,171,172,190,239],"\u2153":172,"\u2154":172,"\u2155":172,"\u2156":172,"\u2157":172,"\u2158":172,"\u2159":172,"\u215a":172,"\u215b":172,"\u215c":172,"\u215d":172,"\u215e":172,"\u5f6d\u4e8e\u658c":0,"\ud835\udc45":223,"abstract":[1,13,14,21,32,34,40,45,50,57,65,92,123,125,134,137,138,139,160,165,190,191,196,203,222],"ant\u00f4nio":0,"b\u00fchler":0,"bj\u00f6rn":0,"bl\u00e5b\u00e4ck":0,"bola\u00f1o":0,"boolean":[8,9,10,11,12,13,15,32,38,40,42,46,47,48,49,57,60,63,68,71,74,124,149,151,153,159,164,166,168,169,172,184,187,189,191,207,216,235],"br\u00fcnn":0,"break":[2,14,15,24,32,33,71,156,169,172,180,207],"bria\u0144ski":0,"c\u00e9dric":0,"case":[0,2,3,13,14,15,16,18,20,23,24,28,31,32,33,34,36,37,38,40,44,47,48,49,50,54,57,58,59,62,63,65,68,71,72,73,75,84,87,92,94,95,102,104,106,112,123,129,134,136,138,139,144,145,152,156,157,159,160,161,163,164,166,168,169,171,172,177,179,180,181,182,184,185,187,188,189,191,192,194,196,201,203,204,207,208,209,210,211,214,216,217,226,230,233,234,235,237,238,239],"catch":[32,187,201,225,235],"char":21,"class":[3,4,7,8,9,10,11,13,16,17,21,22,23,24,25,26,27,28,32,36,37,38,39,40,41,42,43,44,45,46,47,48,54,55,57,58,59,60,61,62,65,67,73,74,77,79,82,85,87,88,89,91,92,95,100,104,106,107,108,110,113,114,116,117,118,119,120,121,122,123,124,125,127,128,129,130,132,133,134,135,136,137,138,139,141,144,145,146,147,148,152,153,155,160,163,164,165,166,168,169,170,171,173,174,175,178,179,180,182,187,188,189,190,191,193,195,196,197,201,202,203,204,205,207,208,212,217,218,220,221,223,227,230,231,234,238],"const":164,"crist\u00f3v\u00e3o":0,"d\u00edaz":0,"default":[2,3,6,7,8,9,10,13,14,15,16,17,22,23,32,33,34,35,36,37,38,40,41,42,43,45,46,47,48,49,51,54,59,60,62,63,65,68,69,71,72,73,74,75,81,84,85,86,87,88,92,103,129,131,134,136,137,139,145,148,149,151,152,153,158,159,161,162,163,164,166,168,169,171,172,173,174,175,179,180,181,184,185,187,188,189,190,191,195,196,201,202,203,205,207,208,210,214,229,230,233,235,236,237,238],"ebersp\u00e4ch":0,"enum":[57,206],"export":[6,172],"final":[2,14,24,31,32,40,58,59,62,68,71,75,87,94,97,99,100,101,104,119,131,134,136,137,139,141,142,144,149,156,157,160,163,166,174,180,181,182,184,185,187,189,190,196,208,232,233,234],"float":[13,15,23,38,40,47,49,57,59,60,63,68,71,73,79,106,112,153,159,163,164,172,184,189,191,200,201,208,229,231],"fr\u00e9d\u00e9ric":0,"function":[4,8,9,10,12,13,14,16,23,24,27,28,30,33,34,35,36,37,41,42,43,44,49,52,53,56,57,59,60,61,63,65,67,69,70,72,74,76,77,79,80,81,82,86,89,90,91,92,95,96,100,101,102,106,111,112,113,114,118,123,124,125,128,133,134,135,136,137,138,139,141,142,148,149,152,153,155,157,158,160,165,166,167,169,170,173,174,175,176,177,178,179,180,181,183,186,189,190,191,193,194,195,196,199,201,202,203,204,205,207,208,210,211,212,213,214,218,219,221,222,223,225,226,229,230,231,232,233,234,235,236,239],"goto":15,"gr\u00f6bner":165,"gr\u0148o":0,"guar\u00edn":0,"hron\u010dok":0,"import":[3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,54,55,56,58,59,60,61,62,63,64,65,66,68,69,70,71,72,73,74,75,79,80,81,83,84,85,86,87,89,91,92,94,95,97,98,99,101,102,103,104,106,107,108,110,111,112,113,114,115,116,118,119,120,121,122,123,124,125,127,128,129,131,133,134,136,137,138,139,140,141,142,144,146,148,149,150,151,152,153,154,156,157,158,159,160,161,162,163,164,166,168,169,170,171,172,173,174,175,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,194,195,196,197,199,200,201,202,203,204,205,207,208,210,211,212,214,215,216,217,218,219,220,223,225,226,229,230,231,233,234,235,236,237,238,239],"int":[2,3,7,13,15,24,32,33,34,37,38,40,41,47,48,58,59,60,62,63,68,71,73,119,123,124,133,149,151,152,153,158,159,163,164,168,169,172,174,175,177,187,188,191,202,207,231,233,234,237,238],"j\u00f8rgen":0,"jo\u00e3o":0,"kr\u00e4mer":0,"l\u00e9one":0,"l\u00e9vy":144,"ljubi\u0161a":0,"long":[1,2,24,31,32,33,35,45,58,59,60,62,68,71,74,75,94,153,168,169,172,181,182,189,191,202,210,216,231,234],"m\u00fcller":0,"men\u00e9ndez":0,"micha\u0142":0,"mo\u0107i\u0107":0,"n\u00e1jera":0,"n\u00e4slund":0,"new":[0,2,4,9,10,14,15,16,23,24,31,32,33,34,40,45,47,48,58,60,63,68,71,74,92,97,99,104,105,106,108,129,135,136,139,141,144,145,147,149,152,157,159,160,161,162,163,164,166,167,168,172,179,182,184,185,187,189,190,191,192,201,202,208,214,215,217,221,229,231,234,235,236],"nicol\u00e1":0,"null":[3,32,68,162],"ond\u0159ej":0,"p\u00e9rez":0,"pal\u00e1ncz":167,"peri\u0107":0,"poincar\u00e9":111,"povi\u0161":0,"public":[0,1,2,15,32,33,54,163,164,166,167,170,185,191,204,214,240],"r\u00e9my":0,"radwa\u0144ski":0,"result\u2085\u2081\u2084\u2082\u2083\u2084\u2081\u2086\u2088\u2081\u2083\u2089\u2087\u2087\u2081\u2089\u2084\u2082\u2088":15,"return":[2,3,7,8,9,10,11,13,14,15,16,17,18,20,21,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,54,55,57,58,59,61,62,63,64,65,66,68,69,70,71,73,74,79,80,81,83,86,87,88,89,91,92,94,95,98,101,103,104,106,108,110,111,112,113,115,116,120,123,124,125,128,129,131,133,134,135,136,137,138,139,140,141,145,146,147,148,149,150,151,152,154,157,158,159,160,161,162,163,164,166,168,169,170,171,172,173,174,175,177,178,179,180,181,184,185,186,187,188,189,191,192,194,195,196,199,200,201,202,203,205,207,208,210,211,212,214,216,218,220,226,229,230,234,235,237,238,239],"rodr\u00edguez":0,"rou\u010dka":1,"schl\u00f6mer":0,"short":[2,3,6,16,22,24,28,32,33,34,35,38,66,71,84,125,144,148,157,160,167,192,201,210,234,237],"st\u00f6cher":0,"sta\u0144czak":0,"static":[7,15,23,24,26,38,45,46,47,48,65,75,94,100,141,172,178,180,191,202],"super":[15,40,164,172,214,215],"switch":[23,24,30,71,166,168],"th\u00f6rne":0,"throw":[68,73,92,185,190],"tokar\u010d\u00edk":0,"tom\u00e1\u0161":0,"transient":191,"true":[2,3,7,8,9,10,11,12,13,14,15,20,21,22,23,24,25,26,28,29,30,31,32,33,34,35,36,37,38,39,40,42,43,44,45,46,47,48,49,51,53,54,58,59,60,62,63,64,65,66,68,69,71,73,74,75,79,80,81,83,84,86,87,88,92,94,95,106,110,111,120,123,124,131,133,134,137,138,139,142,148,149,150,151,153,154,157,158,159,160,161,163,164,166,168,169,170,171,172,173,174,175,179,180,181,182,184,185,186,187,188,189,190,191,192,194,195,196,200,201,202,203,204,207,208,210,214,216,217,218,219,220,223,225,229,230,231,233,234,235,237,238,239],"try":[2,3,24,31,32,36,40,42,47,58,59,62,64,68,70,71,129,131,138,139,159,163,172,177,179,180,181,182,184,185,187,189,208,210,229,231,234,235,236,238],"var":[3,13,15,31,36,37,55,59,68,79,149,159,171,172,184,185,208,239],"vasovi\u0107":0,"void":[0,203],"while":[2,3,14,15,16,23,24,25,28,31,32,33,34,36,37,42,46,48,56,62,63,68,71,72,73,74,85,88,92,95,103,123,144,149,154,160,170,172,187,190,201,203,205,207,222,229,234,235],ABS:172,AMS:172,AND:[0,35,62,221],ARE:[0,33],Abs:[12,15,31,39,40,63,172,186,190,191],Adding:[32,169,172,182,185,190,196],And:[2,3,9,23,24,31,32,33,40,58,62,63,68,70,111,157,159,161,168,169,172,180,184,185,190,191,208,218,238],Are:[45,48,49,168],Axes:159,BUT:0,Being:[28,42,48,163],Bos:[0,172],But:[2,3,13,31,32,40,46,56,63,68,69,71,127,128,139,144,149,160,161,166,169,179,181,182,184,185,187,189,190,195,205,207,208,216,230,231,233,234,238],CAS:[2,5],COS:[92,106],Cos:[15,38,172],DEs:57,Doing:[28,172,182],Dvs:185,Eds:167,FOR:0,F_s:182,For:[2,3,5,9,10,11,12,13,14,15,16,17,20,21,22,23,24,25,28,31,32,33,34,35,36,37,38,40,44,46,47,50,53,55,56,57,58,61,62,63,68,69,71,72,73,74,75,81,86,87,88,92,95,100,101,102,103,104,106,108,122,123,128,132,134,136,137,138,139,141,144,145,149,152,153,154,156,157,159,160,161,163,164,166,168,169,171,172,173,174,175,178,179,180,181,182,184,185,187,189,190,191,192,194,195,196,201,202,203,205,207,208,211,212,214,215,218,220,222,223,225,229,230,231,234,235,236,238,239],Going:38,HAS:23,HPS:33,Has:[23,205,207],ITE:[38,62],Ige:0,Its:[38,48,106,137,166,172],LHS:[187,219],Las:23,MKS:[141,144],NOT:[0,119,123,138,141,147,199,202],Not:[32,37,39,62,79,172,190,191,207,233,239],ODE:[2,4,55,57,87,91,100,106,188,190,239],ODEs:57,ONE:172,One:[3,13,14,15,22,24,31,37,38,39,40,51,54,56,58,59,62,68,71,74,75,92,104,106,115,144,164,166,167,168,171,174,180,184,189,190,191,192,196,208,220,225,229,230,231,234,235,238],Ore:55,PBS:111,POS:62,PRS:[164,166,167,168],RGS:21,RHS:[92,187,219],RVs:191,Res:15,SUCH:0,Such:[2,32,48,95,160,161,173,181,182,184,229,234],Syed:0,Sys:219,THE:0,That:[1,2,3,32,33,38,68,100,136,141,147,156,157,160,161,163,164,166,179,187,189,191,202,203,207,208,229,231,234,238],The:[0,1,2,3,4,5,6,7,9,10,11,13,14,15,17,19,20,21,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,40,41,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57,59,60,61,62,63,64,65,66,68,69,70,71,72,73,74,75,77,79,80,81,82,84,85,86,87,88,89,91,92,94,95,96,97,98,99,100,101,102,104,106,107,108,110,111,115,116,117,118,119,120,122,123,124,125,127,128,129,131,132,133,134,135,136,137,138,139,140,141,142,143,145,148,149,150,151,152,153,154,156,157,158,159,160,161,162,163,164,166,167,168,169,170,171,172,173,174,175,176,177,178,180,181,184,185,186,187,188,189,190,191,192,194,195,196,197,199,201,202,203,204,205,207,208,210,211,214,215,216,217,218,221,222,223,224,226,228,229,230,231,232,234,235,236,237,238,239],Their:[2,32,40,58,159,163,166,182],Then:[2,23,28,31,32,58,61,68,71,86,87,89,97,99,100,104,108,136,144,156,160,161,163,166,169,172,179,182,184,185,187,189,208,226],There:[0,2,3,13,15,16,23,24,25,26,29,31,32,33,36,37,40,56,58,59,60,61,62,65,68,71,74,75,84,91,100,101,103,112,129,134,148,149,153,156,157,159,163,164,165,166,168,169,172,173,174,180,181,182,184,185,187,189,190,191,195,205,207,208,210,218,225,229,230,231,233,234,237,238],These:[1,2,3,6,13,14,15,23,31,32,33,40,58,59,68,73,75,79,87,88,94,95,98,103,106,129,134,135,149,150,154,156,157,160,161,162,163,164,166,172,182,185,187,188,190,191,201,202,203,207,220,226,230,235,236,237,238],USE:[0,141,147],Use:[2,3,5,8,11,13,14,15,32,34,40,57,59,66,71,73,92,119,133,168,172,174,180,184,185,187,188,189,190,202,205,208,210],Used:[23,32,136,152,159,185,187,195,202,214],Useful:[15,60,63,153,204],Uses:[24,52,59,71,94,149,151,170,185,205],Using:[28,32,37,57,58,72,74,75,84,86,92,100,106,120,142,148,155,164,166,168,172,179,182,184,187,190,214,217,223,227],VAS:168,Wes:0,Will:[15,68,73,201],With:[3,5,15,31,32,36,58,71,95,102,103,112,136,139,157,159,160,161,163,164,170,171,172,179,184,189,192,207,233,234],Yes:62,_1cm:14,_1f_1:40,_2cm:14,_2f_1:238,_3mm:14,__1:40,___:[31,36,59,60,68,161,184,191,195,207,237],____:[31,36,59,111,161,173,191,207],_____:[31,191],______:195,________:[173,191,207],__________:[15,161],___________:[36,75,187],____________:75,_____________:75,_______________:75,________________:[75,187],_________________:75,__________________:187,_____________________:75,______________________:75,_______________________:75,________________________:75,______________________________:191,________________________________:75,_____________________________________:75,______________________________________________:75,_______________________________________________:75,____________________________________________________:75,_______________________________________________________:159,_____________________o_______________________:75,_______________v:75,____________o________________________:75,_______i_______:75,__abs__:[63,164],__add__:[63,164],__all__:204,__bool__:32,__builtins__:3,__cacheit:32,__call__:[15,24,32],__class__:208,__cmp__:[116,120,139],__contains__:23,__divmod__:164,__doc__:[2,3],__eq__:23,__file__:[3,211],__floordiv__:164,__future__:[3,60,207,226,231,237],__getitem__:[32,63,195],__globals__:208,__index__:32,__init__:[2,32,87,214,215,234],__iter__:[24,32,184],__len__:63,__loader__:211,__main__:[3,15,235],__mod__:164,__mul__:[18,23,63,68,164],__name__:[3,172,211],__neg__:164,__new__:[15,23,32,234],__package__:3,__pos__:164,__pow__:[63,164,169],__repr__:172,__rmul__:63,__setitem__:159,__slots__:15,__sub__:164,__truediv__:[32,164],__weakref__:[23,63],_add:[160,178],_aesara:172,_af_par:24,_af_rmul:28,_all_root:168,_amv:168,_appli:160,_apply_operators_qubit:123,_arg:[32,38],_array_form:24,_as_integr:59,_assumpt:32,_base_ord:30,_basic:201,_basic_orbit:23,_best:187,_build:[2,224],_ccode:172,_check_anteced:58,_check_antecedents_1:58,_check_antecedents_invers:58,_check_cycles_alt_sym:[23,30],_clash1:[6,32],_clash2:[6,32],_clash:[6,32],_cmp_perm_list:29,_coeffexpvalueerror:58,_collapse_extra:59,_complexes_index:168,_complexes_sort:168,_compos:160,_compute_transform:59,_condsimp:58,_construct_:15,_contain:160,_contains_elem:160,_contains_id:160,_convert_poly_rat_alg:[51,53],_coset_repres:23,_count_root:168,_create_lookup_t:[53,58],_create_t:[51,53],_csrtodok:70,_cxxcode:172,_dict:185,_diff_wrt:32,_distinct_primes_lemma:23,_distribute_gens_by_bas:30,_doktocsr:70,_dummi:58,_dummy_10:32,_dummy_:58,_element:23,_enumerate_st:134,_eval_adjoint:137,_eval_as_leading_term:32,_eval_cond:58,_eval_deriv:[32,40],_eval_eq:32,_eval_evalf:168,_eval_expand_bas:32,_eval_expand_complex:32,_eval_expand_doubl:32,_eval_expand_hint:32,_eval_integr:[38,59],_eval_is_alt_sym_monte_carlo:23,_eval_is_alt_sym_na:23,_eval_is_assumpt:[32,39],_eval_is_eq:32,_eval_is_g:32,_eval_is_imaginari:168,_eval_is_r:[32,39,168],_eval_nseri:32,_expand:2,_expon:58,_fcode:172,_find_reasonable_pivot:68,_find_splitting_point:58,_first:38,_flip_g:58,_fourier_transform:59,_fun:169,_function:58,_gcd:164,_gcd_term:32,_get_coeff_exp:58,_get_complex:168,_get_complexes_sqf:168,_get_interv:168,_get_ordered_dummi:139,_get_real:168,_get_reals_sqf:168,_get_root:168,_greek:3,_guess_expans:58,_handle_integr:187,_handle_precomputed_bsg:30,_hull:49,_ignor:168,_imag:160,_img:160,_imp_:[202,208],_in_terms_of_gener:160,_indexed_root:168,_inflate_fox_h:58,_inflate_g:58,_int0oo:58,_int0oo_1:58,_int_invers:58,_integr:[187,188],_intersect:160,_invers:33,_invert:190,_is_analyt:58,_is_class:190,_is_exponenti:190,_is_logarithm:190,_is_zero_after_expand_mul:68,_iszero:[68,235],_iter:32,_javascript:172,_julia:172,_k_kqdot:94,_ker:160,_kernel:160,_lambdacod:172,_lambdifygener:208,_latex:172,_latin:3,_linear_2eq_order1_type6:187,_linear_2eq_order1_type7:187,_list:71,_mapl:172,_mathml_cont:172,_mathml_present:172,_mcode:172,_meijerint_definite_2:58,_meijerint_definite_3:58,_meijerint_definite_4:58,_meijerint_indefinite_1:58,_minpoly_compos:168,_modgcd_multivariate_p:166,_module_quoti:160,_mpc_:163,_mpf_:[32,163],_mul:178,_mul_arg:58,_mul_as_two_part:58,_mul_scalar:160,_my_principal_branch:58,_mytyp:58,_naive_list_centr:29,_name:59,_new:168,_nocheck:47,_node:32,_nonlinear_2eq_order1_type1:187,_nonlinear_2eq_order1_type2:187,_nonlinear_2eq_order1_type3:187,_nonlinear_2eq_order1_type4:187,_nonlinear_2eq_order1_type5:187,_nonlinear_3eq_order1_type1:187,_nonlinear_3eq_order1_type2:187,_nonlinear_3eq_order1_type3:187,_nonlinear_3eq_order1_type4:187,_nonlinear_3eq_order1_type5:187,_nth:169,_octav:172,_only_:168,_operators_to_st:129,_orbits_transversals_from_bsg:30,_order:22,_p_0:139,_p_1:139,_p_elements_group:23,_pf_q:[40,182,238],_pg:168,_postprocess_root:168,_prec:32,_preprocess:188,_preprocess_root:168,_pretti:172,_print:172,_print_:172,_print_atom:172,_print_bas:172,_print_deriv:172,_print_hyp:172,_print_meijerg:172,_print_numb:172,_print_rat:172,_process_seri:159,_product:160,_quotient:160,_quotient_codomain:160,_quotient_domain:160,_randint:166,_random_gen:23,_random_pr_init:23,_random_prec:23,_random_prec_n:23,_randrang:33,_rang:205,_raw:170,_rcode:172,_real:190,_real_root:168,_reals_index:168,_reals_sort:168,_recur:54,_refine_complex:168,_remove_gen:30,_repres:134,_represent_foobasi:134,_represent_szop:134,_represent_zg:124,_reset:[71,168],_restrict_codomain:160,_restrict_domain:160,_rewrit:2,_rewrite1:[51,58],_rewrite2:58,_rewrite_invers:58,_rewrite_saxena:58,_rewrite_saxena_1:58,_rewrite_singl:58,_root:169,_roots_trivi:168,_rust_cod:172,_seri:[159,169],_set:191,_set_interv:168,_sizedinttyp:15,_slope:42,_solve_ab:190,_solve_as_poli:190,_solve_as_poly_complex:190,_solve_as_poly_r:190,_solve_as_r:190,_solve_class:190,_solve_expo:190,_solve_exponenti:190,_solve_lin_si:165,_solve_lin_sys_compon:165,_solve_logarithm:190,_solve_rad:190,_solve_real_trig:190,_solve_system:190,_solve_using_know_valu:190,_sort_variable_count:32,_sparse_:173,_split_mul:58,_state_to_oper:129,_str:148,_strip:[23,30],_strong_gens_from_distr:30,_succ:23,_sylow_alt_sym:23,_symbol:33,_sympifi:[65,234],_sympy_:32,_sympyrepr:172,_sympystr:172,_syzygi:160,_tan1:169,_tan:169,_tensormanag:196,_test:201,_token_splitt:73,_tr56:181,_transolv:190,_try_heurisch:59,_tsolv:190,_tupl:71,_undetermined_coefficients_match:187,_union:160,_union_find_merg:23,_union_find_rep:23,_verifi:23,_verify_bsg:[23,29,30],_verify_centr:29,_verify_normal_closur:29,_w0_0:68,_w1_0:68,_w2_0:68,_xi_1:188,a000073:37,a066272:71,a066272a:71,a10:49,a1pt:106,a1pt_theori:[106,152],a217120:71,a217255:71,a217719:71,a2idx:68,a2pt:106,a2pt_theori:[106,152,156],a9chet_distribut:191,a9vy_distribut:191,a_0:[63,68,175,185,187,192,238],a_0_0:68,a_0_0_0:68,a_0_0_1:68,a_0_1:68,a_0_1_0:68,a_0_1_1:68,a_0_2:68,a_0_2_0:68,a_0_2_1:68,a_1:[22,23,33,40,54,58,63,68,80,139,144,161,166,182,185,187,189,191,238],a_1_0:68,a_1_0_0:68,a_1_0_1:68,a_1_1:68,a_1_1_0:68,a_1_1_1:68,a_1_2:68,a_1_2_0:68,a_1_2_1:68,a_1x_1:185,a_2:[23,33,54,68,166,182,185,187,191,238],a_2x_2:185,a_3:68,a_and_b:[87,88,95],a_b:106,a_i:[58,144,149,157,161,166,182],a_ij:195,a_interv:180,a_j:[22,40,58,144,166,174,182],a_k:[23,33,169,175,189],a_kx_k:169,a_lin:103,a_m:28,a_n:[28,33,40,58,61,144,161,166,175,185,187,238],a_non_commut:187,a_nx_n:185,a_o_n:106,a_op:103,a_p:[40,58,182,238],a_r:[22,182],a_real:195,a_t:187,a_x:[149,157,172],a_z:[149,157],aaa:207,aaaabbbbcccc:37,aaaagraw:0,aab:[37,207],aabbc:37,aabc:37,aadit:0,aaditya:0,aadityanair6494:0,aaecc:189,aand:[40,59],aarholt:0,aaron:[0,1],aaronstiff:0,aaryan:0,aaryandewan:0,aau:74,aba:207,abb:[205,207],abbatiello:0,abbeyj:0,abbrev:[145,146,172],abbrevi:[146,161,172,190,192],abc:[2,3,4,7,8,9,10,11,12,13,15,21,23,25,31,32,33,34,37,38,40,41,42,43,45,46,47,48,49,55,56,57,58,59,60,62,63,64,65,68,70,72,79,81,110,112,114,115,120,137,139,140,160,164,166,168,169,172,173,174,175,177,178,179,180,181,184,185,186,187,188,189,190,191,192,195,200,202,203,205,207,208,210,214,216,217,218,223,225,231,234,237],abcbb:207,abcd:[21,25,139,207,210],abcdef:231,abderrahim:0,abdul:0,abduljaved1994:0,abdullah:0,abel:68,abelian:[20,23,61,144,160],abelian_invari:23,abeliangroup:[20,23],abhang:0,abhay_dhiman:0,abhaysdhiman:0,abhi58:0,abhigyan:0,abhijithbharadwaj58:0,abhinav28071999:0,abhinav:0,abhinavagarwal1996:0,abhinavchanda01:0,abhishek:0,abhishekgarg119:0,abi:207,abij:139,abil:[3,13,68,100,171,187,190,233,238],abinash:0,abji:139,abl:[2,14,15,23,28,32,33,34,43,51,59,65,68,71,77,92,101,103,104,106,107,160,163,169,187,190,201,217,226,233,237,239],abnorm:166,abort:199,about:[2,3,4,5,7,8,10,11,14,15,23,24,25,26,32,36,38,40,42,43,44,46,47,48,52,54,57,59,61,68,71,74,75,79,84,86,87,88,89,91,92,95,103,104,134,136,137,139,143,148,149,156,157,158,160,162,163,169,172,174,179,184,185,187,191,194,195,201,202,203,204,205,214,215,217,220,221,224,226,229,231,232,233,234,235,238],abov:[0,2,3,13,14,15,16,17,22,23,24,28,31,32,36,37,40,42,45,48,49,58,59,62,63,68,71,72,75,84,87,89,91,92,94,95,100,102,103,104,107,134,136,139,149,154,156,157,159,160,161,163,166,168,169,171,172,173,179,182,184,185,187,189,190,191,194,195,202,203,208,217,218,219,220,223,226,231,233,234,235,238],above_fermi:[40,139],abracadabra:207,abraham:0,abramov71:[167,168],abramov:[167,189],abramowitz:[2,40],abreu:0,abridg:160,abrombo:0,abs:[3,15,32,36,37,38,44,68,81,106,164,168,172,189,190,196],abs_sqrd:81,absenc:28,absent:[2,17],absolut:[11,12,15,31,32,38,47,58,59,63,68,81,137,164,168,182,184,186,191,201,222,223],absolute_converg:31,absorb:[58,187,191,230],absorbing_markov_chain:191,absorbing_prob:191,absorpt:187,abund:71,abundantnumb:71,abus:[32,196],abv:0,academ:[1,14,17,167],acb:207,acc:[14,106,152,156],accelart:0,acceler:[89,94,97,99,103,104,106,142,149,152,154,176,205,222],acceleration_:106,acceleration_constraint:87,accept:[2,14,15,23,32,38,46,59,62,63,65,68,70,73,92,133,149,153,168,171,172,173,180,182,184,189,202,208,214,215,218,235],accepted_latex_funct:172,access:[2,3,8,9,10,15,32,40,57,61,62,65,68,72,75,80,87,91,92,107,148,149,154,157,159,163,164,166,184,187,191,192,194,202,203,217,220,234,237],accid:[33,208],accompani:14,accomplish:[59,103,106,220],accord:[2,3,13,15,20,23,24,28,31,32,33,40,62,65,68,71,73,93,100,133,139,159,164,166,169,185,189,190,196,201,203,207,222],accordingli:[23,161],account:[38,68,175,184,187],accumbound:13,accummulationbound:13,accumul:[13,23,201,205],accumulationbound:13,accur:[3,13,23,32,36,37,54,59,77,159,179,226,229,235],accuraci:[3,13,32,57,168,226,235],acebulf:0,achaitanyasai:0,achal:0,achiev:[3,32,36,40,65,71,92,106,171,179,182,184,190,204,218],acm:[0,16,31,58,59,167,182,187,189],acmiller273:0,aco:[2,3,7,39,45,48,94,106,112,172,187,214,238],acosh:[39,172],acot:[39,172],acoth:[39,172],acquir:211,across:[2,23,30,43,59,75,138,139,146,159,172,205,206,207,208,236],acsc:[39,172],acsch:[39,172],act:[14,22,23,24,28,32,40,48,61,62,68,74,85,91,92,102,111,123,128,131,132,180,190,192,218,222,229],action:[23,61,131,134,144,168,184,190],activ:[94,159],activepython:5,activest:207,actual:[2,3,14,15,16,21,23,30,32,33,40,44,58,59,61,65,68,71,84,92,94,101,102,103,153,160,163,172,180,182,184,185,187,190,201,202,205,207,208,226,233],acycl:207,adam:[0,168],adamek:14,adapt:[159,178,189,207,213],add:[2,3,7,9,13,15,21,23,28,33,36,39,47,49,57,58,61,65,68,69,71,73,74,85,92,106,117,123,133,138,139,142,156,157,159,162,163,164,166,168,169,172,173,182,184,185,187,188,190,191,194,195,196,204,208,212,225,230,231,234,237,238],add_as_root:61,add_formula:182,add_gen:164,add_ground:[164,168],add_simple_root:61,add_typ:190,addaugmentedassign:15,addb:182,added:[2,13,14,15,23,32,33,54,58,73,84,113,144,150,158,159,169,171,172,174,182,185,187,190,191,195,196,201,216,231],addend:196,adding:[2,7,17,22,23,32,33,43,47,61,69,71,92,93,106,141,159,169,182,187,190],addison:[0,17,24,71,167],addit:[1,2,3,5,15,22,23,24,31,32,38,40,44,50,52,56,58,59,60,65,68,73,77,79,84,85,87,103,104,107,125,137,138,141,153,156,157,158,159,160,161,162,163,166,168,172,178,181,182,184,185,187,188,189,190,191,201,202,203,205,207,208,217,226,231,233,234,235,237,238],addition:[2,32,101,137,157,166,172,191,217],additional_transl:73,address:[32,172,190],addrul:59,adequ:172,adh:0,adher:[2,58],adhikari:0,adhoc:0,adic:167,aditisingh2362:0,aditya:0,adityakumar113141:0,adityashah30:0,adj:68,adjac:[22,23,24,32,111,207],adject:191,adjoin:[23,161],adjoint:[61,63,68,116,120],adjug:68,adjust:[91,175,179],adlinds3:0,admiss:[174,177],admit:[40,187],adopt:[23,196],advanc:[2,4,9,23,32,36,37,68,82,100,104,155,159,162,163,165,167,174,181,187,201,202,203,207,225,228,229,232,236,237,238],advantag:[10,13,15,32,33,59,62,68,71,77,143,162,163,169,180,185,187,190,205,231,233,235,238],advers:32,advertis:2,advis:[0,14,92],adwait:0,adwaitbaokar18:0,aegean:33,aesara:[15,57,106],aesara_cod:172,aesara_funct:[15,72,172],aesaracod:[15,72,172],aesaraprint:172,aesthet:[2,159],affect:[31,32,68,148,168,190,218],affin:[32,33,47,160],affine_ciph:33,affine_rank:47,affirm:180,aforement:[94,154,185,220],after:[2,3,5,7,9,10,14,16,20,23,24,28,30,31,32,33,34,47,49,54,59,63,68,69,71,73,79,101,103,106,108,112,124,136,144,148,154,157,162,166,168,169,170,172,173,178,185,187,188,189,190,192,201,204,208,210,214,216,220,229,230,231,235,238],afterward:[3,32,89,95],afunc:208,ag6845:0,again:[3,32,47,71,85,92,94,104,134,135,149,156,160,161,175,182,187,217,226,231,238],against:[33,74,92,202],agarw:0,agarwal94:0,agca:165,aggarw:0,aggreg:224,agmps18:0,agnost:203,agraw:0,agrawal:0,agre:[32,33,40,47,58,182,200],ahead:[2,71],ahm:0,ahmed0918:0,aid:[15,94],aim:[2,50,58,144,160,182,187,190,233,236],airaksinen:0,airbnb:0,airi:[39,59,187],airy_funct:40,airyai:[40,172,187],airyaiprim:[40,172],airybas:40,airybi:[40,172,187],airybiprim:[40,172],airyfunct:40,aitken_html:185,ajcugini:0,ajwa95:167,ajwa:167,aka:0,akash581050:0,akash:0,akasnaga:0,akh1lrjput:0,akhil:0,akhmerov:0,akhtar:0,akira:0,akirakyl:0,akrita:[0,168],akshai:0,akshansh:0,akshat14714:0,akshat:0,akshatsood2249:0,akshaynukala95:0,akshaysiramda:0,akshaysrinivasan:0,akshit:0,alam:0,alan:0,alaparthi:0,alazemi:0,albeit:[59,217],alberthilbert:0,alec:0,alejandro:0,alejandrogroso:0,aleksandar:0,alembertian:189,alephvn:0,alex:0,alex_chua:0,alexand:0,alexandr:0,alexandria:185,alexcqi:0,alexei:0,alexlubbock:0,alexmalin:0,alf_b_n:106,alg:[164,168,171],alg_con:[91,107],alg_con_ful:107,algebra:[1,2,3,4,10,16,23,32,33,36,38,50,53,54,55,57,58,59,63,67,71,72,73,82,91,100,106,107,155,158,161,164,165,166,167,169,172,174,182,185,187,190,231,232,233,235],algebraic_express:32,algebraic_field:[163,164,166,168],algebraic_multipl:235,algebraic_numb:[11,32],algebraiccomput:32,algebraicfield:[163,164,166],algebraichandl:11,algebraicnumb:[164,168,171],algebraicpred:11,algo2008:24,algo:[15,24],algorith:68,algorithm:[2,3,13,17,18,19,22,23,24,26,28,30,31,32,33,36,37,38,44,49,57,58,59,62,68,69,71,80,82,103,126,144,149,158,159,160,161,163,164,165,167,169,173,176,177,180,181,183,184,185,187,189,190,191,196,205,207,230,234,235,238],algorithmist:23,ali:0,alia:[13,15,25,32,42,48,63,64,66,123,132,139,160,163,164,168,171,180,201,210,238],alias:[66,164],alic:[23,33],align:[15,42,68,157,158,172,201],alignof:15,alison:0,alistair:0,alkiviadi:[0,168],all:[0,1,2,3,4,6,8,9,10,11,13,14,15,16,17,20,22,23,24,25,26,27,28,30,31,32,33,34,36,37,38,39,40,41,42,43,45,47,48,49,57,58,59,61,62,63,64,65,66,68,69,70,71,72,73,74,75,79,80,85,86,87,89,91,92,94,100,101,103,106,107,113,118,119,123,133,135,136,137,139,141,142,143,144,146,147,153,154,157,158,159,160,161,163,164,166,168,169,171,172,173,174,175,178,179,180,181,182,184,185,186,187,188,189,190,191,192,194,196,200,201,202,203,204,207,208,210,214,215,217,219,220,221,222,224,226,229,230,231,233,234,235,237,238,239],all_coeff:[163,164,168],all_integr:[187,188],all_model:62,all_monom:[164,168],all_root:[61,71,168],all_term:[164,168],allan:0,allei:40,allhint:188,alloc:[15,38],allow:[2,3,11,14,15,16,17,23,25,28,31,32,33,36,40,42,43,44,58,60,62,63,65,66,68,71,72,73,75,87,92,94,100,103,104,106,111,123,139,143,144,145,157,159,160,163,164,166,168,169,172,177,179,180,181,184,185,187,189,190,191,192,195,201,204,207,208,218,231,234,236],allow_half:32,allow_hyp:[40,184],allow_unknown_funct:172,almost:[32,58,66,73,141,159,160,164,168,169,187,191,204,205,233],almost_linear_integr:187,almosteq:164,almostlinear:187,alon:[33,60,166,187,189,195,207,233,234],along:[15,23,32,33,34,38,40,41,42,46,47,50,52,55,58,63,65,68,69,74,75,83,84,87,94,95,97,98,99,101,102,103,106,136,148,149,154,157,159,162,163,168,187,190,207,216,220,222,226],alongsid:65,alp:33,alpertron:185,alpesh:0,alpeshjamgade21:0,alpha:[2,3,23,40,59,61,111,115,118,136,149,152,156,157,158,164,166,168,171,172,184,191],alpha_0:63,alpha_1:[63,71],alpha_2:71,alpha_:[63,158],alpha_k:71,alpha_r:182,alphabet:[32,33,144,161,185,203],alphanumer:187,alreadi:[3,5,23,24,32,33,39,41,42,45,46,48,57,58,59,63,69,71,80,92,103,108,134,136,139,154,156,157,159,162,163,166,171,175,181,182,184,187,190,191,196,218,220,230,231,233,236,237,238,239],alsheh:0,also:[1,3,5,6,9,10,11,13,14,15,21,23,24,31,33,34,36,37,38,39,40,44,48,50,52,54,55,58,59,61,62,63,66,68,71,72,73,74,75,77,79,84,85,86,87,91,92,94,95,98,101,102,103,104,106,107,108,112,122,123,125,129,133,138,139,142,144,148,149,151,152,154,156,157,158,159,160,161,163,164,166,168,169,171,172,173,174,175,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,194,195,196,199,201,202,203,204,205,207,208,214,216,217,218,219,220,222,223,226,229,230,231,233,234,235,236,237,238,239],alstav:0,alt:15,alter:[3,16,23,32,149,163,172,174,190],altern:[2,3,5,15,20,23,24,31,32,36,38,40,63,65,69,92,101,103,149,156,158,159,161,163,168,172,177,179,181,189,207,231,233,235,236],alternating_permut:37,alternatinggroup:[20,23,29],alternatingpermut:37,although:[1,2,3,24,32,33,38,44,56,58,60,63,65,68,71,74,84,94,106,160,163,164,166,168,180,181,184,185,189,207,208,225,226,231,234,238],altitud:48,alurusaisaketh:0,alwai:[2,3,5,13,14,23,24,31,32,33,34,36,38,40,42,44,47,48,56,58,59,62,63,68,70,71,80,91,92,94,95,98,107,139,141,144,145,154,156,160,161,163,164,166,168,172,173,174,180,181,182,184,185,187,188,189,190,191,201,203,207,208,214,215,220,230,231,233,234,236,238],amakelov:0,amalgam:58,aman:0,amanda:0,amandeep1024:0,amartinhernan:0,amat:94,ambar:0,ambient:47,ambient_dimens:[41,43,45,47],ambigu:[2,3,32,127,133,184,194],amd64:15,amen:100,amend:23,amer:68,american:[2,33],ami:71,ami_42_from129to134:71,amic:71,amicable_numb:71,amirgi:191,amit:[0,1,190],amitdelhi1995:0,amitsaha:0,among:[14,15,16,17,23,24,33,60,72,168,187,192,194,196,217],amongst:189,amount:[2,14,32,33,44,100,149,154,157,166,175,201,214,215],amper:110,amplitud:113,ams:71,amsfont:172,amsmath:172,amsuhan:0,amus:160,anaconda:4,analog:[25,31,33,37,104,156,157,160,161,162,166,177,192,207],analogu:[11,31,46,163,164],analyitc:58,analys:[14,106,191],analysi:[15,16,23,32,33,38,77,82,94,103,104,107,143,160,168,182,185,191,226],analyt:[5,37,40,58,68,82,100,187,230],analytic_func:68,analyz:[184,195],anand2807:0,anand:0,ananya:0,ananyaha93:0,anatolii:0,anca:0,anderson:0,andersson:0,andi:[0,1,105],andr:0,andrea:0,andreescu:185,andrei:0,andrej:0,andreo:0,andrew:[0,49],andrewd:0,andrica:185,androsi:0,ane:0,ang:94,ang_acc_in:[106,149],ang_vel_in:[92,97,98,106,149,156],angadh:0,angelia:13,angl:[7,38,40,41,42,43,45,46,47,48,81,91,92,94,95,103,108,111,112,113,136,144,149,156,157,158,172,181,190,214,215,218,238],angle1:[214,215],angle2:[214,215],angle3:[214,215],angle_between:[45,46,48],angle_of_incid:112,angu:0,angular:[81,89,94,95,97,99,100,103,106,108,112,113,115,118,136,140,149,152,158],angular_momentum:[100,104,106],angular_veloc:113,angvel:106,ani:[0,2,3,5,8,10,11,12,13,14,15,16,21,22,23,24,30,31,32,33,34,36,37,38,40,42,43,44,47,48,49,57,58,59,60,62,63,64,66,68,69,71,74,75,79,81,85,87,88,89,91,92,100,102,103,104,107,112,125,128,133,134,137,139,141,144,148,149,152,153,154,156,157,158,159,160,161,163,164,166,168,169,172,173,178,179,180,181,182,184,185,187,188,189,191,195,196,200,201,202,204,205,207,208,214,217,218,219,220,222,223,225,229,230,231,234,235,236,237,238,239],animesh:0,animeshsinha1309:0,anish07:0,anish:0,anjul:0,ankit:0,annal:24,annihil:[31,50,51,55,115,139,189],annihilateboson:139,annihilatefermion:139,annonymousxyz:0,annot:[71,159,172],annoy:32,anoth:[2,3,11,13,14,15,24,29,31,32,33,34,38,40,42,43,44,45,46,47,48,49,58,59,68,69,71,74,75,89,128,144,146,149,152,156,157,159,161,162,163,164,166,168,169,172,173,179,180,182,187,189,190,191,202,203,208,214,217,218,222,225,226,229,231,233,234,238,239],anp:[163,164,168],ans:[36,59,184,189,207],ansh:0,anshmishra471:0,answer:[23,32,36,54,58,59,62,68,71,144,166,169,181,182,184,189,191,205,210,233,235,238,240],antaw:0,anteced:[58,179],anthoni:[0,1],anti:[11,28,38,59,63,111,116,196],anti_symmetr:68,anticip:144,anticlockwis:63,anticommut:[28,82,126,128,138,139,196],antideriv:[38,40,59,187,230],antiderv:187,antidivisor:71,antidivisor_count:71,antihermitian:[10,32],antihermitianhandl:11,antihermitianpred:11,antipattern:236,antisym:28,antisymmetr:[28,34,63,139,196],antisymmetrictensor:139,antlr4:73,antlr:[73,92],anton:0,anu:0,anubhav:0,anurag:0,anurags92:0,anwai:0,anway1756:0,anxuiz:0,anymor:159,anyon:[2,168,172,236,237],anyth:[2,3,13,15,32,33,43,47,68,92,113,123,169,172,178,180,184,187,189,200,202,207,231,240],anyv:33,anywai:[58,184,187],anywher:[2,15,40,46,139,210,233],aocp:205,aother:40,ap4000:0,apart:[23,28,32,36,38,59,154,161,164,166,168,171,174,185,190,196,218,220,234],apart_list:168,apc13:0,aperiod:13,apfloat:35,aphras:33,api:[2,4,15,32,44,52,57,72,73,78,82,106,135,148,159,166,185,186,206,208,211,217,218,233,236],apm12:0,apm13:0,apoapsi:42,apothem:48,app1:191,app:59,appar:[3,32,238],appeal:58,appear:[2,3,13,14,15,17,21,23,32,33,37,41,42,45,48,51,55,58,59,63,68,71,92,95,123,139,141,144,159,161,163,166,168,172,181,184,187,188,189,191,194,196,201,207,208,214,218],appel:40,appell_seri:40,appellf1:[40,172],append:[23,32,33,68,69,75,106,134,159,172,192,203,204,207,238],appetit:233,appli:[7,8,9,10,11,15,23,24,25,30,31,32,33,34,35,38,39,42,47,48,50,57,59,63,64,68,69,71,73,74,75,80,85,86,94,101,103,105,116,120,123,124,128,131,132,136,139,149,157,159,161,163,164,166,168,169,171,172,173,174,179,180,181,183,184,187,188,189,190,191,192,194,201,204,207,214,215,218,235,237,238],applic:[1,2,16,17,22,23,24,25,32,33,40,59,63,68,71,74,87,91,92,100,103,105,106,123,124,149,152,156,161,166,167,168,172,174,179,185,187,190,203,214,220,221,233],applied_load:74,appliedpermut:24,appliedpred:[8,9,10],appliedundef:32,apply_finite_diff:[13,32,230],apply_forc:85,apply_grov:124,apply_load:[74,75],apply_moment_load:74,apply_oper:[128,139],apply_support:74,apply_torqu:85,applyfunc:[63,64,68,69,98,149,192],approach:[14,31,32,59,79,95,100,163,166,167,169,180,188,189,191,202,205,207,226,230,235],appropri:[2,3,23,32,38,39,47,68,84,94,128,129,139,149,156,162,163,168,169,172,178,179,184,185,189,191,195,203,218,226,237],approx:[32,59,226],approxim:[2,3,4,13,23,31,32,33,36,40,42,48,57,58,59,68,71,75,77,108,142,159,163,164,168,175,179,182,191,200,227,230,233],approximations_for_the_nth_prime_numb:71,appstat:0,apr:44,april:31,apt:2,aqnouch:0,aquanni:0,ar_:169,ar_i:169,ara:33,arab:160,arafat:0,arakaki:0,arang:[202,229],aravind:0,aravindreddy255:0,arb:42,arbitrari:[2,3,13,18,24,25,31,32,33,36,37,40,43,44,46,62,63,68,75,104,125,128,157,159,160,163,164,166,169,184,187,188,189,196,207,208,214,215,229,230,234,238,239],arbitrarili:[13,32,71,166,179,182,187,188,191],arbitrary_matrix:68,arbitrary_point:[41,42,43,44,45,46,48],arc:[38,238],arcco:[3,38,172],arccosh:172,arccot:[38,172],arccoth:172,arccothrul:59,arccsc:[38,172],arccsch:[38,172],archanjo:0,archit:0,architectur:[1,106,163,201],architv07:0,archiv:[33,105],archlinux:0,arcsec:[38,172],arcsech:[38,172],arcsin:[3,38,169,172,191],arcsine_distribut:191,arcsinh:172,arctan2:38,arctan:[38,169,172],arctang:169,arctanh:172,arctanhrul:59,arctanrul:59,arduou:100,are_collinear:47,are_concurr:[45,46],are_coplanar:47,are_similar:[2,43,44,49],area:[32,40,42,44,48,49,74,75,221],aren:[15,92,166,171,187,190],arg1:191,arg2:191,arg:[2,7,9,10,11,12,13,14,15,17,23,24,26,29,31,32,33,34,36,39,40,42,43,45,47,48,49,54,58,59,61,62,63,64,65,66,68,69,71,73,79,108,113,114,117,119,121,122,123,124,125,128,129,130,132,133,134,135,136,137,138,139,149,153,157,159,164,166,168,169,172,174,175,178,180,181,184,187,189,190,191,192,195,196,201,202,203,204,207,208,210,214,215],argand:[57,190],argindex:[2,15,32,38,39,40],args_cnc:32,argu:71,arguement:32,argular:136,argument:[2,8,9,10,11,12,13,14,15,16,23,24,27,30,31,32,33,34,35,36,37,38,39,40,42,45,48,49,57,58,59,60,62,63,65,68,70,71,73,74,79,87,91,92,101,102,106,113,116,120,122,125,128,133,134,136,137,138,139,141,147,153,154,158,159,160,161,163,164,166,168,171,172,173,174,179,180,181,182,184,185,187,188,189,191,194,195,200,201,202,203,205,207,208,210,217,218,220,225,229,230,234,235,238],argument_sequ:[15,203],argument_test:[15,172],argument_tupl:202,argunov:0,argv:[60,201],arif:0,arighna:0,arih:0,aris:[0,32,37,58,59,136,157,163],arithmet:[13,15,32,33,36,63,68,71,128,135,158,159,160,162,163,164,166,167,168,170,173],arithmetica:185,ariti:[2,159],arjona:[0,158],ark:0,arkanto:0,armi:33,armstrong:20,arnav:0,arooshiverma:0,arora:0,around:[2,3,5,13,21,24,32,33,34,36,38,41,48,52,70,71,85,100,103,107,157,163,166,172,174,179,183,185,187,190,191,201,214,215,230,231,233],arpan:0,arpit:0,arplynn:0,arr1:71,arr2:71,arr:15,arrai:[15,23,24,28,29,33,40,59,63,68,71,72,106,136,159,162,164,168,172,191,193,195,196,202,203,205,208,235],arrang:[24,87,104,106,181,185,196],array2mat:208,array_form:[22,24,25],array_lik:87,arrayconstructor:15,arrayexpr:15,arriv:[34,166,182,184,187,191,238],arrow:[14,61,74,159,172,236],arrow_formatt:14,arrow_styl:14,arrowstringdescript:14,arshdeep1999:0,arshdeep:0,arsi:0,art:[17,24,57,160,172,174,205],articl:[1,32,33,65,68,165,167,172,214,233],artifact:68,artifici:[167,175],artist:33,aruba:0,arun:0,arunsin997:0,arxiv:[35,68,81,207],as_add:32,as_algebraicfield:164,as_base_exp:[32,38,39,207],as_coef_add:32,as_coef_mul:32,as_coeff_add:32,as_coeff_expon:32,as_coeff_mul:[32,58,65],as_coeffici:32,as_coefficients_dict:32,as_content_primit:[32,68,161,168],as_declar:15,as_dict:[21,163,168],as_dummi:[32,59],as_explicit:[65,68],as_expr:[32,68,163,168,169,235],as_expr_set_pair:38,as_ferr:21,as_finite_diff:13,as_finite_differ:[13,32,230],as_immut:[64,69],as_independ:[32,190],as_int:133,as_leading_term:[32,179],as_list:[54,168],as_mut:[32,64,65,69],as_numer_denom:[32,189],as_ordered_factor:32,as_ordered_term:32,as_poli:[32,161,168],as_powers_dict:32,as_real_imag:[32,38,63,173],as_rel:180,as_set:62,as_sum:59,as_term:32,as_two_term:32,as_unevaluated_bas:184,asa:48,ascend:[24,207],ascent:24,ascii:[57,172],asec:[39,172],asech:[39,172],aseri:32,ashish:0,ashishkg0022:0,ashton:0,ashutosh:[0,1],ashutoshhathidara98:0,ashwini:0,asid:[3,62,187,188,233],asin:[3,39,40,46,169,172,182,184,187,191,238],asinh:[39,172],asish:0,asishrocks95:0,ask:[2,3,9,10,11,12,32,44,58,92,144,160,178,184,190,207,225,231,240],ask_full_infer:8,askalgebraicpredicatehandl:11,askhandl:8,askpredicatehandl:[9,10],asmeur:0,asnumpi:72,asottil:0,aspect:[2,68,163],aspect_ratio:159,aspn:0,aspx:187,assembl:[33,58,94,179],assemble_partfrac_list:168,assert:[14,21,22,23,24,32,42,44,103,187,188,199],assertionerror:199,assess:226,assign:[2,14,15,16,28,32,48,59,61,62,68,73,87,92,97,106,144,154,157,159,161,166,172,189,190,196,203,217,220,231],assign_to:[15,172],assignmentbas:15,assignmenterror:172,assist:187,assoc_laguerr:[15,40,172],assoc_legendr:[40,172],assoc_recurrence_memo:209,associ:[2,14,16,30,32,33,39,40,54,55,58,61,104,106,129,137,148,149,156,157,161,162,163,164,166,172,180,182,185,196,209],associated_legendre_polynomi:40,associatedlaguerrepolynomi:40,assocop:32,asssumpt:172,assum:[2,3,10,15,16,17,21,23,31,32,33,34,38,40,42,49,50,58,59,68,71,74,91,92,96,101,102,103,104,106,112,134,138,139,149,152,154,160,161,163,166,168,170,172,179,180,182,184,185,187,188,190,191,194,195,196,203,216,218,222,234,236,238,239],assump:[9,10],assumpt:[2,3,4,8,9,11,12,14,15,23,24,26,31,34,36,38,39,57,59,62,63,68,84,106,146,151,172,180,181,184,187,189,190,195,203,207,227,238],assumptionkei:8,assumptions0:32,assumptionscontext:[8,9,10],assur:[71,168],ast:[32,57,172],asterisk:2,astr:14,astraw:0,astro:0,astronomicalcurios:0,astrophys:142,astrophysicist:143,asym2:196,asymmetr:[33,48],asymmetri:191,asymp:179,asymptot:[32,58,79,230],asymptotic_expans:32,atamanovskii:0,atan2:[12,34,39,113,172,214],atan:[12,34,36,39,43,48,56,59,95,107,108,169,172,174],atanh:[39,169,172,182],atbash:33,aterrel:0,atharva:0,atiyah69:[160,167],atiyah:167,atkinson:23,atol:15,atom:[15,24,59,62,63,81,140,163,169,172,189,190,195],atom_nam:172,atomic_mass_const:146,atoms_t:172,atop:[37,40,174,182],attach:[26,58,72,74,87,157,202,204,208],attack:33,attain:[13,218],attatch:24,attempt:[15,23,28,30,32,36,37,44,58,59,68,71,84,86,134,163,174,179,181,184,185,187,189,190,191,201,226,231,238],attent:[13,23,38],attenu:111,attr:15,attr_param:15,attribut:[2,9,10,14,15,23,24,32,40,41,42,45,46,47,48,65,68,73,75,85,87,88,89,91,97,104,107,128,133,137,144,148,149,154,157,159,160,163,164,172,184,185,195,196,202,204,208,211,217,225,234],attributeerror:[32,68,190,208,235],aueb:0,aug:[155,190],aug_assign:15,augment:[2,15,68,69,87,101,102,106,170,189,190,208,239],augmentedassign:15,augsburg:0,augument:68,august:[187,205],augustu:33,austin:[0,236],author:[0,1,2,71,82,125],authors_upd:0,auto:[3,13,32,33,60,159,166,168,172,184,187,191],auto_int_to_integ:60,auto_kei:33,auto_numb:73,auto_symbol:[60,73],autoclass:[2,11],autocomplet:3,autocorrel:33,autodetect:[187,188],autodoc:2,autoexpand:[3,184],autofunc:15,autofunct:2,autogener:119,autolev:[0,82,94,100],autom:[15,38,72,181,202,233],automat:[0,2,3,14,15,16,24,32,34,35,36,37,38,39,40,45,47,51,57,58,60,62,69,71,73,74,87,92,94,98,125,127,128,137,139,152,156,159,160,163,164,165,168,169,172,175,179,181,182,184,185,187,189,190,195,196,201,202,203,218,223,230,231,233,234,237,238,239],automatiqu:169,autonom:187,autos:[24,69,70],autoscal:159,autosimplif:[32,181,184],autowrap:[57,72,195,203,206],auxiliari:[15,59,87,92,101,202],auxiliary_circl:42,auxiliary_eq:[87,98],av22:0,avail:[2,3,5,14,15,23,24,31,32,37,40,57,59,68,69,72,73,92,103,106,163,164,166,168,172,173,178,180,182,184,185,189,190,191,192,195,196,201,207,208,213,214,231,236,237],availa:214,averag:[0,49,59,71,166,191],avi:0,avich:0,avoid:[2,16,32,33,38,58,59,62,70,73,95,103,133,156,157,161,163,168,172,173,180,184,187,189,191,194,203,208,231,236],awai:[2,14,16,33,74,75,94,172],awang:167,awar:[2,3,13,32,36,62,68,182,191,208],awesomeay13:0,awhil:91,ax2p:185,axb:138,axc:138,axes:[42,74,111,136,149,157,158,192,195,214,215,217,220,222],axi:[7,25,37,38,42,43,45,46,48,54,58,59,65,68,74,83,85,92,94,95,97,98,99,103,106,107,108,111,112,136,149,151,152,154,156,157,159,190,214,215,218,220,223],axial:74,axial_forc:74,axial_stress:74,axiom:[23,160],axiom_of_power_set:180,axis_cent:159,axis_orient:[214,218],axis_orienter1:215,axis_orienter2:215,axis_orienter3:215,axisorient:[214,218,221],ayodeji18:0,ayodeji:0,ayush2001:0,ayush:0,ayushmalik779:0,ayushman:0,ayushmankoul4570:0,ayushsuhane99:0,azimuth:81,azzopardi:0,b11:106,b12:106,b13:0,b1prime:182,b21:106,b22:106,b6bius_funct:71,b6bius_inversion_formula:35,b_0:[28,33,37,182,185],b_1:[23,30,40,54,58,160,182,185,187,238],b_2:[23,30,40,54,182,187],b_S:28,b_cm:92,b_f:92,b_i:[23,28,30,58,160,182],b_ij:195,b_interv:180,b_j:[28,30,40,58,182],b_k:[23,30,33,37,40,174,175],b_m:[40,58,189],b_n:[33,37,61,160,175],b_op:103,b_q:[40,58,182,238],b_r:23,b_s:182,b_x:[149,151,157,196],b_y:[149,151,157,196],b_z:[149,157,196],baa:207,baayen:0,bab:20,babbag:33,babi:[37,71,207],babu2378:0,babu:0,bachmann:0,back:[1,14,15,28,31,33,38,40,47,48,54,56,58,59,60,63,71,72,133,153,156,163,165,168,170,172,182,187,189,192],backcolor:[60,153],backend:[15,57,60,72,73,153,169,202,208],background:[40,60,100,153,156,236],backslash:[2,32,172],backtick:2,backtrac:172,backtrack:30,backward:[13,63,68,172,207,226,238],bad:[31,71,141,172],badli:23,baij:139,bailli:71,baji:139,bakov:0,balanc:[33,105,160,191,201],ball:0,balwani:0,bamba:0,ban275:68,banana:207,band:[63,70],banga:0,bangashipra:0,bao:0,baokar:0,bar:[15,40,128,134,210],bar_10:134,bar_4:134,bar_5:134,baranski:0,barbosa10:0,barbosa:0,bardhan:0,bare:[33,87],barei:68,bareiss:68,barn:40,barrett:0,barri:[0,207],barrier:13,baruchel:0,barun:0,base10:184,base1:28,base2:28,base2a:28,base:[2,3,5,9,10,13,15,16,21,22,23,28,29,30,32,33,35,37,38,39,40,43,45,48,55,57,59,60,61,65,68,69,71,72,85,92,94,106,107,108,117,119,123,124,128,134,135,137,139,141,144,145,147,149,151,153,154,157,158,159,162,163,164,165,166,167,168,172,174,176,179,180,181,182,184,185,187,189,191,194,195,196,201,202,203,204,205,207,208,209,214,216,217,220,234,238],base_a:28,base_char:74,base_dim:141,base_f:28,base_i:28,base_id:[160,164],base_oneform:34,base_ord:30,base_req:15,base_scalar:34,base_seq:209,base_set:180,base_unit:147,base_vector:[34,214],basebackend:159,basecovarderivativeop:34,basedyad:[214,217],baselin:172,basenam:[201,202,203],basepolynomialerror:166,basescalar:[218,220],basescalarfield:34,baseseri:159,baseswap:23,basevector:[214,217,218],basevectorfield:34,basi:[32,34,61,65,68,97,99,124,133,134,136,139,141,144,147,148,149,154,156,158,160,164,165,168,171,182,184,189,190,192,196,216,217,220,236],basic:[2,4,7,9,14,15,16,20,23,27,30,31,35,38,48,50,55,56,57,58,62,63,66,67,82,92,101,102,104,106,107,113,123,137,144,147,154,155,157,159,160,162,164,165,166,169,170,172,173,179,184,185,187,188,189,190,191,201,203,207,208,212,219,220,221,230,231,232,236],basic_orbit:[23,30],basic_root:61,basic_stabil:23,basic_transvers:[23,30],basileiosk:0,basis_st:124,basler:0,basti:0,bastian:0,basu:0,bateman:40,batista:33,batkovich:0,batman:33,battl:233,batya239:0,bavish:0,bavishkulur:0,baz:15,bb1:184,bb2:184,bbp_pi:71,bbra:139,bby:207,bc_deflect:[74,75],bc_slope:[74,75],bcd:207,bch:33,be1:184,be2:184,bead:207,beam3d:74,beam:[48,82,108,111],beamparamet:108,beams3d:74,bean:0,bear:2,beat:33,becam:[33,100],becaus:[2,3,5,6,11,15,24,31,32,33,38,44,48,49,57,58,59,66,68,69,71,73,92,95,119,127,139,141,144,156,159,160,163,164,166,168,169,171,172,175,179,182,184,185,187,188,189,190,201,202,204,208,210,217,230,231,233,234,235,237,238,239],beckerweispfenning93:166,becom:[1,2,3,23,28,31,32,33,36,39,55,60,68,73,153,156,160,161,163,169,172,175,181,187,190,191,196,210,216,218,226,238],bee:210,been:[3,13,15,16,23,24,25,28,31,32,33,44,58,59,68,71,72,73,87,92,94,100,103,104,112,124,134,136,144,148,154,155,156,157,160,163,164,169,170,172,174,179,182,184,188,189,190,192,201,203,207,210,217,220,231,234,235,236,238],befor:[2,3,5,15,23,26,28,32,33,40,60,63,68,71,73,75,84,88,92,94,95,97,98,103,106,108,139,148,153,157,161,163,168,172,173,179,180,184,185,187,189,190,191,201,204,207,217,233,234,236,238],beforehand:[87,203],begin:[2,3,32,33,37,38,40,58,63,65,68,71,95,101,102,103,104,135,144,149,157,158,172,182,185,187,188,190,191,201,210,231,233,235,238],behav:[3,11,13,32,33,38,40,71,168,180,184,189,192,197,235],behavior:[3,23,32,40,73,84,100,103,134,160,161,168,172,173,177,179,181,184,204,208,231],behaviour:[58,62,85,166,169,175,178],behind:[80,82,92,103,143,162,181,184,187,190,231],bei:184,being:[2,3,11,13,15,23,24,30,31,32,33,38,40,42,44,45,48,49,58,62,63,68,71,74,75,84,91,92,94,103,104,106,107,135,144,151,154,156,157,158,159,160,162,163,168,169,172,181,182,184,185,187,188,189,190,191,196,205,207,208,214,218,222,233,235],beings:2,beishuizen:0,belaso:33,believ:71,belittl:2,bell:[0,39,123,174,207],bell_numb:37,bell_seq:174,bellnumb:37,bellpolynomi:37,belong:[2,11,13,14,23,28,32,55,68,139,149,156,159,160,162,163,166,168,179,180,184,185,190,196],below:[2,3,5,13,14,15,22,23,32,33,37,39,40,41,42,48,49,55,57,58,59,63,68,70,71,74,75,85,87,91,92,94,95,96,101,102,103,106,133,139,144,149,157,158,159,160,168,172,173,175,181,184,185,187,188,190,201,203,208,210,218,220,223,235,236,238],below_fermi:[40,139],ben:[0,68],benchmark:[94,105],bend:[42,48,74,76,82],bendik:0,bending_mo:[74,75],beneath:69,benedikt:0,benefit:[1,15,84,103,153],bengt:[13,226],benini:191,benini_distribut:191,beninidistribut:191,benjamin:0,benjaminrk:0,benjaminwolba:0,bentkamp:0,berkelei:[0,68],berkowitz:68,berlekamp:166,berlin:0,bernardino:0,bernd:68,berndt:0,bernhard:0,bernoulli:[39,40,172,189,191],bernoulli_differential_equ:187,bernoulli_distribut:191,bernoulli_integr:187,bernoulli_numb:37,bernoulli_polynomi:37,bernoulli_process:191,bernoullidistribut:191,bernoullinumb:37,bernoullipolynomi:37,bernoulliprocess:191,berri:0,bertrand:71,besid:[32,166,189],bess:[2,40,172,184,187,191],bessel:[2,38,39,50,59,168,184,187,191,233],bessel_funct:[2,40],besselbas:[2,40],besselj:[2,40,54,172,184,187,233],besseljzero:40,besselk:[2,40,172,191],besselsimp:183,best:[3,4,5,32,40,58,59,72,138,159,169,172,181,182,184,187,190,194,202,231,236,237,238],best_hint:187,beta:[2,3,15,23,39,59,136,149,158,169,172,191],beta_:23,beta_distribut:191,beta_funct:40,beta_prime_distribut:191,beta_r:182,betabinomi:191,betabinomialdistribut:191,betadistribut:191,betafunct:40,betanoncentr:191,betaprim:191,betaprimedistribut:191,better:[2,3,14,15,24,32,36,40,59,62,92,119,143,147,159,162,163,164,175,179,180,181,182,187,188,189,190,191,202,207,208,233,238],between:[14,15,22,23,24,26,30,32,34,37,40,42,44,45,46,47,48,49,59,61,62,65,66,68,71,72,73,77,79,82,89,91,92,97,99,103,104,106,107,108,111,112,118,125,127,128,129,133,136,137,138,139,142,143,144,149,150,151,152,154,156,157,159,160,162,165,166,168,172,174,184,187,188,189,190,191,192,208,214,216,217,220,222,225,231],betweensubtleshadingandtheabsenc:33,bewar:[13,40],beyer:207,beyond:[26,48,71,103,160,163,181,184,235],bhanushali:0,bharadwaj:0,bharat:0,bharath:0,bharatraghunthan9767:0,bhaskar:0,bhat2097:0,bhat:0,bhatt:0,bhattacharya:0,bhautik:0,bhavya17037:0,bhavya:0,bianchi:196,bibliographi:19,bibtex:1,bicycl:[93,100,105],bidiagn:68,bidiagon:68,bidiagonal_decomposit:68,bifid5:33,bifid5_squar:33,bifid6_squar:33,bifid:33,bifid_ciph:33,big:[3,17,32,34,71,106,119,158,171,172,179,226,230,231],big_trig_ident:3,bigger:[15,32,37,182,187,238],bigl:175,bigr:175,biholomorph:58,biject:[24,26,33,63,160],bilal:0,bilalakhtar:0,bilater:59,bill:0,bin:[0,2,60,172,201,207],bin_prefix:145,bin_to_grai:17,binari:[0,3,11,15,17,27,32,33,59,71,72,133,145,160,163,185,202,205,207],binary_cal:202,binary_func:[15,202],binary_funct:[15,72,202],binary_partit:207,binarysakir:0,bincoeff:172,bind:[15,172,202],bind_c:15,binet:36,binom:[37,71,191,238],binomi:[31,36,39,40,71,168,172,177,184,187,191,207,238],binomial_coeffici:[37,71],binomial_coefficients_list:71,binomial_distribut:191,binomialdistribut:191,binop:15,bio:33,biproduct:160,bisect:[71,168,189],bisector:[45,48],bisht:0,biswa:0,bit:[0,2,14,15,17,32,33,35,62,63,68,71,133,144,160,168,182,185,190,201,207,217,218,226,237],bitcount:32,bitlist:[17,27],bitlist_from_subset:27,bitmap:172,bitmask:35,bitsjamadagni:0,bitstr:17,bitwis:[35,62],bitwiseand:172,bitwiseor:172,bitwisexor:172,biu:191,bivari:[166,171,191],bixk:59,bizarr:190,bjodah:0,bket:139,black:[60,124,135,153,172,237],blacklist:201,blair:0,blais:33,blajer1994:[103,105],blajer:105,blank:[2,88,159],blaue:0,blazingli:169,bleicher:71,blindli:182,bliss:0,blob:[2,59],block:[2,15,21,23,33,63,67,68,91,92,94,149,157,185,208,217,236,238],block_:23,block_collaps:65,blockdiagmatrix:[65,68],blockmatrix:[63,65,68],blockwis:68,blog:[4,15,37,63,185,190],blogpost:58,bloomston:0,blouvshtein:0,blow:71,blowup:63,blue:[159,172],bluebrook:0,bluewin:0,blueyond:0,blurb:191,blyth:0,bmatrix:[63,65,68,95,101,102,103,104,149,157,185],bmcg0890:0,bmd:48,bmod:[33,172],bmtwmg:33,bob:33,bodi:[3,15,58,73,82,83,84,87,89,91,92,94,95,97,100,101,106,107,142,148,149,152,156,157,214,215,221],body1:89,body2:89,body3:89,body_b:92,body_b_f:92,body_inertia:85,body_orient:[214,215,218],body_orienter1:215,body_orienter2:215,body_orienter3:215,bodyd:[97,98,99],bodyfork:94,bodyfram:94,bodylist:[87,97,98],bodyorient:[214,218,221],bodywf:94,bodywr:94,boer:144,bold:172,bold_nam:172,bollweg:0,bonazzi:[0,1],bonn:16,book:[14,23,33,38,87,92,104,105,124,167,171,172,236],books_articl:191,bool1:62,bool2:62,bool:[15,28,30,32,33,35,38,59,62,63,64,65,66,68,69,71,73,88,123,151,159,168,170,172,174,179,180,184,186,189,191,202,203,207,208,214,216,231],bool_:15,bool_map:62,boolalg:[32,62,191],booleanfals:62,booleantru:62,boolian:184,boost:15,boost_mp50:15,border:[42,48],bori:0,borisova3:0,borrow:205,bose03:167,bose:167,boson:139,bosonbra:139,bosonicbasi:139,bostan:169,both:[1,2,3,6,13,14,15,24,27,28,30,31,32,33,37,38,40,47,56,58,59,62,63,68,71,74,75,79,87,94,95,103,111,112,123,129,136,139,144,149,152,156,157,159,160,161,163,164,166,168,170,171,172,174,179,180,181,182,184,185,187,189,190,192,195,201,203,207,208,214,215,225,230,233,234,236,238,239],bother:[40,234],bottom:[8,22,23,32,33,48,63,68,70,91,168,172,181,223,236],bottom_fac:223,bouafia:0,bound:[11,13,15,16,31,32,41,42,43,45,47,48,59,64,71,137,166,168,172,178,189,190,191,195,205,210,214],bound_symbol:[32,59],boundari:[43,45,74,75,152,169,180,187,191],boundary_condit:74,bounded_pareto_distribut:191,boundedpareto:191,bourquin:0,box:[82,119,124,126,135,137,223,236],boyl:0,bpp:157,bpr:33,bpsw:71,bra:[122,127,128,129,131,133,134,137,139],brabas:[127,128,134,137],brace:[2,37,92,172],bracelet:[2,207],bracket:[3,24,32,40,137,139,149,172],brad:0,bradi:0,bradlei:0,brain:205,branch:[13,32,37,38,39,40,57,169,182,190,200,207,234,238],branchpoint:58,brandei:191,brandon:0,brandonwillard:0,brass:33,braun:187,breach:[58,182],breadth:[15,191],break_:15,breaker:32,breaktoken:15,brebenar:0,bremen:14,brent:[71,205],brett:0,brew:2,brewster:112,brewster_angl:112,brgc:17,brian:[0,1,125],brianski:0,bridg:[66,92,208],brief:[0,15,190,201,222],briefli:[161,166],brien:[23,30],bring:[2,58,87,98,175,184,235],brito:158,brlink:0,broad:[32,234],broadcast:[15,72,172,195,202],broader:163,brocard:71,broken:[21,32,156,172,187,210],bromborski:0,bronstein93:[167,168],bronstein:[59,167,168,174,189],brought:[103,191],brown71:[166,167],brown78:[166,167],brown:[0,166,167],brownian:191,browntraub71:[166,167],browser:[2,236],bruce97:167,bruce:167,bruceh15:0,brute:[181,185,226],bryan:[149,214,215],brychkov:[58,182],bsd:[0,1,224,233],bsdz:0,bsg:[23,28,30,196],bsgs_direct_product:28,bspline:40,bspline_basi:40,bspline_basis_set:40,btdow:0,bubbl:[0,123],buchberg:[161,166,167,168],buchberger01:[167,168],buchert:0,buck2:0,buck:0,bug:[2,5,13,33,57,163,180,187,190,231],build:[9,10,15,32,34,40,62,106,133,144,149,157,160,165,168,169,179,191,217,225,229,231,234],build_expression_tre:179,build_opt:166,built:[1,2,3,8,10,16,32,38,59,92,106,161,164,172,173,177,187,190,191,196,205,207,208,225,233,234,237],builtin:[32,164,172,180,237],buitinck:0,bulat:0,bulk:[166,182],bullet:2,bulletin:59,bunch:168,burden:172,burkart:0,burtonl:24,busi:0,bussonni:0,bussonniermatthia:0,butler:[28,196],button:[2,159,202,236],bvar:237,bwh:0,bxc:138,bxy:185,byagowi:0,byom:0,bypass:187,bytesio:172,c77:71,c89:[15,172,203],c89codeprint:172,c99:[15,172,203],c99codeprint:[15,172],c_0:[33,55,226],c_1:[33,55,58,179,182,187,226],c_2:[58,179,187,226],c_3:[58,187],c_4:58,c_5:58,c_6:58,c_7:58,c_8:58,c_9:58,c_code:[15,203],c_explicit:195,c_g:23,c_header:[15,203],c_i:[58,179,182,187,226],c_inherit:195,c_j:[54,58,182],c_k:33,c_kn:71,c_n:[37,40,61,187],c_name:[15,203],c_r:[16,182],c_t:33,c_u:58,c_w:182,c_x:157,c_xr:34,c_xy:34,c_y:157,c_z:157,ca10:0,cach:[37,57,58,160,168,172,199,204,205],cacr2006:33,cacr:33,cadabra:196,caesar:33,caesar_ciph:33,caesarsmethod:33,caeser:33,cafe:59,cafeee:0,cake:0,calc_transform:68,calcul:[3,7,13,16,24,30,32,33,34,35,36,38,40,42,44,46,48,49,59,63,65,68,71,75,81,84,87,91,94,95,108,111,112,115,118,134,135,136,137,139,140,148,149,150,151,152,154,156,157,158,159,160,163,166,168,169,174,179,187,191,194,202,203,208,214,216,220,221,222,226,235,237],calculate_seri:179,calculu:[4,10,32,37,57,59,68,106,154,155,181,191,219,220,221,232,236],calei:0,caleyreuben:0,call:[2,3,9,10,11,14,15,16,17,18,21,22,23,24,30,32,33,35,36,37,38,39,40,42,47,48,50,55,58,59,61,62,63,64,65,66,68,69,70,71,73,74,75,79,84,92,94,95,103,104,129,131,134,139,144,149,154,156,157,158,159,160,161,163,164,166,168,169,170,171,172,174,179,180,182,184,185,186,187,189,190,194,196,199,201,202,203,204,205,207,208,214,216,217,220,222,225,226,230,231,233,234,235,237,238,239],callabl:[3,15,23,68,124,172,173,184,199,202,203,207,208,209],callback:212,calori:144,caltech:0,calulc:214,calvin:0,calvinjayross:0,cambridg:[167,185],came:[100,234],camera:159,cameron:0,can:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,42,43,44,45,46,48,49,50,51,54,55,56,58,59,60,61,62,63,64,65,66,68,69,70,71,72,73,74,75,77,79,81,84,85,86,87,88,89,91,92,95,98,100,101,102,103,104,106,107,111,112,113,118,120,123,127,128,129,133,134,135,136,137,138,139,141,142,143,144,145,146,148,149,152,153,154,156,157,158,159,160,161,163,164,166,168,169,170,171,172,173,174,175,178,179,180,181,182,184,185,187,188,189,190,191,192,194,195,196,197,201,202,203,205,207,208,210,211,216,217,218,219,220,222,223,224,225,226,228,229,230,231,233,234,235,236,237,238,239],can_split:73,can_transf_matrix:141,canada:167,canberra:47,canberra_dist:47,cancel:[3,15,32,36,40,48,58,59,68,71,80,163,164,166,168,171,184,189,226,233],canderson:0,candid:[32,68,71,166,184],candidat:23,canfield:205,cannon:16,cannot:[2,3,5,8,9,10,11,12,13,15,24,29,31,32,34,36,38,42,44,45,47,49,59,61,64,66,68,69,71,134,142,144,156,157,159,164,166,168,172,179,180,184,186,187,189,190,192,199,201,207,214,215,225,233,234,235,238,239],cano:0,canon:[2,15,17,21,23,24,28,32,33,34,38,48,58,62,68,71,73,87,116,120,139,141,144,146,166,173,180,181,184,189,191,196,207,238],canon_bp:196,canonic:[19,181,196],canonical_eq:187,canonical_form:191,canonical_fre:28,canonical_od:187,canonical_system:187,canonical_vari:32,canonicalize_na:28,canonicalz:33,canopi:5,cantilev:[74,75],cantor:166,canva:159,cap:[13,33,36,139,180,190],capabililti:32,capabl:[13,15,32,36,44,58,71,74,75,100,106,159,169,172,190,233,236,238,239],capit:[31,33,187],capital_pi_not:31,captur:[32,207],car2d:34,cardiff:0,cardin:[23,24,27,160,180],cardona:0,care:[3,23,32,40,59,68,74,84,92,103,149,157,163,184,185,187,189,190,194,202,229,231,233],carefulli:[32,149,166,174],carei:0,carl:[0,71,205],carlo:[0,23],carmichael:[33,71],carmichael_funct:71,carmichaelfunct:71,carri:[14,15,32,131,137,144,160,163,166,169,170,208],carsten:0,carstenknol:0,carstimon:0,cart:206,cartan:61,cartan_matrix:61,cartan_typ:61,cartanmatrix:61,cartantyp:61,cartantype_gener:61,cartesian:[34,74,82,107,112,126,129,134,154,159,160,180,190,207,217,218,220,221],cartesian_product:180,cartesiancomplexregion:180,cas:171,casevh:0,casoratian:68,cass:233,cast:[15,65,231],cast_check:15,cast_nocheck:15,casu:168,caswel:0,cat:[14,148],catalan:[39,172],catalan_numb:37,catalannumb:[37,172],catch_warn:199,catchal:238,catchmrbharath:0,categor:[68,160],categori:[4,57,160],cathcart:0,cauchi:[40,58,59,191],cauchy_distribut:191,cauchy_principal_valu:59,cauchydistribut:191,cauchyprincipalvalu:59,caught:187,caus:[0,2,5,32,33,36,38,68,69,92,98,103,156,172,181,187,188,189,205,235,236],caution:[24,32,38,184],caveat:[32,57,168,231],cavendish:0,caylei:[26,63],cba:[13,23,207],cbead:21,cbhaavan:0,cbm:[0,40,59],cbrt:[15,39,172],cbuehler:0,cchuang:0,ccode:[15,172,195,203],ccodegen:203,ccordoba12:0,ccw:[45,48],cdf:191,cdhw73:16,cdir:32,cdot1:238,cdot2:238,cdot:[16,31,33,37,40,50,54,55,58,63,65,68,71,80,83,104,144,154,156,157,158,160,161,168,175,179,182,187,189,192,219,220,233,238],ceca:191,cedrictravelletti:0,ceil:[33,39,71,172],ceilingfunct:38,cell:14,celler:23,center:[2,13,23,31,32,42,46,48,49,59,68,85,89,92,94,97,99,104,106,112,156,159,172,180,223,226],center_:23,center_of_mass:106,centimet:146,centr:[14,29,159],central:[4,23,29,40,42,48,85,89,104,159,185,191],central_inertia:[85,89],centralizer_and_norm:23,centralmo:191,centric:159,centripet:94,centroid:[42,48,49,74],centuri:[33,160],cep849r:37,certain:[2,5,12,14,15,23,30,32,36,40,48,58,59,71,73,103,149,150,160,163,166,172,173,179,182,184,185,187,190,191,203,204,208,214,216,222,238],certainli:[44,73,205,226],certik:0,cexpr:191,cezari:0,cff:[166,168],cfg:[166,168],cfm:[31,167],cfrac:238,cfunction:57,cfunction_format:172,cfunction_str:[15,172],cg_simp:118,cgate:123,cgi:214,cgt:23,cgtnote:23,cgu:0,ch4:92,ch5:92,ch6:92,chaganti:0,chahal:0,chai:0,chain:[15,23,28,32,40,49,72,156,191],chaitanya:0,chak:0,chakpongchung:0,chakrabarti:0,chakrabarty100:0,chakraborti:0,challeng:100,chalmer:0,chalodiya:0,chanakya:0,chanc:[3,60,182,191,200,234],chancellor:0,chancellor_arkanto:0,chanda:0,chandra:0,chang:[1,2,3,5,14,15,16,23,24,28,31,32,33,36,38,46,47,58,59,68,71,73,74,89,92,94,97,113,124,134,144,145,148,154,156,157,158,159,160,161,162,166,168,169,172,179,180,181,182,184,187,189,190,191,192,201,207,208,218,220,229,231,234,236,237],change_index:31,channel:73,chao:[0,167],chapman:[16,22],chapoton:0,chapter11:191,chapter3:172,chapter4:172,chapter:[2,23,40,71,92,167],chapui:71,charact:[2,32,33,58,60,73,119,149,153,172,187,201,203,210,231,233,237],character:[74,75,154,157,179,191,196,222],characteris:191,characterist:[1,34,50,68,156,162,164,166,167,187,189,235],charalampo:0,charan:0,charg:[154,222],charl:23,charles_marsh_continuous_entropi:191,charlesnwood:0,charlott:0,charpoli:[68,162,235],chart:[34,159],chat:5,chattopadhyai:0,chau:0,chaudhari:0,chauquocbao0907:0,cheap:[32,71],cheat:68,cheb:187,chebyshev1_rul:59,chebyshev2_rul:59,chebyshev:[2,13,32,59,166,168],chebyshev_polynomi:40,chebyshev_root:40,chebyshevpolynomialofthefirstkind:40,chebyshevpolynomialofthesecondkind:40,chebyshevt:[2,40,172],chebyshevt_poli:[40,168],chebyshevt_root:40,chebyshevu:[40,172],chebyshevu_poli:[40,168],chebyshevu_root:40,check:[2,3,9,10,13,14,15,21,23,24,25,30,31,32,33,37,40,44,55,58,61,62,63,65,68,71,79,86,92,103,106,119,127,139,141,142,147,154,155,159,160,162,163,164,166,168,174,180,182,184,187,188,189,190,191,194,195,201,203,216,220,225,226,231,238],check_and_join:33,check_output:201,check_sqf:168,check_symmetri:63,checker:201,checkout:14,checksol:189,chello:0,chelyadinov:0,chemistri:144,chemoki:0,cheta:0,chetna:0,chi:[3,40,58,111,172,182,191,196],chi_distribut:191,chi_squared_distribut:191,chiamiov:0,chiarawongs:0,chidistribut:191,child:[163,205],children:[33,163,205,207],chin:59,china:68,chines:[33,71,166],ching:0,chinoncentr:191,chintap:0,chisquar:191,chiu:0,choic:[15,24,40,58,59,72,103,135,144,148,149,156,166,168,172,184,233],choleski:[64,68,69],cholesky_solv:[64,68,69],chong:0,choos:[2,23,28,32,34,37,68,71,74,75,95,104,139,143,149,156,157,165,168,169,172,179,181,182,187,188,191,201,207,238],chop:[32,36,40,63,68,189,229],chord:42,chose:33,chosen:[23,24,33,34,46,68,71,74,107,141,144,159,160,164,166,172,179,182,187,191,201,214],chou:0,chr:0,chri:0,chrisconley15:0,christian:0,christiano:0,christina:0,christoffel:34,christoph:[0,1,214],christopherjonduplessi:0,chu:0,chua:0,chula:24,chung:0,cia:33,cimento:[144,158],cimrman3:0,cimrman:[0,1],cipher:33,ciphertext:33,circ:[14,43,49,58,65],circ_plot:123,circl:[2,32,42,43,44,46,47,48,49,58,112,119,159,190,214,216,223],circuit:[32,82,123,126],circuit_plot:119,circuitplot:119,circular:[3,111,166],circumcent:48,circumcircl:48,circumfer:[32,42],circumradiu:48,circumscrib:48,circumst:[40,233],cisco:0,citat:[2,31,167],cite:[2,4],cites:[167,184],citeseerx:[69,167,181],citi:185,cits7209:37,civ18:0,civil:[33,74],civita:[34,40,196],cjwright4242gh:0,ckaustubhm06:0,claim:[33,157,182,190],clair:0,clairaut:187,clang:73,claredon:63,clarifi:2,clariti:[2,23,152],clark:0,clarku:191,clash:[6,32,68],class_kei:32,class_nam:32,classic:[13,38,40,68,82,125,141,149,157,160],classif:[4,32,187,188,227],classifi:[68,163,187,188,190,191,225],classify_sysod:187,classmethod:[7,9,10,15,17,21,23,24,26,27,32,38,39,40,47,63,68,125,136,137,139,162,164,168,172,180,196,201],classnam:2,claus:62,cld72:0,clean:201,cleaner:[84,106,187,190],cleanest:218,cleanup:168,clear:[2,9,22,32,58,61,156,157,159,164,166,168,182,189,190,196,201,205,222,231],clear_cach:168,clear_denom:[164,168],clear_glob:201,clearer:217,clearli:[2,71,157,163,182,235],clebsch:[82,126,136,158],clebsch_gordan:158,clebsh:118,clemen:0,clemson:191,cleve:63,click:[57,236,238],clickabl:2,client:[32,205],clo:164,clock:[38,181],clockwis:[44,59,63,74,75],clockworklab:0,clone:[5,166],close:[2,13,15,31,32,36,37,40,48,50,58,59,61,79,159,160,161,167,180,189,190,203,230,238],closed:180,closer:[94,190,234],closest:[32,45],closing_angl:45,closur:[23,29,55,119,180],cloudi:191,cloudlinux:0,cls:[3,15,23,32,39,59,63,139,152,164,187,195,204,207,219,230,237,239],clunki:6,clutter:2,clyre:0,cmckai:0,cmod:135,cmoment:191,cmplx:[15,172],cname:203,cnf:62,cnode:57,cnot:123,cnotgat:123,coalesc:205,coc:112,cock:0,code:[0,3,4,5,6,16,19,23,26,27,32,33,34,36,39,40,44,57,58,59,60,68,71,72,73,85,92,94,98,100,104,106,107,133,139,148,153,156,158,159,160,161,163,166,171,182,184,187,189,190,191,195,198,199,201,202,203,206,207,208,217,226,231,233,236,237,238],code_gen:[202,203],code_text:172,codebas:163,codeblock:[15,73],codegen:[57,72,172,202,206],codegenerror:203,codemastercpp:0,codeprint:15,coder:0,codewrapp:202,codi:0,codirect:149,codomain:[14,160],coef:[92,106],coeff:[32,34,106,164,168,178,184,187,189,196,238],coeff_bel:174,coeff_monomi:[32,168],coeff_mul:178,coeffcient:[164,166],coeffici:[2,10,13,15,31,32,34,36,37,40,45,50,51,54,55,58,61,65,68,69,71,80,82,87,92,112,126,136,144,158,160,161,162,163,164,165,168,169,170,171,174,175,178,179,182,184,185,186,187,188,189,190,191,196,217,220,226,234,238],coerc:[32,103,166],coercibl:164,coercionfail:[163,166],cof:68,cofactor:[32,68,164,166,168],cofactor_matrix:68,cohen:0,cohentanugi:0,coher:[115,141,147],coherent_st:115,coin:[180,191],coin_flip:191,coincid:[48,68,70,92,160,214,218,231],coincis:160,coker:160,cokernel:160,col1:68,col2:68,col:[63,64,65,68,69,70,106,235],col_del:[63,68,235],col_insert:[63,69,235],col_join:[63,68,69,94],col_list:69,col_matrix:106,col_op:[63,64,69],col_swap:[63,64,69],colin:[0,24],colistet:0,collabor:0,collaps:[32,133,184],collect:[2,14,15,23,32,49,57,59,71,74,91,98,106,139,146,158,164,168,181,182,187,191,201,224,228],collected_expr:238,collected_word:22,collector:19,colleen:0,colleencle:0,colleg:0,collid:[6,196],collin:[166,167],collinear:[42,44,46,47,48,159],collins67:[166,167],collis:[32,69,70],colmatrix:106,colon:[2,32],color:[2,57,60,153,172,201,207,237],colost:23,colour:2,colsep:68,colslist:63,columbia:191,column:[11,14,15,16,60,63,64,65,68,69,70,87,91,94,104,134,141,149,153,158,162,172,187,190,195,214],columnspac:68,com:[0,2,5,11,13,23,25,26,32,33,35,36,37,38,40,42,48,49,58,59,63,68,71,158,167,175,177,180,181,184,185,187,190,191,207,210,235],comb_explicit_rh:[91,107],comb_implicit_mat:[91,107],comb_implicit_rh:[91,107],combin:[2,3,14,32,36,37,40,52,59,61,62,71,75,85,91,100,107,118,125,133,134,136,137,138,142,144,145,160,161,163,164,166,168,172,173,181,182,184,185,187,189,191,192,205,207,229,231,234],combinator:[4,16,17,18,20,21,22,23,24,25,26,27,28,29,30,37,57,65,71,174,192,196,205,207,233,238],combinatori:[17,24,31,32,39,40,174,183,207,209,238],combint:63,combo:62,combsimp:[31,32,37],come:[5,23,28,30,31,32,38,40,58,59,68,72,84,92,94,101,142,157,160,163,166,182,185,187,190,199,201,208,231,233,234,236,238],comer:0,comfort:[71,72],comm:[120,139,196],comm_i2symbol:196,comm_symbols2i:196,comma:[2,3,15,32,172,208,231],command:[2,3,5,15,36,60,92,101,106,153,159,172,201,202,237],commaoper:15,comment:[2,15,23,92,94,169,172,203,207],commerci:[1,233],common:[2,3,10,13,15,23,24,32,33,38,40,43,46,49,57,59,65,67,68,71,72,85,88,100,104,106,111,144,149,155,156,157,159,160,161,162,163,164,165,166,167,168,170,174,180,181,182,183,185,187,191,202,203,207,208,220,222,229,231,233,234,235,236,237,238],common_prefix:207,common_suffix:207,commonli:[2,24,37,40,59,68,84,156,161,187,220],commun:[2,5,158,187,189,191,235],communication_class:191,commut:[10,14,23,24,28,32,34,55,59,68,82,116,123,126,127,128,138,139,144,151,157,161,164,165,166,167,168,172,179,180,182,187,196,234],commutative_diagram:14,commutative_part:32,commutativehandl:11,commutativepred:11,commutes_with:[24,196],comp:[16,187],compact:[26,32,77,106,137,153,168,172,189,205],compactif:32,companion:[63,65],companionmatrix:65,compar:[3,13,15,24,29,32,38,49,62,68,71,72,94,142,146,163,166,168,169,172,177,179,184,187,190,192,195,201,207,231,234,238],comparison:[15,31,32,62,68,92,160,171,189,201,207],compat:[2,15,40,57,60,63,68,72,84,141,146,153,159,162,164,168,172,194,201,203,208,225],compil:[8,15,60,72,84,106,153,172,184,195,201,202,203,233],compileflag:[3,201],complement:[65,168,190],complementari:[2,40],complementset:180,complet:[2,3,10,15,32,33,34,36,38,39,40,48,58,59,68,71,84,87,88,95,100,106,125,128,129,157,166,168,169,173,179,184,185,187,190,191,201,203,210,233,234,238],complex128:15,complex64:15,complex:[2,3,7,10,12,13,15,23,32,33,35,36,37,39,40,44,54,58,63,64,68,69,71,72,73,79,84,92,106,108,112,122,125,127,128,139,148,149,157,161,162,164,165,168,172,173,177,182,184,187,189,190,191,200,203,225,238,239],complex_:15,complex_allow:203,complex_beam_paramet:108,complex_conjug:38,complex_el:11,complex_numb:11,complexbasetyp:15,complexel:[163,164],complexelementshandl:11,complexelementspred:11,complexfield:164,complexhandl:11,complexpred:11,complexregion:190,complexrootof:[68,168,187],complexspac:125,complextyp:15,compliant:15,complic:[2,3,15,23,31,33,34,36,37,38,40,58,59,65,100,101,139,157,163,166,169,171,182,184,191,194,195,203,205,208,210,230,231,234,235],compon:[14,15,28,32,34,47,59,65,68,80,89,100,104,110,111,136,141,148,149,154,155,156,157,158,159,160,161,168,170,191,195,196,205,207,214,216,219,220],componentwis:[160,172],compos:[14,33,95,103,141,143,144,156,160,164,168,169,172,174,184],composit:[10,14,21,23,24,32,33,50,52,59,71,74,164,166,168,171,184,190,204],composite_numb:32,compositedomain:164,compositehandl:11,compositemorph:14,compositepi:71,compositepred:11,composition_seri:23,compound:[32,57,137,176],compound_probability_distribut:191,compound_rv:191,compounddistribut:191,comprehens:[167,180,229],compres:68,compress:[23,68,70],compris:[23,33,65,89,104,107,168,207],comput:[1,2,3,4,5,7,8,13,15,16,17,19,21,23,24,26,27,28,30,31,32,33,34,35,36,37,38,40,47,51,54,55,56,57,59,61,63,65,68,70,71,73,75,79,82,84,87,88,91,92,94,97,100,106,123,124,125,133,138,139,141,143,144,148,150,154,156,158,160,161,162,163,164,165,166,167,168,169,174,175,177,179,180,181,182,184,185,187,189,190,191,200,202,205,207,214,215,216,217,218,219,220,222,226,229,230,231,232,235,238],computation:[28,87,88,202],computationfail:166,compute_explicit_form:91,compute_fp:174,compute_known_fact:8,compute_leading_term:32,comtet:174,comupt:187,conatin:191,concaten:[33,63],concav:[13,108],concave_funct:13,concentr:[75,191],concept:[23,94,157,163,165,172,190,194,222,236],conceptu:[144,160,222],concern:[2,13,16,31,32,36,71,154,159,161,162,163,171,172,173,184,185,189,202,203,205],concis:[2,106],conclud:[40,55,94,154,179,189,222],conclus:[14,32],concret:[4,14,24,32,37,38,57,59,61,68,71,92,144,164,172],concur:169,concurr:[45,46,169],concycl:47,cond:[38,58,59,180],conda:[2,5,73],condens:[68,190],condit:[0,15,23,32,34,38,40,50,51,54,55,56,57,59,62,68,71,74,75,79,86,88,94,100,103,106,108,152,158,169,172,175,182,185,186,187,189,190,191,195,238],condition_numb:68,condition_set:191,conditionaldomain:191,conditionset:[190,191,239],conduct:[2,110],cone:223,confederaci:33,confer:[72,224,236],confid:233,config:60,configur:[79,87,95,97,99,100,101,103,165,172],configura:106,configuration_constraint:[87,94,95,101],confirm:[23,71,187],conflict:[38,71,92,203],confluent:[40,182],conform:[32,190,194,195],confus:[2,32,37,62,112,157,161,168,190,229,230,231],confusingli:40,cong:[71,166],congruenc:[23,32,71,182,185],congruent:[166,182,185],conic:[42,185,214],conicis:160,conitinu:191,conj:172,conjectur:[71,166],conjg:172,conjug:[2,11,21,22,23,32,39,40,63,68,81,108,122,125,139,168,172,187,196],conjugaci:[16,23],conjugacy_class:23,conjugate_convent:68,conjugate_gauss_beam:108,conjunct:[62,159,182,201,238],conlei:0,conlist_coord:94,conlist_spe:94,connect:[26,33,34,47,48,68,72,74,94,160,161,170,187,207,214],connected_compon:[68,207],connected_component_:207,connected_components_decomposit:68,connector:75,connor:0,consec:23,consec_succ:23,consecut:[2,15,23,28,31,33,37,48,184,189],consensu:13,consequ:[11,32,161,163,231,238],consequenti:0,conserv:[32,87,102,150,216,221,222],conservative_field:[154,220],conserve_mpmath_dp:204,consid:[1,2,3,11,14,15,21,24,27,31,32,33,35,36,37,38,40,42,44,48,56,58,59,60,61,62,63,65,68,71,84,89,93,101,107,129,136,139,144,150,153,154,156,159,160,161,163,164,166,168,169,171,172,175,179,184,185,187,188,189,190,191,201,203,207,216,218,220,222,223,225,231,235,238],consider:[32,72,84,163,171,180,185,187,217],consist:[2,14,23,24,28,32,33,37,40,42,48,50,58,104,113,133,139,144,147,152,159,161,163,164,166,180,187,189,190,191,194,202,203,207,226,234,236],consol:[3,32,60,153,159,237],constanc:32,constant:[13,15,31,32,36,38,40,56,58,59,74,75,79,82,91,92,94,106,107,116,120,126,142,143,145,146,147,150,152,154,159,161,164,166,168,169,172,174,179,182,184,185,187,188,189,190,191,201,203,207,208,216,220,223,230,235,239],constant_problem:235,constant_symbol:91,constantin:0,constantli:179,constantrul:59,constanttimesrul:59,constitu:[42,48,89,149,178,214],constitut:[2,59,71,172],constrain:[87,95,102,106],constraint:[68,75,87,88,91,92,94,95,96,100,101,102,103,106,169,226],construct:[9,10,14,15,19,32,34,38,40,42,46,48,60,65,68,72,75,84,87,89,92,94,124,128,137,138,141,145,160,163,164,166,168,172,185,189,191,192,195,203,205,217,219,220,226,231,234,235,238],construct_domain:[162,163,164,168],constructor:[9,10,14,15,19,23,24,25,32,39,40,61,66,68,95,132,133,137,141,159,160,162,163,164,165,172,180,187,195,203,217,232,234],consult:16,consum:[2,15,40,88,103],contact:[0,48,94,96,97,98,99,156,194],contain:[2,3,6,8,9,13,14,15,16,23,24,28,30,31,34,35,36,38,40,41,43,45,46,47,48,49,57,59,61,62,63,64,65,66,68,69,70,71,72,73,74,76,78,80,85,87,88,89,91,94,95,103,104,106,107,108,109,110,112,113,114,126,129,131,134,136,139,148,157,158,159,160,161,162,163,164,166,168,172,173,174,179,180,182,184,185,187,188,189,190,191,194,195,196,198,199,201,202,203,204,205,206,207,208,210,214,216,230,231,235,238],contbound:166,content1:191,content:[4,15,32,33,57,67,161,164,166,168,171,172,198,203,206],contento:0,context:[2,8,9,10,32,34,40,59,62,92,144,163,166,180,199,201,214],contigu:[32,182,203],continu:[2,13,15,22,24,26,32,37,38,40,58,60,63,71,77,134,137,153,164,166,168,185,186,187,194,226,232],continue_:15,continued_fract:71,continued_fraction_converg:71,continued_fraction_iter:71,continued_fraction_period:71,continued_fraction_reduc:71,continuetoken:15,continuous_domain:[13,186],continuousdistributionhandmad:191,continuousdomain:191,continuousmarkovchain:191,continuouspspac:191,continuousrv:191,continuum:[5,82],continuum_mechan:[74,75],contour:[40,42,58,159,182],contract:[0,15,34,80,139,172,181,193,194,195,196,197],contract_al:196,contract_metr:196,contraction_ax:192,contrast:[31,32,95,163,182,187,233],contravari:[28,68,196],contribut:[0,1,4,5,48,71,87,98,163,165,166,187,223,240],contributor:[0,2],control:[3,14,16,32,33,36,40,57,58,62,63,82,103,106,119,123,134,135,139,143,168,169,173,180,185,190,207,229],control_lin:119,control_point:119,control_valu:123,conv:35,conveni:[1,2,3,6,13,15,24,32,33,37,40,59,62,92,106,148,151,156,157,159,160,161,162,163,170,179,180,184,189,194,195,202,205,208,220,230,231],convent:[2,23,24,28,31,32,33,37,40,42,47,58,59,73,74,75,83,94,106,108,112,133,134,136,141,142,154,159,172,187,188,190,191,196,222,231,238],converg:[15,31,36,40,57,59,71,108,168,175,179,182,230],convergence_stat:40,convergence_test:31,convers:[2,15,32,52,73,82,103,143,161,162,163,164,166,169,172,185,195,202,214],convert:[3,7,11,15,17,24,28,32,33,36,37,38,46,47,49,52,53,56,60,62,63,68,70,71,73,79,133,136,142,143,144,146,152,160,162,164,165,166,168,169,170,172,173,174,180,181,182,184,185,188,190,191,192,195,201,202,207,208,212,216,231,232,234,238],convert_from:[163,164],convert_to:[142,146,147,162],convert_to_c:73,convert_to_expr:73,convert_to_fortran:73,convert_to_native_path:201,convert_to_python:73,convert_xor:[32,73],convex:[13,48,49,59],convex_funct:13,convex_hul:[2,44,48,49],convolut:[57,174],convolution2d:15,convolution_fft:35,convolution_fwht:35,convolution_ntt:35,convolution_subset:35,convolution_theorem:35,cool:0,coolei:35,coolg49964:0,cooper:32,coord:[34,47,49,84,137,152],coord_con:101,coord_funct:34,coord_idx:[91,107],coord_index:34,coord_si:[34,216],coord_stat:91,coord_tuple_transform_to:34,coordin:[7,15,33,34,38,40,41,43,47,49,57,65,68,74,81,87,88,91,92,93,94,97,100,101,102,105,107,115,117,136,137,140,148,149,150,151,152,154,157,160,168,180,187,214,215,216,219,221,223],coordinate_deriv:[91,107],coordinate_system:34,coordinatesym:[151,155],coordinatesymbol:34,coordsyrect:214,coordsys3d:[215,216,217,219,220,221,223],coordsyscartesian:220,coordsysrect:214,coordsystem:34,copi:[0,1,3,16,24,25,48,64,68,71,72,162,164,166,171,172,179,189,201,207,210,224,236,237],coplanar:[46,157],coprim:[33,59,71,135,166,185],copyin_list:64,copyin_matrix:64,copyright:[0,82],cordoba:0,core:[0,2,3,4,11,13,15,23,38,39,40,41,49,57,63,64,67,71,73,79,137,138,161,163,164,165,166,168,169,172,179,184,185,187,189,190,191,201,202,207,208,212,225,231,234],core_2:71,core_t:71,corioli:94,cornel:0,corneliu:0,corner:[23,25,57,63,168,187,190,208,236],correct:[2,3,15,21,23,29,31,32,36,38,56,58,59,68,71,92,103,156,157,166,168,179,185,187,189,190,194,200,202,207,231,237],correctli:[2,13,36,58,60,68,92,94,103,172,179,185,187],correl:191,correspond:[2,13,14,15,16,22,23,24,26,27,28,31,32,33,34,35,38,42,43,45,46,47,48,55,58,61,62,63,64,68,70,71,74,75,86,87,91,92,94,95,107,111,115,129,133,134,136,140,141,144,149,152,154,158,159,161,163,164,166,168,172,178,179,182,184,185,187,188,189,190,191,194,195,196,203,204,205,207,208,210,214,215,217,218,220,222,226,234,239],correspondingli:14,corwinat:0,cos:[2,3,7,13,15,31,32,34,36,37,39,40,41,42,45,46,48,50,54,55,56,58,59,63,68,73,86,94,97,98,99,103,106,111,113,149,151,152,154,156,157,158,159,163,168,169,171,172,173,174,175,179,180,181,182,184,187,189,190,191,192,200,208,214,215,216,217,218,223,229,230,231,233,236,238,239],cosec:38,coset:[19,23,28],coset_enumer:16,coset_enumeration_c:16,coset_enumeration_r:16,coset_factor:23,coset_rank:23,coset_t:[16,23],coset_table_bas:16,coset_table_max_limit:16,coset_transvers:23,coset_unrank:23,cosh:[32,39,40,51,58,169,172,173,182,184,189,235,238],coshint:172,coshintegr:172,cosin:[32,38,40,47,59,149,157,168,169,175,181,191,214,238],cosine_transform:59,cosinetransform:59,cosint:172,cosintegr:172,coskew:191,cosmet:172,cost:[13,15,71,95,190,233],cost_funct:15,costica1234:0,costli:[58,95,235],cot:[32,39,40,73,169,172,181],cotang:[38,169],coth:[39,172,184],cotton:0,could:[2,3,10,13,15,25,32,44,58,59,62,89,92,100,103,139,142,144,160,162,163,166,169,172,180,182,184,189,190,191,192,194,195,202,218,219,226,231,234,238],could_extract_minus_sign:32,couldn:[13,59,187,188],count:[2,24,31,32,33,37,42,68,70,71,134,168,180,181,184,190,191,196,205,207],count_complex_root:164,count_digit:71,count_op:[3,181,184],count_partit:205,count_real_root:164,count_root:168,countabl:[144,190],counter:[15,32,38,44,63,75],counterclockwis:[41,42,43,47,75],counterexampl:[71,238],counterpart:[32,33,187,230],coupl:[32,68,103,118,133,136],coupledspinst:136,cours:[17,23,31,40,58,59,68,71,154,163,179,181,182,220,226,238],coutinho:0,cov:189,covarderivativeop:34,covari:[28,34,68,191,196],cover:[71,73,84,92,148,156,196,203,226,230,231],coverag:2,coverage_doctest:2,covering_product:35,cox97:[167,168],cox:[16,167,168],coxet:[19,61],coxeter_diagram:61,cphase:123,cpp_dec_float_50:15,cpp_src:59,cpu:[15,72,106],cpython:106,crack:71,craig:0,cramer:187,cran:0,crandal:71,craven:0,crazi:231,crc:[16,22,24],creat:[1,2,9,14,15,16,21,23,24,32,33,34,36,38,40,42,44,45,47,48,53,55,58,59,60,61,63,64,65,66,67,69,71,72,73,74,85,87,89,92,95,97,99,102,103,104,106,107,116,118,120,124,127,128,129,133,134,136,137,139,142,145,148,149,151,152,156,157,159,160,162,163,164,166,168,169,172,179,184,187,190,191,192,195,196,201,202,203,205,207,208,214,218,220,230,231,234,235,237,238,239],create_expand_pow_optim:15,create_new:[214,218],createboson:139,createcg:119,createfermion:139,creation:[3,32,34,68,85,89,97,100,101,102,103,113,123,127,128,129,139,156,157,172,191,195,203],creator:139,credit:[82,207],cremona:185,creu:0,crisjss:0,crist042:0,crist:0,cristian:0,cristiandipietrantonio:0,criteria:[32,234],criterion:[15,23,105,161,166],critic:[13,112,156,190],critical_angl:112,critiqu:171,crmarsh:191,crootof:[168,187,189],cross:[4,32,42,48,63,68,74,75,104,106,119,149,155,156,157,185,214,217,219,220],cross_sect:74,crosscovariancematrix:191,crt1:71,crt2:71,crt:[33,71,166],crucial:[23,31,163],crude:[58,94,159],crv:191,crv_type:191,cryptanalysi:33,crypto:33,cryptograph:33,cryptographi:[4,57,71],cryptosystem:33,cs16:0,csail:35,csc:[39,73,172,181],csch:[39,172],cse14:0,cse19:0,cse:[15,72,84,128,173,203],cse_main:[15,173,184],cset:32,csr:70,csse:37,cst:92,cstech:214,csu:0,csusm:185,csvinai:0,cswiercz:0,ctan:[60,153],ctefer:0,ctg:0,ctimesd:3,ctmcnote:191,ctr1:181,ctr2:181,ctr3:181,ctr4:181,ctsiagkali:0,cube:[13,15,17,23,25,38,59,166,167,185,190,223],cube_root:38,cubefre:71,cuberoot:38,cubic:[40,160,168,185,189],cubic_curv:214,cubic_funct:168,cucurezeanu:185,cuda:72,cugini:0,cuhk:185,cultur:160,cumbersom:2,cup:[13,168,180,190],cupi:72,curl:[214,221,223],curli:[3,92,172],current:[2,3,7,10,13,14,15,16,17,23,26,27,29,30,31,32,34,38,40,42,44,47,52,55,58,59,61,63,68,71,73,74,77,84,92,100,133,138,139,143,147,157,159,160,161,162,164,166,168,169,171,172,173,179,182,184,185,186,187,188,189,190,191,196,201,202,203,205,217,235,239],currentfactor:168,curri:[0,1,125],curti:0,curv:[2,14,34,44,59,71,74,108,159,160,187,214,223,230],curvatur:[108,112],curvedmirror:108,curvedrefract:108,curvilinear:[159,217,218,221],curving_amount:14,custom:[2,15,24,32,36,57,60,63,68,86,148,153,154,174,178,185,191,196,202,208,214,222,233,235],custom_funct:[15,172],custom_sin:208,customarili:161,cut:[32,37,38,40,48,58,160,182,200,205,210,238],cut_sect:48,cutil:57,cvd:34,cwwuieee:0,cxd:138,cxx11codeprint:172,cxx98codeprint:172,cxx:172,cxxcode:[15,172],cxxnode:57,cybertest:184,cycl:[2,15,20,23,24,30,32,35,37,63,71,113,180,207],cycle_detect:71,cycle_length:71,cycle_list:33,cycle_structur:24,cyclic:[20,23,24,25,35,63,71,196,207],cyclic_form:[20,24,25],cyclic_ord:20,cyclicgroup:[18,20,23],cyclotom:[164,165,166,167,168],cyclotomic_poli:168,cyclotomicpolynomi:167,cygwin:2,cyherbst:0,cylind:223,cylindr:[159,220],cym1:0,cyru:0,cython:[15,72,106,202],cythoncodewrapp:202,czapor:167,d2fdx2:230,d2fdxdy:32,d_0:[28,33],d_1:[58,144,168,191],d_1e:191,d_1z:191,d_2:[144,168,191],d_3:144,d_i:[28,58,144],d_ij:139,d_ip:139,d_j:[58,144,182],d_n:[20,61,168],d_qp:139,d_s:182,d_v:58,daal:0,dad:0,dae:[91,107],dagger:[82,116,120,126,128,131,133,138,139],dagum:191,dagum_distribut:191,dahlgren:0,dai:[142,146,187],daianovich:0,dakshana2015:0,dale:0,dali:0,daly12:0,damag:0,damani:0,damania:0,damcb:0,damiano:0,dammina:0,damp:106,damper:[87,92],dan:0,dana:0,dandiez:0,danger:161,daniel:0,danni:0,darshan:0,dartmouth:191,dash:[0,14],dashnabanita:0,dat:[65,207],data:[0,15,23,32,33,40,59,68,69,72,73,87,159,160,163,164,166,168,169,172,184,195,196,201,203,205,207,211,226],databas:[172,182],datatyp:[73,164,172,203],date:[0,203],datenschuppen:0,dave:0,davenport88:167,davenport:[59,167],davi:0,david:[0,105,168],davisml:0,dawda:0,dayal:0,dbase:28,dc_gain:79,dcm:[92,94,106,149,156,157,214],ddm:165,ddot:[65,68,95,102,153,156,172,238],dead:181,deal:[15,31,32,36,44,52,57,58,59,77,84,87,88,92,154,156,157,161,166,168,185,199,208,210,217,222,231,233,238],dealt:[36,58],deathbullet:0,debian:[0,2,172],deboer79:144,debug:[15,32,94,128,201,202,210],debug_decor:210,decad:187,decai:59,decent:236,decid:[2,14,31,63,64,84,103,132,143,163,166,168,172,187,190,203,226,235],decim:[3,15,32,35,36,71,73,163,168,233],decimal_dig:15,decimal_separ:172,deciph:33,decipher_affin:33,decipher_atbash:33,decipher_bifid5:33,decipher_bifid6:33,decipher_bifid:33,decipher_elgam:33,decipher_gm:33,decipher_hil:33,decipher_kid_rsa:33,decipher_railf:33,decipher_rot13:33,decipher_rsa:33,decipher_shift:33,decipher_vigener:33,decis:[32,38,59,181,189,203],decistmt:60,decl1:15,decl2:15,declar:[3,15,45,58,68,73,80,92,94,106,118,172,179,182,186,187,188,191,203],decod:33,decode_mors:33,decompos:[23,24,30,32,34,38,43,68,71,123,132,133,135,164,168,171,191],decomposit:[2,23,30,64,65,68,69,162,164,165,166,167,174,238],decor:[23,32,40,57,199,201,206,209,210],decoupl:63,decre:58,decreas:[13,24,147,166],decrement:[15,183,205],decrypt:33,dedekind:160,dedent:210,dedic:[2,165,203,218,220],deduc:[15,58,182,233],deduct:15,deduction_stack:16,deem:181,deep:[0,3,32,38,62,63,168,179,184,191,234],deepak:167,deeper:[194,234],deepest:194,def:[2,3,9,10,14,32,37,39,44,62,68,71,73,98,134,163,168,172,181,184,190,204,207,208,211,226,229,231,234,235,238],default_arrow_formatt:14,default_curving_amount:14,default_curving_step:14,default_formatt:14,default_sort_kei:[14,21,32,194,207],defaultdict:[32,207],defeat:187,defect:187,defective_matrix:187,defer:[68,211],defici:[68,71],deficientnumb:71,defin:[2,3,6,7,8,9,10,13,15,16,17,22,23,24,27,30,31,32,33,34,37,38,39,40,41,42,43,45,46,47,48,50,55,58,59,60,63,65,68,71,75,84,85,89,91,92,94,97,99,100,104,106,107,110,116,118,120,125,128,134,136,137,141,142,143,144,145,146,147,148,149,152,154,156,157,158,159,160,161,163,164,166,168,169,171,172,174,175,178,179,180,182,184,185,187,189,190,191,192,195,196,202,203,204,207,208,209,210,214,215,216,217,218,219,220,222,223,226,231,233,238],definedfunct:32,definit:[2,3,7,10,13,15,16,23,24,29,31,32,34,35,37,38,40,45,48,52,55,58,59,63,64,65,68,69,71,73,94,97,98,104,141,144,147,149,156,157,160,161,164,168,169,172,179,191,192,202,203,204,208,214,217,218,219,220,230,238],definite_matrix:11,definiteness_of_a_matrix:68,definiton:73,deflat:[164,168],deflect:[42,48,74,75],defn:166,deform:[58,75],deg2rad:92,deg:[59,92,161,166,168],degbound:166,degener:[189,190],degre:[16,23,30,31,37,40,48,59,63,68,74,79,87,92,95,107,111,157,160,161,164,166,168,171,175,181,182,184,185,187,189,191,214,226],degree_list:[164,168],degree_offset:59,del:[144,205,221,238],delai:[32,79,103,181,201,230],delastel:33,delecroix:0,delet:[17,61,63,68,69,169,210,238],delete_doubl:61,deletechar:210,delic:[59,160],delimit:[2,32,172],delop:[214,219,220],deloper:[214,221],delta:[3,13,15,17,26,37,40,55,58,61,103,111,139,172,179,185,191,192,196],delta_:[40,136,144],delta_funct:[40,59],delta_i:182,delta_rang:[40,139],deltafunct:[40,59],deltaintegr:59,demand:6,dembia:0,demian:0,demidov:0,demonstr:[2,3,23,32,59,71,85,92,95,103,160,163,219,238],den:[79,164,184],denest:[32,168,183,189,207],deni:0,denni:0,denom:[32,163,164,184],denomin:[3,32,36,40,59,71,79,86,161,163,164,166,168,171,172,181,182,184,185,187,189,238],denot:[3,23,24,32,34,40,54,55,58,59,61,63,68,71,73,144,149,154,159,160,161,166,175,179,180,182,191,195,196,214,215,217,218,220,222,226],dens:[57,63,65,67,68,69,162,165,168,192,234],densearith:166,densebas:166,densematrix:[64,68,69],densetool:166,densiti:[191,201,223],dep:[32,187],depend:[2,3,5,13,15,16,23,24,31,32,33,34,37,38,40,44,49,56,58,59,60,61,68,71,72,73,81,85,87,88,91,92,94,95,100,101,111,112,113,128,137,139,141,144,153,154,159,161,164,165,166,168,169,172,173,182,184,185,187,188,189,190,191,201,202,203,204,207,208,220,222,223,231,233],depict:[154,190,222],deprec:[2,8,13,63,103,172,196,199,208,216],deprecated_since_vers:199,deprecationwarn:201,depth:[2,3,23,57,94,159,160,172,207],der:[0,22,23],derang:[37,207],derdavidt:0,derefer:172,dereferenc:172,derek:[16,22],deriv:[0,1,2,4,13,14,15,17,22,23,34,38,39,40,42,49,54,55,58,59,60,62,68,84,86,87,91,94,95,97,100,101,102,103,104,128,137,141,144,145,148,149,151,152,153,154,156,159,160,161,164,166,168,169,172,174,182,184,187,188,189,193,197,200,203,214,216,217,227,232,233,239],derive_by_arrai:192,derived_dim:141,derived_seri:[22,23],derived_subgroup:23,descend:[160,203,207],descent:24,descr:[141,147],describ:[2,3,14,16,22,23,26,27,30,31,32,33,37,40,42,47,48,58,59,63,68,70,71,79,84,87,89,91,92,95,97,99,100,101,102,103,104,118,139,143,144,148,149,154,156,157,160,163,166,173,179,182,184,185,187,190,191,194,203,207,208,214,215,220,230],descript:[1,2,14,16,22,40,59,71,111,129,136,147,156,157,158,172,194,201,203,205],desh:0,design:[2,11,16,22,32,68,69,70,73,106,107,163,167,172,177,182,187,190,225,233,234,237],desir:[2,3,6,23,24,32,33,35,36,37,42,46,48,62,63,68,70,71,72,87,88,89,91,100,103,124,149,156,157,162,166,168,169,172,173,175,180,184,187,189,190,202,204,205,207,220,226,229],desktop:0,despit:[32,238],destin:[32,203],destroi:[139,181],destruct:168,det:[7,68,106,157,162,235],det_lu:68,detail:[1,2,14,23,32,34,37,40,58,59,60,63,68,71,87,92,104,106,111,129,133,149,151,158,159,160,166,174,179,185,187,188,195,196,201,206,208,218,219,220,221,225,230,231,235,237],detect:[6,13,57,65,68,71,159,163,172,187,188,190,192,207,237],determin:[2,3,8,10,11,12,13,15,16,17,23,32,33,34,35,36,38,42,43,45,47,48,59,60,61,65,68,69,71,73,74,75,79,86,88,89,91,99,104,107,118,131,133,135,136,139,142,144,149,154,159,160,161,162,166,172,179,180,182,184,185,186,187,190,191,194,207,214,220,223,226,231,238],determinisit:172,determinist:[23,59,71,166,167],deterministic_variants_of_the_test:71,detool:187,deutil:[57,187,188],dev:0,devang:0,devanla:0,devel:[2,158],develop:[2,4,5,13,16,30,73,106,143,159,160,163,166,189,190,226,233],devesh47cool:0,devesh:0,deviat:[2,112,191],devis:226,devyani:0,devyanikota:0,dew:0,dewan:0,dfdx:230,dfdxcheck:226,dfrac:191,dft:35,dft_matrix:83,dfx:32,dh_private_kei:33,dh_public_kei:33,dh_shared_kei:33,dhia:0,dhiman:0,dhingra:0,dhruv:0,dhruv_b:0,dhruvesh:0,dhruvkothari22:0,dhruvmendiratta6:0,dia:0,diag:[63,65,68,70,106,196,235],diag_block:65,diagmat:106,diagon:[10,37,63,64,65,66,68,69,70,91,111,193],diagonal_ax:192,diagonal_matrix:11,diagonal_solv:[64,68],diagonalhandl:11,diagonaliz:[64,66,68,69,235],diagonalpred:11,diagram:[15,21,57,61,74,95,100,119,195,218,234],diagram_draw:14,diagram_format:14,diagramgrid:14,diamet:[32,42],diaz:167,dic:166,dice:191,dickinsm:0,dickinson:0,dickson:0,dicontinu:189,dict:[3,15,24,33,34,48,49,62,68,71,73,87,88,119,131,134,145,149,159,162,163,164,166,168,169,170,172,184,185,187,188,189,190,191,194,201,202,207,214,239],dict_iter:185,dict_merg:207,dictionari:[14,15,21,23,24,30,32,37,46,48,61,63,68,70,71,73,74,86,87,88,91,92,94,95,97,101,103,129,139,149,157,159,161,164,166,168,170,172,179,184,185,187,188,189,190,191,194,196,201,205,207,208,214,229,235],did:[2,32,59,71,84,97,144,169,180,189,199,208,231,233,238],didn:[0,32,59,68,71,103,166],die:[0,191],die_rol:191,diedistribut:191,diepspac:191,dif:32,diff:[0,2,13,15,37,38,39,40,49,54,68,84,86,95,106,137,149,151,153,154,157,159,164,168,171,172,182,187,188,189,192,217,220,226,230,233,239],diffeq:239,differ:[2,3,4,6,14,15,16,21,22,23,24,28,31,32,33,34,36,37,38,40,43,45,47,48,52,54,56,57,58,59,60,61,62,65,68,69,71,72,73,74,84,85,89,92,94,96,100,103,104,107,111,112,124,125,133,134,137,139,141,144,148,149,150,152,153,154,157,159,160,161,162,164,165,166,168,169,171,172,173,174,175,177,179,180,181,184,185,187,188,189,190,191,192,194,196,201,202,203,205,207,208,214,216,220,221,222,225,227,231,232,233,234,235,237,238],difference_delta:177,differencedelta:177,differenti:[2,4,13,32,37,38,40,49,50,52,55,57,87,91,92,94,95,97,100,101,102,103,106,107,128,134,148,149,151,152,154,157,160,166,169,171,172,177,182,184,187,188,214,220,221,230,232,233],differentialoper:[52,54,128],differentialoperatoralgebra:52,differentiate_finit:[13,32,230],diffgeom:34,diffi:33,difficult:[2,13,32,68,92,169,182,187,188,202,223,233,238],difficulti:[34,93],dig:[15,234],digamma:[2,37,40,172],digamma_funct:40,digammafunct:40,digit:[2,3,15,32,33,35,36,42,59,71,100,149,163,168,179,184,200,207,229],digit_2txt:172,digraph:[172,207,237],dihedr:[20,24],dihedral_group:20,dihedralgroup:[20,23,30],dilbert:59,dim1:195,dim2:195,dim:[15,34,47,72,141,147,172,193,196],dim_can_vector:141,dim_handl:172,dim_si:141,dim_vector:141,dima:0,dimasad:0,dimens:[15,17,33,34,40,41,43,45,46,47,49,61,63,65,68,70,74,80,82,95,113,123,125,128,133,142,143,146,147,149,159,162,172,185,187,189,192,195,196,203,214,216,218],dimension:[13,15,17,44,45,46,47,48,68,75,80,82,106,113,115,125,141,143,154,155,159,160,166,168,171,172,189,190,192,196,202,222,239],dimension_system:147,dimensional_depend:141,dimensionless:144,dimensions:141,dimensionsystem:141,dimino:[16,23],dimitar:181,dimitra:0,dimsys_si:[141,142],diofant:0,diophantin:[4,57,71,166],diophantineequ:185,diophantu:185,diplform:54,diploma:214,diplomat:33,dipta:0,dir:[3,32,74,174,179,207],dirac:[63,68,81,83,137,172],diracdelta:[2,39,59,134,139,172],direct:[0,2,9,10,14,18,20,23,28,31,32,34,36,38,41,45,46,47,48,63,68,74,75,84,85,94,95,98,106,125,149,154,156,157,160,163,166,169,179,182,196,207,214,218,219,222,227],direct_product:196,direct_sum:125,directed_complete_partial_ord:38,direction:157,direction_cosin:[45,47],direction_ratio:[45,47],directional_deriv:220,directli:[0,2,3,5,9,10,13,14,15,23,31,32,34,38,43,63,65,68,71,92,125,137,142,149,152,159,160,163,164,168,180,181,182,184,185,187,188,190,191,201,202,203,205,226,230,239],director:42,director_circl:42,directori:[0,2,5,10,15,57,187,201,202,210],directproduct:[18,20],directrix:42,directsumhilbertspac:125,dirichlet:[31,40,191],dirichlet_distribut:191,dirichlet_eta:40,dirichlet_eta_funct:40,dirichletdistribut:191,dirnam:211,dis:168,disabl:[32,33,58,59,71,166,168,172,180,187,189,199,201,204],disable_view:204,disadvantag:32,disallow:[32,168,173,184,204],disambigu:32,disc:[93,100,156],discard:[32,172,190],discern:[8,10],disciplin:160,disclaim:0,disco:167,discontinu:[13,36,38,40,59,74,175],discourag:184,discov:[33,58,84,194,235],discoveri:[166,235],discret:[4,13,15,16,22,24,32,33,40,57,71,83,139,144,174,177,180,187,189,190,229],discrete_fourier_transform_:35,discrete_log:71,discrete_uniform_distribut:191,discretedistributionhandmad:191,discretelogarithm:71,discretemarkovchain:191,discreterv:191,discreteuniform:191,discreteuniformdistribut:191,discrimin:[71,164,166,168],discrit:226,discuss:[1,2,3,16,23,33,40,71,84,87,92,100,103,104,148,155,156,157,163,196,205,226,229,231,233,234,237,238],disguis:58,disjoint:[11,14,21,24,168,180,207],disjoint_set:180,disjunct:62,disk:[15,33,180,190,208],dispatch:[9,10,11,32,33,134,172,190,205],dispers:[165,167,191],dispersionset:168,displac:[154,156,222],displai:[2,3,32,33,36,58,61,74,75,110,143,147,149,152,153,159,163,164,172,180,194,201],displayhook:[172,201],disregard:14,dissimilar:189,dist:191,distanc:[14,17,24,42,45,46,47,48,74,75,83,84,85,95,108,112,142,152,154,222],distinct:[2,15,23,24,32,33,37,45,58,68,71,91,156,163,168,172,180,182,238],distinguish:[14,23,36,61,92,138,144,160,225],distract:2,distribut:[0,2,5,23,30,32,40,48,74,75,138,161,164,165,168,172,196],distribute_order_term:[32,184],distributedmodul:166,distributionshandbook:191,distutil:202,div:[32,161,163,164,168,172,184,234],divaugmentedassign:15,diverg:[31,40,108,214,221],divergence_theorem:223,divid:[23,31,32,33,48,68,71,143,144,161,163,164,166,168,172,187,205,234],dividend:[32,164],divis:[3,13,32,60,68,71,141,160,163,164,165,166,168,170,172,187,189,201,208,231,234,237],divisisor:71,divisor:[11,23,32,33,68,71,160,161,163,164,166,167,168,171],divisor_count:71,divisor_funct:71,divisor_sigma:71,divmod:[161,163,164],divyanshu:0,dixit:0,dixon:[0,167],django:231,djoyc:191,dkei:32,dlmf:[2,37,38,40],dlp:33,dm1:162,dm2:162,dmahler:0,dmc:[97,98,99],dmension:61,dmf:164,dmitri:0,dmlawrenc:0,dmp:[160,164,165,168],dmp_:[163,166],dmp_ab:166,dmp_add:166,dmp_add_ground:166,dmp_add_mul:166,dmp_add_term:166,dmp_apply_pair:166,dmp_cancel:166,dmp_clear_denom:166,dmp_compos:166,dmp_content:166,dmp_convert:166,dmp_copi:166,dmp_deflat:166,dmp_degre:166,dmp_degree_in:166,dmp_degree_list:166,dmp_diff:166,dmp_diff_eval_in:166,dmp_diff_in:166,dmp_discrimin:166,dmp_div:166,dmp_eject:166,dmp_euclidean_pr:166,dmp_eval:166,dmp_eval_in:166,dmp_eval_tail:166,dmp_exclud:166,dmp_expand:166,dmp_exquo:166,dmp_exquo_ground:166,dmp_ext_factor:166,dmp_factor_list:166,dmp_factor_list_includ:166,dmp_ff_div:166,dmp_ff_prs_gcd:166,dmp_from_dict:166,dmp_from_sympi:166,dmp_gcd:166,dmp_gcdex:166,dmp_ground:166,dmp_ground_cont:166,dmp_ground_extract:166,dmp_ground_lc:166,dmp_ground_mon:166,dmp_ground_nth:166,dmp_ground_p:166,dmp_ground_primit:166,dmp_ground_tc:166,dmp_ground_trunc:166,dmp_half_gcdex:166,dmp_includ:166,dmp_inflat:166,dmp_inject:166,dmp_inner_gcd:166,dmp_inner_subresult:166,dmp_integr:166,dmp_integrate_in:166,dmp_invert:166,dmp_irreducible_p:166,dmp_l1_norm:166,dmp_lc:166,dmp_lcm:166,dmp_lift:166,dmp_list_term:166,dmp_max_norm:166,dmp_mul:166,dmp_mul_ground:166,dmp_mul_term:166,dmp_multi_defl:166,dmp_neg:166,dmp_negative_p:166,dmp_nest:166,dmp_normal:166,dmp_nth:166,dmp_one:166,dmp_one_p:166,dmp_pdiv:166,dmp_permut:166,dmp_pexquo:166,dmp_positive_p:166,dmp_pow:166,dmp_pquo:166,dmp_prem:166,dmp_primit:166,dmp_primitive_pr:166,dmp_prs_result:166,dmp_qq_collins_result:166,dmp_qq_heu_gcd:166,dmp_quo:166,dmp_quo_ground:166,dmp_rais:166,dmp_rem:166,dmp_result:166,dmp_revert:166,dmp_rr_div:166,dmp_rr_prs_gcd:166,dmp_slice:166,dmp_sqr:166,dmp_strip:166,dmp_sub:166,dmp_sub_ground:166,dmp_sub_mul:166,dmp_sub_term:166,dmp_subresult:166,dmp_swap:166,dmp_tc:166,dmp_terms_gcd:166,dmp_to_dict:166,dmp_to_tupl:166,dmp_trial_divis:166,dmp_true_lt:166,dmp_trunc:166,dmp_valid:166,dmp_zero:166,dmp_zero_p:166,dmp_zz_collins_result:166,dmp_zz_diophantin:166,dmp_zz_factor:166,dmp_zz_heu_gcd:166,dmp_zz_mignotte_bound:166,dmp_zz_modular_result:166,dmp_zz_wang:166,dmp_zz_wang_hensel_lift:166,dmp_zz_wang_lead_coeff:166,dmp_zz_wang_non_divisor:166,dmp_zz_wang_test_point:166,dmsahabandu:0,dmtc:207,dnf:[2,62],dnh:101,do1:15,do2:15,do_sub:179,dobelman:191,doc:[2,3,4,13,15,23,31,32,48,60,104,141,163,165,185,187,201,202,207,214,218,224],docbook2x:2,docbook:2,docherti:0,docstr:[3,4,14,15,25,32,54,57,58,59,68,69,71,76,78,80,82,100,104,109,126,132,133,135,155,168,175,178,179,181,184,187,188,189,190,195,196,201,204,208,210,221],doctest:[2,3,25,40,68,71,94,128,139,163,168,187,199,201,204,237],doctest_arg:201,doctest_depends_on:204,doctest_kwarg:201,doctestpars:201,doctestrunn:201,document:[0,9,10,11,23,28,32,33,38,39,40,44,54,57,58,60,65,68,72,75,84,87,100,101,102,104,106,114,128,134,148,153,154,155,156,157,158,159,160,163,164,166,168,172,182,187,189,190,201,203,207,214,220,221,228,230,231,236,237,238],documentclass:[60,153,172],docutil:2,doe:[2,5,6,9,10,13,14,15,16,23,24,28,31,32,33,34,36,38,40,42,46,48,57,58,59,62,63,68,69,70,71,73,84,86,92,94,97,123,129,133,135,138,148,156,157,159,161,163,164,166,168,169,172,179,180,181,182,184,185,187,189,195,196,199,200,201,203,205,207,208,214,215,218,225,229,230,231,234,235,237,238,239],doesn:[2,3,13,15,23,24,30,31,32,43,56,71,73,81,92,95,103,106,119,157,161,166,169,171,179,181,184,186,187,190,201,208,210,239],doi:[1,2,13,24,68,69,167,181,184,191],doid:[31,167],doing:[3,5,15,24,32,33,35,42,58,95,98,133,135,143,156,157,172,180,182,184,187,188,208,218,234,238],doit:[31,32,34,37,38,40,59,65,79,116,118,120,131,133,136,137,139,149,158,168,174,179,184,187,188,191,214,216,217,219,220,230,234,236],doit_numer:32,dok:70,doko:0,dollar:[2,233],dom:[163,164,166,180],domain:[2,13,14,32,33,35,37,38,40,51,53,54,55,57,58,59,65,68,71,77,92,106,160,162,165,166,169,170,186,187,189,191,226,235,239],domain_check:190,domain_or_field:164,domain_or_r:[160,164],domainel:[163,164,170],domainerror:166,domainmatrix:[68,165,170],domin:[0,58,63,177,179],dominik:[0,32,174],domm:0,don:[3,10,15,32,38,51,58,59,62,63,68,71,72,73,84,89,92,114,128,148,156,157,159,163,164,172,175,182,184,187,190,199,201,202,204,222,229,230,233,234,238],donal:168,donald:[167,205],donaldlab:167,done:[2,3,9,10,12,13,14,15,23,25,30,32,33,34,37,40,43,44,58,63,68,71,92,94,98,104,106,125,134,135,136,139,141,142,149,154,156,157,159,160,162,166,169,171,172,173,181,184,185,187,189,190,191,195,196,201,202,205,208,217,218,226,229,231,233,234,235],dont_accept_blanklin:201,dont_accept_true_for_1:201,dontcar:62,doprint:[15,172],dorin:185,doron:31,dot:[45,47,63,68,94,95,97,98,99,101,102,103,104,106,123,149,153,155,156,157,158,160,161,172,207,214,217,219,220],dot_rot_grad_ynm:158,dotprint:[57,234,237],dotprodsimp:63,dotsb:[37,174],dotsc:[33,37,174],doubl:[2,13,15,28,32,33,39,68,73,99,100,156,163,172,181,182,203,238],double_coset_can_rep:28,double_factori:37,double_pendulum:92,doubli:71,doubt:[62,92],dougherti:0,dousti:0,dover:187,dowl:0,down:[2,65,81,94,95,156,157,159,174,180,182,184,187,205,235,236,238],download:[2,5,14,54,167,181,191,214,233],downsid:235,downward:[74,75],doy:23,dozen:238,dpi:[60,153],dps7ud:0,dps:[15,32,35,40,163,164,189,204],dpsander:0,dq_dict:95,drag:159,dramat:205,dranknight09:0,drastic:158,draw:[57,74,119,172,191],drawer:14,drawn:[14,23,61,159,163,170],drep:162,drhagen:0,drho:34,driectli:162,driver:[172,202],drop:[2,38,59,72,97,164,166],drop_to_ground:164,drufat:0,drynkin:0,dsavranski:0,dsign:15,dsolv:[2,188,189,230,233,239],dsouza:0,dt2:106,dth:226,dtheta:34,dtmc:191,dtu:0,dtype:[68,72,160,162,163,164,172,208],dual:[68,131,137],dual_class:137,duan:0,duart:187,dubei:0,duc:0,due:[2,13,15,22,23,32,34,49,68,71,92,94,103,112,139,154,157,163,168,172,175,185,186,188,191,200,216,222,226,238],dui:0,duke:167,dum:196,dummi:[15,28,31,58,59,68,92,106,134,139,163,168,169,178,179,180,182,184,187,190,194,196,199,203,207,208],dummifi:208,dummy_eq:32,dummy_index:32,dummy_nam:196,dummy_vari:31,dummywrapp:202,dump_c:[202,203],dump_cod:203,dump_f95:203,dump_h:203,dump_jl:203,dump_m:203,dump_pyx:202,dump_r:203,duncan:0,dunlap:0,dup:[23,164,165],dup_:[163,166],dup__:166,dup_cont:166,dup_cyclotomic_p:166,dup_decompos:166,dup_extract:166,dup_factor_list:163,dup_gf_factor:166,dup_lshift:166,dup_mirror:166,dup_mon:166,dup_primit:166,dup_random:166,dup_real_imag:166,dup_revers:166,dup_rshift:166,dup_scal:166,dup_shift:166,dup_sign_vari:166,dup_transform:166,dup_zz_cyclotomic_factor:166,dup_zz_cyclotomic_poli:166,dup_zz_factor:166,dup_zz_factor_sqf:166,dup_zz_hensel_lift:166,dup_zz_hensel_step:166,dup_zz_irreducible_p:166,dup_zz_zassenhau:166,duplic:[3,23,26,33,40,68,71,180,187,207,236],durchholz:0,dure:[3,6,15,32,33,63,68,71,73,85,87,106,107,156,181,189,190,199,207],dustin:0,dustyrockpyl:0,dutra:0,dvdr18:0,dvi:[60,153,172],dvioption:172,dvip:60,dvipng:2,dvori:0,dwibedi:0,dxa:55,dxi:34,dxy:185,dy2:106,dyad:[84,106,217],dyadic:[2,35,85,89,92,94,97,99,100,106,151,153,155,216,221],dyadic_product:[155,221],dyadic_tensor:[149,214],dyadicadd:217,dyadicmul:217,dyadicproduct:221,dyer:168,dyn_implicit_mat:[91,107],dyn_implicit_rh:[91,107],dynam:[71,77,84,86,87,88,91,94,100,101,102,103,104,105,106,107,148,149,151,152,156,157,205,214],dynamic_symbol:91,dynamicsymbol:[2,84,86,87,89,91,92,94,95,97,98,99,101,102,103,104,106,107,149,152,153,154,155,156,157],dynkin:61,dynkin_diagram:61,dynkindiagram:61,dzhelil:0,e103:1,e15:0,e2row:92,e_0:33,e_1:[22,68,160,166,168],e_2:[166,168],e_d:166,e_dom:163,e_equals_mass_speed_light_squar:0,e_i:[34,160,182,196],e_j:34,e_k:[37,166],e_mc_h2:0,e_n:[22,37,61,68,115,160,168],e_nl:[81,140],e_nl_dirac:81,e_r:34,e_rho:34,e_theta:34,e_x:[34,196],e_z:196,each:[2,3,10,11,13,14,15,16,17,23,24,28,32,33,34,35,36,37,38,40,42,47,48,49,54,55,58,59,61,62,63,65,68,69,71,74,86,87,92,94,95,97,99,101,104,123,136,139,148,149,152,154,156,157,158,159,160,161,162,163,164,166,168,170,172,180,181,182,184,185,187,188,189,190,191,192,194,195,196,199,201,203,205,207,208,210,214,215,216,218,220,222,230,234,236,238,239],eager:208,eagertensor:208,earlham:0,earli:[32,71,128,185],earlier:[84,169,173,182,184,208,218,220,234],earth:[143,154,222],earthlink:0,eas:[1,92,157,159,172,175],easi:[20,24,32,40,58,72,89,95,100,156,160,163,172,179,182,185,187,190,194,195,196,229,230,231,233,234,235,236,237],easier:[32,75,92,94,156,164,169,182,187,190,203,208,217,233,238,239],easiest:[2,3,160,163,185,208,218,229,234,238],easili:[2,5,32,33,55,57,58,68,71,72,101,137,156,168,171,172,177,184,185,187,189,190,202,233],east:33,easyfit:191,ebc121:0,eberspaech:0,ebner:0,ebnf:184,ebrahim:0,ecart:166,eccentr:[40,42],echelon:[68,162,190,235],echelon_form:[68,235],ecm_one_factor:71,eco:207,econ:191,econom:[24,59,207],economi:24,ecosystem:1,ect:189,edg:[17,25,26,61,172,190,207,237],edit:[2,59,68,71,166,167,168],edmond:158,edmonds74:158,eds:[2,40],edu:[0,13,17,23,24,33,35,37,59,68,69,71,167,171,181,184,185,187,191,214],educ:[33,68],edward:0,eea:166,eez:166,effect:[2,5,23,25,32,49,58,59,63,68,92,94,103,111,139,149,159,163,166,169,171,187,231],effici:[13,15,17,23,28,32,35,36,37,48,49,65,68,71,72,87,106,158,161,162,163,164,166,168,169,170,171,184,185,189,226,229,234,235,238],effort:[72,166],efz1005:0,egg:210,eggsham:210,egypt:71,egyptian:71,egyptian_fract:71,ehogan:0,ehren:0,eick:[23,30],eig:[68,92,106],eigen:[68,115],eigenbra:[117,130,136],eigenket:[117,130,136],eigenspac:68,eigenst:[117,129,134,136,137],eigenv:[63,68,92,94,106,133,233,235],eigenvalu:[63,68,92,94,133,136,233],eigenvec:92,eigenvect:[68,92,106,133,235],eigenvector:[68,92,133,134,158],eight1911:0,eight:[172,226],eigval:106,eigvec:[92,106],eijk:40,einstein:[139,196],eisenstein:166,either:[2,3,11,13,14,17,24,31,32,33,36,37,38,40,47,49,55,58,59,60,62,63,68,71,79,85,87,88,91,92,102,104,106,123,129,136,139,141,153,157,161,163,164,166,168,172,174,179,180,181,182,185,187,188,189,190,191,194,195,202,207,208,214,222,224,231,234,235],eject:[164,168],ekansh:0,ekbot:0,ektf:71,elabor:[2,154,220],elast:[74,75],elastic_modulu:74,elbenfuerst:0,elbow:160,electr:[110,112,154,220,222],electric_potenti:[154,220],electromagnet:[110,154,196,222],electron:[81,181],elef:0,eleg:[169,171],elem:[15,23,160],element:[2,3,7,10,14,15,20,21,22,23,24,25,27,28,29,30,31,32,33,34,35,37,38,48,55,58,61,62,63,64,65,68,69,70,71,72,74,75,80,89,106,108,111,125,136,144,152,155,157,159,160,161,162,164,165,166,168,170,171,172,178,179,180,182,184,185,187,189,190,191,192,195,202,204,205,207,208,209,216,225,230,234,235,237,238],element_ord:61,elementari:[2,13,23,32,33,36,39,40,54,57,58,59,63,68,71,104,132,135,165,168,169,176,207,217],elementary_col_op:68,elementary_row_op:68,elementaryfunct:38,elements_k:163,elements_sympi:163,elementwis:[63,65,68,192],elemsdict:162,elgam:33,elgamal_private_kei:33,elgamal_public_kei:33,elia:0,elif:[32,39],elim:189,elimin:[15,28,62,64,68,69,84,164,170,171,173,175,183,187,189,190,196,203,226,235],eliminate_gen:23,elliot:0,ellips:[2,43,44,48,111,159,172,237],ellipsi:201,ellipt:[39,42,71,160],elliptic:[40,172],elliptic_:[40,42,172],elliptic_f:[40,172],elliptic_integr:40,elliptic_k:[40,172],elliptic_pi:[40,172],elliptice2:40,ellipticf:40,ellipticintegr:40,elliptick:[40,172],ellipticpi3:40,ellipticpi:[40,172],ellis:42,ellisonbg:0,elrond:0,els:[3,15,22,24,28,32,33,40,42,46,48,49,58,59,62,68,71,79,139,149,159,164,168,172,180,184,187,190,194,196,201,207,210,214,216,229,234],elsewher:[37,61,94,162,201],elvi:0,email:[0,172],eman:45,embed:[2,13,24,60],embryon:14,emeka:0,emerg:[108,161],emg:191,emiller42:0,emit:[172,199],emma:0,emphas:31,emphasi:[2,163],emploi:[14,31,36,57,59,71,168,171,187,191],empti:[9,13,14,15,16,23,27,31,32,44,47,48,49,63,68,71,87,103,134,147,164,168,172,178,179,180,182,187,189,190,201,203,207,210,234],empty_product:31,empty_set:180,empty_sum:31,emptyprint:172,emptysequ:[172,178],emptyset:[13,14,62,172,190,239],emufphzlrfaxyusdjkzldkrnshgnfivj:33,emul:[184,190,192,208],enabl:[2,5,32,59,60,71,75,92,94,139,149,153,172,187,191,201,208,235,237,238],enable_automatic_int_sympif:60,enable_automatic_symbol:60,enable_eager_execut:208,encapsul:[145,166,190,203],enciph:33,encipher_affin:33,encipher_atbash:33,encipher_bifid5:33,encipher_bifid6:33,encipher_bifid:33,encipher_elgam:33,encipher_gm:33,encipher_hil:33,encipher_kid_rsa:33,encipher_railf:33,encipher_rot13:33,encipher_rsa:33,encipher_shift:33,encipher_substitut:33,encipher_vigener:33,encircl:58,enclos:[2,42,43,48,70,80,172,182,208],encloses_point:[42,43,48],encod:[17,24,30,33,165,172,201,205,207],encode_mors:33,encompass:163,encount:[2,3,32,59,68,131,161,166,168,189,190,203,207,214,226,235],encourag:[2,14,101,102],encryp:33,encrypt:33,encyclopedia:[44,155],encyclopediaofmath:40,end:[1,2,3,13,14,15,22,23,28,30,31,32,33,37,38,40,42,44,48,58,60,62,63,65,68,69,71,73,74,75,91,94,95,97,101,102,103,104,144,149,153,154,157,158,166,172,175,178,180,181,183,185,187,188,189,191,192,201,203,204,207,210,220,226,230,233,235,238],endian:17,endif:[15,203],endnumb:187,endomorph:55,endors:0,endow:161,endpoint:[13,31,32,36,154,180,220],enedil:0,enenkel:0,energi:[81,82,87,89,92,99,100,115,140,144,154,196,220],enforc:[24,94],eng:24,engin:[3,105,106,155,237],english:[2,33],engr:59,enhanc:[166,191,236],enlarg:43,enough:[2,23,32,36,59,68,70,71,79,92,106,164,166,172,187,230,231],enpoint:45,enric:0,ens:0,ensea:0,ensembl:133,enspac:[187,190],ensur:[3,5,32,33,36,57,64,68,69,104,141,168,172,201,208],ent:71,entail:59,enter:[24,32,33,37,45,71,73,74,87,91,94,101,172,182,189,201,234,237,238],entertain:236,enthought:5,entir:[23,32,33,36,40,46,48,58,70,86,104,149,160,162,180,195,233,238],entireti:148,entiti:[32,42,45,46,48,49,57,58,92,104,154,190,222,235],entity1:44,entity2:44,entri:[1,11,16,22,24,30,33,44,58,61,63,64,65,66,67,69,70,87,92,94,104,111,166,182,191,208],entropi:[33,191],entropy_:191,entropypost:191,enum_al:205,enum_larg:205,enum_rang:205,enum_smal:205,enumer:[17,19,21,24,27,35,39,58,71,182,205,207],enumerate_st:134,env:0,envelop:187,environ:[2,32,60,153,172,191,201,210,231,233,237],envis:226,eom:[95,103],epath:183,epathtool:184,eppstein:71,eprint:185,eps:[15,23,31,164,168],eps_dim:196,epsilon:[3,31,33,40,58,59,110,172,196],eq1:[42,187,189,190],eq2:[42,62,187,190],eq3:190,eq4:190,eq_homogen:187,eq_x:184,eqn:[13,190],eqs:[170,186,187,189],eqs_coeff:170,eqs_mat:187,eqs_r:170,eqs_rh:170,eqs_to_matrix:165,equ:189,equal:[2,4,11,14,15,16,21,22,23,24,28,30,31,33,34,36,37,38,40,45,46,47,48,49,51,58,62,63,64,65,68,71,74,79,80,87,89,94,101,102,123,124,139,144,149,152,157,160,161,162,163,164,166,168,170,172,180,182,185,187,188,189,190,191,196,201,202,203,207,214,218,223,230,232,239],equat:[2,3,13,15,28,31,32,34,38,40,42,45,46,50,54,55,56,57,58,60,63,68,81,82,84,87,88,91,92,94,95,97,99,100,105,106,107,108,112,143,148,152,153,156,157,158,159,160,165,166,167,170,171,172,182,184,186,188,195,214,218,219,223,226,230,232,233],equation_of_a_shifted_ellips:42,equidist:32,equidistantli:230,equilater:48,equilibrium:[75,94,103],equispac:168,equiv:[23,33,37,71,182,185],equival:[3,7,11,15,16,23,28,32,33,36,38,40,57,58,59,64,68,71,73,92,100,122,133,136,139,142,149,153,157,159,160,161,163,164,168,172,179,180,184,187,189,190,192,195,196,205,208,210,211],equivalent_dim:142,eqworld:187,eqyptian:185,eratosthen:71,erbin:0,erdelyi:40,erdo:205,erdon:0,erf2:[2,40,172],erf2inv:[2,40,172],erf:[2,40,58,59,172,182,191],erfc:[2,40,58,172,191],erfcinv:[2,40,172],erfi:[2,40,58,172],erfinv:[2,40,172,191],eric:[0,59,167],erik:[0,214],eriksson:0,erlang:191,erlang_distribut:191,erlangdistribut:191,erlend:26,erron:36,error:[2,6,13,15,21,24,31,32,33,38,39,42,47,57,58,59,68,69,70,71,73,92,157,158,161,163,164,166,169,172,174,180,187,188,189,190,191,199,200,201,202,203,207,214,229],error_funct:40,error_term:71,error_when_incomplet:68,ert:1,escap:[32,73,159,172,210],eschemb1:0,especi:[2,31,68,84,92,106,133,148,157,184,187,189,201,229,230],esqu:106,essenc:217,essenti:[2,17,27,32,36,38,39,40,58,82,89,94,154,155,157,160,161,164,179,182,217,220,221,222],establish:[28,58,182,226],estim:[13,31,32,36,58,230],eta:[3,40,58,172,187,188,191],etc:[10,13,15,24,28,32,33,37,38,50,61,67,71,92,110,119,123,136,139,143,151,154,156,157,159,160,161,163,166,172,173,180,181,182,184,187,190,191,194,202,203,207,218,222,226],ethan:0,ethz:0,etienn:0,etkewa:0,etting:0,euclid:[32,166,167],euclidean:[34,45,47,149,164,166,168],eucliden:33,euclidtool:166,euler:[2,13,14,31,32,33,36,39,40,48,54,60,71,136,149,153,157,158,172,187,191,214,215],euler_angl:[214,215],euler_equ:13,euler_maclaurin:[31,36],euler_numb:37,euler_pseudoprim:71,eulergamma:[2,36,37,40],eulerian:40,eulerlin:48,eulernumb:37,eulervm:172,eurocam:59,eurocast:167,european:160,eva:0,eval:[2,9,10,15,32,38,39,40,125,139,164,168,172,203,229],eval_approx:168,eval_control:123,eval_expr:73,eval_integr:31,eval_levicivita:40,eval_r:168,eval_zeta_funct:31,evalf:[2,3,15,31,36,37,38,40,47,51,54,55,57,63,68,73,92,94,106,121,164,168,179,180,184,191,202,208,232],evalf_r:168,evalu:[2,4,8,9,10,13,15,32,34,37,38,40,43,47,48,52,57,58,59,62,65,68,71,72,73,79,84,86,92,100,103,104,114,116,118,120,125,128,136,139,158,159,163,164,166,167,168,172,173,178,179,180,182,184,185,187,189,190,191,200,202,203,204,208,220,226,229,230,231,232,233,235,236],evaluate_delta:139,evaluate_integr:191,evaluate_pauli_product:114,evaluationfail:166,evalul:32,even:[0,2,3,8,9,10,12,15,16,20,23,24,31,32,33,36,37,40,44,48,58,59,62,63,64,66,68,69,70,71,80,92,100,124,135,142,144,149,158,161,163,164,166,168,169,172,179,180,181,182,184,185,187,189,190,201,202,222,225,229,230,231,233,234,238,239],evenhandl:11,evenli:185,evenpred:11,event:[0,191],eventu:[23,40,59,159,160,179,190,203,207],ever:[157,160,168,182,187,203,234],everi:[2,9,10,11,14,20,23,24,32,33,47,57,61,63,68,71,104,154,156,157,159,160,161,163,164,166,172,177,180,182,184,185,187,190,191,217,220,222,234,235,236,238],everyon:169,everyth:[2,3,15,32,34,40,57,59,66,81,103,135,136,159,172,190,234,237],everywher:[3,32,40,58,154,222],evid:[58,87,98,182],evinc:172,evolut:42,ewen:191,exact:[3,11,13,31,32,33,36,42,47,54,58,59,63,68,74,106,133,163,164,166,168,179,184,187,189,201,231,233,237],exact_differential_equ:187,exactli:[2,3,11,17,23,32,35,36,39,68,73,104,158,182,184,187,190,192,205,207,208,230,231,233,237,238],exactquotientfail:[163,164,166,168],examin:[15,33,128,201,203,238],exampl:[0,1,3,5,7,8,9,10,11,12,13,14,15,16,17,18,20,21,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,40,41,42,43,45,46,47,48,49,50,51,54,55,57,58,60,61,62,63,64,65,66,68,69,70,72,73,74,76,79,81,82,83,85,86,87,89,91,92,94,95,97,98,99,100,101,102,104,106,108,109,110,112,113,114,115,116,118,119,120,121,122,123,124,125,127,128,129,131,133,134,136,137,138,139,140,141,143,145,146,149,150,151,152,153,154,156,158,159,160,161,162,163,164,165,166,168,169,170,173,174,175,177,178,180,181,183,184,185,186,187,188,189,190,193,194,196,197,199,200,201,202,203,204,205,207,208,209,210,211,212,214,215,216,218,220,221,222,223,225,226,229,230,231,232,234,235,236,237,239],examples_arg:201,examples_kwarg:201,exaxmpl:32,exc:166,exce:[16,71,196],exceed:[3,94],exceedingli:166,excel:[5,36,236],excent:48,except:[0,2,3,13,15,23,24,32,33,36,38,40,57,58,59,67,71,98,145,158,160,163,164,165,168,169,170,172,181,184,185,187,188,190,194,199,201,203,207,208,217,220,226,229,231,234,235],exceptioninfo:199,excerpt:2,exchang:[28,33,68,158,162,207],excircl:48,excit:160,exclud:[15,31,32,59,68,86,106,161,164,166,168,178,187,189,201,204,207],exclude_empti:201,exclus:[31,32,62,68,166,231],exe:204,exec:[15,32,60,208],execut:[2,5,15,60,63,106,159,172,187,190,199,201,203,204,208,210,213,233,236,237,238],exemplari:0,exercis:[23,205,232,238],exgaussian:191,exhaust:[32,182,236],exhibit:[71,158,181],exist:[13,14,17,23,32,36,42,44,47,48,49,50,57,59,62,68,71,129,154,157,159,160,161,162,166,172,179,180,182,185,187,189,201,208,218,226,233,235,239],existing_julia_fcn:172,existing_octave_fcn:[15,172],exit:[15,71,201],exogen:[91,107],exp1:172,exp2:[15,172],exp2_opt:15,exp:[3,7,13,15,22,31,32,34,36,37,39,40,50,51,54,58,59,63,65,68,71,81,83,115,134,140,158,163,164,168,169,172,174,179,182,184,187,188,189,190,191,192,207,223,230,233,235,236,239],exp_polar:[32,39,40,182],exp_r:174,expand:[2,3,15,34,36,37,38,40,57,58,59,63,69,79,92,94,106,120,128,131,138,139,161,163,165,166,168,169,175,179,181,182,184,187,190,191,194,202,208,219,226,229,233],expand_func:[37,40],expand_hint:32,expand_log:[15,184],expand_mul:58,expand_opt:15,expand_power_bas:184,expand_trig:229,expanded_expr:233,expans:[2,15,32,34,37,38,40,52,57,59,68,71,103,118,120,168,169,174,175,176,181,183,187,189,190,226,232,238],expect:[2,3,14,16,18,32,38,40,44,62,69,71,72,92,133,163,166,169,170,179,184,186,190,191,199,200,201,202,205,207,208,233,234],expectationmatrix:191,expectedexcept:199,expens:[32,64,103,181,187,188,189,202,204,235],experi:[94,190,191,236],experienc:16,experiment:[57,184],expint:[40,172],expintegral:[40,172],expintegralei:172,expj:187,explain:[2,14,28,32,33,40,50,55,160,163,166,169,179],explan:[3,8,9,10,11,12,14,15,18,20,21,23,24,25,27,29,30,31,32,33,34,38,40,44,54,55,58,59,63,68,71,83,85,86,87,89,98,108,110,113,116,118,120,122,134,139,158,159,160,162,164,168,170,174,175,177,178,179,180,182,184,185,187,189,191,192,195,196,201,208],explanatori:94,explicit:[24,31,32,36,48,49,59,70,71,91,92,95,103,107,157,160,168,171,172,174,180,182,187,188,189,190,205],explicitli:[0,13,15,23,32,33,35,38,40,49,65,68,72,92,148,149,159,161,163,164,166,172,184,187,231,235,237,239],explik:174,explnat:32,exploit:[58,202],explor:[101,102,159,205,238],expm1:[15,172],expm1_opt:15,expon:[3,12,15,19,32,33,38,39,40,58,59,65,71,145,161,162,163,165,168,169,172,181,184,187,190,194,205,238],exponent_vector:22,exponenti:[3,7,13,15,23,28,32,33,37,39,59,62,63,68,71,73,125,141,169,184,190,191,231,232,235],exponential_distribut:191,exponential_integr:40,exponentialdistribut:191,exponentially_modified_gaussian_distribut:191,expos:[14,191],exposit:179,expr1:[159,189,234],expr2:[159,234],expr:[2,3,9,10,12,13,15,24,31,34,36,38,40,42,54,57,58,59,62,64,65,68,72,73,79,84,86,92,103,116,120,122,124,128,131,134,136,137,139,146,149,151,153,159,161,162,163,164,166,168,169,170,172,173,174,175,177,179,181,184,186,187,188,189,190,191,192,194,196,197,202,203,204,207,208,214,215,216,217,218,220,229,230,231,233,234,237,238,239],expr_class:172,expr_free_symbol:32,expr_i:159,expr_modifi:3,expr_to_holonom:[51,54,55,56],expr_with_intlimit:[31,59],expr_with_limit:[31,59],expr_x:159,expr_z:159,exprcondpair:39,express:[0,2,4,8,9,10,11,12,13,24,31,32,33,34,35,36,37,38,40,42,45,47,48,52,55,56,57,58,59,60,63,64,66,67,68,70,71,72,74,80,82,83,84,88,89,92,95,100,101,102,103,104,106,107,114,118,122,123,127,128,131,134,136,137,138,139,141,142,144,146,147,148,149,152,153,154,155,157,158,159,160,161,164,165,166,168,169,172,173,175,177,179,180,181,182,184,185,187,188,189,190,191,192,194,195,196,197,199,202,203,204,205,207,208,210,214,215,217,219,220,221,222,225,230,231,232,233,235,236,237,238,239],express_coordin:[217,218],expressiondomain:[163,164],expressions_dom:163,expressions_sympi:163,expressli:217,exprt:38,exprtool:[57,168],exprwithintlimit:[31,59],exprwithlimit:[31,59],expsboth:179,expsf:179,expsg:179,exquo:[163,164,168],exquo_ground:[164,168],exradii:48,exradiu:48,ext:[2,160,164],ext_rank:196,extend:[2,10,13,15,23,24,32,33,37,44,58,59,68,71,106,147,153,159,161,164,166,168,169,172,179,181,185,186,187,190,191,192,203,205,231,233],extend_to_no:71,extended_euclidean_algorithm:32,extended_neg:32,extended_nonneg:32,extended_nonposit:32,extended_nonzero:[32,172],extended_posit:32,extended_r:[11,32,172,186,190],extendedrealhandl:11,extendedrealpred:11,extens:[1,2,23,32,38,44,48,59,68,89,106,161,163,164,165,166,167,168,172,182,184,187,189,190,202,203,211,236,238],extensionel:[160,164],extent:15,exterior:[34,48],exterior_angl:48,extern:[5,60,73,94,100,153,173,184,189,191,201,202],extra:[15,32,33,71,72,98,144,154,165,166,172,182,201,202,203,220,236],extra_compile_arg:202,extra_link_arg:202,extract:[13,32,59,63,65,68,71,80,94,100,148,157,166,168,189,190,191,201,203,207],extract_addit:32,extract_branch_factor:32,extract_leading_ord:32,extract_multipl:32,extract_type_ten:80,extraglob:201,extran:[2,187],extraneousfactor:166,extrapol:[36,179],extrem:[23,36,42,48,59,65,103,157,184,191],eye:[63,64,65,66,67,68,69,162,192,210,235],eyz:185,f16:15,f2015463:0,f20180319:0,f2py:[15,72,202,203],f2pycodewrapp:202,f401:60,f5b:[166,168],f811:32,f821:[32,204],f90:203,f95:[15,202,203],f_0:[34,37,88,166],f_1:[34,37,40,58,88,91,107,160,166,168,187],f_2:[37,58,88,91,107,166,182,187],f_3:[88,91,107,187],f_4:[61,88],f_5:166,f_a:88,f_c:[88,95],f_code:[15,203],f_cython:202,f_d:[101,102,166],f_fortran:202,f_h:101,f_i:[34,58,68,166,169],f_j:[166,182],f_k:[31,101,166],f_list:166,f_n:[31,37,40,160,166,168,187],f_name:[15,203],f_q:182,f_r:[101,103,166],f_real:[32,39],f_real_inherit:[32,39],f_result:203,f_v:[88,95],f_x:[154,190,220],f_y:[154,220],f_z:[37,154,220],fab:[13,15,172],fabian:[0,1],fac:58,face:[23,25,45,59,92,166,169,172,185,223,235],facil:15,facilit:[72,100,110,155,201],fact:[2,10,11,32,37,40,50,58,71,94,103,144,160,161,163,166,169,171,182,184,187,190,201,208,222,229,231,233,234,236,238],factor:[3,16,23,24,31,32,33,36,37,38,40,58,59,68,69,71,74,106,108,116,120,123,135,139,144,145,146,160,163,164,165,167,168,175,181,182,184,185,189,191,194,205,217,220,233,235],factor_:[32,33,71,168,185],factor_index:23,factor_list:[164,168,238],factor_list_includ:[164,168],factor_term:[98,168,181,184],factori:[2,31,32,36,39,40,68,71,73,158,164,166,168,172,174,184,189,191,203,204,207,208,226,238],factorial2:[39,140,172],factorial_mo:191,factorial_not:73,factorialmo:191,factorialpow:172,factoring_visitor:205,factorint:[32,71,168,205],factoris:[71,163,164,187],factorisatio:205,factoror:69,factorrat:71,factortool:[163,166],fagin:184,fail:[2,15,23,24,28,31,32,36,38,56,58,59,60,64,68,71,73,94,129,134,153,159,163,164,166,168,172,179,182,187,189,191,199,201,208,235],failing_express:[32,64],failing_numb:32,failur:[28,36,49,58,71,191,201,238],fair:[44,191],fairli:[32,40,58,94,100,148,160],faisal:0,faisalriyaz011:0,faizan2700:0,fall:[16,31,32,37,60,153,172,185,188,191],fallback:[60,139,153,163,172,189],fallingfactori:[39,172],fals:[2,3,7,8,9,10,11,12,13,14,15,23,24,25,28,29,30,31,32,33,34,35,36,37,38,39,40,42,43,44,45,46,47,48,49,51,54,58,59,60,62,63,64,65,66,68,69,71,73,74,75,79,81,83,86,87,88,89,92,94,97,98,99,101,102,103,104,107,111,123,124,128,131,136,137,138,139,142,149,150,151,152,153,156,157,159,160,161,163,164,166,168,169,170,171,172,173,174,175,179,180,181,184,185,186,187,188,189,190,191,195,196,200,201,202,203,204,207,208,210,214,216,231,234,235,237],famili:[0,15,17,50,59,161],familiar:[3,59,92,104,123,169,230,231,236],famou:[16,40,59,71,185],fancyset:180,fankalemura:0,faq:[3,4],far:[3,14,32,46,59,160,163,172,182,208,229,230,231],farr:34,farther:14,farthest:[42,48],fascin:100,fashion:[15,32,65,94,101,102,104,157,160,207],fast:[15,32,67,68,71,111,164,165,166,167,168,169,175,179,187,189,205,207,208],fast_walsh:35,faster:[15,18,32,40,63,69,71,72,84,86,87,88,103,162,163,164,166,168,169,173,175,179,184,185,187,188,190,202,205],fastest:[32,37,59,71,72,169],fastfouriertransform:35,fatal:0,fateman:167,father:185,fau:0,fauger:[166,168],fault:187,fawaz:0,fbra:139,fcall:15,fcc:0,fchapoton2:0,fcn2:203,fcn:[15,203],fcode:[15,172],fcodegen:203,fcodeprint:[15,172],fdiff:[2,15,32,38,39,40],fdistribut:191,feasibl:23,featur:[1,2,3,5,32,34,36,57,63,73,82,92,100,106,155,172,187,191,199,203,221,233,236,238],februari:167,fedora:2,fedotov:0,fedotovp:0,feedback:[33,77,79,236],feel:[5,106,107,184,187,236,240],feet:48,felip:0,felipemata:0,felix:[0,33],felixonmar:0,femtesemest:74,feo:0,fermat:110,fermi:[0,40,139],fermi_level:139,fermion:[71,139],fermionicoper:139,fermiparadox:0,fernando:[0,1],ferrer:21,fetter:139,few:[11,22,24,32,33,59,60,71,72,94,100,142,148,153,156,157,160,172,180,181,182,187,190,191,203,207,238],fewer:[47,48,103,191,230],fewest:[62,133],ffield:219,fft:[35,106],fgh:32,fglm:168,fglmtool:166,fgp:187,fiach:0,fibonacci:[32,36,39,71],fibonacci_numb:37,fibonaccinumb:37,fiddl:[201,238],fiedler:0,field:[7,11,15,32,33,34,50,59,82,110,111,112,151,155,160,161,162,164,165,167,169,170,185,189,201,214,216,218,219,221,223],field_isomorph:168,fieldfunct:[150,154],figsiz:119,figueiredo:159,figur:[2,32,33,42,43,45,47,48,59,75,92,134,156,157,158,159,169,172,223,238],file:[0,1,2,3,8,15,68,92,106,128,172,179,182,184,201,202,203,208,211,224],filebox:33,filenam:[73,172,201,202,203,210],filepath:202,filho:0,filip:0,fill:[3,23,33,63,64,65,68,69,70,139,159,201,204,210,228,235],fill_between:159,fillded:210,filter:[32,33,58,111,168,201,207,225],filter_symbol:207,fim1:226,finalpdf:71,financi:4,find:[0,2,3,7,10,13,15,16,23,26,27,28,31,32,36,38,40,42,44,45,46,49,54,57,58,59,61,68,69,71,73,86,93,98,104,106,108,124,131,133,134,135,139,142,144,156,159,160,161,162,163,164,165,166,169,171,172,177,178,179,180,181,182,184,185,186,187,189,190,191,196,205,207,210,214,223,226,228,230,231,233,235,239],find_dynamicsymbol:100,find_execut:210,find_linear_recurr:178,findroot:[40,189],fine:[32,36,60,153,163,172,184,226],finer:0,finish:[15,16,133,204],finit:[4,10,15,19,20,23,31,32,33,35,36,57,59,61,125,149,158,161,164,165,167,168,169,172,174,175,178,180,185,186,187,190,214,215,227,232,233,238],finite_diff:[13,32],finite_diff_weight:[13,32,230],finite_set:[13,180],finitediff:13,finitedistributionhandmad:191,finitedomain:191,finiteextens:160,finitefield:[163,164],finiteformalpowerseri:174,finitehandl:11,finitepred:11,finitepspac:191,finiterv:191,finiteset:[13,14,21,25,32,186,190,191,214,239],finkelstein:0,finn:0,finset_intersect:13,fip1:226,fip2:226,firefox:2,first:[0,2,3,5,14,15,16,22,23,24,26,27,28,29,30,31,32,33,34,36,37,38,39,40,42,45,46,48,49,56,58,59,61,62,63,64,68,69,70,71,74,75,79,80,85,86,87,91,92,94,95,100,103,104,107,111,112,116,120,123,128,129,132,133,134,135,136,138,139,142,144,149,152,156,157,159,160,162,164,166,167,168,169,172,173,174,175,178,179,181,182,184,185,187,188,189,190,191,194,196,199,201,202,203,204,207,208,210,218,223,226,229,230,231,233,234,235,236,238,239],first_index:65,first_linear:187,first_moment_of_area:48,first_order_equ:187,firstli:182,firstlinear:187,fishbein:0,fishbeinb:0,fisher:191,fishersz:191,fisherz:191,fit:[0,14,58,68,69,70,71,157,172,187,210,234],fitch:0,five:[14,21,58,172,185],five_lemma:14,fivelemma:14,fix:[2,15,23,25,28,30,33,40,44,57,61,74,75,85,89,94,106,123,128,132,135,139,144,149,152,156,157,159,163,166,168,169,172,182,189,191,207,214,215],fixed_row_vector:191,fixedbosonicbasi:139,fixedfram:152,fket:139,flag:[13,15,23,24,28,30,32,40,47,59,62,63,64,68,71,92,123,159,164,166,168,169,172,174,180,184,185,187,189,190,196,201,202,207,229,238],flagerror:166,flajolet:169,flambda:180,flami:0,flamyowl:0,flank:33,flat:[46,63,69],flatmirror:108,flatrefract:108,flatten:[14,32,163,207,208],flavius_josephu:24,flavor:173,flexibl:[24,32,92,106,156,159,163,190,230],flexur:75,flip:[94,124,133,191],float16:15,float32:[15,73,208],float64:[15,72],float80:[15,172],floatbasetyp:15,floattyp:15,floatx:172,floor1:172,floor2:172,floor:[32,39,71,163,164,172,191],floorfunct:38,florian:0,florit:0,floyd:71,flux:221,flynn:0,fma:[15,172],fmax:172,fmin:172,fmt:162,fn_fortran:15,fn_numpi:15,fname:203,fnm1:226,fnm2:226,fnode:57,focal:[42,108,112],focal_length:112,foci:42,fock:139,fock_spac:125,fockspac:125,fockstat:139,fockstatebosonbra:139,fockstatebosonket:139,fockstatebra:139,fockstatefermionbra:139,fockstatefermionket:139,fockstateket:139,focu:[1,13,42,189,233],focus:166,focus_dist:42,foic:0,folb:0,fold:[23,32,38,172,179,184],fold_frac_pow:172,fold_func_bracket:172,fold_short_frac:172,folded_cond:38,folder:2,follow:[0,2,3,5,8,10,13,14,15,16,21,22,23,24,25,28,31,32,33,36,37,38,39,40,44,46,48,55,56,58,59,62,63,65,68,71,72,74,75,87,92,94,100,101,102,103,104,106,108,112,131,134,136,139,142,144,149,154,156,157,158,159,160,161,166,167,168,170,171,172,173,174,179,181,182,184,185,187,188,189,190,191,192,194,195,196,201,204,205,207,208,211,217,218,220,226,229,230,231,234,235,236,238,239],follw:187,font:[60,153,172],fontsiz:[60,153],foo:[6,13,15,32,134,153,207,210],foo_1:134,foo_2:134,foo_3:134,foobasi:134,footnot:[144,234,235,237],for_i:15,for_ji:15,for_kji:15,foral:[23,31,34,144],forbid:32,forc:[3,13,32,36,38,42,48,58,59,62,74,75,85,87,91,94,95,96,97,100,101,102,103,106,127,128,142,154,157,159,161,163,181,184,185,189,201,220,222,226,237,238],force_color:201,force_o:106,force_p:92,force_point:85,force_r:92,force_vector:106,forcelist:[87,92,95,97,98,102,103,106],forcing_ful:[87,92,101,102],forcing_lin:94,fore:11,forecolor:[60,153],foreground:[60,153],forest:207,forg:[2,73],forget:[14,238],fork:[1,2,94],fork_i:94,fork_mc:94,forkcg1:94,forkcg3:94,forkcgnorm:94,forkcgpar:94,forklength:94,forkoffset:94,form:[0,2,7,8,10,11,12,13,15,16,22,23,24,28,29,31,32,33,34,35,36,37,38,40,41,42,45,48,52,54,55,57,58,59,61,63,65,68,71,74,75,77,79,84,85,87,88,91,92,94,95,97,99,100,101,102,104,106,107,116,119,120,121,123,133,134,137,139,141,144,147,148,149,152,153,154,156,157,158,159,160,161,162,163,164,166,167,168,169,170,171,172,173,174,180,181,182,184,185,188,189,190,191,195,196,201,202,207,214,216,217,219,220,222,226,230,233,234,235,237,238,239],form_field:34,form_lagranges_equ:[87,95,99,102,103],formal:[14,31,32,40,58,108,144,163,165,166,176,179],formalpowerseri:174,formalpowerseriescompos:174,formalpowerseriesinvers:174,formalpowerseriesproduct:174,format:[14,33,54,55,59,68,70,71,74,91,107,112,123,133,159,162,163,168,170,172,182,187,190,201,210,214,217,226,234,235,236,237],formatstr:15,formatt:14,former:[15,32,37,92,166,168,185,207,225],formul:[95,100,101,102,139,157,226],formula:[2,4,13,26,31,32,36,37,40,45,57,68,71,158,160,166,168,172,174,178,181,184,185,187,226,233,238],fornberg:[13,226],fort:33,forth:163,forthcom:59,fortier:0,fortran77:203,fortran90:203,fortran:[13,57,72,73,84,106,158,203,226,237],fortranreturn:15,fortun:[15,72,95,168,169],forum:[158,190],forward:[13,15,63,94,100,132,156,184,201],found:[0,2,4,13,16,23,24,26,28,30,32,33,34,42,43,48,58,59,68,71,86,87,88,103,106,143,156,160,161,162,163,168,169,172,174,175,178,179,182,185,187,188,189,190,191,194,207,208,210,211,237],foundat:[0,24,167],four:[2,15,24,32,36,40,65,71,80,104,112,149,159,160,166,168,172,180,185,187,189,191,192,214,215,218],fourier:[32,59,83,132,176],fourier_seri:[32,175],fourier_transform:59,fourierseri:175,fouriertransform:59,fourth:[33,161,187,230],fox:58,fp_group:[16,23],fpgroup:[16,23],fps:[32,174],fqyej:33,frac2:191,frac:[13,31,32,33,34,37,39,40,58,59,68,71,73,95,104,142,153,154,156,157,158,166,168,172,174,175,179,182,185,187,188,190,191,192,207,220,222,226,230,233,234,237,238],frac_field:[163,164],frac_unifi:164,fracel:[164,172],fracfield:[163,164],fraction:[3,13,32,33,36,38,48,59,68,71,86,145,163,164,165,166,167,169,172,174,185,187,189,232],fractional_part:38,fractionalpart:38,fractionfield:[163,164],fracton:172,fragment:[2,33],frame1:149,frame2:[149,151],frame:[2,84,85,86,87,89,91,92,94,95,97,99,101,102,103,104,106,107,148,149,150,151,152,154,155,156,205,214,220],frame_a:92,frame_b:92,frame_i:94,frame_mc:94,frame_n:92,framecg1:94,framecg3:94,framecgnorm:94,framecgpar:94,framelength:94,framework:[32,92,195,201,203,208],francesco:[0,1],franci:167,frank:[23,24,68],franz:0,frechet:191,freddi:0,fredrik:[0,1],free:[1,5,13,14,15,19,22,23,28,32,44,59,63,65,68,71,74,75,80,100,108,128,146,149,155,159,160,164,165,166,168,172,174,180,182,184,185,187,189,190,196,207,233,236,240],free_arg:196,free_group:[16,22,23],free_integ:71,free_modul:[160,164],free_symbol:[15,32,41,59,63,128,146,149,168,178,185],free_symbols_in_domain:168,free_to_perm:22,free_var_index:68,freedom:[74,87,95,191],freegroup:16,freeli:[2,6,66,160],freemodul:160,freemoduleel:160,freepeleg:0,freerik:0,freespac:108,freevar:68,freevryheid:0,freir:167,frequenc:[33,59,79,113,115,123,140],frequent:[23,168,179,190,226,240],freshli:5,fresnel:[39,112,172,182],fresnel_coeffici:112,fresnel_equ:112,fresnel_integr:40,fresnelc:[40,172,182],fresnelintegr:40,frick:0,fridai:33,friedrich:0,friedrich_h:0,friend:157,friendli:[2,15,58,203],fro:68,frobeniu:[56,68,71,166,167],froehl:0,froehlich:0,from:[0,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,54,55,56,58,59,60,61,62,63,64,65,66,68,69,70,71,72,73,74,75,77,79,80,81,83,84,85,86,87,89,91,92,94,95,97,98,99,100,101,102,103,104,106,107,108,110,111,112,113,114,115,116,118,119,120,121,122,123,124,125,127,128,129,131,133,134,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,172,173,174,175,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,194,195,196,197,199,200,201,202,203,204,205,207,208,209,210,212,214,215,216,217,218,219,220,222,223,224,225,226,229,230,231,233,234,235,236,237,238,239],from_algebraicfield:164,from_axis_angl:7,from_complexfield:164,from_dict:[164,168],from_expr:[15,168],from_expressiondomain:164,from_ff_gmpi:164,from_ff_python:164,from_fractionfield:164,from_functionprototyp:15,from_gaussianinteg:164,from_gaussianrationalfield:164,from_globalpolynomialr:164,from_hyp:[51,54],from_index_summ:65,from_inversion_vector:24,from_list:[164,168,169],from_list_sympi:162,from_matrix:162,from_meijerg:[51,54],from_monogenicfiniteextens:164,from_poli:168,from_polynomialr:164,from_qq_gmpi:164,from_qq_python:164,from_real:180,from_realfield:164,from_rep:162,from_rg:21,from_rotation_matrix:7,from_sequ:24,from_sympi:[163,164],from_sympy_list:164,from_zz_gmpi:164,from_zz_python:164,fromit:32,front:[23,32,94,108,138,164,166,168,172,184,238],frontier:[68,180],frstar:[87,92,94,95,97,98,101,103,106],frtk:0,frv:191,frv_type:191,fseoan:0,fsf:0,fsp:58,fsu:59,ftheta:34,fulfil:[58,158],full:[2,3,10,13,15,23,24,32,36,40,44,45,59,65,68,101,102,149,163,166,167,168,172,174,184,185,233,238],full_cyclic_form:24,full_pb:58,full_prec:[31,172],fulli:[2,23,32,49,62,73,75,92,106,139,156,163,164,169,179,191,196,211,236],fullrank:[11,15],fullrankhandl:11,fullrankpred:11,fulltext:35,fully_qualified_modul:172,fully_symmetr:196,fun:[188,236],func:[2,9,13,15,32,37,40,51,53,59,71,128,149,166,168,172,173,184,187,188,189,199,204,207,208,210,213,227],func_field_modgcd:166,func_nam:[15,38,63,210],funcnam:202,function1:62,function2:62,function_arg:[15,201],function_exponenti:73,function_kwarg:201,function_nam:[15,202],function_prototyp:203,function_rang:13,function_vari:59,functioncal:15,functionclass:[172,208],functiondefinit:[15,73],functionmatrix:65,functionprototyp:15,functiontyp:68,functor:[14,64,69],fundament:[13,16,22,50,58,59,68,144,163,185,187,191,235],fundamental_matrix:191,funtion_nam:202,further:[1,10,14,33,40,44,58,59,64,65,68,74,77,87,100,104,111,156,158,159,160,166,168,181,182,184,187,191,196,232,233],furthermor:[11,32,33,62,181,231,233,234],furthest:[13,33],fuse:15,futil:57,futur:[3,15,16,32,57,58,63,68,73,82,91,94,100,103,139,143,155,159,161,171,172,184,195,201,208,234,239],fwht:35,fwrap:202,fxkr:0,fxx:32,fxy:185,fxz:185,fzx:185,g147:33,g_0:[23,185],g_1:[23,168,179,185,187],g_2:[23,61,179,187],g_i:[23,179],g_k:23,g_n:[31,37,168],g_t:23,gaba7:0,gaba:0,gabriel:0,gadal:0,gaetano:0,gagandeep:0,gai:0,gain:[3,33,79,101,102,106],gajjar:0,galbraith:0,galbwe92:0,gallaspi:0,gallindo:0,galoi:[163,166],galoistool:[71,166],galton:191,game:182,gamma2:40,gamma3:40,gamma:[2,3,31,32,34,36,37,39,58,59,82,83,106,136,157,158,172,182,184,187,191,238],gamma_0:83,gamma_1:[15,83],gamma_2:[15,83],gamma_3:83,gamma_5:83,gamma_:[40,80,83],gamma_distribut:191,gamma_distribution_and_the_use_of_the_distribution_in_the_bayesian_analysi:191,gamma_funct:[2,37,40],gamma_i:166,gamma_matric:[80,83],gamma_p:40,gamma_process:191,gamma_trac:80,gammabetaerf:[2,37,40],gammadistribut:191,gammafunct:[2,40],gammainvers:191,gammaln:172,gammamatrix:80,gammamatrixhead:80,gammaprocess:191,gammasimp:[31,32,184],gannon:0,gao:0,gap:[23,71,92,169,228],garag:0,garavello:0,garbag:201,garber:0,garcia:0,garg03:0,garg:0,gari:0,garrett:0,gash789:0,gate:[0,82,119,124,126,132,133,135],gate_idx:[119,123],gate_simp:123,gate_sort:123,gate_spac:123,gathen92:[166,167],gathen99:[166,167],gathen:[166,167],gather:187,gaunt:158,gaurang:0,gaurav:0,gauravdhingra:0,gauss:[2,40,59,68,108,161,170,189,190],gauss_chebyshev_t:59,gauss_chebyshev_u:59,gauss_conj:108,gauss_gen_laguerr:59,gauss_hermit:59,gauss_jacobi:59,gauss_jordan_solv:[64,68],gauss_laguerr:59,gauss_legendr:59,gauss_lobatto:59,gaussian:[40,59,68,71,82,109,165,166,168,185,189,191,235],gaussian_beam:108,gaussian_conj:108,gaussian_elimin:68,gaussian_prim:71,gaussian_quadratur:59,gaussiandomain:164,gaussianel:164,gaussianinteg:[163,164],gaussianinvers:191,gaussianr:[163,164],gaussianrationalfield:[163,164],gaussopt:108,gave:[3,207],gcc:203,gcd:[31,32,33,68,71,135,163,164,165,167,168,172,184,185],gcd_list:168,gcd_term:168,gcdex:[164,168],gci:0,gcomm:196,gdmcbain:0,gear:160,gebhardt:0,gedd:[59,167],geddes92:[166,167],gede:0,gedg:[0,172],gegenbau:[168,172],gegenbauer_poli:[40,168],gegenbauer_polynomi:40,gegenbauer_rul:59,gegenbauerc3:40,gegenbauerc:172,gegenbauerpolynomi:40,geier:0,gemailpersonal02:0,gemini:0,gen0:16,gen1:16,gen:[22,23,28,29,30,32,68,160,163,164,166,168,169,170,178,184,186,189],gen_:16,gen_count:23,gen_hermite_rul:59,gen_laguerre_rul:59,gen_mat:191,gen_spe:[149,152],gender:2,gener:[0,3,4,5,9,11,12,13,14,16,17,18,19,20,21,23,26,27,28,29,30,31,32,33,34,35,36,37,38,40,42,46,48,50,55,57,58,59,60,61,62,64,65,68,71,72,73,84,85,87,88,91,92,94,95,97,99,100,102,103,104,106,107,111,122,123,124,125,128,133,134,137,138,139,144,146,148,149,150,152,153,154,156,158,159,160,161,162,164,165,166,168,169,170,171,172,173,174,178,181,182,184,185,187,188,189,191,195,196,202,203,205,206,207,208,214,217,218,220,221,222,224,226,230,231,233,234,235,236,238,239],general_sum_of_even_pow:185,general_sum_of_squar:185,generalis:[40,58,160],generalizations_of_fibonacci_numb:[32,37],generalized_hypergeometric_funct:40,generalized_laguerre_polynomi:40,generalized_multivariate_log:191,generalizedmultivariateloggamma:191,generalizedmultivariateloggammaomega:191,generate_bel:[24,207],generate_derang:[37,207],generate_dimino:[20,23],generate_grai:17,generate_involut:207,generate_oriented_forest:207,generate_schreier_sim:[20,23],generator_matrix:191,generator_product:23,generators_and_rel:20,generatorserror:166,generatorsneed:166,generatortyp:32,generet:172,genform:[187,188],genfrac:71,genocchi:39,genocchi_numb:37,genocchinumb:37,genrih:0,gens1:28,gens2:28,gens2a:28,gens_a:28,gens_f:28,gens_h:23,gens_i:28,gens_k:23,geodesi:167,geodet:167,geoffri:0,geomalgorithm:49,geomet:[37,160],geometr:[34,41,42,43,44,45,46,47,48,49,57,68,108,157,160,167,191,235],geometri:[2,4,41,42,43,45,46,47,48,49,57,59,100,112,165,216,223,233],geometric_conj:108,geometric_conj_ab:108,geometric_conj_af:108,geometric_conj_bf:108,geometric_distribut:191,geometricdistribut:191,geometricent:47,geometricrai:108,geometryent:[41,42,43,45,47,48,49],geometryerror:[42,45,48,49],geometryresult:44,georg:[0,16,160,187,207],georgio:0,geovan:0,geq0:191,geq:[32,33,40,68,168,185,191,238],gera:0,gerardo:[0,158],gerhard:167,german:33,gert:0,get:[4,5,6,9,10,13,14,15,17,21,22,24,25,27,28,31,32,33,34,36,37,38,40,45,55,58,59,61,65,68,71,74,79,83,92,95,101,102,103,106,111,112,119,123,128,133,134,135,136,141,144,157,159,161,163,164,166,168,169,170,171,172,173,174,180,181,182,184,185,187,188,189,190,191,192,196,202,207,208,209,211,214,217,225,226,229,231,233,234,235,237,238,239],get_adjacency_dist:24,get_adjacency_matrix:24,get_basi:134,get_class:212,get_color_arrai:159,get_comm:196,get_contraction_structur:[194,195],get_data:211,get_default_datatyp:203,get_diag_block:[63,65,68],get_dimensional_depend:[141,142],get_domain:168,get_exact:164,get_field:[163,164],get_free_indic:196,get_indic:[194,195,196,197],get_interfac:203,get_known_fact:8,get_known_facts_kei:8,get_matrix:196,get_mesh:159,get_mod_func:212,get_modulu:168,get_motion_param:152,get_numpy_arrai:15,get_period:[40,58],get_permut:139,get_point:159,get_positional_dist:24,get_precedence_dist:24,get_precedence_matrix:24,get_prototyp:203,get_r:164,get_resourc:211,get_seg:159,get_subno:139,get_subset_from_bitstr:17,get_symmetric_group_sg:[28,196],get_sympy_dir:201,get_target_matrix:123,get_transvers:28,getn:32,geto:32,getresourc:211,getrox:0,getsiddh:0,getsourc:208,getter:[32,92,106],gf_:166,gf_add:166,gf_add_ground:166,gf_add_mul:166,gf_berlekamp:166,gf_cofactor:166,gf_compos:166,gf_compose_mod:166,gf_crt1:166,gf_crt2:166,gf_crt:[71,166],gf_csolv:166,gf_degre:166,gf_diff:166,gf_div:166,gf_eval:166,gf_expand:166,gf_exquo:166,gf_factor:166,gf_factor_method:166,gf_factor_sqf:166,gf_from_dict:166,gf_from_int_poli:166,gf_gcd:166,gf_gcdex:166,gf_int:166,gf_irreduc:166,gf_irreducible_p:166,gf_lc:166,gf_lcm:166,gf_lshift:166,gf_monic:166,gf_mul:166,gf_mul_ground:166,gf_multi_ev:166,gf_neg:166,gf_normal:166,gf_pow:166,gf_pow_mod:166,gf_qbasi:166,gf_qmatrix:166,gf_quo:166,gf_quo_ground:166,gf_random:166,gf_rem:166,gf_rshift:166,gf_shoup:166,gf_sqf:166,gf_sqf_list:166,gf_sqf_p:166,gf_sqf_part:166,gf_sqr:166,gf_strip:166,gf_sub:166,gf_sub_ground:166,gf_sub_mul:166,gf_tc:166,gf_to_dict:166,gf_to_int_poli:166,gf_trace_map:166,gf_trunc:166,gf_valu:166,gf_zassenhau:166,gff:168,gff_list:[164,168],gfvar:178,ghcomm:196,ghosh:0,gianni:[166,168,189],giannoudovardi:0,giant:[71,190],giapitzaki:0,gib:168,gibb:175,gibbs_phenomenon:175,gidesa:0,gigabyt:233,gijselinck:0,gilbert:0,gilbertged:0,gill:0,gimp:172,gina:0,giorgosgiapi:0,giovan:33,giovini91:167,giovini:[166,167],git:[0,4],github:[0,2,5,13,32,48,59,68,143,180,190,235],gitlab:92,gitter:[5,235],gituliar:0,give:[2,3,8,10,13,15,16,21,23,24,25,26,31,32,33,34,37,38,40,42,44,45,47,48,56,58,59,60,62,65,68,70,71,72,74,92,106,118,133,134,136,137,141,142,144,145,147,149,152,154,156,157,158,159,160,161,163,164,166,168,169,172,173,174,175,179,180,181,182,184,185,187,189,190,191,201,203,207,217,222,231,234,236,238,239],given:[2,3,7,9,10,13,14,15,16,17,20,21,22,23,24,25,26,28,31,32,33,34,35,36,37,38,40,41,42,43,44,45,46,47,48,49,50,54,55,56,58,59,61,62,63,64,65,68,69,70,71,73,74,80,85,86,89,91,92,95,104,112,129,134,136,141,144,145,147,149,150,151,152,154,157,158,159,160,161,163,164,166,168,169,170,171,172,175,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,195,196,199,201,203,205,207,208,210,211,212,214,216,218,220,222,224,226,229,234,236,238,239],given_condit:191,gkorepanov:0,gladkova:0,glattli:0,gleb:0,glitterfram:0,glob:[3,201],global:[2,8,9,10,13,15,16,32,44,58,73,123,129,149,151,159,160,163,164,166,172,185,187,188,191,201,203,204,208,216],global_assumpt:[8,9,10],global_dict:73,global_paramet:38,global_var:[15,203],globalpolynomialr:163,gloss:179,glu:144,gluck:0,glue:68,glynatsi:0,glynatsin:0,gm_private_kei:33,gm_public_kei:33,gmail:[0,158],gmedlo:0,gmfolb:0,gmpy2:[163,164],gmpy:[36,163,164,237],gmpyfinitefield:[163,164],gmpyinteg:164,gmpyrationalfield:164,gmvlg:191,gmvlgo:191,gmx:0,gnu:0,gnulinook:0,goal:[14,84,107,169,190,201,202,204,233,236],goddu:0,goe:[32,39,68,179,182,190,231,234],goel:0,goertz:0,goffri:0,gohain:0,gohl:0,going:[2,14,69,92,104,106,152,159,168,179,182,231,236,238],gokstorp:0,gold:33,gold_bug:33,goldbaum:0,goldbuggonavybeatarmyy:33,golden:[32,36,71],golden_ratio:32,goldenratio:[36,173,184],goldstein:187,goldwass:33,golimarourhero:0,golomb:[33,71],golub:68,golumb:71,gomez:0,gompertz:191,gompertz_distribut:191,gon:20,gonavybeatarmi:33,gonavybeatarmyyesyoucan:33,goo:33,good:[0,2,15,32,33,36,44,58,68,71,94,103,106,160,163,164,172,179,181,182,184,187,207,229,235,236],goodok:0,goodrich:0,goodsel:0,googl:[0,36,158,159,190],googlemail:0,googol:0,gopalam:0,gopalamn:0,goppert:0,gorasiya:0,gordan:[82,126,136,158],gordon:[58,118,182],gori:0,goriccardo:0,gosper:31,gosper_norm:31,gosper_sum:31,gosper_term:31,goswami:0,got:[68,160,163,166,168,171,201,202,208,231,233,234],gotcha:[4,32,100,157,208,232,239],gothic_re_im:172,goui:108,goutham:0,gov:[0,2,37,38,40],govern:71,govind:0,goyal:0,gpa:74,gpu:[72,106],gracefulli:[172,194],grad:0,grad_field:[150,216],grade:[33,60,153,168],gradedlexord:168,gradient:[158,159,214,221,222],gradient_field:220,gradual:169,grafarend:167,graham:[24,37,38,71],graham_scan:49,grai:[19,27,60,108,153,159],gram:[68,144,146],grammar:[92,184],gramschmidt:68,grand:13,granger:[0,1,125],grantham:71,graph:[2,24,40,61,68,72,172,190,207,234,237],graph_theori:207,graphic:2,graphviz:[2,234,237],grassknot:0,grav_eq:142,gravit:[85,94,97,142,154,222],gravitational_const:[142,146],graviti:[91,92,95,97,99,106,154,222],gray_to_bin:17,graycod:17,graycode_subset:17,grdvnl:0,great:[108,169,172,185,208],greater:[2,11,24,32,38,40,58,61,71,166,168,171,179,184,187,189,191,205,207,220,230],greaterthanobject:32,greatest:[32,37,42,71,161,163,164,166,167,168,171],greatli:173,greedi:[71,166,181,184],greedy_algorithm_for_egyptian_fract:71,greek:[2,6,32,71,73,160,172],greek_lett:172,green:[23,159,236],greet:62,gregmedlock:0,gregori:0,greming:0,greuel2008:[160,167],greuel:167,grevlex:[60,153,161,166,168,171,172],grid:[13,14,159,226],gridpoint:13,griffith:0,grigoryan:188,grinnel:0,grlex:[60,153,164,168,171,172],groebner:[165,167,168,171,184,189,190],groebnerbasi:[161,168,171],groebnertool:166,grondel:69,gross:0,ground:[51,94,96,97,98,99,160,163,164,166,168,189,237],ground_root:168,group:[2,14,19,24,25,28,29,30,32,35,37,61,62,71,127,128,139,158,159,160,168,184,187,189,190,196,207],group_construct:18,group_nam:61,group_ord:61,groupprop:[20,23],grove:0,grover:[82,126],grover_iter:124,grow:[28,32,58,68,71,163,166],growth:[21,71,166,230],grozin:0,gruntz:[32,174],grzegorz:0,gschintgen:0,gsiitbhu:0,gsl:[84,203],gsoc:[0,190],gtk:57,gtkmathview:172,gts:32,guarante:[15,23,24,32,44,58,59,68,163,166,168,187,189,190,199,200,207,210,225,235,238],guard:203,guardian:0,guardianofgotham:0,gudchenko:0,gudehu:0,gudulin:0,guerriero:0,guess:[14,33,36,58,60,153,166,168,182,185,234],gui:[60,153],guid:[0,4,5,14,57,82,92,103,172,196,236],guidelin:[4,187],guillaum:0,guiver:167,gumbel:191,gumbel_distribut:191,gumbel_max:191,gumbel_min:191,gumbeldistribut:191,guo:0,guoyicong100:0,gup:0,gupta:[0,1,190],guptabhanu1999:0,guru:0,gustafsson:0,guzman:0,gwax:0,gxyd:0,gyz:185,h4wk:0,h_0:[23,28],h_1:[23,28,190],h_2:[23,190],h_i:[15,28],h_n:[28,40,59,190],h_name:[15,203],h_s:23,habel:0,habelinc:0,habitzreut:0,hack:[163,187,199],hackman:71,hacman0:0,had:[24,32,33,68,71,92,103,168,169,172,180,182,187,189,190,204,208,229,231,234,235],hadamard:[63,65,68,123,124,135,172],hadamard_product:65,hadamard_transform:35,hadamardg:123,hadamardpow:[65,172],hadamardproduct:[65,172],haessig:0,hagarwal9200:0,hagedorn:0,hagen:0,haimo:0,hal:54,halder:0,half:[3,15,33,37,38,40,42,48,59,61,68,71,73,74,108,111,136,158,164,166,168,181,182,184,191,201],half_gcdex:[164,168],half_per:164,half_precis:15,half_wave_retard:111,hall:[16,22,191],halli:0,halt:23,hamberg:26,hambier:0,hamburg:207,hamburg_hamburger2000:0,hamilton:[17,63],hamiltonian:[17,130],hamish:0,hammer:0,han:0,hand:[2,14,15,24,25,32,38,40,59,62,63,68,71,74,87,91,92,103,107,111,128,131,149,154,157,158,160,163,164,166,170,182,190,201,203,205,208,211,220,222,226,233],handbook:[2,16,22,23,30,40,71],handi:[31,32,68,172,234],handl:[2,13,20,24,32,57,59,60,62,67,71,72,73,74,80,84,92,103,119,122,128,129,134,163,168,169,178,184,187,189,192,194,202,208,210,226,234,238],handle_first:59,handler:[8,9,10,11,12,68],handwritten:[60,153],hang:[68,95,98,187,188],hankel1:[40,172],hankel2:[40,172],hankel:[40,59],hankel_transform:59,hankelh1:[40,172],hankelh2:[40,172],hankeltransform:59,hannah:0,hansen:0,happen:[2,15,24,31,32,36,44,47,56,134,138,144,160,166,168,171,180,184,187,191,208,218,226,231,237,238],happili:[59,194],hard:[24,33,68,71,92,139,163,172,179,187,190,231,233],harder:[2,32,58,163,201],hardest:33,hardi:71,hardik:0,hardwar:15,hargup:0,hari:0,harmless:[172,235],harmon:[32,39,71,81,82,158,172],harmonic_numb:37,harmonicnumb:[37,172],harmonicnumber2:37,harod:0,harold:0,harri:0,harrop:0,harryzheng:0,harsh:[0,1,190],harshil158:0,harshil:0,harshit:0,harshityadav2k:0,harshjniitr:0,hartre:81,hartung:0,haruki:0,harukimoriguchi:0,harvard:0,has:[0,2,3,11,13,14,15,16,17,21,22,23,24,26,28,31,32,33,34,36,37,38,40,42,44,45,47,48,49,55,58,59,61,62,63,65,68,70,71,72,74,75,79,80,87,92,94,95,100,104,106,112,113,123,124,133,136,141,144,148,149,152,154,155,156,157,159,160,161,162,163,164,165,166,168,169,170,171,172,173,177,179,180,182,184,185,187,188,189,190,191,192,194,195,196,201,202,203,205,207,210,214,215,217,218,220,222,223,224,226,229,230,231,233,234,235,236,237,238,239,240],has_assoc_field:164,has_assoc_r:164,has_dup:207,has_empty_sequ:[31,59],has_equ:159,has_finite_limit:[31,59],has_integer_pow:141,has_only_gen:168,has_q_annihil:139,has_q_creat:139,has_reversed_limit:[31,59],has_varieti:207,hasattr:[184,204],hash:[32,164,166,173,184,187,201,203],hashabl:[29,58,207],hasn:[103,188],hastebrot:0,hastu:0,hat:[104,148,149,153,154,156,157,217,218,220,222,223],hate:172,hathidara:0,hav91:16,hava:16,have:[1,2,3,5,9,10,11,13,14,15,16,17,22,23,24,25,28,30,31,32,33,34,36,37,38,40,42,43,47,48,50,55,56,57,58,59,61,62,63,64,65,68,69,70,71,72,73,74,75,80,83,84,87,89,92,93,94,98,100,103,106,123,125,128,132,134,136,137,138,139,141,142,143,144,147,148,149,152,154,155,156,157,158,159,160,161,162,163,164,165,166,168,169,170,172,174,175,177,179,180,181,182,184,185,187,189,190,191,192,194,196,201,202,203,204,205,207,208,210,214,215,217,218,219,220,223,224,225,226,229,230,231,233,234,235,236,237,238,239],haven:3,hazelnuss:0,hbar:[15,115,121,134,140,144,146,158],hcrane:191,head:[14,32,191,196,210,225,234],header:[15,202,203],headquart:33,heat:144,heavi:[191,234],heavili:[179,188],heavisid:[2,39,58,59,172],heavisidediracdelta:40,heavisidestepfunct:40,heavisidetheta:172,hebrew:33,hecht:0,hector1618:0,hedetniemi:207,height:[14,15,48,65,108,159,160,172,179,223],heiner:0,heinz:26,held:[13,33,103,194,238],heldo:33,helen:33,helium:81,hellman:[33,71],hello:[0,33,207],helloworld:33,helo9:0,help:[2,4,6,15,22,32,40,58,59,68,71,72,82,92,106,114,124,157,159,169,172,181,182,185,187,188,191,201,202,203,208,235,236],helper:[13,15,23,27,30,32,57,58,60,61,82,124,126,135,169,179,182,185,187,188,190,200,202],hemispher:223,henc:[13,15,22,23,32,34,38,40,44,58,60,62,71,154,159,160,161,166,172,182,185,188,190,201,205,218,219,220,234,238],henjo2006:0,henri:0,henrik:0,henriqu:159,hensel:166,hep:[0,80],her:190,herbert:31,herbst:0,here:[2,4,5,9,10,13,15,16,17,21,22,23,24,30,31,32,33,34,36,37,38,39,40,48,49,50,54,55,58,59,62,63,68,69,70,71,72,73,74,84,87,92,93,94,97,98,99,101,103,104,106,107,129,134,139,148,153,154,156,157,159,160,163,164,166,168,169,172,173,179,181,182,184,185,187,189,190,191,194,195,199,202,203,205,208,218,220,222,226,229,230,231,233,234,235,236,237,238],herm:0,hermetian:122,hermit:[59,63,68,168,172,191],hermite_distribut:191,hermite_poli:[40,168],hermite_polynomi:40,hermite_quadratur:59,hermite_rul:59,hermiteh:[40,172],hermitepolynomi:40,hermitian:[10,32,63,64,68,69,122,128,139,172],hermitian_adjoint:122,hermitian_transpos:122,hermitianhandl:11,hermitianoper:[11,128],hermitianpred:11,heroic:[168,189],herren:0,herrlich:14,hessenberg:[63,68],hessenbergdecomposit:68,hessian:68,hessian_matrix:68,heurisch:59,heurist:[24,57,58,59,63,166,167,179,181,184,189,190,201,230,238],heuristicgcdfail:166,hex:71,hexagon:57,heydon:0,hfst:33,hg2sfuei7t:33,hgh:23,hickey_interv:13,hickman42:0,hickman:0,hidden:148,hide:[33,172,236],hierarch:32,hierarchi:[172,191],high:[2,3,15,32,36,37,60,71,82,106,153,163,170,172,185,189,226,235],higher:[3,13,15,32,34,36,40,43,68,69,152,158,160,163,166,168,174,175,179,181,184,187,189,192,200,208,226,230],highest:[3,15,26,61,84,160,168,175,185,187],highest_root:61,highli:[2,32,36,77,163,168,177,203],highpost:0,hilbert:[82,126,128,134],hilbert_spac:[125,128,137],hilbertspac:125,hill:[33,40,87,105,149,155,214],hill_ciph:33,hillgart:214,himanshu:0,hinder:187,hing:[74,75],hint:[2,14,17,23,32,35,38,57,59,63,68,71,106,116,120,136,138,139,149,168,179,182,189,238],hint_integr:187,hintnam:[187,188],hir:32,hirai:0,hiraysush:0,hire:[68,74,75,159,175],hiren:0,hirenchalodiya99:0,hirzel:0,his:185,hisch:0,histogram:205,histor:[33,187],histori:[0,106,236],hit:[32,200,234],hjeb:33,hladia199811:0,hline:172,ho05:[16,22],hobj:172,hoc:58,hoeij02:167,hoeij04:[166,167],hoeij:167,hoff:0,hoffmann:214,hogan:0,hol_coneq:[87,95,102],hold:[3,10,14,23,28,32,33,34,38,40,54,58,68,70,73,81,88,89,104,135,168,182,184,187,191,203,238],holder:[0,32],hole:139,holomorph:[32,39,58],holonom:[4,53,56,57,94,95,101,102],holonomic_funct:50,holonomicfunct:[51,52,54],holonomicsequ:54,holt:[16,22,23,30],hom:14,home:[0,74,185,191,201],homebrew:2,homogen:[55,59,68,164,166,168,185,187,188,191],homogeneous_differential_equ:187,homogeneous_ord:[164,168,185],homomoprh:160,homomorph:[23,165],homomorphismfail:166,hong:0,hongguang:[57,183],honour:[32,39],hook:[72,172],hope:[23,84,160,226],hopefulli:[3,58,228],horel:33,horizont:[14,42,45,47,63,111,159,162,172],horizontal_direct:14,horner:[32,106,166,168],horner_schem:168,horowitz:59,horsen:0,horst:0,host:[0,2],hostnam:203,hotmail:0,hotz:0,hou:0,houruinu:0,household:68,how:[2,3,14,15,23,24,31,32,39,40,44,55,57,59,62,63,65,68,71,73,84,87,92,93,97,101,102,104,106,110,111,127,131,134,135,136,141,142,149,156,159,160,163,164,166,171,172,175,179,180,182,184,185,187,188,191,196,201,202,203,207,208,218,225,226,228,230,231,233,234,235,237,238],howeer:164,howev:[0,2,3,8,10,13,15,23,24,28,31,32,33,34,37,38,40,42,58,59,62,63,68,71,72,73,74,92,103,107,139,157,159,160,161,163,166,168,169,171,172,173,179,180,181,182,184,187,188,189,190,201,202,208,217,218,222,226,229,231,233,235,238,239],hpobwzcfbubsnz:33,hradiu:42,hroncok:0,hrzqe:33,hs80941:0,hsggebhardt:0,hsiang:0,hsin:167,hstack:[63,162],hsu:0,hta:94,htangl:94,htm:[24,40,59,185],html:[2,11,15,17,24,25,26,32,33,35,37,38,40,42,48,49,59,60,68,71,167,172,175,177,180,181,185,187,191,202,207,208,235],http:[0,1,2,5,9,10,11,13,14,15,17,20,21,23,24,25,26,31,32,33,34,35,36,37,38,40,42,44,48,49,50,54,58,59,60,61,62,63,65,68,69,71,74,81,83,108,110,111,112,114,115,116,120,121,122,125,127,128,137,139,149,151,153,155,158,167,168,171,172,175,177,179,180,181,184,185,187,190,191,202,203,207,208,210,214,215,219,221,223,224,235,236,237,240],huang:0,hubert:0,huge:[59,71,168],hugo:0,hugovk:0,huijun:0,huji:0,hull:49,hulpk:23,human:[2,58,141,168,172],hume:0,humphrei:61,hundr:[72,233],hunt:0,huntek:0,hunter:0,hurdl:92,hurtado:0,hurwitz:40,hurwitz_zeta_funct:40,hutchinson:0,hwp:111,hxz:185,hybrid:163,hydrogen:[15,82],hyper:[32,37,40,51,54,172,174,182,184,189,191,238],hyper_algorithm:174,hyper_r:174,hyperbol:[39,40,169,190,235,238],hyperbolic_funct:38,hyperbolicfunct:39,hyperegeometr:184,hyperexpand:[32,40,54,58,182],hyperfocal_dist:112,hypergeometr:[36,37,39,50,52,56,57,58,167,176,183,189,191,238],hypergeometric_distribut:191,hypergeometricdistribut:191,hypergeometricfunct:40,hypergeometricpfq:172,hyperlink:2,hyperplan:61,hypersimilar:183,hypersimp:[31,183],hypot:[15,172],hypotenus:[15,48],hypothet:205,hyriodula:0,i12:106,i23:106,i31:106,i_0:191,i_1:[22,139,168,192],i_2:[22,139,168],i_a:192,i_b:192,i_b_bo:92,i_b_o:92,i_c_d:92,i_k:191,i_n:[168,192],i_p_o:92,i_p_q:92,i_r:22,i_xi:[42,48],i_xx:[42,48],i_yi:[42,48],iamit:190,iammosespaulr:0,iamprayush:0,iamvermaabhishek:0,ian:0,ibin:207,ibm:184,icomp1:196,icomp2:196,icomp:196,icosahedr:25,ics:[71,187],ict17:0,id_a:14,id_b:14,idea:[18,23,30,32,33,44,50,58,59,71,80,92,139,143,144,160,162,163,181,184,185,187,190,202,203,208,238],ideal:[15,89,92,100,149,156,164,165,166,167,168,169,184,190,214],idempot:15,ident:[3,11,14,16,23,24,30,32,33,37,38,48,55,61,63,65,68,80,104,123,125,128,144,160,161,162,166,167,168,172,181,184,187,190,194,196,201,207,208,210,218,231,235,238],identif:[58,190],identifi:[2,13,25,32,35,36,59,68,101,127,128,160,163,164,173,181,184,187,188,189,190,191,208,211],identity_hom:160,identityfunct:39,identityg:123,identitymorph:14,identityoper:128,ideolog:[15,190],idichekop:0,idiff:[32,49],idiom:[211,231,236],idl:15,idlike2dream:0,idx:[13,15,172,194,195,202],ieee754:15,ieee:[32,33],ieilehfstsfxe:33,ieilh:33,ieilhhfstsfqy:33,ifascii_nougli:172,ifels:172,iff:[11,24,33,62,68,157,160,182,185,201],ifft:35,ifndef:[15,203],ifork11:94,ifork22:94,ifork31:94,ifork33:94,ifp:13,iframe11:94,iframe22:94,iframe31:94,iframe33:94,ifwht:35,igcd:[71,161],ignor:[3,15,23,32,33,37,38,42,47,58,62,68,71,86,94,136,139,159,168,172,173,184,189,202,238],ignore_exception_detail:201,ignore_warn:[199,208],igusa:191,iii:[59,172,187],iiit:0,iiitd:0,iiitmanipur:0,iin:61,iitb:0,iitbb:0,iitbhu:0,iitj:0,iitkgp:0,iitp:0,iitr:0,ijk:[15,195],ijr22d:33,ijth:61,iki:0,ilcm:71,ilex:160,ill:142,illinoi:[0,13],illumin:2,illustr:[15,68,93,95,144,163,175,179],ilya:0,imag:[0,23,96,106,108,112,160,164,166,172,180,190],imagemagick:2,imageset:[190,239],imaginari:[2,3,10,12,32,36,38,40,63,106,163,168,172,173,184,190],imaginary_numb:[11,32],imaginary_unit:[32,172],imaginaryhandl:11,imaginarypred:11,imaginaryunit:[38,172],imath:182,imbu:34,immateri:33,immedi:[23,32,58,62,139,160,163,202,208],immerrr:0,immut:[32,57,64,67,69,157,187,191,192,229,235],immutabledensematrix:[63,64,65,66,191,208],immutabledensendimarrai:192,immutablematrix:[63,65,67,69,149,191,214,216,235],immutablesparsematrix:67,immutablesparsendimarrai:192,imped:110,implement:[2,4,7,8,9,10,13,14,15,16,18,22,23,24,29,32,33,35,37,38,39,40,43,45,52,53,55,56,57,59,62,63,68,71,72,73,84,92,100,108,110,111,114,123,124,132,133,135,143,148,150,155,156,157,159,160,161,163,164,165,166,167,168,169,171,173,176,179,180,181,184,185,187,188,189,190,191,194,195,205,206,207,208,211,221,225,230,233,238],implemented_funct:[72,202,208],impli:[0,2,3,11,15,23,62,139,159,164,166,172,180,182,187,192,194,195,207,220],implic:[32,62,166],implicit:[15,30,32,73,91,107,159,187,189,195,202,203,214,216,223,231],implicit_appl:73,implicit_circl:223,implicit_multipl:73,implicit_multiplication_appl:73,implicitli:[32,160,163,189],implicitregion:[216,221,223],implicitseri:159,implict:214,implieddoloop:15,importantli:[169,205],impos:75,imposs:[2,13,32,163,181,187,188,231,238],impract:187,impress:3,improp:59,improperli:32,improv:[32,57,58,100,159,163,166,167,168,169,171,173,187,190,195,230,235],imran:0,imul_num:164,in_terms_of_gener:160,inabl:188,inappropri:34,inc:[155,167],incas:37,incent:48,inch:159,incid:[108,112],incident:0,incircl:48,inclin:160,includ:[0,2,3,5,10,11,13,14,15,24,28,31,32,33,34,36,37,38,40,44,50,58,59,62,63,65,67,68,69,71,72,73,81,84,91,92,94,95,100,101,103,106,119,123,128,133,136,137,147,154,157,161,164,165,166,168,171,172,173,178,179,180,182,184,186,187,188,189,191,193,196,201,203,204,205,207,214,215,217,222,230,233,234,235,238,239],include_dir:202,include_numer:92,include_pydi:92,includepr:[164,166,168],inclus:[2,31,132,160,179,180,190],inclusion_hom:160,incommensur:13,incomplet:[2,32,37,40,161,163,174,190],incomplete_gamma_funct:40,inconclus:189,incongru:182,inconsist:[31,144,149,152,156,184,187,190],inconveni:172,incorpor:[1,161,184,226],incorrect:[2,23,32,42,71,152,164,187,190,202,205],incorrectli:[2,41,42,161],increas:[3,13,14,24,30,31,32,35,36,40,63,71,72,84,93,123,148,149,151,156,157,163,166,174,177,181,187,191,207],increment:[15,23,24,25,31,48,71,183,191],incur:[15,72],ind:[28,174,196],inde:[20,23,31,58,160,182,187,201,226,233],indefinit:[7,38,56,58,59,68,164,166,167,168,177,230],indent:[2,3,210],indent_cod:172,indep:187,indep_div_dep:187,independ:[3,11,13,15,23,31,32,34,40,49,58,59,61,68,87,88,92,94,95,101,103,137,144,154,159,161,163,168,174,175,182,184,185,187,188,189,190,191,196,201,202,220,233,234],indetermin:[32,68,166,177,189],indeterminate_form:32,index:[2,3,15,19,21,23,24,28,31,32,33,34,38,40,43,48,57,58,59,63,65,68,70,71,91,92,106,107,108,110,112,113,123,132,134,136,139,144,149,159,160,164,168,169,172,177,182,189,191,192,193,194,196,202],index_group:139,index_method:194,index_typ:196,indexconformanceexcept:194,indexedbas:[13,15,31,172,189,194,195,202],indexerror:[24,68,168],indic:[2,3,13,14,15,16,17,21,23,24,25,27,28,30,31,32,35,36,37,40,42,47,48,58,59,62,63,65,68,69,70,71,80,91,95,123,134,136,137,139,144,148,149,158,162,163,164,169,172,179,180,181,183,184,185,190,191,192,193,194,195,196,197,201,202,203,207,225,235],indices_contain_equal_inform:[40,139],indici:[54,55,56,187],indirect:[0,32,34,40,71,139,187],individu:[32,38,43,48,49,61,63,65,68,104,111,129,133,158,180,187,201,235,236],induc:[32,63,181],induct:160,ineffici:[32,68,163],inequ:[4,32,57,159,166,180,182],inequival:58,inert:187,inerti:[87,89,94,95,97,101,102,104,106],inertia:[74,75,82,83,84,85,91,92,94,97,98,99,100,106,149,155,156,157],inertia_dyad:149,inertia_of_point_mass:100,inertia_tupl:89,inexact:[3,32,164],inf:[15,24,32,68,164,168,180,187,191],infal:231,infanc:44,infeas:[166,168],infer:[8,9,10,32,57,59,163,171,177,182,187,202],inferno1386:0,infimum:[13,180],infin:[11,31,37,38,39,40,45,58,59,68,164,166,168,172,177,178,179,180,184,186,187,191],infinit:[10,31,32,33,36,37,38,45,46,57,59,68,71,79,96,125,144,160,172,173,174,177,178,179,180,184,185,186,189,195,207,238,239],infinite_product:31,infinitehandl:11,infinitepred:11,infinitesim:[154,220],infix:32,inflect:158,inflianska:0,influenc:[16,160,161],info:[0,2,3,79,172,187,188],inform:[0,2,3,10,11,13,14,15,16,23,24,30,32,33,37,40,44,57,58,59,61,65,68,72,75,85,86,87,91,92,94,100,101,103,104,106,107,134,139,144,148,149,153,157,159,163,168,172,173,179,182,184,185,189,190,191,194,195,196,201,202,203,205,214,218,220,224,225,238],informatik:207,information_theori:191,informatiqu:169,infrastructur:[4,172,188],infroma:0,infti:[2,11,13,31,32,33,37,40,58,59,160,168,175,179,182,187,190,191,230,233,238],infunct:32,ingold:0,ingram:0,ingramd:0,inher:[92,208,231],inherit:[8,32,39,62,65,66,128,137,158,172,191,195,203,204],inhomogen:[185,187,189],init:189,init_cond:34,init_ipython_sess:60,init_print:[5,15,24,36,59,60,68,75,153,160,161,171,230,233,235,237,238,239],init_python_sess:60,init_sess:[60,237],init_subgroup:23,init_vprint:[89,90,104,107,149,151,152,155,156,157],initcond:[51,53,54],initi:[2,9,23,27,32,33,34,37,39,40,48,50,51,54,55,56,58,60,71,73,75,85,87,89,91,92,94,95,99,101,102,103,106,107,111,119,128,150,151,153,157,158,166,168,172,182,184,187,189,190,195,203,209,210,214,215,216,217,218],initial_condit:[92,106],initializing_quadratic_siev:71,inject:[23,32,160,164,168,235],inlin:[2,60,153,172,203],inlist:149,inner:[31,58,68,82,122,125,126,131,133,134,137,139,149,152,174,214],inner_product:127,innermost:32,innerproduct:[122,127,128,134,136,139],inout:15,inoutargu:[15,203],inp:0,inp_vec:[95,103],inplac:164,input:[2,3,7,13,16,28,32,33,35,36,37,38,46,57,59,61,62,68,71,77,79,84,88,91,92,94,95,103,106,107,112,135,149,151,152,163,164,166,168,169,170,171,172,173,180,184,185,187,189,191,202,203,205,207,208,210,229,234,235,236,238],inputargu:[15,203],inputoutput:203,inquiri:32,inradiu:48,inria:[54,59],insconsist:32,inscrib:48,insensit:[15,68,106,172,201,203],insert:[14,16,63,73,74,134,139,172,191,210],insid:[2,3,23,24,29,32,42,43,48,74,84,86,95,103,138,139,144,153,157,168,172,180,182,185,189,190,191,194,205,234,235],insidepoli:48,insight:236,inspect:[57,68,206,208],inspir:[188,235],instal:[3,4,36,57,72,163,164,172,202,208,232,237],instanc:[2,8,9,10,12,13,14,15,23,25,27,32,34,36,37,38,40,45,48,49,50,55,56,59,60,65,68,71,73,74,80,85,87,91,92,107,112,119,123,129,133,134,136,138,139,149,151,153,154,159,163,164,168,169,170,172,180,182,184,187,189,190,191,194,195,196,201,202,203,205,207,208,214,215,216,217,218,220,222,225,229,230,234,238,239],instantan:220,instanti:[7,14,15,24,32,40,45,47,48,65,68,69,129,137,149,159,160,164,191,214,217],instead:[2,3,6,8,10,13,14,15,23,25,28,32,34,35,36,37,40,59,60,62,63,65,66,68,71,80,91,92,94,95,103,106,137,141,143,147,153,154,156,157,160,163,164,166,168,170,172,174,182,184,187,189,190,191,194,195,196,205,208,220,223,229,230,231,233,234,235,238,239],institut:[0,169],instruct:[2,3,15,172,189,202,203,226],insuffici:63,int16:15,int1:[9,10],int2:[9,10],int32:15,int64:15,int8:15,int_0:[40,58,59,230,238],int_1:[40,58],int_:[40,56,58,59,175,230,233],int_a:59,int_l:[40,58,182],int_to_integ:60,int_x:40,intact:[15,202],intbasetyp:15,intc:[15,73],intcurve_diffequ:34,intcurve_seri:34,integ:[2,3,8,9,10,13,15,16,21,23,24,25,26,28,31,33,34,35,36,37,39,40,42,45,56,58,59,60,61,62,63,65,68,71,73,74,79,81,128,133,135,136,137,139,141,149,151,153,158,159,160,161,164,165,166,167,168,169,171,172,174,177,179,181,182,184,185,187,189,190,191,194,195,196,202,203,205,207,230,231,234,237,238],integer_as_sum_of_three_squar:185,integer_el:11,integer_nthroot:[38,71],integerelementshandl:11,integerelementspred:11,integerhandl:11,integerpartit:[21,207],integerpred:11,integers_onli:159,integr:[3,4,5,7,13,24,31,32,34,37,38,39,50,51,52,55,57,61,68,70,71,79,81,87,92,100,106,125,134,137,140,143,148,150,154,158,160,163,164,166,168,169,172,174,175,182,187,188,191,203,214,216,217,220,221,225,232,233,236,237],integral_step:59,integraltransform:59,integraltransformerror:59,integrand:[36,40,56,58,59,182],integrate_result:134,integration_techniqu:59,integration_vari:230,integstp:92,intellig:[167,184,187,238],intend:[2,13,32,33,43,52,58,71,73,86,134,163,170,185,187,188,204,229],intens:[87,88,108,111],intent:[15,31,32,73,203],intent_in:15,intent_out:15,interact:[1,2,4,6,24,32,46,57,59,66,68,106,136,153,157,163,164,184,191,212,231,233,234,236,237,238],interactive_travers:207,interactiveconsol:[60,153],interchang:[28,31,58,187],interconnect:[77,79],interest:[3,28,32,34,37,38,48,58,68,71,93,94,139,144,157,160,164,168,169,171,179,182,184,185,189,190,202,203,218,230,232,234,235,238,240],interf:190,interfac:[2,13,32,57,60,100,108,134,153,155,157,163,166,170,190,202,203],interfer:172,interfram:152,interior:[48,168,180],interior_angl:48,intermedi:[15,16,55,63,92,94,97,123,133,141,142,149,152,156,190,203],intern:[3,4,13,15,16,23,32,35,36,37,40,48,49,52,57,68,71,75,94,103,112,133,134,144,160,162,164,165,167,168,170,172,182,184,188,189,190,191,194,196,203,205,207,234,237],interpol:[13,41,106,166,168],interpolating_poli:[40,168],interpolating_splin:40,interpret:[3,13,15,23,31,32,37,40,45,48,59,63,64,65,68,69,71,73,84,144,159,161,168,172,179,185,189,190,191,195,201,202,205,210,235],interrupt:[0,201],intersect:[2,13,14,23,42,43,45,46,47,48,49,57,112,160,168,172,178,179,190],intersecting_product:35,intersection_:180,interspers:160,interv:[11,13,23,32,36,38,40,41,42,45,48,57,58,59,71,125,134,164,166,168,175,178,186,190,191,239],interval_:180,interval_arithmet:13,intgrl:36,intim:160,intiuit:68,intp:15,intpoli:59,intqubit:[124,133],intqubitbra:133,intransit:23,intrins:[15,110],intrinsic_imped:110,introduc:[28,31,40,58,68,72,75,92,94,97,98,99,102,139,144,157,164,165,169,172,179,182,185,191,235,236,238],introduct:[2,4,19,23,24,57,100,155,164,165,166,167,172,185,187,190,221,227,232,236,237],introductori:[163,164,168,226],introspect:106,intsang:0,intstep:59,intt:35,inttyp:15,intuit:[32,144,176,187],inv:[24,64,68,69,87,94,97,98,106,128,162,187,226],inv_can_transf_matrix:141,inv_method:87,inv_mod:68,inv_perm:24,inv_trig_styl:172,invalid:[3,32,33,94,163,166,180],invari:[2,23,28,77,79,158,164,168,182,187],invent:[33,189,233],inver:169,invers:[2,4,7,23,24,32,33,34,39,40,57,59,65,68,69,71,87,128,132,133,136,141,144,160,161,162,164,166,168,169,172,174,182,184,189,190,191,207,235,238],inverse_adj:[68,235],inverse_block:68,inverse_ch:68,inverse_cosine_transform:59,inverse_fourier_transform:59,inverse_funct:40,inverse_g:[68,235],inverse_gaussian_distribut:191,inverse_hankel_transform:59,inverse_laplace_transform:59,inverse_ldl:68,inverse_lu:[68,235],inverse_mellin_transform:59,inverse_mobius_transform:35,inverse_qr:68,inverse_sine_transform:59,inverse_trigonometric_funct:38,inversecosinetransform:59,inverseerf2:40,inverseerf:[40,172],inverseerfc:[40,172],inversefouriertransform:59,inversegaussiandistribut:191,inversehankeltransform:59,inverselaplacetransform:59,inversemellintransform:59,inversesinetransform:59,inversion_vector:24,invert:[10,32,33,63,65,68,95,141,161,163,164,168,187,189,190,196,226,235],invert_complex:190,invert_r:190,invertible_matrix:11,invertiblehandl:11,invertiblepred:11,investig:[24,58,158,160,182,207,231],invok:[179,201,202],involut:207,involv:[3,10,12,23,31,32,33,37,44,45,58,59,71,79,85,87,92,118,128,134,136,146,156,157,160,161,164,166,168,169,173,174,179,180,181,182,184,185,187,189,208,226,238],ioerror:211,ion:185,ionescu:0,iosi:33,iota:[3,172],ip_doit:131,ipmnet:187,ipo:196,ipos1:196,ipos2:196,iproduct:207,ipython:[2,3,5,60,106,153,208,213,236,237],iqft:132,iqgnol:0,iren:[2,40],iress:0,irrat:[10,13,32,71,163,168,172,180,233],irrational_numb:[11,32],irrationalhandl:11,irrationalpred:11,irreduc:[161,164,166,168,171,191,196,238],irreducibili:168,irregular:[65,68],irrelev:37,irrespect:[59,185,187,210],irrot:[154,220],irukula:0,irwin:191,is2pow:71,is3mansour:0,is_2dlin:159,is_:32,is_abelian:23,is_above_fermi:[40,139],is_absolutely_converg:31,is_abund:71,is_add:[32,190],is_algebra:[32,164],is_algebraic_expr:32,is_alias:168,is_alt_sym:[23,30],is_altern:23,is_amic:71,is_anti_symmetr:63,is_below_fermi:[40,139],is_biprop:79,is_canon_bp:196,is_clos:180,is_cnf:62,is_collinear:[44,47],is_commut:[59,128,137,207],is_compar:32,is_complex:32,is_concycl:47,is_conserv:[154,220,221],is_consist:[141,147],is_const:32,is_converg:31,is_convex:[13,48],is_coplanar:46,is_cycl:23,is_cyclotom:[164,168],is_decreas:13,is_defici:71,is_deriv:32,is_diagon:[63,64,66,68,69],is_diagonaliz:[63,64,66,68,69],is_dimensionless:141,is_disjoint:180,is_dnf:62,is_echelon:[68,235],is_elementari:23,is_empti:24,is_equilater:48,is_euler_pseudoprim:71,is_even:[20,23,24],is_extra_strong_lucas_prp:71,is_field:[163,164],is_finit:32,is_float:32,is_full_modul:160,is_funct:15,is_gaussian_prim:71,is_groebn:166,is_ground:[164,168],is_group:[20,23],is_hermitian:[63,68],is_homogen:[164,168],is_hypergeometr:31,is_ident:[22,24,32],is_increas:13,is_indefinit:68,is_inject:160,is_integ:[32,151,172,195],is_irr:32,is_irreduc:[164,168],is_isomorph:160,is_isoscel:48,is_iter:180,is_left_unbound:180,is_linear:[164,168],is_low:63,is_lower_hessenberg:63,is_lucas_prp:71,is_matrix:[15,172],is_maxim:160,is_meromorph:32,is_mersenne_prim:71,is_minim:166,is_mon:[164,168],is_monomi:[164,168],is_monoton:13,is_mul:32,is_multivari:168,is_neg:164,is_negative_definit:68,is_negative_semidefinit:68,is_nilpot:[23,68],is_nonneg:[34,164],is_nonposit:164,is_nonzero:47,is_norm:[23,137],is_nthpow_residu:71,is_numb:[32,39,40,59],is_odd:24,is_on:[164,168],is_only_above_fermi:[40,139],is_only_below_fermi:[40,139],is_only_q_annihil:139,is_only_q_cr:139,is_open:180,is_palindrom:[71,207],is_parallel:[45,46],is_perfect:[23,71],is_perpendicular:[45,46,47,48],is_pid:164,is_polycycl:23,is_polynomi:32,is_posit:[32,151,164],is_positive_definit:68,is_positive_semidefinit:68,is_pow:[3,15,32,38],is_prim:[32,160],is_primari:160,is_primit:[23,164,168],is_primitive_root:[33,71],is_princip:160,is_prop:79,is_proper_subset:180,is_proper_superset:180,is_q_annihil:139,is_q_creat:139,is_quad_residu:71,is_quadrat:[164,168],is_r:164,is_rad:160,is_rat:[3,207],is_rational_funct:32,is_real:[32,38,39,68,151,172,195],is_recurr:191,is_reduc:166,is_right:48,is_right_unbound:180,is_scalar_multipl:47,is_scalen:48,is_similar:[43,45,48,49],is_simpl:40,is_singleton:24,is_singular:[32,39,55],is_solenoid:[154,220,221],is_solv:23,is_sqf:[164,168],is_squar:[32,63,71],is_stabl:79,is_strictly_decreas:13,is_strictly_increas:13,is_strictly_prop:79,is_strong_lucas_prp:71,is_strongly_diagonally_domin:63,is_subdiagram:14,is_subgroup:23,is_submodul:160,is_subset:[180,225],is_superset:180,is_surject:160,is_symbol:[15,63],is_symmetr:[23,63],is_tang:[42,44],is_transit:23,is_trivi:23,is_tru:[8,10,11],is_unit:164,is_univari:168,is_up:196,is_upp:63,is_upper_hessenberg:63,is_weakly_diagonally_domin:63,is_whole_r:160,is_zero:[32,39,47,68,160,164,168,235],is_zero_dimension:[168,190],is_zero_matrix:63,isdisjoint:180,isfinit:32,ishan:0,ishanaj98:0,ishizuka:0,isign:15,isildur:0,isinst:[15,32,65,163,164,172,173,184,192,194,203,225,234],iskhakov:0,islam:0,isn:[32,51,59,84,92,108,135,180,187,190,233],isol:[13,38,164,168,169,189,203],isometri:61,isomorph:[23,26,160,163,166,168],isomorphismfail:166,isotrop:140,ispk:33,isprim:[11,33,71],isprimit:32,issac:[16,59,167,189],issn:1,issu:[2,3,5,6,13,31,32,49,59,62,68,72,82,88,100,119,155,158,167,169,172,180,181,189,190,199,201,203,205,207,231,232,234,238],issubset:180,issuperset:180,ist:[69,167,181,184],istruehandl:11,istruepred:11,isuru:[0,1],isuruf:0,isympi:[3,60],iszero:235,iszerofunc:[68,235],ital:2,italic:2,itay4:0,itbhu:0,item:[2,3,15,21,22,24,32,37,43,49,63,68,71,87,159,163,166,168,172,180,187,188,191,201,202,205,207,208,238],iter:[13,15,21,23,24,27,28,33,35,37,40,48,57,64,71,85,86,87,88,91,103,107,124,139,152,159,160,161,164,166,168,172,173,174,175,178,184,185,187,189,190,191,192,194,202,203,204,205,206,208,214,218],iter_q_annihil:139,iter_q_cr:139,iterate_binari:27,iterate_graycod:27,itercoeff:164,itermax:15,itermonom:164,itermonomi:168,iterterm:164,itertool:[27,207],itex:172,ith:[24,61,71,164,169,190,191],itii:33,its:[0,1,2,3,9,10,11,13,14,15,16,17,20,22,23,24,31,32,33,34,37,38,40,42,44,48,50,58,59,60,62,63,65,68,71,73,74,75,84,85,87,89,92,94,95,100,103,104,106,107,112,118,124,125,127,128,133,134,137,139,144,146,149,150,154,156,157,158,159,160,161,162,163,164,166,167,168,169,170,171,172,179,180,184,186,187,189,190,191,194,195,196,201,205,208,211,214,216,217,218,220,223,226,233,234,235,237,238],itself:[2,11,21,23,24,30,32,34,37,45,49,54,71,87,91,92,104,129,136,154,156,159,160,163,166,168,172,180,181,184,190,194,195,196,203,205,207,222,233],iurii:0,ivan:[0,166],ivanenko:0,ivanov:[0,1],iwf11:94,iwf22:94,iwr11:94,iwr22:94,ixi:[89,149],ixjlyon:0,ixx:[85,89,149],ixz:149,iy_:40,iyi:[89,149],iyz:[89,149],izx:89,izz:[89,149],j12:[118,136],j13:118,j1o6anp:0,j23:118,j24:118,j2op:136,j34:118,j_0:119,j_1:[37,118,119,136,158,174,192],j_2:[37,118,119,136,158,174],j_3:[118,136,158],j_4:[136,158],j_5:158,j_6:158,j_7:158,j_8:158,j_9:158,j_m:192,j_n:[40,136],j_y:158,j_z:158,jacen:0,jack:0,jacob:0,jacobi:[33,59,71,81,168,172],jacobi_norm:40,jacobi_poli:[40,168],jacobi_polynomi:40,jacobi_rul:59,jacobi_symbol:71,jacobian:[34,68,103,189],jacobian_determin:34,jacobian_matrix:34,jacobip:[40,172],jacobipolynomi:40,jacobsen:0,jacquenot:0,jaditya8889:0,jae_young_kim:0,jai:0,jailuthra:0,jaim:0,jaime02:0,jain2016a:0,jain:0,jainul:0,jainulvaghasia:0,jaiswal:0,jaiswalshikhar87:0,jajodia:0,jakub:0,jamadagni:0,jame:[0,33],jamgad:0,jan:[0,1,33],janckrus:0,jane:16,januari:71,jare:0,jaroslaw:0,jarthurgross:0,jashanpreet:0,jashansingh:0,jason:[0,1,172],jatin:0,jatinyadav25:0,java:3,javascript:[57,237],javascriptcodeprint:172,jave:0,javednissar:0,jayesh:0,jayjayyi:0,jblythe29:0,jburkardt:59,jburkart:0,jcoupl:136,jcoupling_list:136,jcrw122:0,jdmiller93:0,jean:[0,59],jeesoo9595:0,jeffrei:[68,184],jen:[0,158],jennif:0,jensen:[0,15],jenshnielsen:0,jeremei:0,jeremi:0,jeremia:0,jeremygluck:0,jeroen:69,jerom:207,jeromekelleh:207,jeromin:0,jerri:0,jerryli:0,jerryma1121:0,jewett:71,jezreel:0,jfosorio:0,jgarber1:0,jgulian:0,jguzm022:0,jha:0,jhaa:0,jhanwar:0,jhu:0,jiang:0,jiax:0,jiit:0,jim:[0,105],jindal:0,jiri:0,jisoo:0,jit:181,jithin:0,jithindgeorge93:0,jjallan:0,jksuom:0,jku:[54,214],jlahori92:0,jlh:0,jlname:203,jmig5776:0,jmilam343:0,jmss:0,jn_zero:40,jnebo:0,joachim:0,joan:0,joaquim:0,job:[24,119,169,172,226],jochen:0,joel:187,jogi:0,joglekar:0,joha2:0,johan:0,johan_bluecreek:0,johann:0,johansson:[0,1],john:[0,16,23,40,168,185,187],johndcook:37,johnson:[24,68],joi:14,join:[3,24,32,33,45,63,69,74,75,172,184,187,192,207,211],joint_distribut:191,joint_rv_typ:191,jointdistributionhandmad:191,jointrv:191,jolli:0,jon:71,jonathan:0,jone:[0,71,111],jones_2_stok:111,jones_calculu:111,jones_vector:111,jonti:0,jonty16117:0,jordan:[58,63,68,170,189,190],jordan_block:[63,68],jordan_cel:68,jordan_form:68,jordan_matrix:[63,187],jordan_normal_form:187,jorg:0,jorgeecardona:0,jorgensen:0,jorn:0,jose:0,joseph:[0,80,167],josephdgulian:0,josephu:24,josephus_problem:24,josh:0,joshi:0,josi:33,joul:144,journal:[1,2,31,37,71,80,167,184,205],joyner:0,joyofcat:14,jpg:211,jpmccafferi:0,jpr2718:185,jreme:0,jrfiedler:0,jrjohansson:0,jrx:0,js_function_str:172,jscode:[15,172],jth:[61,190],juan:0,juanlu001:0,judgement:2,juha:0,juli:[33,185],julia:[57,203],julia_cod:[15,172],juliacodegen:203,juliacodeprint:172,julien:0,julio:0,juliu:33,jump:[191,238],jun:0,june:[33,68],junlin0604:0,jupyt:208,jurjen:[0,172],juse:180,just:[2,3,5,11,14,15,23,30,32,33,34,55,57,58,59,60,61,62,68,71,72,81,84,85,89,92,95,98,103,104,106,119,124,129,139,144,148,153,154,156,160,163,164,166,171,172,179,181,182,184,187,190,199,201,203,204,219,220,222,229,230,231,233,234,235,236,237,238,239],justifi:166,justin:0,juxtaposit:[104,148,217],jvsiratt:0,jwdougherti:0,jwilk:0,jxbra:136,jxbracoupl:136,jxket:136,jxketcoupl:136,jybra:136,jybracoupl:136,jyket:136,jyketcoupl:136,jyr2000:158,jzbra:136,jzbracoupl:136,jzket:136,jzketcoupl:136,jzop:136,k12:0,k_0:166,k_1:[33,71,166,182],k_2:33,k_3:33,k_arrai:22,k_d:101,k_i:[71,166,182],k_j:182,k_m:71,k_n:[33,166],k_u:182,k_y:61,kahan:80,kahane_simplifi:80,kaifeng:0,kaiser:0,kalevi:0,kalinin:0,kalkbrenn:189,kalo:0,kalosbasileio:0,kalra:0,kaltofen98:167,kaltofen:[166,167],kamat:0,kamath97:0,kamath:0,kamimura:0,kane1983:[105,157],kane1985:[98,101,104,105],kane:[82,84,92,96,100,105,106,148,149,214],kanemethod:100,kanes_equ:[87,92,94,95,97,98,101,103,106],kanesmethod:[87,92,94,95,97,98,101,103,106],kangzhiq:0,kapoor:0,kappa:[3,172,191],kapur1994:167,kapur:[0,167],karadzhov:0,karagiannaki:0,karan1276:0,karan:0,kari:0,karr:31,karthik:0,kartik:0,kartiks31416:0,kasiski:33,katja:0,katmat:14,kauer:177,kaushik:0,kaustubh:0,kaustubhdamania:0,kayi:0,kazuo:0,kbin:207,kconrad:191,kd_eq:[87,92,94,95,97,98,103,106],kdd:[94,97,98],kde:[95,103],kdvi:172,keep:[2,3,28,32,33,36,37,40,58,68,87,104,123,139,159,163,164,168,179,180,182,184,187,189,196,222,225,230,234],keep_only_fully_contract:139,kei:[3,8,11,14,21,23,24,32,33,34,37,48,61,63,64,68,70,71,74,91,92,100,131,134,139,157,159,161,163,164,165,166,168,169,170,172,184,187,188,189,191,194,205,207,208,210,235,236,238],kelleh:207,kellei:0,kelli:[58,182],kelvich:0,kemenad:0,kemp:0,kempf:160,ken:0,kendhia:0,kenneth:0,kennouch:0,keno:0,kepler:[142,214],kept:[34,141,157,207,234],ker:160,kern:[0,32],kernel:[68,160,166,189],kerr:0,ket:[122,127,128,129,131,133,134,137,139],ket_not:137,ketbas:[127,128,134,137],keval:0,kevalshah_96:0,kevin:0,key1:159,key2:159,key2bound:68,key2ij:68,keyboard:[159,236],keyboardinterrupt:201,keyfunc:207,keyword:[1,2,14,15,16,23,24,32,33,36,37,45,47,48,49,63,68,71,74,87,101,102,133,139,153,159,161,163,164,166,168,171,172,173,179,184,185,189,195,201,202,208,218,235],kfkljjhf5mmmktfrgpl:33,khagesh:0,khageshpatel93:0,khan:0,khare:0,khareatharva:0,khaund:0,khurana:0,kibeom:0,kid:33,kid_rsa_private_kei:33,kid_rsa_public_kei:33,kiev:167,kii:0,kill:[160,164,201],killable_index:[40,139],killed_modul:160,kilo:145,kilogram:[110,142,144,146],kilomet:[145,146],kim:0,kin_explicit_rh:[91,107],kinar:0,kind:[2,14,15,34,37,40,52,57,59,74,87,92,102,154,161,163,164,168,173,174,180,187,188,191,207,220,222,227,230,238],kindiff:106,kindiffdict:[87,94,97,98,101,106],kinema:91,kinemat:[82,84,87,91,92,94,95,97,99,101,103,104,106,107,155,157],kinematic_equ:155,kinet:[87,89,100],kinetic_energi:[100,104,106],king:0,kirchhoff:0,kirpichev:[0,1],kirtan:0,kirtanmali555:0,kisonchristian:0,kit:0,kite:48,kitouni:0,kiyohito:0,kk1674:0,kklein:0,klaasvanaarsen:0,klein:24,kli:0,kloeckner:0,knew:238,knoll:0,knot:40,know:[2,3,8,10,13,14,24,32,33,36,44,49,57,58,59,68,71,89,92,107,133,137,141,142,144,148,149,156,157,159,168,169,171,172,182,184,187,190,191,204,207,208,218,224,229,230,231,233,234,236,238],knowledg:[8,31,32,33,187,234,236],known:[2,10,14,15,16,21,23,24,32,33,36,37,39,40,42,45,50,57,58,59,60,71,80,83,89,103,142,149,156,163,164,172,175,178,180,181,182,184,186,187,188,189,191,207,208,214,220,222,238],known_fact:8,known_facts_cnf:8,known_facts_kei:8,known_fcns_src1:172,known_fcns_src2:172,known_funct:172,known_functions_c89:172,known_functions_c99:172,knowthyself2503:0,knuth:[17,24,205],kobayashi:0,koepf98:[167,168],koepf:[167,174,184],kog:207,kohli:0,konomi:0,konrad:0,konstantin:0,koolme:0,korepanov:0,korgul:0,koshi:71,koslowski:0,kostrzewa:0,kota:0,kothari:0,koul:0,koval:0,kovalev:0,kozen89:[2,166,167],kozen:[2,167],krastanov:0,kraus:0,krauss:0,kreft:0,kreher:24,krishna:0,kristian:0,kristianbrunn:0,krit:0,kritkaran:0,kroneck:[40,138,139,192,196],kronecker_delta:[40,139],kroneckerdelta:[40,65,139,172,184],kroneckerproduct:172,kroneckersimp:183,kruse:0,krypto:33,kshah215:0,kshitij:0,kshitijsaraogi:0,ksingh19136:0,ksionda:0,ksiondag846:0,ksubset:27,kth:[0,40,63,71],kudryashov:0,kulal:[0,1],kuleuven:0,kulshreshtha:0,kulur:0,kumar:[0,1,190],kumaraswami:191,kumaraswamy_distribut:191,kunal:0,kunalarora:0,kunalgk1999:0,kunalsharma6914:0,kuncar:0,kunda:0,kundan:0,kundankumar18581:0,kundu:0,kungurtsev:0,kurtosi:191,kushwaha:0,kutta:54,kvxefz87:185,kw_arg:[17,26,139,195,196],kwarg:[3,9,10,11,15,23,24,31,32,33,34,37,38,39,40,42,43,45,46,47,48,49,54,58,59,62,63,64,65,66,68,69,70,71,79,86,87,95,108,117,119,121,123,124,128,130,132,133,135,136,137,139,149,152,153,159,162,164,168,172,174,178,179,180,184,187,188,189,191,192,196,201,202,204,208,218],kwong:167,kyamaz:0,kyle:0,kzoo:0,l1_norm:[164,168],l33tnerd:0,l3_convfunc:13,l_0:[37,80,196,197],l_1:[33,37,80,158,182,196],l_2:158,l_3:158,l_b:104,l_i:[33,158,182],l_n:[40,59],l_p:104,l_t:33,l_u:182,l_v:182,labahn:167,label:[2,14,15,26,32,42,55,59,112,119,123,128,137,139,159,172,173,175,184,195,196,237],label_displac:14,label_posit:14,labeledtre:26,labelfunc:172,laboratori:0,labri:0,lacass:0,lack:[15,34,36,89,172,230],ladia:0,lae:0,lag:[0,95,99,103],lag_eq:[95,103],lagara:0,lagrang:[13,32,82,96,100,168,185],lagranges_equ:87,lagrangesmethod:[95,99,100,102,103],lagrangian:[13,87,95,99,100,102,103],laguerr:[59,168,172],laguerre_poli:[40,168],laguerre_polynomi:40,laguerre_rul:59,laguerrel3:40,laguerrel:[40,172],laguerrepolynomi:40,laguna:33,lagunov:0,lahei:0,lahori:0,lai:[0,14],laid:[14,92,136],laigl:71,laituan245:0,lakhotia:0,lakshminarayan:0,lakshya:0,lam1:102,lam:[87,88,107],lam_f:208,lam_op:95,lamar:187,lambda:[3,9,10,13,15,23,24,33,34,38,59,63,64,65,68,69,70,71,73,92,102,103,106,107,124,166,168,172,173,180,181,184,187,189,190,191,192,199,207,208,214,215,218,229,235],lambda_:58,lambda_c:[58,102],lambda_i:[149,214,215],lambda_not:73,lambda_x:[149,214,215],lambda_z:[149,214,215],lambdaprint:[57,208],lambdarepr:[15,172,208],lambdastr:208,lambdifi:[15,40,57,94,172,189,202,206,232],lambert:[38,59,169],lambert_w_funct:38,lambertw:[39,169,172,189,190,239],lamda:[65,172,180,191,235],lame:220,lami:0,lamina:223,lanczo:175,land:33,landau:[2,167,230],landscap:24,langl:[13,16,23,118,158],langston:0,languag:[2,3,15,38,68,73,84,92,106,172,177,191,202,203,226,231,233,235,236,238],laplac:[4,40,57,59,77,79,191],laplace_distribut:191,laplace_transform:59,laplacedistribut:191,laplacetransform:59,lar:0,larg:[2,3,23,24,32,33,42,58,59,69,70,71,84,88,103,106,119,144,148,158,163,164,166,168,171,172,173,179,182,184,191,195,202,208,216,229,233,238],larger:[2,15,23,24,31,32,33,40,58,65,68,71,95,98,164,169,173,179,184,189,203,205,231,238],largest:[15,24,26,32,38,40,68,70,71,119,160,164,189,207],larsman:0,lasota:0,lasserr:59,last:[2,3,9,10,14,15,16,22,23,24,28,31,32,33,36,38,42,59,62,63,64,65,66,68,69,70,71,91,111,144,158,159,160,161,163,164,166,168,171,172,179,180,185,187,189,190,191,192,196,199,201,202,203,204,207,208,225,226,230,231,234,235],last_index:65,lastli:[3,59,75,107,187],later:[15,23,58,63,84,88,89,94,95,101,103,104,106,113,148,156,163,166,171,172,173,182,184,187,189,205,217,226,229,230,231,233,234,238],latest:[5,14,208],latex2sympi:73,latex:[1,5,40,57,60,148,149,153,157,159,172,233,234,236],latex_mod:[60,153],latex_print:[60,153],latex_repr:146,latex_scalar:214,latex_set:172,latex_vect:214,latexnam:119,latexparsingerror:73,latexprint:57,latin:6,latot:0,latter:[15,23,32,37,40,58,71,160,172,182,185,196,203,207,208,225,231],lattic:[35,185],lattice_:38,latu:42,latus_rectum:42,laura:0,lauren:0,laurenglattli:0,laurent:[40,164,169],law:[14,100,142,157,161],lawrenc:0,layer:[166,208],layout:14,lazard:[59,166,168],lazarov:0,lazi:[32,65],lazili:[65,178],lazo:[0,158],lazoarjona:0,lazovich:0,lbound:15,lceil:58,lcim:13,lcm:[32,71,164,165,166,168,172],lcm_list:168,ldl:[64,68,69],ldldecomposit:[64,68,69],ldlsolv:[64,68],ldot:[16,22,23,31,32,33,37,40,58,71,75,144,160,161,164,166,172,175,179,182,185,189,192,238],ldu:65,ldudecomposit:65,lead:[31,32,38,42,59,62,68,71,81,88,123,157,161,164,166,168,169,172,179,181,184,187,190,203,210,236,238],leader:71,leading_expon:22,leading_expv:164,leading_monom:164,leading_term:164,leadsimp:179,leadterm:32,leadup:71,leaf:[163,172,181,234],lean:[94,97,99],learn:[2,68,104,157,181,190,202,229,231,233,236],least:[0,2,11,13,15,23,32,38,44,56,58,59,68,69,71,72,87,119,133,141,160,161,163,164,166,168,179,181,184,187,189,190,191,203,238],least_rot:207,leav:[15,32,59,68,71,88,100,123,139,179,205,229,234,238],lebesgu:180,leblond:144,lect1023big:191,lectur:[106,167,191],lecture4_6up:191,led:1,lee:0,leedham:23,left:[2,13,15,16,23,24,28,32,33,34,37,38,40,48,49,55,58,59,60,63,68,70,71,85,91,104,111,118,123,127,128,131,136,149,154,158,159,160,168,169,170,171,172,174,175,179,180,181,182,184,187,188,189,191,201,202,203,205,207,220,226,230,233,235,238],left_eigenvect:68,left_hand_sid:15,left_open:180,leftmost:139,leftslash:172,leg:48,legaci:[32,68,191],legal:141,legend:[106,159,175],legendr:[59,71,168,172,185],legendre_poli:[40,168],legendre_polynomi:40,legendre_rul:59,legendre_symbol:71,legendrep2:40,legendrep:[40,172],legendrepolynomi:40,legitim:166,legrang:185,lehmer:24,lehmer_cod:24,lejla:0,lemma:[14,23,58,161],len1:23,len2:23,len3:23,len:[13,20,21,22,23,24,28,30,32,33,37,40,47,58,95,108,112,123,133,168,184,187,195,207],len_i:[15,172],length:[2,15,17,22,23,24,26,30,32,33,35,37,38,40,41,45,47,48,49,63,68,69,70,71,73,74,75,84,87,91,95,104,108,112,136,141,142,144,149,152,157,168,172,178,182,184,187,189,191,201,202,207,210,214,215,223],lengthi:23,lenic:[51,53],lennart:0,lens:108,lens_formula:112,lens_makers_formula:112,lenstra:71,lenz:0,leonid:0,leonidbl91:0,leonidvkovalev:0,leq:[23,31,33,40,58,68,71,166,178,179,185,191],lerch:40,lerch_transcend:40,lerchphi:[40,172],less:[2,11,15,16,23,24,31,32,33,36,37,38,40,46,47,48,63,68,71,79,92,94,139,163,166,168,181,182,184,185,187,189,190,191,201,203,226],lesser:[24,168],lester:33,let:[13,15,23,28,32,33,42,50,55,58,61,65,68,69,71,73,92,106,144,149,156,160,161,166,168,169,172,179,182,184,185,187,189,190,196,199,202,208,218,219,223,226,229,231,233,234,238],lethargo:0,lett:24,letter:[2,3,6,25,32,33,71,139,172,207,230,231],lev:[0,164],leva181777:0,leveil:0,level:[2,3,15,23,30,32,40,68,71,84,95,106,134,139,144,148,151,157,159,162,163,165,170,172,181,184,185,190,191,194,202,203,207,234,235,236],levelt:189,leverag:[15,72,172],levi:[34,40,191,196],levicivita:[40,68],levinson:[87,105,149,214],levydistribut:191,levyleblond77:144,lex:[60,153,161,163,164,166,168,169,171,172,184],lexic:[21,119,207],lexicograph:[23,24,27,28,32,166,168,207],lexicographically_minimal_string_rot:207,lexograph:[60,153],lexord:[164,168],lfloor:[38,164,190,191],lfortran:73,lfsr:33,lfsr_autocorrel:33,lfsr_connection_polynomi:33,lfsr_sequenc:33,lgallindo:0,lgamma:172,lhs:[15,22,32,170,172,187,189,190,219],liabil:0,liabl:[0,32,62],liang:0,liangjiaxing57:0,liao95:[166,167],liao:167,lib:214,liber:[73,84,233],liberato:158,liberatodebrito82:158,libgtkmathview:172,librari:[1,2,4,5,15,32,33,37,58,59,60,68,72,84,92,106,159,163,164,191,201,202,203,207,208,229,231,233,236],library_dir:202,librsvg2:2,librsvg:2,libtcc:203,licens:[1,4,224,233],lie:[4,24,34,46,47,48,57,168,191],lie_algebra:61,lie_heuristic_abaco1_product:187,lie_heuristic_abaco1_simpl:187,lie_heuristic_abaco2_similar:187,lie_heuristic_abaco2_unique_gener:187,lie_heuristic_abaco2_unique_unknown:187,lie_heuristic_bivari:187,lie_heuristic_chi:187,lie_heuristic_function_sum:187,lie_heuristic_linear:187,liealgebra:61,liederiv:34,lies:[48,139,223],lift:[15,28,38,40,58,164,166,168],light:[81,111,144,153,160],lighten:160,lightweight:[15,233],like:[0,1,2,3,5,15,16,18,23,24,31,32,33,36,37,38,40,42,52,55,57,59,60,62,63,65,66,67,68,71,72,73,84,89,92,94,103,104,106,107,121,123,133,134,137,138,139,144,148,149,152,154,156,159,160,161,163,164,165,166,168,170,171,172,175,179,180,181,182,184,185,187,188,189,190,191,192,194,196,197,199,201,202,203,204,208,210,211,217,218,220,222,225,229,230,231,233,234,235,236,238],likelihood:71,likewis:[2,14,95],likin:[105,155],likins1973:[104,155],lim:[32,179,230],lim_:[33,38,40,58,179,230,233],limit:[0,3,5,11,13,15,31,32,34,36,37,38,40,41,44,52,54,59,60,62,68,71,100,104,128,134,137,153,159,164,166,168,169,172,175,176,178,180,184,185,186,187,188,189,191,195,205,207,208,213,214,223,231,232,233,235],limit_denomin:32,limit_seq:[177,179],limitinf:179,limiting_distribut:191,limits_:[32,158,174,233],limitseq:177,lin:0,linalg:15,lindsai:0,line2d:[42,45,48],line2dbaseseri:159,line3d:[45,46,47],line3dbaseseri:159,line:[2,3,5,14,15,23,24,28,33,42,43,44,46,47,48,49,54,58,59,60,61,68,69,71,74,80,92,94,98,119,149,153,154,156,158,159,172,175,182,184,187,191,201,202,203,208,210,220,223,226,231,236,238],line_break:172,line_color:[2,159,175],line_integr:59,linear:[14,15,24,31,32,33,35,36,40,45,52,55,57,58,59,61,63,65,67,74,77,79,82,87,89,94,95,100,101,105,106,111,133,136,137,152,159,160,164,165,166,168,170,178,180,182,188,189,190,207,239],linear_coefficients_integr:187,linear_differential_equ:187,linear_eq_to_matrix:[57,187],linear_momentum:[100,104,106],linear_ode_to_matrix:187,linear_polar:111,linearent:[2,42,45,46,47,48],linearentity2d:45,linearentity3d:[45,46],linearli:[11,15,40,56,68,166,187,189,196],lineover1drang:159,lineover1drangeseri:159,link:[0,2,3,15,33,42,48,57,59,80,100,202,205,236],linkcod:2,linodesolve_typ:187,linsolv:[57,106,170,189,239],linspac:[15,55,72,92,106],linux:[2,5],linz:214,liouville_integr:187,lip:191,list2numpi:68,list:[0,2,5,7,10,13,14,15,16,17,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,40,41,42,43,44,45,46,47,48,49,54,55,57,58,59,60,61,62,63,64,65,68,69,70,71,72,73,74,85,87,91,94,95,97,101,102,106,107,112,123,125,128,129,133,134,136,137,139,141,149,152,157,159,160,161,162,163,164,166,167,168,169,170,171,172,173,174,178,180,181,182,184,185,187,188,189,190,191,192,194,195,196,199,201,202,203,204,205,207,208,210,224,229,233,235,236,237,238,239],list_can_dim:141,list_free_indic:28,list_of_poli:55,list_of_second_moments_of_area:42,list_of_trigonometric_ident:181,list_to_frac:238,list_visitor:205,listcoeff:164,listmonom:164,listofsolut:187,listseri:159,listterm:164,liter:[2,3,15,32,60,73,139,146,184],literal_dp:15,literal_sp:15,literatur:[2,58,82,143,165],litter:32,littl:[14,24,42,68,71,72,94,144,167,168,172,182,184,191,205,217],liu:[0,69,167],liumeo:0,liupc:69,live:[0,2,6,16,106,185,231,234,236,237,238],ll1:44,ll2:44,ll3:44,ll4:44,ll5:44,ll6:44,lmm:185,lmn:15,ln_notat:172,lnc:[59,167,189],load:[15,32,60,74,75,85,87,91,107,119,153],load_vector:74,loan:68,lobatto:59,loc:74,local:[0,2,6,8,9,10,32,34,58,73,97,99,151,160,166,189,201,224],local_dict:73,local_var:203,localdomain:0,localis:160,locat:[0,2,13,24,32,46,68,69,71,74,75,95,103,107,152,154,168,172,184,191,204,212,214,217,219,221,222,240],locate_new:[214,216,217,218,219,220],locatenew:[85,89,94,95,97,98,99,103,104,106,107,150,152,154,156],location_matrix:191,log10:[15,172],log1p:[15,172],log1p_opt:15,log2:[15,172],log2_opt:15,log2const_opt:15,log3:73,log:[2,3,5,13,15,23,31,32,36,37,39,40,50,54,56,58,59,63,68,71,73,159,164,172,174,179,182,184,187,190,191,230,238,239],log_b:190,loganjerri:0,logarithm:[2,3,13,15,32,33,38,39,58,59,68,71,164,166,169,172,182,184,190,191,232],logarithmic_distribut:191,logarithmic_integr:40,logarithmically_concave_funct:13,logarithmically_convex_funct:13,logarithmicdistribut:191,logarithmicintegr:40,logartihm:13,logcombin:[3,183,187,190],loggamma:[2,40,172],loggammafunct:40,logic:[4,9,10,11,14,32,34,57,58,59,71,131,133,134,138,172,174,180,187,191,207,231,233,235,236],login:167,logint:172,logintegr:172,logist:191,logistic_distribut:191,logisticdistribut:191,loglogist:191,lognorm:191,lognormaldistribut:191,logo:4,logx:[32,179],lokesh:0,lokeshhsharma:0,lomax:191,lomax_distribut:191,london:[167,185],long_frac_ratio:172,longer:[2,3,32,42,71,95,103,161,166,172,181,184,207,210,228,231,238],longest:207,longqi:0,longrightarrow:65,loo:0,look:[2,3,6,14,15,23,32,37,38,40,53,57,68,71,87,92,94,100,123,133,134,137,152,159,163,164,172,174,175,179,182,184,185,187,188,201,205,208,210,218,230,234,236,237],looking_for:15,lookup:[57,59,68,71,182],lookup_view:212,loop:[14,15,71,79,149,159,169,172,187,205,234],looping_end:14,looping_start:14,loos:[15,32,183],lopen:[13,32,180,186,191],lorentz:196,lorentzindex:80,lorenzo:0,lose:[3,160],loss:[0,15,58,139,219],lost:32,lot:[23,32,50,58,59,68,92,106,159,171,175,185,190,201,238],louboutin:0,loui:[0,174],low:[3,15,32,33,40,71,163,166,170,172,184,202,203,207],low_index_subgroup:16,lower:[2,10,13,15,23,24,31,32,34,40,41,43,48,49,63,64,65,68,83,139,152,158,160,162,166,168,172,181,182,184,187,195,196,205,214,230,236],lower_bound:[41,42,45,48],lower_central_seri:23,lower_incomplete_gamma_funct:40,lower_limit:230,lower_polygon:48,lower_seg:48,lower_triangular:[11,63],lower_triangular_solv:[64,68],lowercas:[3,187,201,230],lowergamma:[2,40,191],lowertriangularhandl:11,lowertriangularmatrix:11,lowertriangularpred:11,lowest:[15,23,28,71,160,174,190,226],lozhkina:0,lpart:205,lrh:99,ls1:29,ls2:29,lseri:32,lsoda:84,lst:201,ltd:31,lti:[77,78,82],ltrim:168,lts:32,lu_:68,lu_solv:[68,162],lubbock:0,luc:0,luca:[0,39,71,178],lucas_numb:37,lucas_pseudoprim:71,lucasjon:0,lucasnumb:37,lucaspseudoprim:71,lucato:0,lucien:16,lucki:181,lucombin:68,ludecomposit:[64,65,68,69,235],ludecomposition_simpl:[68,235],ludecompositionff:68,ludwig:0,luger:0,lui:0,luiz:159,luka:0,luke1969:[58,182],luke:[0,2,40,58,182],lukpank:0,lump:0,lunagariya:0,lusolv:[64,68,88,103,107,189,235],luthra:0,luv:0,lux:0,luzpaz:0,lvert:58,lvovich:2,lying:48,lynn:0,lyon:0,lysgaard:0,m11:[191,226],m12:[191,226],m13:226,m148:33,m21:[191,226],m22:[191,226],m23:226,m31:226,m32:226,m33:[71,226],m4nzdu:158,m53:71,m93a:0,m_0:[166,185],m_1:[37,118,136,158,185],m_2:[37,91,107,118,136,158],m_3:[91,107,118,158],m_d:102,m_i:[71,166],m_ik:71,m_k:37,m_n:166,m_op:103,m_sqrt2:172,m_sqrt2l:172,ma217:191,maan:0,maapxa:0,mac:[0,2],macaulai:40,macbook:0,macdonald:[0,167],machin:[2,173,184,187,229],machineri:[2,32,208],maciej:0,maclaurin:[31,36],madan:0,made:[2,3,26,28,32,33,38,41,42,45,48,49,59,62,68,71,73,92,103,106,157,160,166,168,173,179,180,181,184,187,189,190,191,203,210,222,234],madelein:0,madhyastha:0,mag:106,magazin:[4,68],maggiolo:0,magic:[24,184,201,231],magliocchetti:0,magnet:[81,110,154,222],magnif:112,magnitud:[31,32,36,40,72,74,75,95,106,137,146,149,154,157,159,214,220,222],magura:0,mahabitzreut:0,maheshwari:0,mahler:0,mai:[0,2,3,5,6,11,13,14,15,16,23,24,25,31,32,33,34,36,37,38,40,42,44,45,47,48,49,58,59,60,62,63,64,66,68,69,70,71,73,86,87,88,92,95,100,103,125,134,139,140,141,146,149,152,154,156,159,160,161,166,172,173,179,180,181,182,184,185,186,187,188,189,190,191,192,194,196,199,200,201,202,203,204,205,207,208,210,211,220,222,225,226,229,230,231,234,235,238,239],maihuijun:0,mail:[0,5,172,236],mailoo:0,main:[2,3,10,11,13,15,32,38,58,63,68,70,92,98,137,143,153,157,159,160,164,172,179,187,190,195,202,238,239],mainli:[23,40,68,72,144,153,166,182,185,187],maintain:[3,32,33,71,75,172,180,181,187,190,205],mainten:10,maio:0,major:[2,42,84,190,195,233,238],majorli:32,make:[3,6,9,10,11,13,15,16,22,23,31,32,33,34,35,36,37,38,40,44,48,59,60,62,68,70,71,72,73,74,75,87,91,92,94,97,98,101,103,104,106,119,136,141,153,156,159,162,163,164,166,168,169,171,172,175,180,181,182,184,187,188,189,190,194,196,201,202,203,204,207,208,217,222,223,224,226,231,233,234,235,236,238],make_perm:23,make_routin:[15,203],makefil:2,makelov:0,makhija:0,mali:0,malik:0,malin:0,malkhan:0,malkhansinghrathaur:0,man93:[167,168],man:[59,167],manag:[5,9,10,73,119,166,184,196,199,201],managedproperti:32,manchanda:0,manchest:0,mancini:0,mandal:0,mandatori:[15,172,202],mandel:0,mangipudi:0,mangl:172,mangla:0,manglavishesh64:0,manh:0,mani:[2,3,5,13,14,15,16,20,23,28,32,33,34,36,38,40,44,58,59,62,63,68,69,71,72,87,88,92,94,100,102,103,106,123,139,147,157,160,162,163,164,166,176,179,180,182,184,185,187,188,189,190,191,194,203,207,226,229,230,231,233,234,236,237,238,239],manifest:161,manifold:34,manipul:[4,14,15,16,23,32,40,57,58,62,67,71,72,82,92,100,104,137,156,163,164,167,171,172,174,181,184,193,207,225,226,229,230,231,232,233,235,237,238],manish90:0,manish:0,manner:[17,33,40,103,137,154,185,187,192,207,222],manoj:0,manojkumarsivaraj334:0,mansour:0,mantissa:15,manual:[2,15,16,23,36,42,59,60,73,91,92,103,107,159,166,172,187,189,190,204,230,238],manualintegr:59,manuel:[59,177],manufactur:72,manuscript:33,manwright94:[167,168],manzoor31:0,manzoor:0,mao8:0,mao:0,map:[13,14,15,22,23,24,32,33,44,48,55,58,59,62,63,71,87,95,117,128,129,134,149,157,159,160,163,164,166,167,168,169,170,171,172,179,184,187,188,189,190,191,194,195,202,205,207,208,210,214],mapl:[3,40,57,59,187,233],maple_cod:172,maplecodeprint:172,maplesoft:187,mapsto:[31,58,63],marbl:191,marc:0,marcel:0,march:32,marchael:0,marcin:0,marco:0,marcu:0,marcum:40,marcum_q:40,marcumq:40,marczak:0,marduk:0,mardukbp:0,marek:0,margin:[71,79,159,191],marginal_distribut:191,marginean:0,mari:0,maria:0,marichev:[58,182],marijan:0,marijansmetko123:0,mario:0,mark00bel:0,mark:[0,2,112,124,185,199],markdew:0,marker:159,marko:31,markov:191,markov_chain:191,marku:0,markup:172,marolt:0,marquardt:0,marquett:0,marshal:0,marshall2389:0,martha:0,martin:0,mascheroni:[32,40],mask:[14,172],mass:[49,81,82,83,84,85,87,91,92,94,95,97,99,100,101,102,106,107,115,140,142,143,144,154,156,201,221,222],mass_matrix:[87,91,94,97,98,101,102,107],mass_matrix_ful:[87,92,101,102],masscent:[85,89,104,106],massei:33,master:[2,5,59,201,207],mat18:0,mat:[0,15,65,108,133,172],mat_1:15,mat_2:15,mat_delim:172,mat_str:172,mat_symbol_styl:172,matadd:[32,65,172],match:[2,3,23,24,31,32,40,45,58,59,63,68,69,91,115,140,148,149,168,184,185,187,188,191,199,201,203,207,208,219,230],matchdict:187,matching_hint:187,mateescu:0,materi:[0,1,74,110,236],mateusz:[0,1],matexpr:12,math24:187,math56a_s08_notes015:191,math56as08:191,math:[0,11,14,16,23,32,40,42,57,59,68,71,72,92,100,154,164,167,171,172,187,188,191,202,203,208,218,219,220,221,222,229,230,233],math_macro:172,mathbb:[11,13,16,23,31,33,38,40,58,63,68,103,158,160,161,163,164,166,168,171,179,182,190,191,238],mathbf:[65,100,101,102,104,144,148,149,153,154,156,157,172,182,192,217,218,220,222,223],mathc:191,mathcal:[38,58,104,136,158,180],mathcin:15,mathcircl:37,mathemat:[4,9,10,13,15,16,22,24,31,32,33,34,37,38,39,40,45,46,58,59,62,65,68,71,72,73,80,84,95,105,144,154,156,157,160,161,163,164,167,171,172,180,181,185,187,190,191,195,202,203,208,214,217,220,222,225,229,231,233,234,236,238],mathematica:[3,15,24,40,57,73,233,235],mathematica_cod:[15,172],mathematical_express:2,mathematical_log:[9,10],mathematical_singular:13,mathematician:[185,190],mathew:0,mathewchong:0,mathia:0,mathieu:[39,172],mathieu_funct:40,mathieuandspheroidalfunct:40,mathieubas:40,mathieuc:[40,172],mathieucprim:[40,172],mathieusprim:[40,172],mathjax:[2,60,153,237],mathmat:33,mathml2:172,mathml:172,mathml_presentation_repr:146,mathml_tag:172,mathmlcontentprint:172,mathmlpresentationprint:172,mathmlprint:57,mathmlprinterbas:172,mathrm:[2,5,22,31,33,40,57,58,59,68,166,172,180,182,187,191,230,233,236],mathtt:172,mathwav:191,mathwork:[63,191,235],mathworld:[2,11,25,26,32,33,35,37,38,40,42,48,59,68,71,167,175,180,185,191,207],matin_opt:15,matinv_opt:15,matlab:[15,57,84,106,203,235],matlplotlib:106,matmul:[32,65,162],matplotlib:[2,5,55,60,106,119,153,159,237],matplotlibbackend:159,matpow:[65,172],matric:[2,4,11,12,15,32,33,57,70,82,87,88,92,95,103,106,108,111,112,114,122,123,133,138,149,157,158,162,172,173,182,184,185,187,189,190,191,192,203,204,227,232,233],matrix1:162,matrix2numpi:68,matrix:[7,10,15,21,24,32,33,34,40,47,57,58,61,63,66,67,69,70,72,80,83,87,88,91,92,94,95,97,98,99,101,102,106,107,108,111,112,114,122,123,128,133,134,136,138,139,141,144,148,149,157,158,160,162,166,170,172,173,182,184,185,189,190,192,194,195,196,202,203,207,208,210,214,215,216,218,222,225,226,232,233,234,238,239],matrix_differential_equ:187,matrix_exp:187,matrix_exp_jordan_form:187,matrix_exponenti:187,matrix_fglm:166,matrix_form:61,matrix_gamma_distribut:191,matrix_multiply_elementwis:[63,68],matrix_nod:15,matrix_normal_distribut:191,matrix_rep:139,matrix_tensor_product:138,matrix_to_dens:133,matrix_to_qubit:133,matrix_to_vector:221,matrixbas:[63,64,65,67,69],matrixcalculu:67,matrixcommon:[2,65,67,68],matrixdetermin:67,matrixeigen:[63,67],matrixel:15,matrixerror:68,matrixexpr:[65,66],matrixgamma:191,matrixi:68,matrixkind:[32,225],matrixnorm:191,matrixpermut:65,matrixreduct:67,matrixset:65,matrixsolv:[15,172],matrixsubspac:67,matrixsymbol:[11,12,15,32,65,68,172,191,225],matsuda:0,matt:[0,125],matter:[13,21,24,31,32,37,58,59,104,179,207,233,234],matthew:[0,1],matthia:0,mattjcurri:0,mattpap:0,matur:228,matvec:202,mauro:0,mavani:0,mavanibhautik:0,max:[0,13,15,23,24,39,40,42,68,71,73,74,159,168,172,179,181,182,208],max_bmoment:74,max_coset:16,max_curv:71,max_deflect:74,max_degre:[59,168],max_denomin:32,max_div:23,max_expon:15,max_it:184,max_len:184,max_norm:[164,168],max_ord:15,max_shear_forc:74,max_stack_s:16,max_step:71,max_term:184,max_wir:119,maxdepth:172,maxenc:0,maxencemayrand:0,maxhutch:0,maxim:[23,33,61,160,179,181],maxima:[73,190],maximum:[3,13,15,16,23,24,32,38,59,68,71,74,94,136,144,159,164,166,168,172,179,180,184,185,187,190,191,205,207],maxn:[32,36,63],maxprec:32,maxsiz:32,maxstep:168,maxwel:191,maxwell_distribut:191,maxwelldistribut:191,mayank:0,mayank_1901cs35:0,mayb:2,mayer:0,mayor:111,mayorov:0,mayrand:0,mba7eth:0,mbox:14,mcbain:0,mccafferi:0,mccluskei:62,mccluskey_algorithm:62,mcdanie5:0,mcdaniel:0,mcdonald:0,mcg:0,mcgraw:[40,87,105,149,155,214],mcii:191,mckai:0,mcode:172,mcodeprint:172,mcom:71,mcydwshkogamkzcelyfgayr:33,md5:210,mdarg:32,mdft:83,mead:33,mean:[2,3,11,13,16,24,31,32,33,34,50,58,59,60,62,66,68,71,84,139,141,144,149,153,156,159,160,161,163,166,171,172,182,184,185,187,189,190,191,192,194,195,201,207,218,229,230,231,233,234,235,238,239],meaning:[8,10,14,33],meaningfulli:160,meaningless:36,meant:[2,3,15,32,40,45,59,71,92,106,159,164,180,184,188,218,234],measur:[3,38,40,48,64,84,119,128,133,141,144,146,148,149,152,154,157,168,180,181,184,191,213,214,216,217,219,220,222],measure_al:133,measure_all_oneshot:133,measure_parti:133,measure_partial_oneshot:133,meat:15,mech:0,mechan:[32,55,57,59,74,82,85,86,87,88,89,91,92,94,95,97,98,99,121,125,128,134,136,137,138,141,148,149,155,158],mechanicalc:48,mechanics_print:[94,97,98,99,100,101,102],meckel:0,media:[106,112],medial:48,median:[48,57,191],mediterranean:160,medium1:112,medium2:112,medium:[2,82,108,109,112,113,123,166],meena:0,meet:[33,179],meetmeonmondai:33,meetmeonmondayat8am:33,meezamanda:0,megan:0,meganli:0,meghana:0,mehrotra:0,mehrotraambar:0,meiburg:0,meijaard2007:[94,105],meijaard:105,meijer:[4,40,50,52,57,59,230,238],meijer_g:40,meijerg:[40,51,58,59,172,191,238],meijerint:[51,53,58,59],meijerint_definit:58,meijerint_indefinit:58,meijerint_invers:58,mein:207,melch:0,mella:0,mellin:[40,57,59],mellin_transform:59,mellintransform:59,member:[2,11,14,21,23,33,55,160,180,195],membership:[30,180],memo:209,memoiz:[57,205,206],memoize_properti:204,memori:[15,32,71,168,192,202,205],men:144,mendiratta:0,menendez:0,menez:71,mention:[0,2,23,58,59,94,107,108,154,182,185,187,191,217,218,219,220,224,235],menu:2,merchant:0,mere:[9,10,15,36,134],merg:[15,23,24,32,147,172,180,191,201,207,208],mermin:124,meromorph:[32,40],mersenn:71,mersenne_prime_expon:71,mersenneforum:71,mersenneprim:71,mesh:159,mess:[125,187,190,238],messag:[33,60],messi:[182,190],met:[0,32,185,190,204,238],meta:[2,32,187,188],metaclass:32,metadata:[0,14,204],metahint:32,metaknightdrak:0,metalera94:0,metaprogram:32,metcalf:0,meter:[74,75,110,113,142,144,145,146],method:[2,3,4,8,9,10,11,13,14,15,16,17,23,24,25,31,32,33,34,35,36,38,39,40,43,44,45,46,47,48,51,54,56,57,58,59,61,63,64,65,68,69,71,72,73,74,75,76,77,79,80,82,84,91,92,96,100,105,106,113,116,118,120,128,129,134,136,139,141,146,147,148,149,151,154,156,157,159,160,161,163,164,165,166,168,169,173,174,175,177,178,179,180,184,185,187,189,191,192,193,195,196,201,203,205,207,208,214,217,220,223,227,229,230,231,232,234,238],method_of_undetermined_coeffici:187,method_ring:207,methodolog:[190,236],metirc:196,metlov:0,metohajrova:0,metric:[15,24,28,34,80,184,187,190,196],metric_nam:196,metric_symmetri:196,metric_to_christoffel_1st:34,metric_to_christoffel_2nd:34,metric_to_ricci_compon:34,metric_to_riemann_compon:34,meurer:[0,1],meyer:0,mfork:94,mframe:94,mgamma:83,mgorasiya1974:0,mhoff14:0,micah:0,micahscop:0,micali:33,micha:0,michael:[0,31,167,171],michaeldmueller7:0,michal:0,michel:0,micki:0,mickler:0,mickydroch:0,microsecond:72,microsoft:0,microsoftdoc:2,mid:[13,16,33,36,75,180,185],middl:[40,48,58,68,69,75,119,159,182,238],midpoint:[45,47,48,59,159,219],midwai:33,mieszczak:0,might:[2,3,13,32,36,38,45,54,58,65,68,71,73,84,92,93,106,119,156,159,163,164,168,169,172,173,181,182,184,185,189,190,191,203,207,229,231,233,234,238],miglani:0,mignott:166,miguel:0,miha:0,mihai:0,mihail:0,mihir:0,mihirw:0,mike:0,mikel:0,milam:0,milan:0,mile:146,mileston:203,militari:33,miller:[0,71],milton:[2,40],mimic:[59,60,153,208],min16:0,min:[0,13,24,28,37,39,68,73,159,172,178,187],min_degre:168,min_expon:15,min_qubit:[119,123],min_wir:119,mind:[2,3,32,68,104,159,179,180,222,225,234],minh:0,minim:[2,13,23,24,28,31,33,58,59,71,85,95,108,162,163,164,166,168,171,181,184,185,189,207,211],minima:190,minimal_block:23,minimal_polynomi:168,minimal_uncollected_subword:22,minimum:[13,15,23,24,26,28,32,33,36,38,68,84,87,94,123,148,159,161,166,190,191,204,230],minlex:207,minor:[32,42,68,172,201],minor_submatrix:68,minpoli:[163,164,168],minterm:62,minu:[15,31,32,154,166,172,220],minut:[3,84,94,148],miro:0,mirror:[2,40,59,112],mirror_formula:112,misc:[38,57,63,210],miscellan:[39,57,206],mise:191,mishra:0,mismatch:63,miss:[22,23,49,172,189,203,238],mission:[2,14,66],mississippi:[37,207],mistak:[2,3,23,208],mistersheik:0,mit:[13,35],mix:[6,31,38,63,68,73,148,163,164,172,190,194,196,208],mixin:32,mixtur:[13,15,49,160,203],mjlump:0,mlatex:[84,100],mm_full:94,mmarco:0,mmargin:0,mnemon:[3,181,207],mnmt:0,mnt:2,mobil:236,mobiu:[35,71],mobius_transform:35,mobiusrang:71,mock:119,mod:[33,38,57,68,71,135,160,163,164,166,168,172,174,182,185],mod_invers:168,modaugmentedassign:15,mode:[57,60,73,111,134,153,168,172,201,211,236],model:[36,62,71,88,94,95,96,111,168,181,191],moder:59,modern:[15,160,167,172],modest:16,modgcd_bivari:166,modgcd_multivari:166,modgcd_univari:166,modif:[0,23,38,68,190,191,205],modifi:[2,3,14,15,23,32,38,40,71,73,102,111,159,166,168,169,172,184,189,190,191,201,204,205,207,208,229,233,235,236],modn:71,modop:172,modopmodewrong:172,modopnestedwrong:172,modopsettingswrong:172,modul:[2,3,4,5,6,7,8,9,10,13,14,15,16,22,24,32,33,35,37,38,40,44,48,52,55,59,60,62,65,66,67,68,72,73,74,76,80,82,84,92,93,96,100,101,102,106,108,111,113,114,126,129,142,143,144,145,154,157,159,164,165,167,169,170,172,176,179,182,189,191,192,193,194,195,196,198,199,201,203,204,205,206,207,208,209,211,212,216,218,220,221,222,223,225,229,231,233,238,239],modular:[33,71,135,165,167,190],modular_multiplicative_invers:32,modulargcd:166,modularinteg:164,module_dictionari:208,module_quoti:160,module_rel:201,modulehomomorph:160,moduli:[33,71,166],modulo:[32,33,71,135,160,163,164,166,168,169,171,172,175,184],modulu:[32,33,35,40,42,48,63,71,74,75,160,164,166,168,171,190],moham:0,mohammad:0,mohammedbil:0,mohit:0,mohitacecod:0,mohitbalwani:0,mohitgupta:0,mohitshah3111999:0,mohrhard:0,mold:157,mole:144,momemtum:136,moment:[42,48,74,75,94,100,102,148,159,168,185,191],moment_load_vector:74,momenta:[100,118],momentum:[81,89,92,100,106,117,118,136,140,158,196],monad:205,monagan00:[166,167],monagan93:[166,167],monagan:[167,184],mondai:33,monic:[31,160,161,164,166,168,171],monica:0,monoalphabet:33,monogen:160,monogenicfiniteextens:[160,164],monoid:14,monom:[164,168],monomi:[32,59,71,161,163,164,165,166,171,172,238],monomial_basi:164,monomial_count:168,monomial_kei:168,monomialord:[164,168],monospac:172,monoterm:196,monoton:[13,15,49],monotonicity_help:13,monotorem:196,monserrat:0,mont:23,montgomeri:166,month:1,monthli:[33,68],montreal:167,moor:[0,1,65,68],moorep:0,moot:32,moprhism:14,mora:[166,167,168,189],mordel:185,more:[0,2,3,5,6,10,11,13,14,15,16,22,23,24,29,31,32,33,34,36,37,38,39,40,44,45,46,47,48,49,50,54,58,59,62,63,65,66,68,70,71,72,73,84,87,88,92,94,95,96,98,100,101,102,103,104,106,108,111,123,127,128,133,136,137,138,139,144,148,149,152,153,157,158,159,160,161,162,163,164,166,168,169,170,171,172,173,174,175,176,177,181,182,184,185,187,188,189,190,191,201,203,205,207,208,210,214,217,221,224,225,226,228,229,230,231,232,234,235,236,237,238,239],moreno:167,moreov:[23,33,58,143,154,160,161,166,173,218],moriguchi:0,morphism:[14,160],morri:[0,181],mors:33,morse_cod:33,mortem:201,morten:0,mortensen:0,mose:[0,187],most:[2,3,5,9,10,13,14,15,16,23,24,31,32,33,36,38,42,44,57,59,62,63,64,65,66,68,69,70,71,72,73,84,87,92,98,103,104,107,141,148,152,158,159,160,161,163,164,166,168,169,170,171,172,179,180,182,185,187,188,189,190,191,199,202,203,204,205,207,208,216,218,225,226,229,231,233,234,235,236,237,238,240],mostli:[32,38,59,68,106,134,156,160,171,172,182,189,237],mota:187,motion:[23,84,87,88,91,94,95,97,99,100,101,102,103,106,107,152,153,156,157,191],motiongenesi:[92,106],motionvari:[92,106],moura:0,mous:159,move:[23,24,32,33,46,48,94,95,100,127,152,156,157,183,184,192,220,236],movement:34,moyal:191,moyaldistribut:191,mpball:0,mpc:163,mpelement:164,mpf:[32,163,164],mpg:0,mpi:180,mpmath:[2,4,13,15,37,40,68,72,106,163,164,172,180,189,204,208],mpmathprint:172,mpprint:[84,100,101],mpq:[0,71,163,164],mprint:[84,97,98,99,100,101],mpz:[163,164],mridul:0,mrm:0,mrocklin:0,mrow:172,mrsud94:0,mrv:[32,179],mrv_leadterm:179,mrv_max1:179,mrv_max3:179,msdousti:0,msg:[33,59],msigma:83,msparapa:0,msub:[84,100,103],msym:28,msymbol:189,msys2:2,mu1:191,mu2:191,mu_1:191,mu_2:191,much:[2,14,18,28,36,40,54,58,59,103,147,148,156,157,158,160,163,164,166,168,179,182,184,187,188,189,190,203,205,226,231,233,238],mueller:[0,111],mueller_calculu:111,mueller_matrix:111,muham:0,muis:0,mul:[2,3,7,57,58,59,63,71,119,123,133,134,162,163,164,168,172,173,174,181,184,188,189,190,194,225,234],mul_ground:[164,168],mul_inv:24,mul_symbol:172,mul_symbol_mathml_numb:172,mul_xin:169,mulaugmentedassign:15,mule:0,mulipl:71,muller:[0,1],mulsimp:63,multi:[6,32,33,100,106,119,123,133,159,172,190],multibodi:[89,92,100,105,106,107,156],multicharact:210,multidimension:[57,167,201],multifactor:166,multifactori:39,multifram:157,multigamma:40,multilin:172,multilinear:34,multinomi:[32,63,71,191],multinomial_coeffici:71,multinomial_coefficients_iter:71,multinomial_distribut:191,multinomialdistribut:191,multipl:[2,3,9,10,11,13,14,15,16,21,23,24,28,31,32,33,37,38,40,42,47,50,52,58,59,61,63,65,68,69,71,73,77,79,83,84,94,100,106,107,123,124,125,129,136,138,141,144,145,146,149,152,156,159,160,161,162,163,164,166,167,168,169,172,177,178,180,181,182,184,185,187,188,190,191,192,194,196,199,203,204,205,207,210,214,218,229,230,231,234,235,236,238,239],multipledispatch:[0,8],multipli:[3,7,11,15,23,32,43,47,54,61,63,68,71,87,95,102,103,104,116,125,139,144,145,160,161,162,164,166,168,172,174,181,182,185,187,192,207,217,231,234],multiplicity_in_factori:71,multiply_elementwis:[63,68],multiply_id:160,multiply_transitive_group:23,multipow:33,multiprecis:[15,163],multiprim:33,multiset:[37,58,205,207],multiset_combin:[37,207],multiset_partit:[21,37,58,205,207],multiset_partitions_taocp:205,multiset_permut:[37,207],multisetpartitiontravers:205,multiterm:196,multivalu:[32,38],multivari:[13,32,40,160,161,163,164,165,167,168,169,179,184,189,190,191,238],multivariate_gamma_funct:40,multivariate_laplace_distribut:191,multivariate_normal_distribut:191,multivariatebeta:191,multivariateewen:191,multivariatelaplac:191,multivariatenorm:191,multivariatepolynomialerror:166,multivariatet:191,mun:172,mundhra:0,mundi:167,mupad_ref:235,murgrehk:0,murrai:23,murthi:0,museum:33,muskan:0,muskanvk:0,musok:0,must:[0,2,3,7,8,9,10,15,23,24,26,28,30,31,32,33,34,37,39,40,42,45,48,51,54,55,57,58,59,62,63,64,65,68,69,70,71,74,75,80,87,88,92,94,100,101,102,103,104,106,119,134,136,139,148,149,157,158,159,160,161,164,166,168,172,173,180,181,182,184,185,187,189,190,191,194,195,201,202,203,204,205,207,208,211,231,233,234,237,238],mutabl:[3,16,32,64,65,66,69,74,164,172,173,184,192,235],mutabledensematrix:[63,64,162,210],mutabledensendimarrai:192,mutablesparsematrix:69,mutablesparsendimarrai:192,mutat:[162,191],mute:[15,202],mutual:[58,157],muzimuzhi:0,mwf:94,mwr:94,my_dummi:139,my_fcn:[15,172],my_func:[32,39],my_iszero:235,my_mat_fcn:[15,172],my_measur:184,my_routin:15,mycites:167,myclass:32,mycoeff:13,mydata:211,myfcn:203,myfcn_result:203,mygamma:172,mylatexprint:172,mylist1:32,mylist2:32,mylist:32,myop:207,mypkgdata:211,myprogram:15,myrvold:24,mysin:[208,229],mysingleton:32,mysub:15,n11:191,n12:191,n21:191,n22:191,n_0:[54,166,189,190],n_1:[166,189,191],n_2:[166,191],n_a:92,n_adj:24,n_b:92,n_c:191,n_digit:59,n_ep:23,n_i:[28,166,189],n_k:166,n_len:112,n_level:139,n_m:189,n_max:139,n_order:71,n_particl:139,n_point_check:15,n_surr:112,n_x:151,nabanita:0,nabla:[154,214,219,220],nagar:0,nagaraj:0,nagpal:0,nair:0,naiv:[3,23,29,32,58,63,68,144,182,189,190,196,225],najera:0,nakagami:191,nakagami_distribut:191,nakamura:0,naman:0,namangera15:0,namanush:0,name:[0,2,3,6,9,10,14,15,16,19,22,25,28,31,32,33,34,38,39,40,42,45,58,59,60,61,65,68,71,73,74,85,89,91,92,94,106,110,119,134,141,143,144,145,146,147,148,149,151,152,154,157,159,160,161,163,166,169,172,182,184,185,187,188,190,191,195,196,199,201,202,203,204,208,210,211,212,214,217,220,229,231,234,235,238],name_dict:73,name_expr:[15,203],name_mangl:172,name_of_bodi:85,named_group:[18,20,22,23,29,30],namedmorph:14,namedtupl:59,nameerror:[3,60,204,231],nameless:196,namespac:[2,6,15,16,32,164,185,187,188,201,203,204,208],nan:[11,12,38,40,86,184,230],nand:62,nanjangud:0,nano:72,nanosecond:72,napier:32,narg:[32,39,166],narr:[4,236],nasir:0,naslundx:0,natalia:0,nathan:0,nation:169,nativ:[32,164,168,201],native_coeff:168,natur:[3,11,15,16,23,32,33,37,38,66,71,92,141,143,144,160,163,166,169,172,181,185,190,191,207,223,234,238],naturals0:[32,172,190,191],naveen:0,naveensaisreeniva:0,naver:0,navi:33,navig:2,nawara:0,nayak:0,nb2:172,nb_of_point:159,nb_of_points_i:159,nb_of_points_u:159,nb_of_points_v:159,nb_of_points_x:159,nbit:15,nck:238,ncol:162,ncolumn:159,ncsu:0,ndarrai:[68,196,202],ndf:111,ndimension:202,near_int:71,nearer:58,nearest:13,nearli:[3,71,181],neatherwai:0,necess:166,necessari:[2,3,13,14,23,24,32,42,58,62,68,71,87,94,100,159,161,163,168,175,181,184,187,188,189,190,191,192,196,201,203,207,208,214,236],necessarili:[2,11,13,32,33,34,58,59,62,160,161,168,170,184,187,189,190],necessit:98,necesssari:223,necklac:[2,207],need:[2,3,5,6,7,9,10,13,14,15,18,23,24,28,30,31,32,33,34,38,39,40,43,47,48,55,56,57,58,59,60,63,68,71,72,73,75,82,84,87,89,91,92,94,95,97,98,99,101,102,103,104,107,108,119,123,131,137,142,143,148,149,153,156,157,160,161,163,164,166,168,169,171,172,179,180,182,184,185,186,187,189,190,191,194,195,196,199,202,203,204,205,207,210,214,217,219,220,223,225,226,229,230,231,234,235,236,238],needev:59,neel:0,neg:[2,3,10,12,13,15,16,27,31,32,37,38,40,42,44,45,48,58,59,61,63,68,70,71,74,75,77,79,139,161,162,164,166,168,169,172,178,180,181,182,184,185,187,189,190,191],negat:[11,32,38,62,79,149,162,164,166,168],negative_binomial_distribut:191,negative_multinomial_distribut:191,negative_numb:32,negativebinomi:191,negativebinomialdistribut:191,negativehandl:11,negativeinfin:172,negativemultinomi:191,negativeon:[38,234],negativepred:11,neglect:[13,15],neglig:0,neighbor:207,neighborhood:180,neighbourhood:58,neil:0,neither:[0,11,32,113,134,159,168,179,180,181,187,196,208,214,222,238],nelson:0,nephew:33,neq:[13,38,40,58,59,63,144,157,158,166,168,185,187,189,238],nesar:0,nessgrh:58,nest:[32,34,40,59,63,161,163,166,172,182,184,186,190,191,192,194,207,208,234],nested_contract:194,net:[0,2,14,48,167,187,191,207],netwon:15,neutral:2,never:[32,59,141,168,169,172,180,189,191,199,217,231,236],nevertheless:14,new_eq:190,new_gen:30,new_indic:139,new_matrix:191,new_method:[87,95],new_msg:33,new_nam:14,new_system:214,newa:181,newchar:210,newconst:187,newer:156,newli:[32,58,182],newlin:[68,210,238],newnam:149,newroot:61,newton:[15,40,100,142,146,166,169],newtonian:[92,106],newtons_method:15,newtons_method_funct:15,newtyp:32,newvar:31,nexp:15,next:[0,3,6,15,16,17,21,23,24,26,27,32,33,38,58,59,62,68,71,84,85,87,95,97,99,100,107,156,157,160,164,168,172,180,182,185,187,191,205,207,226,233,234],next_binari:27,next_grai:27,next_lex:[21,24],next_lexicograph:27,next_nonlex:24,next_trotterjohnson:[24,207],nextprim:71,nfac:71,nfloat:184,ngate:123,ngoldbau:0,nguyen:0,nice:[2,5,32,44,68,71,92,103,106,159,172,182,210,234],nicer:[5,32,98],nicheck:92,nichita:0,nichola:0,nick:0,nicko:0,nico:0,nicoguarin:0,nicola:0,nicta:0,nielsen:0,nielsen_transform:23,niemey:23,nigel:185,nih:0,nijenhui:17,nijso:0,nikhil:0,nikhilmaan22:0,nikita:0,nikla:0,niko:0,nikolai:0,nikoleta:0,nikoskaragiannaki:0,nilabja10201992:0,nilabja:0,nilpot:[23,68],nilpotent_group:23,nimish:0,nine:[48,172],nine_point_circl:48,nirmal:0,nirmalsarswat400:0,nisarg:0,nishant:0,nishantiam:0,nishith:0,nishithshah:0,nissar:0,nist:[2,37,38,40,144],nitaj:185,nith:0,nitin:0,nitinmax1000:0,nityananda:0,nityanandagohain:0,niven:166,nizam:0,nkhlpappu:0,nlm:81,nmant:15,nmax:71,nnz:69,no_attrs_in_subclass:204,no_glob:[60,153],no_symmetri:196,noam:0,nobrega:0,nocache_fail:199,nocond:59,nodal:[115,140,160],node12:17,node81:71,node:[13,26,32,57,59,86,115,140,149,158,163,172,179,190,194,205,207,234,237],non:[3,6,11,13,16,22,25,31,32,33,37,38,39,40,41,42,45,46,47,59,61,62,63,64,65,66,68,69,70,84,87,89,94,95,98,101,102,106,123,128,138,139,141,154,157,158,159,160,161,163,164,166,167,168,169,171,175,179,180,182,184,185,186,187,189,190,191,192,194,195,196,201,203,207,220,234,238,239],non_trivial_metr:34,noncentr:191,noncentral_beta_distribut:191,noncentral_chi_distribut:191,noncentralbetadistribut:191,noncommut:[32,55,234],noncommutative_part:32,nonconserv:87,nonconvex:59,none:[2,7,8,9,10,11,13,14,15,21,22,23,24,28,29,30,31,32,33,34,35,37,38,40,41,42,43,45,46,47,48,49,51,53,54,55,58,59,60,62,63,64,65,68,69,71,72,73,74,79,85,86,87,88,91,92,108,110,112,119,124,129,134,136,139,141,146,147,149,151,152,153,157,158,159,160,162,163,164,166,168,170,172,173,174,175,177,178,179,180,181,184,185,187,188,189,190,191,192,194,195,196,199,200,201,202,203,204,207,208,210,213,214,216,235,238,239],nonelementari:59,nonelementaryintegr:59,nonempti:23,nonetheless:[33,141,184,187],nonetoken:15,nonetyp:15,nonhol_coneq:[87,95,102],nonholonom:94,nonhomogeneous_equation_with_constant_coeffici:187,noninteg:[11,32,163,172],noninvertiblematrixerror:[65,235],nonlex:24,nonlinear:[31,106,168,189,190],nonlinearerror:190,nonlinsolv:[57,106,189,239],nonminim:[93,100,103],nonneg:[10,32,33,34,37,40,65,106,161,163,185,191,238],nonnegativehandl:11,nonnegativepred:11,nonparametr:159,nonposit:[10,32,106],nonpositivehandl:11,nonpositivepred:11,nonreal:189,nonrep:196,nonresidu:71,nonsens:[31,40],nonsquarematrixerror:[68,162,187],nontrivi:[23,32,71],nonvanish:32,nonzero:[10,12,31,32,47,68,81,161,163,164,172,175,190],nonzerohandl:11,nonzeropred:11,noqa:[32,60,164,204],nor:[0,11,13,32,62,71,113,159,168,179,181,187,196,214],noramlize_last:68,norepli:0,norm:[7,68,69,137,149,164,166,168],normal:[2,3,7,10,15,23,31,32,36,38,42,45,46,47,59,60,62,66,68,71,73,81,84,92,94,98,106,112,123,133,136,137,138,139,140,144,147,149,157,160,163,164,165,166,168,172,173,175,180,181,185,187,191,195,201,207,214],normal_closur:23,normal_distribut:191,normal_lin:42,normal_matrix:11,normal_vector:[46,112],normaldistribut:191,normaldistributionfunct:191,normalgamma:191,normalhandl:11,normalis:[32,174],normalize_last:68,normalize_theta_set:180,normalize_whitespac:201,normalpred:11,normalpspac:191,norman:59,normilz:40,normpath:211,not_empty_in:[13,190],not_in_arg:15,not_point:119,not_rep:23,not_supported_funct:172,notabl:[10,15,35,40,58,72,163],notalgebra:166,notat:[3,20,24,25,31,32,33,37,40,58,65,68,73,137,148,149,153,157,160,172,179,183,184,190,195,196,207,220,226,230],note:[2,3,7,11,12,13,14,15,16,22,23,24,25,28,30,31,33,36,37,38,39,40,42,43,45,46,47,48,49,57,58,59,60,62,63,65,68,69,71,73,79,80,85,86,87,88,91,92,94,95,97,104,106,112,115,123,133,134,136,138,139,140,142,148,149,153,154,156,157,158,159,160,161,162,163,164,166,168,169,171,172,173,174,175,178,180,182,183,184,185,186,187,188,189,190,191,195,196,199,201,202,204,205,207,208,210,211,218,220,222,226,229,230,232,233,234,235,238],notebook:[5,60,153,208,236,237],noth:[14,23,32,59,123,139,160,164,171,172,184,187,189,199,201,208,210,231],notic:[0,3,23,24,30,32,68,127,148,163,182,196,207,208,231,233,234,238],notifi:2,notimpl:42,notimplementederror:[2,13,31,42,45,49,59,68,162,171,180,186,187,188,189,190],notin:[22,32,58,180],notinvert:[160,166,168],notion:[14,144,147,160,190,217,222],notiter:32,notrevers:[166,168],notrupertthorn:0,nottingham:185,noumbissi:0,noumbissivaler:0,novak:0,novemb:207,now:[2,3,5,14,15,24,32,33,40,43,48,49,54,56,58,61,68,71,91,92,98,100,106,107,142,144,149,153,156,157,160,161,163,164,166,168,169,173,180,181,182,184,185,187,189,190,191,192,196,201,202,208,218,219,226,231,233,234,238,239],npartit:71,nqubit:[119,123,124,133],nroot:[168,189],nrow:[159,162],nsa:33,nseri:32,nsimplifi:[32,36,183],nsk:0,nsolv:[106,189],ntc:0,ntelang:0,nth:[32,37,40,61,71,164,168,169,184,187,191,226],nth_algebraic_integr:187,nth_linear:187,nth_linear_constant_coeff_homogeneous_integr:187,nth_linear_constant_coeff_variation_of_parameters_integr:187,nth_linear_euler_eq_homogen:187,nth_linear_euler_eq_nonhomogeneous_undetermined_coeffici:187,nth_linear_euler_eq_nonhomogeneous_variation_of_paramet:187,nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_integr:187,nth_linear_homogeneous_constant_coeff_integr:187,nth_power_roots_poli:168,nthalgebra:187,ntheori:[11,23,32,33,57,166,168,185,207],nthroot:183,nthroot_mod:71,ntop:68,ntt:35,nu_1:161,nu_2:161,nu_i:161,nu_n:161,nullspac:[68,162],num:[15,23,32,71,79,164,184,205,210],num_column:[60,153,172,187],num_qq:163,num_zz:163,number:[2,4,7,9,10,13,14,15,16,17,18,21,22,23,24,25,26,27,28,30,31,33,34,37,38,40,42,45,46,47,48,49,51,57,59,60,61,62,63,64,65,66,68,69,70,72,73,75,79,80,81,84,87,88,91,92,95,103,104,106,112,115,118,119,122,123,124,125,127,128,133,134,135,136,137,139,140,141,143,144,147,148,149,152,153,154,156,157,158,159,161,162,164,165,166,167,169,172,174,179,180,181,182,184,185,187,189,190,191,192,195,196,200,201,203,205,207,210,214,216,217,219,220,222,225,229,230,231,233,234,235,238],number_cl:32,number_theori:37,numbered_symbol:[173,184,187,207],numberfield:168,numberkind:225,numbermaniac:0,numbertheoretictransform:35,numbertheori:185,numberworld:71,numeb:191,numer:[0,2,3,4,11,13,15,31,32,37,40,44,48,52,55,57,68,71,73,77,79,87,88,92,94,100,103,107,111,118,121,136,143,148,157,159,163,164,166,167,168,171,172,181,182,184,187,189,190,195,200,201,202,208,226,229,231,235,238],numerical_funct:229,numerorum:205,numexpr:208,numpad:159,numpi:[2,5,15,32,55,60,67,72,92,106,123,133,162,172,191,195,202,203,208,229,231],numpydoc:2,numpyprint:15,numqubit:124,numsampl:191,numth:71,nuovo:[144,158],nurgabylov:0,nus:0,nykamp:0,nyu:0,o____________________________________________________:75,o_from:166,o_to:166,oabc:219,obei:[2,40,158,172,182],obextj:223,obj:[2,32,164,168,172,204],object:[2,3,4,6,7,8,9,10,11,13,14,15,16,17,22,23,24,25,26,27,31,32,34,37,38,40,42,43,44,45,47,48,49,58,59,62,63,65,66,68,72,74,75,79,80,84,85,87,88,89,91,92,95,99,100,101,102,103,104,106,107,108,112,113,114,122,123,125,133,134,138,139,141,142,145,146,148,149,152,153,156,157,159,160,161,163,164,166,168,172,174,175,178,179,180,181,184,187,188,189,190,191,192,193,194,196,197,201,202,203,204,205,207,208,211,212,216,217,218,223,227,229,230,231,233,234,235,237,238],oblig:159,obligatori:189,observ:[28,54,58,128,157,160,182,185,187,222,238],obspm:0,obstacl:58,obtain:[2,3,9,10,14,16,17,23,24,25,28,32,33,35,36,37,38,40,42,43,45,46,48,54,58,59,61,63,68,70,71,77,79,100,102,104,112,134,139,144,160,161,166,168,171,173,180,181,182,184,185,187,188,189,190,200,207,210,217,218,226],obtaining_all_solutions_of_a_linear_system:68,obtus:45,obviou:[23,31,160,163,171,185,233],obvious:[2,16,23,142,156,163,182],occasion:32,occup:139,occupi:[71,139,196],occur:[2,3,23,24,32,36,39,40,49,58,63,73,84,103,148,149,156,175,184,188,192,201,207,234],occurr:[16,32,71,92,149,184,191],oct:71,octahedr:25,octahedron:59,octav:[15,57,106,203],octave_cod:[15,172],octavecodegen:203,octavecodeprint:172,octnam:203,octob:80,odd:[8,10,12,20,24,32,33,37,38,40,62,70,71,80,172,189,225],oddbal:32,oddhandl:11,oddpred:11,ode0106:187,ode0123:187,ode:[2,57,188],ode_1st_exact:187,ode_1st_homogeneous_coeff_best:187,ode_1st_homogeneous_coeff_best_integr:187,ode_1st_homogeneous_coeff_subs_dep_div_indep:187,ode_1st_homogeneous_coeff_subs_indep_div_dep:187,ode_1st_power_seri:187,ode_2nd_linear_airi:187,ode_2nd_linear_bessel:187,ode_2nd_power_series_ordinari:187,ode_2nd_power_series_regular:187,ode_:187,ode_hintnam:187,ode_lie_group:187,ode_linear_coeffici:187,ode_liouvil:187,ode_nth_linear_constant_coeff_homogen:187,ode_nth_linear_constant_coeff_undetermined_coeffici:187,ode_nth_linear_constant_coeff_variation_of_paramet:187,ode_nth_order_reduc:187,ode_ord:[187,188,189],ode_problem:187,ode_separ:187,ode_separable_reduc:187,ode_sol_simpl:187,odeadvisor:187,odel:68,odenonlinearerror:187,odeordererror:187,odoh:0,oei:[37,71],oeyag:33,of_typ:[163,164],ofcours:217,off:[32,42,58,63,70,72,94,123,160,168,172,187,200,201,211,214,233],off_circl:46,offer:[2,14,15,23,32,72,84,106,148,157,163,205,221],offici:[3,5,32,84,106,148,157,190,208,224,236],offset:[14,15,32,37,40,195],often:[2,14,15,16,22,32,40,42,44,58,59,68,71,72,79,100,103,148,156,157,160,161,163,166,168,173,179,180,185,187,191,229,233,234,235,238],okai:33,old:[0,3,32,33,34,57,60,103,108,143,144,153,159,160,164,165,172,173,184,187,199,208,229],old_assumpt:128,old_frac_field:[163,164],old_fractionfield:163,old_poly_r:[54,55,160,163,164],old_polynomialr:163,oldchar:210,older:[2,55,92,163,164,172],oleksandr:0,oliv:0,oliverzle:0,ollwd:33,olofsson:0,olsen:0,omar:0,omega:[3,15,16,23,58,71,89,91,104,107,113,115,140,149,152,153,156,158,172,179,191],omega_:58,omegacrash:0,omicron:[3,172],omit:[2,15,24,31,32,33,40,58,59,68,141,172,173,182,189,194,203,207,230],omposit:174,on_circl:46,on_morph:47,onc:[2,3,15,17,23,28,32,33,37,40,48,58,59,72,75,86,100,103,144,149,151,157,159,161,163,168,172,173,181,182,184,187,190,196,207,217,229,230,238,239],ond:1,ondrej:0,one:[2,3,6,10,11,13,14,15,17,22,23,24,25,26,27,28,29,31,32,33,34,35,36,38,39,40,42,43,44,45,46,48,49,54,55,56,58,59,60,61,62,63,65,67,68,69,70,71,72,73,74,75,80,84,85,87,92,93,95,103,104,106,108,111,112,113,119,124,133,137,139,141,142,144,147,148,149,152,153,154,156,157,158,159,160,161,163,164,166,168,169,170,171,172,173,179,180,181,182,184,185,187,188,189,190,191,192,194,196,201,202,203,205,207,208,210,214,218,220,222,226,229,230,231,233,234,235,236,237,238,240],one_half:32,one_qubit_box:119,oneform:34,onequbitg:123,ones:[5,15,23,28,32,58,59,63,64,65,68,69,70,71,92,112,133,139,166,175,185,187,192,203,210,214,218,235,237],oneshot:133,onli:[2,3,5,6,7,9,10,11,12,13,14,15,16,21,22,23,24,25,26,28,30,31,32,33,34,35,36,37,38,40,42,43,45,46,48,49,50,55,57,58,59,60,61,62,64,66,68,69,71,72,73,86,92,94,95,96,97,99,101,103,104,107,112,114,133,134,138,139,141,143,144,148,149,151,152,153,154,156,157,158,159,160,161,162,163,164,166,168,169,171,172,174,175,178,179,180,181,182,184,185,187,188,189,191,192,194,195,196,201,202,203,205,207,208,209,214,216,218,220,222,223,225,226,229,230,231,234,235,236,238,239],onlin:[0,2,87,185,207,236],onlinelibrari:191,only_alt:23,only_doubl:58,only_integ:159,only_sym:23,onset:112,onto:[33,45,46,47,58,61,68,70,72],oohai:172,ooo:207,oooo:[75,207],oop:231,op_point:[87,88,95,103],opaqu:[58,172],open:[1,2,5,13,32,34,38,59,92,106,172,180,186,190,191,211,233,235],openql:0,opensourc:0,oper:[0,2,4,7,11,15,23,24,25,31,32,33,34,35,36,38,40,42,50,52,55,58,62,63,64,65,67,69,71,73,79,80,82,84,87,88,95,98,103,106,111,115,116,120,122,123,124,125,130,131,134,136,137,138,139,148,149,151,155,160,161,162,163,164,166,168,169,172,175,177,180,181,183,184,187,189,190,193,194,195,201,202,205,207,208,214,221,231,232,234,238],operand:[3,24,32,150,216],operar:32,operationnotsupport:166,operator_:128,operator_to_st:134,operatornam:[37,38,40,58,59,158,161,168,172,175,182,189],operators_to_st:129,operatorset:[117,129],opert:0,oplu:123,oppenheim:205,opportun:[2,184],oppos:[15,208,230],opposit:[28,48,63,161,164,180,184,190,207,214,215,238],opqrstuvwxi:33,ops:208,opt2:15,opt:[59,160,166,184,235],opt_cs:2,opt_sub:184,optic:[82,110,111,112,113],optical_medium:110,optim:[2,15,17,23,36,71,84,106,119,123,168,172,173,181,184,191,202],optimis:187,optims_c99:15,option:[2,3,8,10,13,15,23,30,31,32,33,34,35,36,38,40,41,42,45,46,47,48,49,51,59,60,62,63,64,65,66,68,69,71,72,73,74,84,85,86,87,88,91,106,123,128,129,131,134,136,137,141,148,149,153,159,160,161,163,164,165,168,169,171,172,173,174,175,177,179,181,184,185,187,188,189,190,191,195,196,201,202,203,207,208,214,236,237,238],optionerror:166,optionflag:201,oracl:124,oracleg:124,orb:23,orbit:[23,30,139,140,142],orbit_rep:23,orbit_transvers:23,ord:[28,33,68],order:[0,2,3,10,13,14,15,16,17,18,20,21,22,23,24,25,27,28,30,31,33,34,35,36,37,38,39,40,42,48,49,51,54,58,59,60,61,62,63,68,71,72,73,74,75,80,84,87,91,92,93,94,101,102,103,104,112,116,120,123,133,134,135,136,137,138,139,144,148,149,151,152,153,156,157,159,160,161,163,164,165,166,169,171,172,173,174,175,176,178,180,183,184,185,188,189,190,191,192,195,196,201,202,203,205,207,208,210,214,215,217,218,223,226,230,231,234,236,237,238,239],order_symbol:32,ordered_flag:207,ordered_partit:207,ordering_of_class:43,ordin:[159,187,210],ordinari:[13,15,23,32,36,38,40,50,54,55,57,59,100,160,163,171,178,187,192,205,233,238],orestis22000:0,orestisvagg:0,org:[0,1,2,3,9,10,11,13,14,15,20,21,23,24,31,32,33,34,35,37,38,40,42,44,48,49,50,59,60,61,62,63,65,68,71,81,83,108,110,111,112,114,115,116,120,121,122,125,127,128,137,139,149,151,153,155,167,168,172,175,179,180,181,185,187,190,191,202,203,207,214,215,219,221,223,224,235,236,237,240],organ:[0,100],orient:[44,48,63,92,94,95,97,104,106,149,152,154,156,157,166,207,214,221,222],orient_axi:149,orient_body_fix:149,orient_explicit:149,orient_new:[214,215],orient_new_:218,orient_new_axi:[214,216,218],orient_new_bodi:[214,218],orient_new_quaternion:[214,218],orient_new_spac:[214,218],orient_quaternion:149,orient_space_fix:149,orientnew:[94,95,97,98,99,103,107,149,151,152,154,156,157],orig:166,orig_expr:134,orig_ext:164,orig_frac:238,origin:[3,5,7,23,24,25,28,31,32,33,36,37,38,40,41,43,45,47,58,59,63,68,71,80,95,103,106,131,134,144,150,154,159,160,164,168,171,172,180,181,182,184,185,187,188,189,190,196,201,208,214,216,217,218,219,220,222,223,226,238],orisaka:0,orlando:167,ormv:33,orsino:0,orthocent:48,orthogn:68,orthogon:[7,10,39,47,61,68,137,149,157,165,214,215,221],orthogonal_direct:47,orthogonal_matrix:11,orthogonalbra:137,orthogonalhandl:11,orthogonalket:137,orthogonalpolynomi:2,orthogonalpred:11,orthogonalst:137,orthonorm:[68,106,134,157,217],orthopoli:[40,168],oruganti:0,osc:[32,36],oscar:[0,158],oscil:[32,82],oscillatori:[32,36,177],osi:33,osineq:3,osorio:0,ostrogradski:59,ostrovok:0,osu:0,other:[0,2,3,4,7,11,13,14,15,16,23,24,25,28,29,31,32,33,34,36,37,38,39,40,41,42,43,45,46,47,48,49,50,52,58,59,62,63,64,65,68,69,71,72,73,74,75,79,84,85,92,93,95,100,103,104,106,108,111,112,113,123,134,136,137,138,139,142,144,145,146,148,149,151,152,155,156,157,159,160,161,162,163,164,166,168,169,172,173,174,177,178,179,180,181,182,184,185,187,188,189,190,191,192,196,199,202,203,204,205,207,208,214,216,217,220,222,225,226,229,230,231,233,234,235,238],otherfram:[149,214],otherpoint:152,otherwis:[0,13,14,15,23,24,28,31,32,33,36,38,40,41,42,45,46,47,48,57,58,59,61,62,64,68,70,71,73,81,85,91,92,124,129,135,152,155,156,160,164,166,168,170,172,174,175,177,178,180,184,185,187,188,189,190,191,192,199,201,203,207,208,229,230,237],oti:0,otim:[104,192],our:[2,5,15,40,58,68,71,144,156,157,159,160,169,172,179,182,185,187,190,201,224,226,229,231,234,236,238],out1:68,out2:68,out:[0,2,3,14,15,23,24,32,33,34,37,40,48,58,59,65,68,69,71,74,80,92,94,95,97,106,116,120,131,134,136,138,139,160,161,163,164,168,169,170,172,173,179,182,184,187,192,201,203,207,208,231,233,234,237,238],out_8598435338387848786:[15,203],outcom:[62,142,191],outer:[59,89,104,106,122,127,128,149,152,155,157,174,180,194,214,216,217],outer_product:128,outermost:[172,180,184,194],outerproduct:[122,128],outfram:152,outlier:191,outlin:[1,30,59,160],outlook:0,outperform:15,output:[2,3,14,15,32,33,40,56,57,59,60,63,65,68,71,72,77,79,87,91,92,98,103,106,107,111,112,123,135,139,148,149,152,153,154,157,163,166,168,172,173,182,184,185,186,187,189,191,195,201,202,203,205,207,208,214,226,231,233,234,235,236,237,238,239],output_eqn:91,outputargu:[15,203],outputbuff:172,outputcheck:201,outputtexfil:172,outright:190,outsid:[2,11,23,32,40,43,48,63,71,84,144,157,168,184,187,230,234],outweigh:160,over:[0,2,3,7,13,14,15,16,23,24,27,31,32,33,34,35,36,37,46,48,55,58,61,62,65,68,71,74,75,81,92,106,107,118,134,137,139,143,144,154,158,159,160,161,163,164,165,166,167,168,169,172,175,177,179,184,185,186,187,189,190,191,192,194,195,204,207,208,214,216,220,223,225,233,236,238],overal:[32,146,159,189],overcompens:33,overdetermin:[189,190],overflow:[15,205],overhang:[74,75],overhead:[33,72,169],overlap:[44,49,70,160,180,210],overleaf:2,overlin:[2,40],overload:[160,163,164,217,234],overrid:[3,15,32,41,42,48,73,137,172,195,202,203,208],overridden:[147,160,174,238],oversizedpenguin:0,overview:[57,161,190,221,222],overwrit:[69,106,148],overwritten:92,owai:0,owl:0,own:[2,3,9,17,23,24,32,48,73,74,75,92,106,172,179,184,187,205,207,208,233],ownership:162,oxford:63,oyvind:0,ozair:0,p10:23,p11:44,p12:44,p13:44,p20:23,p21:44,p22:44,p23:44,p64:164,p90:32,p97:0,p_0:[23,28,50,182,185],p_1:[23,28,33,50,71,156,182,185],p_2:[23,33,50,71,156,182],p_3:[33,156],p_dom:163,p_domain:164,p_expr:[163,164],p_i:[23,28,71],p_inv:68,p_invers:187,p_j:[23,28],p_k:[23,71],p_m:40,p_n:[33,37,40,59],p_new:191,p_o_p:92,p_o_q:106,p_p:23,p_p_q:106,p_p_r:92,p_pt:92,p_q:182,p_r:50,p_s:23,p_so_o:92,p_x:196,p_y:196,p_z:196,pablo:0,pabloferz:0,packag:[2,5,60,72,73,77,100,106,153,172,201,211,219,220,233],pad:[3,15,33,34,35,47,71],padded_kei:33,pafnuti:2,page52:144,page78:144,page:[1,2,3,4,15,16,31,37,58,71,72,87,106,144,159,162,163,164,167,172,182,185,222,224,236,238,240],page_228:40,page_888:59,pai:13,pair:[3,14,15,23,24,32,33,38,44,49,56,64,68,71,92,95,129,131,133,134,139,148,160,163,166,168,173,178,179,181,182,184,185,187,190,191,203,207,217,226,229,235],pairwis:[2,11,14,32,37,49,68,71,185,189],pakhocmhik:0,palancz08:167,palard:0,palimpsest:33,palindrom:71,palmer:0,pan:0,panagioti:168,panda:0,pandei:0,pandeyan:0,panjwani15:0,pankowski:0,papadopoulo:105,papanik:0,paper:[1,2,4,71,94,157,168,181,182,185,187,191],paperforkcgx:94,paperforkcgz:94,paperforkl:94,paperframecgx:94,paperframecgz:94,paperradfront:94,paperradrear:94,paperwb:94,pappu:[0,57],papriw:0,papriwalprateek:0,paprocki:[0,1],parabol:74,parabola:214,paradox:0,paragraph:[2,14],parallel:[42,45,46,48,59,77,79,83,156,157,166,219,223],parallel_axi:89,parallel_lin:45,parallel_plan:46,parallel_poly_from_expr:168,parallelogram:157,param:[0,15,34,68,185],param_circl:223,paramat:191,paramet:[3,7,8,10,13,15,16,23,24,28,30,32,33,34,35,37,38,40,41,42,43,45,46,47,48,49,51,55,57,58,59,60,62,63,64,65,66,68,69,70,71,73,74,79,80,81,84,85,86,87,88,89,91,92,94,106,108,110,111,112,114,115,116,118,119,120,122,123,124,127,128,129,131,133,134,136,137,138,139,140,141,149,150,151,152,153,154,157,158,159,161,162,164,166,168,169,170,172,173,174,175,177,179,180,183,184,185,186,187,188,189,191,192,195,196,201,202,203,205,207,208,214,215,216,217,218,223,230,234],parameter:[34,41,42,45,48,185],parameter_valu:[43,46],parametr:[15,40,41,45,68,159,185,190,214,216,223],parametric2dlineseri:159,parametric3dlineseri:159,parametricintegr:221,parametricregion:[216,221,223],parametricsurfaceseri:159,paramsingh258:0,paraxi:[108,112],pare1970:14,pareigi:14,parekh:0,paren:172,parent:[23,32,55,149,152,159,163,164,201,205,214,217,218],parenthes:[2,3,32,73,84,127,128,157,172,194,210],parenthesi:[172,194],parenthesize_sup:172,pareto:191,pareto_distribut:191,paretodistribut:191,parikh:0,parikhdhruvesh1:0,pariti:24,parity_:32,park:33,parker:0,parkereberri:0,parnel:0,parnmatt:0,parruck:0,pars:[0,4,24,32,57,65,92,169,171],parse_autolev:92,parse_expr:73,parse_latex:73,parse_maxima:73,parser:[65,73,82,100,106,201],parsoya:0,parsoyaarih:0,part:[0,2,12,13,23,24,31,32,33,37,38,40,48,55,58,59,62,63,65,71,84,87,91,92,94,98,100,104,106,123,135,139,148,157,161,163,164,166,168,169,171,172,173,182,184,185,187,189,201,203,205,207,230,234,238],partcompon:205,partfrac:[168,174],parti:199,partial:[2,13,23,30,31,32,34,36,37,38,57,71,73,106,133,149,152,154,164,165,167,169,172,174,181,184,187,188,192,197,214,220,230,238],partial_list:168,partial_veloc:[106,149,152],partialderiv:197,particl:[82,85,87,92,95,100,101,103,106,107,115,125,126,137,139,142,144,156,196],particle_p:92,particle_r:92,particu:72,particular:[0,2,3,11,16,23,32,33,36,40,43,58,59,62,65,68,71,74,100,123,134,161,162,163,164,166,168,178,180,182,184,185,187,189,190,201,203,205,235,236,238],particularli:[36,59,163,164,182,238,239],partion:207,partit:[2,19,23,39,71,95,103,105,191,205,206],partition_:[21,37],partitionfunctionp:71,partitions_:71,pascal:[37,71],pass:[2,3,6,7,10,13,14,15,23,24,32,33,34,36,38,39,40,42,45,46,48,59,60,62,63,65,68,69,71,73,74,85,91,92,95,106,107,111,128,129,133,134,136,137,149,153,159,160,163,166,168,170,172,173,179,180,184,185,187,188,189,190,191,192,194,195,196,199,201,202,203,204,207,208,210,213,214,225,229,230,234,237,238,239],passiv:136,passs:15,past:[3,38,71,171,172,237],pastabl:210,pastafarianist:0,pat_matrix:83,patashnik:24,patch:[0,34,159,172],patel:0,path:[2,23,48,54,98,154,156,181,184,187,190,201,202,205,207,210,211,212,220],pathsep:210,patrick:0,patrizia:189,pattern:[3,32,58,59,63,133,163,182,184,187,189,230,234],paul:[0,37,205],paulbourk:48,pauli:[0,82,83],pauli_matric:[83,114],paulialgebra:114,paulimatric:114,paulmandel:0,pav:0,pavel:0,paveltkachenko:0,payn:0,pc_group:22,pc_present:22,pc_resent:22,pc_sequenc:[22,23],pc_seri:[22,23],pcg:22,pcgroup:22,pchantza:0,pchelintsev:0,pdb:201,pde:[4,57,187],pde_hint:188,pde_hintnam:188,pdf:[4,13,14,23,33,35,37,54,59,68,71,74,75,159,167,171,172,175,181,184,185,187,191,207,214],pdiv:[164,168],pdn3628:0,pdp:235,peabody124:0,peak:0,pearc:184,pearson:[0,191],pearu:0,pecan:0,peculiar:[58,157],pedregosa:[0,1],peek:[205,238],peerj:1,peeyush:0,pekochun:0,peleg:0,pell:185,penalti:84,pendent:106,pendulum:[91,93,100,103,107,156],peng:0,pengn:0,pengningchao:0,pengpanst:0,penros:[65,68],penrose_pseudoinvers:68,pent:43,pentagonal_number_theorem:37,peopl:[0,2,35,40,59,68,144,191],pep:[2,15,32,62],per:[33,68,72,113,149,154,159,164,168,169,214,217,219,222],percent:[68,190],percentag:[68,71],perez:0,perfect:[2,23,32,71,185,190,233,234],perfect_numb:71,perfect_pow:[32,71],perfectli:[24,31,32,33,166,168,171],perfectnumb:71,perform:[3,12,14,15,16,23,24,27,31,32,33,35,36,38,45,49,56,57,59,66,68,71,72,86,87,94,95,100,103,104,106,123,124,133,136,139,154,157,161,162,163,166,168,173,174,175,179,184,185,187,189,190,191,192,202,207,214,215,217,220,225,226,229,230,233,234,238],perhap:[15,32,62,71,124,163,189,203,229],periapsi:42,peric:0,perimet:[48,221],perimosocordia:0,period:[2,13,32,33,38,58,71,103,113,135,142,172,175,178,186,190,191,207],period_find:135,periodic_argu:39,periodic_continued_fract:71,perl4log:0,perl:71,perm2tensor:196,perm:[20,22,23,24,25,30,37,63,65,68,192,207],perm_cycl:[24,172],perm_group:[18,22,23,24,29,30],perm_mat:[87,88,103],perman:68,permanent_:68,permeabl:110,permiss:[0,71,158],permit:[0,24,34,38,71,159],permitt:110,permut:[2,16,18,19,20,22,25,28,29,30,33,37,40,63,65,68,88,139,158,164,168,185,192,196,207,238],permutation_oper:139,permutationgroup:[18,20,22,23,24,29,30],permutationinvolut:207,permutationmatrix:[65,68],permutationoper:139,permute_backward:68,permute_col:63,permute_forward:68,permute_row:63,permute_sign:[185,207],permutebkwd:68,permutedim:192,permutefwd:68,permutlist:139,pernici:0,perpendicualar:46,perpendicular:[42,45,46,48,61,98,112,157],perpendicular_bisector:45,perpendicular_lin:[45,46],perpendicular_plan:46,perpendicular_seg:45,persist:205,person:2,perspect:[71,144,159,203,218,222],pertain:[150,155],pertin:[107,160],pestov:0,peter:[0,31,37,71,105,155,207],peterj:0,peterson:0,petertbradi:0,petkovsek:[31,189],petr:0,petrea:0,petuhov:0,pexquo:[164,168],pfd:168,pfda:168,pfister:167,pgroup:[23,25],phan:0,phantom:166,phase:[32,59,108,111,113,123,124,190],phase_retard:111,phaseg:123,phenomenon:[13,144,166,175,234],phi1:113,phi2:113,phi:[3,23,32,33,37,40,58,61,68,71,81,106,113,122,124,158,160,172,187,190,214,223],phi_0:40,phi_a:111,phi_b:111,phia:111,phib:111,phidd:172,phil:0,philipp:0,phillip:0,philosophi:[82,143,187,190],phone:236,php:[23,40,71,185,191],phrase:[2,33],phy:[144,158],physic:[0,2,4,15,25,57,68,71,74,75,77,78,79,81,83,85,86,87,88,89,90,91,92,94,95,97,98,99,100,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,147,149,150,151,152,153,158,167,191,205,207,220,226,233,238],physik:0,pi_hex_digit:71,piab:130,piabbra:130,piabhamiltonian:130,piabket:130,piak:24,pic:14,pick:[2,33,37,103,133,135,238],pictori:74,pictur:[22,172],piec:[32,36,182,203],piecewis:[15,31,39,40,59,74,137,172,174,175,189,190,191,208,230],piecewise_fold:38,piecewise_integr:38,piecewiserul:59,pierr:0,pietjepuk314:172,pietrantonio:0,pii:167,pilani:0,pimenta:0,pin:[7,74,75],pine:0,pinv:[65,68],pinv_solv:[64,68],piotr:0,pip3:73,pip:[2,5,73],pipe:201,pirat:0,pirtl:0,pisarev:0,pitch:94,pitfal:[4,157,163,231,238],pivot:[68,162,235],piziak:68,pkg:[60,153],pkgdata:[57,206],pkgname:211,pkgpath:211,pku:0,place:[2,3,14,24,25,32,33,38,48,64,68,69,70,71,73,106,107,167,172,173,179,181,184,205,207,229,235,238],placehold:208,plack:0,plae:0,plai:[31,94,101,185,231,233,234],plain:[2,60,153,168,172],plaintext:[33,172],plan:[13,84,164,190,237],planar:[42,48,75,112],planck:146,planck_const:121,plane:[2,32,40,42,44,45,47,48,57,59,94,111,112,156,157,180,190,223,238],planet:[4,100],planetmath:187,plank:121,plant:79,plate:111,platform:[2,139,157,187,202],platon:25,plausibl:160,pleas:[1,2,5,11,13,32,40,44,57,58,71,84,87,92,100,103,104,111,112,133,148,157,158,159,160,166,167,180,184,185,189,190,208,214,218,239],plessi:0,plot3d:[68,159],plot3d_parametric_lin:159,plot3d_parametric_surfac:159,plot:[2,4,5,41,42,44,45,48,55,57,60,68,74,75,82,106,123,126,132,175,233,237],plot_bending_mo:[74,75],plot_deflect:[74,75],plot_direct:2,plot_gat:123,plot_implicit:159,plot_interv:[41,42,45,48],plot_loading_result:[74,75],plot_parametr:159,plot_shear_forc:[74,75],plot_slop:[74,75],plotgrid:[57,74],plt:[55,106],plu:[15,31,68,106,119,172,182,208],plug:[92,144],plural:2,pmatrix:144,pmf:191,pmint:59,pmod:[23,33,37,68,182],pn0:209,png:[14,60,68,74,75,153,159,172,175],pochhamm:[37,172,184],pochhammer_symbol:37,pohlig:71,poin:34,point1:[150,216],point2:[150,216],point2d:[41,42,43,44,45,47,48,49],point3d:[45,46,47,112],point:[2,3,5,7,13,15,16,23,30,31,32,33,34,35,38,39,40,41,42,43,44,45,46,48,49,51,54,55,56,57,58,59,68,71,74,75,85,87,88,89,91,92,94,95,96,97,98,99,101,102,103,104,106,107,119,141,144,150,154,155,157,159,160,163,164,166,168,172,174,178,179,180,187,189,190,191,202,205,207,208,214,216,218,219,220,221,222,223,226,229,230,231,234],point_cflexur:74,point_o:92,point_p:34,point_r:34,point_to_coord:34,pointer:[15,203,204],pointer_const:15,pointless:238,pointload:[74,75],pointwis:[23,30],pointwise_stabil:23,poisson:191,poisson_distribut:191,poisson_point_process:191,poissondistribut:191,poissonprocess:191,poitra:0,pol:34,polar:[34,38,40,42,48,57,74,81,82,109,159,180,184,190],polar_lift:[39,40,184],polar_mo:74,polar_moment_of_inertia:[42,48],polar_second_moment_of_area:[42,48],polarcomplexregion:180,polaris:112,polarizing_beam_splitt:111,pole:[2,40,58,79,112,179,182],poli:[3,31,32,33,37,38,40,41,48,54,55,59,63,65,68,71,106,160,161,165,166,168,169,171,174,186,189,190,201],polici:2,polificationfail:166,polish:184,pollak:0,pollard:[71,187],pollard_pm1:71,pollard_rho:71,polnomi:168,poluhsin:0,poly1:48,poly2:48,poly_from_expr:168,poly_lc:166,poly_r:[163,164],poly_tc:166,poly_unifi:164,polyalphabet:33,polybiu:33,polyclass:[163,164,168],polyconfig:[166,168],polycycl:[19,23],polycyclic_group:[22,23],polycyclicgroup:23,polycyl:22,polyel:[163,164,166,169,170,172],polyerror:[166,168],polyfunc:[41,168],polygamma2:40,polygamma:[2,37,40,172],polygamma_funct:40,polygammafunct:40,polygon:[2,42,43,44,49,57,159,223],polygonmesh:48,polygraph:33,polyhedr:25,polyhedra:[25,57],polyhedralgroup:25,polyhedron:[19,23,59,207],polylog:[40,172],polylogarithm:40,polymoni:128,polynomi:[2,4,11,23,31,32,33,36,37,39,50,51,52,53,55,57,59,63,65,68,71,75,79,104,106,160,162,167,170,174,179,181,182,184,185,186,187,190,201,226,232,235,239],polynomialerror:[166,168],polynomialr:[160,164,165,170],polyopt:[166,169],polyr:[164,165,166,170],polyroot:168,polysi:189,polytool:[32,168,189,190],polytop:57,polytope_integr:59,pomer:[71,205],pong:0,poom:0,poor:[59,72],poorer:13,pop:[0,59,185,236],popen:172,popov:0,popul:191,popular:[1,33,72,106,233],port:[73,94,111],portabl:[201,202],portion:[36,48,63,68],portland:0,portug:[28,196],pos:[23,63,164,189],pos_from:[92,94,95,106,152,156],pos_vec:89,posform:62,posifi:183,posit:[3,8,9,10,12,14,15,16,17,21,23,24,25,27,28,31,32,33,34,36,37,38,40,42,44,45,48,58,59,61,63,64,68,69,70,71,74,75,81,89,92,94,95,97,99,103,104,106,108,111,113,117,134,137,139,150,151,152,154,156,157,160,161,163,164,166,168,169,172,177,180,181,182,184,185,187,189,190,191,192,196,207,214,216,217,218,220,222,223,235,238,239],position2:[150,216],position_i:117,position_wrt:[214,217,218,219],position_x:117,position_z:117,positionbra3d:117,positionket3d:117,positionstate3d:117,positive_definit:11,positive_root:61,positivedefinitehandl:11,positivedefinitematrix:68,positivedefinitepred:11,positivepred:11,positv:74,poss:[22,94,157],possess:[85,104,196],possibl:[0,2,5,13,15,16,17,21,23,24,26,27,28,30,32,33,37,38,40,42,44,46,47,49,54,56,58,59,61,63,65,68,69,71,80,81,84,94,102,104,133,135,139,141,142,143,144,152,154,158,159,160,161,163,164,166,168,169,171,172,173,174,178,179,180,181,184,185,187,188,189,190,191,192,196,201,203,204,205,207,208,217,218,220,230,231,232,234,238],possiblezeroq:235,post:[15,26,32,172,173,184,201,234],postdecr:15,posteo:0,postfix:207,postincr:15,postiv:40,postord:207,postorder_travers:[207,234],postprocess:[15,168,173,184],postprocessor:[173,184],postscript:172,postul:71,potenti:[44,65,68,71,82,87,88,89,91,99,100,150,155,163,179,182,184,187,189,204,205,216,221,222],potential_energi:[87,99,100,104],pourcelot:0,povalyaev:0,povik:0,povinsahu:0,povm:133,pow:[2,3,7,12,15,33,38,58,63,71,138,162,163,164,168,172,174,181,184,189,190,234,237],pow_cos_sin:7,pow_xin:169,powdenest:38,power:[3,7,12,15,22,23,24,33,35,36,38,54,55,57,58,59,61,63,65,71,72,79,92,106,111,122,125,138,141,144,145,147,149,160,161,163,164,165,166,168,172,173,176,179,181,183,185,187,189,190,191,194,203,207,229,230,231,232,234,235,237],power_bas:[32,63],power_exp:[32,63],power_func:191,power_set:180,powerfunct:191,powerrul:59,powf:172,powi:[15,172],powl:[15,172],powsimp:[3,32,38,181],pozdneev:0,pp1:44,pp2:44,pp3:44,ppn:0,pprint:[3,13,14,34,40,59,68,71,111,158,172,173,180,184,187,188,190,191,207,237],pprint_nod:172,ppuedom:0,pquo:[164,168],prabhjot:0,prabhu:0,practic:[4,21,23,33,40,42,103,106,159,160,161,163,169,194,226,231,236],pradyu1993:0,pradyumna:0,prafullkumar:0,pragyan18168:0,pragyan:0,prakash:0,prakharsaxena:0,pramod:0,pramodch14:0,pranjal:0,pranjaltale16:0,prasad:0,prasanth:0,prashant:0,prashanttyagi221295:0,prasoon92:0,prasoon:0,prateek:0,praveen:0,prayush:0,pre:[0,14,15,69,158,159,173,181,184,189,190,201,218,222,234],preambl:[60,153,172],prebuilt:191,prec:[15,32,42,47,48,71,158,164,168,169,184,189],preced:[2,3,16,24,32,33,36,37,119,184,208],precedence_float:172,precedence_fracel:172,precedence_funct:172,precedence_integ:172,precedence_mul:172,precedence_polyel:172,precedence_r:172,precedence_unevaluatedexpr:172,precedence_valu:172,precis:[2,3,13,15,23,32,35,36,37,40,47,48,59,68,71,104,158,160,163,164,168,169,172,179,184,185,189,190,200,203,229,238],precision_target:15,precisionexhaust:36,precomput:[37,71],predecr:15,predefin:[34,106,163,172,173,184,190,196,214,218],predetermin:[32,201],predic:[8,9,13,57,73,168,184,207],predicate_:[9,10],predict:[139,184],prefer:[15,24,31,32,40,71,73,92,139,144,159,162,164,166,172,180,184,187,189,195,199,201,203,208,233,235],preferred_index:[40,139],prefix:[15,32,68,71,82,143,146,163,166,169,185,187,202,203,207],prefix_i1_i2_:68,preimag:160,preincrement:15,preliminari:[4,232],prem:[164,168],premad:15,premis:14,premises_kei:14,prempal:0,premultipli:168,preorder_travers:234,prep:[71,187,188],prepar:[87,170],prepend:[2,14,23,68,79,146,196],preprint:71,preprocess:[59,170],preprocessor:[15,173,184,203],preprocessor_stat:203,prerequisit:2,presenc:[32,38,91,95,103,187,194],present:[1,2,3,13,14,17,19,23,24,26,30,32,35,68,69,71,74,87,94,139,141,149,151,153,154,159,160,166,167,171,172,185,190,200,203,208,211,216,217,218,222,224,226,239],preserv:[14,15,23,32,68,137,164,168,174],presimplifi:95,press:[3,14,16,17,24,33,59,63,158,167,185,189],presum:[58,163,182,203],pretti:[2,14,15,40,57,59,60,68,71,75,94,153,182,184,190,222,232,233,235,238],prettifi:172,pretty_ascii_repr:146,pretty_atom:172,pretty_indic:139,pretty_print:[24,60,89,94,97,98,99,101,102,104,107,149,151,152,153,156,157,172],pretty_scalar:214,pretty_symbol:172,pretty_symbolog:172,pretty_try_use_unicod:172,pretty_unicode_repr:146,pretty_use_unicod:172,pretty_vect:214,prettyform:172,prettyprint:57,prev:26,prev_binari:27,prev_grai:27,prev_lex:21,prev_lexicograph:27,prevent:[3,15,32,71,84,168,172,184,191,232],preview:[14,57,204],preview_diagram:14,previou:[2,17,21,22,23,24,27,32,38,59,63,70,103,141,156,157,166,185,188,207,208,234,236,238],previous:[31,98,154,171,184,191,220],previous_term:32,prevprim:71,pri:33,priit:0,primal:[71,160],primari:[2,32,44,62,79,157,160,203,208],primarili:[15,32,71,74,138,170,202,205,217],prime:[8,9,10,23,30,31,32,33,35,37,40,71,110,160,161,163,164,166,168,182,184,185,191,205],prime_bound:71,prime_numb:[32,71],prime_number_theorem:71,prime_ord:71,primefactor:71,primehandl:11,primenu:71,primeomega:71,primepi:71,primepred:11,primerang:71,primetest:[32,71],primit:[23,32,33,40,71,133,137,160,161,163,164,166,168,171,172,185,230],primitive_el:[163,164,168],primitive_root:71,primori:71,princ:0,princeton:[158,191],princip:[14,33,38,40,58,59,81,94,112,160,161,163,164,166,168,169],principal_branch:[39,58],principal_valu:[38,59],principl:[33,63,71,110,160,161,166,181,189],print:[2,3,4,5,8,9,10,11,13,14,16,17,21,23,24,31,32,33,36,37,38,40,57,59,61,62,65,68,71,72,75,82,87,92,94,100,105,111,119,132,133,137,139,149,155,157,159,163,164,168,179,181,182,184,187,189,195,201,203,207,208,210,212,214,217,226,230,231,232,233,234,235,238],print_builtin:[60,153],print_ccod:172,print_dim_bas:141,print_fcod:172,print_funct:[207,226],print_gtk:172,print_latex:172,print_maple_cod:172,print_mathml:[172,237],print_my_latex:172,print_nod:172,print_nonzero:[68,207],print_python:172,print_rcod:172,print_tre:172,print_unit_bas:147,printabl:33,printer:[32,40,57,60,68,72,153,195,202,203,208,232,234],printer_exampl:172,printer_set:15,printmethod:172,prionti:0,prior:[0,5,152,168,184,235],prioriti:[15,55,84,92,157,208],privat:[2,32,33,92,159,203],priyank:0,priyansh:0,prk:33,prng:68,pro:0,prob:[137,191],probabilist:191,probabilit:191,probability_book:191,probability_distribut:191,probabilitycours:191,probabl:[23,32,37,40,44,71,92,133,137,164,182,187,190,191,202,231,236],problem:[2,3,17,26,28,32,33,44,58,59,63,68,71,74,76,80,82,84,92,95,98,100,101,148,156,157,160,161,166,182,184,185,187,190,205,207,221,226,230,231,235],problemat:163,proc:189,proce:[46,103,166,182,189],procedur:[16,18,23,29,30,31,59,68,87,104,166,184,185,189,190,214,235],proceed:[14,16,58,59,105,167,182],process:[2,3,12,15,23,24,30,32,33,48,58,59,68,71,88,92,94,98,101,103,106,159,160,166,172,173,180,184,187,189,201,205,207,238],process_seri:159,processs:191,procur:0,prod:[163,169,181],prod_:[31,37,40,58,71,144,182],produc:[2,14,23,32,33,45,59,68,149,163,172,179,187,188,189,191,201,205,207,237],product:[0,13,18,20,23,24,28,30,31,32,33,34,36,37,40,42,45,47,48,55,58,59,61,62,63,65,68,71,72,79,80,81,82,84,94,104,106,114,118,119,122,124,125,126,128,131,133,134,136,137,139,144,145,148,149,151,155,156,157,158,160,161,162,164,166,168,169,172,173,174,177,180,181,184,185,187,188,189,190,191,193,194,195,196,202,205,207,214,217,221],product_and_invers:24,product_replacement_algorithm:23,productdomain:191,productpspac:191,productset:190,prof:68,profil:74,profit:0,prog:15,proga:0,program:[0,2,3,15,17,24,106,144,158,203,205,231,233,236,238],programm:[0,71,172],programmat:[1,190,218,225],programminggeek:207,progress:[8,10,71,203],prohibit:[14,24,25,149],project:[0,2,15,45,46,47,61,68,105,202,203,214],project__test__h:[15,203],projection_lin:46,promin:169,promot:0,prompt:2,prone:[15,32],pronoun:2,pronounc:238,proof:[23,26,58,59,190],proofwiki:185,prop:23,prop_even:23,propag:[36,45,110,113],proper:[3,23,32,59,71,84,92,148,163,164,172,180,187,192,202,203,220,235],proper_divisor:71,proper_divisor_count:71,properli:[14,32,38,44,58,68,88,92,101,116,120,123,137,161,163,172,187,190,203,208,235,239],properti:[8,9,10,13,14,15,16,17,20,21,23,24,25,26,27,31,32,33,38,40,41,42,43,44,45,46,47,48,55,58,59,63,65,68,69,71,74,75,77,79,85,87,89,91,104,106,108,110,113,114,117,118,123,124,125,127,128,135,137,139,141,144,146,147,149,150,151,154,157,158,159,161,163,164,165,166,168,171,174,175,178,179,180,182,185,187,190,191,195,196,201,203,204,214,216,217,218,220,222,225,235],propfunc:204,proport:[23,33,179],propos:71,proposit:[8,10,62],proprietari:106,protect:[33,172],protonmail:0,protonyc:0,prototyp:[15,72,203],prove:[32,58,59,64,68,160,179,187,219],proven:[59,71,219,231],provid:[0,1,2,7,13,14,15,16,21,22,23,24,30,31,32,34,36,40,41,43,48,51,54,55,59,60,62,63,65,68,70,71,72,73,75,84,87,89,91,94,95,100,101,102,103,104,106,107,112,113,133,141,142,143,147,148,149,150,152,153,154,156,157,158,159,160,161,162,163,164,166,168,169,170,171,172,175,177,180,181,182,184,187,188,189,190,191,192,195,196,201,202,203,205,207,208,210,214,216,217,218,220,221,223,226,228,230,233,234,235,238],providean:185,prs:[166,168],prshnt19:0,prudnikov1990:[58,182],prudnikov:[58,182],prufer:19,prufer_rank:26,prufer_repr:26,prune:23,psai:0,pset:180,pseudo:[24,68,71,164,166,168],pseudocod:23,pseudoinvers:68,pseudoprim:71,pseudorandom:71,pseudotensor:40,psf:0,psg:25,psi:[3,40,58,111,122,123,129,137,172,196],psi_:[81,115],psi_n:[15,115],psi_nl:15,psi_nlm:81,psm:71,pspace1:191,pspace2:191,pspace:191,pspbot7:0,pstack:205,psu:[0,69,167,181,184],psw_primality_test:71,psycho:0,pt1:46,pth:7,pts:[45,46],pub:[33,214],public_kei:33,publicli:33,publish:[2,58,182],puent:0,pug:33,puiseux:169,puk:33,pull:[2,5,15,32,37,40,138,173,184,187,190,235,238],punchagan:0,puneeth:0,puntaier:0,puppi:33,purdu:[0,214],pure:[1,32,33,38,59,65,79,103,144,163,164,166,168,172,191],purepoli:[68,168],purohit:0,purpos:[0,2,14,15,23,29,32,33,59,68,92,106,144,148,157,163,166,169,171,172,179,187,190,195,205,206,208,217,218,228,230,238],purposefulli:94,push:58,pushforward:34,put:[2,3,15,28,29,32,33,34,38,63,68,111,116,120,135,136,168,172,173,181,182,184,187,192,202,226,235,238],puyoqrstvwx:33,pval:189,px_1:134,px_2:134,pxbra:[117,129],pxket:[117,129,134],pxop:[117,129,134],py3k:3,py_mod:15,py_str:15,pycod:[15,172],pydi:[0,92,106,149],pyf:203,pyglet:[57,172],pyglet_plot:159,pygletplot:159,pylab:60,pymc3:191,pynam:203,pypi:5,pyplot:[55,106],pytel:0,pytest:[57,198,208],pytestreport:201,pythagorean:185,python2:[73,172],python3:[2,15,73,172,201],python:[0,1,2,4,5,8,9,10,13,24,32,33,36,38,44,57,60,62,63,65,68,71,72,73,74,84,92,106,149,159,160,161,163,164,169,171,172,180,184,187,190,192,201,202,203,204,205,207,208,210,214,225,231,233,234,235,236,237,238],python_trick:207,python_vers:204,pythoncodeprint:57,pythonfinitefield:[163,164],pythonhashse:201,pythoninteg:164,pythonprint:57,pythonr:[163,164,170],pythonrationalfield:164,pyutil:57,q1d:[84,92,94,95,97,98,99,101,102,103,104,148,153,157],q1dd:153,q2d:[84,92,94,95,97,98,99,101,102,152,153],q2dd:153,q3d:[84,97,98,99,101],q4d:[94,101],q5d:94,q_0:[119,185],q_1:[95,103,119,156,168,185],q_2:[95,103,156],q_3:156,q_annihil:139,q_aug:68,q_creator:139,q_d:88,q_dep:[87,101,103],q_depend:[87,94,95,101,106],q_domain:164,q_expr:164,q_i:[59,88,103],q_ind:[87,88,92,94,95,97,98,101,103,106],q_m:40,q_n:168,q_op:[88,95],q_orient:[214,215],q_x:[48,156],q_y:[48,156],qad:106,qappli:[82,123,124,126,128,133],qasdfgtyuiop:0,qbd:106,qd_dep:[87,103],qd_ind:[87,103],qd_op:88,qdot:[87,94,152],qdoubledot:87,qexpr:134,qft:[82,126,135],qho:15,qho_1d:[15,115],qiang:0,qijia:0,qingsha:0,qiq:33,qmonserrat:0,qoqen:0,qq_i:[163,165],qq_python:164,qquad:[38,144,166],qr_solv:68,qrdecomposit:[64,68,69],qrgk:33,qrgkkthrzqebpr:33,qrsolv:[64,68],qstate:124,qtconsol:[5,237],qtf:132,quaboo:0,quad:[31,32,34,36,40,59,63],quadir:0,quadirowais200:0,quadrant:[38,164,190],quadrat:[32,33,59,71,160,164,168,185,189,191],quadratic_distribut:191,quadratic_residu:71,quadraticu:191,quadratur:[32,36,59,187],quadrilater:221,quadrupl:[14,168],qualifi:[2,211],qualiti:[72,172],quantifi:222,quantil:191,quantit:[15,141],quantiti:[3,24,32,37,40,44,49,75,82,84,87,98,104,118,141,143,147,154,156,157,184,191,217,221,222],quantiz:[82,125],quantum:[81,82,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,133,134,135,136,137,138,139,158],quarter:111,quarter_wave_retard:111,quartic:[42,168,189],quasi:139,quaternion:[57,149,152,157,214,215],quaternionorient:[214,218,221],qubit:[82,119,123,124,125,126,132],qubit_to_matrix:133,qubit_valu:133,qubitbra:133,quebec:167,queri:[8,11,12,13,15,32,44,57,168,184,191],query_gt:191,question:[2,4,31,34,42,49,58,59,62,71,84,141,144,148,160,163,182,190,207,210,226,240],quick:[2,32,68,71,184,189,208],quicker:[23,71],quickli:[23,24,32,33,36,71,166,168,181,190,205,226],quiet:60,quin:62,quintic:[168,189],quit:[40,68,71,94,156,159,169,171,182,189,222,226,231,234],quo:[163,164,166,168],quo_ground:[164,168],quot:[2,3,15,62,172,210],quotat:2,quotedstr:15,quotient:[13,31,32,35,38,71,160,161,163,165,166,168,182,184,187],quotient_codomain:160,quotient_domain:160,quotient_hom:160,quotient_modul:160,quotient_r:[160,164],quotientmodul:160,quotientmoduleel:160,quotientr:[160,164],qwerqwerqw:0,qwerti:195,qwp:111,r100:32,r101:32,r102:32,r103:32,r104:32,r105:32,r106:32,r107:32,r108:32,r109:32,r10:11,r110:32,r111:32,r112:32,r113:32,r114:32,r115:32,r116:32,r117:32,r118:32,r119:32,r11:11,r120:32,r121:32,r122:32,r123:32,r124:32,r125:32,r126:33,r127:33,r128:33,r129:33,r12:11,r130:33,r131:33,r132:33,r133:33,r134:33,r135:33,r136:33,r137:33,r138:33,r139:33,r13:11,r140:33,r141:33,r142:33,r143:33,r144:33,r145:33,r146:33,r147:33,r14:11,r150:33,r151:34,r152:34,r153:34,r154:35,r155:35,r156:35,r157:35,r158:35,r159:35,r15:11,r160:35,r161:35,r162:35,r163:35,r164:35,r165:35,r166:35,r167:35,r168:35,r169:35,r16:11,r170:35,r171:35,r172:35,r173:35,r174:35,r175:35,r176:35,r177:35,r178:35,r179:35,r17:11,r180:35,r181:35,r182:35,r183:37,r184:37,r185:37,r186:37,r187:37,r188:37,r189:37,r18:11,r190:37,r191:37,r192:37,r193:37,r194:37,r195:37,r196:37,r197:37,r198:37,r199:37,r19:11,r1_x:154,r1_y:154,r200:37,r201:37,r202:37,r203:37,r204:37,r205:37,r206:37,r207:37,r208:37,r209:37,r20:11,r210:37,r211:37,r212:37,r213:37,r214:37,r215:37,r216:37,r217:37,r218:37,r219:37,r21:11,r220:37,r221:37,r222:37,r223:37,r224:37,r225:38,r226:38,r227:38,r228:38,r229:38,r22:11,r230:38,r231:38,r232:38,r233:38,r234:38,r235:38,r236:38,r237:38,r238:38,r239:38,r23:11,r240:38,r241:38,r242:38,r243:38,r244:38,r245:38,r246:38,r247:38,r248:38,r249:38,r24:11,r250:38,r251:38,r252:38,r253:38,r254:38,r255:38,r256:38,r257:38,r258:38,r259:38,r25:11,r260:38,r261:38,r262:38,r263:38,r264:38,r265:38,r266:38,r267:38,r268:38,r269:38,r26:13,r270:38,r271:38,r272:38,r273:38,r274:38,r275:38,r276:38,r277:38,r278:38,r279:38,r27:13,r280:38,r281:38,r282:38,r283:38,r284:40,r285:40,r286:40,r287:40,r288:40,r289:40,r28:13,r290:40,r291:40,r292:40,r293:40,r294:40,r295:40,r296:40,r297:40,r298:40,r299:40,r29:13,r2_p:34,r2_r:34,r300:40,r301:40,r302:40,r303:40,r304:40,r305:40,r306:40,r307:40,r308:40,r309:40,r30:13,r310:40,r311:40,r312:40,r313:40,r314:40,r315:40,r316:40,r317:40,r318:40,r319:40,r31:13,r320:40,r321:40,r322:40,r323:40,r324:40,r325:40,r326:40,r327:40,r328:40,r329:40,r32:13,r330:40,r331:40,r332:40,r333:40,r334:40,r335:40,r336:40,r337:40,r338:40,r339:40,r33:13,r340:40,r341:40,r342:40,r343:40,r344:40,r345:40,r346:40,r347:40,r348:40,r349:40,r34:13,r350:40,r351:40,r352:40,r353:40,r354:40,r355:40,r356:40,r357:40,r358:40,r359:40,r35:13,r360:40,r361:40,r362:40,r363:40,r364:40,r365:40,r366:40,r367:40,r368:40,r369:40,r36:15,r370:40,r371:40,r372:40,r373:40,r374:40,r375:40,r376:40,r377:40,r378:40,r379:40,r37:15,r380:40,r381:40,r382:40,r383:40,r384:40,r385:40,r386:40,r387:40,r388:40,r389:40,r38:17,r390:40,r391:40,r392:40,r393:40,r394:40,r395:40,r396:40,r397:40,r398:40,r399:40,r39:17,r400:40,r401:40,r402:40,r403:40,r404:40,r405:40,r406:40,r407:40,r408:40,r409:40,r40:17,r410:40,r411:40,r412:40,r413:40,r414:40,r415:40,r416:40,r417:40,r418:40,r419:40,r41:17,r420:40,r421:40,r422:40,r423:40,r424:40,r425:40,r426:40,r427:40,r428:40,r429:40,r42:20,r430:40,r431:40,r432:40,r433:40,r434:40,r435:40,r436:40,r437:40,r438:40,r439:40,r43:20,r440:40,r441:40,r442:40,r443:40,r444:40,r445:40,r446:40,r447:40,r448:40,r449:40,r44:20,r450:40,r451:40,r452:40,r453:40,r454:40,r455:40,r456:40,r457:40,r458:40,r459:40,r45:20,r460:40,r461:40,r462:40,r463:40,r464:40,r465:40,r466:40,r467:40,r468:40,r469:40,r46:23,r470:40,r471:40,r472:40,r473:40,r474:40,r475:40,r476:40,r477:40,r478:40,r479:40,r47:23,r480:40,r481:40,r482:40,r483:42,r484:42,r485:42,r486:48,r487:54,r488:54,r489:59,r48:23,r490:59,r491:59,r492:59,r493:59,r494:59,r495:59,r496:59,r497:59,r498:59,r499:59,r49:23,r500:59,r501:59,r502:59,r503:59,r504:59,r505:59,r506:59,r507:59,r508:59,r509:59,r50:23,r510:59,r511:59,r512:59,r513:59,r514:59,r515:59,r516:59,r517:60,r518:60,r519:62,r51:23,r520:62,r521:63,r522:63,r523:63,r524:65,r525:68,r526:68,r527:68,r528:68,r529:68,r52:23,r530:68,r531:68,r532:68,r533:68,r534:68,r535:68,r536:68,r537:68,r538:68,r539:68,r53:23,r540:68,r541:68,r542:68,r543:68,r544:68,r545:68,r546:68,r547:68,r548:68,r549:68,r54:23,r550:68,r551:68,r552:71,r553:71,r554:71,r555:71,r556:71,r557:71,r558:71,r559:71,r55:23,r560:71,r561:71,r562:71,r563:71,r564:71,r565:71,r566:71,r567:71,r568:71,r569:71,r570:71,r571:71,r572:71,r573:71,r574:71,r575:71,r576:71,r577:71,r578:71,r579:71,r57:23,r580:71,r581:71,r582:71,r583:71,r584:71,r585:71,r586:71,r587:71,r588:71,r589:71,r590:71,r591:71,r592:71,r593:71,r594:71,r595:71,r596:71,r597:71,r598:71,r599:71,r59:23,r600:71,r601:71,r602:74,r603:83,r604:83,r605:83,r606:108,r607:108,r608:108,r609:110,r60:23,r610:111,r611:111,r612:111,r613:112,r614:114,r615:116,r616:118,r617:118,r618:118,r619:120,r61:23,r620:121,r621:122,r622:122,r623:125,r624:125,r625:125,r626:125,r627:125,r628:127,r629:128,r630:128,r631:128,r632:136,r633:136,r634:137,r635:137,r636:139,r637:159,r638:159,r639:166,r63:[23,24],r640:166,r641:166,r642:166,r643:166,r644:166,r645:166,r646:166,r647:166,r648:166,r649:166,r64:24,r650:166,r651:166,r652:166,r653:166,r654:166,r655:166,r656:166,r657:168,r658:168,r659:168,r65:24,r660:168,r661:168,r662:168,r663:168,r664:168,r665:168,r666:168,r667:168,r668:169,r669:174,r66:24,r670:174,r671:174,r672:174,r673:174,r674:174,r675:175,r676:175,r677:175,r678:177,r679:177,r67:24,r680:179,r681:179,r682:180,r683:180,r684:180,r685:180,r686:180,r687:180,r688:180,r689:180,r68:24,r690:180,r691:180,r692:180,r693:180,r694:180,r695:180,r696:181,r697:181,r698:181,r699:184,r69:24,r700:184,r701:184,r702:185,r703:185,r704:185,r705:185,r706:185,r707:185,r708:185,r709:185,r70:24,r710:185,r711:185,r712:185,r713:185,r714:185,r715:185,r716:185,r717:185,r718:185,r719:185,r71:24,r720:185,r721:185,r722:185,r723:185,r724:185,r725:185,r726:185,r727:185,r728:187,r729:187,r72:24,r730:187,r731:187,r732:187,r733:187,r734:189,r735:189,r736:189,r737:189,r738:189,r739:189,r73:24,r740:191,r741:191,r742:191,r743:191,r744:191,r745:191,r746:191,r747:191,r748:191,r749:191,r74:24,r750:191,r751:191,r752:191,r753:191,r754:191,r755:191,r756:191,r757:191,r758:191,r759:191,r75:25,r760:191,r761:191,r762:191,r763:191,r764:191,r765:191,r766:191,r767:191,r768:191,r769:191,r76:26,r770:191,r771:191,r772:191,r773:191,r774:191,r775:191,r776:191,r777:191,r778:191,r779:191,r77:30,r780:191,r781:191,r782:191,r783:191,r784:191,r785:191,r786:191,r787:191,r788:191,r789:191,r78:30,r790:191,r791:191,r792:191,r793:191,r794:191,r795:191,r796:191,r797:191,r798:191,r799:191,r79:30,r800:191,r801:191,r802:191,r803:191,r804:191,r805:191,r806:191,r807:191,r808:191,r809:191,r80:31,r810:191,r811:191,r812:191,r813:191,r814:191,r815:191,r816:191,r817:191,r818:191,r819:191,r81:31,r820:191,r821:191,r822:191,r823:191,r824:191,r825:191,r826:191,r827:191,r828:191,r829:191,r82:31,r830:191,r831:191,r832:191,r833:191,r834:191,r835:191,r836:191,r837:191,r838:191,r839:191,r83:31,r840:191,r841:191,r842:191,r843:191,r844:191,r845:191,r846:191,r847:191,r848:191,r849:191,r84:31,r850:191,r851:191,r852:191,r853:191,r854:191,r855:191,r856:191,r857:191,r858:191,r859:191,r85:31,r860:191,r861:191,r862:191,r863:191,r864:191,r865:191,r866:191,r867:191,r868:191,r869:191,r86:31,r870:191,r871:191,r872:191,r873:191,r874:191,r875:191,r876:191,r877:191,r878:191,r879:191,r87:31,r880:191,r881:191,r882:191,r883:191,r884:191,r885:191,r886:191,r887:191,r888:191,r889:191,r88:31,r890:191,r891:191,r892:191,r893:191,r894:202,r895:207,r896:207,r897:207,r898:207,r899:207,r89:31,r900:207,r901:207,r902:207,r903:207,r904:207,r905:207,r906:207,r907:207,r908:207,r909:207,r90:31,r910:207,r911:207,r912:207,r913:207,r914:210,r915:214,r916:214,r91:31,r92:32,r93:32,r94:32,r95:32,r96:32,r97:32,r98:32,r99:32,r_10:74,r_1:[16,160,169],r_2:16,r_30:74,r_aug:68,r_f:168,r_g:168,r_i:[16,169],r_j:182,r_k:[16,132],r_n:160,r_nl:[15,81,140],r_pt:92,r_x:[150,154],r_y:[150,154],r_z:[150,154],rabatin:0,rabin:71,racah:158,rad:[33,92],rademach:[71,191],rademacher_distribut:191,radial:[81,95,140],radian:[7,38,41,42,43,45,46,47,68,92,112,113,149],radic:[3,32,33,68,160,168,184,189,190],radii:42,radioeng:35,radiu:[40,42,46,48,97,99,108,112,159,190,191,223],radius_of_converg:40,radix:35,radsimp:[3,32,183],raffael:0,rag:[68,69],ragan:0,raghav:0,raghunathan:0,rahe:0,rahil:0,rahilhastu:0,rahul02013:0,rahuldan:0,rai:[0,2,42,44,45,46,48,49,108,112],rail:33,rail_fence_ciph:33,railfenc:33,rain:0,raineszm:0,raini:191,rais:[3,13,15,21,24,32,33,34,36,38,41,42,45,47,48,49,58,59,63,65,68,69,70,71,79,113,125,154,157,160,161,162,163,164,166,168,169,172,174,180,184,186,187,188,189,190,191,194,196,199,201,203,207,208,211,220,235],raise_on_deprec:201,raise_on_error:201,raised_cosine_distribut:191,raisedcosin:191,raj454raj:0,raj:0,rajak:0,rajat:0,rajataggarwal1975:0,rajath:0,rajatthakur1997:0,rajca:0,rajeev:0,rajith:0,rajiv:0,rajivperfect007:0,rajput:0,rajs2010:0,rake:94,ralf:0,ralph:0,ramana:0,ramanujan:[36,37,71],ramp:[74,75],ramvenkat98:0,randal:167,randi:0,randint:[68,166],randmatrix:68,random:[2,17,21,23,24,30,32,33,42,45,46,57,67,68,71,123,135,159,166,172,200,201,204,207,231,235,238],random_bitstr:17,random_circuit:123,random_complex_numb:200,random_integer_partit:21,random_point:[42,45,46],random_poli:168,random_pr:23,random_stab:23,random_symbol:191,randomdomain:191,randomindexedsymbol:191,randomis:[57,198],randomli:[23,33,71,133],randommatrixsymbol:191,randomst:191,randomsymbol:191,randomvari:191,randprim:71,randtest:[33,200],rang:[2,13,15,21,22,23,24,26,28,32,33,37,38,40,46,63,68,69,71,75,81,108,139,159,163,164,165,166,168,169,174,175,181,184,187,190,191,192,195,201,207,226,229,238],range1:159,range2:159,range_i:159,range_u:159,range_v:159,range_x:159,rangl:[13,16,23,118,136,158],rango:0,ranjan:0,ranjith:0,rank:[10,15,16,17,21,23,24,26,27,28,47,61,68,149,151,160,164,166,192,195,196,235],rank_binari:27,rank_decomposit:68,rank_factor:68,rank_grai:27,rank_lexicograph:27,rank_nonlex:24,rank_trotterjohnson:24,rankcheck:68,rankdir:[172,237],rao:0,raoul:0,raoulb:0,raphael:0,raphaelmichel:0,raphson:15,rapidli:[32,36,58,179],rare:[2,32,187,191,231],rasch03:158,rasch:158,rashmi:0,rastislav:0,rat:71,rat_clear_denom:168,rate:[3,94,156,191,220,230],rather:[2,3,6,11,13,15,16,23,24,25,32,36,43,48,50,58,62,63,65,68,71,73,91,97,106,119,133,137,139,148,156,160,163,166,168,170,175,182,185,186,187,190,191,205,207,208,211,222,226,231,233,234],rathi:0,rathmann:0,rathnayak:[0,1],rathor:0,ratija:0,ratint:59,ratint_logpart:59,ratint_ratpart:59,ratio:[11,22,23,31,32,36,37,40,42,45,46,47,48,64,71,79,110,112,144,172,181,184,189],ration:[8,10,13,15,31,36,37,38,40,42,45,47,49,53,58,59,60,65,68,71,73,108,141,158,161,165,166,167,169,172,176,177,180,181,182,184,185,186,187,189,190,191,200,207,214,231,232,234,237],rationa:0,rational_algorithm:174,rational_convers:184,rational_funct:32,rational_independ:174,rational_numb:11,rational_parametr:214,rationalfield:[163,164],rationalhandl:11,rationalpred:11,rationaltool:[59,168],ratsimp:[32,183],ravi:0,ravicharan:0,ravishankar:0,raw:[2,15,32,33,72,73,133,138,163,164,168,180,184,237],rawat216:0,rawlin:210,ray2d:[45,48],ray3d:[45,46,112],ray_transfer_matrix_analysi:108,rayleigh2waist:108,rayleigh:[108,191],rayleigh_distribut:191,rayleighdistribut:191,rayman_407:0,raymond:0,raytransfermatrix:108,raza:0,rbean:0,rbl:0,rcall:[32,34],rceil:58,rcirc:43,rcode:172,rcodeprint:57,rcollect:184,reach:[71,168,187],reachabl:[182,191],reaction:[74,75],reaction_load:[74,75],read:[2,24,38,57,58,71,75,106,156,157,162,163,164,169,172,185,196,205,211,232,236,237,238],readabl:[2,6,14,60,84,168,171,172,179,181,211],reader:[2,14,16,104,160,205,236],readi:[91,163,172,187],readili:[45,68],readlin:201,readm:0,readthedoc:[2,60,208],real:[3,7,9,10,12,13,15,24,32,33,34,36,37,38,39,40,44,48,49,54,58,59,62,63,64,65,66,68,69,71,73,81,92,106,108,111,112,119,137,151,158,161,164,165,168,169,172,173,175,179,182,184,186,187,189,190,191,195,203,211,225,226,233,238,239],real_el:11,real_field:7,real_num:49,real_numb:11,real_root:[39,168,189],realel:[163,164],realelementshandl:11,realelementspred:11,realfield:[163,164],realhandl:11,realist:71,realiz:[3,18,23,34,71,95,160,161,166,191],realli:[32,44,71,94,141,163,171,173,179,181,182,184,187,202,210,226,231,233],realpred:11,reals_onli:[64,66,68,69],rear:94,rearrang:[80,87,101,102,123,187],reason:[2,15,24,30,32,36,40,58,60,66,68,87,88,92,94,97,100,103,110,144,153,157,163,166,167,169,172,180,182,184,187,189,190,199,205,207,208,229,230,233,234,235],reassembl:168,reassign:92,rebuild:[32,168,234],rebuilt:234,recal:[68,166,182,231,233,234,239],recalcul:[87,168],recast:[58,184,189,190],reccur:191,receiv:[0,3,32,33,71,85,134,195],recent:[3,9,10,15,16,24,32,33,36,38,40,42,59,62,63,64,65,66,68,69,70,158,160,163,164,166,168,171,179,180,187,189,190,199,202,204,207,208,225,231,235],recherch:169,recip:[172,207],reciph:33,reciproc:[68,191,238],reciprocal_distribut:191,recogn:[3,32,33,37,47,74,80,161,164,171,180,181,189,195,231],recognis:[58,163,182,184],recommend:[3,5,14,15,32,33,36,63,84,101,106,133,149,156,161,162,163,164,169,185,187,189,190,195,199,217,218,236,239],recomput:[28,168],reconnect:15,reconstruct:[33,68,166,234],reconstuct:166,record:[26,32,201],recov:[33,40,59,144,166,168,185,187],recreat:32,rectangl:[42,43,45,47,48,159,168],rectangular:[63,68,180,190,217],rectum:42,recur:32,recurr:[31,37,54,57,68,178,184,187,191,209],recurrence_memo:209,recurs:[3,13,32,37,58,59,62,63,71,94,159,166,168,169,172,173,177,179,184,189,190,194,201,205,207,225,232,238],red:[0,159],red_groebn:166,reddi:0,redefin:[24,32,101,103,161,208],redfern:0,redhat:0,redistribut:[0,1,168],reduc:[2,3,8,10,12,16,28,32,33,35,37,38,40,47,48,58,59,68,71,80,103,121,139,160,162,163,164,165,166,167,168,169,173,178,180,181,182,184,185,186,187,188,189,190,191,200,207,235],reduce_abs_inequ:186,reduce_el:160,reduce_inequ:186,reduce_rational_inequ:186,reduced_expr:[173,184],reduced_toti:[33,71],reduct:[16,68,88,166,183,185],reduction_formula:181,redund:[23,30,62,68,203],reev:24,reevalu:231,reexpress:[149,218],ref:[23,38,68,106,177,191,235],ref_fram:91,refactor:[187,194,205],refer:[3,4,5,9,10,11,13,15,17,20,21,23,24,25,26,30,33,35,37,38,40,42,47,48,49,52,54,60,61,62,67,72,74,80,82,83,85,87,89,91,92,94,100,101,104,106,107,108,109,110,112,116,118,120,121,122,125,127,128,136,137,139,143,148,149,150,151,152,154,156,163,165,169,172,174,175,177,180,183,184,187,188,189,191,196,205,206,207,208,210,214,217,218,222,226,231,235,238],referenc:[4,17,21,71,91,94,136],reference_fram:[86,149],reference_quant:146,referencefram:[2,82,85,86,87,89,92,94,95,97,98,99,101,102,103,104,106,107,150,151,152,153,154,155,156],refin:[8,10,32,63,160,164,168,184,203],refine_ab:12,refine_arg:12,refine_atan2:12,refine_im:12,refine_matrixel:12,refine_pow:12,refine_r:12,refine_root:[164,168],refine_sign:12,refinementfail:166,reflect:[17,20,24,32,42,43,48,61,108,111,112,149],reflected_port:111,reflected_pow:111,reflective_filt:111,reflex:45,reform:45,reformat:135,refract:[108,110,112,113],refraction_angl:112,refractive_index:110,refus:238,reg_point:214,regard:[16,33,40,60,107,139,160,161,174,189,190],regardless:[2,24,32,59,71,166,180,184,207,217,222,238],regent:0,regg:158,regge58:158,regge59:158,region:[13,40,49,59,110,159,180,187,190,191,214,216,223],regist:[8,9,10,33,135],register_handl:8,register_mani:[9,10],registri:32,regular:[3,16,20,33,36,40,48,54,55,59,71,92,133,163,169,187,196,201,237,238],regular_point:214,regularpolygon:[2,43,44,48,159],reha:0,reidel:174,reidemeister_present:16,reimport:3,reintroduc:28,reject:[32,71,185],rel:[2,14,15,22,23,24,25,29,30,31,33,36,43,58,71,89,103,104,111,138,149,152,156,157,160,162,163,166,180,182,186,189,191,201,207,217,218,222,233],rela:160,relat:[0,2,8,10,11,13,16,17,22,23,30,34,37,38,39,48,54,57,58,59,62,63,68,71,83,95,97,100,106,108,113,121,123,149,152,155,156,158,159,160,166,168,169,171,172,176,178,179,182,184,185,186,187,189,190,191,207,221,238],relation_dict:34,relation_with_other_funct:40,relationship:[3,15,32,37,39,59,71,123,149,154,157,163,189],relative_ord:[22,23],relativist:81,relator_bas:16,relax:[68,73],relb:160,releas:[2,32,63,73,103,159,195,201,208,234],relev:[2,15,30,45,60,61,87,89,94,144,153,157,163,182,187,188,196,201,221],reli:[3,15,68,72,77,166,171,172,179,184,190,204,208,235],reliabl:[13,32,187,199,230],rels_h:23,rels_k:23,reltol:15,reluga:0,rem:[163,164,166,168],rem_z:168,remain:[9,10,23,24,26,28,32,33,58,63,71,73,80,92,138,154,156,157,168,169,178,181,182,187,188,191,196,205,208,217,222,229,231,233,234,235],remaind:[3,31,32,33,71,161,163,164,167,168,187],remainder_modulus_pair:71,remainin:166,remark:[8,10,166,171,182,187],reme:0,remedi:58,rememb:[2,3,62,68,80,84,106,156,157,172,184,189,192,208,234,238],remov:[8,9,23,26,30,32,36,38,47,48,58,62,68,71,74,97,99,103,123,139,164,166,168,170,171,172,184,185,187,189,190,192,202,203,207,208,229,238],remove_handl:8,remove_load:74,remove_tru:62,removeo:[32,106,172,230],ren:15,renam:[15,59,190],renato:0,render:[2,15,60,153,159,172,237],render_as_modul:15,render_as_source_fil:15,renumb:187,reorder:[24,31,139,168,187,191,207],reorder_limit:31,rep1:[167,181],rep:[23,28,32,123,160,162,163,164,167,168,181,184,210],rep_expect:134,rep_innerproduct:134,repeat:[3,23,26,31,32,38,40,59,61,63,68,71,73,123,125,139,159,160,161,166,168,172,178,191,194,195,202,204,207,238],repeated_decim:73,repeatedli:[71,80,202],repetit:[196,207],rephras:230,repl:196,repl_dict:32,replac:[2,3,13,15,23,31,32,33,36,37,38,40,42,46,59,62,63,64,68,71,72,84,86,106,128,134,149,160,164,166,168,169,173,179,181,182,184,187,189,190,196,207,208,210,229,236],replace_non:134,replace_with_arrai:196,replacement_dict:196,replaceoptim:15,replic:94,repo:[0,92],report:[6,13,23,45,63,71,169,180,190,201,235,239],report_:201,report_cdiff:201,report_ndiff:201,report_only_first_failur:201,report_udiff:201,reportedli:33,repositori:[2,5],repr:[15,59,133,163,172,201,234,237],repres:[3,7,9,11,13,14,15,16,17,21,22,23,24,25,27,28,31,32,33,34,37,38,39,40,42,43,45,47,48,49,54,55,57,59,61,62,63,65,68,69,71,73,74,75,77,79,82,85,87,89,91,92,94,95,98,100,101,102,103,104,106,108,110,111,113,125,126,128,132,133,136,137,139,141,144,145,146,147,148,149,152,153,154,156,157,158,159,160,161,162,164,165,166,168,170,172,174,175,178,179,180,182,184,185,187,189,190,191,194,195,196,203,205,207,208,214,216,220,222,225,230,231,233,234,238,239],represantit:160,represent:[7,14,15,16,23,26,32,33,40,44,52,54,56,58,59,61,62,63,65,69,70,71,77,83,84,85,91,100,103,104,108,128,133,134,136,137,139,141,148,153,154,156,159,160,162,164,165,166,168,169,170,171,172,174,182,184,185,187,190,191,195,196,214,216,223,230,231,234],reprifi:172,reproduc:[0,168,201,238],reprprint:172,request:[2,5,13,32,36,48,58,71,92,139,166,168,194,202],requir:[1,2,3,5,15,23,32,33,35,36,39,40,42,43,46,49,51,62,68,70,71,72,73,74,84,85,87,89,91,92,94,95,104,113,136,148,149,151,159,160,163,164,166,169,172,175,181,182,185,187,189,190,191,194,201,202,203,204,207,208,216,217,218,235,236],requisit:104,rersiv:164,rerun:[168,201],res:[13,15,23,58,160,166,182],res_:182,resano:0,research:[0,24,169,184,226],researchg:[167,191],resembl:[34,40,59,195],reserv:[0,92,196,203,235],reset:[23,25,159,166,168,199,201,204],reshap:[15,63,92,106,192,207],resid:2,residu:[28,33,71,166,176,182],residue_ntheori:71,residue_theorem:179,residuos:33,resist:[42,48,74,75,181],resiz:[23,24,63,65],resolut:[9,10,185],resolv:[32,181,184],resourc:[2,68,167,187,202,211],resp:[161,187],respect:[2,3,8,10,11,13,14,15,16,22,23,24,27,28,30,31,32,34,38,40,42,44,48,49,54,55,58,59,63,65,68,71,74,75,79,86,89,95,102,104,106,113,128,141,142,143,148,149,152,154,157,158,159,160,163,166,168,169,172,174,175,178,180,184,187,188,189,190,191,192,195,196,200,201,203,214,215,216,217,218,219,220,221,222,230,238],respond:32,respons:[31,32,79,92,159,203],rest:[58,60,62,66,75,81,92,95,100,144,160,163,191,207,231,236,238],restor:[3,163,184],restrict:[15,21,32,33,40,68,74,75,139,160,163,169,186],restrict_codomain:160,restrict_domain:160,restructur:2,restructuredtext:2,result:[2,3,7,8,9,10,11,13,14,15,22,23,24,28,31,32,33,34,36,38,40,44,49,50,54,56,58,59,61,62,63,68,70,71,72,73,74,79,80,84,85,86,88,92,95,100,103,106,124,131,133,134,136,138,139,141,142,144,148,149,157,159,160,163,164,165,166,167,168,169,170,172,174,179,180,181,182,184,185,186,187,188,189,190,191,192,194,195,200,201,202,203,205,207,208,210,214,216,218,225,226,231,233,234,235,238],result_5397460570204848505:[15,203],result_dom:163,result_sympi:163,result_var:[15,203],result_vari:203,ret:68,retain:[0,24,32,40,59,73,168,173,181,184],retard:111,rethink:119,retract:168,retri:[59,71],retriev:[30,63,168,184,196,225],return_expr:73,return_typ:15,returnvalu:203,reurn:38,reus:[3,15,139,233],reveal:[15,71,190,234],revers:[2,17,21,24,31,32,33,38,59,60,68,71,138,149,153,160,166,168,169,172,173,180,184,187,207,238],reverse_ord:31,reversedgradedlexord:168,reversedsign:32,revert:[164,168],review:[2,105],revis:189,revisit:[98,156],rewrit:[4,31,32,37,38,40,57,58,59,62,74,79,136,168,179,180,181,184,187,188,189,190,191,233,235],rewrite_complex:59,rewriterul:59,rewritten:[32,37,38,40,59,92,136,179,184,187,189,207,238],rfloor:[38,164,190,191],rfunction_format:172,rfunction_str:172,rgoel1999:0,rgs:21,rgs_enum:21,rgs_gener:21,rgs_rank:21,rgs_unrank:21,rhea:0,rheaparekh12:0,rho:[3,34,58,68,71,133,172,191,196,223],rhs:[15,22,24,32,63,64,68,69,87,92,97,98,99,162,170,172,187,189,190,219],rhs_x:92,riccardo:0,riccati:187,riccatispeci:187,ricci:34,rice:191,rich:[0,106,184],richard:[0,1,71],richardon:163,richardson:[36,179,190],richer:158,richierichrawr:0,rick:0,riemann:[34,37,38,39,58,160,184,196],riemann_cycl:196,riemann_cyclic_replac:196,riemann_sum:59,rieselprim:71,right:[0,2,3,13,15,16,23,24,28,32,33,35,37,38,40,48,49,57,58,59,63,68,70,71,73,74,75,87,91,92,103,104,106,107,111,118,123,125,127,128,133,136,139,149,154,157,158,159,160,169,170,172,174,175,179,180,182,187,188,190,191,201,203,205,207,220,226,230,233,235,236,238],right_hand_sid:91,right_open:180,rightarrow:[14,24,33,37,38,40,55,58,59,63,179,190],rightmost:139,rigibodi:106,rigid:[75,82,85,87,89,92,94,100,106,149,156],rigidbodi:[82,85,87,91,94,97,98,99,100,104,106],rigidli:148,rigor:[40,157,203],rim:180,rimi:0,rimibi:0,ring:[35,55,68,156,161,165,166,168,169,170,171,172,207],ring_seri:169,rioboo:59,rioux:0,risc:[54,214],risc_1355:214,risc_2244:54,risch:[59,230],risch_integr:59,rise:[31,37,40,158,184,187,191,217],riseup:0,rishabh:0,rishabhda:0,rishabhdixit11:0,rishabhmadan96:0,rishat:0,rishav:0,risingfactori:[31,39,40,172,174],risubaba:0,risubhjain1010:0,rit:0,ritesh99rakesh:0,ritesh:0,ritu:0,riturajsingh878:0,rivista:144,riyan:0,riyandhiman14:0,riyaz:0,riyuzakiiitk:0,rizgar:0,rjlasota:0,rk4:54,rkgate:132,rl1:181,rl2:181,rlee:0,rleon:0,rm4:33,rmaheshwari05:0,rms:15,rmul:24,rmul_with_af:24,rmultipli:63,roach1996:182,roach1997:182,roach:[58,182],rob:0,robert:[0,1],roberto:0,robertson:185,robin:0,robot:100,robust:[3,29,32,36,165,184,187],roch:187,rocklin:[0,1],rod:156,rodlug:0,rodrigo:0,roelf:0,rohan:0,rohit:0,rohitjain3241:0,rohitx007:0,roken:210,roland:0,role:[38,170],roll:[93,94,100,156,191],roller:[74,75],rols121:0,rom:0,roman:0,ronan:0,room:160,root1:61,root2:61,root:[3,13,15,31,32,33,39,40,54,55,56,58,59,61,64,68,69,71,106,110,144,158,160,161,164,165,169,171,172,182,183,187,189,190,191,201,205,207,233,235,237,239],root_not:172,root_of_un:38,root_spac:61,root_system:61,rootof:[38,168],rootoftool:[38,68,168],rootsum:[59,168,174],rootsystem:61,rop:32,ropen:[13,38,180,191],rose:23,rosen:71,ross:0,rot13:33,rot90:63,rot:[2,48,136],rot_axis1:68,rot_axis2:68,rot_axis3:68,rot_ord:[149,152,215],rot_typ:[149,152,154],rotat:[7,20,23,25,32,41,42,43,45,47,48,63,68,74,75,94,97,99,104,107,123,136,149,152,154,156,157,158,159,207,214,215,218,220,222],rotate_left:207,rotate_point:7,rotate_right:207,rotating_reference_fram:151,rotation_matrix:[214,215,218],rotation_ord:[149,214,215],rou:1,roucka:0,rouco:0,rough:[100,144],roughli:[32,33,72,93,187,208],round:[13,15,32,36,37,38,112,168,179,181,191,200],round_trip:33,roundfunct:39,roundoff:229,roundrobin:207,routin:[15,21,31,32,33,34,58,62,63,68,69,71,111,139,162,166,168,171,172,173,184,185,187,188,189,190,200,202,206,207,220],row1:68,row2:68,row:[11,14,15,16,21,24,37,63,64,65,68,69,70,71,91,92,94,104,106,107,134,149,157,162,172,182,190,191,195,208,214,215],row_del:[63,68,235],row_insert:[63,69,235],row_join:[63,68,69,94],row_list:69,row_matrix:106,row_op:[63,64,69],row_structure_symbolic_choleski:69,row_swap:[63,64,68,69],rowend:68,rowmatrix:106,rowsep:68,rowslist:[63,162],rowspac:68,rowstart:68,royal:105,rpent:43,rpi:0,rpisarev:0,rpm:2,rpmuller:0,rr100:163,rref:[68,162],rref_matrix:[68,162],rref_pivot:[68,162],rrw:35,rs_:169,rs_asin:169,rs_atan:169,rs_atanh:169,rs_co:169,rs_compose_add:169,rs_cos_sin:169,rs_cosh:169,rs_cot:169,rs_diff:169,rs_exp:169,rs_fun:169,rs_hadamard_exp:169,rs_integr:169,rs_is_puiseux:169,rs_lambertw:169,rs_log:169,rs_mul:169,rs_newton:169,rs_nth_root:169,rs_pow:169,rs_puiseux2:169,rs_puiseux:169,rs_seri:165,rs_series_from_list:169,rs_series_invers:169,rs_series_revers:169,rs_sin:169,rs_sinh:169,rs_squar:169,rs_sub:169,rs_swap:191,rs_tan:169,rs_tanh:169,rs_trunc:169,rsa:33,rsa_:33,rsa_private_kei:33,rsa_public_kei:33,rset:180,rsname:203,rsolv:189,rsolve_hyp:[68,189],rsolve_hypergeometr:174,rsolve_poli:189,rsolve_ratio:189,rsr:0,rst:[2,16,187,201],rtol:15,rubi:0,rubik:23,rubric:[31,32],rudimentari:166,rudr:0,rudrtiwari:0,rufat:0,ruffini:68,rufflewind:0,ruffwind:0,rui:0,ruina:105,rule:[2,15,23,24,31,32,40,55,58,59,62,63,68,74,92,120,123,144,149,154,157,158,169,171,172,173,178,182,183,184,187,196,208,220,221,226,231,234],run:[0,2,3,4,16,23,24,26,32,33,57,58,68,72,73,87,94,106,139,153,159,160,172,182,184,187,188,189,198,202,204,205,207,208,226,231,236,237,238],run_all_test:201,run_in_subprocess_with_hash_random:201,rung:[13,54],runner:201,runtest:201,runtim:[15,32,57,88],runtimeerror:[3,13,180,190,207],runtimewarn:208,rupesh:0,rupeshharod:0,rushyam:0,rushyamsonu:0,rusin:185,ruskei:24,ruslan:0,russian:2,rust:[57,203],rust_cod:[15,172],rustcodegen:203,rustcodeprint:172,rutger:191,rvert:58,rwnobrega:0,ryan:0,ryanlist:0,rybalka:0,rykov:0,rykovd:0,ryser:68,s0020:24,s0025:[13,71],s0747717183710539:167,s208:17,s62:13,s_0:28,s_1:16,s_2:16,s_aug:68,s_field:34,s_hexagon_theorem:44,s_i:[16,28,59,61],s_in:108,s_j:[22,61,166],s_k:16,s_n:[31,168],s_out:108,s_postul:71,s_solution_of_systems_of_geodetic_polynomial_equ:167,s_transvers:28,s_x:[42,48],s_y:[42,48],saanidhya:0,saanidhyavat:0,saboo96:0,saboo:[0,1],sachdeva:0,sachin:0,sachinagarwal0499:0,saddl:159,sadeq:0,safe:[71,163,168,189,194,230],safeguard:177,safeti:[16,24,66,69],safiya03:0,safiyanesar:0,sagar:0,sagarbharadwaj50:0,sage:[32,71,158,201,233],saha:0,sahabandu:0,sahai:0,sahil:0,sahilshekhawat01:0,sahu:0,sai:[0,2,3,16,22,31,32,33,61,84,87,92,100,106,144,156,157,160,161,166,171,172,179,182,185,187,189,190,191,208,226,229,233,238],said:[1,11,15,71,144,154,156,157,161,187,190,191,214,220],saini:0,saint:0,sajkoooo:0,sake:[37,185],saket:0,saketh:0,saketkumar1202:0,sakirul:0,sakki:207,salil:0,salilvishnukapur:0,salmista:0,saloni:0,salvi:[167,169],sam:[0,191],samba:0,sambuddha:0,same:[2,3,8,9,10,11,13,14,15,21,22,23,24,28,31,32,33,34,37,40,42,45,46,47,48,49,54,55,58,59,61,62,63,65,68,69,71,74,75,79,80,84,85,90,92,95,97,98,103,104,123,125,133,136,137,139,141,142,144,146,147,148,149,151,153,154,156,157,159,160,161,162,163,164,166,168,169,170,171,172,173,179,180,181,182,184,185,187,188,189,190,191,195,196,201,203,204,205,207,208,210,214,215,217,218,222,224,226,230,231,234,235,237,238],samesh:0,sammygam:0,samnan:0,samp:191,samp_list:191,sampad:0,sampadsaha5:0,sampl:[4,23,35,123,159,172,191,226,230,233],sample_it:191,sampling_:191,sampling_dens:191,sampling_p:191,samseth:0,samtheman132:0,samuel:0,samuelson:68,samyak:0,sandeep:0,sander:0,sandrock:0,sanit:32,sanket:0,sanketagarw:0,sanya:0,sapta:0,saptarshi:0,saraogi:0,sarda:0,saroj:0,sarswat:0,sartaj:[0,1],sarwar98:0,sarwar:0,sas:48,sat:9,satisfi:[2,10,11,13,16,20,23,28,32,33,37,40,42,55,58,61,62,68,71,88,103,123,128,160,161,166,168,172,178,179,180,185,187,188,189,190,191,196,234,238],satur:160,satya:0,saurabh:0,sava:0,save:[2,13,32,68,71,159,171,189,205,236],savranski:0,saw:[70,163,238],sawant:0,sawtooth:175,saxena:167,sayakkundu1997:0,sayan98:0,sayan:0,sayandip:0,sayandiph4:0,sbt4104:0,sca:166,scalar:[32,34,47,61,63,64,65,68,69,72,82,89,92,138,149,150,151,155,157,160,166,172,187,192,203,208,214,215,216,217,218,219,221,223],scalar_field:[150,154,214,216,220],scalar_map:214,scalar_multipli:69,scalar_potenti:[154,220,221],scalar_potential_differ:[154,220,221],scale:[41,42,43,47,48,49,60,74,119,140,142,144,146,147,153,157,159,175,191,220,222],scale_factor:146,scale_matrix:191,scale_matrix_1:191,scale_matrix_2:191,scalex:175,scan:32,scarc:166,scenario:[71,191],scene:[92,184,231],schaluck:0,schemat:[139,144],schembor:0,scheme:[2,24,31,36,158,159,166,168,195],schiehlen:105,schintgen:0,schirm:105,schloemer:0,schmidt:[0,68],school:[33,181],schorn:185,schost:169,schreier:[23,28,30],schreier_sim:[23,29,30],schreier_sims_increment:[23,30],schreier_sims_random:[23,30],schreier_vector:23,schubert:0,schur:65,schur_compl:65,schwab:105,schwarz:0,schymanski:0,sci:158,scienc:[0,1,24,58,68,105,106,160,167,182,230],sciencedirect:167,scientif:[1,5,32,106],scilifelab:0,scipi:[15,32,40,84,106,133,172,191,202,208,229,236],scopatz:[0,1],scope:[2,15,100,103,199,238],scott:[0,23],scratch:144,screen:[60,153,157,201,236,237],screenshot:159,scribu:0,script:[2,6,40,153,202],sculptur:33,sdb1323:0,sdm:[165,166],sdm_:166,sdm_add:166,sdm_deg:166,sdm_ecart:166,sdm_from_dict:166,sdm_from_vector:166,sdm_groebner:166,sdm_lc:166,sdm_lm:166,sdm_lt:166,sdm_monomial_deg:166,sdm_monomial_divid:166,sdm_monomial_mul:166,sdm_mul_term:166,sdm_nf_mora:166,sdm_spoli:166,sdm_to_dict:166,sdm_to_vector:166,sdm_zero:166,seadavi:0,seamlessli:122,sean:[0,1],seange727:0,sear:0,search:[2,13,23,24,28,30,32,38,57,68,71,92,160,168,181,182,184,188,191,202],search_funct:124,sebastian:0,sec:[39,59,172,181,238],secant:[38,168],sech:[39,172],second:[2,3,6,10,13,15,23,24,27,28,29,30,31,32,33,34,36,37,38,40,42,45,46,48,59,68,71,72,74,75,79,80,82,84,87,92,95,97,99,100,102,104,110,112,113,116,120,125,128,133,134,136,137,142,144,146,148,149,150,156,157,159,162,163,166,167,168,172,174,182,184,185,187,189,190,191,192,207,208,214,216,217,218,226,229,233,234,235],second_mo:74,second_moment_of_area:[42,48],second_reference_fram:149,second_system:214,secondarili:15,secondli:182,secondqu:139,secret:33,secretli:33,section:[7,14,16,23,24,31,32,33,35,40,42,48,58,63,64,68,74,75,92,104,142,144,148,154,157,160,163,166,172,175,179,182,187,196,205,207,217,218,219,220,229,230,231,233,234,236,237,238,239],section_modulu:[42,48],see:[1,3,8,9,10,11,13,14,15,20,23,24,25,28,31,33,34,37,38,39,40,44,48,49,53,54,55,56,58,59,60,61,62,63,65,68,69,71,72,73,84,87,96,98,101,103,104,108,111,114,115,124,128,129,133,134,135,136,138,139,142,144,149,153,156,158,159,160,161,163,164,166,168,169,171,172,174,175,178,179,180,181,182,184,185,187,188,189,190,191,195,196,201,202,203,205,207,208,209,214,215,223,224,225,226,229,230,231,233,234,235,236,237,238,239],seed:[21,23,33,42,45,46,68,71,166,191,201],seehuhn:0,seek:189,seeker1995:0,seem:[56,58,92,144,160,184,187,238],seemingli:[31,190],seen:[2,24,58,59,91,144,156,160,163,166,168,187,189,190,207,217,224,226,231,234,237],segev208:0,segev:0,seghet:0,segment2d:[44,45,48,49],segment3d:[45,46],segment:[2,23,42,44,45,46,47,48,49,156,159,187,201],seitz:0,seldom:71,select:[1,2,15,17,23,24,31,32,33,41,46,60,63,71,86,104,144,153,163,164,166,167,168,172,181,184,189],selector:[31,63,184],self:[2,7,9,10,13,14,15,23,24,29,31,32,34,38,39,41,42,43,45,46,47,48,59,63,64,68,69,71,94,134,139,149,151,152,160,162,164,166,168,172,174,179,180,196,214],selfridg:71,sell:233,semant:65,semanticscholar:71,semat:172,semi:[42,45,71],semicircl:191,semicolon:172,semidefinit:68,semilatus_rectum:42,semilatusrectum:42,semisimpl:61,semispher:[214,223],semml:0,send:[0,23,32,33,38,71,160,187,189],sender:33,sens:[11,13,14,32,34,37,40,58,87,94,144,149,157,160,166,181,182,184,190,191,202,203,222,226,238],sensibl:[58,59],sensit:[32,106,159,166,184,201],sent:[32,59,184],sentenc:62,sep:[33,172,188,201],separ:[2,3,14,20,32,33,38,40,58,59,68,80,91,103,104,107,112,136,139,148,149,159,161,166,168,169,172,181,184,185,188,190,194,199,201,205,208,210,214,226,231],separable_integr:187,separable_reduced_integr:187,separate_integr:59,separatevar:[32,183,187],septemb:[24,205],seq:[23,32,35,68,164,166,168,178,189,207],seqadd:178,seqbas:178,seqformula:178,seqmul:178,seqper:178,sequenc:[2,3,13,15,17,19,22,23,24,28,30,31,32,33,35,37,40,42,45,46,47,48,49,52,56,63,65,68,70,71,106,112,138,139,164,167,168,172,174,176,179,181,182,184,185,187,188,190,191,196,199,202,203,207,209,210],sequence_term:31,sequenti:[14,17,33,38,214,215],serendipit:181,seress:23,sergei:[0,1],sergiu:[0,1],seri:[2,4,13,14,15,16,22,23,31,32,34,36,37,38,40,52,55,56,57,58,61,71,77,79,92,97,99,106,152,156,165,166,172,177,178,182,187,190,226,232],series_approx2:15,series_approx3:15,series_approx8:15,seriesapprox:15,seriessolut:187,serv:[2,9,10,15,29,32,39,55,187,188,210,226,236],servic:[0,15,191],seshagiri:0,seshagiriprabhu:0,session:[6,15,32,44,57,59,153,157,163,231,237],set:[2,3,4,6,9,10,13,14,15,16,20,21,23,24,25,28,29,30,31,32,33,34,35,36,37,38,40,41,45,47,49,50,51,54,55,57,58,59,60,61,62,63,64,65,66,68,69,71,73,74,75,84,87,91,92,94,95,99,101,102,103,106,107,123,129,134,139,141,144,146,147,148,149,151,152,153,154,156,159,160,161,163,166,168,171,172,173,174,179,181,182,184,185,186,187,188,189,191,194,195,196,201,202,203,204,207,208,214,216,218,226,227,229,232,234,236,238],set_acc:[106,152,156],set_ang_acc:[106,149],set_ang_vel:[89,92,94,97,98,103,104,106,107,149,151,152,156],set_comm:196,set_domain:168,set_global_relative_scale_factor:146,set_global_set:172,set_h:190,set_metr:196,set_modulu:168,set_po:[92,152,156],set_quantity_dimens:142,set_quantity_scale_factor:142,set_vel:[87,89,92,94,95,97,98,99,101,102,103,104,106,107,152,156],seth:0,sethi:0,sethtroisi:0,setminu:[40,58],setter:[92,106],setup:[15,32,95,108,149,166,168,170,171,182,201,202,204,213,237],setupegg:5,sevaad:0,seven:172,sever:[0,2,5,15,18,23,24,31,32,36,37,39,40,44,58,59,71,86,144,146,159,161,163,166,171,172,173,179,180,187,191,201,203,212,225,231,235,237],sexi:[9,10],sexy_prim:[9,10],sexyprim:[9,10],sexyprimepred:[9,10],sfield:[164,219],sfoo:0,sfoohei:0,sfu:[40,59],sgen:28,sgs:196,sgtmook314:0,sha1:203,sha:210,shadow:25,shah:0,shai:0,shaid:0,shall:[0,23,58,92,106,179,182,226,234],shallow:[164,179],shank:179,shanmugam:0,shaomoron:0,shape:[2,15,48,63,65,68,69,70,91,92,149,159,160,162,172,175,182,191,192,194,195,196,208,237],shapeerror:[63,65,68,162],share:[33,71,164,172,191,203],sharma:0,shashank:0,shashidhara:0,she:[2,190],shea:[167,168],shear:[74,75],shear_forc:[74,75],shear_modulu:74,shear_stress:74,sheet:[40,181],shehana:0,shekhar:0,shekharrajak:0,shekhawat:0,shell:[2,3,60,106,171,234,236],shenoi:0,sherjil:0,sherjilozair:0,shi:[0,40,58,172,182],shier:191,shierd:191,shift:[18,23,24,26,33,40,43,47,49,62,159,164,166,168,175,182,189,191,238],shifted_gompertz_distribut:191,shiftedgompertz:191,shiftx:175,shikhar:0,shikharmakhija2:0,shikil:0,shiksha11:0,shiksharawat01:0,ship:72,shipra:0,shiroki:0,shital:0,shitalmule04:0,shivam:[0,1],shivamvat:0,shivang:0,shivangdubey8:0,shivani:0,shivanikohli:0,shlegeri:0,sho:140,shor:[82,126],short_lif:3,shortcut:[14,32,64,157,172,180,184,238],shorten:2,shorter:[32,42,84,101,148,160,164,172,203,210],shortest:[42,45,48,156,178,184,187,207],shorthand:[3,62,133,180,199],should:[2,3,6,8,10,13,14,15,16,23,24,25,26,28,31,32,33,35,36,38,40,42,43,44,45,46,47,49,54,55,56,57,58,59,60,61,62,63,65,68,71,73,74,79,84,92,94,95,101,103,104,106,107,108,119,123,127,129,131,133,134,137,139,141,142,144,145,149,153,156,157,159,160,161,162,163,164,166,168,171,172,174,175,178,179,180,181,182,184,185,187,189,190,191,194,195,199,201,202,203,204,205,207,208,210,214,217,225,229,230,231,235,236,240],shouldn:[32,169,208],shoulson:0,shoup91:167,shoup95:167,shoup:[166,167],shourabh:0,show:[2,3,15,24,31,32,36,38,39,55,58,59,68,71,74,75,84,92,96,104,106,134,138,142,144,149,156,157,159,160,163,164,166,168,172,173,175,179,180,181,182,184,185,187,189,191,192,202,203,207,208,225,226,228,231,233,235,236,237],shown:[2,21,24,31,32,36,40,58,75,84,87,89,95,101,102,104,148,149,156,157,159,163,164,168,172,187,207,217,218,236],showpost:71,shp:15,shrava:0,shridhar1999:0,shridhar:0,shrink:[43,58],shrivastava:0,shrivastavaavi123:0,shruti2395:0,shruti:0,shrutishrm512:0,shu:0,shubh:0,shubham:0,shubhamabhang77:0,shuffl:[24,68,238],shukla393:0,shukla:0,shut:[32,168],siam:[158,207],sibx0afl3q:190,siddhanathan:0,siddhant:0,side:[3,13,15,23,24,32,44,48,59,68,71,74,87,91,103,104,107,127,128,144,149,158,160,166,170,172,188,190,191,194,201,203,223,226,230],sidhant:0,sidhantnagpal97:0,sidharth:0,sidharthmundhra16:0,sidhu:0,sidoti:0,siefken:0,siefkenj:0,siev:[23,71],sift:[23,30,207],sigma3:114,sigma:[3,24,55,58,63,68,172,175,191],sigma_:191,sigma_approxim:175,sigma_i:[83,191],sigma_k:71,sigma_not:31,sigma_x:191,sign:[2,4,7,12,15,28,32,33,37,39,42,48,58,59,68,71,74,75,94,112,124,154,156,158,166,172,177,179,184,185,189,207,220,223,232],signal:[71,106,166,234],signallib:15,signatur:[2,9,10,24,32,68,203,204,207],signed_permut:[185,207],signedinttyp:15,signifi:[23,32,168,191],signific:[3,32,33,36,59,68,84,104,133,163,190,208,234],significantli:[15,36,84,101,164,174,202,205],signsimp:[98,184],signum:172,sigsam:59,sik:0,sikora:0,silent:[36,71,202],silver:81,sim:[23,28,30,58],simcha:0,similar:[3,24,31,32,33,36,37,38,40,43,48,49,53,62,68,92,94,95,103,104,137,154,156,157,161,163,164,166,169,179,181,182,184,187,189,192,196,199,202,205,214,215,217,218,222,226,229,233,234,235,236,238],similarli:[28,32,33,40,44,68,74,75,87,104,159,160,163,169,179,180,182,187,201,208,218,219,235],simmon:187,simon:191,simp:[58,94,149],simpfunc:68,simpl:[2,3,5,14,15,23,31,32,36,40,44,48,50,58,59,61,68,71,72,74,75,80,84,85,87,89,91,94,95,97,99,100,103,107,113,127,128,136,137,138,149,156,157,163,164,165,168,169,172,174,179,181,182,184,185,187,190,196,202,203,207,211,213,214,215,216,220,226,229,231,234,235,238],simple_root:61,simpled:174,simpledomain:164,simplefilt:199,simpler:[32,36,40,56,58,97,157,166,181,182,184,187,189,190,238],simplest:[13,14,62,68,71,72,158,159,169,173,181,184,187,230,238],simpli:[2,11,16,24,31,32,34,38,42,63,65,68,71,73,74,80,85,92,94,103,129,134,144,154,157,163,169,181,182,187,190,207,208,220],simplic:[182,187,189],simplif:[3,4,8,10,12,13,15,32,34,37,38,39,57,58,63,68,73,86,92,103,106,123,139,149,168,173,183,187,189,190,229,232,233],simplifc:98,simplifi:[3,4,8,10,12,13,31,32,34,36,37,38,40,44,49,54,57,58,59,62,63,64,65,68,74,80,86,88,95,97,98,99,103,110,111,118,123,138,139,146,149,154,160,169,171,173,178,179,180,181,182,185,187,188,189,190,191,217,219,226,229,231,232,233,234,235],simplified_pair:62,simplify_auxiliary_eq:98,simplify_cg:123,simplify_gpgp:80,simplify_index_permut:139,simplify_log:62,simprot:[92,106],simsa:0,simul:[32,92,106,171],simula:0,simultan:[3,32,45,63,71,159,181],sin:[2,3,5,7,13,15,31,32,34,36,37,39,40,41,42,46,50,51,54,55,56,58,59,60,63,68,72,73,81,86,91,92,94,97,98,99,103,106,111,113,137,149,151,152,154,156,157,158,159,161,163,168,169,171,172,173,174,175,179,180,181,182,184,186,187,189,190,192,200,203,208,214,215,216,217,218,223,229,230,231,233,234,236,238,239],sin_co:208,sin_cos_numpi:208,sin_cos_sympi:208,sin_sol:180,sinc:[3,8,13,15,16,23,24,25,28,29,30,32,33,35,37,39,40,41,42,44,48,50,56,58,61,62,63,68,71,94,104,106,115,139,140,144,148,154,157,160,161,163,164,166,168,172,175,180,181,182,184,185,187,189,190,191,196,205,207,216,217,219,220,222,225,226,229,233,235,237,238,239],sinc_funct:38,sine:[2,32,38,40,58,59,113,169,175,181,229],sine_transform:59,sinetransform:59,sing:68,singh081997:0,singh:[0,1],singhsartaj94:0,singl:[6,14,15,17,23,32,33,37,38,40,45,46,48,49,50,58,59,62,63,68,70,73,80,86,95,119,123,125,133,136,139,146,149,152,159,160,163,164,166,168,172,173,174,181,182,184,185,187,188,189,190,191,192,195,201,203,205,207,208,210,226,230,231,234,235,239],singlecontinuouspspac:191,singledomain:191,singlefinitepspac:191,singlepspac:191,singleton:[24,57,62,176,190,234],singletonregistri:32,singli:71,singular:[10,15,32,36,38,39,54,55,57,58,59,68,69,74,76,82,103,149,160,167,179,187,190,214,230],singular_point:214,singular_valu:68,singular_value_decomposit:68,singularhandl:11,singularit:[59,103],singularity_funct:40,singularityfunct:[40,59,74],singularityintegr:59,singularmatrix:11,singularpred:11,sinh:[13,32,36,39,40,51,58,169,172,173,182,238],sinha:0,sinhint:172,sinhintegr:172,sinint:172,sinintegr:172,sink:[154,220],siq:71,siramda:0,siratt:0,siret:167,sirjfu:0,sirjohnfranklin:0,sirnicolaf:0,siroki:0,sit:157,site:[2,71,204],situat:[36,58,157,187,189,191,199,231],six:[75,172,185,190,191],sixteenth:33,size:[15,16,17,21,23,24,25,26,27,28,32,33,35,37,60,63,65,68,69,70,71,94,101,102,103,112,134,135,153,159,162,166,172,184,185,187,191,207,226,230],sizeof:15,skellam:191,skellam_distribut:191,skew:[55,71,191],skiena:24,skip:[2,3,14,17,32,63,68,71,149,171,172,174,187,189,199,201,230,236,237],skjha832:0,skreft:0,skyciv:48,slacker404:0,slash:[172,201],slate:201,slater:[40,182],sleight:0,slice:[32,63,64,68,164,168,178,180,184,192,207],slightli:[6,15,28,71,73,94,159,160,166,168,172,182,184],slip:[94,96,98,156],slope:[42,43,45,48,74,75],slot:[28,123,192,195,196,234],slow:[28,32,36,59,72,84,94,111,148,157,163,172,173,174,175,184,187,189,190,201,202,238],slowdown:36,slower:[28,68,69,163,164,229],slowest:[59,72],slowli:[36,179],slp:30,slp_dict:23,small:[15,16,23,24,32,36,37,59,71,95,98,106,136,158,159,166,167,184,185,189,207,226,229,231,233],smaller:[15,23,24,32,33,40,48,59,65,71,101,161,163,166,168,175,181,182,189,207,229,238],smallest:[13,26,38,45,47,54,62,68,71,136,164,207],smallest_angle_between:45,smallmatrix:[172,233],smart:[86,103,179,185,187],smarter:[132,181],smetko:0,smichr:0,smit:0,smitgajjar:0,smith:[0,1],smitlunagariya:0,smoerhul:0,smooth:[32,36,71,174],smoothness_p:71,smurthi:0,sneha:0,snippet:[3,15],snr:15,snu:0,societi:[105,185],sode0401:187,sode0402:187,sode0404:187,sode0405:187,sode0406:187,softwar:[0,2,59,167,233],sognat:0,soil:160,sol:[68,185,187,188,189],sol_f:190,sol_typ:87,sol_uniqu:68,sol_vector:187,sol_vector_evalu:187,sola:187,solar:142,solar_mass:142,solb:187,soldner:40,soldnersconst:40,solenoid:[150,216,221],solid:[25,46,159,223],solidspher:223,sollist:187,soln:[68,69,190],solomon:33,solut:[2,3,15,28,32,33,38,40,42,50,54,55,56,57,59,68,69,71,77,82,84,87,92,95,100,103,108,144,148,160,166,167,168,169,170,171,180,185,186,187,188,189,226,239],solv:[2,3,15,17,28,31,32,45,57,58,59,63,64,68,69,74,76,82,87,88,92,95,97,99,100,101,103,106,142,165,166,168,169,170,171,174,184,185,186,187,188,191,226,230,232,233,235,237],solvabl:[23,185,187,190,239],solve_congru:[71,166],solve_d:174,solve_expo:190,solve_for_func:[187,188],solve_for_reaction_load:[74,75],solve_least_squar:[68,69],solve_lin_si:165,solve_linear:189,solve_linear_system:189,solve_linear_system_lu:189,solve_log:190,solve_multipli:[87,95],solve_poly_inequ:186,solve_poly_system:[161,168,189,190],solve_rational_inequ:186,solve_slope_deflect:74,solve_triangul:189,solve_undetermined_coeff:189,solve_univariate_inequ:[186,190],solvefun:188,solver:[2,4,9,40,57,68,71,91,100,106,107,162,165,184,185,188,201,232],solveset:[4,57,106,170,186,189,239],solveset_complex:190,solveset_r:190,solvifi:[186,190],some:[2,3,5,6,11,13,14,15,16,20,23,24,30,31,32,33,36,37,38,39,40,42,43,44,48,57,58,59,61,62,63,65,68,71,72,73,80,84,89,91,92,93,94,95,100,101,103,104,107,119,124,128,136,139,144,145,148,150,154,156,157,159,160,161,163,164,166,168,169,172,174,179,180,181,182,184,185,187,188,189,191,196,201,202,203,204,205,206,208,210,211,214,215,216,218,220,226,229,230,231,233,234,235,236,237,238],some_filenam:92,some_funct:204,someon:[187,205,236],someren:0,someth:[2,3,13,15,32,33,36,42,57,58,62,63,68,71,84,92,93,106,132,145,148,159,163,164,171,179,184,187,190,201,203,208,229,231,233,234,236],sometim:[2,3,14,15,32,37,40,56,58,100,103,131,139,157,160,163,172,174,179,181,185,187,189,207,229,235],somewhat:[40,59,92],somewher:[2,15],song:0,soniya:0,soniyanayak51:0,sood:0,soon:[31,32,92,144,169],sooner:189,sop:[59,62],sopform:62,sophi:0,sophist:[72,189],sort:[9,10,14,15,21,24,28,32,58,59,62,68,69,70,71,80,84,87,123,139,141,144,148,159,166,168,169,179,184,185,187,188,189,194,196,201,203,207,217,231,233,234],sort_dim:141,sort_kei:[21,32,187],sorted_class:32,sorted_compon:196,sos:185,sosmath:181,sottil:0,sought:[23,71,124,134,184,190],soumi7:0,soumi:0,soumibardhan10:0,soumya:0,sound:238,sourav:0,souravghosh2197:0,souravgl0:0,souravsingh:0,sourc:[0,1,2,5,7,8,9,10,11,12,13,14,15,17,18,20,21,23,24,25,26,27,28,29,30,31,32,33,34,35,37,38,39,40,41,42,43,45,46,47,48,49,51,53,54,55,57,58,59,60,61,62,63,64,65,66,68,69,70,71,73,74,79,80,81,83,85,86,87,88,89,91,92,106,108,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,145,146,147,149,150,151,152,153,154,158,159,160,162,163,164,166,168,169,170,172,173,174,175,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,194,195,196,197,199,200,201,202,203,204,205,206,207,208,209,210,211,213,214,215,216,220,233],source_cod:73,source_format:[15,172],sourceforg:[2,14],sousa:0,space:[0,2,3,13,14,15,32,33,34,41,42,43,45,47,48,61,68,73,74,81,82,87,88,89,108,110,113,123,126,128,134,136,143,149,152,154,157,158,159,160,162,183,190,191,201,205,214,215,217,218,219,220,222,223,231,234],space_orient:[214,215],spacecraft:105,spaceorient:[214,218,221],spack:5,spam:210,spamham:210,spammer:172,span:[2,61,68,74,75,172,235],spapanik21:0,sparapani:0,spars:[2,57,65,67,68,133,162,165,168,169,191,192,234],sparsematrix:[63,67,68,70,173,184],sparsetool:[63,70],spatial:[89,113,149,172],spcorneliu:0,speak:[68,220],spec:168,specfun:209,speci:[31,32],special:[0,2,4,6,7,24,32,33,35,36,37,39,47,50,57,58,59,63,68,106,123,128,139,154,160,163,165,166,167,172,181,182,184,187,188,189,191,201,202,203,208,217,220,222,230,232,234],specialpoli:168,specif:[0,2,23,24,32,33,34,40,44,57,59,61,63,68,85,87,91,92,100,106,108,144,157,159,160,164,166,168,171,172,173,178,184,185,187,188,189,191,196,201,202,203,207,235,238],specifi:[2,14,15,16,27,31,32,33,34,35,38,40,41,45,48,57,58,59,61,62,63,65,68,71,74,75,85,87,91,92,94,95,97,100,101,102,103,104,106,107,123,128,133,134,136,137,142,148,149,151,152,154,156,157,160,161,162,163,164,166,168,169,172,174,175,178,179,180,182,184,187,188,189,190,191,192,195,196,200,201,202,203,207,208,214,215,216,219,222,235],spectral:68,speed:[2,10,15,23,32,33,36,63,71,72,81,87,88,91,92,94,95,97,98,99,101,102,106,107,110,113,148,149,152,157,158,169,172,173,179,184,187,202,205,207,234,235],speed_con:101,speed_idx:[91,107],speed_of_light:146,speedup:[32,68,72,166,169,208],spell:187,sph_jn:40,sphere:[111,214,223],spheric:[38,39,81,158,159,168,214,217,218,233],spherical_bessel_fn:[40,168],spherical_harmon:40,sphericalbess:172,sphericalbesselj:172,sphericalharmon:40,sphericalharmonici:40,sphinx:[4,38,187,201,236],sphinx_math_dollar:2,sphinxext:2,spin:[48,81,82,94,125,126,134],spin_up:81,spinor:80,spinstat:136,spline:39,split:[15,32,33,36,58,59,73,166,170,171,172,191,196,201,207,212,234,238],split_1:32,split_list:201,split_super_sub:172,split_symbol:73,split_symbols_custom:73,splitter:111,spoli:166,spot:[68,107],spread:[108,172,191,205],spring:[71,87,92],springer:[33,59,71,167],spritel:0,spuriou:[166,189],sq2:32,sqf:[161,164,168,185],sqf_list:[161,164,168],sqf_list_includ:[164,168],sqf_norm:[164,168],sqf_part:[164,168],sqr:[164,168],sqrt2:[160,163],sqrt3:163,sqrt:[2,7,11,12,13,15,32,34,36,37,39,40,41,42,43,44,45,46,47,48,49,51,55,56,58,59,60,63,64,68,69,71,73,81,83,94,108,110,112,113,118,123,133,134,136,137,139,140,142,154,157,158,161,163,164,166,168,171,172,173,178,181,182,184,185,186,187,189,190,191,207,208,214,222,223,229,233,237,238,239],sqrt_mod:71,sqrt_mod_it:71,sqs:0,sqt:181,squar:[3,10,15,23,32,33,38,48,49,58,59,63,64,68,69,70,71,81,101,102,110,125,141,149,158,162,164,165,166,168,169,172,180,183,185,187,190,191,233],square_factor:71,square_in_unit_circl:48,square_iter:180,square_matrix:11,square_root:38,squareddistribut:191,squarefre:71,squarefree_cor:71,squarehandl:11,squarepred:11,squeez:172,srajan:0,src2:73,src3:73,src:[2,73,187,201],src_code:73,sre:166,srepr:[57,163,234],sring:[164,169,170],sriniva:0,srinivasa:0,srinivasan:0,srivastava:0,srjoglekar246:0,srvasud:0,sss:48,sstr:[31,153,172],sstrrepr:[60,153,172],sta:0,stab:23,stabil:[23,28,30,36,79,103,194],stabl:[2,32,60,68,73,79,229],stack:[16,49,63,106,162,172,205,235],stackexchang:[2,42],stackoverflow:[71,207,210],stade:58,stage:[14,31,71,179,238],stall:168,stan:0,stanconn:0,stanczakdominik:0,stand:[31,32,106,161,163,164,169],standalon:[2,106],standard:[2,3,15,32,36,38,40,55,58,59,60,61,62,66,68,71,72,73,83,116,120,149,154,160,163,164,166,172,175,180,184,185,187,190,191,203,208,211,217,222,229,231,238],standard_cartan:61,standard_transform:73,standardis:[23,163],stanford:17,stangl:0,starrett:187,start:[3,4,5,14,15,17,21,22,23,24,28,31,32,33,34,40,63,65,68,70,71,72,74,75,92,94,101,102,134,135,138,142,156,157,159,163,166,168,172,175,178,180,181,182,185,187,189,190,191,192,194,201,202,207,209,210,219,229,231,233],start_point:34,start_view:172,starter:5,startnumb:187,stat317:191,stat:[4,57],state:[0,23,30,40,71,74,81,82,87,88,91,94,95,107,111,115,116,118,119,120,122,123,124,128,131,133,134,135,136,138,139,168,172,181,182,184,191,205,226,235],state_map:129,state_spac:191,state_to_oper:129,statebas:[129,134,137],statement:[1,2,5,14,15,32,40,58,62,65,92,118,172,191,199,203,207],staticmethod:201,stationari:[13,191],stationary_distribut:191,stationary_point:13,statist:[17,33,40,191,201,233],statu:60,statweb:17,std:[172,191],stderr:15,stdin:3,stdlib:[164,201],stdout:[15,201],steep:189,steer:[94,105],stefan:0,stefano:0,stefanu:59,stefen:0,stegun:[2,40],stein:71,steinberg:0,steinhau:207,stel:0,stelio:0,stem:195,step:[2,13,15,23,27,28,31,32,33,56,57,58,59,68,71,72,87,97,100,101,106,107,141,152,157,159,163,164,166,168,172,173,174,177,180,181,182,184,185,187,189,191,195,202,207,208,230],stepan:0,steph:0,stephan:0,stephanik:0,stephen:0,steve:0,steven:0,stevenlee123:0,stewart:0,sthorat661:0,stick:[6,74],stieltj:[40,172],stieltjes_const:40,stieltjesgamma:172,stiff:[0,106],still:[2,3,5,6,14,24,31,32,33,40,44,59,63,68,92,139,157,159,160,161,166,172,179,181,182,184,187,189,190,195,201,207,220,235],stiller96:167,stiller:167,stimberg:0,stinson:24,stipend:0,stirl:[2,24,39,207],stirling_numbers_of_the_first_kind:37,stirling_numbers_of_the_second_kind:37,stoecher:0,stoke:[111,221],stokes_paramet:111,stokes_vector:111,stonybrook:0,stop:[15,16,24,32,68,71,159,178,180,187,191],stopiter:185,stopper:234,storag:[15,32,68,133,158,166],store:[3,14,15,22,23,32,54,56,65,68,71,73,87,89,91,92,104,133,139,152,156,157,159,160,163,168,169,179,182,192,194,195,203,204,205,207,218,220,224,234],stori:144,stormi:187,stoudt:0,stqq:33,str:[9,14,15,16,24,32,33,34,36,41,42,45,48,49,60,65,68,71,73,87,89,106,123,133,139,141,149,151,152,159,164,172,184,187,191,207,208,210,214,236],str_expr:229,str_printer:[60,153],strai:92,straight:[48,54,95,156,187],straightforward:[2,23,33,68,182],strang:163,strategi:[3,16,32,59,166,167,179,182,184,188],straw:0,strawman:0,stream:[15,33,173,184,207],strecker:14,strength:163,stress:74,stretch:205,strickland:0,strict:[0,23,24,32,36,37,63,68,166,168,238],stricter:73,strictlessthan:210,strictli:[3,11,13,32,40,68,71,79,166,184,189,225,228],stride:[15,195],strigonometr:184,string:[2,3,8,14,15,17,21,32,33,34,35,36,45,55,60,61,62,65,68,71,73,74,84,85,89,110,119,123,133,137,141,147,148,149,152,153,154,159,162,164,172,173,179,184,187,191,194,195,196,201,202,203,207,208,210,212,214,215,217,231,232,234,237],string_of_lett:139,stringifi:[60,153],stringify_expr:73,stringio:211,stringpict:172,strip:[2,33,59,71,166,210],strip_zero:164,strive:14,strline:210,strong:[23,28,29,30,71,72],strong_gen:[23,29,30],strong_gens_distr:[23,30],strong_present:23,strong_pseudoprim:71,stronger:235,strongli:[63,207],strongly_connected_compon:207,strprinter:[57,68,153],struct:15,structur:[2,12,14,15,20,23,24,30,32,57,58,59,62,63,68,69,74,75,91,100,137,139,159,160,163,166,168,169,184,187,189,190,191,194,195,203,205,207,208,225,231,238],structure_theorem_for_finitely_generated_abelian_group:20,struggl:[36,171],strzebonski:168,sts529:191,stsci:0,stub:32,student:[0,59,181,185,191],student_t:191,studentst:191,studentt:191,studi:[16,22,31,34,68,157,160,166,168,185,191],stuff:[159,201,203,210],sturm:[164,168],sturmian:168,sty:172,style:[4,14,32,60,133,153,159,172,190,237],stylis:172,stzz:33,sub1:[86,172],sub2:[86,172],sub:[2,3,13,15,31,38,40,41,42,43,44,45,46,48,57,59,62,63,65,68,71,73,74,75,84,86,92,94,95,97,98,103,106,136,137,142,149,158,160,162,163,164,168,172,179,180,184,185,187,188,189,191,201,202,204,229,230,231],sub_dict:[84,86,94],sub_ground:[164,168],subach:0,subalgebra:61,subaugmentedassign:15,subclass:[9,10,15,32,39,43,45,59,62,108,114,123,127,128,129,134,136,137,159,160,162,163,164,168,172,191,201,202,203,208,214,217,234],subcompon:172,subdetermin:166,subdiagon:[63,68],subdiagram:14,subdiagram_from_object:14,subdirectori:[2,224],subdomain:166,subexponenti:71,subexpress:[15,32,57,63,84,86,168,172,179,183,190,203,229],subfactori:[39,172,207],subfunct:59,subgraph:207,subgroup:[19,23,24,28,30,61,71],subgroup_search:23,subhash:0,subhashsaurabh419:0,subinterv:59,subject:[11,42,48,75,84,107],sublist:[13,28,33,59,136,230],submatric:[65,68,191],submatrix:[63,68,166,191],submit:2,submodul:[0,1,2,15,84,160,166],subnorm:[15,23],subobject:172,suboptim:182,subplot:[74,159],subprocess:[32,172,201,202],subquadrat:167,subquoti:160,subquotientmodul:160,subresult:[32,164,167,168],subresultants_qq_zz:168,subroutin:[15,23,135,166],subroutinecal:15,subs_point:44,subscheck:187,subscript:[24,172,182,185,207],subsect:[23,220],subsequ:[2,3,32,38,149,164,166,168,205,207,217,220],subset:[2,13,14,17,19,23,24,30,37,38,44,55,58,59,61,71,160,166,172,180,207,226],subset_from_bitlist:27,subset_indic:27,subspac:68,subsset:179,substack:188,substanti:[2,72],substep:59,substitut:[0,3,13,15,32,33,38,40,58,59,68,72,73,87,88,92,94,95,103,128,137,139,142,149,151,152,169,170,173,174,179,182,184,185,187,188,189,190,208,216,226,231,232],substitute_dummi:139,substitution_ciph:33,substract:162,subsum:40,subsystem:[2,172],subtl:181,subtleti:58,subtract:[3,24,32,36,47,71,79,141,161,162,163,164,166,168,234,238],subtre:[172,205,207],subvector:40,subwiki:[20,23],subword_index:22,succ:[179,191],succe:[32,58,62,71,129,179],success:[2,14,23,32,40,58,59,71,94,149,160,166,180,181,187,189,190,191,207,214,215],succinct:32,succinctli:32,sudarshan:0,sudeep:0,sudeepmanilsidhu:0,sudhanshu:0,suetoniu:33,suffer:2,suffic:[2,13,161],suffici:[2,14,15,23,24,28,32,68,144,175,179,187,191,205,238],suffix:[168,203],sugar:[166,167,195],suggest:[2,16,23,59,68,71,92,170,235],suit:[2,14,159,168,201],suitabl:[59,65,161,163,166,172,182,185,187,190,192,236],suku:59,sukumar:59,sullivan:207,sum:[13,15,21,24,31,32,35,37,40,45,47,55,57,58,59,61,62,63,65,68,71,89,101,118,122,125,133,136,138,139,158,160,161,163,164,168,169,172,174,175,177,179,181,182,184,185,187,189,190,191,192,194,196,205,207,226,238],sum_0:182,sum_:[15,31,32,33,37,40,58,59,63,65,71,169,174,175,182,187,191],sum_approx1:15,sum_approx2:15,sum_approx3:15,sum_domain:163,sum_i:[40,179],sum_k:192,sum_m:192,sumapprox:15,sumith1896:0,sumith:[0,1],summand:21,summar:[201,238],summari:[69,184,201],summat:[15,31,32,36,37,40,139,167,172,175,184,191,192,194,195,196,202],summer:0,sun:[0,143],sunni:[0,191],sunnyaggarwal1994:0,suominen:0,sup:[164,168,172,179,180],super_set:27,superclass:[31,32,59,65,164],superdiagon:63,superfici:32,superflu:58,supergroup:23,superior:172,superposit:[113,124,135,160],superposition_basi:124,superscript:172,supersed:[2,92,106],superset:[13,21,27,35,106,163,180,189],superset_s:27,supplementari:1,suppli:[3,13,14,15,23,24,32,34,42,46,68,71,87,89,94,95,97,101,102,112,139,148,152,157,159,169,174,181,187,202,207,208,214,215,218],support:[2,3,4,5,7,8,9,10,13,14,15,24,32,36,39,40,42,56,59,68,71,72,73,74,75,84,92,106,134,149,156,159,161,162,163,164,165,166,168,169,172,177,178,179,180,184,187,188,189,190,191,192,195,199,201,202,203,208,218,220,230,234,237],suppos:[24,31,32,33,39,58,160,162,166,168,172,179,182,187,189,199,218,223,231,233,238],suppress:[32,73,199],supreet11agraw:0,supreet:0,supremum:[13,38,180],surd:184,sure:[2,15,23,32,44,57,91,92,119,144,168,169,179,187,189,190,202,231,234,238],surfac:[38,40,46,58,75,108,112,139,159,184,214,221],surface_color:159,surfacebaseseri:159,surfaceover2drangeseri:159,surject:160,surpris:190,surround:[2,32,49,112,180,210],survei:2,surviv:6,suryam:0,suryamkalra35:0,susan:17,sushant:0,suspect:[32,71],sussman:34,susumu:0,svg:[60,153,224],swap:[23,24,25,63,64,68,69,119,123,132,191,207],swap_point:119,swapgat:123,swapnil:0,swapnilag29:0,swast:0,sweeto:0,swierczewski:0,swig:202,swing:37,swinnerton:168,swinnerton_dyer_poli:168,swire:0,syedfaizan824:0,sylee957:0,sylow:23,sylow_subgroup:23,sylvest:[71,166],sym2:196,sym:[13,22,23,28,32,149,172,175,180,184,185,189,191,196,207,238],sym_expr:73,sym_i:28,symarrai:68,symb85:184,symb:[68,172],symb_2txt:172,symb_nam:172,symbol:[1,2,4,5,6,7,8,9,10,11,12,13,15,16,22,24,31,33,34,35,36,37,38,39,40,41,42,44,45,46,47,48,49,52,54,55,56,57,58,59,60,62,63,65,68,69,71,72,73,74,75,77,79,81,82,84,85,86,87,88,89,91,92,94,95,97,98,99,100,104,106,108,111,112,113,114,116,118,119,121,123,125,127,128,131,134,136,137,138,139,140,141,142,145,146,147,148,149,150,151,152,153,154,156,157,159,160,161,164,165,167,169,170,172,173,174,175,177,178,179,180,182,184,185,186,187,188,189,191,192,193,194,195,196,197,200,202,207,208,214,215,216,218,219,220,223,226,229,230,232,234,235,236,237,238,239],symbol_nam:172,symbolicnumericalcomput:167,symbolicsystem:[82,100],symboliqu:0,symbolnam:187,symbolog:172,symbols_seq:185,symbols_to_declar:172,symfunc:[202,208],symmetr:[10,12,16,20,23,24,28,48,63,64,65,68,69,71,148,158,164,166,168,171,180,182,196,207],symmetri:[2,20,25,28,40,63,118,158,187,194,196,229,238],symmetric_differ:180,symmetric_group:20,symmetric_matrix:11,symmetric_poli:168,symmetric_residu:71,symmetricdiffer:[172,190],symmetricgroup:[20,22,23,29,30],symmetrichandl:11,symmetricpred:11,sympi:[6,7,8,9,10,11,12,13,14,16,17,18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,39,40,41,42,43,44,45,46,47,48,49,51,52,53,54,56,58,59,60,61,62,63,64,65,66,68,69,70,71,72,74,75,77,79,80,81,82,83,84,85,86,87,88,89,90,91,92,94,95,97,98,99,100,101,102,103,104,107,108,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161,162,164,165,166,168,169,170,171,172,173,174,175,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,215,218,219,221,222,223,228,230,231,234,235,236,237,238,239,240],sympif:[6,32],sympifi:[3,15,36,38,42,57,62,104,112,137,139,149,150,163,164,229,234],sympify:[42,48,74,85,89,110,113,151],sympifyerror:[32,38],symplifi:[182,184],symposium:[16,58,167,182],sympy_cod:92,sympy_debug:210,sympy_eqs_to_r:165,sympy_express:[15,202],sympy_gamma:59,sympy_integ:172,sympy_nam:229,sympy_pars:73,sympy_use_cach:32,sympydeprecationwarn:[199,201],sympydoctestfind:201,sympydoctestrunn:201,sympyexpress:73,sympyfi:[150,151,152,216],sympyifi:3,sympyl:2,sympyoutputcheck:201,sympytestfil:201,sympytestresult:201,symsac:167,symsystem1:107,symsystem2:107,symsystem3:107,symsystem:91,synonym:42,syntact:195,syntax:[2,3,8,10,24,32,57,59,73,92,106,136,159,163,171,172,184,189,210,230,231,233,237,239],syntaxerror:3,synthesi:33,sys:[5,15,34,92,106,172,201,211,231],syscolab:0,sysfrog:0,sysod:187,system2:216,system:[1,2,3,8,10,23,32,33,34,38,57,58,60,61,62,63,68,72,73,74,77,79,82,84,87,88,89,91,92,94,95,97,99,100,101,102,103,104,106,117,118,133,136,137,139,142,146,149,152,153,154,156,157,158,160,161,163,164,165,166,167,170,171,172,181,186,190,191,201,202,214,215,216,219,221,223,225,226,231,233,235,238,239],system_info:187,systemat:171,syzygi:165,syzygy_modul:160,szop:134,szupket:134,szymon:0,t8130048:0,t8130064:0,t_0:[37,185],t_1:[23,37,185],t_2:[23,37,185],t_b:104,t_c:28,t_lenz94:0,t_m:166,t_n:[2,37,40,59,166,218],t_p:104,t_r:[23,104,196],t_t:104,tab1:28,tab:[3,28,106],taber:0,tabl:[2,16,23,37,40,53,57,59,62,68,71,106,158],table_of_:71,tableaux:196,tableform:210,tachyclin:0,tackl:[100,203],tactic:191,tadd:0,tag:[172,189],tail:[17,31,32,164,191],tail_degre:164,tait:[149,214,215],takafumi:0,take:[2,3,10,13,15,16,18,22,23,27,31,32,33,34,38,39,40,44,45,55,59,61,62,63,68,71,72,73,74,79,84,87,89,91,92,94,103,104,106,108,122,125,128,129,133,135,136,137,138,139,141,144,147,148,149,150,151,153,156,157,159,160,161,162,163,164,166,168,169,172,175,178,179,180,181,182,184,185,187,189,190,191,195,201,202,205,207,208,214,215,216,226,229,230,231,233,234,235,238],taken:[0,15,16,20,23,30,31,32,37,38,40,49,63,71,81,84,103,106,136,142,149,152,158,159,163,168,175,179,181,182,190,191,195,203,207,214],takenouchi:71,takumasa:0,tale:0,talk:[2,33,160,217],tan2tan2:0,tan:[0,13,32,37,39,59,73,86,97,98,99,103,169,171,172,179,181,187,190,238],tanai:0,tanay_agraw:0,tandem:202,tandon:0,tangent:[38,42,44,48,59,169,187],tangent_lin:42,tanh:[32,36,39,59,169,172,184,238],tanu:0,tanugi:0,taocp:207,tapestri:160,tarang:0,tarangrockr:0,target1:123,target2:123,target:[2,13,14,15,32,71,86,119,123,124,181,184,186,189,190,203,238],target_unit:146,tarigradschi:0,tarjan:[191,207],tarun:0,tasha:0,task:[38,100,106,163,230],tau0:[68,190,191],tau1:68,tau:[3,15,58,68,172,187],taught:59,taus_zero:68,tautolog:10,taxicab:47,taxicab_dist:47,taxonomi:23,taylor:[0,32,38,92,103,106,164,166,168,169,179,187,226],taylor_term:[32,38],tbanilorngnezl:33,tborisova:0,tcaswel:0,tcc:203,tchebychev:2,tcyru:0,tdoko:0,teach:[2,24,33,191],teaching_aid:191,team:4,tear:234,techiepriyansh:0,technic:[2,14,32,106,125,160,187,203,220,231,234],techniqu:[16,27,58,59,172,174,184,187,190,235],technolog:181,techreport:33,ted:0,tediou:[59,226],teeler:0,teeter:160,tefer:0,telang:0,telescop:0,tell:[2,15,24,33,36,40,57,63,73,91,144,163,171,179,182,187,202,231],temigo:0,temp:[15,94],tempa:94,tempb:94,tempc:94,tempdir:[15,202],temper:154,temperatur:[141,154,222],tempfork:94,tempfram:94,templat:207,tempor:113,temporari:[32,202],temporarili:32,tempt:[32,71],temptat:[181,238],ten:[0,15,72],tend:[6,13,15,32,166,177,179,182,236,238],tendenc:71,tenenbaum:187,tens:2,tensadd:[172,196],tensexpr:[80,196],tension:66,tensmul:[172,196],tensor:[4,15,19,34,39,57,68,80,82,89,104,118,124,125,126,136,139,148,149,172,192,194,195,202,208,217,218],tensor_can:[28,196],tensor_funct:[40,139],tensor_gen:28,tensor_head:[80,196],tensor_inde_typ:196,tensor_index_typ:196,tensor_indic:[80,196],tensor_product:125,tensor_product_simp:138,tensorcontract:192,tensordiagon:192,tensorflow:208,tensorhead:[196,197],tensori:[196,197],tensorindex:196,tensorindextyp:[196,197],tensormanag:196,tensorpowerhilbertspac:125,tensorproduct:[34,136,138,192],tensorproducthilbertspac:125,tensorsymmetri:196,tensortyp:196,tensorvari:172,teo:189,term:[2,3,4,15,23,32,33,34,36,37,38,40,51,55,56,57,58,59,62,63,64,66,68,69,71,75,79,86,87,94,95,97,100,101,103,104,118,123,135,136,139,141,144,147,149,151,154,156,160,161,162,163,164,165,166,168,169,172,174,175,176,177,178,180,181,182,184,185,187,188,189,190,191,194,195,207,214,216,220,226,230,231,233,234,238],termin:[2,23,32,38,60,71,153,172,179,201,237],terminal_str:172,terminal_width:172,terminolog:196,terms_gcd:[32,164,168],termwis:168,ternari:[15,32,172,185],terrab:187,terrel:[0,1],terribl:23,test2:134,test:[0,2,3,4,10,11,13,14,15,19,23,24,31,32,33,39,42,47,57,58,63,64,65,66,68,69,71,119,128,132,133,134,142,157,163,164,165,166,169,180,182,185,187,188,189,190,199,202,203,204,205,207,208,210,228,231,233,234],test_:[2,201],test_arg:201,test_bas:201,test_derivative_numer:200,test_draw:14,test_equ:201,test_expr:32,test_formula:182,test_hyperexpand:182,test_kwarg:201,test_od:187,test_pd:188,test_rewrite1:179,test_sag:201,tester:201,testmod:201,testrunn:201,testutil:[23,29,30],tetrahedr:25,tetrahedron:[23,25],tex:172,texliv:[2,172],text:[2,5,15,23,33,37,38,40,50,58,60,63,68,71,104,144,153,159,160,172,179,185,187,190,191,201],textbackend:159,textfil:191,textplot:159,textrm:[156,157],textual:172,textwrap:[139,210],tf10:79,tf11:79,tf12:79,tf1:79,tf2:79,tf3:79,tf4:79,tf5:79,tf6:79,tf7:79,tf8:79,tf9:79,tfinal:92,tfrac:[40,187,191],tgamma:172,tgate:123,thakur:0,than:[2,3,6,11,15,16,18,23,24,25,31,32,33,36,37,38,39,40,41,46,47,48,50,54,58,59,61,62,63,65,68,69,70,71,72,73,79,84,85,87,91,92,95,97,113,119,133,136,137,139,148,157,158,161,162,163,164,166,168,169,170,172,175,179,180,181,182,184,185,186,187,188,189,190,191,200,202,203,205,207,208,210,211,226,228,229,230,231,233,234,235,236,238],thank:0,the_68_standard_colors_known_to_dvip:60,theano:[106,237],thei:[2,3,5,11,14,15,16,20,23,24,30,31,32,33,34,37,38,40,42,45,46,47,48,49,54,57,58,59,60,62,63,64,65,66,68,70,71,73,79,84,87,89,91,92,94,98,100,101,102,103,106,107,113,118,123,128,131,136,141,142,144,145,149,152,153,154,157,158,159,160,161,163,164,166,168,169,170,172,173,178,179,181,182,184,185,187,188,189,190,191,192,196,199,201,202,203,205,207,208,210,214,220,222,230,231,233,234,235,236,238],them:[2,3,6,9,11,14,15,21,23,24,31,32,33,34,36,37,40,43,48,50,52,54,55,57,58,61,62,65,68,70,71,72,84,87,89,92,94,95,100,101,103,104,106,112,116,132,133,139,141,144,147,149,154,156,157,160,161,163,164,166,168,169,171,172,173,179,180,181,182,184,185,187,189,190,192,201,203,205,207,216,225,226,229,230,231,233,234,238],theman:0,theme:233,themselv:[2,11,14,24,28,30,32,59,69,71,100,143,163,164,178,191,196,205,207,210,238],theodor:0,theodorehan:0,theorem:[4,20,33,40,42,48,57,59,63,68,71,83,84,94,139,148,156,160,163,166,179,182,185,190,221],theoret:[14,16,23,33,167,182,231],theori:[0,4,10,16,21,22,23,24,30,32,33,37,40,57,61,87,92,103,105,118,136,139,149,152,166,167,171,185,205,214,225,233],theoricist:143,theorist:167,theorit:33,therebi:14,therefor:[2,16,23,28,32,36,40,48,61,71,154,157,158,159,163,166,168,172,187,190,191,192,196,214,215,217,218,220,222],thereof:[15,160,166],thesi:[23,32,179,214],theta1:95,theta:[3,34,38,40,58,60,68,73,81,91,107,111,149,157,158,168,172,175,180,190,191,214,215,218,220,223],theta_dot:91,thetaset:180,thi:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,40,41,42,43,44,45,46,47,48,49,50,54,55,56,57,59,60,61,62,63,64,65,66,68,69,71,72,73,74,75,77,79,80,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,106,107,110,111,112,113,114,116,118,119,120,122,123,125,128,129,131,132,133,134,135,136,137,138,139,141,142,143,144,145,148,149,151,152,153,154,155,156,157,158,159,160,161,162,163,164,166,168,169,170,171,172,173,174,175,178,179,180,181,182,184,185,186,187,188,189,191,192,194,195,196,198,199,200,201,202,203,204,205,206,207,208,210,212,214,215,216,217,218,219,220,221,222,225,226,228,229,230,231,232,233,234,235,237,238,239,240],thilina:[0,1],thilinaatsympi:185,thilinarmtb:0,thin:[9,68,96,108,112],thing:[2,3,11,15,22,23,24,32,34,44,57,60,61,62,63,68,72,84,89,92,103,106,123,139,144,156,157,169,171,179,180,181,184,187,190,194,199,229,230,231,233,234,235,237,238],thingi:15,think:[2,5,13,23,94,144,205,208,231,238],thinlen:108,thinr:0,third:[13,15,23,24,32,40,42,46,79,136,142,156,161,168,182,187,191,199,207,221,230,234],thisisma08:0,thom:0,thoma:[0,71,105],thomasaarholt:0,thomashunt13:0,thomdixon:0,thorat:0,thorough:[98,103,185],those:[0,2,3,6,11,13,14,15,16,23,24,30,31,32,33,36,39,45,46,58,59,62,68,70,71,84,94,98,112,136,148,151,153,156,157,159,163,164,166,168,170,171,172,178,184,187,188,189,190,191,196,201,205,207,214,216,231,233,238],though:[2,3,6,13,16,32,33,34,44,48,57,58,59,63,68,71,84,87,94,101,103,134,148,149,156,157,161,163,164,168,169,181,182,184,187,188,189,190,201,220,230,234,238],thought:[2,32,179,187,231,234],thousand:[36,71,229],thow:0,thread:204,threaded_factori:204,three:[3,7,11,15,23,25,28,32,33,37,40,42,46,47,48,58,61,62,63,74,75,91,96,97,98,112,134,136,141,149,152,156,157,158,159,160,161,164,166,168,172,182,184,185,189,190,191,201,214,215,220,223,226,231,234,238],threshold:[15,71],through:[0,1,2,3,5,13,15,23,24,26,31,32,33,36,37,40,42,43,44,45,46,48,58,61,68,71,74,75,87,92,94,100,104,110,111,149,159,160,166,172,178,182,184,187,189,190,191,192,202,207,214,215,220,223,231,232,236],throughout:[58,62,166,175,190,231,236],throughtout:222,throwawai:6,thrown:[15,172],thu:[3,11,18,23,24,32,33,34,38,40,55,58,59,63,66,68,70,71,80,91,95,100,103,144,149,161,166,169,173,179,182,184,203,207,208,218,219,226,231,234,238,239],thue:185,thumb:[2,32,62],tibra:0,ticket:5,tid:196,tidi:68,tie:[32,207],ties:[21,32],tiffani:0,tight:15,tiker:0,tikz:14,tild:[32,192],till:[32,71,74,75,92,187],tilt:111,tim:[0,71,207],time:[2,3,6,10,11,15,23,24,28,32,33,37,40,55,57,58,62,63,68,70,71,72,73,77,79,84,87,88,91,92,94,95,97,98,100,101,102,103,104,106,107,113,123,128,136,137,141,142,144,145,148,149,151,152,153,154,155,156,157,158,160,163,166,167,168,169,171,172,179,181,182,184,187,189,191,201,202,206,207,220,222,226,230,233,234,235,236],time_bal:201,time_deriv:[149,154,155],time_derivatives_in_the_two_fram:151,time_markov_chain:191,time_period:113,timedepbra:137,timedepket:137,timedepst:137,timeit:[15,169],timeout:201,timeroot:0,timeutil:213,timevalue1:152,timevalue2:152,timokhin:0,timothi:0,tin:0,tina:106,tini:[15,32],tinyurl:37,tion_constraint:106,tip:[2,32,103,187,188],titansnow:0,titech:0,titl:[1,2,159],titu:185,tiwari:0,tkachenko:0,tkf:0,tlmzebyvzgzinb:33,tloramu:0,tmp:15,tmz:11,tng:0,tnzl:0,to_algebraic_integ:168,to_axis_angl:7,to_cnf:62,to_dens:162,to_dict:164,to_dnf:62,to_domain:166,to_exact:[164,168],to_expr:[54,55,56],to_field:[162,164,168],to_fil:[15,203],to_hyp:54,to_linear:[87,103],to_list:164,to_matrix:[148,149,157,162,214,216,218],to_meijerg:54,to_number_field:168,to_pruf:26,to_r:[164,168],to_rat:164,to_rotation_matrix:7,to_sequ:54,to_si:34,to_spars:162,to_sympi:[163,164],to_sympy_dict:164,to_sympy_list:164,to_tre:26,to_tupl:164,tobia:0,todai:160,todd:19,todo:[57,117,119,123,124,128,129,131,132,133,134,135,166,172,179,195,207],todok:63,toew:0,togeth:[3,15,23,32,36,61,68,71,100,125,136,144,157,160,164,166,168,171,172,184,187,189,191,201,202,207,226,233,238],toggl:[71,159],togoi:0,tokay:0,token:[15,58,60,73],tokencolour:0,tol:[15,164,200],toler:[15,32,36,164,184,189,200],tolist:[63,192],tom:0,toma:0,tomasz:0,tomatrix:192,tomfooleri:201,tomgijselinck:0,tommi:0,tomo:0,tompytel:0,too:[2,3,23,24,32,38,40,42,45,47,58,62,70,71,101,108,179,180,184,185,187,189,190,191,201,202,216,217],took:[169,181],tool:[0,2,23,57,60,67,68,72,106,157,160,165,166,172,183,202,207,213,221],tools4origin:0,toolset:160,toon:0,top:[2,15,31,32,33,48,49,57,68,74,75,91,134,141,163,172,182,187,203,208,223,234],top_fac:223,topbug:0,toper:197,topic:[4,15,82,100,104,155,156,157,158,160,162,163,190,228,231],toplevel:59,topmail:0,topmost:205,topolog:[15,32,34,58,180,207],topological_sort:[15,207],torba:0,toronto:71,torqu:[85,87,91,101,102,106],torque_a:106,torsion:74,torsional_mo:74,tort:0,tosalonijain:0,toss:191,total:[0,16,21,23,32,37,48,61,63,65,69,94,95,101,108,112,118,123,136,145,158,164,166,168,181,184,187,194,196,223],total_degre:[164,168,185],totient:[33,71],totientfunct:71,totientrang:71,totter:160,touch:[48,94,181],tough:187,tournier:167,toward:[32,40,160,179,190],tp1:34,tr0:181,tr10:181,tr10i:181,tr111:181,tr11:181,tr12:181,tr12i:181,tr13:181,tr14:181,tr15:181,tr16:181,tr1:181,tr22:181,tr2:181,tr2i:181,tr3:181,tr4:181,tr5:181,tr6:181,tr7:181,tr8:181,tr9:181,trace:[28,63,65,80,106,166,172,191,192,194,207,235],traceback:[3,9,10,15,16,24,32,33,36,38,42,59,62,63,64,65,66,68,69,70,158,160,163,164,166,168,171,179,180,187,189,190,199,201,202,204,207,208,225,231,235],track:[3,23,32,36,40,91,104,123,157,179,196,230],tracker:[13,180,190,235],tractabl:190,tradeoff:235,tradition:[33,40],trafo:31,trager:59,trail:[24,71,164,166,168,210],trailpap:94,train:157,traint:106,trait:164,trajectori:100,tran:33,tranform:34,trans_prob:191,transact:[59,167],transcedent:11,transcend:40,transcendent:[10,32,40,59,163,172,189,190,235,239],transcendental_numb:32,transcendentalpred:11,transfer:[2,77,79,108,190],transferfunct:[77,79],transform:[4,7,12,15,28,31,32,33,34,36,37,40,47,57,65,68,79,83,94,111,132,134,136,141,161,164,166,168,174,179,180,181,184,185,187,188,189,190,191,195,203,208,214,220,221,233],transform_vari:59,transformation_from_par:214,transformation_to_par:214,transit:[23,106,166,191],transition_prob:191,transitionmatrixof:191,transitivity_degre:23,translat:[15,23,32,41,43,47,49,72,73,83,87,97,99,104,156,159,172,187,189,202,203,208,210,218],transliter:2,transmiss:[111,112],transmissive_filt:111,transmit:[111,112],transmitt:111,transmitted_port:111,transmitted_pow:111,transolv:57,transpar:[58,60,153],transport:34,transpos:[11,14,63,65,68,106,122,149,157,185,192,196,235],transposit:[20,23,24,33,63,65],transposition_:24,transvers:[23,28,30,110,112,113],transversals_onli:30,transverse_magnif:112,trapezoid:[59,68,191],trapezoidal_distribut:191,traub:[166,167],travel:[110,113,154,220,222],travelletti:0,travers:[32,48,71,86,168,181,183,195,205,207,234],traversaltool:184,travi:187,treat:[22,23,30,32,37,40,47,48,68,73,89,92,112,154,161,163,164,166,168,169,171,172,179,180,182,184,185,187,194,202,205,220,231,235],treatment:[58,168,226],tree:[23,26,32,57,69,86,92,131,134,149,165,168,179,181,184,190,194,205,207,210,225,232],tree_repr:26,trehan123:0,trehan:0,treluga:0,tri:[0,3,14,32,40,48,58,59,69,94,103,134,160,161,172,174,184,187,188,190,201,231,238],trial:[32,71,166,177,181,187,191],trialset:187,triangl:[2,14,37,43,44,48,49,59,63,71,158,159,216,223],triangular:[10,63,64,68,189,191,223],triangular_distribut:191,triangular_matrix:11,triangulardistribut:191,triangularhandl:11,triangularpred:11,tribonacci:[32,39],tribonacci_numb:[32,37],tribonaccinumb:37,trick:[3,28,182,196],tricki:[2,32,58],trig5:181,trig:[32,59,168,172,181,184,238],trigamma:[2,40,172],trigamma_funct:40,trigammafunct:40,trigexpand:58,trigger:[24,73,139],trigintegr:59,trigonometr:[2,32,39,57,59,175,183,186,187,190,232,239],trigonometri:59,trigonometric_:168,trigonometric_funct:38,trigonometric_integr:40,trigonometryangl:38,trigrul:59,trigsimp:[3,7,32,68,92,98,149,181,217],trigsimp_groebn:184,trim:[24,103],tripl:[2,49,68,157,158,160,210],tristan:0,triva:0,trivari:59,trivial:[16,23,28,31,32,33,47,62,68,71,101,139,160,161,166,168,182,185,187,190,194],trmorri:181,trobmvenbgbalv:33,troisi:0,trotter:24,troubl:40,troubleshoot:[2,103],trpower:181,trs:16,truli:[32,40,144],trunc:[164,168,171],truncat:[24,32,68,71,75,144,159,169,171,174,175,226],trunk:224,truong:0,truongduy134:0,truth:[8,9,10,11,12,32,62,63,184],truth_maintenance_system:10,try_block_diag:68,trysolv:187,tsang:0,tschau:0,tschijnmo:0,tschijnmotschau:0,tsiagkali:0,tsidoti:0,tsnlegend:0,tsolv:190,tswast:0,tuan:0,tum:0,tune:[36,60,153,172],tuoma:0,tupl:[7,9,10,13,14,15,16,23,24,31,33,34,38,39,40,41,42,43,45,47,48,49,54,58,59,63,68,70,71,73,74,75,85,87,89,91,101,102,104,106,108,123,124,125,128,133,136,137,138,139,141,149,152,157,159,160,163,164,165,166,169,170,172,173,174,178,180,184,185,187,188,189,190,191,192,195,196,201,202,203,204,207,208,210,214,217,230,234,235,237],tuple_count:32,turn:[2,15,32,38,40,47,58,66,98,101,154,160,169,172,179,180,182,184,185,187,201,207,222,231,233],turner:0,tushar:167,tuta:0,tutanota:0,tutori:[2,3,4,5,48,57,92,106,161,171,172,187,208,226,228,231,234,237,238,239],tuwien:0,twave:113,tweak:[172,189],twice:[3,15,32,34,46,71,149,151,156,172,205,214,215,230],twin:71,twist:58,two:[2,3,13,14,15,16,18,21,23,24,26,27,28,29,31,32,33,34,36,37,38,39,40,42,43,44,45,46,47,48,49,50,54,55,58,59,61,62,63,64,65,68,69,71,72,74,75,77,79,80,84,87,98,100,101,103,104,111,112,113,118,119,123,125,128,129,134,135,136,137,138,139,141,144,148,149,150,151,152,154,156,157,158,159,160,161,162,163,164,166,168,169,171,172,173,174,179,180,181,182,184,185,187,188,189,190,191,192,195,205,207,208,214,216,218,219,220,222,226,229,230,232,234,235,238],two_qubit_box:119,twobitlog:0,twofold:182,twoform:34,twoform_to_matrix:34,twoqubitg:123,tworek:0,txt:172,tyagi:0,tygier:0,tyler:0,typ:196,type1:187,type2:187,type3:187,type4:187,type5:187,type6:187,type:[3,4,9,10,13,23,24,28,31,32,33,34,35,36,38,39,42,43,44,45,46,47,50,57,58,59,60,61,62,63,64,65,68,69,71,72,73,74,75,84,87,92,106,111,125,133,134,135,137,149,152,153,155,157,159,160,163,164,167,168,169,170,172,173,174,180,181,182,184,185,186,189,194,195,196,199,201,202,203,207,208,210,217,220,223,225,230,231,233,234,235,236,237,238,239],type_:61,type_a:61,type_alias:[15,172],type_b:61,type_c:61,type_d:61,type_f:61,type_g:61,type_map:172,type_of_equ:187,typea:61,typeb:61,typec:61,typeerror:[3,9,10,24,32,42,47,62,64,66,69,79,113,179,180,202,208],typef:61,typefunct:[2,40],typeg:61,typeinfo:32,typeset:[31,172],typic:[8,28,40,58,71,89,93,148,157,159,161,166,169,182,202,203,218],typo:182,typograph:73,tzintano:0,u0114255:0,u03b8:60,u1d:[92,94,95,97,98,101],u2d:[92,94,95,97,98,101],u3d:[94,97,98],u4d:94,u5d:94,u6d:94,u_0:166,u_1:[95,156,187],u_2:[95,156,187],u_3:156,u_aug:68,u_auxilia:106,u_auxiliari:[87,98,101,106],u_d:[88,106],u_dep:101,u_depend:[87,94,95,101,106],u_func:59,u_i:[88,103,156,166],u_ind:[87,88,92,94,95,97,98,101,103,106],u_n:[40,59,166],u_op:[88,95],u_var:59,u_x:156,ualberta:0,ubuntu:[0,2,172],ubv:68,ucdavi:[0,59],uchicago:[0,191],uchiha:0,uci:71,uconn:[0,191],ucr:0,ucu:0,ud_op:[88,95],udivisor:71,udivisor_count:71,udivisor_sigma:71,udl:65,udldecomposit:65,udot:[87,94],ued:0,ueqdueodoctcwq:33,uexpr:234,ufmg:0,ufsc:0,ufunc:[15,72,202,208],ufuncifi:[15,57,202],ufuncifycodewrapp:202,ugat:123,ugent:0,ugli:172,uiki:33,uint16:15,uint32:15,uint64:15,uint8:15,ujcont:191,ukrain:167,uleth:0,ulrich:0,ultim:[38,144,190],umbrella:0,umich:0,umn:0,unabl:[15,45,49,189,214,229,230],unaffect:190,unambigu:[32,172,187],unansw:[84,148],unappropri:34,unavoid:144,unbound:[32,195],unbound_theta:159,unbranch:[40,58],unbreak:33,uncertainti:[36,144],unchang:[23,24,32,59,68,168,172,178,181,184,190,229],unclear:84,uncount:190,uncoupl:[118,136],undecid:[68,163,190,235],undecor:32,undefin:[9,10,13,32,38,39,40,59,65,73,85,157,179,182,208,230,239],undefinedfunct:[32,151,172,202,208],undefinedpred:[9,10],under:[0,2,3,9,10,12,13,15,16,22,23,28,30,40,50,58,59,61,68,71,73,75,108,134,158,160,161,168,172,179,180,182,185,187,189,190,191,196,233,238],underbrac:[144,156],underdetermin:[68,189,190],underevalu:235,undergo:112,undergon:[157,190],undergradu:37,underli:[15,24,30,32,61,68,92,134,147,189,190,191],underlin:2,underscor:[2,32,68,187,196,204],understand:[2,3,32,33,58,92,100,101,102,106,144,156,159,162,163,182,185,208,231,232,237,238],understood:[71,144,160,164],undertak:238,undertermin:168,undertest:235,undesir:[32,84,92,103,161,164,182],undetermin:[32,68,168,174,187,189],undetermined_coeffici:187,undirect:[61,207],undo:[182,238],undocu:165,undon:238,unequ:[3,74,172],unevalu:[9,10,13,24,31,32,38,40,49,59,71,79,116,120,127,128,139,168,171,179,180,184,187,189,190,191,230,233,234,239],unevaluat:187,unevaluatedexpr:[172,234],unevalutedexpr:234,unexpand:[163,171,181],unexpect:[32,201],unexplain:14,unfair:191,unflatten:207,unfortun:[34,36,72,171,185],unhash:207,unhind:187,uni:[0,14,59,207],uniand:0,unicod:[40,60,68,153,172,201,233,236],unifi:[32,107,162,164,165,166,168,180],unificationfail:166,uniform:[43,159,191],uniform_distribution_:191,uniform_sum_distribut:191,uniformdistribut:191,uniformli:[23,48,49,74,159,204,226],uniformsum:191,uniformsumdistribut:191,unimib:0,unimod:191,unimport:2,uninterest:166,union:[6,11,13,15,21,23,30,160,172,178,179,186,190,191,207],union_:180,union_find:23,uniq:207,uniqu:[13,14,16,23,26,28,32,33,34,37,40,47,50,55,59,61,62,68,128,137,149,157,160,161,163,166,173,177,184,185,187,189,190,191,194,203,207,210,217,222,231,234],uniquenss:33,unit:[3,10,14,32,33,37,45,46,47,59,68,71,74,81,82,83,92,104,106,115,140,141,142,146,148,149,154,157,159,161,164,166,168,170,172,180,182,185,190,192,214,215,217,222,223],unit_cub:59,unit_disk:180,unit_system:146,unit_triangular:11,unitari:[10,59,71,123,128],unitary_divisor:71,unitary_matrix:11,unitarydivisor:71,unitarydivisorfunct:71,unitaryhandl:11,unitaryoper:128,unitarypred:11,uniti:[38,40,58,134],unitsystem:147,unittriangularhandl:11,unittriangularpred:11,unitvec:106,univ:0,univari:[13,31,32,38,55,59,160,161,163,164,165,167,168,169,174,186,189,191],univariatepolynomialerror:166,univers:[0,15,158,167,180,185,189,190],universal_set:180,universalset:62,universitat:214,unix:[201,202],unizar:0,unknown:[0,32,33,75,124,170,186,187,188,189,190,207,225,239],unkown:170,unless:[0,2,8,10,13,15,23,31,32,33,37,40,47,48,58,68,69,70,112,156,157,161,163,168,172,177,180,181,187,189,201,205,207,208,214,222,230,235,238],unlik:[2,3,12,33,59,68,71,73,92,156,166,172,185,187,190,205,231,233,234,235,237],unlimitedscolobb:0,unm:171,unmodifi:184,unmov:24,unnam:203,unnecessari:[2,11,15,168,171,191,201,236],unnecessarili:238,unnecessary_permut:59,unnorm:[38,40],unord:[3,32,71,164,190,207,208],unpack:[32,63,68,207,208],unpolar:111,unpredict:205,unprejud:32,unrad:[184,189],unrank:[17,21,23,24,26],unrank_binari:27,unrank_grai:27,unrank_lex:24,unrank_nonlex:24,unrank_trotterjohnson:24,unread:168,unrecogn:68,unrel:[32,39,161,231],unreli:163,unrestrict:[2,21,207],unrol:195,unrot:48,unsanit:[32,208,229],unsat:62,unsatisfi:62,unset:[172,184],unsign:[15,37,184],unsignedinttyp:15,unsimplifi:[3,181],unsolv:190,unsort:[32,84,148],unspecifi:[13,32,47,230],unsplitt:73,unsuccess:[23,30],unsuit:158,unsupport:[3,172,225],unsur:2,unsurmount:203,until:[6,24,26,32,33,42,59,68,71,103,157,166,168,181,187,226,231],untouch:32,untyp:15,unusu:[2,94,201],unwant:[32,189],unwelcom:2,updat:[3,5,32,95,119,129,132,133,135,158,166,168,172,185,196],upf:0,upgrad:6,upload:[2,71],upon:[13,15,71,91,94,101,102,103,106,133,139,154,156,157,180,187,195,202,220,238],upper:[2,10,13,31,33,36,40,41,48,49,63,64,65,68,70,71,132,139,158,162,166,168,172,182,189,195,214],upper_bound:[41,42,45,48],upper_half_plan:180,upper_half_unit_disk:180,upper_hessenberg_decomposit:68,upper_incomplete_gamma_funct:40,upper_limit:230,upper_polygon:48,upper_seg:48,upper_triangular:[11,63],upper_triangular_solv:[64,68],uppercas:[33,182],uppergamma:[2,37,40,172,191],uppertriangularhandl:11,uppertriangularmatrix:11,uppertriangularpred:11,upright:94,upsilon:[3,172],upto:[32,174,179],upward:74,urkud:0,url:[1,33],urul:59,usa:[31,167],usabl:[163,164,172,190,233],usag:[2,3,6,9,34,38,57,59,100,136,154,159,160,165,166,172,180,182,185,187,188,192,205,208,209,220,221,234],usask:0,use:[0,1,2,3,5,6,9,10,13,14,15,16,22,23,24,28,31,32,33,34,35,36,37,38,39,40,42,44,45,48,54,55,56,57,58,59,60,62,63,64,65,68,69,71,72,73,79,80,81,83,84,86,87,88,92,95,100,103,104,106,114,116,120,123,129,133,134,135,137,139,141,142,143,144,147,148,149,150,153,154,156,157,158,159,160,163,164,166,168,169,170,171,172,173,174,179,180,181,182,185,187,188,189,191,192,195,196,199,201,202,203,204,205,207,208,211,217,218,220,223,224,226,229,230,231,233,234,235,236,237,238,239],use_add:204,use_cach:168,use_ecm:71,use_imp:208,use_interval_math:159,use_latex:[60,153,237],use_model:62,use_pm1:[32,71],use_renam:15,use_rho:[32,71],use_tri:[32,71],use_unicod:[13,14,15,36,40,59,60,68,75,111,153,158,160,161,171,172,173,190,191,230,233,235,237,238,239],use_unicode_sqrt_char:172,used:[0,2,3,6,8,9,10,11,13,14,15,16,21,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,55,58,59,60,62,63,65,68,69,70,71,72,73,74,75,77,79,84,85,86,87,88,89,91,92,93,94,100,101,102,103,104,106,107,108,111,114,123,128,134,135,136,137,138,139,141,144,145,148,149,150,151,152,153,156,157,159,160,161,162,163,164,166,167,168,169,170,171,172,173,174,178,179,180,181,182,184,185,187,188,189,190,191,192,195,196,199,201,202,203,205,206,207,208,216,217,218,220,222,223,225,228,229,230,231,233,234,235,236,237,238,239],useful:[3,5,9,10,13,15,32,33,36,37,39,40,44,54,59,64,68,69,71,72,75,93,123,144,154,157,158,160,163,164,171,172,173,179,182,184,185,187,188,189,190,191,194,199,201,202,205,211,220,226,229,230,231,233,236,237,238,239,240],usefulli:164,useless:[141,147,164,166],usepackag:172,user234683:0,user:[0,1,2,14,15,16,23,31,32,33,34,40,44,57,58,61,65,68,73,74,75,82,84,92,100,102,104,107,127,128,137,143,144,148,149,152,156,160,163,166,169,170,171,172,173,181,184,189,190,191,202,203,205,207,208,214,217,218,223,225,228,229,231,234,235,236,240],user_funct:[15,172],user_guid:208,userwarn:[199,235],uses:[2,3,5,9,10,15,23,24,25,27,28,32,33,34,35,40,59,61,62,65,68,71,72,93,97,99,106,107,112,118,123,125,134,138,148,158,159,162,163,164,166,168,169,170,172,174,179,181,184,185,187,188,190,191,201,202,207,208,226,229,230,231,233,236,237,238],using:[0,1,2,3,4,5,8,9,10,12,13,14,16,22,23,24,27,28,29,30,32,33,36,37,38,40,45,46,54,55,56,57,59,60,62,63,64,65,68,69,71,72,73,76,79,80,82,84,87,92,94,95,96,97,100,101,102,103,104,106,107,116,118,120,123,127,128,132,133,135,136,137,139,141,142,149,152,153,154,156,157,158,159,160,161,162,163,164,165,166,167,168,170,171,172,173,174,175,178,179,180,181,182,184,185,187,188,189,190,191,194,195,196,201,203,204,205,207,208,214,217,218,219,220,222,223,226,229,230,231,233,234,235,237,238,239],ussr:167,usual:[3,14,16,23,31,32,33,50,58,59,68,100,125,137,144,154,156,157,160,161,163,164,166,171,172,173,179,182,187,190,191,192,195,196,203,205,208,214,222,226,229,231,234,237,238],usyd:0,utf:172,uth:0,util:[2,4,13,19,21,23,24,32,37,38,43,44,45,48,57,63,67,71,72,82,109,143,146,166,169,172,184,185,199,201,202,203,204,205,207,208,209,210,211,212],utilis:14,utiu:0,utm:71,uvar:59,uwa:37,uwaterloo:33,uxi:188,uxt:188,v10:15,v18:15,v1krant:0,v1pt:106,v1pt_theori:[106,152,156],v2pt:[92,106],v2pt_theori:[92,94,97,98,99,103,104,106,107,152,156],v4b3:33,v5_2:32,v_0:189,v_1:[34,189],v_2:34,v_a:214,v_arrai:22,v_aug:68,v_b:214,v_field:34,v_i:[71,189],v_m:189,v_o_n:[92,106],v_p_n:92,v_r_n:92,vacuou:63,vaghasia:0,vaibhav:0,vaish:0,vaishnav:0,vaishnavdamani3496:0,vajnovszki:207,val:[15,32,44,164,208],val_dict:94,valer:0,valeriia:0,valid:[2,10,12,13,14,15,25,31,32,37,38,48,57,68,71,86,87,92,94,104,108,112,131,136,146,149,153,157,163,166,168,171,172,180,184,185,187,189,190,191,208,235,238],validrelationoper:32,valu:[2,3,7,8,9,10,11,12,13,14,15,16,17,21,23,24,28,31,32,33,34,36,37,38,40,41,42,43,44,45,46,47,48,49,54,55,58,59,60,62,63,64,66,68,69,70,71,72,73,74,75,81,85,87,88,89,91,92,94,103,106,115,118,123,125,128,131,133,134,135,136,139,140,142,143,144,149,150,152,154,156,157,158,159,161,163,164,166,168,169,170,172,173,178,179,180,181,184,185,186,187,188,189,190,191,192,194,195,196,201,203,204,207,208,210,216,218,220,223,226,230,231,234],value1:159,value2:159,value_const:15,valueerror:[13,15,16,24,32,33,41,42,45,47,48,59,63,65,68,69,70,71,74,79,113,152,154,158,160,162,166,180,187,189,190,207,220,225],van:[0,68,69,71,167],vanish:[68,139,166,168,171,187,214],vanston:71,vapovalyaev:0,var_in_dcm:149,var_start_end:159,var_start_end_i:159,var_start_end_u:159,var_start_end_v:159,var_start_end_x:159,var_sub1__sup_sub2:172,var_t:185,varanasi1:0,varanasi:0,varbosonicbasi:139,varepsilon:187,vari:[13,15,32,46,48,84,87,104,137,157,179,189,207,220,226],variabl:[2,4,6,7,8,10,11,13,15,16,27,31,32,33,36,37,38,39,40,41,42,49,51,57,58,59,60,62,63,68,73,74,75,79,91,92,97,99,106,107,113,128,133,137,139,142,148,149,151,154,161,163,164,166,168,169,172,173,178,179,184,185,186,187,188,189,190,197,201,203,204,205,208,214,216,217,219,220,222,226,230,231,233,235,239],variable_map:149,variable_nam:[214,220],varianc:191,variancematrix:191,variant:[166,187,190],variat:[24,32,166,179,187,206],variation_of_paramet:187,variationofparamet:187,varieti:[15,16,24,32,72,75,104,160,167,168,191,207],varii:22,variou:[0,2,8,13,15,17,23,31,32,37,52,58,59,62,89,118,122,123,134,136,148,160,161,164,165,166,173,179,182,185,187,188,190,203,226,238],varlist:68,varnoth:180,varphi:[36,40,172,187],varshalovich:[118,136],varun:0,vasdomm:0,vasileio:0,vasili:0,vasilii:0,vast:[59,165],vastli:157,vasudevan:0,vat:[0,1],vatsal:0,vdiff:32,vdot:[63,65,68,144],vec1:151,vec2:151,vec:[63,68,85,106,158,166,219,220,222],vech:63,vect:[150,214,216],vectfield:[150,154,216,220],vector:[2,4,7,11,15,17,19,23,24,34,40,45,46,47,54,55,57,61,63,68,72,74,82,84,85,86,87,88,89,90,91,92,94,95,97,98,99,101,102,103,104,106,107,111,112,125,134,136,141,144,151,152,153,160,165,172,182,187,189,191,195,196,201,202,215,219,226,235],vector_field:[34,220],vector_integr:[221,223],vector_nam:214,vectoradd:217,vectorfield:223,vectori:[152,154,217,222],vectormul:217,vectors_in_basi:34,vectorzero:217,vedant:0,vedantc98:0,vedantr1998:0,vedarth:0,vee:58,veethu:0,vega:23,vel:[92,94,95,98,106,152,156,220],vel_p:103,vel_vec:152,velibor:0,veloc:[84,87,89,94,95,97,98,99,103,104,106,113,141,144,148,149,152,154,157,220,222],velocity_con:106,velocity_constraint:[87,94,95,101,106],venkata:0,venkatesh:0,ventullo:0,venu:142,venus_a:142,venv_main:201,vera:0,veralozhkina:0,verbatim:2,verbos:[15,32,63,71,172,201,202,237],veri:[2,3,15,28,32,33,36,37,42,44,50,54,58,59,62,68,71,84,92,95,106,111,144,156,157,160,163,166,168,169,171,172,173,179,180,181,182,184,185,187,189,190,191,201,202,203,208,225,229,231,234,238],verif:[13,162,189],verifi:[5,13,23,29,33,34,92,160,166,171,187,189,190,192,221,238],verify_numer:200,verizon:0,verlag:[59,167],verma:0,versa:[33,59,71,74,129,149,160,164,217,218,231],versatil:58,version:[2,3,4,5,8,14,15,23,30,32,33,38,59,62,64,66,68,69,71,85,92,123,137,141,149,158,159,160,163,164,166,172,175,184,189,191,201,203,204,205,207,208,212,214,216,219,234,235,236],verstraelen:0,versu:0,versusvoid:0,vert:[70,154,157,222],vertex:[17,26,43,48,59],vertic:[14,17,25,26,42,43,45,47,48,49,59,61,63,68,75,91,111,119,158,159,172,180,207,223],vertical_direct:14,veryuniqu:14,veze:0,vfhsln8s3l4b87t4c3:0,vfield:[164,219],vfree_group:16,via:[2,5,8,9,10,23,24,32,37,40,58,59,62,68,71,74,149,158,160,164,166,168,171,190,199,202,203,214,222,226,234],viabl:[2,33],viacheslav:0,viacheslavp:0,vice:[33,59,71,74,129,149,160,164,217,218,231],vicki:40,victor:0,video:236,viet:168,view:[2,15,16,32,68,74,141,144,157,159,166,172,187,190,203,205,207],viewcod:2,viewcont:214,viewdoc:[69,167,181,184],vieweg:167,viewer:[2,14,172,204],vig:[0,1],vigener:33,vigenere_ciph:33,vighnesh:0,vighneshq:0,vigkla:168,vijai:0,vikrant:0,vikrantmalik051:0,viktor:188,vinai:0,vincent:[0,168,207],vinit:0,vinzent:0,violat:[3,92,158,169,184],virginia:0,virtanen:0,virtu:[104,106],virtual:[2,5,32,48,157,236],vishal:0,vishalg2235:0,vishesh:0,vishnu2101:0,vishnu:0,visibl:[58,159],visit:[5,17,23,37,207],visitor:205,visual:[32,71,75,100,171,184],vital:[182,191],vitstud:0,vlad:0,vlada:0,vladimir:0,vlahovski:181,vlatex:[90,148,149,155,157],vline:172,vlist:68,vobj:172,vol:[17,24,33,37,40,58,68,80,168,182,205,207],volatil:15,volum:[1,2,15,31,40,58,158,167,182,185,187,205,214,221],volume_result:15,von:[167,191],von_mises_distribut:191,vonmis:191,vonmisesdistribut:191,voss:0,vovapolu:0,vpprint:[90,148,155,157],vprint:[90,148,152,155,157],vradiu:42,vring:164,vsin:32,vslobodi:68,vsort0:32,vsort:32,vsp:0,vstack:63,w2e:31,w3j:118,w495:0,w_0:[108,185],w_1:156,w_2:156,w_3:156,w_a_n:92,w_b_n:[92,106],w_i:[59,108,168,187],w_k:38,w_o:108,w_r_n_qd:[97,98],w_x:156,w_y:156,w_z:156,wadsworth:0,wadwekar:0,wagih:0,wagstaff:71,wah:0,wai:[0,2,3,6,13,14,16,17,21,23,24,25,28,32,34,37,40,48,52,56,58,59,61,65,68,70,71,73,74,84,87,89,91,92,95,96,97,100,103,119,133,136,137,142,144,147,148,149,151,152,154,156,159,160,161,162,163,164,166,168,169,171,172,179,182,184,185,187,188,190,195,196,199,203,205,207,208,211,214,217,218,219,220,222,225,226,228,229,230,231,233,234,236,238,239],waist2rayleigh:108,waist:108,waist_approximation_limit:108,waist_in:108,waist_out:108,wait:157,wakita:0,waksman:0,wald:191,waldir:0,waldyri:0,walk:[15,17,131,134,182],walker:187,walli:31,walt:0,walter:105,wang78:[166,167],wang81:167,wang:[0,166,167],want:[0,2,3,5,11,13,15,16,17,24,32,33,39,44,46,48,51,58,59,63,65,68,71,72,83,88,92,106,122,132,133,136,139,142,144,151,152,156,157,159,161,163,166,168,169,171,172,173,179,180,182,184,185,187,188,189,190,191,196,201,203,205,207,208,218,220,223,225,226,229,230,231,233,234,235,236,237,238],war:33,ward:0,wardel:0,wardrop:0,warn:[2,3,32,33,47,73,157,161,187,189,199,201,203,207,235],warner:0,warnerjon12:0,warningcl:199,warns_deprecated_sympi:199,warranti:0,washington:71,wasn:181,wassermann:0,wast:32,watagedara:0,watch:24,watson:[16,184],wave:[81,82,109,110,111,175],wavefunct:[82,115,128,137,140],wavelen:108,wavelength:[108,113],wavenumb:113,wdjoyner:0,wdscxsj:0,wdv4758h:0,weak:[23,32,63,163,166],weakli:[63,207],web:[0,2,33,44,106,155,167],weber:0,webmast:0,webpag:[0,2],websit:[2,236],wedg:[34,58],wedgeproduct:34,weibul:191,weibull_distribut:191,weibulldistribut:191,weight:[32,40,47,49,57,59,61,68,123,184,226,230],weih:0,weisstein09:[166,167],weisstein:167,welch:0,welcom:[57,163,236],welecka:139,well:[2,3,5,11,13,14,15,16,17,24,31,32,37,38,39,40,59,66,68,80,84,85,92,94,95,103,129,138,141,142,148,156,158,159,160,162,163,164,166,172,179,181,182,184,187,189,190,201,202,217,218,222,224,226,231,233,234,238],welleslei:31,wendi:24,wennberg:0,went:156,weralwolf:0,were:[0,2,3,14,24,26,32,33,38,49,58,63,68,71,72,73,84,91,103,148,154,157,160,166,167,168,171,172,173,181,184,189,207,208,210,231,233,234,237,238],werehuman:0,werner:105,weslei:[17,24,71,167],wester1999:171,wester:165,westurn:0,weyl:[55,61],weyl_group:61,weylelt:61,weylgroup:61,wf_cont:94,wf_i:94,wf_mc:94,wflynni:0,wfrad:94,wgate:124,what:[2,3,13,15,24,26,31,32,33,34,37,38,42,43,47,57,58,59,61,68,71,73,85,87,89,92,95,106,138,139,142,144,149,156,157,164,165,166,168,171,172,173,179,181,182,184,185,187,189,195,199,200,201,203,208,217,218,223,225,226,230,231,232,234,236,237,238],whatev:[1,3,23,32,33,184,187,188,190,208],wheel:94,when:[1,2,3,5,7,8,9,10,11,13,14,15,16,17,23,24,25,30,31,32,33,34,36,37,38,39,40,41,42,44,45,46,47,48,49,56,57,59,60,62,63,64,68,69,71,72,73,79,80,84,92,94,98,100,101,102,103,104,107,112,113,118,123,124,128,131,133,141,142,143,148,153,156,157,159,160,161,163,164,166,168,169,171,172,174,178,179,180,181,182,184,185,187,188,189,190,191,194,195,199,200,201,202,203,207,208,210,211,213,217,225,226,230,231,233,234,238,239],whenc:182,whenev:[3,30,58,59,68,146,159,160,161,174,179,182,191,230,231,234],where:[2,3,6,11,13,14,15,16,21,22,23,24,26,28,30,31,32,33,34,36,37,38,40,42,45,47,48,49,50,54,55,56,57,58,59,61,62,63,64,65,68,71,74,77,79,84,87,88,89,91,92,94,102,103,104,106,107,113,123,128,134,136,138,139,140,141,142,149,152,154,156,157,158,160,161,162,163,164,166,168,169,170,172,173,174,175,179,180,181,182,184,185,187,188,189,191,192,194,196,201,202,203,204,207,208,210,214,220,222,226,230,231,233,235,238,239],wherea:[11,15,33,42,48,58,62,79,144,160,163,168,172,190,207,226,238],wherebi:33,wherev:[5,92,184,190,217],whet:233,whether:[0,13,14,15,23,31,32,33,39,40,44,47,59,60,62,63,64,66,68,69,71,84,88,91,92,127,151,157,159,163,164,168,172,175,179,180,184,185,187,189,190,191,192,200,201,203,207,208,214,216,231,235],which:[2,3,5,6,7,8,9,10,11,12,13,14,15,16,21,22,23,24,25,28,30,31,32,33,34,35,36,37,38,40,41,42,45,46,47,48,51,54,55,56,57,58,59,60,61,62,63,65,66,68,69,70,71,73,74,75,77,79,80,81,84,85,86,87,89,91,92,94,98,100,101,102,103,104,106,107,108,110,112,113,125,128,134,135,136,137,139,143,144,145,148,149,151,152,153,154,156,157,158,159,160,161,162,163,164,166,168,169,170,171,173,174,175,178,179,180,181,182,184,185,186,187,188,189,190,191,194,196,201,202,203,204,205,207,208,210,214,215,218,222,223,224,226,228,229,230,231,233,234,235,236,237,238,239],white:[0,60,153,191],whitespac:[2,32],whittak:59,whittl:238,whl:15,who:[0,2,33,34,106,157,166,172,226,236],whole:[2,32,34,40,59,75,81,159,160,168,172,175,180,182,187,190,207],whom:191,whose:[2,14,16,17,21,24,31,32,33,38,42,46,48,49,55,64,68,69,71,89,101,111,134,144,150,151,154,157,161,162,164,168,179,184,187,188,189,191,196,201,205,207,208,214,216,218,220],wht:35,why:[3,15,57,157,164,169,179,182,208,232,234,235],wick:139,wide:[60,68,106,153,163,168,172,191],widen:169,wider:172,widget:172,width:[14,15,60,153,159,168,172,201],wiecki:0,wiener:191,wiener_process:191,wienerprocess:191,wieser:0,wigner3j:[118,158],wigner6j:[118,158],wigner9j:[118,158],wigner:[82,118,136,191],wigner_3j:158,wigner_6j:158,wigner_9j:158,wigner_d:158,wigner_d_smal:158,wigner_semicircle_distribut:191,wignerd:136,wignersemicircl:191,wignerssemicirclelaw:191,wiki:[0,2,3,4,9,10,11,13,14,15,20,21,23,24,31,32,33,34,35,37,38,40,42,44,48,49,50,59,60,61,62,63,65,68,71,83,108,110,111,112,114,115,116,120,121,122,125,127,128,137,139,143,149,151,155,159,168,175,179,180,181,185,187,190,191,203,207,214,215,219,221,223,224,235],wikibook:[2,59,60],wikidel:219,wikidyad:[104,155],wikidyadicproduct:[104,155],wikipappu:44,wikipedia:[2,9,10,11,13,14,15,20,21,23,24,31,32,33,34,35,37,38,40,42,44,48,49,50,59,61,62,63,65,68,71,83,108,110,111,112,114,115,116,120,121,122,125,127,128,137,139,142,149,151,155,168,175,179,180,181,187,190,191,203,207,214,215,219,221,223,233,235,236],wild:[3,184,207],wildcard:[32,184],wilei:191,wilf:[17,31,189],wilk:0,wilkinson:63,willard:0,willem:0,wiman:0,win10:2,win:6,window:[2,57,210],wire:119,wire_idx:119,wirefram:159,wisdom:34,wise:[15,16,38,63,69,162,166,172,178,202],wish:[2,3,5,15,32,33,36,58,71,134,148,157,205,208,230,233,235,236,239],wishart:191,wishart_distribut:191,wit:71,with_pivot:68,witherden:0,within:[2,4,13,14,15,32,38,45,48,62,63,65,71,72,74,97,134,148,149,156,157,161,163,168,170,180,187,189,190,191,200,201,202,210],without:[0,2,3,5,9,11,12,15,31,32,33,34,36,40,58,59,60,63,65,68,80,92,96,98,102,103,139,144,148,149,150,156,159,162,163,166,168,172,174,180,181,182,184,185,187,188,189,190,191,195,196,199,201,203,207,208,210,216,219,235,238],withstand:[74,75],witt:0,wittkopf:167,wkshum:185,wlog:182,wminu:63,wn_m:68,wojciech:105,wolba:0,wolfgang:0,wolfram:[2,11,25,26,32,33,35,37,38,40,42,48,59,68,71,167,172,174,175,177,180,185,191,207,235],wolphramalpha:187,won:[3,15,32,168,172,184,187,190,234],wonder:235,wong:0,wood:0,wor6d:33,word:[2,11,19,28,31,32,33,38,40,62,92,104,160,163,184,185,187,189,203,214,218,231],word_sep:33,wordpress:[58,185],work:[0,1,2,3,5,8,10,13,14,15,23,24,25,32,33,36,40,57,58,59,61,62,63,65,68,71,73,84,92,94,104,106,119,123,128,132,133,134,135,138,141,151,157,158,159,160,161,163,164,165,166,168,172,179,180,181,182,184,185,187,189,190,191,196,201,202,203,205,207,208,209,217,218,225,226,231,233,234,235,236,237,238],workaround:[2,208],workflow:[2,106,163,203,208],workhors:179,world:[33,95,103,207],worri:[3,32,234],wors:[62,184],worst:[71,168,187],worth:[149,218,220],worthwhil:36,wou:24,would:[0,2,3,5,13,14,15,16,21,23,24,31,32,33,37,39,44,48,58,59,63,68,71,73,74,79,80,81,84,86,92,95,103,106,134,136,139,144,148,149,154,156,159,163,164,166,168,169,171,172,173,175,180,181,182,184,185,187,188,189,190,191,194,195,201,203,205,208,210,211,218,219,220,222,226,229,230,231,233,234,235,237,238,239],wouldn:63,woven:160,wp1:34,wplu:63,wr_cont:94,wr_i:94,wr_mc:94,wrap:[2,8,9,10,11,15,21,32,38,60,72,153,157,162,163,166,172,175,190,195,202,208,210,231,234],wrap_lin:[36,59,60,68,75,153,160,161,171,172,187],wrapper:[9,11,15,24,32,40,68,103,151,153,162,163,166,172,179,187,190,191,202,207],wrench:40,wright:[0,167],write2yashreddi:0,write:[4,6,15,21,32,33,40,58,59,65,106,119,156,157,161,166,172,181,182,185,187,190,195,201,202,203,208,226,233,234,236,238],writer:201,written:[0,1,2,11,15,20,23,24,28,32,37,40,44,50,55,58,61,70,71,95,100,106,139,154,155,156,157,160,161,168,172,175,179,182,185,187,203,220,222,233,234,236,238],wrong:[2,23,32,33,40,42,57,68,163,187,204,231,235],wronskian:[68,187],wrote:[233,234],wrrad:94,wrt:[13,15,32,34,40,49,68,92,106,149,150,166,168,214,215,216,220],wsl:2,wsym:179,wubbl:0,wustl:0,wuyudi119:0,wuyudi:0,ww2040:191,www2:167,www3:214,www:[2,13,23,24,33,35,37,40,54,59,60,71,153,167,171,172,181,184,185,187,191,207,235,237],wyatt:0,wyattpeak:0,wyborski:0,x01:32,x02:32,x11:32,x12:32,x50:32,x51:32,x86:15,x_0:[22,23,33,54,55,56,166,174,185,187,191,226,230],x_1:[16,22,23,33,37,54,68,134,161,164,166,168,174,185,190],x_1x_0:22,x_2:[16,22,37,54,134,161,166,168,174,185,190],x_2x_0:22,x_2x_1:22,x_3:[16,22,54,134],x_3x_0:22,x_3x_1:22,x_3x_2:22,x_dom:163,x_domain:164,x_i:[22,40,59,68,161,164,166,168,169,172,190,226],x_j:[164,166,168],x_k:[33,166],x_ket:134,x_list:[13,230],x_m:191,x_n:[16,22,33,54,68,161,164,166,168,185,190,226],x_op:134,x_u:166,x_var:159,xax:23,xb7:172,xbra:[117,129,134],xd2:106,xdagger:138,xdirect:45,xdot:94,xdvi:172,xf_1:166,xfail:[187,199,201],xfield:164,xfree_group:16,xgate:123,xiang:0,xingjian:0,xiong:0,xiuqin:181,xket:[117,129,134],xlabel:159,xlii:0,xlim:[32,159],xlist:13,xmax:[42,43,45,47,48,159],xmin:[42,43,45,47,48,159],xml:184,xobj:172,xoedusk:0,xop:[117,129,134],xor:[32,35,62,73,172,231],xpass:[199,201],xpath:184,xreplac:[32,63,68,149],xring:164,xscale:159,xstr:172,xsym:172,xthread:204,xval:189,xvi:[16,22],xxx:[32,59,68,207,209],xxxx:207,xxxxxx:207,xymatrix:14,xypic:14,xypic_draw_diagram:14,xypicdiagramdraw:14,xyx:[149,214,215],xyz:[0,44,73,74,149,157,214,215,218],xzx:149,xzy:149,y1d:106,y2d:106,y_0:[185,187],y_1:[16,185,191],y_2:[16,185,191],y_3:191,y_i:[164,166,168,187],y_list:[13,230],y_n:[40,185],y_var:159,yadav:0,yahoo:0,yale:0,yamazaki:0,yan:0,yandex:0,yang:[0,167],yann:71,yash:0,yathartha32:0,yathartha:0,yatna:0,yatnavermaa:0,yaw:94,ydirect:45,year:[0,1,2],yehdegho:0,yeragudipati:0,yerniyaz:0,yes:[33,187],yeshsurya:0,yeshwanth:0,yet:[3,8,10,13,14,32,36,37,39,59,103,119,160,163,164,169,171,180,187,190,230],yf_1:166,ygate:123,yibi:191,yicong:0,yide:0,yidinggjiangg:0,yield:[13,15,23,32,33,40,56,58,71,74,86,133,161,166,168,173,174,179,180,181,184,185,189,205,207,235],yin:0,yiu:167,ylabel:159,ylemkimon:0,ylim:159,ymax:[42,43,45,47,48,159],ymin:[42,43,45,47,48,159],ymishra013:0,ynm:[40,158],ynm_c:40,yogesh:0,yop:117,yorgei:205,york:[40,58,105,182,189],you:[0,1,2,3,4,5,6,9,10,11,13,15,16,23,24,31,32,33,34,36,38,39,40,44,46,48,50,51,56,57,58,59,60,62,63,65,66,68,71,72,73,79,81,83,84,87,88,89,92,93,101,103,104,106,128,133,134,137,139,148,149,151,154,156,157,159,160,161,163,164,166,168,169,172,173,175,179,180,184,185,187,188,189,191,194,195,196,199,200,201,202,203,204,207,208,211,217,218,219,220,224,225,229,230,231,233,234,235,236,237,238,239],young:[74,196],your:[1,2,3,5,9,32,33,59,60,68,72,73,84,101,103,157,159,172,179,184,187,190,191,200,208,224,230,233,235,236,237,238],your_hint:187,yourself:[15,94,204,230],ysarun1999:0,yscale:159,yukai:0,yuki:0,yukoba:0,yule:191,yulesimon:191,yuri:0,yurii:0,yuvalf:71,yxy:[149,157],yxz:149,yzx:[149,157],yzy:149,z1_sympi:163,z_0:[58,184],z_1:58,z_n:[40,167],z_p:166,z_r:108,z_r_in:108,z_r_out:108,z_sympi:163,z_zz:163,zach:0,zachariah:0,zacheti:0,zaffalon:0,zaletnyik:167,zamiguy_ni:0,zamrath:0,zapata:0,zassenhau:166,zcu:0,zdirect:45,zeddq1:0,zeel:0,zeeshan:0,zeilberg:[31,189],zeli:0,zeng:181,zero:[3,10,12,15,22,23,24,28,31,35,36,37,38,39,40,42,46,47,48,58,59,61,63,64,65,67,68,69,70,71,73,74,79,89,92,94,98,101,102,106,111,133,137,139,141,152,154,156,157,158,160,161,162,163,164,165,168,170,172,175,179,180,182,184,185,187,188,189,190,191,192,207,208,217,219,220,234,239],zero_monom:164,zero_to_the_power_of_zero:32,zerodivisionerror:[164,199,208],zerohandl:11,zeromatrix:[11,65],zeropred:11,zeroth:32,zeta:[3,31,36,37,39,172,179,191],zeta_distribut:191,zeta_funct:40,zfade4:159,zgate:123,zhang:0,zhenb:181,zheng:0,zhi:0,zhong:181,zhongshi:0,zhou:[0,68],zhu:0,ziki:71,zingal:0,zinkov:0,zip:[13,22,33,71,168,185,187,205],zip_row_op:[64,69],zj495:0,zlatan:0,zlatanvasov:0,znm:40,znxftw:0,zo42:24,zograf:0,zoho:0,zoo:[11,32,37,38,40,59,179,181,184],zoom:159,zop:117,zorich:0,zout:166,zqyin:0,zsc347:0,zubieta:0,zuckerman:166,zulfikar97:0,zulfikar:0,zur:167,zxy:149,zxz:[149,157,214,215],zyx:149,zyz:149,zz_i:[162,163,165],zz_python:164,zzq_890709:0,zzx:157},titles:["About","Citing SymPy","SymPy Documentation Style Guide","Gotchas and Pitfalls","Welcome to SymPy\u2019s documentation!","Installation","abc","Algebras","Ask","Assume","Assumptions","Predicates","Refine","Calculus","Category Theory","Code Generation","Finitely Presented Groups","Gray Code","Group constructors","Combinatorics","Named Groups","Partitions","Polycyclic Groups","Permutation Groups","Permutations","Polyhedron","Prufer Sequences","Subsets","Tensor Canonicalization","Test Utilities","Utilities","Concrete","Core","Cryptography","Differential Geometry","Discrete","Numerical Evaluation","Combinatorial","Elementary","Functions","Special","Curves","Ellipses","Entities","Geometry","Lines","Plane","Points","Polygons","Utils","About Holonomic Functions","Converting other representations to holonomic","Holonomic","Internal API","Operations on holonomic functions","Representation of holonomic functions in SymPy","Uses and Current limitations","SymPy Modules Reference","Computing Integrals using Meijer G-Functions","Integrals","Interactive","Lie Algebra","Logic","Common Matrices","Dense Matrices","Matrix Expressions","Immutable Matrices","Matrices","Matrices (linear algebra)","Sparse Matrices","Sparse Tools","Number Theory","Numeric Computation","Parsing","Beam (Docstrings)","Solving Beam Bending Problems using Singularity Functions","Continuum Mechanics","Control","Control Module","Control API","High energy physics","Hydrogen Wavefunctions","Physics","Matrices","Potential Issues/Advanced Topics/Future Features in Physics/Mechanics","Body (Docstrings)","Expression Manipulation (Docstrings)","Kane\u2019s Method & Lagrange\u2019s Method (Docstrings)","Linearization (Docstrings)","Masses, Inertias & Particles, RigidBodys (Docstrings)","Printing (Docstrings)","SymbolicSystem (Docstrings)","Autolev Parser","Examples for Physics/Mechanics","A bicycle","Nonminimal Coordinates Pendulum","A rolling disc","A rolling disc, with Kane\u2019s method","A rolling disc, with Kane\u2019s method and constraint forces","A rolling disc using Lagrange\u2019s Method","Classical Mechanics","Kane\u2019s Method in Physics/Mechanics","Lagrange\u2019s Method in Physics/Mechanics","Linearization in Physics/Mechanics","Masses, Inertias, Particles and Rigid Bodies in Physics/Mechanics","References for Physics/Mechanics","SymPy Mechanics for Autolev Users","Symbolic Systems in Physics/Mechanics","Gaussian Optics","Optics Module","Medium","Polarization","Utilities","Waves","Pauli Algebra","Quantum Harmonic Oscillator in 1-D","Anticommutator","Cartesian Operators and States","Clebsch-Gordan Coefficients","Circuit Plot","Commutator","Constants","Dagger","Gates","Grover\u2019s Algorithm","Hilbert Space","Quantum Mechanics","Inner Product","Operator","Operator/State Helper Functions","Particle in a Box","Qapply","QFT","Qubit","Represent","Shor\u2019s Algorithm","Spin","State","Tensor Product","Second Quantization","Quantum Harmonic Oscillator in 3-D","Dimensions and dimension systems","Examples","Unit systems","Philosophy behind unit systems","Unit prefixes","Physical quantities","Units and unit systems","Potential Issues/Advanced Topics/Future Features in Physics/Vector Module","Essential Classes","Docstrings for basic field functions","Essential Functions (Docstrings)","Kinematics (Docstrings)","Printing (Docstrings)","Scalar and Vector Field Functionality","The Physics Vector Module","Vector: Kinematics","Vector & ReferenceFrame","Wigner Symbols","Plotting","AGCA - Algebraic Geometry and Commutative Algebra Module","Basic functionality of the module","Introducing the domainmatrix of the poly module","Introducing the Domains of the poly module","Reference docs for the Poly Domains","Polynomial Manipulation","Internals of the Polynomial Manipulation Module","Literature","Polynomials Manipulation Module Reference","Series Manipulation using Polynomials","Poly solvers","Examples from Wester\u2019s Article","Printing","Term Rewriting","Formal Power Series","Fourier Series","Series","Limits of Sequences","Sequences","Series Expansions","Sets","Hongguang Fu\u2019s Trigonometric Simplification","Hypergeometric Expansion","Simplify","Simplify","Diophantine","Inequality Solvers","ODE","PDE","Solvers","Solveset","Stats","N-dim array","Tensor","Methods","Indexed Objects","Tensor","Tensor Operators","Testing","pytest","Randomised Testing","Run Tests","Autowrap Module","Codegen","Decorator","Enumerative","Utilities","Iterables","Lambdify","Memoization","Miscellaneous","PKGDATA","Source Code Inspection","Timing Utilities","Essential Classes in sympy.vector (docstrings)","Orienter classes (docstrings)","Essential Functions in sympy.vector (docstrings)","Basic Implementation details","More about Coordinate Systems","General examples of usage","Scalar and Vector Field Functionality","Vector","Introduction","Applications of Vector Integrals","SymPy Papers","Classification of SymPy objects","Finite Difference Approximations to Derivatives","SymPy Special Topics","Introduction","Basic Operations","Calculus","Gotchas","SymPy Tutorial","Introduction","Advanced Expression Manipulation","Matrices","Preliminaries","Printing","Simplification","Solvers","Wiki"],titleterms:{"1st_exact":187,"1st_homogeneous_coeff_best":187,"1st_homogeneous_coeff_subs_dep_div_indep":187,"1st_homogeneous_coeff_subs_indep_div_dep":187,"1st_linear":187,"1st_power_seri":187,"2nd_linear_airi":187,"2nd_linear_bessel":187,"2nd_power_series_ordinari":187,"2nd_power_series_regular":187,"abstract":[15,76,78,80,100,109,126,155,164],"boolean":62,"case":190,"class":[2,14,15,31,34,63,64,66,68,69,71,103,149,159,162,172,184,185,192,214,215,225],"enum":205,"final":231,"float":[3,32,36],"function":[2,3,15,22,31,32,38,39,40,50,51,54,55,58,62,68,71,73,75,84,104,126,129,150,151,154,159,161,163,164,168,171,172,182,184,185,187,188,192,216,220,237,238],"gr\u00f6bner":171,"import":2,"m\u00f6biu":35,"new":[218,224],"return":190,"switch":92,"true":103,"var":32,AND:218,Abs:38,DEs:[189,190],For:59,ODE:[187,189],ODEs:[187,189,190],One:32,The:[16,22,58,103,144,155,179,182,219,220,233],Use:72,Uses:56,Using:[15,103,104,157,159,218,226],_solve_lin_si:170,_solve_lin_sys_compon:170,a_and_b:103,abaco1_product:187,abaco1_simpl:187,abaco2_similar:187,abaco2_unique_gener:187,abaco2_unique_unknown:187,abc:6,about:[0,50,190,218,236,239],acceler:[84,148,156,179],access:235,accuraci:36,aco:38,acosh:38,acot:38,acoth:38,acsc:38,acsch:38,add:32,addit:54,advanc:[84,148,171,234,235],aesara:[72,172],agca:160,airi:40,algebra:[7,11,61,68,114,157,160,163,168,171,189,239],algorithm:[15,16,124,135,166,168,174,179,182],allhint:187,almost_linear:187,also:[2,32],altern:157,anaconda:5,analysi:142,analyt:126,angular:[104,156],angular_momentum:89,ani:190,anticommut:116,antihermitian:11,apart:238,api:[53,58,59,79,100,155,190,202,203,221],appli:[58,182],applic:223,approxim:[15,226],area:223,arg:[38,234],argand:58,argument:[3,190],around:182,arrai:192,art:159,articl:171,as_int:32,ascii:[159,237],asec:38,asech:38,asin:38,asinh:38,ask:8,assign:3,assum:9,assumpt:[10,32,225],ast:[15,92],atan2:38,atan:38,atanh:38,atom:32,atomicexpr:32,attribut:[16,22],author:158,autolev:[92,106],automat:171,autowrap:[15,202],avail:44,axisorient:215,back:171,backend:159,background:103,base:[14,34,160,161,171,178,190],base_solution_linear:185,basi:[157,166],basic:[32,36,68,150,161,163,168,180,217,229,235],beam:[74,75,76],behind:144,bell:37,bend:75,bernoulli:[37,187],bessel:40,besselsimp:184,best:2,beta:40,between:[3,146,163],beyond:44,bibliographi:[16,22],bicycl:94,binaryquadrat:185,binomi:37,bivari:187,block:65,blog:224,bodi:[85,104,223],bodyorient:215,booleankind:32,box:130,branch:58,bug:59,build:2,cach:32,cacheit:32,calcul:223,calculu:[11,13,157,230],cancel:238,canon:187,canonic:28,capit:2,cart:207,cartesian:117,catalan:[32,37],categori:14,caveat:[6,73],cbrt:38,ceil:38,cfunction:15,chebyshev:40,check:150,checkinfsol:187,checkodesol:187,checkpdesol:188,chi:187,choic:84,choos:163,circuit:119,cite:1,classic:[100,166],classif:225,classify_diop:185,classify_od:187,classify_pd:188,clebsch:118,cnode:15,code:[2,15,17,84,157,172,212],codegen:[15,203],codeprint:172,coeffici:[118,166],collect:[22,173,184,238],collect_const:184,collect_sqrt:184,collector:22,color:159,column:235,columnspac:235,combin:54,combinator:19,combinatori:[37,184],combsimp:[184,238],common:[11,63,84,148,171,172,173,184],commut:[11,120,160],compat:32,complement:180,complet:92,complex:[11,38,163,180],complexinfin:32,complexregion:180,composit:[11,54],compound:[178,180,191],compress:16,comput:[22,58,72,126,171,233],concept:161,concret:31,condit:[58,180],conditionset:180,configur:166,confluenc:182,conjug:38,conserv:[154,220],constant:[121,144],constant_renumb:187,constantsimp:187,constraint:98,construct:[16,22],constructor:[18,168,235],contain:32,content:[10,19,39,52,82,165,176,193],continu:[191,238],continuum:76,contract:192,contribut:[2,57,169],control:[77,78,79,159],converg:58,convers:146,convert:[51,54,163,187,229],convolut:35,coordin:[84,95,103,159,217,218,220,222],coordinatesym:149,coordsys3d:[214,218],copyright:158,core:[32,65],cornacchia:185,cos:38,coset:16,cosett:16,cosh:38,cot:38,coth:38,count_op:32,cover:35,coxet:16,creat:[3,68],credit:158,cross:[2,151],cryptographi:33,csc:38,csch:38,cse:184,cubicthu:185,curl:[150,154,216,220],current:56,curv:41,curvilinear:220,custom:[159,172],cutil:15,cxxnode:15,cyclotom:171,dagger:122,ddm:162,deal:190,decomposit:[168,171],decor:204,decrement:182,definit:[11,50],del:[214,219,220],delet:235,denest:184,dens:[64,163,164,166],depend:[103,163,218],depth:[22,44],deriv:[32,157,192,220,226,230],descent:185,detail:[202,203,217],detect:173,determin:235,deutil:189,develop:[0,32],diagon:[11,192,235],diagram:14,dict:32,dictionari:3,diff:32,differ:[13,106,163,218,226,230],differenti:[34,54,84,189,190,239],differentialoper:55,differentialoperatoralgebra:55,dim:192,dimens:[44,141,144],dimension:142,diop_bf_dn:185,diop_dn:185,diop_general_pythagorean:185,diop_general_sum_of_even_pow:185,diop_general_sum_of_squar:185,diop_linear:185,diop_quadrat:185,diop_solv:185,diop_ternary_quadrat:185,diop_ternary_quadratic_norm:185,diophantin:[185,189,190],diophantineequationtyp:185,diophantinesolutionset:185,diracdelta:40,direct:[220,226],directli:[103,218],disc:[96,97,98,99],discret:[35,191],dispers:168,distribut:[166,191],diverg:[150,154,216,220,223],divis:[161,185],dmp:163,doc:[57,164],docstr:[2,74,85,86,87,88,89,90,91,150,151,152,153,207,214,215,216],document:[2,4],doe:[3,190],domain:[161,163,164,168,171,190],domainmatrix:162,dot:[151,237],dotprint:172,doubl:[3,37],draw:14,dsolv:187,dsolve_system:187,dummi:32,dup:163,dyadic:[104,148,149,214,217,218],dynam:92,dynamicsymbol:[148,151],ecm:71,eigenvalu:235,eigenvector:235,element:[11,103,163],elementari:[38,160,178,180],elimin:184,ellips:42,ellipt:40,emploi:190,emptyset:180,encod:168,end:182,energi:[80,104],ensur:190,entiti:[43,44,159],entri:68,enumer:[16,37],epath:184,eqs_to_matrix:170,equal:[3,32,231],equat:[101,102,103,142,161,185,187,189,190,239],equival:[62,106,185],error:[36,40],essenti:[149,151,214,216],euclidean:161,euler:37,eulergamma:32,evalf:[32,72,229],evalfmixin:32,evalu:[3,36,54,106,234],even:11,exampl:[2,6,32,44,56,59,71,75,80,93,103,107,111,142,144,157,171,172,179,182,191,192,195,219,233,238],except:[68,73,166],exercis:236,exist:58,exp1:32,exp:38,exp_polar:38,expand:[32,171,173,238],expand_complex:32,expand_func:[32,238],expand_log:[32,238],expand_mul:32,expand_multinomi:32,expand_power_bas:[32,238],expand_power_exp:[32,238],expand_trig:[32,238],expans:[54,179,182,184,230],experiment:73,explan:2,expon:[22,171],exponenti:[38,40,187,238],expr:32,exprcondpair:38,express:[3,15,44,51,54,62,65,73,86,151,163,171,216,218,229,234],exprtool:32,extend:[11,182],extens:[160,171],extra:168,facil:16,factor:[161,166,171,187,238],factor_term:32,factori:[37,161],factorial2:37,fallingfactori:37,faq:240,fast:35,featur:[84,148],fibonacci:37,field:[150,154,163,166,168,171,220,222],financi:0,find:168,find_dn:185,find_dynamicsymbol:86,finit:[11,13,16,160,163,166,171,182,191,226,230],finiteset:180,fix:92,floor:38,flux:223,fnode:15,forc:98,form:[62,103,187],formal:[168,174],format:2,formula:[58,182],fortran:[15,172],fourier:[35,175],frac:38,fraction:[168,171,184,238],frame:157,free:[16,161],fresnel:40,from:[3,171],full:11,func:[225,234],function_sum:187,functionclass:32,further:[103,231],futil:15,futur:[44,84,92,148],gamma:[40,80],gammasimp:238,gate:123,gaussian:[108,163,164,171],gaussian_reduc:185,gcd:[161,166,171],gcd_term:32,gegenbau:40,gener:[2,15,22,24,163,190,219],generalpythagorean:185,generalsumofevenpow:185,generalsumofsquar:185,genocchi:37,geometr:159,geometri:[34,44,160],get:[2,3],git:5,goldenratio:32,gordan:118,gotcha:[3,92,231],gradient:[150,154,216,220],grai:17,greaterthan:32,groebner:[161,166],group:[16,18,20,22,23,144],grover:124,gruntz:179,gtk:172,guid:[2,100,155,221],guidelin:2,hadamard:35,half:32,handl:[36,190],harmon:[37,40,115,140],has:103,have:171,head:2,heavisid:40,help:3,helper:[129,172],hermit:40,hermitian:11,heurist:187,hexagon:44,high:80,hilbert:125,hint:[187,188],holonom:[50,51,52,54,55],holonomicfunct:55,holzer:185,homogeneous_ord:187,homogeneousgeneralquadrat:185,homogeneousternaryquadrat:185,homogeneousternaryquadraticnorm:185,homomorph:160,hongguang:181,how:[58,157,190],hydrogen:81,hyperbol:38,hyperbolicfunct:38,hyperexpand:[184,238],hypergeometr:[31,40,51,54,174,182,184],hypersimilar:184,hypersimp:184,ideal:160,identityfunct:38,igcd:32,ilcm:32,imageset:180,imaginari:11,imaginaryunit:32,immut:[3,66],immutablematrix:[64,66],immutablesparsematrix:69,implement:[58,154,172,182,202,203,217,220],implicitregion:214,improv:[10,92],increment:182,index:[16,22,195],indic:182,inequ:[186,189,190],inertia:[89,104,148],inertia_of_point_mass:89,infer:62,infin:32,infinit:[11,190],infinitesim:187,inform:[187,188],infrastructur:0,inhomogeneousgeneralquadrat:185,inhomogeneousternaryquadrat:185,init_vprint:153,inner:127,input:190,insert:235,inspect:212,instal:[2,5,73,236],integ:[11,32,38,163,180],integer_log:32,integer_nthroot:32,integr:[36,40,54,56,58,59,84,161,223,230],interact:[60,159],interest:233,interfac:[84,148,159,191],intern:[53,58,59,163,166,185,187],intersect:[35,44,180],interv:[159,180],introduc:[162,163],introduct:[3,7,14,15,16,22,34,44,62,92,106,144,154,156,159,160,161,171,222,226,228,233],intuit:179,invari:234,invers:[3,38,58],invert:11,irrat:11,is_conserv:[150,216],is_sequ:32,is_solenoid:[150,216],issu:[84,92,103,148,235],iter:[32,180,207],jacobi:40,javascript:172,joint:191,jordan:187,julia:172,kane:[87,95,97,98,101,103],kanemethod:87,kei:[106,234],keyword:3,kind:[32,225],kinemat:[152,156],kinematic_equ:152,kinet:104,kinetic_energi:89,known:190,kroneckersimp:184,kwarg:103,lagrang:[87,95,99,102,103],lagrangesmethod:87,lagrangian:[89,104],laguerr:40,lambda:32,lambdaprint:172,lambdifi:[72,208,229],lambertw:38,laplac:58,latex:[2,73,237],latexprint:172,lcm:161,ldescent:185,lead:22,legendr:40,lessthan:32,level:166,licens:0,lie:[61,187],lie_group:187,limit:[56,92,177,179,230],line:45,linear:[54,68,84,88,103,104,144,171,185,187],linear_coeffici:187,linear_eq_to_matrix:190,linear_momentum:89,link:106,linodesolv:187,linsolv:190,liouvil:187,list:3,literatur:[144,167,171],locat:218,log:38,logarithm:[40,238],logcombin:[184,238],logic:62,logo:224,lookup:58,loos:182,low:16,lower:11,lti:79,luca:37,magazin:224,make:2,manipul:[68,86,165,166,168,169,190,234],mapl:172,mass:[89,104,223],math:[2,15],mathemat:[2,3,106],mathematica:172,mathieu:40,mathml:237,mathmlprint:172,mathrm:[73,237],matlab:172,matric:[63,64,65,66,67,68,69,80,83,226,235],matrix:[11,64,65,68,103,187,191,235],matrix_to_vector:216,matrixbas:68,matrixcalculu:68,matrixcommon:63,matrixdetermin:68,matrixeigen:68,matrixreduct:68,matrixsubspac:68,max:38,mechan:[76,84,93,100,101,102,103,104,105,106,107,126,191],mechanics_print:90,median:44,medium:110,meijer:[51,54,58,182],mellin:58,memoiz:209,merge_solut:185,method:[5,87,95,97,98,99,101,102,103,172,188,190,194,218,226,235],min:38,minim:22,misc:10,miscellan:[38,44,210],mistak:172,mlatex:90,mod:32,mod_invers:32,mode:159,modul:[57,78,109,148,155,160,161,162,163,166,168,185,187,188,190,202],modular:166,momenta:104,momentum:104,monomi:168,more:[179,218,233],move:182,mpmath:5,mpprint:90,mprint:90,msub:86,mul:32,multidimension:32,multifactori:37,multipl:[54,157],multivari:[166,171],name:20,nan:[32,103],narr:2,natur:180,naturals0:180,need:144,neg:11,negativeinfin:32,negativeon:32,new_method:103,nfloat:32,node:15,nonlinear:187,nonlinsolv:190,nonminim:95,nonneg:11,nonposit:11,nonzero:11,normal:[11,171],notat:182,note:[32,44,103,179,181,231,239],nsimplifi:184,nth_algebra:187,nth_linear_constant_coeff_homogen:187,nth_linear_constant_coeff_undetermined_coeffici:187,nth_linear_constant_coeff_variation_of_paramet:187,nth_order_reduc:187,ntheori:71,nthroot:184,nullspac:235,number:[3,11,32,35,36,58,71,163,168,171],numberkind:32,numbersymbol:32,numer:[36,54,59,72,84,106],numpi:68,object:[195,225],octav:172,odd:11,ode:187,odesimp:187,old:[163,190],onli:190,onlin:92,oper:[3,54,68,117,126,128,129,150,154,157,182,192,197,217,219,220,229,235],opt_cs:184,optic:[108,109],option:166,order:[11,32,168,179,182,187],ordinari:[189,190],orient:[215,218],orient_new:218,orthogon:[11,40,168,220],oscil:[115,140],other:[5,51,154,218],outer:151,output:[84,190],over:[59,171,180],overview:[16,22,58],paper:224,pappu:44,paramet:[2,182,190],parametricintegr:214,parametricregion:214,parametrize_ternary_quadrat:185,pars:73,parser:92,partial:[168,171,189,190],particl:[89,104,130],partit:[21,37,185,207],pauli:114,pde:[188,189,190],pde_1st_linear_constant_coeff:188,pde_1st_linear_constant_coeff_homogen:188,pde_1st_linear_variable_coeff:188,pde_separ:188,pde_separate_add:188,pde_separate_mul:188,pdsolv:188,pendulum:95,perform:10,perimet:223,periodic_argu:38,permut:[23,24],philosophi:144,physic:[80,82,84,93,101,102,103,104,105,106,107,146,148,154,155,156,157],piecewis:38,pitfal:3,pkgdata:211,plane:[46,58],planet:224,plot:[119,159],plotgrid:159,point:[36,47,84,148,152,156,217],polar:[58,111],polar_lift:38,poleerror:32,poli:[162,163,164,170],polycycl:22,polycyclicgroup:22,polygon:[48,59],polyhedra:59,polyhedron:25,polynomi:[40,54,161,163,164,165,166,168,169,171,189,238],polynomialr:163,polyr:163,polytop:59,posifi:184,posit:11,possibl:235,potenti:[84,103,104,148,154,220],potential_energi:89,pow:32,powdenest:[184,238],power:[32,169,174,180,184,233,238],power_represent:185,powerset:180,powsimp:[184,238],pqa:185,practic:2,preced:172,precisionexhaust:32,predefin:15,predic:[10,11],prefer:2,prefix:145,preliminari:236,present:[16,22],pretti:[172,237],prettyprint:172,prevent:234,preview:172,prime:11,prime_as_sum_of_two_squar:185,principal_branch:38,print:[15,60,84,90,148,153,172,237],printer:[15,172,237],problem:[75,219],process:191,prod:32,product:[35,127,138,192,219],productset:180,properti:160,prufer:26,punctuat:2,pyglet:159,pytest:199,python:[3,15],pythoncodeprint:172,pythonprint:172,pyutil:15,qappli:131,qft:132,qq_i:164,quadrilater:219,quantiti:[142,144,146,218],quantiz:139,quantum:[115,126,140],quaternion:7,quaternionorient:215,qubit:133,queri:10,question:5,quick:[229,230,231,234,235,236,237,238],quotient:164,rad_ration:184,radsimp:184,random:191,randomis:200,rang:180,rank:11,ration:[3,11,32,163,164,168,171,174,238],ratsimp:184,ratsimpmodprim:184,rcodeprint:172,read:231,real:[11,163,180],real_root:38,realnumb:32,recommend:2,reconstruct:185,recurr:189,recurs:234,reduc:171,reduct:182,refer:[2,7,14,31,32,34,44,50,57,58,59,63,64,65,66,68,69,71,73,105,111,114,144,155,157,158,159,160,162,164,166,168,179,181,182,185,190,202,203,221],referenc:2,referencefram:[148,149,157],refin:12,reidemeist:16,rel:32,relat:[3,32,40,154,157,220],remaind:166,repres:[58,134,163],represent:[51,55,144,157,163],residu:179,respons:172,result:171,rewrit:[15,173,238],riccati_special_minus2:187,riemann:40,rigid:104,rigidbodi:89,ring:[160,163,164],risingfactori:37,roll:[96,97,98,99],root:[38,168,184],rough:106,roundfunct:38,routin:203,row:235,rref:235,rs_seri:169,rule:[181,219],run:[5,201],runtim:73,rust:172,sampl:2,scalar:[154,220,222],scalar_potenti:[150,216],scalar_potential_differ:[150,216],schreier:16,sdm:162,search:190,sec:38,sech:38,second:139,section:2,see:[2,32,219],sentenc:2,separ:187,separable_reduc:187,separatevar:184,sequenc:[26,54,166,177,178],seri:[54,159,169,174,175,176,179,230],session:60,set:[11,44,157,180,190,225,237],seterr:32,shape:235,shor:135,should:72,sign:[3,38,231],simpl:171,simplif:[36,62,181,184,238],simplifi:[15,166,183,184,238],sin:38,sinc:38,singl:[2,3],singleton:[32,178,180],singular:[11,13,40,75],sinh:38,slow:103,sol_simpl:187,solenoid:[154,220],solut:[126,190,219],solv:[75,161,189,190,239],solve_lin_si:170,solver:[170,186,187,189,190,239],solveset:190,some:[106,190],sourc:[3,212],space:[125,144,182],spaceorient:215,spars:[69,70,163,164,166],sparsematrix:69,special:[3,15,40,168,180,227,238],specif:15,specifi:159,speed:[84,103],spell:2,spheric:40,sphinx:2,spin:136,spline:40,sqf_normal:185,sqrt:[3,38],sqrtdenest:184,squar:[11,161,184],square_factor:185,srepr:[172,237],standard:16,start:2,stat:191,state:[117,126,129,137],step:190,stirl:37,stochast:191,stoke:223,str:237,strictgreaterthan:32,strictlessthan:32,string:229,strprinter:172,structur:[101,102,144,185],style:2,sub:[32,72],subexpress:[173,184],subfactori:37,subgroup:16,submodul:44,subresult:166,subset:[27,35],substitut:[84,148,229],subword:22,sum:36,sum_of_four_squar:185,sum_of_pow:185,sum_of_squar:185,sum_of_three_squar:185,summari:2,support:[0,171],surfac:223,symbol:[3,32,51,103,107,158,163,168,171,190,231,233],symbolicsystem:[91,107],symmetr:11,symmetricdiffer:180,sympi:[0,1,2,3,4,5,15,38,55,57,73,106,154,163,214,216,217,220,224,225,226,227,229,232,233],sympifi:32,sympy_eqs_to_r:170,syntax:15,system:[107,141,143,144,147,187,189,217,218,220,222],syzygi:160,tabl:[58,182],tan:38,tanh:38,tautolog:11,team:0,tensor:[28,40,138,193,196,197],term:[31,171,173,179],test:[29,62,171,198,200,201,235],theorem:[44,58,223],theoret:35,theori:[11,14,71],thi:[58,190,236],third:219,three:44,through:234,time:213,time_deriv:151,tip:[229,230,231,234,235,236,237,238],todd:16,todo:59,tone:2,tool:[15,70,184],topic:[84,148,227],transcendent:11,transform:[35,58,59,73,218],transformation_to_dn:185,transformation_to_norm:185,transolv:190,travers:184,tree:[15,163,172,234],tree_cs:184,triangular:11,tribonacci:37,tribonacciconst:32,trig:3,trigonometr:[38,40,181,184,238],trigsimp:[184,238],truth:44,tupl:[3,32,168],tutori:[185,232,236],two:231,type:[2,15,40,150,187,190,191],ufuncifi:72,uncollect:22,understand:234,undocu:166,unequ:32,unevaluatedexpr:32,unicod:237,unifi:163,union:180,unit:[11,143,144,145,147],unitari:11,univari:[166,171,185],universalset:180,upper:11,usag:[44,92,107,163,219],use:[184,190],user:[106,185,187,188],using:[15,35,58,75,99,169],util:[15,29,30,49,68,112,189,206,213],valid:58,variabl:[3,159,191,218],variat:207,variou:171,vector:[22,32,100,148,149,150,154,155,156,157,166,214,216,217,218,220,221,222,223],vector_integr:216,veloc:156,verifi:223,visual:[44,106],vlatex:153,volum:223,vpprint:153,vprint:153,walk:234,walsh:35,wave:113,wavefunct:81,weight:13,welcom:4,wester:171,what:[103,162,163,190,233],when:58,where:190,which:[72,172],why:[190,233],wigner:158,wiki:240,wild:32,wildfunct:32,window:159,within:3,word:[16,22],work:[44,171],write:2,wrong:190,you:190,zero:[11,32,166,171,235],zeta:40,zoo:103,zz_i:164}})